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Unconventional vortex lattice and topological defects in rigidly rotating multicomponent superfluids
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By examining rotating ferromagnetic spinor condensates through the perspective of large spin, we identify
an atypical type of topological point defects in the magnetization texture. These defects are not predicted by
conventional homotopy analysis but rather by the Riemann-Hurwitz formula. The magnetization texture in the
system is described by an equal-area mapping from the plane to the sphere of magnetization, forming a lattice
of uniformly charged skyrmions. This lattice contains doublyquantized (winding number = 2) point defects
arranged on the sphere in a tetrahedral configuration. The fluid is found to be rotating rigidly, except at the point
defects, where the vorticity vanishes. This vorticity structure describes an unconventional “unvortex” lattice,
which contrasts with the well-known vortex lattice in scalar rotating superfluids, where vorticity is concentrated
exclusively within defect points. Numerical results are presented, confirming these predictions and demonstrating
their persistence in smaller-spin condensates.
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One fundamental characteristic of ordinary (scalar) su-
perfluids is their irrotational flow. In contrast, spinor Bose–
Einstein condensates exhibit an intrinsic coupling between the
superfluid velocity field v(r) and the magnetization unit vec-
tor field n̂(r). This coupling is governed by the well-known
Mermin-Ho relation [1],

(∇ × v)k = h̄

2m
Fεi jk n̂ · (∂in̂ × ∂ j n̂), (1)

where m and F are the mass and spin of the condensed
particles, respectively. For a planar (d = 2) condensate, this
relation has an intriguing geometrical interpretation: the
right-hand side is proportional to the Jacobian J (r) of the
transformation n̂(r) : R2 → S2, mapping the physical space
to the sphere of spin states.

A rich variety of magnetization textures and flow fields
are known to occur in spinor condensates [2–20]. One such
phenomenon, facilitated by the Mermin-Ho relation, is the
elimination of the need for vortices with diverging veloc-
ity [21–23]. In its ground state, a nonrotating ferromagnetic
condensate features uniform magnetization. Upon rotation,
maintaining uniform magnetization would lead to an irro-
tational flow around a lattice of quantized vortices, as in
ordinary superfluids. However, the Mermin-Ho relation en-
ables the system to reduce its energy by adopting nonuniform
magnetization, leading to a nontrivial flow field [3,4,24–26].
While a uniform circulation matching rigid rotation might
seem energetically favorable, we show that a unique class of
defects induces large variations in circulation.

This discussion is based on an original analytical approach
to understand properties of spinor condensates, by inspecting
the system from the viewpoint of large spin (F � 1). Experi-
mental realizations of spinor condensates have so far reached
total spin values up to F = 8 [27–40]. This range already
allows exploration of the large-F behavior discussed here.
We show that the large spin viewpoint is capable not only

of capturing the properties of the larger spin condensates, but
can even provide a framework for understanding smaller-spin
condensates, such as spin 1. Expansions around F = ∞ can
be combined with results of expansions around F = 0, which
we will present in future work [41], to provide a fairly accurate
description of condensates of any spin value.

We use this system as a framework to introduce a unique
kind of topological defects, which constitute the central focus
of this paper. These defects, which emerge in the magnetic
texture, are naturally understood from the large-F viewpoint,
yet they persist in systems regardless of the spin value.
Their impact on the system is profound, influencing vari-
ous properties beyond the magnetic texture itself, such as
the aforementioned regions of depleted vorticity, which form
around the magnetic defects and disrupt an otherwise rigid
flow. The resulting vorticity structure (see Fig. 1), stands
as an antithesis to the traditional vortex lattice in super-
fluids, where all the vorticity is concentrated within the
defects.

