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Quantum rotor theory of spinor condensates in tight traps
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In this work, we theoretically construct exact mappings of many-particle bosonic systems onto quantum rotor
models. In particular, we analyze the rotor representation of spinor Bose-Einstein condensates. In a previous
work [R. Barnett et al., Phys. Rev. A 82, 031602(R) (2010)] it was shown that there is an exact mapping of a
spin-one condensate of fixed particle number with quadratic Zeeman interaction onto a quantum rotor model.
Since the rotor model has an unbounded spectrum from above, it has many more eigenstates than the original
bosonic model. Here we show that for each subset of states with fixed spin Fz, the physical rotor eigenstates
are always those with the lowest energy. We classify three distinct physical limits of the rotor model: the Rabi,
Josephson, and Fock regimes. The last regime corresponds to a fragmented condensate and is thus not captured
by the Bogoliubov theory. We next consider the semiclassical limit of the rotor problem and make connections
with the quantum wave functions through the use of the Husimi distribution function. Finally, we describe how
to extend the analysis to higher-spin systems and derive a rotor model for the spin-two condensate. Theoretical
details of the rotor mapping are also provided here.
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I. INTRODUCTION

The behavior of macroscopic systems of multicomponent
bosons under suitable constraints can often be greatly simpli-
fied through a quantum rotor description. Within the context
of condensed matter physics, the most widely appreciated
example is the celebrated Josephson model [1,2]. This model
provides an accurate low-energy treatment of two supercon-
ductors linked by an insulating barrier [3]. The treatment of
the full many-particle system reduces to a model with two
canonically conjugate variables: the relative particle number
and the phase between the two superconducting regions.

Bose-Einstein condensates composed of atoms with inter-
nal spin or pseudospin degrees of freedom, the so-called spinor
condensates, offer another arena where such rotor mappings
are highly useful. Roughly speaking, recent experimental
work investigating the dynamics of spinor condensates can be
divided into two categories. The first category of experiments
focuses on the complex interplay between spatial and spin
degrees of freedom resulting from spinor condensates in
larger traps [4–9]. These experiments investigate the dynamics
after a quantum quench, which involves the proliferation of
topological defects. The second category of experiments is
performed in tight traps where the spatial degrees of freedom
are unimportant [10–18]. Such experiments have focused on
the coherent spin dynamics after preparing the system in a
particular manner. The rotor description is useful when the
spatial degrees of the condensate can be neglected and thus is
particularly relevant to the second class of experiments.

In an early theoretical work on spinor condensates it
was shown that the ground state of the antiferromagnetic
condensate in tight traps involves large spin correlations
and can be considered to be a condensate of singlet pairs
of spin-one atoms [19]. However, such “fragmented” states
[20,21] are known to be extremely delicate and for most
experimental situations are typically better described by a
broken-symmetry state, which is captured by the classical
Gross-Pitaevskii theory [22–24]. Nevertheless the intriguing

properties of the fragmented condensates in the single-mode
regime have motivated a considerable amount of further
theoretical work [25–30].

In this paper we will revisit this problem by employing an
exact rotor mapping. The mapping, which was carried out by
some of us in a previous work [31], maps an antiferromagnetic
spin-one condensate in an external field onto a quantum rotor
model of a particle under an external field constrained to
the unit sphere [31]. Since this mapping is exact, and not a
low-energy theory, it treats all possible phases of the spin-one
condensate on an equal footing. Roughly speaking, states
described by the Gross-Pitaevskii equation (GPE) correspond
to rotor states that are well localized in position. On the other
hand, states that are delocalized over the sphere (e.g., the
condensate of singlet pairs of atoms) cannot be described by
the GPE but are contained within this rotor treatment. We will
provide in-depth analysis of the model and discuss its distinct
physical regimes. We will also describe its semiclassical limit,
which has a clearer physical interpretation than the GPE, and
elucidate the semiclassical behavior of the rotor wave functions
for appropriate parameter regimes. We will also describe how
to extend the mapping to systems with larger spin. In that
sense, the current work is a generalization and extension of
Ref. [31].

The paper is organized as follows. In Sec. II, for com-
pleteness, we consider the simplest nontrivial example of
bosons in a double-well potential and map this system onto
a quantum rotor model. We arrive at a result first obtained
in Ref. [32], but we use a method that can be generalized to
systems with more components, i.e., higher spins. In Sec. III
we move on to the more complex case of a spin-one condensate
in the single-mode regime and provide an overview of the
rotor mapping originally derived by some of us in Ref. [31].
In Sec. IV we consider the correspondence between the
eigenvalues of the original bosonic problem (which has a
finite spectrum for fixed particle number) and the rotor model
(which has an unbounded spectrum from above). In Sec. V
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we consider in more detail the spectrum of the rotor model
and establish three distinct physical limiting cases, namely,
the Rabi, Josephson, and Fock regimes. We provide analytic
expressions for the low-lying spectrum for these cases. In
Sec. VI we consider the semiclassical limit of the rotor model.
Here we discuss recent experiments on 23Na dynamics in terms
of the semiclassical phase space. We then connect the quantum
mechanical wave functions in the Rabi and Josephson regimes
to the semiclassical phase space using a generalization of the
Husimi distribution function [33,34]. In Sec. VII we consider
extending the rotor mapping to larger component systems,
focusing on the example of the spin-two condensates. Finally,
in Sec. VIII we conclude with a summary.

