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Antiferromagnetic spinor condensates are quantum rotors
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We establish a theoretical correspondence between spin-one antiferromagnetic spinor condensates in an
external magnetic field and quantum rotor models in an external potential. We show that the rotor model provides
a conceptually clear picture of the possible phases and dynamical regimes of the antiferromagnetic condensate.
We also show that this mapping simplifies calculations of the condensate’s spectrum and wave functions. We
use the rotor mapping to describe the different dynamical regimes recently observed in 23Na condensates [Phys.
Rev. Lett. 102, 125301 (2009); Phys. Rev. Lett. 102, 225301 (2009)]. We also suggest a way to experimentally
observe quantum-mechanical effects (collapse and revival) in spinor condensates.
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Bose-Einstein condensates occurring in ultracold atoms
having internal spin degrees of freedom (the so-called spinor
condensates) offer an exciting addition to the family of
quantum many-body spin systems realizable in the laboratory
[1]. Of particular interest are the long coherence times and
small dissipation rates which allow access to dynamical
regimes not available in the solid state. Recently there has been
considerable experimental progress in elucidating the dynam-
ics of spinor condensates. Such endeavors include dynamics
experiments on 87Rb atoms for the hyperfine spin-one [2,3] and
spin-two [4] manifolds as well as, most recently, experiments
on 23Na condensates [5,6]. 23Na spin-one condensates are
qualitatively different than their 87Rb counterpart due to anti-
ferromagnetic interactions. This leads to ground states having
zero spin moment as well as disparate dynamical regimes.

The NIST experiments [5,6] were performed in a trapping
potential sufficiently tight such that, within a good approxi-
mation, the bosonic atoms all occupy the same spatial mode.
This allows the spin dynamics of the system, which are often
obscured by spatial variations, to be directly probed. The
condensate was prepared in an initial unstable ferromagnetic
state and then allowed to evolve freely in time. For small
magnetic fields, the system oscillates about the ferromagnetic
state, never reaching zero spin moment 〈F〉 = 0 at any time. On
the other hand, when the magnetic field exceeds a critical value
the system evolves through 〈F〉 = 0, reaching a state pointing
in the opposite direction and back periodically; the so-called
“running phase” trajectories. It was shown that these different
regimes could be interpreted as being on different sides of a
separatrix in the phase space of the mean-field energy of the
system [5,6].

In the single-mode approximation, the full quantum
Hamiltonian of the system is

H = g

2N
F 2 − qa

†
0a0. (1)

Here, F = a†
αFαβaβ is the total spin operator, where Fαβ are

the spin-one matrices, a1, a0, and a−1 are bosonic annihilation
operators for each spin state, N is the total particle number, g is
the spin-dependent interaction, and q is the quadratic Zeeman
shift due to an external magnetic field [7]. When q = 0, the
exact ground state of the above Hamiltonian is a condensate

of singlet pairs of bosons given by [8]

|S〉 = (a†
0a

†
0 − 2a

†
1a

†
−1)N/2|0〉. (2)

This ground state is unique and breaks no symmetries.
However, for large particle numbers, this state becomes
extremely delicate, being unstable to small external magnetic
fields. Thus, the observed phases for most experimental
antiferromagnetic systems are more appropriately described
by symmetry-broken nematic states which are well described
by mean-field theory [9,10]. This is reminiscent of Anderson’s
“tower of states” argument for Néel ordering in solid-state
quantum antiferromagnets, despite the fact that the true ground
state for finite-size bipartite lattices can be shown to be a spin
singlet [11].

In this work, we develop an approach to describe the
quantum dynamics of antiferromagnetic spinor condensates. In
particular, we map the Hamiltonian in Eq. (1) onto a quantum
rotor Hamiltonian

H = 1

2I
L2 + V (θ ), (3)

where L is the angular momentum of the rotor, I = Nh̄2/g

is the moment of inertia, and V (θ ) = q(N + 3
2 ) sin2(θ ) +

q2N

8g
sin2(2θ ) is the external potential. The mapping is exact

in the sense that the complete spectrum of Eq. (1) for N

bosons precisely agrees with the lowest set of eigenvalues
of Eq. (3) (which has an unbounded spectrum from above). A
similar procedure has been used to derive an exact phase model
describing bosons in a double-well potential [12]. One can see
that the singlet state of paired bosons, Eq. (2), corresponds
to a state where the rotor is delocalized over the entire sphere
whereas the symmetry-broken nematic state corresponds to the
rotor being in a position eigenstate. We will show how Eq. (3)
can be used to obtain simple expressions for the spectrum and
wave function of the spinor condensate. We then show how
the semiclassical limit of the rotor system provides a natural
interpretation of the dynamical regimes of antiferromagnetic
spinor condensates observed experimentally [5,6]. Finally, we
make a prediction to observe quantum-mechanical effects (i.e.,
non-mean field effects) in spinor condensates which have so far
eluded experimental detection. Specifically, we show that the
abrupt removal of a magnetic field used to prepare the system
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in a nematic state will lead to collapse and revival dynamics,
which cannot be explained with mean-field theory alone.

