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Instabilities of bosonic spin currents in optical lattices
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We analyze the dynamical and energetic instabilities of spin currents in a system of two-component bosons in
an optical lattice, with a particular focus on the Néel state. We consider both the weakly interacting superfluid and
the strongly interacting Mott insulating limits as well as the regime near the superfluid-insulator transition and
establish the criteria for the onset of these instabilities. We use Bogoliubov theory to treat the weakly interacting
superfluid regime. Near the Mott transition, we calculate the stability phase diagram within a variational Gutzwiller
wave-function approach. In the deep Mott limit we discuss the emergence of the Heisenberg model and calculate
the stability diagram within this model. Though the Bogoliubov theory and the Heisenberg model (appropriate
for the deep superfluid and the deep Mott-insulating phase, respectively) predict no dynamical instabilities, we
find, interestingly, that between these two limiting cases there is a regime of dynamical instability. This result is
relevant for the ongoing experimental efforts to realize a stable Néel-ordered state in multicomponent ultracold
bosons.
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I. INTRODUCTION

Ultracold atomics gases have recently emerged as a
very important platform to study nonequilibrium quantum
dynamics of interacting many-body systems. The tunability
of Hamiltonian parameters together with almost complete
isolation from the environment and the long-time scales in
these systems has made it possible to study the intrinsic
nonequilibrium dynamics of these systems without ultrafast
probes. Recently, there has been a growing number of
experimental and theoretical investigations of the dynamical
properties of Bose-Einstein condensates (BECs) in optical
lattices [1]. Of particular interest are experiments that exhibit
a dynamical instability, which is a generic phenomenon
present in nonlinear systems under appropriate conditions.
Previously established examples of dynamical instabilities
occur in water waves [2,3], light in dielectric media [4–7],
and plasmas [8–10]. Recently, dynamical instabilities have
been observed in ultracold Fermi gases after a tuning of the
interaction parameters [11,12]. The realization of dynamical
instabilities for current-carrying states in BECs has received
considerable attention both theoretically [13–19] and experi-
mentally [20–27].

Two qualitatively distinct types of instabilities can occur for
interacting systems of bosons: (i) energetic instability and (ii)
dynamical instability. Energetic instability occurs if the system
is not at a local minimum of the mean-field energy. If the
system is capable of dissipating energy, then it will decay from
the initial metastable state, thereby exhibiting the instability.
A well-known example for this case is the Landau instability
(LI) for which a superfluid carrying current in excess of the
sound velocity becomes unstable, leading to a breakdown
of superfluidity. In contrast, a dynamical instability (DI)
occurs when the system has collective modes with complex
frequencies. Such modes will result in an exponential growth
of small perturbations, which manifests as a rapid depletion
and fragmentation of the condensate [22,27]. For systems that
do not have a dissipative mechanism, the energetic instability
alone will not occur. In contrast, the dynamical instability
occurs even without dissipation and will be observable unless

the growth time of the most unstable mode is longer than
experimental time scales. It can also be seen that an energetic
instability is a necessary condition for a dynamical instability.

Bosons in an optical lattice undergo a quantum phase
transition from a superfluid phase in the weakly interacting
limit to an incompressible Mott-insulator phase as the in-
teraction parameter increases beyond a critical value. Scalar
bosonic condensates have a U(1) symmetry associated with
the superfluid phase, resulting in a conserved mass current.
In the presence of a lattice, when the externally imposed
current exceeds a critical value, the system manifests a
dynamical instability [13–15]. The critical current required for
the dynamical instability decreases with increasing interaction
strength and vanishes at the critical interaction required for the
superfluid-insulator transition. Additional types of dynamical
instabilities can occur in multicomponent condensates due
to their more complex order parameters. In this paper we
focus on two-component bosons in an optical lattice with
spin-independent interactions. In addition to the superfluid-
insulator transition, this system also shows a spontaneous fer-
romagnetic spin ordering in the equilibrium ground state. This
system has an SU(2) symmetry due to invariance of the energy
under spin rotation, which results in a conserved spin current.
In the presence of externally imposed spin currents (spin
twists), the system exhibits dynamical instabilities when the
spin current exceeds a critical value. We mainly focus on these
spin-current-driven instabilities, which occur in addition to and
even in the absence of any mass-current-driven instabilities.

Previous work addressing spin-current instabilities in
bosonic systems has focused on the continuum, weakly
interacting superfluids where the Gross-Pitaevskii equation
is applicable. In such a context, the counterflow instability
[28–32] and the instability of a spin-one condensate from
an initial helical state [33,34] have been investigated. Here
we analyze the instabilities of the system in the presence
of an optical lattice for a wide range of interaction pa-
rameters going from the weakly interacting limit (the deep
superfluid phase) through the intermediate regime near the
superfluid-insulator transition to the strongly interacting
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(atomic) limit, deep into the Mott-insulator phase. The weakly
interacting regime is treated within the standard Bogoliubov
theory, while the strongly interacting regime is treated within
a spin-wave approximation of the ferromagnetic Heisenberg
model, where the spin-spin interaction comes from a superex-
change mechanism. The intermediate interaction regime is
treated within a variational Gutzwiller wave-function ansatz.
We extend the Gutzwiller ansatz to both the deep superfluid
and the deep Mott limit and compare the results with those
from the more established formalisms mentioned above.

