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Order-by-disorder phenomena in cold atomic gases

Abstract

This thesis presents novel theoretical results on two cold atomic systems with

particular emphasis on the order-by-disorder mechanism that they exhibit.

The latter selects one or a number of classically degenerate states of low-

est energy as the true ground states on the basis of Helmholtz free energy

contributions of fluctuations about the classical solutions. It has tradition-

ally played an important role in solid-state systems but has so far not been

conclusively observed.

The first system considered is that of cold bosons hopping in the two-dimen-

sional dice lattice in the presence of an artificial gauge field, tuned to provide

half an elementary flux per plaquette. The single-particle band structure

consists entirely of flat bands. Many-particle behaviour is captured by a

Bose-Hubbard model with contact interactions. Mean-field analysis yields

a large degeneracy of classical ground states which is lifted through Order

by Disorder. A closer analysis yields a picture of free-energy-mediated in-

teractions between domain walls separating distinct, classically degenerate

regions.

The second system is that of spin-2 species in a tightly confining spatial

potential, with a generalised quadratic-Zeeman coupling. It is analysed by

means of an exact mapping of the many-body Hamiltonian onto that of a

five-dimensional rotor. The new Hamiltonian is in general non-Hermitian,

but Hermitianising transforms may be found in a number of regimes. Ana-

lytical results for the ordinary quadratic Zeeman potential are presented and

shown to yield qualitatively different behaviour from the mean-field analysis.

In particular, there are no signs of a fluctuation-induced phase transition,

predicted by mean-field theory. Motivated by this, an alternative potential,
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breaking less symmetry, is considered within the rotor framework and shown

to display microscopic parallels of Order by Disorder.
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Conventions

The following conventions are employed throughout this thesis:

• All equations employ units in which ~ = 1, unless otherwise specified.

• Repeated indices imply the Einstein summation convention, except

when explicitly stated otherwise and when a repeated index appears

with different multiplicities on two sides of an equation.

• Operators are denoted by hats, except for differential operators, such

as ∂i and ∇2. Operators of multiplication by a coordinate are denoted

by the same symbol as the coordinate, with an added hat. When a

relation between coordinate operators is also true for the underlying

coordinates, it is typically stated in terms of the latter. Finally, when

a term or expression contains a differential operator as its rightmost

factor, the remaining coordinate factors are understood to represent

operators, even if unhatted.

• Vectors are represented in boldface. Matrices have no special format-

ting but are typically represented by capital letters. When there is need

for vectors of vectors, the secondary-level vectors are represented by un-

derlined symbols, and the secondary-level matrices by twice underlined

capital letters.
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1
Introduction

The final decades of the previous millennium saw rapid advances in cooling

technology that have enabled unprecedented access to large-scale quantum

phenomena in the laboratory. Being able to reliably maintain temperatures

in or below the micro-Kelvin range allowed for the construction of particle

ensembles in which the majority of particles occupied low-lying, highly wave-

like quantum states. Nowhere was this demonstrated as clearly as with the

realisation of a Bose-Einstein condensate of an atomic gas,26,5,18 arguably the

main drive behind the technological advances. Cold atomic gases have since

proven to be extremely amenable to precise and robust experimental control,

particularly in combination with optical trapping methods. Besides being

analysed in their own right, they have been utilised to cleanly simulate solid-

state systems, with much smaller amounts of disorder than would have been

possible in the original setting.71 The simulation efforts have recently resulted

in the realisations of such iconic systems as the Hofstadter-Harper model83,3

and the topological Haldane model,55 and are even likely to expand into the

high-energy physics domain.141 Together, these developments have firmly

established an entire new field of condensed-matter physics, referred to as

the study of (ultra)cold atomic or quantum gases, or often simply (ultra)cold
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atoms.

The present thesis attempts to further our theoretical understanding of two

many-body quantum systems that have become experimentally viable with

the rise of cold-atoms techniques. While the systems may seem at first glance

to be entirely distinct and connected only by the previous fact, another im-

portant shared attribute crops up in the course of their analysis. A self-

consistent mean-field analysis of both systems leads to a large ground-state

degeneracy, with members of the degenerate set not related to each other by

geometrical symmetry. In such a setting, quantum fluctuations play a vital

role. In both of the systems considered, zero-point energies of the fluctua-

tions conclusively select a preferred ground state, and this selection is further

consolidated by thermal contributions to the Helmholtz free energy at finite

temperatures. This phenomenon is commonly referred to in the literature as

Order by Disorder 134,113,45,46 and has traditionally played an important role in

frustrated magnetic systems of solid-state physics. Experimental searches for

the phenomenon have focused on such systems, but remain contentious.105,99

Recent theoretical work has, however, shown the phenomenon to be ubiqui-

tous in the field of cold atoms, suggesting it may be experimentally realised

within its context.

The present introductory chapter aims to give a broad technical and, to

a lesser extent, historical overview of the field of cold atoms, as well as

its subfields particularly pertinent to the pair of systems analysed. Before

outlining the field of cold atoms, however, the following couple of paragraphs

outline the structure of this thesis.

Chapters 2 through 4 are dedicated to the Bose-Hubbard model on the dice

lattice in the presence of an effective magnetic field such that each lattice

plaquette is threaded by half of an elementary flux quantum. In particu-

lar, Chapter 2 introduces the geometrical properties of the dice lattice and

considers the single-particle spectra of tight-binding models in it. Proper-

ties at arbitrary magnetic fields are briefly reviewed. The case of half-an-

elementary flux per plaquette stands out as particularly distinguished as it

features eigenstates localised to a finite number of sites by destructive inter-

ference of Aharonov-Bohm phases, and yields an entirely flat single-particle
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spectrum. In such a setting, the importance of inter-particle interactions is

vastly enhanced for many-body systems. This is the subject of Chapter 3,

which applies a hydrodynamic mean-field analysis to the many-body prob-

lem. A large set of geometrically inequivalent ground states is found. These

can be characterised as vortex lattices, induced by phase windings around

individual plaquettes. Following previous ideas of Korshunov regarding the

XY model on the dice lattice,62,61,63 the concept of a zero-energy domain wall

is introduced. This is used to systematically classify the degenerate mean-

field ground-state manifold. Chapter 4 asks whether beyond-mean-field fluc-

tuations lift the degeneracy, ultimately arriving at a positive answer. The

Bogoliubov spectra of four mean field states, possessing the smallest unit cells

and the most symmetric descriptions in terms of zero-energy domain walls of

the previous chapter, are derived. They are shown to lead to the conclusive

selection of one of the states, at both zero and finite temperature, through

Order by Disorder. Another class of spectra is calculated for two domain

walls at a variable distance. The results can be interpreted as fluctuation-

mediated interactions between domain walls. This is used to argue that

the previously obtained state is not selected only among the high-symmetry

mean-field states, but among all of them.

Chapters 5 through 10 are dedicated to the other system of interest, a conden-

sate of spin-2 atoms. Chapters 5 to 8 cover the background and methods that

are used to derive the main results in Chapters 9 and 10. In detail, Chapter 5

introduces the mean-field properties of spin-1 and spin-2 condensates, and

considers their phase diagrams with respect to atomic scattering lengths and

external field. Throughout the expository chapters of the latter part of this

thesis, the spin-1, and sometimes the even simpler double-well system, are

used to make analogies with the spin-2 system. This allows clarifying the ori-

gin of effects that might be obscured within a direct treatment of the geomet-

rically and algebraically much less intuitive spin-2 setting. The geometrical

Majorana scheme for classifying spin-F states is reviewed. Additionally, the

lifting of an accidental nematic degeneracy in the continuum is summarised,

so that it can later be contrasted with the drastically different outcome of

the full quantum treatment. Chapter 6 considers the tight binding, or sin-
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gle mode approximation, and how it allows one to go beyond the mean-field

regime. It summarises the properties of spin-1 condensates, derived within

its context, and of spin-2 condensates in the absence of a quadratic Zeeman

field. Similarities and differences from the mean-field phase diagrams are

discussed throughout, and it is described how the validity of the mean-field

approximation can be partially quantified. Chapter 7 then delves into the

mathematical structure and properties of general Hamiltonian mappings and

particularly the rotor mapping. The latter has been used to great effect in

the spin-1 setting and is the main analytical tool of later chapters. It consists

of mapping an arbitrary d-mode particle-conserving many-body Hamiltonian

onto an equivalent Hamiltonian of a d-dimensional quantum rotor or, equiv-

alently, of a particle moving on the (d − 1)-sphere. The spin-1 and spin-2

mappings utilise the d = 3 and d = 5 versions of the mapping, respectively,

while Chapter 7 considers arbitrary dimension. Specific low-d applications

are the subject of Chapter 8. As well as reviewing mappings relevant to

the double-well Bose-Hubbard Hamiltonian and the tightly-confined spin-1

system, and identifying further common features discernible from them, the

formalism relevant to the spin-2 setting is introduced. This is then applied in

Chapter 9 to study the response of a tightly confined spin-2 condensate to an

applied quadratic Zeeman field. The spectra in different parameter regimes

are derived. They are shown to agree with Bogoliubov-theory predictions,

where these are stable. The rotor mapping can, however, also successfully

be applied in a region where the ground state is a fragmented condensate.

This implies a zero spin-mixing mode that drives up the depletion, making

Bogoliubov theory inapplicable. The rotor mapping, on the other hand, re-

mains stable within this region. Analytical expressions for the ground-state

wave functions, in particular the overlaps with ground states in the limit of

large positive and negative quadratic Zeeman field, are derived. One of the

main features observed in the ground-state structure is that it seems to retain

no trace of a continuum phase transition, induced by fluctuations. This is

attributed to the fact that the quadratic Zeeman field breaks too much of the

original Hamiltonian’s symmetry, and in Chapter 10, an alternative potential

that breaks less symmetry is considered. This time, the rotor Hamiltonian

may be partitioned into parts of different orders and treated by means of

5



perturbation theory. The low-energy variable does not appear in the zeroth-

order Hamiltonian at all, leading to an effective Hamiltonian for it. In terms

of sublevel occupation fluctuations, the obtained states are qualitatively dif-

ferent from the mean-field states selected by a Bogoliubov analysis of the

same spin potential. However, their sublevel occupation expectation values

agree with it, demonstrating a microscopic, fully quantum parallel of Order

by Disorder. This represents the second central result of this thesis, whose

final conclusions are stated in Chapter 11.

As stated earlier, the main goal of the present chapter is to introduce the

general field of cold atoms and some of its subfields particularly pertinent

to the above topics. To that end, this Introduction is structured as follows:

in Sec. 1.1, the phenomenon of Bose-Einstein condensation that gave rise to

the field of cold atoms is reviewed. Condensation is first illustrated in the

conceptually clear non-interacting setting in subsection 1.1.1. Some of the

most iconic effects of Bose-Einstein condensation, related to superfluidity,

however arise only in interacting systems. The methodology and features of

the interacting regime are considered in subsection 1.1.2. Subsection 1.1.3

then introduces two commonly used order parameters, used to define a BEC

in a general setting. Subsection 1.1.4 concludes the overview of BEC physics

with a very brief historical account of condensation efforts. Moving on, Sec-

tion 1.2 introduces some of the most frequently utilised experimental tools of

cold atomic physics, optical traps and lattices. These rely on the atoms’ self-

polarisabilities, which induce an electric-field-dependent energy shift of the

atomic ground state. This is known as the Stark shift, and its derivation is

outlined in Sec. 1.2.1. Bosons confined to a periodic optical potential, via the

Stark shift, have been shown to be described by an effective Bose-Hubbard

Hamiltonian,51 whose properties are the subject of the brief Sec. 1.2.2. Sec-

tion 1.3 then describes how the scattering properties of cold atomic gases

yield simple many-body interaction Hamiltonians, a subject of utmost im-

portance for the later chapters of this thesis, and sketches the derivation of

their forms. Another important aspect of cold spinful species is their inter-

action with magnetic fields. The field-induced energy shifts are known as the

Zeeman effect. At low, experimentally relevant fields, these have a regime of
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pronounced non-linearity, due to the presence of the hyperfine interaction.

The latter, as well as the explicit form of the energy shifts, are the subject of

Sec. 1.4. In the final section, Sec. 1.5, the unifying phenomenon of Order by

Disorder is introduced in more detail. First, in subsection 1.5.1, the primary

means of going beyond mean-field theory, Bogoliubov theory, is reviewed.

For finite systems, or even subsystems, this has remarkably elegant algebraic

properties, which, in the author’s experience, do not seem to be universally

known. The surprising accuracy of the ground-state energy obtained with

the formalism is demonstrated on an exactly solvable example. Finally, in

subsection 1.5.2, the effects of fluctuations, leading to the lifting of accidental

degeneracies, are discussed within the Bogoliubov theory framework, giving

concrete form to the idea of Order by Disorder.

1.1 Bose-Einstein condensation

First predicted by Einstein in 1924,28,29 following up on previous ideas by

Bose,17 the phenomenon of Bose-Einstein condensation, or BEC, is possibly

the most profound manifestation of the mantra that several bosons can oc-

cupy the same quantum state. It states that, for suitable systems at low

enough temperatures, a macroscopic fraction of particles will occupy the

quantum ground state. The following subsections aim to yield an overview

of the rich field that has grown out of this simple idea, starting with the

simplest example of a non-interacting condensate.

1.1.1 Non-interacting systems

The concepts of condensation may be most concisely presented in a non-

interacting setting. Consider thus a non-interacting system with single-

particle eigenstates of energy εi, where i = 1, 2, · · · and εi ≤ εi+1. Em-

ploying natural units kB = ~ = 1, the thermal expectation value of ni, the

i-th single-particle eigenstate’s occupation number, at temperature T and

7



chemical potential µ, is given by the Bose-Einstein distribution:

〈ni〉 =
(
e(εi−µ)/T − 1

)−1
. (1.1)

While there are rigorous definitions of BEC involving taking the thermo-

dynamic limit N → ∞, there is a simpler argument to demonstrate that

something interesting is going on already at large but finite N . Taking the

energy of the ground state to be 0, it is evident that the chemical potential

µ must remain negative, lest the ground-state occupation become negative,

and hence unphysical. At fixed temperature T , the sum
∑

i 〈ni〉 ≡ N in-

creases monotonically with increasing µ. For large particle numbers one may

typically replace the sum by an integral over the single-particle energy:

N =
∑
i

〈ni〉 ≈
∫ ∞

0

dε
g (ε)

e(ε−µ)/T − 1
, (1.2)

where g (ε) is the system’s density of states. It turns out that, at low temper-

atures, this integral does not properly account for the ground state, about

which the distribution is heavily peaked, but is satisfactory for calculating

the number of particles in excited states. The density of states is typically

of the form g (ε) = Cεα. When α > 0, the above integral converges in the

limit µ→ 0−, and the limiting value represents the largest number of parti-

cles that excited states can accommodate at the given temperature. If this

quantity is less than N , the total number of particles, the remaining particles

must occupy the ground state.∗ This additional ground-state occupation is

due to Bose-Einstein condensation.

An elementary calculation shows that the coefficient α equals d/2 − 1 for

a uniform gas in d dimensions, and d − 1 for a d-dimensional harmonic os-

∗This may seem like a rather ad hoc statement, artificially concocted to resolve the
particle-number discrepancy. It may be justified by noticing that the integral approxima-
tion of Eq. (1.2) may only fail considerably near the origin. Even though the density of
states tends to zero, a single state, deep within the divergent regime of the Bose-Einstein
distribution function (1.1), may yield an arbitrarily large total particle number. The cor-
rectness of the ground-state occupation claim can also be numerically verified by keeping
the sum discrete and solving for the tiny non-zero chemical potential at a fixed particle
number.
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cillator. According to the convergence criterion for integral (1.2), α > 0,

Bose-Einstein condensation in non-interacting gases is predicted to occur in

three dimensions for the uniform potential, and in 2 or 3-dimensional har-

monic oscillator potentials. In lower dimensions, condensation is predicted

to occur only at zero temperature. The 1-dimensional harmonic oscillator is

in fact rather delicate,25,69 and shows that the above discussion is not the

full story, but overall, the convergent-excitation-number rule of thumb works

rather well.

1.1.2 Interacting systems

A discussion of non-interacting systems, while conceptually clear, fails to

account for the remarkable superfluid properties of real condensates. Even

the very weak inter-particle interactions in dilute gases turn out to profoundly

affect the excitation spectrum and, through it, the condensate’s macroscopic

properties.

A typical first approach to interacting condensates is mean-field theory at

zero temperature. In this regime, one may consider a trial wave function in

which all of the particles occupy the same single-particle state. In a system

of N particles, this would be

Ψ ({ri}) =
∏

φ0(ri) (1.3)

where ri is the i-th particle’s position. Additionally, interactions are typically

well approximated by a delta-function potential, i.e., V (ri, rj) = Uδ(3)(ri −
rj) for some interaction constant U . The reasons for this are sketched in

Sec. 1.3 of this introduction. Considering a scalar condensate, a typical

Hamiltonian reads

Ĥ =
N∑
i

(
− 1

2m
∇2
i + V (r̂i)

)
+ U

N∑
i<j

δ(3) (r̂i − r̂j) (1.4)

where m is the atomic mass, r̂i the i-th particle’s position operator, ∇i the

gradient operator acting on ri, and U an interaction constant. The goal now
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is to minimise the expectation value of Hamiltonian (1.4) with respect to the

single-particle state φ0 of Eq. (1.3). It is even more convenient to introduce a

scaled quantity, ψ(r) =
√
Nφ0(r), usually referred to as the condensate wave

function, and minimise with respect to it. A Lagrange multiplier µ needs to

be introduced to constrain the spatial integral of |ψ(r)|2 to N .† The complete

expression to be minimised is:

E [ψ] =

∫
dr

[
1

2m
|∇ψ(r)|2 + (V (r)− µ) |ψ(r)|2 +

1

2
U |ψ(r)|4

]
. (1.5)

Demanding that this quantity be a minimum with respect to variations in

ψ∗(r) yields, through the calculus of variations, the Gross-Pitaevskii equa-

tion:

− 1

2m
∇2ψ(r) + V (r)ψ(r) + U |ψ(r)|2 ψ(r) = µψ(r). (1.6)

The complex many-body body problem has been reduced to solving a sin-

gle non-linear differential equation. On account of its simplicity and wide

applicability, the Gross-Pitaevskii equation, or GPE, is one of the main cal-

culational tools with which condensates are analysed. Though arriving at

it from an alternative argument, Chapter 3 utilises the GPE to obtain the

mean-field ground states of the dice lattice.

Just like the ordinary Schrödinger equation, the GPE has a time-dependent

version, in which the chemical potential µ on the right-hand side of Eq. (1.6)

is replaced by i∂t. This presents one method of obtaining the excitation

spectrum, by finding small deviations from the ground state, periodic in

time, and may be justified on the basis of the microscopic Bogoliubov theory,

discussed in Sec. 1.5.1.

The condensate wave function is a complex quantity, but the GPE is invariant

under multiplying it by a phase. The ground state must hence spontaneously

break symmetry in choosing a phase. In the continuum, the broken phase

symmetry implies the presence of a gapless Goldstone mode. This also oc-

†Even though the particle number is fixed, µ may be interpreted as the chemical poten-
tial of a related system, identical in every respect, except that it is in chemical equilibrium
with a particle reservoir, such that its particle-number expectation value is N . Indeed,
an alternative widely used mean-field scheme and one of the definitions of the BEC order
parameter, discussed in Sec. 1.1.3, work with this related system from the very beginning.
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curs for the non-interacting system, but even rather weak interactions induce

a critical difference. In the non-interacting case, the excitation spectrum is

unaffected by the condensate, and remains quadratic. Interactions, however,

linearise the long-wavelength dispersion εp, as can be derived with either the

time-dependent Gross-Pitaevskii equation or Bogoliubov theory. There is

then a famous argument by Landau64,65 that condensate flows at velocities

v < min (εp/p), minimised over the entire spectrum, experience no dissipa-

tion. This impressive and experimentally rewarding property of condensates

is considered one of their main hallmarks.

Superfluid behaviour in Bose-Einstein condensates has been experimentally

verified four years after their initial realisations.102,80 The authors of Ref. [80]

achieved this through engineering a superfluid vortex. When a condensate

is rotated or stirred fast enough, several vortices appear and arrange them-

selves into an Abrikosov triangular lattice, named after Alexei Abrikosov,

who studied the vortices in the context of type-II superconductivity.2 These

were realised soon after,77,78,102 and their experimentally obtained absorption

images remain one of the most iconic results in the study of Bose-Einstein

condensates.

1.1.3 BEC order parameters

The previous section introduced the mean-field methodology, appropriate for

calculations in the condensed regime. The variational ansatz that it consid-

ered was chosen with this in mind, and the resulting Gross-Pitaevskii wave

functions thus hardly convey any information on behaviour at higher temper-

atures. In this short section, the two commonly used order parameters, that

may be used to observe the condensation phase transition, are introduced.

The first involves the one-particle reduced density matrix, and is due to

Penrose and Onsager.96 For a scalar condensate in a pure many-body state

ψ (r1, · · · , rN), this is defined as

ρ (r, r′) ≡ N

∫
dr2 · · · drN ψ∗ (r, r2, · · · rN)ψ (r′, r2, · · · rN) (1.7)
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with straightforward generalisations for mixed states and multi-component

condensates. Viewed as an integral operator, i.e., (ρϕ) (r) ≡
∫

dr′ ρ(r, r′)ϕ(r′),

one can define its eigenvalues and eigenfunctions. When there are eigenval-

ues of order N , the system is said to be Bose-Einstein condensed, and when

there is one, and only one such eigenvalue, the resulting BEC is said to be

simple. With more than one macroscopic eigenvalue, the BEC is said to

be fragmented. We will encounter several cases of fragmented condensates

in systems of tightly bound cold spinor atoms, considered from Chapter 6

onwards. Focusing on simple condensates for now and denoting the macro-

scopic eigenvalue by N0 and its corresponding eigenfunction by χ0(r), the

order parameter Ψ may be defined as Ψ(r) =
√
N0χ0(r). Note that when

the condensate is in the wave function (1.3), the single-particle state φ0 is

an eigenvector of ρ with eigenvalue N , while all states orthogonal to φ0 have

eigenvalues 0. In this case, the condensate wave function agrees with the

order parameter.