We now proceed with the main technical advance of this
work: an exact mapping of Eq. (1) onto an effective rotor
Hamiltonian, thus establishing that antiferromagnetic spinor
condensates are effective realizations of the quantum rotor
model. It is most useful to express the bosonic creation
and annihilation operators as quantities that transform as
cartesian vectors under rotations. To that end we define the
operators bx = −(a1 − a−1)/

√
2, by = (a1 + a−1)/(i

√
2), and

bz = a0, which satisfy bosonic commutation relations. It is
then straightforward to express the Hamiltonian Eq. (1) in
terms of these operators. Specifically, the spin operator is
F = −ib† × b while the quadratic Zeeman shift is b

†
zbz. With

these operators we construct the complete set of states

|�N 〉 ≡ 1√
N !

(� · b†)N |0〉, (4)

where � = (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )) is a real unit
vector given by the pair of spherical coordinates (θ,φ) and N

is the number of bosons in the system. For simplicity, we take
N to be even and will comment on the odd-N case shortly.
This wave function is the (symmetry-broken) nematic state
pointing along �. These states have the inner product

〈�N |�′
N 〉 = (� · �′)N. (5)

Thus, as the number of bosons in the system becomes large,
states pointing in different directions become orthogonal.

Interestingly, the spin-singlet state of Eq. (2) can be
constructed by taking equal-weight superpositions of the
nematic state over all directions:∫

d�|�N 〉 ∝ (a†
0a

†
0 − 2a

†
1a

†
−1)N/2|0〉 = (b† · b†)N/2|0〉, (6)

as discussed in Refs. [13,14]. This motivates one to use the
spherical harmonics to construct the orthonormal set of states
for even �:

|�m〉 = 1√
f�

∫
d�Y�m(�)|�N 〉, (7)

where f� = 4πN !2�(N+�
2 )!/[(N−�

2 )!(N + � + 1)!] is the nor-
malization constant. Such states are defined for |�| � N and,
unless otherwise stated, sums over such states are understood
to satisfy this restriction. These states |�m〉 can be seen to be
eigenstates of the F 2 operator with eigenvalue �(� + 1). We
finally note that these have the following inner product with
the nematic states:

〈�N |�m〉 =
√

f�Y�m(�). (8)

With the construction of these two sets of basis states |�N 〉
and |�m〉 in the bosonic Hilbert space, we now proceed to
map the problem onto the rotor Hilbert space. This Hilbert
space is spanned by the position eigenstates |�〉 on the unit
sphere, which are complete and satisfy the orthonormality
condition 〈�|�′〉 = δ(� − �′). These states involve angular
momentum components for all � and therefore do not suffer the
complications that arise from Eq. (4) for the |�N 〉 states, which
are only orthogonal in the large-N limit. To start, we note that

a general state in the bosonic Hilbert space can be written as a
superposition of the spin nematic states with weight ψ(�) =
〈�|ψ〉:

|
〉 =
∫

d�|�N 〉ψ(�). (9)

We now act with H on this state. If one can find an operator
H in the rotor Hilbert space such that

H |
〉 =
∫

d�|�N 〉〈�|H|ψ〉, (10)

then a sufficient condition for the time-dependent Schrödinger
equation (TDSE) in the bosonic Hilbert space to be satisfied
is the rotor TDSE H|ψ〉 = ih̄∂t |ψ〉. The necessary condition
for the rotor model to be a precise description for spinor
condensates may be less restrictive.