These defects arise from a mechanism distinct from that of
standard topological defects and do not fit within the standard
classification schemes such as homotopy theory; they result
from the Riemann-Hurwitz formula, a relationship that con-
strains mappings between topologically inequivalent spaces.
Similar to the planar case, these defects also persist in the
ground state of three-dimensional condensates, forming a lat-
tice of line defects. These can be studied for behaviors such
as bending or knotting, akin to defects in conventional su-
perfluids [42–44]. We believe that this special type of defects
might also be relevant to physical systems far beyond spinor
condensates, such as quantum Hall systems, where skyrmions
emerge and their number is fixed by the deviation from special
filling fractions [45], or blue phase of liquid crystals in which
the energy is minimized by having a texture of the nematic
that varies in a noncoplanar way, where results analogous to
the Mermin-Ho relation can be used [46,47].
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FIG. 1. The “unvortex” lattice, obtained numerically for (a) F = 100, (b) F = 8, (c) F = 1. A triangular lattice of low vorticity cores
forms around each point defect, which are predicted by the Riemann-Hurwitz formula. For large F , the condensate rotates rigidly between the
cores.

Spinor condensates can exhibit various phases determined
by the interatomic interaction parameters [2,48,49]. Our focus
is on the ferromagnetic phase, which can occur for any spin
F within a certain range of the spin-dependent interaction
parameters. Assuming a constant density profile [50], the con-
densate in this phase can be described solely by the two fields
v(r) and n̂(r). An alternative description involves angles: the
superfluid phase θ (r) and the magnetic polar and azimuthal
angles φ(r) and χ (r). Using these angles, the magnetization
texture is n̂ = (sin φ cos χ, sin φ sin χ, cos φ), and the veloc-
ity field in the nonrotating frame of reference is [51]

v(r) = h̄

m
[∇θ − F cos φ∇χ ]. (2)

Taking the curl yields the Mermin-Ho relation, Eq. (1):

∇ × v = h̄

m
FJ (r)ẑ. (3)

In terms of φ and χ , the Jacobian can be written as J (r) =
sin φ(∇φ × ∇χ ) · ẑ. When rotated with an angular velocity
of ω = ωẑ, the energy functional of the system is [50–52]

E = h̄2ρ

2m

∫
d2r

[
m2

h̄2 (v − ω × r)2 + 1

2
F

(∇n̂
)2

]
. (4)

We want to identify the important contributions in the large-F
limit. Although a cursory examination of the energy func-
tional may seem to suggest a dominance of the second
(magnetic) term, this overlooks the F dependence of the ve-
locity field, as indicated in Eq. (2). This expression for the
velocity field contains a term proportional to F , hence the first
(kinetic) term in the energy contains terms proportional to F 2.
This surprisingly indicates its dominance over the magnetic
term, which is proportional only to F . To show this rigorously,
we propose employing a rescaling technique.

We rescale the lengths using r̃ = F−1/2r to eliminate the
dependence of the magnetic term on F , and the phase using
θ̃ = F−1θ to simplify the resulting expression. After these
rescalings, the velocity field becomes

ṽ = 1√
F

v = h̄

m
[∇̃θ̃ − cos φ∇̃χ ] (5)

and contains no explicit dependence on F . As velocity mea-
sures the change in position over time, it was also rescaled
to account for the rescaling of lengths. The energy, which is

similarly rescaled by Ẽ = F−1E , becomes

Ẽ = h̄2ρ

2m

∫
d2r̃

[
m2

h̄2 F (ṽ − ω × r̃)2 + 1

2
(∇̃n̂)2

]
. (6)

As we will use only the rescaled quantities, we omit the tilde
symbol in subsequent equations. Unlike the original energy
functional (4), the rescaled energy functional exhibits a re-
markably simple dependence on F . After rescaling, it is clear
that the dominant term in the large-F limit is the kinetic one.
Deviations from a state minimizing this term result in a high
energetic cost, implying that the condensate rotates rigidly,
such that v = ω × r. A previous proposal to realize rigidly ro-
tating superfluids involves the use of spin-orbit coupling [53].
Our study predicts a natural occurrence of this phenomenon
in large-F spinor condensates.

The vorticity for rigid rotation is a constant, 2ω, implying a
constant Jacobian J (r) = 2mω/h̄F according to the Mermin-
Ho relation (3). Therefore, the mapping n̂(r) must be area-
preserving (up to a constant scaling factor). We will assume
ω > 0, and therefore J (r) is positive.