Even though the majority of experiments to date involve a fixed number of

particles, the second definition, most commonly used in practice, requires one

to consider the related system in chemical equilibrium with the same average

number of particles. This is usually not seen as a problem, as fluctuations

of the relative particle number scale as N−1/2, and are hence negligible for

typical experimental values of N . Considering the standard bosonic field op-

erator ψ̂ (r, λ) that annihilates a particle in some internal state, parametrised

by λ, at position r, the order parameter, according to the second definition,

is simply Ψ(r, λ) = 〈ψ̂(r, λ)〉, a quantity that can never be non-zero with

strictly conserved particle number.

The above order parameter is closely related to an alternative approach to

mean-field calculations, in which the variational function is taken to be a

coherent state. Not only does this yield non-zero expectation values of anni-

hilation operators, it is also their simultaneous eigenstate. Besides algebraic

simplicity, the choice of minimising among coherent states is also motivated

by their semiclassical properties, as they approximately minimise the Heisen-

berg uncertainty between the hydrodynamic variables of density and phase.

Furthermore, their N -particle components are of the type utilised in the
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mean field treatment of the previous section, with all particles occupying the

same single-particle state.

1.1.4 Historical overview

The above definitions and examples far predate the initial experimental real-

isations of the condensate in a dilute atomic gas by the independent groups

of Cornell and Wieman,5 Ketterle,26 and Hulet18 in 1995. The concept has

seen several milestones since it was first proposed in 1924,28 the first of which

might have been Fritz London’s suggestion that a BEC is responsible for the

superfluid behaviour of liquid 4He.75 While this hypothesis stood the test of

time, liquid helium atoms are very strongly interacting, making the overall

condensate fraction significantly less than 1, and complicating experimental

investigation. The search was thus on for weakly interacting species that

would remain gaseous to very low temperatures. Spin-polarised hydrogen

emerged as a natural candidate,44,121 though experimental issues meant a

condensate of hydrogen atoms was realised only three years after those of

alkali species, in 1998.33 Nevertheless, the technique of evaporative cooling

developed along the way, combined with a stage of laser cooling, was a key

step in the successful condensation experiments of 1995. These all used alkali

atoms, which have remained the most widely utilised particles in condensa-

tion experiments to date,118 on account of their many favourable properties,

but condensates of non-alkali atoms, such as metastable 4He atoms,104,97

ytterbium,124,34 chromium,42 erbium,4 and dysprosium76 have also been re-

alised. Many successful condensation experiments with particles other than

atoms have also been performed, some of which have ushered in entire new

fields of physics.27,138

1.2 Optical traps and lattices, the Bose-Hubbard model

A variety of trapping techniques are used during different stages of cold-atom

condensate experiments. The earliest traps were magnetic or magneto-optical

and the latter are still routinely used during the cooling process. Ever since
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the late 90’s, final stages of experiments have largely been carried out in

purely optical traps. This is, in part, due to their experimental versatil-

ity, as well as the fact that, when properly configured, they couple equally

to different magnetic spin sublevels, to a very good approximation.118 This

makes them very suitable for probing properties of spinor atoms. They are

formed by interfering laser beams producing an electromagnetic standing

wave whose nodes or crests attract atoms via the Stark effect, briefly out-

lined below. Using more than one pair of lasers in a spatial configuration

allows for the realisation of complex two- or three-dimensional intensity pat-

terns.88 Using lower laser intensities, an amount of tunnelling between the

individual centres of attraction can be achieved, leading to an effective Bose-

Hubbard model on the corresponding lattice,51 from which analogies with

real solid-state systems may be derived.

In the following, we focus on the periodic case with many traps. A simple

quasi-one-dimensional lattice may already be constructed with a single pair

of coherent interfering laser beams.88 This is typically realised by reflecting

a single laser beam, making it interfere with itself, or splitting the beam

initially and guiding the two resulting beams into the appropriate spatial

arrangement. The latter method allows for added versatility, as varying the

phases or frequencies of individual beams separately enables one to realise

setups such as a moving lattice. The case of an accelerating lattice simulates

an additional longitudinal force.

In realising higher-dimensional lattices, care needs to be taken with respect to

multiple-wave interference effects. For two pairs of lasers, the polarisations

can be adjusted so as to reduce these effects. For more complex arrange-

ments, laser pairs of differing frequencies are typically used, with frequency

differences on the order of 10 MHz, washing out the interference but hardly

influencing other lattice properties.88

1.2.1 The Stark effect

Considering time averages of the rapidly oscillating electric fields, this creates

a periodic intensity pattern. Atoms populating the effective lattice are then
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attracted to either the maxima or minima of the intensity pattern, depending

on the frequency of laser light, via the Stark effect. This can be understood

as an effective energy shift of the atomic ground state within the framework

of perturbation theory.98 The perturbing Hamiltonian is taken to be

H ′ = −d̂ · E (1.8)

where d̂ = e
∑

i r̂i, with the sum being over all electrons in the atom, is

the electronic dipole moment operator, and E is the electric field, in general

time-dependent. Letting the field oscillate with frequency ω, i.e., E(t) =

Eωe−iωt+E∗ωeiωt a straightforward application of time-dependent perturbation

theory yields an energy shift

∆Eg = −1

2

〈
E2
〉∑

e

∣∣∣〈e∣∣∣d̂ · eε∣∣∣g〉∣∣∣2( 1

Ee − Eg + ~ω
+

1

Ee − Eg − ~ω

)
(1.9)

where eε is the unit vector along the electric field’s polarisation, the ground

state is denoted by g, and excited states by e. This can be vastly simpli-

fied when the radiation frequency is close to that of an atomic transition,

as one may then neglect all other terms in the above sum, as well as keep

only the denominator with negative frequency. Furthermore, one can avoid

the divergence exactly at the transition frequency by taking into account the

decay time of the excited state due to spontaneous emission. Phenomeno-

logically, this consists of introducing a complex component of its energy,

Ee → Ee − i~Γe/2. This turns the energy shift into a complex quantity as

well, i.e., introduces a decay time due to induced excitations, while its real

part may still be considered a real energy shift. Further introducing the de-

tuning δ ≡ ω − ωeg, where ωeg = (Ee − Eg) /~ is the transition frequency,

and the transition’s Rabi frequency ΩR ≡
∣∣∣〈e∣∣∣d̂ · Eω∣∣∣g〉∣∣∣ /~ yields the simple

expression for the real energy shift

Re ∆Eg =
~Ω2

Rδ

δ2 + Γ2
e/4

. (1.10)

From this, one immediately sees that for positive detuning, also called blue

detuning, atoms will be attracted to minima of the electric field, while for
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negative or red detuning they will be attracted to the maxima.

1.2.2 The Bose-Hubbard model

At large numbers of atoms per lattice site, a mean-field approach is viable,

and may be supplemented by the venerable Bogoliubov method of treating

quantum excitations about the mean-field configuration. At lower fillings,

however, single-site particle-number fluctuations become important. For

deep lattices, in which the difference in energy between the first single-site

excited state and the corresponding ground state is much bigger than the hop-

ping matrix element, given by J in Eq. (1.14) below, the most straightforward

manner of treating said fluctuations is to consider an effective Bose-Hubbard

model,51,50 originally devised in the context of liquid helium in restricted

geometries.31 From it, the mean-field energy functional can be reproduced

as the energy expectation value in a tensor product of coherent states, with

the annihilation-operator eigenvalues corresponding to the condensate wave

function.

Consider, for simplicity, an effective Bose-Hubbard model on a Bravais lat-

tice. To state its form concisely, let us first introduce the localised Wan-

nier states. These are formed by a suitable superposition of lowest-band

Bloch states of the non-interacting problem. Denoting the latter by φq(x) =

eiq·xuq(x), where q is a wave vector in the first Brillouin zone and the uq(x)

share the periodicity of the lattice, the Wannier state localised at R is given

by:

wR(x) =
1

Vcell

∫
ddq e−iR·qφq(x) (1.11)

where Vcell is the d-dimensional volume of the unit cell. Defining wR(x) ≡
w(x − R) and considering the bosonic field operator ϕ̂(x) of the second-

quantised many-body picture, the latter may be expanded as

ϕ̂(x) =
∑
i

âiw (x−Ri) (1.12)

where i is some index labelling lattice sites, Ri is the centre position of the i-
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th site, usually defined so that the Wannier states are as localised as possible,

and âi an annihilation operator for a boson at that site. In the absence of

an external potential one may then derive the effective Hamiltonian

Ĥ = −J
∑
〈ij〉

â†i âj +
1

2
U
∑
i

n̂i (n̂i − 1) (1.13)

where n̂i = â†i âi is the number operator for the i-th site, the first sum is over

all pairs of neighbouring sites, and the quantities J and U are defined as:

J =

∫
ddxw∗(x−Ri)

[
− 1

2m
∇2 + V0(x)

]
w(x−Rj)

U =
4πas
m

∫
ddx |w(x)|4 (1.14)

where, in the first line, the i and j label any two neighbouring sites, m is

the atomic species’ mass, and as its s-wave scattering length. The proto-

typical example of a result obtained through this model is the superfluid to

Mott insulator transition,31,51 which has been experimentally observed soon

after the observation of superfluidity in condensates itself.41 By gradually

increasing the repulsive interaction strength between atoms, the condensate

wave function and, in particular, its phase, stop being well defined and the

resulting state becomes well described by a tensor product of Fock states for

individual sites, exhibiting a gapped excitation spectrum.32,114,132,30

1.3 Effective interactions and spinor condensates

Besides their excellent experimental properties, an appealing theoretical char-

acteristic of cold atoms is the applicability of a simple inter-atomic contact

interaction. This section provides an overview of their scattering proper-

ties and how these give rise to the effective interactions, which are a central

feature of a number of Hamiltonians in Chapters 5 to 10.

Consider an isolated pair of two identical colliding atoms. Their scattering

properties may be inferred from the wave function of their relative motion,

separated from the centre-of-mass motion. The incoming atom’s motion is
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represented by a plane wave, travelling along the z direction, while the scat-

tered wave-function components travel in the radial direction. The potential

is assumed to be symmetric with respect to the azimuthal angle. The out-

going wave-function component may be decomposed into a sum of partial

waves, indexed by an integer `, with the angular dependence of the spherical

harmonic Y`,m=0. For cold atomic setups, the most important of these is the

` = 0, or s-wave component.

Neglecting the weak magnetic dipolar interaction, at large distances the

atoms interact through the isotropic Van der Waals interaction, with a strength

proportional to 1/r6. One may invoke results of classical scattering theory66

to show that, at long wavelengths, the cross sections for such interactions

are dominated by s-wave scattering, regardless of the short-distance details

of the interatomic potential. In the cold atomic setting, characteristic colli-

sion momenta are typically so low that the scattering wave function can be

approximated by ψ ≈ 1 − a
r
, where the constant a is called the scattering

length.

Due to the weakness of the interactions, the Born approximation may be

invoked. Denoting the functional form of the potential between two parti-

cles, at positions r and r′, by V (r − r′), the scattering length in the Born

approximation is given by

aBorn =
mr

2π

∫
dr V (r) , (1.15)

where mr is the reduced mass of the colliding pair, half of the single-particle

mass for a pair with the same masses. Since the approximate low-energy form

of the wave function ψ ≈ 1 − a
r

depends only on the scattering length, the

same low-energy behaviour should be obtained for an arbitrary form of the

potential with the same spatial integral, the simplest of which, for present

applications, is the delta function. Comparing with Eq. (1.15), the entire

potential for a pair of spinless cold atoms may thus be approximated very

well by:

V̂ = U δ(3) (r̂ − r̂′) with U ≡ 4πa

m
(1.16)

where r̂ and r̂′ are the particles’ position operators, a is the s-wave scatter-
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ing length, and m the species’ atomic mass. This effective form may also

be justified in a more rigorous fashion by integrating out high-momentum

components of the potential.98

Through a straightforward application of the second-quantisation formalism,

one then arrives at the many body interaction term

V̂2nd =
1

2
U

∫
dr ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) =

1

2
U

∫
dr : n̂(r)2 : (1.17)

where ψ̂(r) annihilates a particle at position r, n̂(r) = ψ̂†(r)ψ̂(r) is the

density operator at r, and the colons denote normal ordering.

1.3.1 Effective spinor interactions

For spinful atoms, a series of approximations, typically valid in cold atomic

systems, imply that one may still consider only the s-wave component of the

relative-motion wave function.47,93,118 There are, however, several scattering

lengths that need to be taken into account, one for each value of the colliding

pair’s total spin allowed by symmetry. Taking into account parity properties

for a pair of identical particles in an orbital s-wave, the allowed values of total

spin are seen to be even, for both bosons and fermions. For a pair of spin-F

cold atoms, this leads, by analogy with Eq. (1.16), to the first-quantised pair

potential

V̂ (F ) = δ(3) (r̂ − r̂′)
F∑
S=0

U
(F )
2S P̂2S (1.18)

U
(F )
S ≡ 4πa

(F )
S

m
(1.19)

Where r̂ and r̂′ are the particles’ position operators, and the P̂J are projec-

tors onto the subspace of total spin J . In contrast to the scalar case, there are

now several interaction constants U
(F )
J , one for each even value of total spin

J , which may be expressed in terms of the corresponding scattering lengths

a
(F )
J .
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For species with F = 1 and F = 2, the latter being a main focus of this

thesis, the second-quantised form of the above interaction can be expressed

in a neat, compact form. To sketch its derivation, the right-hand side of

Eq. (1.18) first has to be put into an alternative form, a linear combination

of 1 and F̂ ·F̂ ′ for spin-1 species, and additionally P̂0 for spin-2 species. Here

F̂ and F̂ ′ are the particles’ vectors of spin operators. This involves inverting

the system of equations

1 =
F∑
S=0

P̂2S,

F̂ · F̂ ′ =
F∑
S=0

[S (2S + 1)− F (F + 1)] P̂2S (1.20)

for spin-1, along with the additional trivial identity P̂0 = P̂0 for spin-2.

Solving these, Eq. (1.18) may be expressed as

V̂ (F ) = δ(3) (r̂ − r̂′)
(
c

(F )
0 1̂ + c

(F )
1 F̂ · F̂ ′ + (2F + 1) c

(F )
2 P̂0

)
. (1.21)

The c
(F )
i are a set of constants that will be referred to throughout the second

part of the thesis. Their values are found to be:

c
(1)
0 =

4π

3m

(
a

(1)
0 + 2a

(1)
2

)
c

(2)
0 =

4π

7m

(
4a

(2)
2 + 3a

(2)
4

)
(1.22)

c
(1)
1 =

4π

3m

(
a

(1)
2 − a(1)

0

)
c

(2)
1 =

4π

7m

(
a

(2)
4 − a(2)

2

)
c

(1)
2 = 0 c

(2)
2 =

4π

5m

(
a

(2)
0 − a(2)

4

)
+

8π

7m

(
a

(2)
4 − a(2)

2

)
.

(1.23)

To consider the second-quantised form of Eq. (1.21), define operators ψ̂α(r)

which annihilate a boson with magnetic number α at position r. Below, the

positional dependence of ψ̂α will be suppressed for clarity. Just like for the

scalar condensate, the second-quantised interaction Hamiltonian density will

have a term proportional to : n̂2 :, where the total density is now defined as

n̂ ≡ ψ̂†αψ̂α, arising from the first term of the first-quantised interaction (1.21).

The remainder of the interaction yields additional terms. Their significance
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will become clearer as we begin to analyse specific spinor Hamiltonians from

Chapter 5 onwards, but their form is presented here for completeness. Define

the density of spin in the i-th direction F̂ (F )i = ψ̂†αF
(F )i
αβ ψ̂β, where F (F )i is the

i-th spin-F matrix. Also define Â(F ) = ψ̂tαψ̂α =
∑F

α=−F (−1)α ψ̂αψ̂−α, where

the superscript t refers to time reversal. Further suppressing the species’ spin

superscripts (F ), the second-quantised potential is found to be

V̂ =
1

2

∫
dr
(

: c0n̂
2 + c1F̂

2
: + c2Â†Â

)
(1.24)

where the colons again denote normal ordering.

1.4 The Zeeman effect

This section covers the energy shifts of low-lying atomic states in a magnetic

field. These show qualitatively different behaviour depending on the field

strength, but are known collectively as the Zeeman effect. This offers a

versatile addition to the experimental toolbox and will play a key role in

Chapters 5 and 6, considering mean-field and exact properties of condensates

in external fields, as well as in Chapter 9, deriving new results for tightly

confined spin-2 bosons in the presence of a quadratic Zeeman field.

We consider the shifts for the most experimentally relevant bosonic species,

the alkali atoms. In order to be bosonic, these need to have an even number

of neutrons, which is satisfied by a number of stable alkali isotopes.

The magnetic field couples to the magnetic momenta of the outer-shell elec-

tron and the atomic nucleus. These momenta are related to the particles’

spin and orbital angular momenta through standard quantum-mechanical

relations. The alkali atoms have a single electron in their outermost shell.

It occupies the lowest-energy s-subshell and accordingly has orbital angular

momentum L = 0. The total angular momentum J = L + S is thus just

its spin S, of magnitude S = 1/2. This yields a total magnetic moment

µ = −gsµBS, where gs is the absolute value of the electron g-factor, equal to

2 to a good approximation, and µB = e/2me is the Bohr magneton, one half

the ratio of the elementary charge to the electronic mass, a convenient unit in
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which to measure atomic magnetic momenta. The nuclear angular momen-

tum yields a magnetic moment on the much smaller order of µN = e/2mp,

the nuclear magneton, where mp is the proton mass. The nuclear angular mo-

mentum of most experimentally relevant alkali species is I = 3/2, including
23Na, 39K, and 87Rb.

The nuclear and electronic magnetic momenta also interact with each other.

The interaction is phenomenologically taken into account through the Hamil-

tonian term

Ĥhf = A Î · Ĵ , (1.25)

where Î and Ĵ are the total nuclear and electronic angular momentum op-

erators, respectively. The order of magnitude of the constant A is smaller

than those of fine-structure effects, such as the electronic spin-orbit coupling,

by about the factor of me/mp ∼ 10−3, the ratio of the electron’s and pro-

ton’s masses. On account of this, the Hamiltonian term (1.25) is called the

hyperfine interaction.

At zero external field, eigenstates of Eq. (1.25) are eigenstates of the total

angular momentum squared operator, F̂ 2 ≡
(
Î + Ĵ

)2

, since Î · Ĵ can be

expressed as 1
2

[
F̂ 2 − Î2 − Ĵ2

]
. For alkali atoms, where J = S = 1/2, rules

of angular momentum addition dictate that F can take on the values of

I ± 1/2. Taking into account that the corresponding eigenvalues of F̂ 2 are

F (F + 1), and similarly for the other two angular momentum operators, the

zero-field energy splitting between the F = I ± 1/2 levels is seen to be

∆W = A

(
I +

1

2

)
. (1.26)

The general form and order of magnitude of ∆W can be gleaned from a

perturbative result for states with a single outermost s electron,66

∆W =
µ0

4π

16π

3
µBµ

I + 1
2

I
|ψ(0)|2 , (1.27)

where µ0 is the vacuum permeability, µ ∼ µN the magnetic moment of the

nucleus, and |ψ(0)|2 the electron’s probability density at the nucleus. It

22



may also be noteworthy that, due to screening effects, the hyperfine splitting

scales approximately linearly with the atomic number Z.

In the presence of a magnetic field B, oriented along the z direction, inter-

actions of the nucleus’ and electron’s magnetic moments with B are added

to the Hamiltonian. Expressing Î · Ĵ = ÎzĴz + 1
2

(
Î+Ĵ− + Î−Ĵ+

)
, where

Î± = Îx ± iÎy and likewise for Ĵ±, and taking into account Ĵ = Ŝ, the full

magnetic Hamiltonian becomes

Ĥhf = AÎzŜz +
A

2

(
Î+Ŝ− + Î−Ŝ+

)
+ gsµBBŜz + gIµNBÎz (1.28)

where gI is an appropriately defined nuclear g-factor. Working in the |mI ,mS〉
basis, where the two labels represent the nuclear and electronic magnetic

quantum numbers, respectively, one sees that Hamiltonian (1.28) only cou-

ples states of the same mF ≡ mI +mS. This immediately yields energy shifts

linear in B for the |±I,±1/2〉 states, that do not couple to any other states.

The mF = ±1, 0 subspaces are all 2-dimensional, which reduces the problem

of finding Eq. (1.28)’s eigenvalues to that of diagonalising 2-by-2 matrices.

Introducing the quantity ∆µ ≡ gsµB− gIµN and the dimensionless magnetic

field x ≡ B∆µ/∆W , the results of this straightforward diagonalisation may

be expressed neatly as

∆EF=I±1/2 = − ∆W

2 (2I + 1)
+ gIµNmFB ±

∆W

2

√
1 +

2mFx

I + 1/2
+ x2, (1.29)

a result often referred to as the Breit-Rabi formula, named after its early in-

vestigators.19 The energy-level splittings arising from this formula are shown

in Fig. 1.1 for rubidium. The notation is standard, but it should be noted that

F are good quantum numbers only for small x. This is, in fact, the regime of

many cold-atoms experiments. This warrants an expansion of Eq. (1.29) to

quadratic order in x. Dropping constant terms and re-expressing x in terms
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Figure 1.1: The energy-level splittings for 87Rb arising from the Zeeman effect.

of B finally yields

∆EF=I±1/2 = ± 1

2

[
∆W +

(∆µ)2B2

2∆W

]
±

[
gsµB ± 2

(
I +

1∓ 1

2

)
gIµN

]
BmF

2I + 1

∓ (∆µ)2

∆W (2I + 1)2B
2m2

F . (1.30)

The coefficient of mF is typically denoted by p and that of m2
F by q. Upon

second-quantising, the term linear in mF is proportional to F̂z, the z compo-

nent of the total spin operator, while the quadratic term is proportional to

F̂ 2
z . These terms are respectively called the linear and the quadratic Zeeman

term.