To analyze stability of the bosonic states, we construct
either mass- or spin-current-carrying mean-field states. The
spectrum of quantum fluctuations about these stationary
states is then calculated within a Gaussian approximation.
Negative eigenvalues of the fluctuation Hamiltonian indicate
an energetic instability, while a complex collective mode
spectrum indicates a dynamical instability. For a dynamical
instability, the positive imaginary part of the complex spectrum
gives the growth rate of the unstable fluctuation modes. The
following are our main results. (i) We show that the mass-
current-induced instabilities give rise to the same instability
phase diagram in the critical current interaction plane for both
spinless and two-component bosons. (ii) The two-component
bosons exhibit a spin-current-induced dynamical instability
in a large region of the critical current interaction strength
plane in the superfluid phase. We also show the collective
modes, which are unstable, and compute their growth rates.
(iii) We focus on the Néel-ordered state, which can be
interpreted as a spin-current-carrying state with particular
commensurate wave vector. Although the Néel configuration
is not the ground state of the system, there are proposals [35]
to experimentally explore the physics about this high-energy
state provided its lifetime is sufficiently long. We show that
while this state is stable in the deep superfluid and insulating
limits, in the intermediate regime, interestingly, the system
is dynamically unstable. We thus provide a comprehensive
picture of the spin-current-induced dynamical instabilities in
two-component bosons on optical lattices for a wide range of
interactions and spin currents.

The paper is organized as follows. In Sec. II we review the
established DI of the mass current of spinless bosons. We use
the Bogoliubov theory to analyze the superfluid limit and the
Gutzwiller ansatz to analyze the strongly interacting regime
close to the Mott boundary. This prepares us to investigate the
instabilities related to the spin current of a two-component
bosonic condensate in Sec. III in the regime of weak as well
as intermediate interactions. We shall present the stability
phase diagram and discuss how our results are connected to
the deep Mott limit. In Sec. IV we discuss the stability of the
Néel state limit for different regimes. Finally, in Sec. V we
summarize our results.

II. INSTABILITIES OF MOVING SCALAR CONDENSATES

For completeness and to set the notation and general
approach, we first briefly consider the mass current in a
single-component BEC and the concomitant Landau and
dynamical instabilities. The weakly interacting superfluid case
was originally considered in Refs. [13,15], while the regime
near the Mott transition was addressed in Refs. [18,19]. A

system of bosons on a lattice and in the lowest band is described
by the Bose-Hubbard model

H = − t
∑
〈ij〉

(b†i bj + H.c.) + U

2

∑
i

(ni − n̄)2 − μ
∑

i

(ni − n̄),

(1)

where b
†
i is the boson creation operator on the lattice site i, t

is the hopping matrix element, U is the on-site repulsion, μ is
the chemical potential, ni = b

†
i bi , and n̄ is the average number

of bosons per site. We consider this model in one, two, and
three dimensions for cubic lattices. When t � U/n̄ the system
has a superfluid ground state and Bogoliubov theory describes
its elementary excitations. When t ∼ U/n̄ there is a quantum
phase transition at U = Uc to an incompressible Mott state.
The Bogoliubov theory fails in the vicinity of this transition;
however, a variational Gutzwiller ansatz can be used to treat
the system in this regime.

A. Weakly interacting superfluid

Deep in the superfluid phase the current-carrying states can
be represented by a condensate wave function of the form

b̄i = √
neip·xi , (2)

which has a phase twist along p̂ and carries a mass current
proportional to sin p · xij between neighboring sites. This
wave function can be found within mean-field theory by
solving the Gross-Pitaevskii equation. Expanding the energy
of the system [Eq. (1)] about this state to quadratic order,
with bi = b̄i + φi , one obtains the fluctuation Hamiltonian
δH = ∑

k �
†
kMk(p)�k, where �

†
k = (φ†

k,φ−k) and

Mk =
(

εk+p − εp + Un Un

Un εk−p − εp + Un

)
, (3)

with εq = −ztγq, where z is the coordination number and
γq = z−1 ∑

δ eiq·δ . The energies of the normal modes of the
system are given by the eigenvalues of the matrix σzMk [13],
where σz is a Pauli matrix. In contrast, if the system is at a
local minimum in energy, then the matrix Mk itself will be
positive definite. We thus summarize the following criteria
for the instabilities: For the LI at least one eigenvalue of Mk
is negative and for a DI at least one eigenvalue of σzMk is
complex

For mass-current-carrying states, it is well known that the
continuum theory sustains only Landau instabilities, which
occur when the current in the system exceeds the speed of
sound. There are no dynamical instabilities in the continuum
theory. However, on a lattice the system exhibits both Landau
and dynamical instabilities with the criteria for the critical
current summarized in Table I. The dynamical instability is
crucially related to the softening of collective modes at finite
wave vectors, which does not occur in the continuum.

B. Gutzwiller ansatz

To investigate the DI for the Bose-Hubbard model for
stronger interactions, we shall approach the problem within
a truncated Hilbert space. We consider the variational
Gutzwiller wave function for the ground state |�〉 = ∏

i |�i〉,
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TABLE I. Conditions for Landau and dynamical instabilities of mass-current-carrying states (for spinless bosons) and spin-current-carrying
states (for two-component spinful bosons) in the weakly interacting limit on a square lattice (calculated within Bogoliubov theory). The results
are valid for one, two, and three dimensions. The case of twisting along the diagonal of the square lattice, p = p̃

∑
i x̂i , is taken. For comparison,

the conditions for the instabilities in the continuum are also given.