Such a mapping can also be considered as describing
a system with uniform skyrmionic charge density, where
the skyrmionic charge Q = 1/4π

∫
J (r)d2r is the number of

times the sphere is covered by the mapping in each unit cell
[24,54,55]. This provides us with an equation for the area A of
the unit cell in terms of Q:

A = 2π h̄

mω
FQ. (7)

Any periodic, area-preserving mapping from the plane to
the sphere, or more generally, any mapping with a single-
sign Jacobian, must have defects. These defects can appear
in various forms, such as lines or points. Our focus is on
point defects, as other types of singularities incur a large
energetic cost. The defects of the type we consider will
occur in a mapping from a two-dimensional system to a two-
dimensional order parameter space (but can be generalized
to higher dimensions). We assume that a mapping n̂ : P → S
with a positive Jacobian is favored. For each point like this,
a sufficiently small region around it will be mapped in a
one-to-one way to a region of the order parameter space.
Conversely, a defect is a point p with the property that a small
disk around p, with p removed from it, is mapped in a k-to-one
way to the order parameter space, for k � 2. As a result, the
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FIG. 2. An illustration of the magnetic texture (8) for k = 2.
Each magnetization vector is the image of two different points,
except for the magnetization of the defect itself at the origin.

Jacobian must vanish in these specific points, as the mapping
is not invertible in their neighborhood. These defects have
the same topological structure as branching points of analytic
mappings.

An example of such a defect is at the origin of the following
texture, using the polar coordinates (r, α):

n̂(r) = ( sin φ(r) cos (kα), sin φ(r) sin (kα), cos φ(r)), (8)

where φ(r) → 0 as r → 0. This field corresponds to the az-
imuthal angle χ = kα, having a winding number of k for
this angle. As can be seen in Fig. 2, the winding of χ does
not imply a discontinuity in the texture n̂(r), unlike in an
ordinary vortex, since the magnetization points toward the
north pole near the origin. Yet any set of k points that are
angularly spaced by �α = 2π/k for the same r all have the
same magnetization n̂ at them, showing that this is a k-to-1
texture, which constitutes a k defect at the origin. Although
this field is continuous, it is not possible to smooth the defect
by altering the orientation of the vectors while keeping a
single-signed Jacobian; the defect will merely be relocated to
another position.

The presence of these defects in the system is dictated
by the Riemann-Hurwitz formula, a topological theorem that
establishes a relationship between the branching points in a
mapping and the topological properties of the spaces it con-
nects. We will assume that, away from defects, the mapping
is differentiable and has a positive Jacobian. Let P and S be
two closed Riemann surfaces, and let n̂ : P → S represent the
mapping between the spaces. Then each point of S, except
for images of defects, must be mapped to the same number
of times, say, Q [56–58]. Suppose that n̂ has defects at N
different points of P, where these defects possess the topolog-
ical numbers k1, . . . , kN . Then the Riemann-Hurwitz formula
states that

2p − 2 = (2s − 2)Q +
N∑

i=1

(ki − 1), (9)

where p = genus(P) and s = genus(S) [59–62].
In our case, n̂(r) is a mapping from the unit cell P on the

plane to the sphere of spin states S. The genus of P is p = 1
as the unit cell is topologically equivalent to a torus, and the
genus of S is s = 0. Therefore, the Riemann-Hurwitz formula

(9) yields

2Q =
N∑

i=1

(ki − 1). (10)

This formula leads to a significant conclusion: stable defects
with k � 2 must exist in the system. The formula further em-
phasizes that a k = 1 texture does not describe a defect; k = 1
points do not contribute to the Riemann-Hurwitz formula. It is
important to note that these defects not only appear in excited
states, but are intrinsic features manifesting even in the ground
state of rotating systems. This parallels the presence of point
defects in the ground state of an ordinary rotating superfluid.

