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Motivated by recent experiments, we investigate the system of isotropically interacting bosons with Rashba
spin-orbit coupling. At the noninteracting level, there is a macroscopic ground-state degeneracy due to the many
ways bosons can occupy the Rashba spectrum. Interactions treated at the mean-field level restrict the possible
ground-state configurations, but there remains an accidental degeneracy not corresponding to any symmetry of
the Hamiltonian, indicating the importance of fluctuations. By finding analytical expressions for the collective
excitations in the long-wavelength limit and through numerical solution of the full Bogoliubov-de Gennes
equations, we show that the system condenses into a single-momentum state of the Rashba spectrum via the
mechanism of order by disorder. We show that in three dimensions the quantum depletion for this system is small,
while the thermal depletion has an infrared logarithmic divergence, which is removed for finite-size systems. In
two dimensions, on the other hand, thermal fluctuations destabilize the system.
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I. INTRODUCTION AND OVERVIEW

Multicomponent condensates of ultracold atoms offer rich
physical systems due to the interplay between superfluidity
and internal degrees of freedom [1]. Recently, through the
use of synthetic gauge fields, two-component bosons with
spin-orbit (SO) coupling have been engineered in the ultracold
laboratory [2]. SO coupling in solid-state materials has a long
history and is responsible for a variety of interesting physical
effects, with notable examples including the spin Hall effect
[3] and topological insulators [4]. In addition, SO-coupled
materials have diverse applications including spintronics [5].
The newer bosonic counterpart of SO-coupled systems using
ultracold atoms have no analog in solid-state systems and
are thus expected to exhibit genuinely new physics. SO-
coupled cold atomic systems have also received considerable
recent theoretical attention [6–21], investigating topics such
as spin-striped states [9,12,13], fragmentation [8,19], and the
realization of Majorana fermions [7,15,16].

Recent experiments [2] have realized a special combination
of Rashba [22] and Dresselhaus [23] SO coupling in ultracold
atoms. There are also promising proposals to realize more
general non-Abelian gauge fields like pure Rashba (cf.
Ref. [24]) or even SU(N ) gauge fields that provide a toolbox for
topological insulators [25]. The conceptually simple system of
a Rashba SO-coupled Bose-Einstein condensate with isotropic
interactions (RBEC) has surprisingly rich physics. The nonin-
teracting system has a macroscopic ground-state degeneracy
as shown in Fig. 1. Interactions at the mean-field level partially
remove this degeneracy, but there remains an “accidental”
degeneracy not corresponding to any underlying symmetry
of the system. Specifically, mean-field theory predicts a
superposition of condensates of opposite momenta with their
relative amplitudes and phases unspecified.

In this work we show how fluctuations remove this acciden-
tal degeneracy and select a unique ground state (up to overall
symmetries) through the mechanism of “order by disorder”
[26]. Although the phenomenon of order by disorder has been

theoretically accepted and discussed within the context of
classical spin models [26,27], quantum magnetism [28,29] and
ultracold atoms [30–33], experimental demonstrations are, at
best, scarce [34]. In contrast to the original proposal [26],
the degeneracy lifting we find is primarily quantum driven.
We determine the fluctuation spectrum by numerically solving
the coupled Bogoliubov-de Gennes equations. The resulting
modes are integrated over to obtain the free energy as a
function of the relative condensate weights and temperature.
With this we show that fluctuations select a state with all
bosons condensing into a single momentum state in the Rashba
spectrum. We estimate the energy splitting per particle due to
fluctuations for typical experimental parameters to be on the
order of 100 pK. While this splitting is smaller than typical
condensate temperatures, it is the total energy that determines
the ground state, so this effect should be readily observable
provided the RBEC model can be realized.

II. DEFINITION OF HAMILTONIAN AND MEAN-FIELD
GROUND STATES

The Hamiltonian describing noninteracting bosons in three
dimensions with SO coupling reads

H0 =
∫

dr�̂
†
(r)

(
p2

2m
− Q

m
σ⊥ · p

)
�̂(r), (1)

where �̂(r) = (�↑(r),�↓(r))T is a two-component bosonic
field operator, p is the momentum operator, Q is the magnitude
of the SO coupling, and σ⊥ is a vector composed of Pauli
matrices as σ⊥ = (σ x,σ y,0) (we set h̄ = 1). The SO coupling
in Eq. (1) is equivalent to the Rashba form [22] through a 90◦
spin rotation. The single-particle eigenstates of Eq. (1) have
spins pointing either parallel or antiparallel to their momenta
in the xy plane, and up to a constant have energies E

(±)
k =

1
2m

[(k⊥ ± Q)2 + k2
z ], where k⊥ = (kx,ky,0). Clearly, there is

a ring in momentum space of degenerate lowest-energy states
with kz = 0 and |k⊥| = Q (Fig. 1). Correspondingly, there is
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FIG. 1. (Color online) The non-interacting (Rashba) energy
spectrum of the Hamiltonian Eq. (1) with kz = 0. The red circle
indicates the degenerate lowest-energy single-particle states.

a macroscopic number of ways N noninteracting bosons can
occupy this manifold of states.