II. BOSONS IN A DOUBLE-WELL POTENTIAL

In this section, we consider the simplest nontrivial case
of bosons in a double-well potential that is described by the
two-site Bose-Hubbard model. This archetypal model has been
studied extensively [21,32,35–37] and has also been used to
experimentally observe the so-called self-trapping effect [38].
In the interesting work of Anglin et al. [32] it was shown that
the two-site Bose-Hubbard model can be exactly mapped onto
a two-dimensional quantum rotor model. Below we will derive
their main result, using a different formalism that allows a more
direct generalization to higher-dimensional rotor systems,
which will be considered in following sections. We clarify
our notations and lay out the main theoretical framework in
this section by considering the double-well case first.

Our starting point is the two-site Bose-Hubbard model,
which describes bosons in a double-well potential with
repulsive interactions:

H = −J (a†
1a2 + a

†
2a1) + 1

2Un1(n1 − 1) + 1
2Un2(n2 − 1).

(1)

Here a
†
1 and a

†
2 create bosons in the left and right wells,

respectively, nα = a†
αaα is the particle number operator, J

is the hopping, and U is the on-site repulsion. It is often
instructive to use the amplitude-phase representation of the
bosonic operators. That is, we can write a = √

nαeiθα and
impose the commutation relation [nα,θβ] = iδαβ . Inserting
these relations into Eq. (1) and expanding to leading order
in the total particle number N = n1 + n2 (which is taken to be
fixed) lead to the well-known Josephson model [1,2]:

HJos = −JN cos(θ ) + Un2, (2)

where θ = θ1 − θ2 and n = (n1 − n2)/2 so that the two
operators in this equation are canonically conjugate: [n,θ ] = i.
The spectrum of the Josephson model can be seen to agree with
the original double-well model Eq. (1) in the large-particle
number limit.

In the work of Anglin et al. [32], it was shown that such
a mapping can be made exact and thus will reproduce the
spectrum of Eq. (1) for arbitrary particle numbers. Their
derivation used a method akin to the Bargmann phase-space
representation of bosonic operators [39]. Here we will derive

their central result through a different method. To start, we
define the states

|�N 〉 = 1√
2NN !

(a†
1e

iθ + a
†
2e

−iθ )N |0〉 (3)

= 1√
N !

(� · b†)N |0〉, (4)

where � = (cos(θ ), sin(θ )) is a real two-component vector
on the unit circle and the “Cartesian” bosonic operators bx

and by are defined to be bx = 1√
2
(a1 + a2), by = −i√

2
(a1 − a2).

These states can be shown to form an overcomplete basis. For
instance, the fragmented state (a†

1)N/2(a†
2)N/2|0〉 can be seen to

be an equal-weight superposition of these states over the unit
circle [21]. Therefore, an arbitrary state |�〉 in the bosonic
Hilbert space can be expressed in terms of a superposition
over the states |�N 〉 with weight factor ψ(�):

|�〉 =
∫

d�|�N 〉ψ(�). (5)

Note that due to the overcompleteness, this relation does not
uniquely determine ψ(�). The approach of the mapping is to
find a Hamiltonian H acting in the “rotor” space such that∫

d�(H |�N 〉)ψ(�) =
∫

d�|�N 〉[Hψ(�)]. (6)

Then the rotor Schrödinger equationHψ = i∂tψ is a sufficient
condition for the bosonic Schrödinger equation to be satisfied
(we will work in units where h̄ = 1 unless otherwise stated).

In obtaining H, we use the gradient operator ∇ on the
unit circle, which in terms of θ is ∇x = − sin(θ )∂θ and ∇y =
cos(θ )∂θ . These derivatives satisfy the geometrically intuitive
relations

∇α�β = δαβ − �α�β. (7)

(For a discussion, see Appendix A.) With this, it can be seen
that quadratic operators acting on |�N 〉 can be written as

b†αbβ |�N 〉 = �β(∇α + N�α)|�N 〉. (8)

In terms of the Cartesian operators, the double-well Hamil-
tonian (up to a constant offset) is

H = −J (b†xbx − b†yby) + U

4
(ib†xby − ib†ybx)2. (9)

We can now use the relation in Eq. (8) to find

(b†xbx − b†yby)|�N 〉 = (N cos(2θ ) − sin(2θ )∂θ )|�N 〉 (10)

and

(ib†xby − ib†ybx)2|�N 〉 = L2
xy |�N 〉, (11)

where Lxy = −i�x∇y + i�y∇x = −i∂θ . The effective rotor
Hamiltonian can then be obtained by inserting these relations
into Eq. (6) and integrating by parts. One finds

H = 1
4Un2 − J (N + 2) cos(2θ ) − iJ sin(2θ )n, (12)

where n = i∂θ . While the operator H has a real spectrum, it
is not Hermitian due to its last term. However, one can apply
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a similarity transform to render H Hermitian. Specifically,
defining [32]