It should be noted that the origin of such terms in actual experiments is

not always magnetic. Cold-atomic setups allow for the engineering of a wide

range of effective p and q values through electro-optical means, greatly ex-

tending the possible parameter ranges that may be probed.38,24,109,53
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1.5 Order-by-disorder

A mean-field treatment is often the first line of investigation when analysing

a quantum system with a large number of degrees of freedom. In cold atoms,

this is often a very fruitful endeavour, yielding an intuitive, qualitatively,

and often quantitatively correct picture of the system’s properties. But there

are, of course, cases where this is inadequate. One of the most frequently

arising situations of the type is that of an accidental mean-field ground-state

degeneracy. Here, accidental means that the degeneracy does not originate

from broken symmetries of the Hamiltonian, and is thus not expected to be

supported by a more exact, beyond-mean-field treatment.

Regardless, in most cases the correlations arising from a more exact treatment

can simply be treated as perturbations to the mean field.‡ This is the domain

of Bogoliubov theory, whose elegant algebraic structure for bosonic systems is

reviewed below. This gives rise to a set of non-interacting harmonic oscillator

modes, whose zero-point energies and thermal contributions typically select

a unique ground state among the accidentally degenerate family, constituting

the mechanism of Order by Disorder.

1.5.1 Bogoliubov theory

A central tenet of Bogoliubov theory is that one should replace the anni-

hilation operators, appearing in the Hamiltonian of interest, by the sum of

the complex mean-field c-numbers assigned to them, such as through the

Gross-Pitaevskii equation, of order
√
N , and residual annihilation operators,

naturally of order 1. Algebraically, one sets âi = ai + δâi. Expanding the

original Hamiltonian to second order in the δâ operators yields a quadratic

Hamiltonian that may always be transformed into a sum of noninteracting

harmonic modes, and potentially a quadratic mode. This is achieved by per-

‡There are also cases when the mean-field assumption is simply wrong, and the exact
and mean-field results are far removed from each other. A number of examples, arising
in confined spin-1 and spin-2 condensates, are presented in Chapter 6. These regimes are
experimentally challenging, as the validity of mean-field theory is rapidly restored with
increasing particle number and external fields.
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forming a canonical transformation of creation and annihilation operators.

This subsection considers properties of bosonic canonical transformations for

the purposes of diagonalising quadratic Hermitian Hamiltonians, as obtained

through the last paragraph’s prescription. This section closely follows the

exposition presented in the classic textbook by Blaizot and Ripka.15 The

general form of the above type of Hamiltonian is

Ĥ =
∑
ij

â†iAij âj +
1

2

∑
ij

(
Bij â

†
i â
†
j + âj âiB

∗
ij

)
(1.31)

where A is a Hermitian matrix and B an arbitrary complex matrix. For

simplicity, assume the indices of creation and annihilation operators run from

1 to a finite number n. It aids notation to introduce the vector of operators

α̂ ≡
[
â1, â2, · · · , ân, â†1, â†2, · · · , â†n

]T
≡
[
âT , â†

]T
, (1.32)

α̂† ≡
[
â†1, â

†
2, · · · , â†n, â1, â2, · · · , ân

]
≡
[
â†, âT

]
. (1.33)

The defining properties of Fock-space creation and annihilation operators can

then be succinctly expressed as

[
α̂, α̂†

]
c

= η ≡
(

1n×n 0

0 −1n×n

)
(1.34)

where the commutator has been denoted by square brackets with a sub-

scripted c to differentiate it from plain square brackets enclosing vector com-

ponents. In analogy with diagonalising a first-quantised Hamiltonian, one

seeks to find a linear transformation of operators

β̂ =
[
b̂T , b̂†

]T
= T α̂ (1.35)

such that the Hamiltonian (1.31) takes on a simpler form with respect to the

b̂ operators. Since these should also be legitimate annihilation operators, T

must satisfy

η =
[
β̂, β̂†

]
c

= T
[
α̂, α̂†

]
c
T † = TηT †, (1.36)
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or equivalently

T−1 = ηT †η. (1.37)

A linear transformation satisfying this property is called a canonical trans-

formation. Note that, in general, b̂† from Eq. (1.35) need not be Hermitian

conjugate to b̂, despite the notation. When diagonalising Hamiltonians of

the type of Eq. (1.31), however, the two are genuinely Hermitian conjugate.

A transformation T leading to this situation is also called a unitary canonical

transformation.15

One may further rewrite Hamiltonian (1.31) as

Ĥ =
1

2
α̂†Mα̂− 1

2
trA with M =

(
A B

B∗ A∗

)
. (1.38)

Expressing everything in terms of β̂ = T α̂ yields

Ĥ +
1

2
trA =

1

2
β̂†
(
T−1

)†
MT−1β̂ =

1

2
β̂†ηTηMT−1β̂ =

1

2
β̂†ηDβ̂ (1.39)

where T is to be chosen such that the matrix D, similar to ηM , is as simple

as possible. A systematic treatment, as can be found in Chapter 3 of Blaizot

and Ripka,15 shows that when ηM has no zero eigenvalues there exists a T

and a positive-definite n-by-n diagonal matrix Ω such that§

D =

(
Ω 0

0 −Ω

)
(1.40)

§When there are zero eigenvalues present the situation is somewhat more complicated.
Non-zero eigenvalues still come in opposite pairs, but ηM projected onto the orthogonal
complement of all of their eigenvectors, sometimes called the zero sector, cannot in general
be diagonalised. When it can be, it is identically equal to zero. Otherwise a zero eigen-
vector P has an associated linearly independent vector Q such that ηMQ = −icP for
some positive constant c. The contribution of the zero sector to the Hamiltonian is essen-
tially that of a free particle in one dimension,15 a problem which admits no normalisable
stationary solutions. Furthermore, every realistic BEC Bogoliubov Hamiltonian contains
a broken-U(1) Goldstone zero mode. Lewenstein and You70 have proposed interpreting
the operator analogous to position as the condensate phase, and have predicted that the
latter diffuses quadratically for short times. This has, however, not been observed in ex-
periments.43,41,36 Recently, an alternative proposal, including higher than quadratic terms
in the expansion of the zero sector, has been shown to yield a stationary ground state.91
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so that the Hamiltonian (1.31) may finally be rewritten as

Ĥ = b̂†Ωb̂+
1

2
(tr Ω− trA) , (1.41)

a collection of non-interacting harmonic modes and a constant term.

In BEC systems one finally has to address the depletion of the condensate.

This has to be small compared to the condensate occupation, so that ex-

panding âi = ai+δâi and keeping second order terms in δâi is justified. Note

that here the δâi play the role of âi of Eq. (1.31), so that β̂ = Tδα̂. The

depletion is defined as the expectation value Nex =
〈∑

i δâ
†
iδâi

〉
. Expressing

everything in terms of b̂i and performing some simplifying algebra, one may

separate the total depletion into a zero-temperature contribution Nq and a

temperature-dependent contribution Nth with

Nq =
1

4
tr
[
TT † (1− η)

]
− n

2
(1.42)

Nth =
1

2
tr
[
TT †fBE (ηD)

]
(1.43)

where fBE(x) =
(
ex/T − 1

)−1
is the Bose-Einstein distribution at temperature

T and zero chemical potential.

The most important aspect of Bogoliubov theory for the present discussion

is that it allows one to determine the ground-state energy more accurately

by adding the zero-point energies of the harmonic modes, corresponding to

the traces term in Eq. (1.41), to the mean-field contribution. The zero-

point contributions are typically orders of magnitude smaller than the energy

scales determined by mean-field calculations, and the compound ground-state

energy is usually remarkably accurate.

To illustrate this point, let us consider one of the rare examples of a system

where an exact solution may be found and contrasted to that obtained in the

Bogoliubov approximation, that of a two-site Bose-Hubbard Hamiltonian

with hopping J and on-site interaction U . Its Hamiltonian is given by

Ĥ = −J
(
â†1â2 + â†2â1

)
+
U

2

(
â†1â

†
1â1â1 + â†2â

†
2â2â2

)
. (1.44)
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The exact solutions may be found via the rotor mapping, introduced in Chap-

ter 7 and applied to the double-well system in more detail in Sec. 8.1. It maps

the above Hamiltonian onto that of a particle moving on a circle within a

certain potential. Unlike the rotor theory, Bogoliubov theory is only stable

when NJ is not much smaller than U , and it is in the stable regime that we

draw the following comparison.

Even though expanding to second order in the δâ operators means dropping

terms of order
√
N , the difference between the Bogoliubov ground-state en-

ergy and the exact one turns out to be on the order of N−1/2. This system

further allows an intuitive decomposition of the total ground-state energy:

the mean-field energy is the minimum of the potential energy on the as-

sociated circle and the Bogoliubov correction corresponds to the zero-point

energy of oscillation about it, to within terms of order N−1/2.

1.5.2 Effects of fluctuations: Order-by-Disorder

As remarked in the opening paragraph of the present section, the situation in

which there is a degenerate family of mean-field ground states is of particular

interest. A typical source of degeneracies is symmetry-breaking, i.e., ground

states not possessing the full symmetry of the Hamiltonian. For example,

ground-states of a translationally invariant Hamiltonian may be localised,

and applying the broken translation to such a state yields inequivalent states

of the same energy. Such states will remain degenerate not only in the mean-

field treatment but to all orders of approximation.

There is also a class of degeneracies that do not correspond to a breaking of a

symmetry of the Hamiltonian. These are referred to as accidental degenera-

cies, reflecting the fact they are expected to be an artefact of the mean-field

treatment. Such degeneracies are expected to be lifted by the Bogoliubov

zero-point energies, a mechanism commonly dubbed Order by Disorder.

It should be noted that the mechanism appears in many guises. For in-

stance, when the number of Bogoliubov modes about the mean-field is in-

finite, such as in the continuum, the summation of zero-point contributions
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over all modes may not converge and a regularisation scheme is needed. Typ-

ically summing differences of mode-energies from those about a fixed mean-

field configuration is sufficient. More generally, one may consider systems in

thermal equilibrium at finite temperatures in which case the preferred mean

field is selected by minimising the Helmholtz free energy, easily computable

for a set of non-interacting boson modes with mode energies Ej as

F =
1

2

∑
j

Ej + β−1
∑
j

ln
(
1− e−βEj

)
. (1.45)

where β = (kBT )−1 and the mean-field energy has been subtracted. The

first sum is over the zero-point contributions and is also present at zero

temperature, while the second term is a thermal contribution that vanishes

at absolute zero.

By far the most famous manifestation of the order-by-disorder principle is

the Casimir-Polder force between two metal plates.22 While typically couched

in different terminology, its traditional interpretation ascribes importance to

the zero-point energies of electromagnetic standing-wave modes between the

two plates. Their regularised sum decreases with decreasing plate separation,

resulting in a net attractive force, proportional to the inverse fourth power

of the separation. This effect has been successfully measured in experiments,

in good agreement with quantitative predictions.20,84

Besides the infamous Casimir-Polder force, the order-by-disorder mechanism

has traditionally featured most prominently in elucidating the true ground

states of frustrated magnetic systems, which typically feature a vastly degen-

erate ground-state manifold.134,113,45,46 Due to the Bogoliubov corrections to

the GPE usually being several orders of magnitude smaller than mean-field

energy scales, the effect in such systems has remained experimentally elusive,

as it is typically dominated by disorder or other secondary effects.

Recently the phenomenon has, however, also received a spate of attention

in the context of cold atoms.108,72,37,139,101,140,100,137,13,127,116,21,136 The experi-

mental realities of cold atomic systems are hoped to finally provide a clean,

definitive observation of the phenomenon in a condensed-matter setting.
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2
Geometry and single-particle

properties of the dice lattice

The following three chapters are dedicated to boson dynamics on the dice lat-

tice. The present chapter first introduces the lattice’s basic geometric proper-

ties, in Sec. 2.1, along with the single particle spectra in the presence of mag-

netic fields of various strengths, in Sec. 2.2. At exactly half-an-elementary-

flux per plaquette an extreme localisation mechanism is induced,123,87 pre-

viously dubbed Aharonov-Bohm cages.133 A more detailed derivation of the

spectrum at this special field strength is presented in Sec. 2.3, which also

includes a brief summary of work to date on dice-lattice tight-binding mod-

els. The following two chapters deal with the systematic description of the

highly degenerate mean-field ground-state manifold and the ultimate lifting

of degeneracies through Order by Disorder at the half-flux field strength.

2.1 T3 geometry and the Bose-Hubbard model

The dice lattice, also referred to as the T3 lattice,133 is a bipartite two-

dimensional lattice. One of its alternating sublattices consists of six-fold co-
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v2

v1
b2

b3

Figure 2.1: The basic geometrical properties of the dice lattice. There are two types of sites:
hub sites with a coordination number of 6, shown in red, and rim sites with a coordination
number of 3, shown in green. The links and sites outlined in orange comprise the unit cell in
the absence of a gauge field. The shaded area shows a single plaquette, and the arrows on
its surrounding links indicate the positive direction. The lattice vectors are v1 = (1, 0) and
v2 =

(
1/2,
√

3/2
)
, where the lattice constant has been set to unity for convenience. The

lattice can thus be viewed as a triangular Bravais lattice with a three-fold basis. The basis
vectors are b1 = 0, b2 =

(
1/2, 1/2

√
3
)
, and b3 =

(
1/2,−1/2

√
3
)
.

ordinated sites, and the other of three-fold coordinated ones. In the absence

of a magnetic field it has the translational symmetry of the triangular lat-

tice and three sites per unit cell. All of its plaquettes are congruent rhombi.

Its geometry is shown in Fig. 2.1. In experiments, the dice lattice may be

realised as a Josephson junction array,1,112,126 in a heterostructure,135 or as

an optical lattice,85,21,14,103 utilising methods outlined in Sec. 1.2. We shall

assume the latter in aspects of our analysis where experimental details are

relevant.

The system that will be analysed is that of cold scalar bosons with repulsive

interactions moving in the dice lattice potential, with a large average number

of bosons per site. The kinetic part of the Hamiltonian is derived from a tight-

binding model, and the interaction is taken to be on-site. At the quantum
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level, the full system is then described by a Bose-Hubbard Hamiltonian, as

introduced in Sec. 1.2.2.

The following labelling conventions are employed: the unit cells of the lattice

are labelled by an integer n and the corresponding unit cell’s location is

denoted by Rn. When the unit-cell/basis-vector decomposition is important,

the site displaced from the origin of the n-th unit cell by the basis vector bγ is

labelled with the pair (n, γ). Otherwise each site is labelled by a single integer

i and its location denoted by ri. Following Ref. [123], the six-fold coordinated

sites are referred to as hub (*) sites, and the three-fold coordinated ones as

rim (∆) sites.

The system is considered in the presence of a synthetic gauge field with

vector potential A. In optical lattices these may be experimentally realised

in a great variety of ways.40 Later sections will focus particularly on the

case where the line integral of A around each plaquette equals π. Useful

intuition about the configuration may be obtained through an analogy with

electromagnetism: by considering the example of a particle of charge q in the

presence of an electromagnetic potential AEM, A is found to be analogous to
2π
Φ0
AEM where Φ0 = h/q is the charge-q elementary magnetic flux quantum.

Likewise,
∫
CA · dr, with C a cyclic path along the edges of a plaquette, is

analogous to the charged particle’s corresponding Aharonov-Bohm phase.

In the continuum, electromagnetism is introduced into the Hamiltonian via

minimal coupling, i.e., p̂ → p̂ − qÂ. The tight-binding equivalent of this

procedure is Peierls substitution, i.e., substituting pairs of creation and anni-

hilation operators according to â†i âj → eiAij â†i âj, where âi is the annihilation

operator for the i-th site and Aij =
∫ ri
rj
A(r) · dr is the line integral of the

vector potential between sites j and i involved in the hopping. The noninter-

acting part of the Hamiltonian is thus Ĥ0 = −t∑〈ij〉 (eiAij â†i âj +h.c.
)
, where

the sum is taken over all pairs of nearest neighbour sites.

The inter-site interactions are assumed to be negligibly weak. The interac-

tion part of the Hamiltonian thus consists of terms of the form 1
2
Uiâ

†
i â
†
i âiâi,

where Ui is the positive on-site interaction. Keeping in mind the possible ex-

perimental realisation as an optical lattice, the hub and rim sites are assigned
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independent interaction constants U∗ and U∆, respectively. Introducing the

chemical potential µ, the full Bose-Hubbard model on the dice lattice reads

Ĥ = −t
∑
〈ij〉

(
eiAij â†i âj + H.c.

)
+
∑
i

(
1

2
Uiâ

†
i â
†
i âiâi − µâ†i âi

)
. (2.1)

2.2 Single-particle spectrum

For completeness, this section briefly summarises the single-particle spec-

tra in an arbitrary uniform perpendicular magnetic field as first derived in

Ref. [133]. A useful means of expressing the field is through f = Φ
2π

, where

Φ is the flux through a single plaquette, or equivalently the Aharonov-Bohm

phase about its circumference. The spectrum can be seen to remain invariant

under f → f +n, n ∈ N and f → −f , so that it is sufficient to consider only

the range 0 ≤ f ≤ 1
2
.

When f is rational, i.e., f = p/q, with p and q coprime, the unit cell consists

of q hub sites and twice as many rim sites, and the spectrum consists of

3q bands. Of these, q are identically equal to 0, i.e., also degenerate and

completely flat.∗ The non-zero negative-energy bands exactly coincide with

the positive bands, mirrored across the zero-energy plane. The non-zero

bands are related to those of the hexagonal lattice, with equal edge length,

hopping strength t and magnetic field strength, by

ε±nT ,f = ±t
√

6 + 2
εnH,f
t

cosπf. (2.2)

Here, εnT ,f is the energy of a dice-lattice state in the n-th band, when an

elementary rhombus is threaded by f units of flux. εnH,f is defined similarly

on the hexagonal lattice, where f is still defined as the number of elementary

fluxes threading a region of the same area as an elementary rhombus of the

T3 lattice, even though none are actually present in the hexagonal lattice

skeleton.

∗Vidal et al.133 note an exception when q = 3q′; q′ ∈ N, when there are q′ hub and 2q′

rim sites in the unit cell, 3q′ overall bands, and q′ bands identically equal 0.
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Plotting the support of the spectrum against f , a familiar Hofstadter-butterfly-

like pattern emerges, displaying intricate nesting properties. Besides the vast

degeneracy of the zero-energy states, several other curious properties can be

discerned. For example, the spectrum at f = 1/3 is gapless. The follow-

ing sections focus on the regime f = 1/2, also referred to as the “half-flux”

regime, which, in a sense, exhibits the exact opposite of a gapless spectrum,

as it contains merely three different energies with vast degeneracies.

The authors of Ref. [133] derived the above results in the Landau gauge.

For our purposes, a more convenient gauge can be found for the half-flux

regime.85 Employing it, one may derive the f = 1/2 spectrum through a

more conventional approach. This, and the discussion of eigenstates and

localisation, is the subject of the next section.

2.3 Single-particle spectrum at half-flux

To derive the spectrum at f = 1/2, first define the momentum-space anni-

hilation operators âkγ = 1√
N/2

∑
n ânγe

−ik·Rn , where N/2 is the number of

magnetic unit cells in the system.† The chosen gauge is shown in Fig. 2.2.

One of its advantages is that it yields only real Peierls factors. Owing to the

periodicity of the lattice, one can rewrite the non-interacting portion of the

Hamiltonian in Eq. (2.1) as

Ĥ0 =
∑
k

â†kH0(k)âk (2.3)

where âk = [âk1, âk2, · · · , âk6]T , H0(k) is a 6-by-6 Hermitian matrix, and

the summation is over the first Brillouin zone. By inserting a full set of

eigenvectors
∑6

γ=1 ukγu
†
kγ on both sides ofH0(k) in Eq. (2.3), one can express

the Hamiltonian in terms of new quasiparticle operators α̂kγ = u†kγâk and

†The factor of one half is included as N , the number of non-magnetic unit cells, or
equivalently hub sites, later turns out to be a more convenient measure of the system size.
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Figure 2.2: The dice lattice under an effective magnetic field using the gauge of Ref. [85]. The
links and sites outlined in orange now comprise the half-flux-per-plaquette magnetic unit cell.
Particles acquire a phase of π when hopping across crossed links and no phase when hopping
across uncrossed links. The lattice vectors v1 and v2 can be chosen to be orthogonal, as in the
figure, where v1 = (1, 0), v2 =

(
0,
√

3
)
, with a unit lattice constant. For this value of the field,

the lattice can be viewed as a rectangular Bravais lattice with a 6-fold basis. The basis vectors
are b1 = 0, b2 =

(
1/2, 1/2

√
3
)
, b3 =

(
1/2,−1/2

√
3
)
, b4 =

(
1/2,
√

3/2
)
, b5 = b2 + b4, and

b6 = b3 + b4.

their corresponding eigenvalues λkγ as

Ĥ0 =
∑
kγ

λkγα̂
†
kγα̂kγ. (2.4)

The outcome is, as anticipated in the previous section, that the energies λkγ

have no dispersion and remain constant throughout the Brillouin zone. There

are three doubly degenerate bands with λkγ = ±
√

6t, 0. For the lowest and

highest bands, this follows from the fact that their states can be expressed

as a sum of completely localised eigenstates.

The Wannier functions, obtained from the Fourier transform of these ex-

tended Bloch wave functions, provide a particularly convenient basis for de-

scribing the single-particle states. For the highest and lowest energy bands,

they are both eigenstates of the non-interacting Hamiltonian and completely
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localised. For both of these bands, they span a hub site and its six surround-

ing rim sites. The amplitude on the hub is 1/
√

2 and 1/
√

12 on the rim sites.