Phase twist Spin twist

Instability Continuum Lattice Continuum Lattice

LI p̃ >
√

mUn
sin2 p̃

cos p̃
> Un

zt
p̃ �= 0 p̃ �= 0 mod 2π

DI never cos p̃ < 0 p̃ �= 0 p̃ �= 0, ± π

2 mod 2π

with |�i〉 = cos θi

2 |n̄〉i + eiηi sin θi

2 [cos χi

2 e−iϕi |n̄ − 1〉i +
sin χi

2 eiϕi |n̄ + 1〉i], where |n〉i are the Fock states on the
site i. This variational state was used in Ref. [36] to study
the Bose-Hubbard model near the Mott transition in the
absence of a current. Our calculations follow along similar
lines with an important distinction: The phase ϕi is position
dependent, i.e., ϕi = p · xi such that 〈�|bi |�〉 ∝ sin θeip·xi ,
which ensures that the state carries a mass current flowing
along p̂. Other parameters are then varied to minimize the
energy of this mean-field state, giving χ = π

2 and η = 0.
The Hamiltonian is expanded about this stationary state in

the following way: We introduce the bosonic pseudospin op-
erators t

†
αi |vac〉 ≡ |n̄ + α〉i , α = {−1,0,1}, with the constraint∑

α t
†
αi tαi = 1, so that the boson operators can be written as

b
†
i → √

n̄t
†
0i t−1i + √

n̄ + 1t
†
1i t0i . A unitary transformation is

then performed with
⎛
⎜⎝

d
†
0i

d
†
1i

d
†
2i

⎞
⎟⎠ =

⎛
⎜⎜⎝

e−ip·xi√
2

sin θ
2 cos θ

2
eip·xi√

2
sin θ

2

− e−ip·xi√
2

cos θ
2 sin θ

2 − eip·xi√
2

cos θ
2

e−ip·xi√
2

0 − eip·xi√
2

⎞
⎟⎟⎠

⎛
⎜⎝

t
†
−1i

t
†
0i

t
†
1i

⎞
⎟⎠

(4)

and the Hamiltonian is written in terms of the d operators.
Since d

†
0 |vac〉 represents the minimum energy state, it is

macroscopically occupied, while d
†
n>0 are fluctuations about

this state. Therefore, we eliminate d
†
0 using d

†
0 ≈ d0 ≈ 1 −

1
2d

†
1id1i − 1

2d
†
2id2i , which resembles the Holstein-Primakoff

transformation [37] used in spin models.
To quadratic order in the operators d

†
n>0, the

Hamiltonian has the form H = �
†
kMk�k, where �

†
k ≡

(d†
1k,d1,−k,d

†
2k,d2,−k) and the form of Mk is given in

Appendix A. For a given U/t and p, we compute the energies
ω1,2k for k ∈ [−π,π ] by a Bogoliubov transformation. As
noted before, the presence of complex eigenfrequencies
indicate a dynamical instability.

For a direct comparison with previous work, we consider
p along an axis of a d-dimensional cubic lattice (p = px̂1),
giving γp = cos p+(d−1)

d
. The resulting phase diagram is shown

in Fig. 1, which shows good agreement with the results in
Refs. [18,19], where a numerical analysis is performed, taking
a larger Hilbert space.

The Bogoliubov analysis is justified only if the fluctuation
occupation 〈d†

1id1i + d
†
2id2i〉 is small compared to unity.

This is checked in the stable regimes after the Bogoliubov
transformation is done. We find that for the two-dimensional
system, the fluctuation is less than 0.2 for all U > 0.1Uc and

reaches up to 0.5 as U → 0 and p → π/2. This means that the
quantitative result should be reliable for U > 0.1Uc. However,
in one dimension we always find divergent occupation of
the fluctuations as expected because of the significance of
quantum fluctuations. The qualitatively good agreement for
one-dimensional results with experiment might be understood
as due to the logarithmic nature of the divergence, which is
not severe in finite-size systems.

III. SPIN-CURRENT INSTABILITIES IN
TWO-COMPONENT CONDENSATES

Having set up the formalism to study Landau and dynamical
instabilities in spinless bosonic systems, we now adapt this
formalism to study instabilities of spin-current-carrying states
in condensates of two-component bosons. The starting point
for our analysis is the two-component rotationally invariant
Bose-Hubbard model

H = − t
∑
〈ij〉σ

(b†iσbjσ + H.c.)+ U

2

∑
i

(ni − n̄)2 − μ
∑

i

(ni − n̄),

(5)

where b
†
iσ creates a boson of spin σ on site i, ni = ∑

σ b
†
iσ biσ ,

and n̄ is the average particle number per site. Such a
system could be realized using, for instance, two hyperfine
states of alkali-metal atoms. Due to the smallness of the
spin-exchange interaction for typical alkali-metal atoms, such
systems possess an approximate SU(2) symmetry, which is

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

U/Uc

p
/π

d=3
d=2

d=1

~

FIG. 1. (Color online) Stability phase diagram of phase twists in
a lattice in different dimensions, where twisting is imposed along
p = p̃x̂. The same diagram is obtained for either spinless bosons
[Eq. (1)] or the two-component bosons [Eq. (5)]. This diagram agrees
well with the more extensive treatment presented in Refs. [18,19].
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reflected in the spin-independent form of the interactions that
we consider here. For simplicity, we will concentrate on the
case when n̄ = 1, except for the Bogoliubov analysis.

The weakly interacting superfluid phase (considered in
Ref. [28]) of the spinful bosons is described by the Bogoliubov
theory around a mean-field state with a two-component
condensate wave function. The intermediate interaction regime
near the Mott transition is analyzed, as before, with a varia-
tional Gutzwiller ansatz, albeit with an extended local Hilbert
space. However, unlike the spinless bosons, the ferromagnetic
spin-spin interaction in the deep Mott-insulator phase, arising
out of a superexchange mechanism, is not captured by the
simple Gutzwiller ansatz. To treat this limit, we work with a
ferromagnetic Heisenberg model with a spin-spin interaction
J = 4t2/U and analyze the spin-current-induced instabilities
within a spin-wave formalism.