H = ecos(2θ) J
U He− cos(2θ) J

U (13)

and shifting θ → θ/2 to compare with Eq. (2), one finds

H = Un2 − J (N + 1) cos(θ ) + J 2

U
sin2(θ ), (14)

which is the main result. This model can be interpreted as a
quantum-mechanical particle with momentum n moving on the
unit circle under the potential V (θ ) = −J (N + 1) cos(θ ) +
J 2

U
sin2(θ ). When N is large, the first term in the potential is

dominant, and the model reduces to the familiar Josephson
model equation (2). The additional terms in Eq. (2), however,
serve to make the spectrum of the original double-well
Hamiltonian equation (1) exactly match the eigenstates of this
rotor model.

III. SPIN-ONE CONDENSATES IN THE
SINGLE-MODE REGIME

We now move on to discuss the related, but more complex,
problem of the spinor condensate in the single-mode regime
under a magnetic field. Recently, it was shown [31] that this
system maps onto a quantum rotor model under an external
magnetic field. Here we will summarize this mapping.

Our starting point is a spin-one condensate in a trap that is
sufficiently tight such that it is a good approximation to take
all of the bosons to occupy the same spatial mode. Under this
approximation, we can write the field operators for each spin
state as

ψα(r) = φ(r)aα, (15)

where α runs from −1 to 1. The condensate profile satisfies∫
d3r|φ(r)|2 = N, (16)

where N is the number of particles in the system. This
approximation, commonly referred to as the single-mode
approximation, breaks down when the condensate spin
coherence length is smaller than the condensate size.

The Hamiltonian for this system reads

H = g

2N
F 2 − qa

†
0a0. (17)

In this equation, F = a†
αFαβaβ is the total spin operator, where

Fαβ are spin-one matrices, g is the spin-dependent interaction,
and q is the quadratic Zeeman shift due to an external
magnetic field. Note that there is typically also a linear Zeeman
term proportional to Fz for spinor condensates. Such a term
commutes with H in Eq. (17) and therefore can be removed by
a simple unitary transformation. However, when away from the
single-mode regime, spatial dependence of the linear Zeeman
will have nontrivial consequences on the dynamics. Taking a
uniform condensate density φ(r) = √

n0, we can express g in
terms of microscopic parameters as

g = 4πh̄2

3m
(ā2 − ā0)n0, (18)

where m is the mass of the constituent atoms and ā0 and
ā2 are the scattering lengths. We will focus on the case of
antiferromagnetic interactions for which g > 0, as is the case
for 23Na condensates.

As was done for the double-well problem in Sec. II, it
is useful to transform the bosonic operators to the Cartesian
basis, rewriting the operators as bx = −(a1 − a−1)/

√
2, by =

(a1 + a−1)/i
√

2, and bz = a0. Written in terms of these, the
spin operator becomes F = −ib† × b. We next define the
overcomplete set of states as

|�N 〉 = 1√
N !

(� · b†)N |0〉, (19)

which are parametrized by a three-component vector on the
unit sphere � (note that the analogous states in Sec. II were
parameterized on the unit circle).

The general mapping proceeds with the general method
given above in Sec. II. Namely, one writes a general bosonic
wave function as a superposition of states in the |�N 〉 basis
and finds an operator H acting in the rotor Hilbert space that
satisfies Eq. (6) (where the integration is generalized to the
unit sphere). The full derivation is given in Ref. [31], and
thus, we will only give the results here. The rotor Hamiltonian
corresponding to Eq. (17) is

H = g

2N
L2 − q(N + 3)�2

z + q�z∇z, (20)

where Lα is the angular momentum operator and ∇α are the
gradient operators on the unit sphere. In the spherical coor-
dinate representation, ∇z = − sin(θ )∂θ . This can be brought
to the more intuitive Hermitian form by applying a similarity
transformation. In particular, defining H = e−SHeS , where
S = qN

4g
cos(2θ ), we find

H = 1

2I
L2 + V (θ ), (21)

where I = N/g is the moment of inertia and

V (θ ) = q

(
N + 3

2

)
sin2(θ ) + q2N

8g
sin2(2θ ) (22)

is the external potential. The spectrum of this Hamiltonian
exactly matches that of Eq. (17). As was described in [31], one
must retain only the eigenstates of this rotor model that are
symmetric under inversion: ψ(�) = ψ(−�). However, since
the operator that projects into this subspace of states com-
mutes with the rotor Hamiltonian, this imposes no additional
conceptual or technical difficulty.