For the interacting portion of the Hamiltonian we take the
simplest SU(2) invariant form

Hint =
∫

dr
{g

2
[ρ̂(r)]2 − μρ̂(r)

}
, (2)

where ρ̂(r) = �̂
†
(r)�̂(r), μ is the chemical potential, and g =

4πa
m

, where a is an effective scattering length. At the mean-field
level one replaces the operators by c numbers �̂(r) → �(r).
The states that minimize the kinetic energy [Eq. (1)] are in
general given by

�(r) =
∑

|k⊥|=Q,kz=0

Ak
eik·r
√

2

(
1

eiϕk

)
, (3)

where Ak are arbitrary coefficients and tan(ϕk) = kx/ky . Min-
imizing the interaction energy restricts the mean-field states
of Eq. (3) to have a constant density, ρ(r) = �†(r)�(r) ≡ ρ0.
Placing this constraint on states in Eq. (3), one finds that �(r)
can have at most two nonzero coefficients Ak occurring at
opposite momenta. This can be shown by setting each nonzero
wave-vector component of �†(r)�(r) to zero. Without loss of
generality, we take the momenta to point along the x axis and
thereby obtain the state

�(r) =
√

ρ0

2

[
aeiQx

(
1
1

)
+ be−iQx

(−1
1

)]
, (4)

where |a|2 + |b|2 = 1. We can take a and b to be real and
parametrized as a = cos( θ

2 ) and b = sin( θ
2 ) since changing

the phases of a and b amounts to position displacements and
overall phase shifts of �(r) in Eq. (4). The selection of (a,b)
as a result of spin-symmetry breaking interactions (which is
resolved at the mean-field level) was worked out in Ref. [12].
In contrast, in this work there remains a degeneracy at the
mean-field level.

III. CALCULATION OF COLLECTIVE EXCITATIONS

The degeneracy with respect to θ is accidental; i.e.,
it does not correspond to any symmetry of the Hamil-
tonian H = H0 + Hint. We thus expect quantum fluctua-
tions about the mean-field state Eq. (4) to remove this
degeneracy and to select a unique ground state through

the order-by-disorder mechanism. To this end, we write
�̂(r) = �(r) + ψ̂(r) and perform a Bogoliubov expansion
of H to quadratic order in ψ̂(r). Up to a constant the in-
teraction Hamiltonian becomes Hint = g

2

∫
dr[δρ̂(r)]2, where

δρ̂(r) = �†(r)ψ̂(r) + ψ̂
†
(r)�(r). It proves useful to trans-

form to the variables χ̂ (r) = (χ̂↑(r),χ̂↓(r))T , where χ̂ (r) =
eiσ y

θ
2 e−iσ zQxeiσ y

π
4 ψ̂(r), for which the interaction Hamiltonian

takes the simple form Hint = g

2

∫
dr[χ̂↑(r) + χ̂

†
↑(r)]2.

The full Bogoliubov Hamiltonian, HBog, can be written
compactly in matrix form if we introduce the four-component
vector

�̂(r) = (χ̂T (r),χ̂ †(r))T . (5)

Then up to a constant independent of θ we find that HBog =
1
2

∫
dr�̂

†
(r)M(r,p)�̂(r), where

M(r,p) = 1 ⊗ 1
p2

2m
+ gρ0

2
(1 + σ x) ⊗ (1 + σ z)

− Qpy

m
[1 ⊗ σ y cos(2Qx) − σ z ⊗ σ θ sin(2Qx)].