Our efforts will now be devoted to showing that H exists
and then to finding H. We consider the two terms of the
bosonic Hamiltonian Eq. (1) separately. The first term, which
contains F 2, is diagonal in the |�m〉 representation, which
simplifies the mapping. It is intuitive that Fα will map to
the angular momentum operator in the rotor Hilbert space
defined as Lα = −ih̄εαβγ �β∇γ . This can be derived by
inserting the completeness relations 1 = ∑

�m |�m〉〈�m| and
1 = ∫

d�|�〉〈�| (which act in different Hilbert spaces). Using
Eq. (8) we obtain

F 2|
〉 =
∑
�m

∫
d�F 2|�m〉

√
f�〈Y�m|�〉〈�|ψ〉

= 1

h̄2

∑
�m

|�m〉
√

f�〈Y�m|L2|ψ〉

= 1

h̄2

∫
d�|�N 〉〈�|L2|ψ〉, (11)

where we have used the notation 〈�|Y�m〉 ≡ Y�m(�). Thus, we
see that

F 2 → 1

h̄2 L2 (12)

in the rotor representation. Such a rotor description of F 2 was
previously noted in [15–17].

We now move on to mapping the quadratic Zeeman term
in H to a rotor description. This mapping is more complicated
since the quadratic Zeeman shift is not diagonal in either
the |�N 〉 or the |�m〉 representation. Our approach will be
to express b

†
zbz|�N 〉 in terms of |�N 〉 and its derivatives. Then

integration by parts can be used to arrive at Eq. (10). In the
analysis we consider general quadratic terms of the form b†αbβ .
We state without derivation the following identity

b†αbβ |�N 〉 = �β(∇α + N�α)|�N 〉, (13)

where ∇ = θ̂∂θ + 1
sin(θ) φ̂∂φ is the gradient operator on the

unit sphere. This identity follows from the geometrically
intuitive relation ∇α�β = δαβ − �α�β. We finally note that
the integration by parts rule for ∇α is∫

d� f (�)∇αg(�) =
∫

d� g(�)[2�α − ∇α]f (�). (14)
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Using Eqs. (9), (13), and (14), we obtain

b†αbβ |
〉 =
∫

d�ψ(�)�β(∇α + N�α)|�N 〉

=
∫

d�|�N 〉[(N + 3)�α�β − �β∇α − δαβ]ψ(�).

(15)

From this we can read off the equivalent operator acting in the
rotor space that corresponds to b†αbβ :

b†αbβ → (N + 3)�α�β − �β∇α − δαβ. (16)

Using the mappings in (12) and (16) restricted to the case
α = β = z, we finally arrive at the operator H:

H = g

2Nh̄2 L2 − q(N + 3)�2
z + q�z∇z, (17)

where ∇z = − sin(θ )∂θ and we have dropped a constant term.
Although H has a real spectrum, it is not Hermitian. It is
therefore advantageous to apply a similarity transformation to
render it Hermitian. Defining

H = eFHe−F , (18)

with F = − qN

4g
cos(2θ ), we arrive at Eq. (3) and the mapping

is complete. We note that with this transformation, the wave
functions ψ(�) governed by H , when entering Eq. (9), must
be accompanied by a factor of e−F .

This equation is the model for a quantum rotor under an
external potential. Since we are taking the case of even N , the
wave functions must satisfy the constraint ψ(�) = ψ(−�).
This condition can be interpreted as constraining the ends
of the rotor to be bosonic particles, requiring the rotor wave
function to be symmetrical under their interchange. This
constraint can be enforced with the projection operator P =∑

even �

∑�
m=−� |Y�m〉〈Y�m|. Since this operator commutes with

the Hamiltonian Eq. (3), the constraint imposes no real
technical difficulty. The case of odd N is similar and is
therefore not shown here. For this the wave function must
be antisymmetric and the corresponding projection operator
running over odd � will also commute with the Hamiltonian.

We now consider the limiting cases of the rotor Hamil-
tonian. The simplest situation is when no external magnetic
field is present and q = 0. For this the ground state is
uniformly delocalized over the entire sphere corresponding to
the � = m = 0 spherical harmonic. We now consider the case
of small magnetic field such that g 	 q > 0. For this case, the
first term in the rotor potential V (θ ) dominates and serves to
localize the rotor about the poles. In this limit, we can expand
the potential to quadratic order about the θ = 0 minimum and
the Hamiltonian becomes that of a two-dimensional harmonic
oscillator [18]. The spectrum for the lowest energies are then

εn =
√

2gq(n + 1) (19)

(for even n with multiplicity 2n + 1) and the ground-state wave
function is

ψ0(θ ) =
√

1

πθ̄2
e−θ2/(2θ̄2), (20)

where the oscillator length is θ̄ =
√

g

2qN2 . That the energy
states are evenly spaced and have the spectrum given by

Eq. (19) in this regime is not immediately clear from a
direct analysis of the original bosonic Hamiltonian Eq. (1).
In order for this harmonic oscillator description to be valid
we must have the condition θ̄ 
 1. Away from this limit
the rotor will delocalize and approach the singlet state. For
a large particle number N we therefore see that any small
external magnetic field will tend to drive the system to the
symmetry-broken nematic state as described by the mean-field
theory [9,10]. For higher magnetic field we see that, when
q > 2g, a local minimum appears along the equator θ = π

2 ,
although the global minimum will remain at θ = 0. This leads
to stationary states localized about the equator. Such states are
analogous to the “π states” occurring for a scalar condensate
in a double-well potential [19]. However, as in the double-well
case, transforming this wave function back to the bosonic
Hilbert space can significantly alter its structure [12].