Since φ does not appear in the potential V in Eq. (21),
one notes that this rotor model has azimuthal symmetry. This
symmetry essentially reduces the model to a one-dimensional
system that considerably simplifies computations. For this
case, one can set L2 = − 1

sin θ
∂θ (sin θ∂θ ) − m2

sin2 θ
, where m

is the azimuthal quantum number, and solve this one-
dimensional Schrodinger equation. One should note, however,
that we did not rely on this symmetry in the derivation, and it
will not be present for more general couplings. In Appendix B
we provide a rotor mapping for a more general coupling.
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IV. CORRESPONDENCE OF THE ROTOR AND
BOSONIC EIGENVALUES

There are subtleties that arise due to the fact that the rotor
model equation (21) has an unbounded spectrum from above,
while the spectrum of the original bosonic problem for fixed
particle number N is finite. As is clear from the mapping, an
eigenstate of the rotor model ψ is a sufficient condition for an
eigenstate of the bosonic Hamiltonian |�〉. That is, given ψ ,
one can construct the bosonic eigenstate through

|�〉 =
∫

d�|�N 〉ψ(�). (23)

Here for simplicity we are taking ψ to be an eigenstates
of the non-Hermitian rotor model H so that we do not
need to include factors of eS . Because the spectrum of the
bosonic Hamiltonian H is bounded, the only possibility is
that many of the rotor eigenstates get transformed to |�〉 = 0
through Eq. (23), noting that this trivially satisfies the bosonic
Schrodinger equation. Following Ref. [32], we will refer to the
rotor eigenstates that transform to |�〉 �= 0 as “physical” and
those that transform to |�〉 = 0 as “unphysical.”

We next ask if all of the eigenstates of the bosonic
spectrum are included in the rotor description. For instance,
the pathological case of all the rotor eigenstates mapping
to |�〉 = 0 is not a priori ruled out. Another question that
arises regards the ordering of the unphysical and physical
eigenstates. In particular, is there an energy cutoff below which
all eigenstates are physical and above which eigenstates are
unphysical? We will show that there is an affirmative answer
to both of these questions.

For sufficiently small particle number N , the eigenspectrum
of the bosonic Hamiltonian equation (17) can be numerically
computed and compared to the eigenspectrum of the rotor
system equation (21). The rotor Hamiltonian has azimuthal
symmetry since the potential V appearing in Eq. (22) does
not depend on the angle φ. Therefore, H commutes with
Lz, and the eigenspectrum for fixed values Lz = m can
be considered separately. Similarly, Fz commutes with the
bosonic Hamiltonian H , and we can compare to the rotor
model by fixing Fz = −m. In Fig. 1 the eigenspectrums of
both the rotor model and the bosonic model are shown as a
function of the quadratic Zeeman field q. We take the case
of relatively small particle number N = 20 and take fixed
Fz = Lz = 0. As can be seen, all of the eigenenergies of the
bosonic Hamiltonian are accounted for by the rotor model.
Furthermore, the physical states of the rotor model are always
lower in energy than the unphysical states. Similar behavior
was found for other values of fixed Lz = m �= 0, which are
not shown.

This behavior can be understood as follows. For unphysical
states ψ(�), it can be seen from Eq. (23) that 〈Y�m|ψ〉 = 0
for all � � N . It can be verified that the (non-Hermitian) rotor
Hamiltonian defined in Eq. (20) has the property

〈Y�m|H|Y�′m′ 〉 = 0 (24)

for � � N and �′ > N . Suppose that we have a rotor eigenstate
that is unphysical for parameters (q,g). Then the eigenstate
at (q + �q,g) can be determined by first-order perturbation
theory. By doing so, one sees from Eq. (24) that if a state is

E
n
/g

q/g

FIG. 1. (Color online) Black dashed lines: the eigenvalues En of
the spinor bosonic Hamiltonian equation (17) for N = 12 particles for
fixed Fz = 0 as a function of quadratic Zeeman field q. Red solid lines:
the lowest 12 eigenvalues of the rotor Hamiltonian equation (21) for
fixed Lz = 0 after the antisymmetric states for which ψ(�) = −ψ(�)
are projected out. The lowest (physical) eigenvalues of the rotor model
exactly agree with those of the bosonic Hamiltonian. For all points
in the plot, the spectrum is shifted so that the lowest eigenvalue has
zero energy.

unphysical at q, then the same state will also be unphysical
at q + �q. In the limit of q = 0, the rotor model becomes
trivial. Here the eigenstates are simply spherical harmonics
with eigenenergies E� = g

2N
�(� + 1). Furthermore, the lowest

eigenstates for � � N are all physical, while the higher
eigenstates for � > N are unphysical in this limit. We note
that for fixed Lz = m, the rotor Hamiltonian becomes one-
dimensional. Thus, there will not be any band crossings [40].
From the perturbative argument above, we therefore conclude
that the higher-energy states will always remain unphysical
and will not mix with the lower-energy physical states.

V. EIGENSPECTRA OF THE ROTOR MODEL

In this section we will concentrate on the eigenspectrum
of the spin-one rotor Hamiltonian given in Eq. (21). We will
give the spectrum in particular limiting cases and compare the
results with those of the two-site Bose-Hubbard problem.

We consider how the spectrum evolves as a function of q.
For large q, the potential energy V (θ ) in Eq. (22) serves to
localize the wave function on the unit sphere. To obtain the
energy levels, the angular momentum L2 can be expanded
about the north pole so that H becomes a two-dimensional
harmonic oscillator. When 1 � q/g, the second term in the
potential energy V (θ ) dominates so that the energy levels are
given by

E(nx,ny ) = q(nx + ny), (25)

where nx and ny are integers corresponding to the oscillator
modes in the x and y directions. These eigenstates can, in fact,
be directly obtained from the original bosonic Hamiltonian
equation (17) in the large-q limit.