(6)

In this expression, all θ dependence is included in σ θ ≡
cos(θ )σ x + sin(θ )σ z, and ⊗ is the Kronecker product. This
Hamiltonian can be diagonalized using a symplectic transfor-
mation [35,36], which amounts to solving the Bogoliubov-de
Gennes equations,

ηM(r,p)vkn(r) = Eknvkn(r), (7)

for positive eigenvalues Ekn, where η = σ z ⊗ 1, and vkn(r)
is a four-component function. Because of the translational
symmetries of M(r,p), the eigenvalues are labeled with
band index n and momentum k in the Brillouin zone
(BZ) defined as −∞ < ky,kz < ∞ and −Q � kx < Q. As
usual, the eigenvectors are normalized as 〈vkn|η|vk′n′ 〉 ≡∫

drv†kn(r)ηvk′n′ (r) = δkk′δnn′sgn(Ekn). In practice, Eq. (7) is
simplest to solve in momentum space. Since the momentum
space representation of M(r,p) is an infinite matrix, in numer-
ical calculations it must be truncated at high momentum, and
the eigenvalues of interest must be checked to be independent
of the cutoff.

In Fig. 2 we show the two gapless (Goldstone) modes
for several values of θ , found numerically from Eq. (7). In
experiments of [2], εQ = Q2

2m
� gρ0, so we set these quantities

to be equal. The dispersion is plotted along ky since, as can
be seen from Eq. (7), the spectrum Ekn has no θ dependence
when ky = 0. We refer to the dispersions as “density” and
“spin” modes since they reduce to the known expressions
Ekd = √

εk(εk + 2gρ0) and Eks = εk in the limiting case of
Q = 0, where εk = k2

2m
is the free particle dispersion. One

sees that upon increasing θ from zero to π/2, the spin mode
decreases in energy while the density mode increases. This
gives, in a sense, a competing effect in terms of which (a,b)
configuration is selected from fluctuations. Noting this, in
the right panel we plot the average of the spin and density
modes for each value of θ . One sees that the average is
always lowest in energy for θ = 0. This indicates that the
zero-point fluctuations from the Goldstone modes will select
θ = 0 state though things become more subtle for T > 0. Such
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FIG. 2. (Color online) (a) The dispersions for the density and
spin Goldstone modes for three values of θ for kx = kz = 0. (b) The
average (arithmetic mean) of the density and spin modes. In both
plots we have fixed gρ0 = Q2

2m
.

a state, as can be seen from Eq. (4), corresponds to all bosons
condensing into a single momentum state of the RBEC system.
The order-by-disorder mechanism will be considered more
quantitatively below.

Analytical expressions for the dispersions and eigenvec-
tors of Eq. (7) can be found perturbatively in the long-
wavelength limit εk � εQ,gρ0. In this limit one finds Ekd =√

2gρ0[εkxz
+ λεky

sin2(θ )] and Eks =
√

εkxz
(εkxz

+λεky
)2

εkxz
+λεky

sin2(θ )
for the den-

sity and spin modes, respectively, where λ = gρ0/(4εQ +
2gρ0) and kxz = √

k2
x + k2

z . These agree well with the nu-
merical results shown in Fig. 2 for small k except for two
special cases which require more careful analysis. In particular,
for θ = 0, the density mode disperses quadratically along ky

while for 0 < θ � π/2 the spin mode disperses as k3
y along ky .

Otherwise the density and spin mode have, respectively, linear
and quadratic dispersions about their minima. It is interesting
to compare these to the noninteracting energies shown in
Fig. 1, which have quadratic and quartic dispersions about
their minima.

IV. QUANTUM AND THERMAL ORDER BY DISORDER

Let us now consider the free energy due to quantum and
thermal fluctuations described by HBog. It is useful to separate
out the contribution from zero-point fluctuations and write
F (θ ) = Fq(θ ) + Ft (θ ), where

Fq(θ ) = 1

2

∑
k∈BZ,n

Ekn(θ ), (8)

Ft (θ ) = kBT
∑

k∈BZ,n

ln(1 − e−βEkn(θ)), (9)

and β = 1/kBT is inverse temperature. Reminiscent of the
zero-point photon contribution to the Casimir-Polder force
[37], the purely quantum contribution Fq(θ ), written as it is,
diverges. This divergence can be regularized by subtracting
the free energy for a particular mean-field configuration

kBT (units of Q2/2m)

Δ
F

q
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N

un
it

s
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FIG. 3. (Color online) (a) The zero-point contribution to the free
energy �Fq as a function of θ for three different values of g. (b) The
absolute value of the (negative) thermal free energy splitting between
the θ = 0 and θ = π/2 configurations |�Ft (π/2)| as a function of
temperature (solid line). This is seen to approach the quantum zero-
point splitting �Fq (π/2) at high temperatures (dashed line). In both
panels the solid lines are fits to the numerically computed data points.

that we take to have θ = 0: �Fq(θ ) = Fq(θ ) − Fq(0). This
regularized expression converges,1 and no renormalization of
the effective range of interactions is needed. The zero-point
contribution to the free energy numerically computed as a
function of θ is shown in Fig. 3(a), where the summation is
performed over 26 bands (we emphasize that in order to obtain
quantitatively correct results, including only the gapless modes
is insufficient). One sees, indeed, that the θ = 0 state has the
lowest energy, and at T = 0 such a state is unambiguously
selected.