A. Weakly interacting superfluid

The weakly interacting superfluid regime admits coherent
mean-field spin-current-carrying solutions of the form

b̄i = eiσ xp·xi /2

(√
n

0

)
. (6)

Such states have a spin twist of p and carry a spin current that
is proportional to sin p · xij between neighbors. Expanding
Eq. (5) about this stationary state to second order in quantum
fluctuations, biσ = b̄iσ + φiσ , gives the Hamiltonian δH =∑

k>0 �
†
kMk�k, where �

†
k = (φ†

↑k,φ↑−k,φ
†
↓k,φ↓−k) and

Mk =

⎛
⎜⎜⎜⎝

ξ + 2Un Un ε− 0

Un ξ + 2Un 0 −ε−
ε− 0 ξ + Un 0

0 −ε− 0 ξ + Un

⎞
⎟⎟⎟⎠ , (7)

where
ξ = ε+ − μ,

ε± = εk+p/2 ± εk−p/2

2
,

with εq = −ztγq = −2t
∑

i cos qi . For given U and p, neg-
ative eigenvalues of Mk for some k indicate a LI while
imaginary eigenvalues of σMk indicate a DI, where σ =
diag(1, − 1,1, − 1).

From here on we will restrict ourselves to the case of spin
currents along the diagonal of a square lattice: p = p̃(x̂ + ŷ)
(for example, p̃ = π represents the Néel state). The conditions
for instabilities are summarized in Table I. The LI is always
present for any nonzero pitch, while DI is always present
except for the p̃ = 0 ferromagnetic state and the p̃ = π Néel
state.

To obtain a better understanding of the DI, we plot the wave
vectors of the unstable modes, obtained from the Bogoliubov
theory, as a function of the spin twist p̃ in the left column of
Fig. 2. Here we consider wave vectors parallel to spin current
(k ‖ p) for several values of U . Light gray areas indicate
the presence of a LI but not a DI and dark areas indicate
the presence of both a LI and a DI. The ferromagnetic state
is always energetically and dynamically stable, as expected,
while the Néel state has a LI but not a DI. With increasing U the
region where the DI is present increases, i.e., more and more

S
pi

n 
T

w
is

t  
p

/ π
Wave Number k / π

U/Uc

0.1

0.3

0.5

0.7

Bogoliubov Gutzwiller

0.5 10 0.5 10

0
1

0
1

0

1

1

0

0.5

0.5

0.5

0.5

~

FIG. 2. Diagrams showing regions of unstable modes for the BEC
spin-current-carrying state in an optical lattice, analyzed with Bogoli-
ubov theory (left column) and the Gutzwiller ansatz (right column).
The values of U/Uc used are (from top to bottom) 0.1, 0.3, 0.5, and
0.7. The spin twist plotted is from a ferromagnetic state [p = (0,0)] to
a Néel state [p = (π,π )]. k is the wave vector of the normal mode. The
light-shaded area indicates a LI (negative excitation energy), while
the dark-shaded area indicates a DI (complex frequencies). The left
column was previously obtained in Ref. [28].

wave vectors become unstable. However, the region where LI
is present is almost independent of U .

The dispersions of the lowest collective modes (k ‖ p) for
three special states, the ferromagnetic state (p̃ = 0), the Néel
state (p̃ = π ), and the spin spiral state with a wavelength of
four lattice spacings (p̃ = π/4), are plotted in the left column
of Fig. 3. For the ferromagnetic state, there are two low-energy
modes: a charge mode related to the U(1) symmetry breaking,
which disperses linearly, and a spin mode related to the SU(2)
symmetry breaking, which disperses quadratically, both of
which are stable modes. As a spin current is imposed, the
charge mode remains stable while the spin mode develops a
DI near k = 0, indicated by the dashed (red) line. As we reach
the Néel state, both the charge and spin modes disperse linearly
and are stable. Thus the DI disappears for the Néel state, which
is stable in the weakly interacting limit. However, states with
spin twists close to but not equal to π are unstable with the
instability being seeded around the wave vector k = π .

B. Gutzwiller ansatz

To investigate the regime near the insulator-superfluid
transition we adopt the Gutzwiller approach of Sec. II. For
simplicity, we restrict ourselves to the case of unity filling.
Then there are minimally six basis states per site that need to be
included in the local Hilbert space: {|0〉,|↑〉,|↓〉,|↑↑〉,|↑↓〉,
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|↓↓〉}, where the last three states have double occupancy. The
local Gutzwiller wave function is then parametrized in terms
of ten variables (site indices have been omitted)

|�〉 = sin
θ

2
cos

θ2

2
|0〉 + ei(ϕ0+ϕ1) cos

θ

2
cos

θ1

2
|↑〉

+ei(ϕ0−ϕ1) cos
θ

2
sin

θ1

2
|↓〉

+e2i(ϕ2+ϕ4) sin
θ

2
sin

θ2

2
cos

θ3

2
cos

θ4

2
|↑↑〉

+e2i(ϕ2+ϕ3) sin
θ

2
sin

θ2

2
sin

θ3

2
|↑↓〉

+e2i(ϕ2−ϕ4) sin
θ

2
sin

θ2

2
cos

θ3

2
sin

θ4

2
|↓↓〉 . (8)

A phase twist (〈bσ 〉 ∝ eip·x) can be imposed by setting ϕ0 =
ϕ2 = p · x and the other ϕi �=0,2 to be uniform, while a spin
twist (〈S+〉 ∝ ei2p·x) can be imposed by setting ϕ1 = ϕ4 =
p · x/2 and the other ϕi �=1,4 to be uniform. Note that, in our
parametrization, the spin-current-carrying states do not have
any mass current, i.e., it is a state where the two spin species
carry equal mass currents in the opposite direction. We find
that a mass current produces a stability diagram identical to
that of the spinless condensate in Sec. II. From now on we will
concentrate on the case of spin twist only.