Next, we consider the case of smaller q where 1/N2 �
q/g � 1. For this case, the first term in the potential energy
is the most significant. Here we can also expand the kinetic
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energy about the north pole to obtain a harmonic oscillator
Hamiltonian. For this the energy levels read

E(nx,ny ) =
√

2gq(nx + ny), (26)

where, as in Eq. (25), nx and ny are integers. As shown in
Appendix C, it can be seen that the Bogoliubov spectrum of
Eq. (17) agrees with Eqs. (25), (26).

Finally, we consider the case of vanishingly small magnetic
field such that q/g � 1

N2 . For this case the eigenfunctions
are not localized about the north pole. The kinetic energy
1

2I
L2 dominates the rotor model, and the eigenstates are given

simply by

E� = g

2N
�(� + 1). (27)

Each of these energy levels has multiplicity 2� + 1. So that
the wave function has inversion symmetry, only even values
of � should be kept. The ground state in this regime where
the rotor is completely delocalized about the unit sphere, in
terms of the bosonic model, is the fragmented condensate
composed of singlet pairs of bosons. However, due to the
condition q/g � 1/N2, in the thermodynamic limit any small
magnetic field will drive the system to a symmetry-broken
state, which is described well by mean-field theory [22–24].
This is the central difficulty in experimentally realizing the
singlet condensate. We will address this problem in more detail
in Appendix D.

It is instructive to compare the above results with the
two-site Bose-Hubbard model. This model has been analyzed
and found to have three distinct limits, namely, the Rabi,
Josephson, and Fock regimes, using the terminology of Leggett
[37,41]. Using a method very similar to that used above, the
expressions for the energy eigenstates can be obtained in these
regimes from the rotor Hamiltonian in Eq. (14). Namely,
for the Rabi regime where N � J/U the last term in the
potential energy dominates, and the spectrum is approximated
by a harmonic oscillator, after expanding about θ = 0. The
Josephson regime occurs when the first term in the potential
energy dominates 1/N � J/U � N . Here the states are also
localized about θ = 0. Finally, for J/U � 1/N the Fock
regime is obtained where the rotor is delocalized over the
unit circle. The Josephson Hamiltonian equation (2) correctly
describes the Fock and Josephson regimes but cannot describe
the Rabi regime since a large-N expansion is used to derive
it. In summary, the three possible regimes for the two-site
Bose-Hubbard model are

N � J/U, (28)

1/N � J/U � N, (29)

J/U � 1/N, (30)

for the Rabi, Josephson, and Fock regimes, respectively.
It is clear that there is a close parallel between the above-

described regimes for the two-site Bose-Hubbard model and
those of the spin-one condensate problem. For this reason we
will adopt the terminology introduced in [37,41] for the spinor
problem. Namely, we will label the three regimes as [42]

1 � q/g, (31)

1/N2 � q/g � 1, (32)

q/g � 1/N2, (33)

for the Rabi, Josephson, and Fock regimes, respectively. For
typical experimental situations (for example, those described
in Refs. [17,18]) q ∼ g and N ∼ 103 − 105, which places
the system in either the Rabi or Josephson regimes. For
these cases, the Gross-Pitaevskii equation gives a qualitatively
correct description of the dynamics. It is also interesting to
note that for double-well condensates the Rabi regime is
more difficult to achieve since by reducing the hopping J

to achieve the condition in Eq. (28), a single-band description
becomes inapplicable. On the other hand, the Fock regime
for double-well condensates can be experimentally achieved,
which has the Mott insulating ground state [43,44].

VI. SEMICLASSICAL ANALYSIS OF THE ROTOR MODEL

In this section we analyze the semiclassical limit of the
rotor model in Eq. (21). We will use this to address recent
experimental results. We will then show results from taking
the Husimi transform of the quantum eigenstates of the rotor
model. Such a method has been shown to elucidate the
semiclassical limit of the two-site Bose-Hubbard model [34].

In recent experiments [17,18] the dynamics of a 23Na
condensate, which has antiferromagnetic interactions g > 0,
was investigated. The initial condensate was prepared in a
fully polarized ferromagnetic state pointing in the x direction
after which the condensate was allowed to freely evolve.
The value of 〈Fx〉2 was measured as a function of time.
Two distinct types of behavior were found, depending on the
external magnetic field, which couples to the system through
the quadratic Zeeman shift q. A separatrix between these
two behaviors occurs at a critical magnetic field Bc. When
B < Bc, 〈Fx〉2 showed oscillatory behavior, having 〈Fx〉2 > 0
at all times. On the other hand, when B > Bc, it was seen
that 〈Fx〉2 = 0 at periodic intervals during its evolution. An
analysis of the behavior was provided in terms of the classical
Gross-Pitaevskii energy functional. Taking into account the
conserved quantities (total particle number and spin moment
in the z direction, which was fixed to be 〈Fz〉 = 0), the
two-dimensional phase portrait of the energy functional was
shown to capture these two regimes.