We now turn to the finite-temperature contribution to
the free energy. Interestingly, one finds that the sign of the
thermal contribution �Ft (θ ) = Ft (θ ) − Ft (0) is negative and
opposite to that of �Fq(θ ). Furthermore, the magnitude of the
thermal contribution is always smaller than the contribution
from zero-point fluctuations, in contrast to typical situations
where thermal fluctuations enhance the degeneracy lifting and
are larger in magnitude for modest temperatures (see, e.g.,
Ref. [30]). Another instance of where quantum and thermal
fluctuations select different states is presented in Ref. [33].
The sign of �Ft at low T can be understood by noting that the
spin mode has the lowest energy for θ = π/2 (Fig. 2).

As seen in Fig. 3(b), the magnitude of �Ft (θ ) approaches
�Fq(θ ) at high T , so that �F (θ ) = �Fq(θ ) + �Ft (θ ) =
O(T −1) → 0 in this limit. This behavior can be understood
through a high T expansion of the free energy

Ft (θ ) ≈ kBT
∑

k∈BZ,n

ln [βEkn(θ )] − 1

2

∑
k∈BZ,n

Ekn(θ ). (10)

1After the n summation is performed, the summand has the
asymptotic form proportional to k2

y/k5 for large k as can be
determined perturbatively.
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As the second term cancels the quantum contribution, we focus
on the larger first term, which can be written as

kBT
∑

k∈BZ,n

ln[βEkn(θ )] = 1

2
kBT ln |det[βηM(r,p)]

= kBT
∑

k∈BZ′,n

ln |βλkn|,

where λkn are the eigenvalues of M(r,p) and we have used
|det(η)| = 1. The second summation above is over the reduced
Brillouin zone BZ′, which is restricted to positive values of
kx . The eigenvalues λkn are independent of the condensate
configuration given by θ . This can be seen by noting that
the θ dependence of M(r,p) can be removed through the
unitary transformation M(r,p) → U†M(r,p)U, where U =
1
2 (1 + σ x) ⊗ 1 + 1

2 (1 − σ x) ⊗ eiθσ y .2 Thus to this order we
find that �Ft (θ ) = −�Fq(θ ). The next-order term in the
high-temperature expansion has 1/T dependence, which is
evident in the numerical results shown in Fig. 3(b).

V. CONDENSATE DEPLETION

Having established using the Bogoliubov expansion that
fluctuations select θ = 0, we now investigate the self-
consistency of this approach. This is determined by the
depletion or the number of particles excited out of the
condensate Nex considered as a fraction of the total par-
ticle number N . Consistency, of course, requires that this
be finite, while neglecting terms beyond quadratic or-
der in HBog is quantitatively reliable only if Nex � N .
The quantum and thermal contributions to Nex = Nq + Nt

are, respectively, Nq = 1
2

∑
k∈BZ,n〈vkn|(1 − η)|vkn〉 and Nt =∑

k∈BZ,n〈vkn|vkn〉f (Ekn), where f (x) = (eβx − 1)−1 is the
Bose-Einstein distribution function. The only possible diver-
gences of these expressions are in the infrared and so can be
studied analytically using the small-k expansion.

In three dimensions at T = 0, Nq is finite and so can be
sufficiently small provided weak-enough interactions. Our
numerical results in fact demonstrate that the depletion is
small even for moderately strong interactions, including in
the region of experimental relevance. For T > 0, the thermal
contribution is instead found to have a logarithmic divergence
in three dimensions. This divergence (similar to that occurring
in quasi-two-dimensional scalar condensates) is naturally
removed for finite-sized systems, and the condensate will
thereby satisfy the stability criterion. For two-dimensional
condensates with isotropic SO coupling, the situation is
different. Here the quantum depletion again converges, but the
thermal depletion diverges as 1/k for small k. Thus, at T > 0
our theory is unstable in two dimensions, which is consistent
with work suggesting fragmentation [8,19]. Our conclusions
on the stability of the condensate are, remarkably, identical to
those based on the simple application of the Einstein criterion
to the noninteracting spectrum. This is particularly surprising
since the low-k region is strongly modified by the interactions,

2The same transformation introduces θ dependence into η and so
the eigenvalues of ηM(r,p) generally depend on θ , which determine
the Bogliubov spectrum.

giving quasiparticle modes that disperse with different powers
than in the noninteracting case.