With a spin twist imposed on |�〉, we expand the
Hamiltonian around its stationary state and investigate the
behavior of the fluctuation Hamiltonian. The full derivation
is carried out in Appendix B. Here we shall present the
results, concentrating on the case where the spin current is
along the diagonal: p = p̃

∑
i x̂i . For comparison with the

Bogoliubov theory, we plot in the right column of Fig. 2
the wave number of the unstable wave vectors (parallel to
the spin current) as a function of the spin twist for different
interaction strengths. We find that, contrary to the Bogoliubov
theory, the region of unstable wave vectors decreases with
increasing interaction within the Gutzwiller formalism. For

example, the state at U/Uc = 0.7 with p̃ > π/2 is stable in
the Gutzwiller formalism, while it shows instability within
the Bogoliubov theory. The Bogoliubov theory, which is
accurate in the weakly interacting regime, thus overestimates
the dynamical instability in the intermediate regime. The main
qualitative difference, however, is in the stability of the Néel
state (p̃ = π ). While the Bogoliubov theory predicts only a
LI and no DI for this state, the Gutzwiller ansatz shows that
the Néel state can be dynamically unstable in the intermediate
interaction regime.

In the middle column of Fig. 3 we plot the dispersion of the
low-energy collective modes (with k ‖ p) of the ferromagnetic
state, the Néel state, and a spin-spiral state with period-4 lattice
spacings, for different interaction strengths. The ferromagnetic
state has two gapless modes in the weakly interacting limit: a
linearly dispersing charge mode and a quadratically dispersing
spin mode. As interaction strength is increased toward the
critical interaction for the superfluid-insulator transition Uc,
the charge-mode dispersion is almost unaffected, while the
spin-mode dispersion flattens out. Beyond the critical cou-
pling, in the Mott-insulator phase, the charge mode is gapped
while the zero-energy spin mode becomes dispersionless. This
is an artifact of our variational approach and we will discuss
in Sec. III C how this degeneracy can be lifted by considering
the superexchange mechanism of spin fluctuations. As soon
as a spin current is imposed (say, for the spin-spiral state),
the spin mode develops a DI near k = 0 in the superfluid
phase. Beyond the critical coupling, the DI vanishes in the
Gutzwiller approach and we recover the nondispersing spin
mode. In the weakly interacting limit, the Néel state develops
a dynamical instability for collective modes around k = π/2.
This dynamical instability, however, vanishes before the Mott
transition point is reached.

Comparing the results from the Gutzwiller ansatz to those
from the Bogoliubov theory, we find that for a given p̃,
the discrepancy between the two theories increases with
U/t , while for a given U/t , the discrepancy increases with

U / U1 = t z / n U c = 0 U / Uc = 0.7 U / Uc = 1.1
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FIG. 3. (Color online) Dispersions of excitation modes for different spin twists along the diagonal p = p̃(x̂ + ŷ), where p̃ = 0, π

4 , and
π are obtained with Bogoliubov theory, the Gutzwiller approach, and within the Heisenberg model, respectively. Solid lines are modes with
real energies, while the dashed (red) lines are the imaginary parts of complex energies, which appear in conjugate pairs, but only the positive
imaginary part is plotted. Note that the energies of the collective modes from the Heisenberg model are in units of 2zt2/U , while those from
Bogoliubov theory and the Gutzwiller ansatz are in units of zt .
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FIG. 4. (Color online) Phase diagram of the spin current on a
lattice. This is computed with γp = cos p̃, which represents a spin
current along the diagonal of a square lattice. The shading indicates
the growth rate of the most unstable mode in the dynamically unstable
regime.

increasing p̃. This is understood from the fact that the effective
Mott boundary in the presence of spin currents is given
by U = Ucγp and so increasing the pitch of the spin-twist
pushes the system closer to the Mott-insulator phase, where
the validity of the Bogoliubov theory is suspect.

Figure 4 is the stability phase diagram of the two-
component bosons in the interaction-spin-twist plane. We see
that any finite spin twist leads to DI in the weakly interacting
regime, whereas, for U > Uc/2, states with p̃ around π

(including the Néel state) become stable. The color scale in the
plot represents the growth rate of the most unstable fluctuation
mode in the dynamically unstable region. The spin-1/2 nature
of the particles is evident in the asymmetry of the growth
rate between p̃ = 0 and 2π . Due to Berry’s phase effects, the
system is symmetric only under a 4π (and not a 2π ) twist of
the spin phase.

As in the case of the mass current in Sec. II, the validity
of our Gutzwiller approach, and hence the results of Fig. 4,
is correct only if the fluctuation occupation (

∑
n>0 d

†
nidni in

Appendix B) is small. In the two-dimensional case, we find that
it is indeed small (<0.1) for the majority of the stable regime,
but quickly goes up near the DI boundary, which is expected as
a precursor of instability. The most severe case happens at the
DI boundary for the Néel state, having a fluctuation occupation
of ∼0.4.

C. Heisenberg model

It was previously shown that the two-component Bose-
Hubbard model [Eq. (5)] reduces to a ferromagnetic spin model
in the deep Mott-insulator phase [38,39]. Here we shall show
that within the Gutzwiller ansatz, the ferromagnetic ordering
is provided by the fluctuations.