The Riemann-Hurwitz formula provides the number of
defects N in each unit cell. Specifically, if all the defects share
the same k value, the number of defects in each unit cell is

N = 2Q

k − 1
. (11)

Using Eq. (7), we find the density of defects in the system:

N

A
= 1

πF (k − 1)

mω

h̄
. (12)

Note that Q does not appear in this identity. For a specific
condensate rotating at angular velocity ω, the density of the
realized defects depends only on their k value.

The formula for the density of defects remains the same
for finite F values, since the number of defects per unit cell
is unchanged (the Riemann-Hurwitz formula applies even if
the Jacobian of the mapping is not constant, as long as its
sign is) and the integration result of the Mermin-Ho relation
remains valid [41]. Notably, for F = 1 and k = 2, this formula
coincides with the Feynman relation for ordinary vortex lat-
tices [63]. We would like to again underscore the significance
of the results derived from the remarkable Riemann-Hurwitz
formula: it provides us with a prediction of distinct class of
topological defects, separate from the conventional topologi-
cal point defects characterized by the fundamental homotopy
group.

As previously discussed, describing the spin texture for
F = ∞ involves finding an equal-area mapping from the unit
cell to the sphere. Although infinitely many such mappings
exist, explicitly constructing one remains a challenging task.
This paper focuses on explaining the topological structure of
the mappings and how considering the topological defects
aids in understanding it.

We assume Q should be as small as possible for the ground
state, in order to achieve a simple topology. For a constant-
sign Jacobian, every point in S has Q preimages in P. Thus,
it is not possible to have Q = 1, as it would describe a 1-to-1
mapping, a homeomorphism, which contradicts the topologi-
cal inequivalence between the torus and the sphere.

In order to find a Q = 2 mapping, we examine the ar-
rangement of the point defects, since their positions and their
images on the sphere determine qualitatively the rest of the
mapping. Assuming all the defects of the mapping are of the
simplest kind, namely, k = 2, the Riemann-Hurwitz formula
(11) implies that each unit cell must contain N = 4 defects.
The mapping can take various forms, each associated with
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FIG. 3. The magnetization texture mapping n̂(r) is obtained by
dividing the plane into triangles and mapping them to spherical trian-
gles indicated by matching colors (the orange triangle is in the back
of the sphere). k = 2 defects (red points) are located at the vertices
of the triangles, with N = 4 of them per unit cell. The images of the
defects are arranged in the shape of a tetrahedron on the sphere. Each
unit cell covers the sphere Q = 2 times, as the two triangles outlined
in dashed black lines each close up to form one tetrahedron.

different energy dictated by the second term in Eq. (6) (the
first term vanishes for area-preserving mappings). To iden-
tify the ground state mapping and find the defect positions,
one must minimize this energy term. However, since ground
states typically exhibit higher symmetry, and considering the
rotational symmetry inherent in the problem, it is reasonable
to focus on defect configurations with greater symmetry. A
natural choice is to arrange the defects on the sphere in a
tetrahedral configuration.

Now that the four defects are in place, we divide the sphere
into four spherical triangles with the defect points at their
corners (see Fig. 3). This configuration is then straightened out
into a tetrahedron with flat faces in some equal-area manner.
The four faces of the tetrahedron are then unfolded to form a
triangle in the plane (dashed black lines in Fig. 3). Placing two
such triangles side by side with reversed orientations forms a
parallelogram unit cell, which can be repeated to tile the entire
plane. This construction defines a mapping from the sphere to
the plane, which can be inverted to obtain n̂(r). The resulting
map is double covering (Q = 2) because each parallelogram
unit cell consists of the two triangles, with each triangle cov-
ering the sphere once under the mapping. On the plane, the
defects are the points around which the corresponding faces of
the tetrahedron are repeated twice, resulting in a 2-to-1 texture
around them.

Numerical minimization of energy (6) using a steepest
descent algorithm confirms that the actual ground state has the
same topological structure as the mapping shown in Fig. 3,
manifesting a triangular lattice with tetrahedrally arranged
defects on the sphere. This structure remains the same for
all spin values. These results are consistent with the pre-
diction of a triangular lattice for pseudospin-1/2 and spin-1
systems in Refs. [3,4] and its experimental observation for
pseudospin-1/2 [64]. However, the previous analyses have
predominantly focused on separate spinor components, unlike
our approach, which adopts a geometrical SO(3) symmetric
viewpoint and reveals the presence and significance of the
defects.