We will now describe how the semiclassical limit of
Eq. (21) gives an intuitive understanding of these results. The
corresponding Lagrangian is

L = 1
2I [θ̇2 + sin2(θ )φ̇2] − V (θ ), (34)

where V (θ ) is given by Eq. (22). This gives the canonical
momenta pθ = I θ̇ and pφ = I sin2(θ )φ̇. The corresponding
classical energy is

E = 1

2I

(
p2

θ + p2
φ

sin2(θ )

)
+ V (θ ). (35)

The above equations describe the motion of a particle on a
unit sphere. We will concentrate on the case where pφ = 0.
The classical equal-energy contours of Eq. (35) are plotted in
Fig. 2(a). Two types of behavior are seen. The higher-energy
states have motion where the particle’s trajectory explores both
hemispheres but has either pθ > 0 or pθ < 0 at all times, thus
never having zero angular momentum. This corresponds to
the motion of the spin-one condensate for B < Bc. Increasing
the magnetic field will constrain the particle’s trajectory to
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FIG. 2. (Color online) (a) Equal-energy contours of the semiclas-
sical energy given in Eq. (35) for pφ = 0. (b–e) Husimi distribution
functions H (z) for particular eigenstates of the rotor model Eq. (21)
for the parameters q = g, N = 10, and κ = 1/10. Panels (b), (c),
(d), and (e) respectively correspond to the second, fourth, sixth, and
eighth excited states within the manifold of m = 0 and even �. The
classical equal-energy contours corresponding to these energies are
plotted with solid red lines (otherwise, the contours are plotted with
black dashed lines). The same range of pθ and θ is used for all plots.

one hemisphere. For this motion, it is seen that pθ = 0 at
periodic intervals during the particle’s trajectory. This type
of motion corresponds to B > Bc of the spin-one condensate
experiment [45].

We will now move on to discuss the semiclassical properties
manifest in the quantum mechanical wave functions of Eq. (21)
for appropriate parameter regimes. To do this, we will use
a generalization of the Husimi distribution function [33] to
the case of the sphere. The Husimi distribution function has
been successfully applied to elucidate the pendulum structure
manifest in the wave functions of double-well condensates [34]
described by Eq. (1).

Conventionally, the Husimi distribution function of a
particular wave function |ψ〉 is defined as

H (z) = |〈z|ψ〉|2
〈z|z〉 , (36)

where |z〉 is a scaled coherent state. For our considerations,
we thus need a generalization of the notion of a coherent state
to the unit sphere. Recent work on such a generalization is
given in Refs. [46,47]. In [46] it was argued that it is most
natural to define spherical coherent states to be eigenstates of
the “annihilation” operators

Aα = e− 1
2 κL2

�αe
1
2 κL2

, (37)

where κ is a scaling parameter [48]. Such eigenstates are given
by

|z〉 =
∑
�m

e−κ�(�+1)/2|Y�m〉Y ∗
�m(z). (38)

In this equation z is a three-component complex vector that
satisfies z · z = 1. In terms of classical phase-space variables
(p = pθ θ̂ + pφφ̂ and �), z can be expressed as [46]

z = cosh(κp)� + i
1

p
sinh(κp)p. (39)

The value of the scaling parameter should be taken such that
κ2 ∼ g

qN2 , which is the ratio of the prefactors of the kinetic
and potential energies in Eq. (21).

We consider the case where q = g and N = 10 bosons,
which places the system between the Josephson and Rabi
regimes and well away from the Fock regime. Density plots of
the Husimi distribution function for particular rotor eigenstates
are shown in Figs. 2(b)–2(e). Since we concentrate on the
case of Fz = 0, the Husimi distribution function will only
depend on the pair of variables (θ,pθ ). Red classical equal-
energy contours shown in Fig. 2(a) are drawn for energies
corresponding to these eigenstates. One sees that the Husimi
distribution functions strongly resemble the semiclassical
contours, thus revealing the semiclassical behavior of the
eigenstates. Such agreement occurs for all states in the Rabi
and Josephson regimes but not for the Fock regime, which has
no semiclassical correspondence.

VII. EXTENSION TO HIGHER SPINS

We will now move on to discuss how to perform the
rotor mapping for larger-spin systems. We will focus on
F = 2 spinor condensates because of their experimental
availability as hyperfine states of alkali atoms. We will show
that this system maps to a particle moving on a sphere in
five-dimensional space.

Spin-two condensates have five spin components. We take
aα for α = −2, . . . ,2 to annihilate a boson with Fz = α. In
the single-mode regime, spin-two condensates are described
by the Hamiltonian [49]

H = g1

2N
F 2 + g2

2N
A†A. (40)

Here F = a†
αFαβaβ is the total spin operator, where Fαβ are

spin-two matrices. In the second term, A = a0a0 − 2a1a−1 +
2a1a−1 annihilates a singlet pair of bosons. In terms of physical
quantities, the coefficients g1,2 are given by

g1 = 4πh̄2

7m
n0(ā4 − ā2), (41)

g2 = 4πh̄2

m
n0

(
1

5
(ā0 − ā4) − 2

7
(ā2 − ā4)

)
, (42)

where ā0, ā2, and ā4 are the spin-two s-wave scattering lengths.
For simplicity, we will neglect the effects of an external
magnetic field on this system.