First note that since a Mott-insulator phase has θ = 0 in our
Gutzwiller ansatz, all spin twists p give the same variational
ground-state energy. The correction to the ground-state energy
due to fluctuations is �E = 1

2

∑
k(−TrM + ∑

α ωαk), where

M is the matrix derived in Appendix B and ωαk are the
eigenenergies. We expand ωαk to first order in 1/U and find
that the correction to the ground-state energy for different spin
twists obeys E(p) − E(0) = −Nt2

U
(γp − 1). This is exactly the

energy difference due to different magnons in a ferromagnetic
Heisenberg model.

However, one should be careful in interpreting the stability
in the deep Mott regime. As noted previously [39], we find a
nondispersing zero mode in the Mott-insulator phase, which
emerges because there is no energy cost to create a spin-flip
locally. We note that this is not physical and will be lifted
at the next order in perturbation theory. Another way to
understand this is that the product form we choose for the
variational state [Eq. (8)] is unable to capture the spin ordering
in the Mott-insulator phase because charge fluctuations are
completely absent. To account for this, one can rotate the
state with a suitable unitary transformation |G′〉 = eiS |G〉,
which amounts to a canonical transformation H ′ = e−iSHeiS

on the Hamiltonian [40,41]. To the lowest order, H acquires
the correction −J

∑
〈ij〉 Si · Sj , where J = 4t2

U
. Using this

Hamiltonian in our analysis, we find that the zero mode is
indeed lifted, with energy

ωk(p) = zJ

2

√
(γp − γk)

(
γp − 1

2 (γk+p + γk−p)
)
, (9)

which is plotted in the right column in Fig. 3. Note that this
dispersion is identical to the usual spin mode in the Heisenberg
model with spin twist p. Similar to the Bogoliubov results, this
spin mode has a LI for nonzero pitch and a DI for any pitch
except for the ferromagnetic and Néel state. However, a crucial
difference is that the growth rate of the unstable modes in this
case has order of magnitude t2

U
, which is much smaller than

that of the DI we find in Fig. 4. This would imply that the deep
Mott state is at least quasistable in that the instability time
scale could be much longer than the experimental time scale.

IV. INSTABILITIES OF THE NÉEL STATE

From the beginning of implementation of optical lattices,
observation of antiferromagnetically ordered states has been an
earnest pursuit of cold-atom experiments. Although the orig-
inal ideas involved looking for antiferromagnetic states with
fermions, recently two-component bosons have been proposed
as an alternate medium to observe antiferromagnetism. In this
context, there is a special interest in the observation of the Néel
state with a commensurate spin-ordering vector p = (π,π ),
which is notoriously hard to realize as a ground state in cold-
atom systems [35,42,43]. In the deep Mott-insulator phase,
this state is the highest-energy state of the ferromagnetic spin
model and is expected to be stable [35,44,45] over relatively
large time scales, which has led to the idea that the physics of
the Néel state may be accessed in systems that are carefully
prepared to be stuck in this metastable state. In the opposite
limit of the weakly interacting superfluid phase, an analysis
using the Bogoliubov approach in Sec. III A also demonstrates
that the Néel state is dynamically stable. This naturally leads
to the question of whether the Néel state is stable throughout
the phase diagram (i.e., for all interaction strengths).

We use the Gutzwiller ansatz scheme to look at the stability
of the Néel state in the intermediate interaction regime. The
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FIG. 5. Growth rate of the most unstable fluctuation mode of the
Néel state as a function of U , the on-site interaction, analyzed via the
Gutzwiller approach. The result is expected to be invalid near U = 0
because it is in the superfluid phase.

Gutzwiller approach shows that the Néel state is dynamically
unstable for 0 < U � 0.51. The U = 0 state is technically
stable, but is mostly irrelevant for real experimental purposes
as noninteracting bosons are pathological even in equilibrium
(e.g., divergent compressibility) and need a finite interaction
to form a stable superfluid. In Fig. 5 we plot the growth rate
of the most unstable fluctuation mode (if any) of the Néel
state, obtained via our Gutzwiller approach as a function of the
interaction strength. The growth rate initially increases with the
interaction strength in the weakly interacting limit, reaching a
peak at around U/Uc ∼ 0.3. It then decreases with increasing
interaction and vanishes at around U/Uc ∼ 0.5. Thus Néel-
state physics can only be probed with dynamically generated
states for U/Uc � 0.5. We note that at U/Uc = 0.55, the
Gutzwiller ansatz predicts a condensate depletion of about
0.21, which shows that the approximation, which involves a
truncated Hilbert space, captures the essential physics in this
regime. The Gutzwiller results in the very weakly interacting
regime U → 0 are, however, suspect as the large number
fluctuations in this limit are incompatible with the truncation
of the Hilbert space used in the Gutzwiller scheme. In fact,
to leading order in the interaction strength, the Bogoliubov
theory, which predicts a stable Néel state, is much more reliable
than the Gutzwiller scheme. It would be interesting to see how
the instability rates in the Gutzwiller approximation change
with increasing size of the Hilbert space, but this much more
complicated problem is beyond the scope of this paper.

V. CONCLUSION

In this work we have analyzed the stability of mass-
and spin-current-carrying two-component Bose condensates
in optical lattices. We have approached the problem via
Bogoliubov theory and the Gutzwiller ansatz to handle,
respectively, the weakly interacting superfluid phase and the
regime near the Mott boundary. The two approaches agree for
a small spin current and small interaction, but deviate when
we increase the spin current or the interaction strength. In
the deep Mott-insulator phase, we addressed the subtleties
we encountered with our variational approach and showed
that the ferromagnetic Heisenberg model provides an adequate
description in this limit.