Having described the quantum-mechanical states of Eq. (3)
in various limiting cases, we now proceed to a semiclassical
analysis of its dynamics, which is relevant to the recent
experimental results [5,6]. The Lagrangian describing the
motion in the semiclassical limit is

L = 1

2
I (θ̇2 + sin2(θ )φ̇2) − V (θ ). (21)

The equation of motion for this is

I θ̈ = I
cos(θ )

sin3(θ )
p2

φ − ∂V

∂θ
, (22)

where pφ = sin2(θ )φ̇ is a constant of motion. As before, we
start by considering the limiting case g 	 q > 0. For this case,
we can drop the second term in V . The first type of motion
we consider is when the rotor remains close to the mini-mum
at the poles at all times. The potential can then be expanded
to quadratic order in θ and analytic solutions can be found.
One solution is where the rotor oscillates through the
poles: θ (t) = θ0 cos(ωt), φ̇ = 0. Another solution is where
the rotor precesses about the poles: θ̇ = 0, φ(t) = ωt . Both of
these solutions have the eigenfrequency ω = √

2gq/h̄, which
corresponds to the energy scale appearing in the spectrum from
the quantum-mechanical analysis Eq. (19). The second type of
motion we consider is where the rotor has enough energy to
overcome the potential barrier near the equator and explore
both hemispheres in its trajectory. These are precisely the
oscillating-phase solutions experimentally observed in [5,6].
Finally, a third type of motion is possible when q > 2g. As
described above, there is for this case a local minimum at the
equator. Therefore, for this situation there will be trajectories
which remain localized about the equator.

We now apply the rotor description to the quantum
dynamics of antiferromagnetic condensates in the single-mode
regime, which is known to manifest rich behavior [20–22].
Here we consider preparing the system in the symmetry-
broken nematic state given by Eq. (20), and then we rapidly
turn the magnetic field off and allow the state to evolve
freely. We note that, according to the semiclassical theory
(or by using the Gross-Pitaevskii equation), the nematic wave
function will remain at the pole and not evolve temporally.
The quantum-mechanical dynamics, however, are markedly
different. By dynamically evolving the wave function Eq. (20)
with the quantum rotor Hamiltonian Eq. (3) with q = 0, it can
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FIG. 1. (Color online) Collapse and revival of 〈ψ(t)|�2
z |ψ(t)〉,

starting from a state localized about the poles with width θ̄ = 0.1.

be seen that the state will undergo periodic collapse and revival
at the characteristic frequency h̄/I . For instance, provided the
initial state is sufficiently localized θ̄ 
 1, one can show that

〈ψ(t)|�2
z |ψ(t)〉 = 2θ̄2

∑
odd �>0

(2� + 1)e−�(�+1)θ̄2

× cos2

[
(2� + 1)h̄t

2I

]
. (23)

The evolution of this function over a single period is plotted in
Fig. 1. The localized nematic state rapidly collapses to states
with substantial weight contributions from other regions of the
unit sphere, and then fully revives at the end of the period. By

applying the Poisson resummation formula to Eq. (23), it can
be seen that the evolution is a train of localized pulses separated
by a fourth of the time period. This behavior can be directly
seen experimentally by measuring the time dependence of
〈a†

0a0〉 after the turning off the magnetic field used to prepare
the system in the polar state. We note that, since the magnetic
field couples only to the spin degrees of freedom, the above
procedure will not excite spatial modes of the condensate for
sufficiently tight traps. The quantum collapse and revival of
Fig. 1 is a direct consequence of the rotor mapping of spinor
condensates.

In conclusion, we have established a correspondence
between antiferromagnetic spinor condensates and quantum
rotors. We have shown that this mapping offers a considerable
conceptual as well as technical advance in understanding the
properties of spinor condensates. We use the mapping to
address recent experimental results [5,6] and to analytically
predict a collapse and revival process (which is a direct
experimental signature of quantum effects). We point out that it
should be possible to provide similar quantum rotor mappings
for condensates with larger spin.
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