The phase of the rim site j relative to the central hub i is, in the gauge of

Fig. 2.2, simply Aji in the lowest band and π − Aji in the top band, i.e.,

either 0 or π in both cases. These features are shown in Fig. 2.3.

The existence of these localised states does not fall under any of the disorder-

based localisation paradigms, such as Anderson localisation,6 but follows

solely from destructive interference within the so-called Aharonov-Bohm cages

on the lattice.133 The Wannier functions corresponding to the zero-energy

eigenstates, on the other hand, are only exponentially localised, so this sim-

ple explanation of flatness is not applicable for this case.

This yields an enormously degenerate ground state where the degeneracy is

the number of non-magnetic unit cells N in the system. In the following

chapter, the situation with many interacting bosons is considered. However,

the strict single-particle localisation already allows one to infer the ground

states of the full interacting problem for small fillings. Up to N/3 particles

can be arranged on the dice lattice so that their localised states do not over-

lap. The degeneracy grows approximately as ∼ Nn/n! for n � N , where n

is the number of particles, reaches a maximum for an intermediate value of

n, and falls to 3 at n = N/3. With more particles, there is necessarily some

overlap. In the regime t� Ui, one may however still consider dynamics aris-

ing solely from the lowest band and project Hamiltonian (2.1) onto it, as has

been done by Möller and Cooper.85 This yields a new effective Hamiltonian

in which the single-particle localised ground states, living on a triangular

lattice, now play the role of the Wannier states, and exhibit both contact

and nearest-neighbour interactions. This analysis yields a Mott insulating

state for n = N particles and an exotic supersolid state for n = N/2, while

for other values of n the system is predicted to separate into regions of the

above phases, along with the n = N/3 state.

The following chapter considers mean-field theory at arbitrary values of U∗,∆

and t in the regime of a large average number of particles per site. Re-

markably, though rooted in different geometric arguments, the mean-field

ground-state degeneracy is still found to scale with the system area, as for a
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Figure 2.3: States of the lowest and highest bands of the dice lattice at half-flux. Each seven-
site cluster represents a localised eigenstate whose wave function takes the circled values on
the corresponding sites and is zero elsewhere. In each band, one can construct two orthogonal
localised eigenstates within the same unit cell, centred on sites at the basis vectors b1 = 0
and b4, in the notation of Fig. 2.2. The lowest band states are shown at the bottom of the
figure and the highest band states at the top.
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single particle.

Before moving on to the full mean-field analysis, let us briefly review previous

work on the properties of tight-binding systems in the dice lattice, besides

that already mentioned. The dice lattice’s entirely flat spectrum has garnered

attention in the context of fractional Chern insulators, for which systems

with nearly flat bands are promising candidates.125,122,92 The other necessary

condition, a non-zero Chern number, is not automatically realised in the dice

lattice, but it has been found that it may be induced through the introduction

of spin-orbit coupling,135 at the cost of some dispersion. Many-body spectra

at general flux have been studied in various regimes,23,103 and have been

found, at half flux, to give rise to such phenomena as effective Dirac-Weyl

fermions,14 and an exotic vortex-Peierls state21 close to the Mott-superfluid

transition. Finally, there has been extensive work on the dice-lattice XY

model by Korshunov,61,63,62 directly relevant to the calculations of the next

chapter.
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3
Mean-field properties of the

Bose-Hubbard model on the

dice lattice

This chapter reintroduces interactions into Eq. (2.1) and finds the ground

states at the mean-field level by solving the Gross-Pitaevskii equation. The

calculation is outlined in Sec. 3.1 and the intricate mean-field ground-state

manifold thus obtained is discussed in Sec. 3.2. The rest of this introductory

section considers some calculational prerequisites and generalities.

As remarked in Sec. 1.1.3 of the introduction, a mean-field treatment is

equivalent to assuming that the wave function can be written as a tensor

product of independent coherent states for each site, allowing one to replace

operators with c-numbers in expectation values, i.e.,

âi → ai =
√
ni e

iθi (3.1)

with similar expressions for momentum-space quantities. Here n and θ are

interpreted as the local density and phase variables.
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Given the simple structure of the single-particle spectrum, it is reasonable

to ask whether there exist any states that simultaneously minimise both the

single-particle and the interaction part of the mean-field energy. The former

is true when the state can be constructed as a linear combination of states

in the lowest single-particle band and the latter when it gives rise to uniform

densities n∗ and n∆ on the hub and rim sublattices, respectively. By writing

the state as a linear combination of lowest-band eigenstates, one finds that

such uniform densities can only be obtained when U∆/U∗ = 2. For future

reference this parameter configuration will be referred to as the special point.

Besides uniform densities, the state also has a simple phase picture. In par-

ticular, only three distinct magnitudes of gauge invariant phase differences

are encountered. These are defined as

Φij = θi − θj − Aij (3.2)

and are indeed independent of the chosen gauge. Their values are derived in

the next section.

We have conjectured that the states globally minimising the total mean field

energy away from the special point retain uniform densities on both sublat-

tices. This is motivated by the fact that the proposed states merge with what

are provably the only global minima at the special point and by our failing

to find a physically reasonable mechanism capable of breaking the density

symmetry. In the following section, it is shown that the necessary condition

of the states remaining local energy minima is satisfied. At the uniform sub-

lattice density configurations one can furthermore follow Ref. [62] to show

that the phase profiles minimising the energy are identical to those at the

special point. These also coincide with the phase profiles obtained through

a mean field analysis of Hamiltonian (2.1) projected into the lowest single-

particle band when nU∗,∆ � t,85 where n is the average particle number per

site.
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3.1 Mean field calculation of sublattice densities

Carrying out the transformation in Eq. (3.1), the mean field energy of the

Hamiltonian (2.1) is found to be

E = −2t
∑
〈ij〉

√
ninj cos Φij +

1

2

∑
i

Uin
2
i − µ

∑
i

ni (3.3)

The equations of motion will be derived with the corresponding Lagrangian

L =
∑
i

(
−niθ̇i

)
− E. (3.4)

Expressed in terms of gauge invariant quantities, the Euler-Lagrange equa-

tions read

ṅi = 2t
∑
j∈Ni

√
ninj sin Φij (3.5)

Φ̇ij = t
∑
i′∈Ni

√
ni′

ni
cos Φii′ − t

∑
j′∈Nj

√
nj′

nj
cos Φjj′

+ Ujnj − Uini. (3.6)

In this expression, Ni denotes the set of all sites neighbouring site i. For the

ground state we demand that the time derivatives on the LHS be zero.

The key assumption of uniform sublattice densities is now applied. Taking

into account the overall geometry, the second equation yields

U∗n∗ − U∆n∆ = t

√
n∆

n∗

∑
i′∈N∗

cosΦ∗i′ − t
√
n∗
n∆

∑
j′∈N∆

cosΦ∆j. (3.7)

As remarked before, the phase profiles occurring at the special point still solve

the equations. To describe these, denote the three distinct phase difference

magnitudes comprising them by Φl > Φm > Φs > 0 (l,m, s for large, medium,

small). Since the factor
√
ninj equals

√
n∆n∗ for any neighbouring i and j,

one can rewrite equation (3.5), the continuity equation, as sin Φl = sin Φm +

sin Φs. The half-flux condition that the sum of phase differences around
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a plaquette equal ±π imposes the restrictions 2Φs + 2Φl = π and −Φs +

2Φm + Φl = π. This system of equations yields Φs ≈ 9.74◦,Φm ≈ 54.74◦ and

Φl ≈ 80.26◦, along with the useful identity

eiΦs + eiΦm + e−iΦl =
√

3. (3.8)

This phase configuration is identical to the one obtained by Korshunov for the

dice lattice XY model,61 i.e., a mean-field model assuming uniform densities.

This is so because the form of Eq. (3.5) is the same in both cases, as it does

not depend on the local interaction terms of the Hamiltonian. Furthermore,

the factor
√
ninj in Eq. (3.5) is constant for all pairs of neighbouring sites

in both cases. It can thus be factored out when considering the ground

state. In Ref. [61], this is due to the author’s explicitly taking a uniform

density across all sites, while in the present case it is due to the respectively

uniform densities over the rim and hub sublattices comprising the bipartite

dice lattice.

One can in fact easily determine the sublattice density values. Taking the

features of the phase configuration and Eq. (3.8) into account, Eq. (3.7)

simplifies to

U∗n∗ − U∆n∆ =
√

3t
2n∆ − n∗√
n∆n∗

. (3.9)

Given the two interaction strengths, this equation can be solved to determine

the ratio of densities on the hub and rim sites, n∗/n∆. Note that at the special

point, where U∆ = 2U∗, one has the simplest case n∗ = 2n∆, as expected

from the fact that, at this parameter configuration, the interaction term of

Eq. (3.3) is separately minimised. Finally, with this solution the chemical

potential is found to be

µ = U∗n∗ − 2t

√
3n∆

n∗
= U∆n∆ − t

√
3n∗
n∆

(3.10)
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(a) (b)

(c) (d)

Figure 3.1: The four small unit-cell periodic mean field ground states. The single, double
and triple arrows represent gauge invariant phase differences Φs,Φm and Φl across links,
respectively, and the black (white) disks represent positive (negative) plaquette vorticities.
The dashed and dotted lines signify locations of possible domain wall insertions (figure (a)) or
domain walls themselves (all other figures). The dashed orange lines represent type-I domain
walls while the blue dotted lines represent type-II domain walls.
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3.2 Mean field periodic ground states

One can assign to each plaquette a vorticity of either π or −π. For a rough

qualitative picture, note that neutral superfluid vortices are known to have an

approximately logarithmic interaction, attractive for vortices with opposite

signs of vorticities and repulsive for those of like sign. Through a qualitative

comparison of this vortex lattice with the two-dimensional Coulomb gas,

which also exhibits logarithmic interactions, one can argue that the most

energetically favourable configuration will have each vortex surrounded by

as many neighbours of the opposite vorticity as possible. In a lattice the

vortices are pinned to the sites of the dual lattice, which in this case is the

Kagome lattice. The geometric frustration of the Kagome lattice prevents

the possibility of a purely local prescription for the distribution of vortices

minimising the energy. The vortex configurations of mean field ground states

are demonstrably composed of chains of like-vortices of length three.∗

Perhaps the simplest such state is shown in Fig. 3.1(a). All other applicable

states with only the three gauge invariant phase differences introduced above

may be obtained by rearranging the phase differences along a variety of infi-

nite sequences of plaquettes in which every pair of neighbouring plaquettes

shares just a single vertex. One can think of this process as the insertion

of two types of zero-energy domain walls into state (a). The domain walls

that can be inserted parallel to the dashed lines in Fig. 3.1(a) will be referred

to as type I domain walls† and the ones that can be inserted parallel to the

dotted lines as type II domain walls. Inserting a type I domain wall splits the

lattice into two regions with orientations of the vortex triads not parallel to

the wall differing by 60◦. This is illustrated in the first two panels of Fig. 3.2.

A type II domain wall bends the triads it crosses and establishes a mirror

symmetry between both of its sides. Type II domain walls also bend by 60◦

whenever they cross a type I domain wall.‡

∗With the exception of triangular clusters of like-vortices around rim sites which could
be regarded as cyclic chains of length 3. These cannot occur.
†One can in fact only insert one of the type I domain walls shown and all walls parallel

to it, but no two type I domain walls can be inserted at an angle.
‡Further details of the phase permutations comprising each type of domain wall and

figures of single domain walls inserted into state (a) are given in Ref. [61], as well as in
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The unit cell of vortex state (a) contains six lattice sites. It is twelvefold

degenerate under the following geometric transformations that preserve the

Hamiltonian, but not the state: translation by b4, in the notation of Fig. 2.1,

contributing a factor of 2 to the geometric degeneracy, the combination of

time (arrow) reversal and spatial inversion, contributing another factor of 2,

and ±2π/3 rotations about any site, contributing the final factor of 3. By in-

serting all possible type II domain walls into (a) we obtain another twelvefold

degenerate state with six sites per unit cell, shown in Fig. 3.1(c), not related

to state (a) by geometric symmetries. Inserting all possible type I domain

walls into state (a), as is shown in Fig. 3.2, similarly yields the state shown in

Fig. 3.1(b) with twelve sites per unit cell. Further inserting all possible type

II domain walls into (b) yields the state shown in Fig. 3.1(d), also containing

twelve sites per unit cell. States (b) and (d) have a fourfold translational

degeneracy, so their total geometric degeneracy is 24-fold. Taking geometric

multiplicities into account this yields a total of 72 small unit cell mean field

periodic states, or SMPS’s. All other uniform sublattice periodic mean field

ground states can be obtained by gluing together the unit cells of the above

four classes of SMPS’s.62

It should be noted that, given two asymptotically domain-wall-free regions,

such that, for instance, the vortex lattice is one of the 72 SMPS’s on the

far left and a distinct SMPS on the far right, it is not in general possible to

consistently interpolate between the two through a sequence of SMPS regions,

i.e. state (a-d)-like regions, glued by zero-energy domain walls. This implies

either the possibility of massive, i.e., energetically costly, domain walls and

point defects, or global instabilities of such asymptotic configurations. The

actual state of affairs is still an open question.

The geometric degeneracies discussed above originate from true symmetries

of the Hamiltonian and will, as such, not be lifted by fluctuation effects, as

discussed in Sec. 1.5.2 of the introduction. The degeneracy between states (a-

d) of Fig. 3.1 is, however, accidental. Determining the effects of fluctuations

on these, as well as more general states, is the subject of the next chapter.

appendix A.
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(1)

→

(2)↙

(3)

→

(4)

Figure 3.2: Schematic representation of the insertion of a single type-I domain wall into state
(a), panels (1) → (2), and of all such parallel domain walls, panels (2) → (3), yielding state
(b) in panel (4).
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4
Excitation spectrum and

Order by Disorder in the

Bose-Hubbard model on the

dice lattice

The rich mean-field ground-state manifold of the previous chapter displays

a massive accidental degeneracy, parametrised by the set of possible type-I

and type-II domain wall insertions, which scales with the system area. The

present chapter investigates whether any of them is preferred due to Order

by Disorder.

In quantitative terms, the state whose fluctuations yield the lowest Helmholtz

free energy F = − 1
β

lnZ, where Z = Tr(e−βĤ) is the partition function and

β = (kBT )−1, is selected. At the level of Bogoliubov theory, the excita-

tion spectrum is described by independent harmonic oscillators, yielding the
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partition function

Z =
∑
ni

e−β~
∑
j ωj(nj+ 1

2) =
∏
j

e−
βEj

2
1

1− e−βEj
. (4.1)

and from this, the free energy

F =
1

2

∑
j

Ej + β−1
∑
j

ln
(
1− e−βEj

)
. (4.2)

The first term corresponds to the zero-point quantum contribution to the

free energy and the second term to the contribution of thermal fluctuations.

In the present case, the index j in Eq. (4.2) is a label for momentum and

band index.

The next section outlines the derivation of the excitation spectrum, which

is then applied to the central question of degeneracy resolution in Sec. 4.2.

State (b) of Fig. 3.1 is found to be definitively selected at both zero and

finite temperature. In Sec. 4.3 the depletion is evaluated, confirming the

validity of the Bogoliubov approximation for an experimentally feasible range

of parameters.

The analysis described is carried out within a restricted set of the mean-field

ground-state manifold. Sec. 4.4 discusses preliminary results, indicating that,

at least at zero temperature, mean-field domain walls display fluctuation-

mediated interactions. Type-I domain walls exhibit attractive interactions,

while type-II domain walls repel each other. The selected state should hence

be that with the largest number of type-I domain walls, which is indeed what

is found.

4.1 Collective Excitation Spectrum

We now derive the collective excitation spectrum of Hamiltonian (2.1) at

the level of Bogoliubov theory. This involves expressing the annihilation

operators as âi = ai+δâi, where ai are the mean-field c-values from Eq. (3.1).

The full Hamiltonian is expanded in δâi, keeping terms up to quadratic order.
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Figure 4.1: The twelve Bogoliubov modes about ground state (b) from Fig. 3.1 at U∗ = U∆,
t = 2U∗ and n∗ = 6. As the interaction strengths U∗,∆ decrease, the bands flatten and the
gaps between them approach

√
6t. At U∗,∆ = 0, the dispersionless degenerate single-particle

spectrum is recovered.

The first order term always vanishes as the expansion is about a minimum

(the very definition of a mean-field state) while the zeroth order term gives

the degenerate mean-field energies. Thus the focus is on the second order

contribution.

Substituting âi = ai + δâi into Eq. (2.1), and using the chemical potential

given in Eq. (3.10), one finds the quadratic Hamiltonian

δĤ = −t
∑
〈ij〉

(eiAijδâ†iδâj + H.c.) +
∑
i

(Uini +Gi) δâ
†
iδâi

+
∑
i

Ui
2

(
a∗i a

∗
i δâiδâi + aiaiδâ

†
iδâ
†
i

)
(4.3)

where ni = |ai|2, G∗ = 2t
√

3n∆

n∗
, and G∆ = t

√
3n∗
n∆

. It greatly simplifies

the analysis to perform the gauge transformation δâi → eiθiδâi at this stage.
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This results in the following gauge invariant Bogoliubov Hamiltonian:

ĤB = −t
∑
〈ij〉

(
e−iΦijδâ†iδâj + H.c.

)
(4.4)

+
∑
i

[
(Uini +Gi) δâ

†
iδâi +

Uini
2

(
δâiδâi + δâ†iδâ

†
i

)]
.

The gauge invariant phase differences Φij here are precisely those introduced

in Sec. 3.1.

One can again define momentum space operators δâkγ =
√

2
N

∑
n δânγe

−ik·Rn

with γ = 1, · · · ,M , where M is the number of sites per unit cell. This will be

either 6 or 12 for states (a-d) from Fig. 3.1. By expressing the Hamiltonian

in terms of these operators, one obtains, up to a constant energy shift (equal

for all mean-field states), the Hamiltonian in the form

ĤB =
∑
k

δα̂†kHB(k)δα̂k (4.5)

where δα̂k =
[
δâTk , δâ

†
−k

]T
with δâk = [δâk1, · · · , δâkM ]T , and

HB(k) =

[
Ck D

D CT
−k

]
. (4.6)

Here D is a diagonal matrix with U∗n∗ (U∆n∆) entries for hub (rim) sites.

To concisely describe Ck, denote the part of ĤB appearing on the first line

of Eq. (4.4) by Ĥ0 and let Ĥ0 ≡
∑
k δâ

†
kH0(k)δâk. This is completely

analogous to Eq. (2.3) of the single-particle spectrum calculation, with the

matrix H0(k) adapted to the current gauge and unit-cell size. Then, Ck =

H0(k) + G + D where G is finally a diagonal matrix containing the values

G∗ and G∆ for hub and rim sites, respectively.

The creation and annihilation operators of the quasiparticle eigenstates of

this quadratic Hamiltonian will, in general, be a sum of both particle annihi-

lation and creation operators. As outlined in Sec. 1.5.1, they may be obtained

by diagonalising each of ηHB(k) as k ranges over the Brillouin zone. The
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following notation is adopted for the eigenvalue equations, also known as the

Bogoliubov de-Gennes (BdG) equations:

ηHB(k)φkγ± = ±Ekγφkγ± (4.7)

where Ekγ ≥ 0 and η =
(

1M×M 0
0 −1M×M

)
. The energies of the Bogoliubov

modes are given by Ekγ where γ labels the band index. The quasiparticle

operators which diagonalise ĤB are determined from the BdG eigenvectors as

α̂kγ = φ†kγ+η δα̂k. Note that normalising the φkγ± such that φ†kγ±η φkγ± =

±1 and arranging them into a matrix as [φk1+, · · · , φkM+, φk1−, · · · , φkM−]

yields T−1, the inverse of the T matrix (1.35) of the introductory section 1.5.1,

as appropriate for the Hamiltonian δα̂†kHB(k)δα̂k.

The excitation spectrum for a typical parameter set is shown in Fig. 4.1. It is

seen that the interactions give dispersion to the excitation spectrum, which

is completely flat at the single-particle level. The excitations about each

vortex configuration yield a gapless Goldstone mode due to the broken U(1)

superfluid phase. These have the dispersion ∼ ~
√

(c1k1)2 + (c2k2)2 where

k1,2 = k · v1,2 and c1,2 is the speed of sound along the v1,2 lattice vectors

shown in Fig. 2.2.

4.2 Computation of Degeneracy Lifting

Having the excitation spectra at hand, the resulting degeneracy lifting can

now be discussed. We have calculated the thermal and quantum contribu-

tions to the free energy in Eq. (4.2) at a range of values of the input param-

eters U∗/t, U∗/U∆, n∗ and, for the thermal part, T/t. We have restricted

ourselves to the four small unit-cell mean-field states shown in Fig. 3.1. One

of these is intuitively expected to be selected on grounds of their high symme-

try. A more physically motivated argument can be made in terms of domain

wall interactions, discussed in Sec. 4.4. For each parameter configuration,

the band energies were obtained by numerically diagonalising HB(k) from

Eq. (4.6) at a uniformly spaced grid of momenta in the Brillouin zone. The

grid was chosen so as to optimise convergence properties following a prescrip-
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Figure 4.2: Left: Quantum free energy difference per condensed particle with respect to state
(b) from Fig. 3.1 with n∗ = 6, U∗ = U∆. Right: Total free energy difference at the same n∗
and U∗/U∆, for finite temperature and U∗/t = 0.5.

tion by Monkhorst and Pack.86 Convergence as a function of the grid spacing

was checked for each parameter set.

Results for a range of parameters are shown in Fig. 4.2. We have plotted the

differences of free energies of states (a), (c) and (d) with respect to state (b),

∆Fa,c,d = Fa,c,d − Fb using the labelling of Fig. 3.1. As seen in the left-hand

side of the figure, the resulting free energy difference is always positive and

so state (b) has the lowest free energy. Thermal fluctuations further enhance

the degeneracy lifting as shown in the right-hand side of the figure.

In addition to determining the ground state, state (c) is observed to be

universally the highest in free energy. States (a) and (d) are typically ordered

as in Fig. 4.2 but cases were found in which their free energy curves cross.