For mass-current-carrying states, we find that the stability
phase diagram of the two-component bosons qualitatively
follows that of the spinless bosons. The current-carrying

states are dynamically unstable beyond a critical value of
the current and the critical current monotonically decreases
with increasing interaction strength, vanishing at the critical
coupling for the superfluid-insulator transition. For the spin-
current-carrying states, we find, within Bogoliubov theory,
that the system is unstable to any finite spin current in the
weakly interacting limit, with the exception of the Néel state
[with a spin twist of (π,π )]. The Gutzwiller approach also
predicts a similar scenario with the only difference being that
the Néel state is also dynamically unstable in this regime. The
Gutzwiller approach shows that the region of instability in
the spin-current-interaction plane decreases with increasing
interaction, with states around the Néel state [with a spin
twist close to (π,π )] being the dynamically stable states.
The Heisenberg model in the atomic limit also predicts
dynamical instability for all current-carrying states except the
Néel state. Finally, we stressed the fact that, although the
Néel state is stable in the two extreme limits of strong and
weak interactions, it can develop instabilities for intermediate
interaction strengths.

Although energetic instabilities would be very hard to
observe experimentally in cold-atom systems, the dynamical
instabilities of the current-carrying states should be fairly eas-
ily observable as dramatic phenomena. The typical experiment
would consist of creating a spin-current-carrying state by tun-
ing a spatially varying artificial Zeeman field. Such fields with
commensurate wave vectors have already been produced in the
laboratories. By tuning the amplitude of these fields to a very
large value, so that the Zeeman energy is the largest energy in
the problem, the spin-current-carrying states can be generated
as the ground states of the system of bosons. Once the field is
turned off, the system would exhibit a violent disruption of the
spin pattern if it is in a dynamically unstable state, as long as the
inverse growth rate of the unstable modes are small compared
to experimental time scales. Since the maximum growth rate
of unstable modes is ∼ 1.5zt , this growth dynamics should be
observable over a wide range of experimental parameters. We
thus hope that our predicted instabilities would be easily seen
in future experiments on cold atoms.
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I. APPENDIX A: ANALYSIS OF THE SPINLESS
CONDENSATE

Here we give the details of calculations in Sec. II. The
variational energy using the three-state Gutzwiller ansatz with
phase twist p is

ε ≡ 1

N
〈�| H |�〉 =

(
U

2
+ μ cos χ

)
sin2 θ

2
− tzn̄

4
γp sin2 θ

×
(

1 + n̄−1 sin2 χ

2
+

√
1 + n̄−1 sin χ cos 2η

)
, (A1)

where γp = z−1 ∑
δ eip·δ , which reduces to γp = cos p+(d−1)

d
for

a current along an axis of a d-dimension cubic lattice.
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Since |�〉 has filling ratio ν = n̄ − sin2 θ
2 cos χ , to ensure

commensurate filling one should find a μ such that the
minimum of ε occurs at χ = π

2 . For convenience we consider
only the limit n̄ � 1. Then with μ = 0, the minimum of ε is
attained with χ = π

2 , η = 0, and

cos θ =
{
u/γp, 0 < u/γp < 1

1 otherwise,
(A2)

where u ≡ U
4ztn̄

. One can also check that this is a sta-
tionary solution by varying ε locally to leading orders to
find δε = 1

4 (U − 4ztn̄γp cos θ ) sin θδθ . The solution sin θ = 0
corresponds to a Mott-insulator phase while the other solution
corresponds to a superfluid state.

Performing the fluctuation expansion as outlined in the
text, one finds H = ztn̄

2

∑
k �

†
kMk�k where the M are, in the

superfluid and Mott-insulator phases, respectively,

Msf =

⎛
⎜⎜⎜⎜⎝

2γp − cos2 θγ+ − cos2 θγ+ − cos θ cos θ
2 γ− cos θ cos θ

2 γ−

− cos2 θγ+ 2γp − cos2 θγ+ − cos θ cos θ
2 γ− cos θ cos θ

2 γ−

− cos θ cos θ
2 γ− − cos θ cos θ

2 γ− (2γp − γ+) cos2 θ
2 cos2 θ

2 γ+

cos θ cos θ
2 γ− cos θ cos θ

2 γ− cos2 θ
2 γ+ (2γp − γ+) cos2 θ

2

⎞
⎟⎟⎟⎟⎠ , (A3)

MMott =

⎛
⎜⎜⎜⎜⎝

2u − γ+ −γ+ −γ− γ−
−γ+ 2u − γ+ −γ− γ−
−γ− −γ− 2u − γ+ γ+
γ− γ− γ+ 2u − γ+

⎞
⎟⎟⎟⎟⎠ , (A4)

where γ± ≡ 1
2 (γk+p ± γk−p). Note that the problem reduces

to the one considered before [36] in the limit of p = 0.
The spectrum is found by diagonalizing σM , where σ ≡
diag(1, − 1,1, − 1), which would give a spectrum of the form
{± 1

2ωαk}.