We perform the following unitary transformation on the
bosonic operators:

b1 = a0, (43)

b2 = 1

i
√

2
(−a−1 − a1), (44)

b3 = 1√
2

(a−1 − a1), (45)

b4 = 1

i
√

2
(a2 − a−2), (46)

b5 = 1√
2

(a2 + a−2). (47)
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These operators transform as a vector under SO(5) rotations
generated by Mαβ = −i(b†αbβ − b

†
βbα). In terms of these

quantities, the singlet operator is

A = b · b, (48)

while the spin operators are

Fx =
√

3M12 − M25 + M34, (49)

Fy =
√

3M13 + M24 + M35, (50)

Fz = M23 + 2M45. (51)

As before, we can parametrize an overcomplete set of states
(but now using the five-component, real unit vector �) as

|�N 〉 = 1√
N !

(
5∑

α=1

�αb†α

)
|0〉. (52)

The mapping proceeds along similar lines to that in Secs. II
and III. In particular, one finds that

Mαβ → −Lαβ, (53)

where Lαβ = −i(�α∇β − �β∇α). This can be used to find the
rotor correspondence of the first term in Eq. (40).

Next, we find the rotor correspondence of the second term
in Eq. (40). We use the five-component version of Eq. (8) to
find that

A†A|�N 〉 = (∇2 + N2 + 3N )|�N 〉. (54)

In this equation, ∇2 is the Laplacian on the five-dimensional
hypersphere, as described in Appendix A. The integration by
parts here is straightforward. One obtains

A†A → ∇2 + N2 + 3N. (55)

The resulting rotor model, which is already Hermitian, is thus

H = g2

2N
∇2 + g1

2N
[(

√
3L12 − L25 + L34)2

+ (
√

3L13 + L24 + L35)2 + (L23 + 2L45)2], (56)

where we have dropped a constant energy offset. This model
has a particularly simple form in the limit of g1 = 0. Here the
system has an SO(5) symmetry, and the ground state will be a
condensate of singlet pairs of spin-two bosons.

VIII. CONCLUSION

In this work we have analyzed in detail rotor mappings
of spinor condensates in the single-mode regime. We have
addressed some subtleties related to the physical and
unphysical eigenstates and showed that the rotor mapping
gives an exact treatment of the spinor condensate. Since the
rotor model treats the mean field as well as correlated phases on
equal footing, it offers new insights into the problem. We have
established both the importance of the rotor model in providing
physical insight into the properties of spinor condensates and
its validity as a practical scheme for carrying out calculations.

There are several interesting directions that can be pursued
in future work. The Husimi distribution function has proven
useful for understanding the collapse and revival process
of atoms in the proximity of a superfluid-insulating phase
transition [44]. Such a phase-space analysis of the collapse

and revival dynamics for the spinor system close to the Fock
regime will prove to be valuable. We emphasize that for this
regime the semiclassical correspondence illustrated in Fig. 2
will not hold.

In Sec. VII we derived the rotor representation of the spin-
two system for a single site. The mean-field phase diagram of
the spin-two condensates is known to have a degeneracy for
nematic states [50], which is lifted by quantum and thermal
fluctuations [51,52]. A generalization equation (56) to include
quadratic Zeeman field will prove useful for studying this
effect for smaller condensates where quantum effects are more
pronounced.

Future work can also investigate the rotor mapping for
ferromagnetic condensates (negative g). The corresponding
rotor model for this case can be interpreted as a particle
with negative mass moving on the unit sphere. Finally,
we note that low-energy effective rotor theories of spinor
condensates (without magnetic fields) were previously inves-
tigated in [53–55]. It will be interesting to investigate how
the rotor mapping generalizes to include spatial degrees of
freedom.
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APPENDIX A: QUANTUM MECHANICS ON
THE HYPERSPHERE

In this Appendix, for convenience, we will tabulate the
properties of a particle constrained to the surface of a
d-dimensional hypersphere. The position of the particle is
given by d coordinates �α (for α = 1, . . . ,d) subject to the
constraint � · � = 1. The momentum operators are πα =
−i∇α , where ∇α is the gradient operator in the α direction
on the hypersphere (which can be expressed in terms of d − 1
angles and their derivatives). Finally, the angular momentum
operators are Lαβ = �απβ − �βπα . Note that for d = 3, the
angular momentum is conventionally written with a single sub-
script as Lα = 1

2εαβγ Lβγ . The position and angular momen-
tum are Hermitian operators, while the Hermitian conjugate of
πα is

π †
α = πα + i(d − 1)�α. (A1)

The following commutation relations are satisfied for the
position and momentum operators:

[�α,�β] = 0, (A2)

[�α,πβ] = i(δαβ − �α�β), (A3)