The geometric mean of the sound speeds along the two lattice vectors
√
c1c2

is always lowest for (b) and highest for (c), which explains the ordering of

the thermal contribution to the free energy at low temperatures.
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4.3 The Condensate Depletion

Having established that state (b) has the lowest overall free energy, its stabil-

ity must now be addressed. For Bogoliubov theory to be valid, the number

of particles excited out of the condensate has to be small compared to the

number of condensed particles, lest neglecting higher order δâi terms become

unjustified. The depletion, like the free energy, can be separated into a quan-

tum and a thermal contribution, denoted by Nq and Nth, respectively. For

the above analysis to be correct we must have Ndep = Nq + Nth � Ncond.

From the solution of the Bogoliubov-de Gennes equation (4.7) the depletion

can be expressed as

Nq =
1

2

∑
kγ

φ†kγ+(1− η)φkγ+ (4.8)

Nth =
∑
kγ

φ†kγ+φkγ+fBE(Ekγ) (4.9)

where fBE(x) =
(
eβx − 1

)−1
is the Bose Einstein distribution function. Note

that the above is again equivalent to Eq. (1.43) of the introduction, in terms of

the appropriately normalised eigenvectors themselves rather than the canon-

ical transformation matrix T .

While the quantum depletion converges, the thermal depletion integral has a

logarithmic infrared divergence due to the Goldstone mode. Such divergences

are typical for two-dimensional systems.81 Finite size effects will remove this

divergence and can be crudely taken into account by using a small-momentum

cut-off of 2π/L where L2 is the system size. Consequently, the thermal

depletion will scale as ln(L) for sufficiently large L.

Figure 4.3 shows the quantum and thermal contributions to the total de-

pletion at experimentally feasible parameters. Quite interestingly, the total

depletion exhibits a non-monotonic behaviour as a function of the Hubbard

interaction parameters. In typical condensed systems, depletion increases

monotonically as a function of the interactions.98 A similar minimum was

found for all parameter ranges tested. This can be attributed to the flatness

of the non-interacting band structure. That is, as interactions are decreased,
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Figure 4.3: The quantum, thermal and total depletion per condensed particle for a system
consisting of 20× 20 unit cells at n∗ = 6, U∗ = U∆, and T = t/10.

the Bogoliubov band structure (cf. Fig. 4.1) becomes flatter and thermal exci-

tations are created more easily. When U∗ = U∆ = 0 the Bogoliubov spectrum

reduces to completely flat bands and the thermal depletion diverges. For the

chosen parameters in this figure the depletion is always less than 10%. The

depletion can be further decreased by choosing larger average density per

site.

4.4 Domain wall interactions

An assumption that still needs to be justified is that the mean-field state ul-

timately chosen by fluctuations is one of the highly symmetric configurations

shown in Fig. 3.1. One of the most physically intuitive pictures that one

might hope for is that of fluctuation-mediated domain-wall interactions, or

equivalently a force between them. To that end, we have numerically calcu-

lated the spectra for a variety of configurations of domain walls of the same
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Type I:
attractive

Type II:
repulsive

Figure 4.4: Zero-point energy differences with respect to state (a) per particle for large unit-
cell periodic states with two domain walls of the same type per unit cell. These are negative
for type-I domain walls and positive for type-II domain walls. They are plotted against the
domain-wall separation d. The energy differences are measured in arbitrary but consistent
units.

type inserted into state (a). To be able to reuse techniques of the previous

calculations, the configuration was taken to be periodic. This requires an

even number of domain walls per unit cell so that the edge state-(a) regions

have the same orientation and may be identified. We have analysed the sit-

uation with two domain walls per unit cell, with a varying separation of d

sites between them, with d much smaller than the periodicity. The idea be-

hind this choice is that all interactions but that between the pairs of nearest

domain walls may be neglected. Note that, should the interaction picture

turn out to have merit, the effective interaction’s magnitude should fall off

quicker than the inverse power of d, as the free-energy density of states (b)

and (c) could otherwise diverge.

Only very preliminary results were obtained, but they seem to support a

picture in which type-I walls interact attractively and type-II walls repel each

other. This is shown, with separations up to d = 40, in Fig. 4.4. Besides

indicating why state (b), with the highest concentration of attractive type-I

domain walls, is energetically preferred, this picture also explains the fact

that state (c), with the highest concentration of repulsive type-II domain

walls, is universally highest in energy.
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Quite obviously, domain wall interactions could be subjected to an abundance

of further quantitative investigations. The energetic contributions of inter-

actions with next-nearest and further neighbours have not been adequately

evaluated, and it is hard to discern anything but the sign of the interactions

and that they do fall off with increasing separation from Fig. 4.4. Further-

more, studying the free energy at more general configurations and attempting

to fit the results to the functional form of the interactions might be beneficial.

In particular, smaller unit cells would greatly reduce the required computa-

tional time. With these technical issues out of the way, the behaviour at finite

temperature and interactions between distinct-type domain walls would also

be interesting to study.

This concludes the study of fluctuation effects in the deep superfluid regime

of the Bose-Hubbard model on the dice lattice. The following chapters are

dedicated to the behaviour of spinor condensates, particularly tightly con-

fined ones, and the primary analytical tool used to study them, the rotor

mapping. The results developed in them are ultimately applied to another

instance of the Order-by-Disorder phenomenon in Chapter 10, along with

the consistent parallel selection mechanism in the underlying microscopic

Hamiltonian.

57



5
Mean-field phases of spinor

condensates

Cold quantum gases with internal spin degrees of freedom have been a topic

of considerable interest since long before the successful condensation experi-

ments of the mid-nineties. The reason for this is twofold: spinor condensates

allow even greater versatility in the synthetisation of model Hamiltonians.

Among other applications, they allow for the engineering of such novel phe-

nomena as topological defects via spin textures.56 The other reason are prac-

tical necessities, since species with zero-spin hyperfine states are an exception

rather than the rule among stable alkali isotopes. The effective scalarity of

condensates in the early days of experiments on Bose-Einstein condensates

was a consequence of magnetic trapping methods which caused the gases to

be spin-polarised, reducing their interactions to essentially those of a scalar

condensate. With the advent of largely scalar optical traps, understanding

the properties of spinor condensates became crucial for the development of

new experimental protocols, in addition to studying them in their own right.

A considerable amount of theory and experiment on the topic has amassed

since then. For reviews see Refs. [119, 57, 130] and most recently Ref. [118].
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A point in which spinor condensates differ particularly sharply from their

scalar counterparts is that the former can form so called fragmented conden-

sates.89,48 In the Penrose-Onsager definition of Bose-Einstein condensation

for interacting systems,96 briefly introduced in Sec. 1.1.3, such states exhibit

more than one macroscopic eigenvalue of the reduced density matrix. This

typically implies the presence of a zero Bogoliubov mode exchanging particles

between the condensed components, driving up the depletion and thus inval-

idating use of Bogoliubov theory in its conventional form. Alternative means

of calculating excitation spectra have to be found and in the present case it

is employing one from a family of rotor mappings, introduced in Chapters 7

and 8.

The focus of the current work is on spin-2 condensates. To date the only

experimental realisation of such a system are condensates of 87Rb atoms in

the upper hyperfine multiplet.∗ With increasing spin magnitude, the number

of components of the order parameter steadily increases, as does the num-

ber of scattering lengths required to characterise interactions, so the study

of higher-spin condensates takes on increasing levels of complexity. Hence,

the most well studied cases are those of spin-1 and spin-2 condensates, for

which we have a good analytical understanding of ground state structure and

dynamics in both the continuum and the tightly confined setting, including

many magnetic effects.129,93,90,67,59

Several open questions on spin-1 and spin-2 condensates still remain. One

of the goals of the second part of this thesis is elucidating the ground state

structure of tightly confined spin-2 condensates, in the presence of a quadratic

Zeeman field, at the full quantum level, rather than that of a mean-field

analysis. It is nevertheless instructive to review the mean-field results, as

these are valid in the vast majority of the range of physical parameters that

enter the relevant Hamiltonian for intermediate or large particle numbers.128

Finally, this will allow the exact quantum results to be contrasted with their

mean-field counterparts and elucidate where mean-field theory fails. To that

∗23Na atoms, whose F = 1 hyperfine multiplet physics has been thoroughly explored
experimentally, unfortunately undergo hyperfine relaxation collisions at a significant rate.
A number of other alkali and heavier radioactive isotope condensates awaiting experimental
realisation might also provide access to F = 2 physics in the future.118
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end, this chapter first introduces the general form of cold spinor Hamiltonians

in Sec. 5.1 and moves on to discuss their mean-field phase diagrams, with

respect to scattering lengths and the quadratic Zeeman fields, in Sec. 5.2.

Besides the ground states’ order parameters, these are also presented in terms

of their Majorana representations, convenient graphical representations in

which the states’ symmetries are also manifest,79,10 whose generalities are

the subject of Sec. 5.2.1.

In a particular region of the spin-2 phase diagram, called the nematic region,

the mean field states possess an accidental continuous degeneracy. In the con-

tinuum, an order-by-disorder analysis may once again be carried out.127,116

This is seen to divide the nematic region into two subregions where two dis-

tinct higher-symmetry members of the degenerate mean-field ground-state

manifold are selected, with a first order transition between them. On the

other hand, an exact treatment at zero magnetic field suggests that the

ground state is a condensate of singlet pairs across the entire nematic re-

gion, without any distinguishing features within the nematic subregions de-

marcated through Order by Disorder.60,131 To be able to further contrast it

with later exact results, the order-by-disorder calculation of Refs. [127, 116]

is outlined in Sec. 5.3.

5.1 Cold spinor gas Hamiltonians

We begin by describing the Hamiltonian governing the underlying physical

system, a collection of cold interacting spinful bosons in a scalar trapping

potential† and a magnetic field, manifesting itself through a linear and a

quadratic Zeeman term. The full first-quantised Hamiltonian is

Ĥ1st =
N∑
i

Ĥ1
i +

∑
i<j

V̂ 2
i,j with

Ĥ1
i =

1

2m
p̂2
i + V (r̂i) + pF̂ z

i + q(F̂ z
i )2. (5.1)

†By a scalar potential we mean one that couples to all magnetic sublevels approximately
equally, such as the potential of an optical trap and unlike that of a magnetic trap.
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Here N is the total particle number, m the atomic mass, V the external

potential and p̂i, r̂i and F̂ z
i the i-th particle’s momentum, position and

z-component of spin operators, respectively. p and q are the linear and

quadratic Zeeman coefficients, respectively, as introduced in Sec. 1.4. The

inter-particle potential V̂i,j between the i-th and j-th particles is short-range

and dominated by the s-wave component, i.e., it depends predominantly on

the distance between the atoms. Its spatial part is well approximated by a

delta function, multiplied by different prefactors, proportional to the scatter-

ing lengths, for each value of the interacting pair’s total spin. Following the

more detailed exposition of Sec. 1.3, V̂ 2
ij of Eq. (5.1) may be identified with

V̂ (F ) of Eq. (1.21), that is,

V̂ (F ) = δ(3) (r̂ − r̂′)
(
c

(F )
0 1̂ + c

(F )
1 F̂ · F̂ ′ + (2F + 1) c

(F )
2 P̂0

)
, (5.2)

upon identifying r̂, F̂ → r̂i, F̂i and r̂′, F̂ ′ → r̂j, F̂j. The projection operator

P̂0 onto the singlet subspace also refers to the i-th and j-th particles. The

c
(F )
i constants are expressed in terms of scattering lengths in Eq. (1.23).

Hereafter, the species’ spin will be considered fixed at either F = 1 or 2 and

the superscripted (F ) labels will be omitted.

Second-quantising Hamiltonian (5.1) above yields:

Ĥ2nd =

∫
d3r

(
Ĥ0(r) + Ĥq(r) + ĤI(r)

)
(5.3a)

Ĥ0 = ψ̂†α

(
− 1

2m
∇2 + V (r)

)
ψ̂α (5.3b)

Ĥq = pF̂ z + qẐ with

F̂ i = ψ̂†αF
i
αβψ̂β and Ẑ = ψ̂†α(F z)2

αβψ̂β (5.3c)

ĤI = :
c0

2
n̂2 +

c1

2
F̂

2
: +

c2

2
Â†Â with

n̂ = ψ̂†αψ̂α and Â =
2∑

α=−2

(−1)αψ̂αψ̂−α (5.3d)

where ψ̂α(r) are the annihilation operators for bosons in the m = α magnetic

sublevel at r. F̂ i(r) stands for the i-th component of the total spin density
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operator whereas F i is the i-th spin-F matrix. The positional dependence

of creation/annihilation operators and densities has been suppressed above

for brevity. The colon delimiters represent normal ordering. Ĥ0 and Ĥq are

the second-quantised forms of single-particle operators from the second line

of Eq. (5.1). Ĥ0 originates from the potential and kinetic terms, and Ĥq

from the linear and quadratic Zeeman terms. ĤI is the second-quantised

form of the two-particle interaction in Eq. (5.2). It is also worth noting that

the operator Â may be loosely interpreted as an annihilation operator for a

spin-singlet pair of bosons60,131 and that it is absent for spin-1 as c
(1)
2 = 0.

For alkali atoms, except caesium,115 one may consider Fz, the eigenvalue

of F̂ z ≡
∫

dr F̂ z, as a conserved quantity as the spin relaxation time is

longer than the typical trap lifetime.16,39 Mathematically, this manifests itself

through F̂ z commuting with the total Hamiltonian Ĥ,
[
Ĥ, F̂z

]
= 0, which

also implies one can simultaneously diagonalise Ĥ and F̂ z. We will often

restrict ourselves to a particular F̂ z-eigenspace, particularly the experimen-

tally relevant null space. When this is the case, the energetic contribution

of the linear Zeeman term is constant and may thus be removed from the

analysis.

We will mostly be concerned with two extremal potential profiles - either

that of the continuum, i.e., V (r) = 0, or of a very narrow trap, e.g. V (r) =
1
2
mωr2 with ~ω far exceeding typical spin-excitation energies so that any

spatial deviations from the ground state profile are effectively energetically

prohibited. This is called the Single Mode Approximation, or SMA, and

makes the spin dynamics effectively zero-dimensional.67 Equivalently, these

conditions can be phrased by saying that the spin coherence length should be

much larger than the trap size and the density coherence length. For large

particle numbers one may study both limits by mean-field methods, but the

SMA offers several means of going beyond mean field as well. The single

mode approximation is discussed in more detail in Chapter 6, and is further

utilised from Chapter 8 onwards, while the focus of the present chapter is on

the continuum.

To find the mean-field states, the annihilation operators of Eq. (5.3) are
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replaced by c-numbers, i.e., ψ̂α → ψα, a chemical potential is introduced, and

the resulting expression is minimised with respect to ψα, in accordance with

the mean-field calculations in sections 1.1.2 and 3.1. For the continuum, the

potential is identically zero and the ground state is translationally invariant

for repulsive interactions. This makes Ĥ0 of Eq. (5.3b) identically zero, and

the spatial integral in Eq. (5.3a) may be replaced by a multiplication with

the system volume. Furthermore, the uniform density n factors out of Ĥq of

Eq. (5.3c), and its square n2 factors out of the interaction Hamiltonian ĤI

of Eq. (5.3d). This reduces the problem to minimising the resulting quantity

Ẽ with respect to a single (2F + 1)-component complex vector of unit norm

χ, with the parameters cin, p, and q. Ẽ is given by:

Ẽ =
c1n

2
(χ∗αFαβχβ)2 +

c2n

2

∣∣χTTχ∣∣2 + qχ† (F z)2χ+ pχ†F zχ (5.4)

where T is a diagonal matrix with Tαα = (−1)α. Given the long spin-

relaxation times, a conserved value of Fz ≡ 〈F̂ z〉 may be taken into account

through a Lagrange multiplier. In the following, however, we consider mean-

field ground states for unconstrained Fz.

5.2 Mean-Field Phase Diagrams

In this section, the mean-field phase diagrams of the spin-1 and spin-2 Bose

gas in the continuum are presented. The geometric scheme used to classify

the states is introduced first.

5.2.1 Majorana Representation

A spin-1
2

particle can be represented by a point on the Bloch sphere. This

direction can intuitively be understood as the direction of the spin expecta-

tion value. In the special case of spin-1
2
, it so happens that this expectation

value fully characterises the state. For larger magnitudes of spin one needs

additional information, as can be seen from the fact that one can have a non-

zero state with a zero spin expectation value, such as the F̂ z zero eigenvector

for a spin-1 particle. Fortunately, as first shown by Ettore Majorana,79 one

63



need not leave the comfortable domain of the Bloch sphere to describe this

information. Rather, any spin-F state may be described by 2F points on

the Bloch sphere. In addition to extending tools known to most physicists

in a simplistic manner, the utility of the representation also lies in the fact

that the symmetries of the resulting polygon correspond to symmetries of

the physical state.

The present elementary exposition of the Majorana-representation formalism

follows Barnett et al.,10 who have applied the representation to classifying

the zero-q phases of spin-2 condensates in the continuum. For a given spin-F

state |φ〉 =
∑F

α=−F Aα |α〉, where |α〉 are eigenstates of F̂z such that F̂z |α〉 =

α |α〉, we wish to find the set of fully polarised states |f〉, orthogonal to

|φ〉. The fully polarised states are parametrised by the Bloch sphere, and

the fully polarised state corresponding to the direction (θ, ϕ), in standard

spherical coordinates, is defined so that F̂ · n(θ,ϕ) |f(θ, ϕ)〉 = F |f(θ, ϕ)〉,
where n(θ,ϕ) is the unit vector pointing in that direction. Letting ζ encode θ

and ϕ as ζ = eiϕ tan (θ/2), one may conveniently express the unnormalised

fully polarised state |ζ〉 as

|ζ〉 =
2F∑
α=0

(
2F

α

) 1
2

ζα |F − α〉 . (5.5)

The orthogonality condition 〈φ|ζ〉 = 0 then amounts to a polynomial equa-

tion in ζ, whose 2F complex roots determine the points on the Bloch sphere.

5.2.2 Phase Diagrams

We are now in a position to describe the mean-field phase diagrams. Most

results of this section were first worked out in Refs. [93, 47]. At zero mag-

netic field, mean-field states may break the full rotational symmetry of the

Hamiltonian, which results in a degenerate set of candidate ground states,

related by the broken rotations. In the presence of a magnetic field in the

z direction, the rotation symmetry about the z axis may be broken. In ei-

ther case, some of the representative states yield particularly simple order

parameters and it is in terms of these that the results are presented.
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Spin-1

For spin-1, the possible stationary states with respect to Eq. (5.4), along

with their commonly used names, are as follows:

Ψf = (1, 0, 0)T or (0, 0, 1)T ferromagnetic (5.6)

Ψlp = (0, 1, 0)T longitudinal polar (5.7)

Ψtp = (1, 0, 1)T/
√

2 transverse polar (5.8)

An interesting property of all of the above is that they are inert, meaning

that they remain energy extrema when the parameters of the Hamiltonian

are varied. Their existence is guaranteed due to a group-theoretic theorem

by Michel.82 There is an additional non-inert stationary state for |q| < 2|c1n|,
where n is the particle number density and c1 = 4π

3m
(a2−a0), as per Eq. (1.23).

Namely

Ψba = (
sin θ√

2
, cos θ,

sin θ√
2

)T broken axisymmetric (5.9)

with sin θ =
√

1/2 + q/(4nc1).

The mean-field ground states’ order parameters and Majorana representa-

tions are shown in their respective regions of the q − c1n phase diagram at

zero linear Zeeman field in Fig. 5.1.

Spin-2

For spin-2, three stationary states may be identified already at q = 0. Their

order parameters and common names are as follows:

Ψf = (1, 0, 0, 0, 0)T ferromagnetic (5.10)

Ψt =

(√
1

3
, 0, 0,

√
2

3
, 0

)T

tetrahedral (5.11)

Ψn(η) =

(
sin η√

2
, 0, cos η, 0,

sin η√
2

)T
nematic (5.12)
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Ferromagnetic
(1, 0, 0) or (0, 0, 1)

↙

← q = −2c1n

Broken
axisymmetric(
sin θ√

2 , cos θ, sin θ√
2

)

Longitudinal
polar

(0, 1, 0)

Transverse
polar(√
1
2 , 0,

√
1
2

)

c1n

q

Figure 5.1: The ground-state phase diagram for spin-1 condensates with respect to the
quadratic Zeeman coefficient q and c1n at zero linear Zeeman field p, presented in terms of
the ground states’ order parameters and Majorana representations. n is the particle number
density and c1 = 4π

3m (a2 − a0) with aF the relevant s-wave scattering lengths.

The nematic states Ψn(η) represent a degenerate family with respect to the

continuous variable η. This is an accidental degeneracy, which is indeed

lifted through Order by Disorder, as demonstrated in the next section. Two

particular members of the family arise as preferred through both Order by

Disorder at q = 0 and plain mean-field calculations at q 6= 0:

Ψun = Ψn(0) = (0, 0, 1, 0, 0)T uniaxial nematic (5.13)

Ψbn = Ψn

(π
2

)
=

(√
1

2
, 0, 0, 0,

√
1

2

)T

biaxial nematic (5.14)

As shown in the next section, the uni(bi)-axial state is selected for c1 > 0

(c1 < 0). The q = 0 phases are shown in Fig. 5.2. The general nematic state,

or rather the evolution of its Majorana representation with η, is shown in
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Biaxial
nematic(√

1
2 , 0, 0, 0,

√
1
2

)

↖

Uniaxial
nematic

(0, 0, 1, 0, 0)

Tetrahedral(√
1
3 , 0, 0,

√
2
3 , 0
)

Ferromagnetic
(1, 0, 0, 0, 0)

c2

c1

Figure 5.2: The ground-state phase diagram for spin-2 condensates with respect to the
interaction constants c1 and c2 at zero external magnetic field, presented in terms of the
ground states’ order parameters and Majorana representations. A mean field analysis yields
the degenerate family of nematic states, shown in Fig. 5.3, as possible ground states in the
entire nematic region c2 < min(0, 4c1), but an order-by-disorder calculation, summarised in
Sec. 5.3, shows that the true continuum ground states arise as shown, giving rise to the dashed
phase boundary between the two nematic regions.