APPENDIX B: ANALYSIS OF THE TWO-COMPONENT
CONDENSATE

We take |�〉 from Eq. (8) with a spin twist p imposed to
evaluate the variational energy ε = 1

N
〈�|H |�〉. With some

algebra it can be shown that one can first set θ1,3,4 to be equal
to π/2, after which

ε =
(

U

2
+ μ cos θ2

)
sin2 θ

2
− tz sin2 θ

8
γp/2

×(3 − cos θ2 + 2
√

2 sin θ2). (B1)

To ensure a filling ratio ν = 1 one must set μ =
− zt

2 γp/2 cos2 θ
2 . Then the variational energy is minimized by

θi>0 = π
2 and

cos θ =
{
u/γp/2, 0 < u/γp/2 < 1

1 otherwise,
(B2)

where u ≡ U

(3+2
√

2)zt
. The six states are written in terms of E:

|α〉 → t†α|vac〉 satisfying the constraint
∑

α t†αtα = 1, where α

could be the empty, one spin-up state, one spin-down state,
two spin-up states, one spin-up plus one spin-down state, or
two spin-down states. The boson creation and annihilation
operators are replaced by the pseudospin operators

b
†
i↑ → t

†
↑t0 + t

†
↑↓t↓ +

√
2t

†
↑↑t↑, (B3)

b
†
i↓ → t

†
↓t0 + t

†
↑↓t↑ +

√
2t

†
↓↓t↓. (B4)

The unitary transformation analogous to Eq. (4) is chosen as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
†
0i

d
†
1i

d
†
2i

d
†
3i

d
†
4i

d
†
5i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

sin θ
2

eip·xi /2√
2

cos θ
2

e−ip·xi /2√
2

cos θ
2

eip·xi

2
√

2
sin θ

2
1
2 sin θ

2 − e−ip·xi

2
√

2
sin θ

2

− 1√
2

cos θ
2

eip·xi /2√
2

sin θ
2

e−ip·xi /2√
2

sin θ
2 − eip·xi

2
√

2
cos θ

2 − 1
2 cos θ

2 − e−ip·xi

2
√

2
cos θ

2

1√
2

0 0 − eip·xi

2
√

2
− 1

2 − e−ip·xi

2
√

2

0 eip·xi /2√
2

− e−ip·xi /2√
2

0 0 0

0 0 0 eip·xi√
2

1√
2

e−ip·xi√
2

0 0 0 eip·xi√
2

0 − e−ip·xi√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
†
0i

t
†
↑i

t
†
↓i

t
†
↑↑i

t
†
↑↓i

t
†
↓↓i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B5)
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and we set both d0i and d
†
0i to be

√
1−∑

n>0 d
†
nidni ≈

1 − 1
2

∑
n>0 d

†
nidni because d

†
0i is macroscopically occupied.

The validity of this expansion should be checked after the
Bogoliubov transformation to ensure consistency.

Written in terms of dn>0 and to the lowest
(quadratic) order, H = zt

2

∑
k(ω4kd

†
4kd4k + �

†
kM�k), where

�
†
k ≡ (d†

1k,d1,−k,d
†
2k,d2,−k,d

†
3k,d3,−k,d

†
5k,d5,−k) and M is an

8 × 8 matrix, whose nonzero entries are

M1,1 = M2,2 = 1
2 (3 + 2

√
2)

(
u cos θ + γp/2 sin2 θ

)
− 1

8γ+[9 − 2
√

2 + (3 + 2
√

2) cos 2θ ],

M3,3 = M4,4 = 1

4
(3 + 2

√
2)(u + u cos θ + γp/2 sin2 θ )

−3

2
γ+ cos2 θ

2
,

M5,5 = M6,6 = −1

2
(3 + 2

√
2)[u − γp/2(1 + cos θ )] sin2 θ

2

−1

2
γ+ sin2 θ

2
,

M7,7 = M8,8 = 1

2
cos2 θ

2
[(3 + 2

√
2)u − 2γ+]

+γp/2

2
cos2 θ

2
[4 + 2

√
2 − (3 + 2

√
2) cos θ ],

M1,2 = M2,1 = −1

8
γ+[−3 + 6

√
2 + (3 + 2

√
2) cos 2θ ],

M3,4 = M4,3 =
√

2γ+ cos2 θ

2
,

M1,3 = M3,1 = M2,4 = M4,2 = 1

2
γp/2 cos

θ

2
− 1

2
γ+ cos3 θ

2
,

M1,4 = M4,1 = M2,3 = M3,2 = 1

2
γ+ cos

θ

2
sin2 θ

2
,

M1,5 = M5,1 = −M2,6 = −M6,2

= 1

4
γ−[−1 +

√
2 + (1 +

√
2) cos θ ] sin

θ

2
,

M1,6 = M6,1 = −M2,5 = −M5,2

= 1

4
γ−[−1 +

√
2 − (1 +

√
2) cos θ ] sin

θ

2
,

M1,7 = M7,1 = −M2,8 = −M8,2

= 1

4
γ− cos

θ

2
(2 −

√
2 + (2 +

√
2) cos θ )

M1,8 = M8,1 = −M2,7 = −M7,2

= 1

4
γ− cos

θ

2
[2 −

√
2 − (2 +

√
2) cos θ ],

M3,5 = M5,3 = −M4,6 = −M6,4 = γ−
2
√

2
,

M3,6 = M6,3 = −M4,5 = −M5,4 = γ−
4

sin θ,

M3,7 = M7,3 = −M4,8 = −M8,4 = γ− cos2 θ

2
,

M3,8 = M8,3 = −M4,7 = −M7,4 = γ−√
2

cos2 θ

2
,

M5,7 = M7,5 = M6,8 = M8,6

= −1

4
(2 +

√
2)γp/2 sin θ − γ+

2
√

2
sin θ,

where γ± ≡ 1
2 (γk+p/2 ± γk−p/2). Diagonalizing σM , where

σ ≡ diag(1, − 1,1, − 1,1, − 1,1, − 1), gives the spectrum.
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