VI. EXPERIMENTAL FEASIBILITY

We now comment on the experimental feasibility of observ-
ing order by disorder in RBEC. We first consider the magnitude
of the degeneracy lifting. As a prototypical example we take
spin-one 87Rb. For a typical density of ρ0 = 2 × 1014cm−3 and
gρ0 = Q2

2m
, we find (for the appropriate scattering lengths) that

at zero temperature the free-energy splitting per particle due to
fluctuations is �F (π/2)/kBN = 110 pK. One should note that
this number should not be directly compared with the conden-
sate temperature since the total energy determines the ground
state. It is this energy that will determine experimental time
scales for the relaxation to the ground state. Spin-one atoms
also possess a spin-dependent interaction term that we have
neglected. For 87Rb, however, this spin-dependent interaction
is relatively small (0.5% that of the spin-independent) and as
a result the degeneracy lifting from fluctuations is typically
larger. Alternatively, one could use fermionic homonuclear
molecules that have a singlet ground state. More importantly,
schemes to create SO coupling in bosonic systems typically
rely on utilizing dressed states [2,18,24], which can induce
anisotropic interactions. The magnitude of such terms and their
effect on the order-by-disorder mechanism will be left to future
work when it becomes clear which of the several proposed
schemes is most promising to realize Rashba coupling.

Another entity of experimental relevance is the harmonic
confining potential. The results of the current paper will
hold if the conditions for the local density approximation
(LDA) are satisfied [38]. For our system this requires
that the energy splitting of the single-particle states as
recently found in Refs. [20,21] be small compared to the
interaction energy. This energy splitting becomes small
for weak trapping and/or strong SO coupling, resulting in
a large quasidegenerate manifold of single-particle states.
Conversely, in the weakly interacting limit (where LDA is
inapplicable) recent work [20,21] has shown the ground states
of the RBEC system in a trap can form vortex lattices.

VII. CONCLUSION

In conclusion we have investigated the system of Rashba
SO-coupled bosons with isotropic interactions (RBEC). In
general bosons with SO coupling offer a genuinely new class of
systems that has not been addressed in the vast solid-state liter-
ature on spintronics [5]. In particular, we have established that
fluctuations select the RBEC system to condense into a single
momentum state. We have argued that such a configuration
is stable in three dimensions but destabilized when T > 0 in
two dimensions. We expect bosons with Rashba SO coupling
to be realized in the near future for which the predicted
configuration will be observable in Stern-Gerlach experiments.
In future studies it will be interesting to investigate more
general combinations of Rashba and Dresselhaus SO coupling.
Such systems also possess accidental mean-field degeneracies,
and thus fluctuations are expected to play an important role
in determining their ground states. In addition it will be
interesting to investigate RBEC systems in two dimensions.
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Phys. Rev. Lett. 104, 073603 (2010).

[12] C. J. Wang, C. Gao, C. M. Jian, and H. Zhai, Phys. Rev. Lett.
105, 160403 (2010).

[13] S. K. Yip, Phys. Rev. A 83, 043616 (2011).
[14] T. Ozawa and G. Baym, Phys. Rev. A 84, 043622 (2011).
[15] J. D. Sau, R. Sensarma, S. Powell, I. B. Spielman, and

S. DasSarma, Phys. Rev. B 83, 140510(R) (2011).
[16] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,

G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller,
Phys. Rev. Lett. 106, 220402 (2011).

[17] E. van der Bijl and R. A. Duine, Phys. Rev. Lett. 107, 195302
(2011).

[18] Y. Zhang, L. Mao, and C. Zhang, Phys. Rev. Lett. 108, 035302
(2012).

[19] S. Gopalakrishnan, A. Lamacraft, and P. M. Goldbart, Phys. Rev.
A 84, 061604(R) (2011).

[20] H. Hu, B. Ramachandhran, H. Pu, and X.-J. Liu, Phys. Rev. Lett.
108, 010402 (2012).

[21] S. Sinha, R. Nath, and L. Santos, Phys. Rev. Lett. 107, 270401
(2011).

[22] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[23] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[24] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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