Fig. 5.3. It can be seen that all nematic states have rectangular representa-

tions and in general possess only reflection symmetry about planes spanned

by any pair of coordinate axes. The uni/bi-axial states however possess

more symmetry - the uniaxial state retains full SO(2) rotational symmetry

about the z axis and the biaxial state retains symmetry with respect to

π/2-rotations about the same axis.
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η = 0 η = π/6 η = π/3

η = π/2 η = 2π/3

η = 5π/6 η = π

Figure 5.3: The evolution of the Majorana representation of a nematic state, as given by
Eq. (5.14), with η, parametrising the continuous degeneracy.

At q 6= 0 three additional non-inert stationary states appear:128,106

Ψm = (cos θm, 0, 0, sin θm, 0)T cos θm =

√
1

3
− q

3c1n
mixed

Ψc =

(
sin θc√

2
, 0,−i cos θc, 0,

sin θc√
2

)T
cos θc =

√
1

2
+

q

c2n
cyclic

Ψba = (a, b, c, b, a)T
a, b, c

numerically

determined

broken

axisymmetric

(5.15)

The phase diagrams at negative and positive q are shown in Figs. 5.4 and

5.5, respectively. Note that Ψc and Ψm both become equivalent to a spatial

rotation of the tetrahedral state Ψt at q = 0. The evolution of their Majorana

representations with respect to q is shown in Figs. 5.6 and 5.7.
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Biaxial
nematic

Ferromagnetic

c2n

c1n

C

M

2|q|

|q|/2

Figure 5.4: Mean-field spin-2 phase diagram at negative q. M and C denote the mixed and
cyclic phases, respectively. The order parameters for these are given in Eq. (5.15).

5.3 Nematic Order by Disorder

The η-parametrised accidentally degenerate family of spin-2 mean-field ground

states Ψn(η), defined in Eq. (5.12), exhibits the phenomenon of Order by Dis-

order. This section summarises the main steps of the relevant calculation,

following the detailed treatment of Ref. [127].

At any value of η, a Bogoliubov Hamiltonian may be obtained by considering

small deviations from the homogeneous Ψn(η) state, i.e., inserting ψ̂α =
√
n0Ψnα(η)+δψ̂α, where n0 is the condensate particle density, into Eq. (5.3a)

and keeping terms up to second order in δψ̂α. Following steps akin to those

of Sec. 4.1 for the dice lattice, one obtains a five-band spectrum. Since there

is no unit cell in this problem, or rather, an arbitrarily small one could be

chosen in the continuum, the Brillouin zone is unbounded.
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Uniaxial
nematic

Broken
axisymmetric

c2n

c1n

C

2q

q/2

Figure 5.5: Mean-field spin-2 phase diagram at positive q. C denotes the mixed phase,
as in Fig. 5.4. For the broken axisymmetric phase, qualitative features of its numerically
determined Majorana representation and nematic-phase boundary are shown, summarised after
Refs. [128, 118].

The band energies can be expressed in terms of a simple analytical expression:

Ej(k) = k

√
v2
j +

k2

4m2
(5.16)

where j = 1, . . . , 5 is the band index, vj are the long-wavelength sound

velocities for each band, and m is the species’ atomic mass. The vj can be

expressed as:

v2
j =

n0

m

(
|c2|+ 4c1 sin2

(
η +

2π

3
j

))
for j = 1, 2, 3 (5.17)

v2
4 =

n0

m
(c0 − |c2|) (5.18)

v2
5 =

n0

m
|c2| (5.19)
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q
c1n = −2 q

c1n = −1.99 q
c1n = −1.5 q

c1n = −0.5 q
c1n = 0

Figure 5.6: Evolution of the non-inert mixed phase’s Majorana representation with q.

q
c2n = −0.5 q

c2n = −0.4 q
c2n = −0.2 q

c2n = 0

q
c2n = 0.2 q

c2n = 0.4 q
c2n = 0.499 q

c2n = 0.5

Figure 5.7: Evolution of the non-inert cyclic phase’s Majorana representation with q.
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Only the first three velocities explicitly depend on η so it is these whose

Bogoliubov contributions one needs to consider. While the zero-point energy

density integral over the unbounded Brillouin zone formally diverges, one

may regularise it by subtracting the energy density of the limiting nematic

state at c1 = c2 = 0 and any η. The difference is given by

∆ε ≡ ∆E

V
=

8

15π2m
(mn0)

5
2

3∑
j=1

(
|c2|+ 4c1 sin2

(
η +

2π

3
j

)) 5
2

. (5.20)

This is shown as a function of η, with its average value on the interval [0, π]

subtracted, for two different values of c1 in Fig. 5.8. For c1 < 0, the lowest

energy is attained at η = (2n + 1)π/6;n ∈ Z, the square biaxial states, and

for c1 > 0 at η = nπ/3, the uniaxial states. In the absence of a magnetic

field the energy lifting is insensitive to orientation, but an arbitrarily small

positive (negative) quadratic Zeeman field q applied in the z direction will

make the local energy minima closest to η0 = 0 (η0 = π/2) preferred. When

q is of the same sign as c1 the global minimum is unique. For small q of

the opposite sign, there are two degenerate global minima, symmetric about

η0, that draw closer together with increasing |q|, eventually reaching η0 and

coalescing at a c1,2-dependent critical value of |q|.127

Thermal fluctuations further enhance the degeneracy lifting. As an illustra-

tion, in the regime with max (mv2
i ) � kBT � kBTc, where Tc is the con-

densate transition temperature,‡ the leading η-dependent term in T of the

thermal free-energy density difference with respect to the limiting c1 = c2 = 0

state is

∆Fth

V
= −2kBT

3π
(mn0)

3
2

3∑
j=1

(
|c2|+ 4c1 sin2

(
η +

2π

3
j

)) 3
2

. (5.21)

This contribution favours the same mean-field state as the zero-point energy

density of Eq. (5.20).127

‡In a uniform condensate of particles with mass m at particle-number density n, the

transition temperature is approximately Tc ≈ 3.3 n
2/3

mkB
.98
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6
The single mode

approximation

Besides the continuum, another extremal regime in which spinor condensates,

and cold atomic systems with more general interactions, become particularly

amenable to analytical techniques is that of tight confinement. To be con-

crete, this is usually taken to mean a potential profile whose walls are so

steep that the energetic cost incurred by spatial fluctuations is far above the

Boltzmann energy kT . This makes the system effectively zero-dimensional,

as all of its particles occupy the lowest spatial mode. By dint of this last

formulation, the approximation is most commonly referred to as the single

mode approximation, or SMA.

Technically, the approximation implies that we can write the bosonic anni-

hilation operators ψ̂α(r), appearing in Eqs. (5.3) of the previous chapter, as

ψ̂α(r) = φ0(r)âα where φ0(r) is the unit-normalised lowest spatial mode of

the system and âα the annihilation operator for a boson in this lowest spa-

tial mode with magnetic number m = α. Substituting the ψ̂α as above and
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integrating out the spatial components of the Hamiltonian Eq. (5.3) yields

ĤSMA =
g1

2N
F̂ 2 +

g2

2N
Â†Â+ qẐ. (6.1)

plus constants. Here gi = n0ci where n0 = N
∫

dr |φ0(r)|4 and ci are de-

fined in Eq. (1.23). Recall again that c
(1)
2 = 0 so that the Â†Â term is

not present for spin-1 species. The upper-case operators are obtained from

their calligraphic density counterparts in Eq. (5.3) by letting ψ̂α → âα, e.g.,

F̂ i = â†αF
i
αβâβ = â†F iâ where F i still represents the i-th spin matrix.

The Hamiltonians (5.3) and (6.1) evidently conserve total particle number

N̂ and, as noted above, we consider it fixed at N . This allows one to drop

terms arising from the spatial integrals of the scalar operators Ĥ0 and : n̂2 :

of Eq. (5.3), and to simplify the contribution of
∫

:F̂
2
: ∝ :F̂ 2: = F̂ 2 −

F (F + 1) N̂ to F̂ 2. Hamiltonian (6.1) further commutes with F̂ z and can

thus be simultaneously diagonalised. As in the continuum, we will often focus

on fixed F̂ z eigenspaces, particularly the null space, allowing us to drop the

linear Zeeman term, as has already been done in Eq. (6.1).

The SMA can be combined with mean-field techniques. Like in the con-

tinuum, the ground-state order parameter factors into a spatial part and a

spinor part. In the continuum this happens since the energy is obviously

minimised for a spatially uniform configuration, while in the SMA it is since

the spatial mode has been explicitly factored out at the very beginning. The

spinor order parameters at fixed signs and ratios of cin0 and the magnetic

parameters p and q are the same in both cases. Additionally, when sta-

ble, the Bogoliubov spectrum in the SMA consists of continuum modes at

zero quasimomentum, minus the density mode. As such, the combination

of the two approximations serves to simplify calculations, when applicable,

but yields no new information. We hence focus on exact many-body results

derived within the SMA. Some of these will be expanded upon in the rotor

treatment of later chapters.
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6.1 Exact spin-1 eigenstates and spectra at q = 0

This section follows the original treatment by Koashi and Ueda.60 They

demonstrated that the set of (unnormalised) states

|NS, F, Fz〉 ≡
(
Â†
)NS (

F̂−
)F−Fz (

â†1

)F
|0〉 (6.2)

forms a complete orthogonal eigenbasis of Hamiltonian (6.1) for spin-1 atoms

at q = 0, regardless of the sign of g1. Here Â = â2
0 − 2â1â−1 is the singlet

annihilation operator and F̂− = F̂ x − iF̂ y =
√

2
(
â†0â1 + â†−1â0

)
is the col-

lective spin lowering operator. The quantum number NS = (N − F ) /2 can

be interpreted as the number of singlet pairs, while F (F + 1) and Fz are

eigenvalues of the F̂ 2 and F̂ z operators. The energy of a member of the

above basis is given in terms of these quantum numbers as

E =
g1

2N
[F (F + 1)− 2N ] + pFz (6.3)

where the linear Zeeman term pF̂ z has been reintroduced. This is helpful

in demonstrating one of the main experimental obstacles in observing the

singlet state. When g1 > 0, p = 0, and, for simplicity, N is even, the true

ground state of the system is given by |N/2, 0, 0〉 =
(
Â†
)N/2

|0〉, the singlet

condensate. One of the consequences of the rotational invariance of singlet

pairs is that all single-particle magnetic sublevels are equally occupied, that

is, 〈n̂i〉 ≡
〈
â†i âi

〉
= N/3 for i = ±1, 0. This is to be contrasted with the

mean-field prediction. At exactly p = 0, there is in fact a continuous mean-

field degeneracy among all rotations of the longitudinal polar state (5.7) or

the transverse polar state Eq. (5.8), which are themselves spatial rotations of

one another. However, keeping q = 0 and perturbing p by an arbitrarily small

amount selects the transverse polar state, yielding the sublevel occupation

expectation values 〈n̂±1〉 = N/2 and 〈n̂0〉 = 0. This shows that at extremely

small values of |p|, mean field theory is inadequate. However, allowing for

values of |p| comparable to g1, 〈n̂0〉 of the exact ground state is found to be

〈n̂0〉 =
N − |Fz|
2|Fz|+ 3

' g1 − |p|
2|p|+ 3g1/N

(6.4)
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where the approximate equality holds when |p| ≤ g1 and we have 〈n̂0〉 = 0

otherwise. In both cases, the ±1 sublevels each accommodate half of the re-

maining particles. This shows that particles from the zero sublevel are rapidly

redistributed among the ±1 sublevels with increasing |p|, approaching the

mean-field distribution. At small magnetic fields B such that 1� |Fz| � N

in the ground state, the population of the m = 0 sublevel scales as 〈n̂0〉 ∼
c1n0/(2gµB),60 where the unhatted n0 is the average particle density in the

trap and g = p/µB is an effective g-factor. For 23Na, g is equal to about

1/4, as may be seen from Eq. (1.30), and c1/µB ∼ 10−22 cm3 G. For the typ-

ical experimental particle density of n0 ' 1018 m−3,117,98 the observation of

〈n̂0〉 on the order of 103 requires controlling the magnetic field on a sub-µG

scale.60

Equation (6.4) relies on the fact that the ground-state F and Fz quantum

numbers change with increasing p, as may be verified from Eq. (6.3). It has

previously been remarked that the spin-relaxation time is relatively long,

often longer that the trap lifetime. In light of that, the above discussion

may not seem too problematic, as the system may explicitly be prepared

in an Fz = 0 state. Unfortunately, a similar situation occurs with the

quadratic Zeeman field, favouring mean-field-like states within the same F̂ z

eigenspace,12 as discussed in the following section.

6.2 Spin-1 spectra and dynamics at q > 0

The results of this section were originally derived by Barnett et al.11,12 within

the rotor framework that is extensively covered in the next two chapters.

Notably, Sec. 8.2 presents the main steps of the pertinent calculation as it

serves as a good basis for further work with the spin-2 rotor mapping. This

section therefore primarily focuses on describing the results, obtained in the

spin-1 setting. Refs. [11, 12] were written with the true magnetic realisation

of the quadratic Zeeman field in the lower hyperfine multiplet of 23Na in mind,

and focused on the case q > 0 accordingly. A systematic rotor treatment of

the q < 0 case would proceed similarly, but has not been carried out to date.

Transforming the SMA Hamiltonian (6.1) through the rotor mapping yields
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the effective Hamiltonian

Ĥ = − g1

2N
∇2 + q

(
N +

3

2

)
sin2 θ +

q2N

8g1

sin2 2θ (6.5)

of a particle moving on the sphere, parametrised by the polar angle θ and the

azimuthal angle ϕ. In Ref. [12] three regimes are considered, parametrised

as

1 � q/g1,

N−2 � q/g1 � 1, and

q/g1 � N−2, (6.6)

referred to as the Rabi, Josephson, and Fock regimes, respectively, in analogy

with terminology used previously to describe the double-well Bose-Hubbard

system.68,69 In the first two, the rotor is tightly localised about the poles of

the sphere, but different terms of the potential dominate in each. Expanding

the above Hamiltonian about the pole yields low lying spectra of the form

E = ∆E (nx + ny), where nx,y are nonnegative integers, with ∆E = q for

the Rabi regime and ∆E =
√

2qg1 for the Josephson regime. Both of these

results agree with the spectra obtained through a Bogoliubov analysis.

Eigenstates of the Fock regime are spherical harmonics, delocalised about

larger parts of the sphere. The energies, parametrised by an even (odd)

integer ` between 0 and N for even (odd) N , equal E` = g1` (`+ 1) /2N

and have degeneracies 2` + 1. Transformed back into the operator picture,

the ground state is the familiar condensate of singlet pairs,
(
Â†
)N/2

|0〉. This

state is doubly fragmented, i.e., features two macroscopically occupied single-

particle states, and possesses a zero-energy spin mixing mode between the two

condensate components. The Bogoliubov treatment is thus inapplicable as

it suffers from a diverging depletion. The state is, however, very unstable to

symmetry breaking perturbations, driving it towards a mean-field-like state,

as outlined in the previous section for the linear Zeeman term, as the defining

condition of the Fock regime, q/g1 � N−2, becomes increasingly difficult to

satisfy in a controlled manner for macroscopic particle numbers. For typical
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experimental values, the condition implies that the magnetic field would need

to be kept at a value much smaller than 10µG. This, and the gap to the

excited state scaling as N−1, have so far prevented experimentally observing

the singlet condensate, but there are proposals for adiabatically evolving an

un-fragmented condensate of m = 0 atoms into the singlet condensate, which

has been predicted to work for ∼ 102 to ∼ 104 particles in a trap.107

The rotor mapping may also be fruitfully applied to study the dynamics of

spin-1 condensates. A clear semiclassical picture emerges in terms of the

Husimi distribution function49 for the Rabi and Josephson regimes, in good

agreement with performed experiments.74,73 For q > 2g1, a potential mini-

mum appears at the equator, which also affects dynamics. The general map-

ping has also been used to predict collapse-revival dynamics of the m = 0

magnetic sublevel occupation when quenching from an intermediate to a zero

value of q.11

6.3 Exact spin-2 eigenstates and spectra at q = 0

At zero quadratic Zeeman field q, the exact spectrum of the tightly con-

fined spin-2 condensate is also known and bears resemblances to the spin-

1 case.60,131 Potentially degenerate eigenlevels can be labelled by the set

{N0, NS, F, Fz}, where Fz is the eigenvalue of F̂ z and F is such that the

eigenvalue of F̂ 2 equals F (F + 1). NS can be interpreted as the number of

spin-singlet pairs and N0 ≡ N − 2NS as the number of bosons not in the

singlet state. As mentioned before, this analogy is only a loose one, as Â and

Â† do not obey bosonic commutation relations. However, the commutation

relations of these and a third operator, which the authors of Ref. [131] denote

by Ŝz ≡ 1
4
(2N̂+5), can be seen to be those of the Lie algebra su(1, 1), closely

related to su(2), the spin algebra. This allows for an elegant derivation of the

joint Â†Â and Ŝz eigenstates in analogy with the raising and lowering oper-

ator approach to the spin algebra. Technically, NS and N0 are defined such

that the eigenvalue of Â†Â equals
(
N0 + 1

2

) (
N0 + 5

2

)
and N0 + 2NS = N .

Explicitly constructing the complete but non-orthogonal basis of eigenstates

is very algebraically involved and the interested reader is referred to the
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original work in Ref. [131]. Their energies are, however, easily expressible in

terms of the above quantum numbers and equal

E =
g1

2

[
F

N
(F + 1)− 6

]
+ g2

NS

N
(N +N0 + 3) . (6.7)

The quantum numbers of the ground states may be easily inferred for different

parameter configurations and show interesting parallels with the mean-field

phase diagram. In the ferromagnetic region, the ground state NS is zero and

F = 2N is maximised, while in the tetrahedral region the ground state NS

and F are both zero.

The nematic-region ground state is, however, less easily reconciled with its

mean-field counterparts, as the ground state is non-degenerate and unique

across the entire nematic region. It consists only of singlet pairs and poten-

tially a singlet trio, maximising NS and minimising F .

On the other hand, the case where q 6= 0 is much less well-understood an-

alytically as NS or N0 are no longer good quantum numbers. Fortunately,

analytical results can be obtained via the rotor mapping for this regime as

well. The following two chapters introduce the general theory and basic

applications of the rotor mapping, which is applied to the tightly confined

spin-2 gas with q 6= 0 in Chapter 9.
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7
Hamiltonian mappings and the

rotor mapping

The spin-2 rotor mapping that is used to obtain analytical beyond-mean-

field results for the tightly confined spinor problem builds on the examples

of similar mappings for simpler systems. This chapter lays the mathematical

foundation for a more general class of mappings which are referred to as

Hamiltonian mappings and carefully defined in Sec. 7.1. The section further

describes their general features and how one might go about calculating useful

mapping-related quantities. Section 7.2 then illustrates these concepts on a

slight extension of by far the most common mapping of the type, the Segal-

Bargmann representation of second-quantised or Euclidean systems.

Finally, Sec. 7.3 contains a detailed exposition of the general features of

the rotor mapping, which allows one to map a particle-conserving second-

quantised many-body d-mode Hamiltonian onto that of a d-dimensional quan-

tum rotor, or a particle moving on the (d− 1)-sphere.

This chapter is fairly mathematical. A reader primarily interested in the

applications of the rotor-mapping formalism may safely skip to the next

chapter and refer back to specific results of this chapter as they are referenced.
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7.1 Common features

Consider Hamiltonians Ĥ1 and Ĥ2 acting on Hilbert spaces S1 and S2, re-

spectively. Denote the spectrum of an operator Â by spec Â.∗ Without loss

of generality, let the size (cardinality) of spec Ĥ2 be larger or equal than that

of spec Ĥ1.

A necessary condition for a mapping, in the sense about to be defined, be-

tween the Hamiltonians to exist is that spec Ĥ1 ⊆ spec Ĥ2. Consider first

the case when spec Ĥ1 is a proper subset of spec Ĥ2. A mapping between the

Hamiltonians is then an injective linear map between the two Hilbert spaces

T : S1 → S2 such that the Ĥ1 eigenspace with eigenvalue λ is mapped to

a subspace of the λ-eigenvalue Ĥ2 eigenspace, possibly all of it. We refer

to T (S1) ⊂ S2 as the physical states and the remainder of S2 as unphysi-

cal states. One can define a pseudo-inverse map T ◦ : S2 → S1 by letting

T ◦T = 1S1 and T ◦|S2\T (S1) = 0, i.e., T ◦ maps all unphysical states to 0.

When the spectra are identical, the spaces S1 and S2 are isomorphic by con-

struction. Identifying them, the Hamiltonian mapping is an automorphism

T and Ĥ2 = TĤ1T
−1.