Thus far, our analysis has focused on understanding the
defects through their influence on the magnetic structure.
However, due to the Mermin-Ho relation, they also have a
crucial effect on the condensate flow. To explore this, we

relax the constraint v = ω × r, allowing us to explore the
ground state of a system with large yet finite F , utilizing the
Euler-Lagrange equations derived from energy (6).

It can be shown that for an area-preserving mapping the
second spatial derivatives of n̂ diverge at the defects, causing
the torque δE/δφ acting on n̂ to diverge. Consequently, such
a mapping is valid only for infinite F ; for any finite F , a
different solution is required near the defects. To address this,
we study the cores of the defects, defined as the regions where
the area-preserving approximation breaks down significantly,
and characterized by a notable deviation of the vorticity from
the rigid rotation value 2ω, as can be seen in Fig. 1. This
definition differs from the definition of a typical defect core,
such as in scalar superfluid vortices, which is based on a
significant reduction in density. In this sense, the defects we
describe are coreless.

In the large-F limit, the core size is found to be indepen-
dent of F . Since areas are scaled by 1/F in the mapping to
the unit sphere according to Eq. (7), the area corresponding
to the image of the core on the sphere is proportional to F−1,
hence its angular size scales as φ ∼ F− 1

2 (when n̂ at the defect
is rotated to the north pole). For large F , this region is small
and thus approximately flat, allowing us to simplify the Euler-
Lagrange equations in this region by neglecting the curvature
of the sphere. Assuming a rotationally invariant structure in
the vicinity of the defect, we may take χ = kα in order to de-
scribe a k defect. The approximated Euler-Lagrange equation
for φ is then:

x
∂

∂x

(
x
∂u

∂x

)
= k2[(1 − x2)u + u3], (13)

where u = √
Fφ, and x = √

mω/h̄kr is a dimensionless form
of the coordinates. Since this equation is independent of the
parameters, the typical scales for u and x are of order 1,
justifying the scales mentioned earlier. In the original vari-
ables, the core area on the plane is of order mω/h̄; therefore,
for large F , the unit cell size [Eq. (7)] is much larger than
the core size. Hence, the cores are far apart, validating the
analysis of each core separately. While u ∝ x near the defect

FIG. 4. Blue curve: vorticity around a k = 2 defect, calculated
from Eq. (14) using the numerical solution of (13). Points: numerical
gradient descent simulation results for the angle-averaged vorticity
around a k = 2 defect for various values of F .
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for the area-preserving case, the solution of Eq. (13) yields
u ∝ xk . This corrects the aforementioned singularities in the
second derivatives of n̂, resulting in an infinitely differentiable
magnetization texture.

After rescaling, the Mermin-Ho relation around the defect
becomes

∇ × v = 2ω
u

x

∂u

∂x
. (14)

Numerical solution of Eq. (13) for u(x) yields the vorticity
inside the core, shown in Fig. 4. The vorticity grows from 0
to 2ω on the scale of x ≈ 1, consistent with the expected core
size. Comparison with vorticity of the defects in the numerical
results shows convergence towards the predicted curve as F
increases. Besides leading to a finite core size, a finite F
has interesting effects on the vorticity outside the core: its
mean exceeds 2ω (see Fig. 4), and it is smaller along valleys
connecting the defects (see Fig. 1). These corrections will be
addressed in [41].

The distinction between the velocity field defects in our
system and conventional superfluid vortices is evident. Here
vorticity increases gradually from zero at the defect point
to 2ω with distance, whereas in regular superfluid vortices
all the vorticity is concentrated within the defect itself. This
analysis, supported by independent numerical results, shows
that the positions of these “unvortices” align precisely with
the locations of the magnetic texture defects. This alignment
establishes a direct connection between the defects of v(r) and
n̂(r), despite their fundamentally different nature.
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