[παπβ] = −iLαβ. (A4)

These can be seen to give the angular momentum operators
the correct commutation relations, which are [Lαβ,Lγδ] =
iδαγ Lβδ + iδβδLαγ − iδαδLβγ − iδβγ Lαδ . These operators
satisfy the orthogonality relation � · π = 0 (i.e., the
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momentum and position are orthogonal on the hypersphere).
It can also be verified that the total angular momentum can be
expressed as

1

2

∑
αβ

LαβLβα = π · π = −∇2. (A5)

APPENDIX B: ROTOR MODEL WITH
GENERAL COUPLING

In this Appendix we consider spin-one Hamiltonians with
more general coupling to external fields. In particular, we
consider Hamiltonians of the form

H = g

2N
F 2 + b†αBαβbβ, (B1)

where B is a Hermitian matrix. One can see that this reduces to
Eq. (17) for the special case Bαβ = −qδαzδβz. In the following,
it is useful to write B in terms of its real and imaginary parts as
B = B ′ + iB ′′. Since B is Hermitian, we have the requirement
that B ′ is symmetric while B ′′ is antisymmetric.

Applying the rotor mapping as in Sec. III, one arrives at the
non-Hermitian Hamiltonian

H = g

2N
L2 + q(N + 3)Bαβ�α�β − Bαβ�β∇α, (B2)

which should be compared to Eq. (20). To bring this Hamilto-
nian to Hermitian form, we apply the similarity transformation
H = e−SHeS , where

S = �αβ�α�β, (B3)

where � is a matrix. One can verify that by choosing � = N
2g

B ′,
provided B ′ and B ′′ commute, H becomes Hermitian. In
particular, for this value of �,

H = 1

2I
L2 + V (θ,φ), (B4)

where

V (θ,φ) =
(

N + 3

2

)
�T B ′� + 1

2
B ′′

αβLβα

+ N

2g
[�T B ′2� − (�T B ′�)2]. (B5)

One can check that this reduces to Eq. (21) in the appropriate
limit.

APPENDIX C: THE BOGOLIUBOV SPECTRUM
OF EQUATION (17)

It is instructive to compute the low-lying spectrum of the
spinor Hamiltonian equation (17) through the Bogoliubov
method [56] and compare with the results from the exact
rotor mapping given in Sec. V. We expand about the classical
mean-field state given by ā1 = ā−1 = 0 and ā0 = √

N and
write the bosonic operators as aα = āα + δaα . The constraint
of fixed particle number N can be enforced up to quadratic
order by requiring

−
√

N (δa0 + δa
†
0) = δa

†
1δa1 + δa

†
−1δa−1. (C1)

Dropping constant terms, Eq. (17) becomes, up to quadratic
order,

H = (g + q)(δa†
1δa1 + δa

†
−1δa−1) + g(δa1δa−1 + H.c.).

(C2)

It is straightforward to diagonalize this by a Bogoliubov
transformation. The result is

H =
√

q(2g + q)(α†α + β†β), (C3)

where α and β are bosonic annihilation operators, which is
consistent with [29]. The spectrum of this Hamiltonian can be
seen to agree with the results derived from the rotor model in
Sec. V in the Rabi regime, Eq. (25), and Josephson regime,
Eq. (26). However, the results do not agree in the Fock regime,
Eq. (27), since the Bogoliubov treatment is inapplicable for a
fragmented condensate.

APPENDIX D: EXPERIMENTAL REALIZATION OF THE
SINGLET CONDENSATE

In this Appendix, we will discuss the experimental
parameters necessary to achieve the singlet condensate. In the
Josephson regime, the ground-state wave function of the rotor
model is

ψ(θ ) =
√

2

πθ̄2
e−θ2/θ̄2

, (D1)

where θ̄ =
√

2g

qN2 . As can be verified from (32), in the

Josephson regime, θ̄ � 1. Decreasing the magnetic field and
thereby decreasing q, one sees that the width of the wave
function increases. When the width of the wave function θ̄

approaches unity, the harmonic description of the condensate
fails, and the Fock regime is entered (33). As mentioned earlier,
in the limiting case of q = 0 the ground state is a condensate
of singlet pairs of spin-one bosons.

We thus ask what parameters are necessary for θ̄ ∼ 1.
Because this quantity scales inversely with the number of
particles, this state cannot be achieved in the thermodynamic
limit. We therefore concentrate on systems with relatively
small particle numbers. For the 23Na system, the parameters
g and q appearing in the rotor model equation (21) are related to
the atomic density and external magnetic field B through [17]

g = (1.59 × 10−52Jm3) n0 (D2)

q = [1.84 × 10−35J/(µT)2]B2. (D3)

For a fixed particle number, increasing the density increases
θ̄ . We thus take n0 = 5 × 1014cm−3, which is relatively large
but still small enough that three-body losses are not important.
Then, for small magnetic field B = 0.1µT and N = 500
particles, we have θ̄ = 1.9, which is outside of the Josephson
regime. If quenched from finite magnetic field, such a system
will exhibit quantum collapse and revival oscillations [31].
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