7.1.1 Mappings from overcomplete bases

A particularly common type of Hamiltonian mapping as defined above arises

when S1 admits an overcomplete basis of states parametrised by some set

M, consisting of states |z〉 ; z ∈M. We limit ourselves to cases whenM is a

smooth manifold as it is then straightforward to define differential operators

on it, which is one of the main strengths of the mapping formalism. Choosing

∗Here we are slightly simplifying the mathematical concept of an operator spectrum.
In particular, spaces S1 and S2 are assumed to have countable bases of their respective
Hamiltonians’ eigenstates. Then spec Ĥi is taken to be the set of tagged eigenvalues of
the operator Ĥi. By tagged we mean that, if an eigenvalue λ is g-fold degenerate, it
features in spec Ĥi as g elements of the form (λ, j) where j = 1, · · · , g is the “sequence
number”. Additionally note that all eigenvalues are required to be real for Ĥi to be suitable
Hamiltonians. They needn’t be explicitly Hermitian but must be similar to Hermitian
operators.
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a positive measure dµ on M, any state |ψ〉 ∈ S1 can be written as

|ψ〉 =

∫
M

dµ(z)ψ(z) |z〉 (7.1)

where ψ(z) uniquely determines |ψ〉 while the inverse mapping is defined up

to unphysical states. The inner product of two states can be expressed as

〈φ|ψ〉 =

∫∫
M

dµ(z1)dµ(z2)φ∗(z1)ψ(z2)λ(z1, z2)

≡
∫
M

dµ(z)φ∗(z)
(
λ̂ψ
)

(z)

=
(
φ
∣∣∣λ̂ψ) . (7.2)

An integral operator λ̂ has been introduced, both to compactify notation

and to streamline later analysis. Here λ(z1, z2) ≡ 〈z1|z2〉 is the function, or

integral kernel, used in the definition of λ̂ through(
λ̂ψ
)

(z1) ≡
∫
M

dµ(z2)λ(z1, z2)ψ(z2) (7.3)

and (·|·) is the standard square-integrable inner product with measure dµ

such that (φ|ψ) =
∫
M dµ(z)φ∗(z)ψ(z). Note that λ(z2, z1) = λ∗(z1, z2) and

that this makes λ̂ self-adjoint.

These definitions allow us to choose as the target space of our Hamiltonian

mapping, the S2 of the previous subsection, the space of complex functions f

on M with finite norm
(
f
∣∣∣λ̂f)1/2

. In light of this, Eq. (7.1) constitutes the

inverse map T ◦ mapping a state ψ ∈ S2 onto |ψ〉 ∈ S1. Finding a practical

representation of T itself is more demanding and is the subject of the next

subsection.

The spaceM is typically chosen to have as many nice properties as possible.

Two are particularly desirable:

• Per-parts integration with dµ overM should yield no boundary terms.

• Ĥ1 |z〉 = H1 (z, ∂z) |z〉 for every member |z〉 of the overcomplete basis
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where H1 is some function of the coordinates z and derivatives with

respect to them.

When these are satisfied, the target Hamiltonian of the mapping, Ĥ2, acting

on S2, may be found through the following sequence of steps:

Ĥ1 |ψ〉 =

∫
M

dµ(z)ψ(z)Ĥ1 |z〉 =

∫
M

dµ(z)ψ(z)H1 (z, ∂z) |z〉

p.p.
=

∫
M

dµ(z) |z〉H2 (z, ∂z)ψ(z) ≡
∫
M

dµ(z)
(
Ĥ2ψ

)
(z) |z〉 (7.4)

This also immediately implies that the spectrum of Ĥ1 is a subset of that of

Ĥ2.

7.1.2 Physical subspace

The previous subsection outlined how to find Ĥ2 without utilising the map

T : S1 → S2 at all. It did construct the map T ◦, in the very first equation,

and this may in principle be inverted on the orthogonal complement of T ◦’s

kernel to yield T . This is often too complicated to carry out directly. This

section constructs the map T in a more pragmatic fashion and discusses

helpful properties of the physical subspace.

The subspace of physical states coincides with the image of the operator λ̂ of

Eq. (7.2) and unphysical states correspond to its kernel. To see this, recall

that unphysical states ψ ∈ S2 are defined as states for which

|ψ〉 =

∫
M

dµ(z)ψ(z) |z〉 = 0. (7.5)

This implies that as φ ranges over all of S2 we have 〈φ|ψ〉 =
(
φ
∣∣∣λ̂ψ) = 0

which is only possible if λ̂ψ = 0. The remaining states are physical as it

is a property of self-adjoint operators that their images coincide with the

orthogonal complements of their kernels.

The restriction of λ̂|im(λ̂) to the physical subspace then has no null space

by definition and thus possesses an inverse λ̂−1|im(λ̂) which may be formally
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extended to all of S2 by letting it be zero on the unphysical subspace. It is

easy to verify that this operator is also self-adjoint.

Since λ̂ is an integral operator with kernel λ(z1, z2), we have(
λ̂ψ
)

(z) = (λz|ψ) ;

λz1(z2) ≡ λ∗(z1, z2). (7.6)

Using this property of λ̂ and the existence of its inverse we find, for a physical

state ψ,

ψ(z) =
(
λ̂λ̂−1ψ

)
(z) =

(
λz

∣∣∣λ̂−1ψ
)

=
(
λ̂−1λz

∣∣∣ψ) ≡ (Jz|ψ) . (7.7)

This gives the physical subspace the structure of a reproducing kernel Hilbert

space, or RKHS. Simply put, this is a Hilbert space of functions in which

evaluation at a point z of any state corresponds to an inner product with a

unique z-dependent state that is not a delta function. The name refers to the

fact that there exists an integral operator Ĵ with integral kernel J (z1, z2) =

J ∗z1(z2) that reproduces function values, i.e., ψ(z1) =
∫
M dµ(z2)J (z1, z2)ψ(z2).

Ĵ is, in fact, the identity operator.

Repeating the step again, one obtains the RKHS structure for the true inner

product
(
·
∣∣∣λ̂·), since

ψ(z) = (Jz|ψ) =
(
Jz
∣∣∣λ̂−1λ̂ψ

)
=
(
λ̂−1Jz

∣∣∣λ̂ψ) ≡ (κz∣∣∣λ̂ψ) . (7.8)

One may again consider a kernel κ(z1, z2) = κ∗z1(z2) and furthermore form

the corresponding S1 states

|κz1〉 =

∫
M

dµ(z1)κ∗(z1, z2) |z2〉 (7.9)

These then allow for the construction of the map T : S1 → S2 as:

(T |ψ〉) (z) = 〈κz|ψ〉 (7.10)
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In addition, this yields a resolution of the identity:

1 =

∫
M

dµ(z) |z〉 〈κz| (7.11)

To summarise, finding T requires the following steps:

• Define an integral operator λ̂ with integral kernel λ(z1, z2) = 〈z1|z2〉.

• Find the inverse λ̂−1 on λ̂’s image.

• Define states |λz) with λz1(z2) = λ∗(z1, z2).

• Define states |κz) = λ̂−2 |λz) and their corresponding S1 states |κz〉.

• Then (T |ψ〉) (z) = 〈κz|ψ〉.

Finally note that, if λ̂−1/2 can be defined, one may form an auxiliary basis

|zS〉 ≡ λ̂−1/2 |z〉, in which the resolution of the identity is given by

1 =

∫
M

dµ(z) |zS〉 〈zS| . (7.12)

Expressing states in this basis has the advantage that the induced inner

product on S2 becomes (·|·), eliminating the need for double integrals, and

that T can be found through (T |ψ〉)(z) = 〈zS|ψ〉. The new basis might,

however, spoil the second desired property listed on page 84. It therefore

seems worth checking whether the property survives in a manageable form,

as the absence of double integrals is quite desirable in itself, and working in

the |zS〉 basis from the beginning if it does.

7.2 The Segal-Bargmann representation

Arguably the most commonly encountered Hamiltonian mapping of the above

type is the Segal-Bargmann representation9,111 of second-quantised systems.†

†It can also be applied to particles moving in Euclidean space by introducing annihila-

tion operators â = 1√
2

(
1
ξ x̂+ iξp̂

)
where ξ is an arbitrary length scale. The choice of ξ is

sometimes motivated by characteristic length scales, derivable from the Hamiltonian, e.g.

the oscillator length aosc = (mω)
−1/2

for a harmonic oscillator.
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It consists of expressing states in the overcomplete basis of coherent states

and features prominently in the coherent-state path integral,110 as well as

finding applications in quantum optics58,35 and even classical signal process-

ing.120

This section uses the Segal-Bargmann representation to illustrate concepts

introduced in the previous section on what is perhaps the simplest non-trivial

Hamiltonian mapping, and certainly the most ubiquitous. The discussion is

limited to that of a single-mode Hamiltonian, i.e., one that is a function of a

single annihilation/creation operator pair, as the multi-mode generalisation

is straightforward.

Coherent states have a number of remarkable properties, but for the present

purposes it suffices to define them as eigenvectors of the non-hermitian anni-

hilation operator â. Its spectrum is all of the complex plane so the coherent

states may be parametrised by an unbounded complex number z such that

â |z〉 = z |z〉. It is well-known that they may be expressed as

|z〉 = ezâ
† |0〉 =

∞∑
n=0

zn√
n!
|n〉 (7.13)

where |n〉 is the n-particle Fock state. The normalisation of the above states

is one of two conventional ones, yielding states of norm exp(−|z|2/2).

The integration measure used in the mapping is dµ(z) = 1
π
e−|z|

2
d2z. In

analogy with Eq. (7.1), general states may therefore be expressed as

|ψ〉 =
1

π

∫
C

d2z e−|z|
2

ψ∗(z) |z〉 (7.14)

where the additional complex conjugation on ψ is another convention. As is

simple to derive, λ(z1, z2) = 〈z1|z2〉 = exp (z∗1z2). Following Eq. (7.2), this
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yields the inner product

〈φ|ψ〉 =
1

π2

∫∫
C

d2z1d2z2 e−|z1|
2−|z2|2+z∗1z2 φ(z1)ψ∗(z2)

=
1

π

∫
C

d2z e−|z|
2

φ(z)
(
λ̂ψ
)∗

(z)

with
(
λ̂ψ
)

(u) =
1

π

∫
C

d2z e−|z|
2

euz
∗
ψ(z) (7.15)

A reader familiar with the Segal-Bargmann representation will notice that

this inner product hardly resembles the one usually presented. This is due

to our starting from the other end of the derivation and treating a slight

extension of the representation. Notably, the original Segal-Bargmann map-

ping considers only holomorphic functions of z with finite norm. One way to

think of these functions is as suitable linear combinations of the basis func-

tions zn for n a nonnegative integer. In our treatment the functions can also

depend on z∗ and hence not be holomorphic, though we do limit ourselves to

functions with a series expansion for simplicity. This generalisation is useful

as it allows the use of simple nonholomorphic trial wave functions, such as

the Gaussian ψ ∼ exp [−α|z|2].

Holomorphic functions do, however, represent the physical subspace of our

mapping as introduced in the previous section. Overlaps, expectation values,

and other physical results of working with a nonholomorphic function will be

the same as when working with its projection onto the holomorphic physical

subspace, but the algebra might be simpler. Restricting to the holomorphic

physical subspace also recovers the standard Segal-Bargmann inner product,

as will be demonstrated shortly.

To show the correspondence between physical states and holomorphic func-

tions, consider the functions fa,b(z) ≡ zaz∗b for integer a, b with a + b ≥ 0.

All functions of finite norm with a series expansion may be defined as sums

of the fa,b. Functions with b = 0 are holomorphic. Referring to the previous

section, the physical subspace is defined to be the image of λ̂. By expanding

exp(uz∗) in a series and performing a few elementary integrations, one can
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easily verify that

λ̂fa,b =


a!

(a− b)!fa−b,0 a ≥ b

0 a < b

(7.16)

which shows that the range of λ̂ consists of all holomorphic functions.

Denoting the original Fock space by F and the target extended Segal-Bargmann

space by B, we next seek to find the map T : F → B. Following Sec. 7.1.2,

we must invert λ̂, restricted to its image. From Eq. (7.16) it can be seen,

however, that λ̂ acting on holomorphic functions with b = 0 simply returns

the same functions and is thus the identity. In the language of Sec. 7.1.2 this

also implies that λ(u, z) = exp(uz∗) is a reproducing kernel.

This implies a cascade of simplifications, particular to the Segal-Bargmann

representation. For one, the inner product from Eq. (7.15) of two physical

states φ and ψ becomes the more familiar

〈φ|ψ〉 =
1

π

∫
C

d2z e−|z|
2

φ(z)ψ∗(z). (7.17)

Following the steps of Sec. 7.1.2, the reproducing states |κz〉 of Eq. (7.9) are

again found to be the coherent states |z〉 themselves, implying

(T |ψ〉) (z) = ψ∗(z) = 〈z|ψ〉 (7.18)

and yielding the resolution of the identity

1 =
1

π

∫
C

d2z e−|z|
2 |z〉 〈z| (7.19)

in analogy with Eq. (7.11). This resolution is typically the starting point of

expositions of the Segal-Bargmann representation. We have opted to work

in the opposite direction as the analogous resolutions for other Hamiltonian

mappings are in general much more complicated. In contrast to the present

situation, it might be virtually impossible to intelligently guess or derive their

form by any other means.

Finally, the task of mapping a given Hamiltonian Ĥ1, acting on the Fock
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space F , onto Ĥ2, acting on the extended Segal-Bargmann space B, which we

take to consist of all finite norm functions of z and z∗ with series expansions,

must be addressed. It is sufficient to describe how the operators â and â†

transform individually and then chain these transformations from right to

left.

At this point it should be stated that the desirable properties listed near the

end of Sec. 7.1.1 are both satisfied for the present space. Per-parts integration

yields no boundary terms as e−|z|
2|ψ(z)|2 must tend to zero at large |z| for ψ

to be in B. With regard to the other property, observe the following relations:

â |z〉 = z |z〉 â† |z〉 = ∂z |z〉 (7.20)

where the first comes from the definition of coherent states and the second is

easily verifiable through their form in Eq. (7.13). Using these relations, the

fact that we can treat z and z∗ as independent variables when integrating

over C, and that the states |z〉 do not depend on z∗, one can derive

â |ψ〉 =
1

π

∫
C

dz∗dz e−|z|
2

ψ∗(z)z |z〉

= − 1

π

∫
C

dz∗dz
(
∂z∗e

−|z|2
)
ψ∗(z) |z〉

p.p.
=

1

π

∫
C

dz∗dz e−|z|
2

∂z∗ψ
∗(z) |z〉

=
1

π

∫
C

dz∗dz e−|z|
2

(∂zψ)∗ (z) |z〉 (7.21)

and

â† |ψ〉 =
1

π

∫
C

dz∗dz e−|z|
2

ψ∗(z)∂z |z〉

p.p.
= − 1

π

∫
C

dz∗dz ∂z

(
e−|z|

2

ψ∗(z)
)
|z〉

=
1

π

∫
C

dz∗dz e−|z|
2

(z∗ψ∗(z)− ∂zψ∗(z)) |z〉

=
1

π

∫
C

dz∗dz e−|z|
2

((ẑ − ∂z∗)ψ)∗ (z) |z〉 . (7.22)
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Thus Ĥ2 may be found by substituting

â→ ∂z and â† → ẑ − ∂z∗ (7.23)

Note that ∂z∗ vanishes when acting on the holomorphic physical states. As an

example, the simple Hamiltonian ωâ†â would map to Ĥ2 = ω (ẑ∂z − ∂z∗∂z).
A rather beautiful property in this case is that a wave function with the

physical Bargmann representation ψ(z) at time t = 0 evolves into ψ
(
e−iωtz

)
at time t. Another useful property of the mapping is that an arbitrary func-

tion of operators A(â†, â), normal ordered or not, maps onto A(ẑ − ∂z∗ , ∂z).
This is the primary reason that its resolution of the identity is used at every

time step of the coherent-state path integral, as it is the most straightforward

way to transform a second-quantised operator into a scalar quantity, in the

appropriate sense.

7.3 Rotor mappings

This section introduces the general formalism of the d-dimensional rotor map-

ping. This may be utilised quite generally for any second-quantised system

with dmodes (i.e. creation/annihilation operator pairs) and a conserved num-

ber of particles. It finds particular utility for Hamiltonians that may be “an-

tisymmetrised,” in a sense that is addressed at the beginning of the following

chapter. Such systems include tightly confined spinor condensates, to which

the rotor mapping is applied in Chapters 8 to 10.

We will be working in the N -particle subspace of the d-mode Fock space, de-

noted FN . Further denoting the d annihilation operators by âα;α = 1, · · · , d,

the overcomplete basis for the mapping consists of the states

|Ω〉 =
1√
N !

(
Ω · â†

)N |0〉 for |Ω| = 1 (7.24)

where â† =
[
â†1, · · · , â†d

]
is a vector of creation operators and |0〉 is the zero-

particle vacuum state. Ω is a d-dimensional real unit vector, i.e., belonging

to the (d − 1)-sphere Sd−1 embedded in Rd at unit radius. This implies our

91



mapping will be into a space of functions defined over the (d− 1)-sphere.

Note that the vacuum state |0〉 is not a member of the overcomplete ba-

sis (7.24). This is in contrast with the Segal-Bargmann transform where

z = 0, corresponding to the vacuum state, is accordingly set apart as a dis-

tinguished point in C. Until one ascribes physical significance to the operators

âα, the rotor basis (7.24) has no distinguished point Ω. Indeed, orthogonal

transformations of the single-particle basis, and through it âα, simply rotate

the member states, though more general unitary transformations have no

such intuitive analogue. This motivates a rotationally invariant integration

measure over Sd−1, i.e., a constant one.

A general state |ψ〉 ∈ FN can thus be written as

|ψ〉 =

∫
Sd−1

dΩψ(Ω) |Ω〉 (7.25)

where ψ belongs to the space of complex functions defined over the (d − 1)

sphere of a certain finite norm. The norm is derived from the inner product,

whose functional form is analogous to Eq. (7.2). Its explicit form in the rotor

setting is stated below in Eq. (7.27). Denote the space of such finite-norm

functions by Rd. Note that Eq. (7.24) implies that |−Ω〉 = (−1)N |Ω〉, from

which it follows that states ψ ∈ Rd of parity (−1)N+1 are mapped to zero by

Eq. (7.25), and are hence unphysical.

The overlap of two states is given by

〈Ω|ρ〉 = (Ω · ρ)N (7.26)

indicating that the basis is most evidently not orthogonal, though it becomes

so to a good approximation for large N . It also seems intuitive that the basis

should be complete. This will definitively be shown later, at the end of

Sec. 7.3.2, by constructing the subspace of physical states.
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We may now explicitly express the inner product, analogous to Eq. (7.2), as

〈φ|ψ〉 =

∫∫
Sd−1

dΩdρφ∗(Ω) (Ω · ρ)N ψ(ρ)

=

∫
Sd−1

dΩφ(Ω)
(
λ̂ψ
)

(Ω)(
λ̂ψ
)

(Ω) =

∫
Sd−1

dρ (Ω · ρ)N ψ(ρ) (7.27)

where we have proceeded in complete analogy with the general treatment of

Sec. 7.1 and the Segal-Bargmann transform of Sec. 7.2.

Again referring to the desirable conditions near the end of Sec. 7.1.1, inte-

gration by parts is seen to yield no boundary terms as spheres (for d > 1) are

closed manifolds. To find the Hamiltonian action on the |Ω〉, recall that the

particle number is considered fixed, so the most elementary building block

of a general Hamiltonian will be â†αâβ. One then finds

â†αâβ |Ω〉 = Ωβ (∇α +NΩα) |Ω〉 . (7.28)

The operator ∇ is the spherical gradient operator, discussed in the following

subsection.

7.3.1 Calculus on the n-sphere

Throughout this section, Sd−1 will be parametrised by its d Cartesian co-

ordinates Ωα, with the constraint ΩαΩα = 1. This seems to be consider-

ably more elegant for abstract manipulations than working with an uncon-

strained set of coordinates, such as those of the stereographic projection or

the arbitrary-dimensional generalisations of the polar and azimuthal angle,‡

and also affords a concise representation of the physically important Lapla-

cian eigenbasis.

Aside from the position operators Ω̂α, the most basic ones that may be de-

fined are components of the spherical gradient, ∇α ≡ eα ·∇. The vector

‡Save for the derivation of the integration-by-parts rule, presented shortly.
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∇ lies in the tangent plane at every point of the sphere and can be defined

through the differential-geometric notions of exterior derivatives, pushfor-

wards and pullbacks. A much simpler but equivalent approach involves ar-

bitrarily extending the functions defined over Sd−1 to functions defined over

a larger subset of Rd, containing Sd−1 as a measure-zero subset. The exten-

sions can truly be anything, as long as they are smooth at all points of the

sphere and their restrictions to the sphere coincide with the original func-

tions. Then ∇ is simply the projection of the ordinary Euclidean gradient ∂

onto the tangent space of the sphere:

∇α = ∂α − Ω̂αΩ̂ · ∂. (7.29)

Using these definitions, the following useful relations may be found:[
∇α, Ω̂β

]
= δαβ − Ω̂αΩ̂β

Ω̂α∇α = 0

[∇α,∇β] = Ω̂α∇β − Ω̂β∇α ≡ iL̂αβ. (7.30)

The operators L̂αβ are an arbitrary-dimensional generalisation of the three-

dimensional angular momentum operators. That the latter can be labelled

by a single index is a particularity of three dimensions. The single- and

double-indexed operators in three dimensions are related by L̂i = 1
2
εijkL̂jk

where ε is the Levi-Civita completely antisymmetric tensor.

The integration-by-parts rule for ∇α is derived next. By rotational invari-

ance, it suffices to find the rule for, say,∇1. To that end, label a d-dimensional

unit vector parametrising the (d − 1) sphere by Ω(d−1) and parametrise

it as Ω(d−1) =
(
cos θ, sin θΩ(d−2)

)
. We then have ∇1 = − sin θ ∂θ. Fur-

thermore, the integration measure is schematically equal to
∫
Sd−1 dΩ(d−1) =
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∫ π
0

dθ sind−2 θ
∫
S(d−2) dΩ(d−2). We find∫

Sd−1

dΩ(d−1) f∇1g = −
∫
Sd−2

dΩ(d−2)

∫ π

0

dθ sind−1 θ f ∂θg

p.p.
=

∫
Sd−2

dΩ(d−2)

∫ π

0

dθ g ∂θ sind−1 θ f

=

∫
Sd−2

dΩ(d−2)

∫ π

0

dθ sind−2 θ g [(d− 1) cos θ + sin θ ∂θ] f∫
Sd−1

dΩ(d−1) g [(d− 1)Ω1 −∇1] f (7.31)

and by rotational symmetry it may be inferred that generally∫
Sd−1

dΩ f∇αg =

∫
Sd−1

dΩ g [(d− 1)Ωα −∇α] f. (7.32)

Another important element of calculus on the sphere is the spherical Lapla-

cian operator, given by

∇2 =
1

2

∑
αβ

L̂2
αβ = ∇γ∇γ. (7.33)

With the above properties, the action of the fundamental particle-conserving

Hamiltonian building block on |Ω〉 in Eq. (7.28) may easily be verified. With

the integration-per-parts rule (7.32) at hand, the mapping onto an operator

acting on Rd may be concluded through the following steps:

â†αâβ |ψ〉 =

∫
Sd−1

dΩψ(Ω)Ωβ (NΩα +∇α) |Ω〉 (7.34)

p.p.
=

∫
Sd−1

dΩ |Ω〉 [(N + d− 1) Ωα −∇α] Ωβψ(Ω)

=

∫
Sd−1

dΩ |Ω〉 [(N + d)ΩαΩβ − Ωβ∇α − δαβ]ψ(Ω)

implying the general operator mapping

â†αâβ → (N + d)Ω̂αΩ̂β − Ω̂β∇α − δαβ. (7.35)

One often deals with expressions of the form â†αQαβâβ ≡ â†Qâ, where Q is
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an arbitrary matrix. Applying the above rule to such an expression yields:

â†Qâ→ (N + d) Ω̂TQΩ̂− Ω̂TQT∇− TrQ. (7.36)

For completeness, we finally state the following less frequently used properties

of calculus on the sphere:[
L̂αβ, L̂γδ

]
= i

(
δαγL̂βδ + δβδL̂αγ − δαδL̂βγ − δβγL̂αδ

)
[
L̂αβ, Ω̂γ

]
= i

(
δαγΩ̂β − δβγΩ̂α

)
[
∇α, L̂βγ

]
= i (δαγ∇β − δαβ∇γ)−

(
Ω̂αL̂βγ + Ω̂βL̂γα + Ω̂γL̂αβ

)
[
∇2, Ω̂α

]
= −(d− 1)Ω̂α + 2∇α[

∇2,∇α

]
= (d− 3)∇α − 2Ω̂α∇2 (7.37)

7.3.2 Physical subspace

This subsection derives the range of the operator λ̂, as defined in Eq. (7.27),

corresponding to the physical subspace of the mapping. The author has

found it easiest to characterise this in the eigenbasis of the Laplacian from

Eq. (7.33), which is introduced next.

Members of the Laplacian’s n-th eigenspace, for n = 0, 1, 2, · · · are homoge-

neous polynomials of degree n in the coordinates Ωα;α = 1, · · · d. They may

be written in reduced form as

ψnM(Ω) ≡Mα1α2...αnΩα1Ωα2 · · ·Ωαn (7.38)

where M is a completely symmetric rank-n traceless tensor. By the latter

we mean that contracting any two of its indices yields zero, regardless of the

values of the other indices. The traceless condition ensures that no trivial

factors of ΩαΩα = 1 appear.

It is a relatively straightforward exercise in applying relations of the previous

section to show that the functions in Eq. (7.38) are indeed eigenfunctions of

∇2 with eigenvalues λn = −n(d + n− 2). The dimensions of the eigenspace
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are determined by the number of independent components of the tensor M .

This corresponds to the number of independent components of a completely

symmetric d-dimensional rank-n tensor, which we will denote P (d, n), minus

the number of tracelessness constraints P (d, n− 2), since the trace of a com-

pletely symmetric rank-n tensor is a completely symmetric tensor of rank

n − 2 and the same dimension. P (d, n) =
(
n+d−1
d−1

)
corresponds to the num-

ber of ways of distributing n elements among d bins. The n-th eigenlevel’s

dimension is thus

gn =

(
n+ d− 1

d− 1

)
−
(
n+ d− 3

d− 1

)
. (7.39)

We now turn to the action of the operator λ̂, as defined in Eq. (7.27), on

members of the Laplacian eigenbasis. Note that members of the n-th Lapla-

cian eigenspace have parity (−1)n, whereas the integral kernel of λ̂, given by

λ(Ω,ρ) = (Ω · ρ)N , has parity (−1)N in both variables. This implies that λ̂

maps states for which n+N is odd to zero and that they are thus unphysical.

Restricting to states with even N + n, we have(
λ̂ψnM

)
(ρ) = Mα1...αn

∫
Sd−1

dΩ (ρ ·Ω) Ωα1 · · ·Ωαn (7.40)

=
N !

(N + n)!
Mα1...αn∂α1 · · · ∂αn

∫
Sd−1

dΩ (χ ·Ω)N+n
∣∣∣
χ=ρ

=
N !

(N + n)!

(∫
Sd−1

dΩ ΩN+n
1

)
Mα1...αn∂α1 · · · ∂αn (χ · χ)

N+n
2

∣∣∣
χ=ρ

where the derivatives act with respect to χ and we have used the fact that,

due to rotational symmetry, the integral on the second line depends only

on the size of χ, allowing us to proceed as if χ was oriented along the Ω1

axis. The integral on the third line can be evaluated in several ways, e.g. by

transforming to the coordinates used to derive the integration-by-parts rule

in Eq. (7.31), and equals∫
Sd−1

dΩ ΩN+n
1 = 2π

d−1
2

Γ
(
N+n+1

2

)
Γ
(
N+n+d

2

) . (7.41)
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As for the remainder of the last line of Eq. (7.40), carrying out the two

rightmost derivations yields

(χ · χ)
N+n

2 → (N + n) (χ · χ)
N+n

2
−1 χαn (7.42)

→ (N + n)(N + n− 2) (χ · χ)
N+n

2
−2 χαn−1χαn

+ (N + n) (χ · χ)
N+n

2
−1 δαn−1αn .

The entire expression is, however, contracted with a traceless tensor, so any

Kronecker delta tensors, such as on the last line of the above, contract to

zero. This rule carries on through all n derivations: any derivative acting on

any factor but the power of χ · χ yields a Kronecker delta and contracts to

zero. This implies that after n steps we have

Mα1...αn∂α1 · · · ∂αn (χ · χ)
N+n

2 (7.43)

= 2n
(
N+n

2

)
!(

N−n
2

)
!
(χ · χ)

N−n
2 Mα1...αnχα1 · · ·χαn ∝ ψnM(χ).

Note that this expression is actually only true for 0 ≤ n ≤ N . Since we are

restricting to states where N+n
2

is a positive integer, the exponent of (χ · χ)

will eventually reach zero for n ≥ N , and any further derivations will yield

zero. Thus λ̂ maps all n > N states to 0, meaning that they are unphysical.

Combining Eqs. (7.40), (7.41) and (7.43) for a state with n ≤ N and even

n+N finally yields

(
λ̂ψnM

)
(ρ) =

21−Nπ
d
2N !

Γ
(
N+n+d

2

) (
N−n

2

)
!
ψnM(ρ). (7.44)

Since the full Laplacian eigenbasis is complete, this fully determines the range

of λ̂. The physical states are thus spanned by eigenfunctions of the Laplacian

of parity (−1)N for n ≤ N .
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Let us also write λ̂ in the suggestive form

λ̂ = 21−Nπ
d
2

N∑
k=0

MNkP̂k with MNk =


N !

Γ
(
N+k+d

2

) (
N−k

2

)
!

2 | (N + k)

0 2 - (N + k)

(7.45)

where P̂k are the projectors onto the k-th Laplacian eigenspace. The notation

MNk is suggestive of a further application in the following section.

We are now also in a position to rigorously show completeness of the set

{|Ω〉}. To do so, choose an arbitrary orthogonal basis ψni ; i = 1, · · · , gn, with

respect to the ordinary inner product (f |g) =
∫
Sd−1 dΩ f ∗(Ω)g(Ω), for the

n-th Laplacian eigenspace, restricting to ones of suitable parity. Also define

the Fock space counterparts |ψni 〉 =
∫
Sd−1 dΩψni (Ω) |Ω〉. Recall that 〈φ|ψ〉 =(

φ
∣∣∣λ̂ψ). Since Eq. (7.44) shows that λ̂ merely scales each of the mutually

orthogonal Laplacian eigenspaces,
(
ψni |ψmj

)
= 0 (6= 0) implies

〈
ψni
∣∣ψmj 〉 =

0 (6= 0). Thus the |ψni 〉 form an orthogonal set of states. There are gs +

gs+2 + · · ·+ gN states in the set where the gi are given by Eq. (7.39) and s is

the integer remainder of N divided by 2. Easily summing up the telescoping

series shows that there are
(
N+d−1
d−1

)
states in the set, which is exactly the

dimension of the N -particle Fock space FN . Hence the set {|ψni 〉} is complete

as well. Since all of its members are defined as superpositions of states from

the set {|Ω〉}, the latter also has to be complete.

7.3.3 The T map

To conclude the general treatment of the rotor mapping, and introduce some

of its most curious properties, let us construct the map T taking Fock states

into the physical subspace of Rd.

We follow the standard steps outlined in Sec. 7.1.2. We construct a family of

states λΩ ∈ Rd such that λΩ(ρ) = λ∗(Ω,ρ) = (Ω ·ρ)N , the derived states κΩ

with κΩ(ρ) =
(
λ̂−2λΩ

)
(ρ) ≡ κ∗(Ω,ρ), and their Fock-space counterparts

|κΩ〉 =
∫
Sd−1 dΩκ∗(Ω,ρ) |ρ〉. Specifically for the rotor mapping, these have
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the curious property that

|κΩ〉 =
1√
N !

∫
Sd−1

dΩκ∗(Ω,ρ)
(
ρ · â†

)N |0〉
=

1√
N !

∫
Sd−1

dΩκ(Ω,ρ)λ
(
ρ, â†

)
|0〉 (7.46)

where we have anticipated the realness of κ(·, ·).

From the general results of Sec. 7.1.2, it may be verified that κ(·, ·) is the

integral kernel of λ̂−1. Furthermore, the product of two integral operators

with integral kernels α(·, ·) and β(·, ·) is itself an integral operator, with an

integral kernel given by
∫
Sd−1 dΩα(·,Ω)β(Ω, ·). From this and Eq. (7.46) it

follows that

|κΩ〉 =
1√
N !
J
(
Ω, â†

)
|0〉 (7.47)

where J (·, ·) is the reproducing kernel of Eq. (7.7).

To find this kernel, refer back to the expression of λ̂ as a sum of Laplacian

eigenspace projector operators in Eq. (7.45). λ̂ is an integral operator with

integral kernel λ(Ω,ρ) = (Ω · ρ)N , but the calculation deriving Eq. (7.45)

would proceed completely analogously for operators with integral kernels

(Ω·ρ)k for other nonnegative integers k, by simply replacing every occurrence

of N with k. To formalize this, introduce a family of integral operators

µ̂k; k = 0, 1, · · · , N , with respective kernels µk(Ω,ρ) ≡ 2k−1π−
d
2 (Ω ·ρ)k, with

the constants chosen for later convenience. Arrange these into a vector µ̂ =

[µ̂0, µ̂1, · · · , µ̂N ]T . Also define the vector of Laplacian-eigenspace projectors

P̂ =
[
P̂0, P̂1, · · · , P̂N

]T
. The generalisation of Eq. (7.45) can then succinctly

be written as µ̂ = M P̂ where M is a matrix with entries

Mjk =


j!

Γ
(
j+k+d

2

) (
j−k

2

)
!

2 | (j + k) and k ≤ j

0 2 - (j + k) or k > j.

(7.48)

By inverting this matrix, the projectors P̂j can be expressed as sums of the

integral operators µ̂k. This implies that the projectors themselves are integral

operators, with kernels given by the corresponding sum of the µ̂k operators’
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kernels. In particular, the reproducing kernel J (·, ·), the integral kernel of

the identity operator, may be found by expressing the latter as

1 = 1T P̂ = 1TM−1µ̂ (7.49)

where 1 ≡ [1, 1, · · · , 1]T , and all operators are taken to be identically zero

when restricted to the unphysical subspace.

Motivated by explicit inversions of M for small particle numbers N , it was

found that the matrix with entries

(
M−1

)
jk

=

(−1)
j+k

2
Γ
(
j + d

2

)
Γ
(
j + d−3

2

) Γ
(
j+k+d−3

2

)
k!
(
j−k

2

)
!

2 | (j + k) and k ≤ j

0 2 - (j + k) or k > j.

(7.50)

indeed yields the identity when multiplied by M . Left multiplying by 1T , as

in Eq. (7.49), amounts to summing up the columns of M−1 and can be done

analytically, yielding a row vector vT with components vn = (−1)(N+n)/2

Γ
(
N+n+d

2

)
/n!
(
N−n

2

)
! for N + n even and zero otherwise. Putting this,

Eq. (7.49), and the definitions of the µ̂k and J (·, ·) together finally yields

J (Ω,ρ) =
(

2π
d
2

)−1
N∑
n=s

′′ (−1)
N+n

2 2n
Γ
(
N+n+d

2

)
n!
(
N−n

2

)
!

(Ω · ρ)n
(
|Ω|2 |ρ|2

)N−n
2

(7.51)

where s is the integer remainder of N divided by 2 and the double dashes

on the summation indicate that n increases in steps of 2. Note that the final

factor of each term identically equals 1 for Ω,ρ ∈ Sd−1, but J (·, ·) may easily

be extended to a function on all of Rd×Rd. From its definition with respect to

λ̂ it can be shown it has to be N -homogeneous in both of its arguments, and

including the above factors is the only way to achieve that without altering

the values on the unit sphere.

We may now explicitly construct the states |κΩ〉. Combining Eqs. (7.47) and
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(7.51) yields

|κΩ〉 =
(

2π
d
2

√
N !
)−1

N∑
n=s

′′ (−1)
N+n

2 2n
Γ
(
N+n+d

2

)
n!
(
N−n

2

)
!

(
â† · â†

)N−n
2
(
Ω · â†

)n |0〉 .
(7.52)

While seemingly computationally intense, this allows us to express any Fock

N -particle Fock state |ψ〉 as a unique state T |ψ〉 in the physical subspace,

again through the relation (T |ψ〉)(Ω) = 〈κΩ|ψ〉.

This concludes the general treatment of the rotor mapping. In the next

chapter we demonstrate how low-dimensional versions of it may be fruitfully

applied to study well-known systems such as the Josephson model and tightly

confined Bose-Einstein condensates of spin-1 and spin-2 species.

Before moving on to applications, it should be remarked that there are still

some open questions about the abstract rotor mapping, which are the subject

of ongoing research. A seemingly very promising direction is attempting to

answer the question of whether performing calculations in the special basis,

yielding the simple resolution of Eq. (7.12) in the rotor setting, is feasible. It

is possible to express λ̂ as a function of the Laplacian ∇2 and identify linear

combinations of Ωα and ∇α with simple commutation relations with respect

to arbitrary functions of the Laplacian. This allows one to derive an analogue

of the second desired property on page 84, which is expressed with respect to

the original rotor basis in Eq. (7.28), for the new basis. At this preliminary

stage it appears that the cost of the simple induced inner product is that the

Hamiltonian picks up a somewhat complicated function of the Laplacian,

but one that the aforementioned simple commutation relations nevertheless

make surprisingly manageable.
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8
Low-dimensional applications

of the rotor mapping

In this chapter, the rotor mapping, whose abstract properties were introduced

in Sec. 7.3 of the previous chapter, is applied to several well known systems

with a small number of modes, in order to demonstrate the mapping’s utility.

The systems considered are the double-well Bose-Hubbard Hamiltonian, a

tightly-confined condensate of spin-1 atoms, and one of spin-2 atoms, covered

in successive sections of this chapter. The results of the spin-2 section also

provide the foundation for the more specific treatments within Chapters 9

and 10.

Before turning to the concrete applications, it is advantageous to state a rule

of thumb for finding the single-particle basis in which the rotor Hamiltonian

is expected to take the simplest, most manageable form. As remarked in

the discussion motivating the choice of integration measure above Eq. (7.25),

single-particle bases related by orthogonal transformations induce overcom-

plete rotor bases related to each other by rotations, and can thus largely be

considered equivalent, while there is no such simple picture for general uni-

tary transformations. The choice of a basis up to orthogonal transformations
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therefore appears rather important.

Consider now a d-mode Hamiltonian and arrange the annihilation opera-

tors into a vector â = [â1, â2, · · · , âd]T . We will be dealing with particle-

conserving Hermitian Hamiltonians. These may always be expressed as sums

of products of building blocks of the form â†H iâ with some matrices H i. The

rule of thumb then states that we should find a new basis b̂ ≡ U â, with U

a unitary matrix, such that as many as possible of the transformed matrices

Ai ≡ UH iU † are as close as possible to completely imaginary and antisym-

metric matrices. This is desirable as â†Aâ with completely imaginary and

antisymmetric A are mapped onto sums of well-behaved generalised angular-

momentum operators, L̂αβ = −i (Ωα∇β − Ωβ∇α), under the rotor mapping.

More complicated terms, for example squares of such bilinears, should gen-

erally be given priority.

In tightly-confined bosonic spin-F mappings, i.e., F ∈ N, this turns out to

be possible on representation-theoretic grounds. The most complicated term

of the Hamiltonian is typically proportional to â†F iâ â†F iâ, with an implied

summation over i. F i are spin-F matrices. These are generators of the spin-

F representations of SU(2), the double cover of SO(3). It is well known that

the bosonic SU(2) representations map points of SU(2), corresponding to the

same underlying element of SO(3), to the same matrix. These representations

can thus also be thought as those of SO(3), a real group. By virtue of this

they are guaranteed to admit a basis in which all the F i generate orthogonal

matrices, meaning that they themselves are imaginary and antisymmetric.

In practical terms, familiar to most physicists, this basis may be constructed

in analogy to transforming the three-dimensional spherical harmonics YFm,

with m = −F,−F + 1, · · · , F , into their everywhere-real superpositions.

8.1 The double-well Bose-Hubbard model

Consider a system of N scalar particles with repulsive interactions in a pair

of potential wells such that there is some tunnelling between them. In the

context of condensates, this setup could be constructed by optical means,

making the system well described by an effective Bose-Hubbard Hamiltonian,

104



as outlined in Sec. 1.2 of the introduction. We take the Hamiltonian to be

Ĥ =
U

2
[n̂1 (n̂1 − 1) + n̂2 (n̂2 − 1)]− J

(
â†1â2 + â†2â1

)
(8.1)

where âi are the annihilation operators for particles on the i-th site, i =

1, 2, n̂i = â†i âi are the respective particle number operators, and U and J

are positive constants parametrising the repulsive interaction and inter-site

hopping, respectively.

Before tackling its spectrum through the rotor mapping, let us remark on

the more traditional, low-energy treatment of the model. This consists of

letting âi = eiϕ̂i
√
n̂i, either directly as operators or by first reverting to a

classical Hamiltonian and subsequently imposing the commutation relations

[n̂i, ϕ̂j] = iδij. The exact form of the Hamiltonian expressed with these

hydrodynamic variables is not easy to work with, but keeping the highest-

order terms in N when this is large yields

ĤJ = −JN cos 2ϕ̂+
U

4
n̂2, (8.2)

equivalent to the Hamiltonian of the Josephson model.54,7 Here ϕ̂ ≡ 1
2

(ϕ̂1 − ϕ̂2)

and n̂ ≡ n̂1 − n̂2, implying [n̂, ϕ̂] = i. By treating n̂ as i∂ϕ, finding the spec-

trum becomes equivalent to solving the one-dimensional Schrödinger equa-

tion for a particle with mass 2/U moving in a potential V (ϕ) = −JN cos 2ϕ.

To find the periodicity condition for the resulting wave functions, first in-

troduce the variable ϕT ≡ 1
2

(ϕ1 + ϕ2). Wave functions can be considered

as functions of either ϕ1 and ϕ2, or ϕ and ϕT . Any wave function can be

expanded in terms of a separable basis of states satisfying the constraint

n̂1 + n̂2 = i∂ϕ1 + i∂ϕ2 = N . We denote its members by

ψn1,n2 (ϕ1, ϕ2) = exp [−i (n1ϕ1 + n2ϕ2)] = exp [−i (NϕT + nϕ)] (8.3)

where n = n1 − n2. Since the spectra of n̂1,2 consist of positive integers, any
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wave function can be expanded, for a set of complex coefficients ck, as

ψ (ϕ1, ϕ2) =
N∑
k=0

ckψk,N−k (ϕ1, ϕ2) = e−iNϕT

N∑
k=0

cke
i(N−2k)ϕ

≡ e−iNϕTψeff(ϕ). (8.4)

This completely fixes the ϕT dependence, effectively eliminating the vari-

able from the problem, consistent with its absence from Hamiltonian (8.2).

Furthermore, the definition of ψeff above indicates that an appropriate peri-

odicity condition is ψeff(ϕ+ π) = (−1)Nψeff(ϕ).

The spectrum of the above problem closely approximates that of the original

double-well problem for large particle numbers N . The rotor mapping, how-

ever, is exact, regardless of particle number. It was first derived through a

somewhat different procedure, akin to the Bargmann transform of Sec. 7.2,

by Anglin et al.8 The present exposition will put more emphasis on the me-

chanics of the rotor mapping that may be generalised to arbitrary dimensions.

Let us first transform Hamiltonian (8.1) into a form allowing us to make con-

tact with the rule of thumb for finding an optimal single-particle basis for

the mapping, set out in the opening of the chapter. Since n̂1 + n̂2 = N is

constant, the interaction term equals

ĤI ≡ −UN
2

+
U

2

[
n̂2

1 + n̂2
2

]
= −UN

2
+
U

4

[
(n̂1 + n̂2)2 + (n̂1 − n̂2)2]

=
UN

4
(N − 2) +

U

4

(
â†σzâ

)2
(8.5)

where σz = diag (1,−1) is the third Pauli matrix and â = [â1, â2]T . Up to a

constant, the full Hamiltonian then reads

Ĥ =
U

4

(
â†σzâ

)2 − Jâ†σxâ (8.6)

where σx = ( 0 1
1 0 ) is the first Pauli matrix. According to the rule of thumb

one should try to antisymmetrise the first term. A new single-particle basis
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achieving this is readily found as:∗

b̂x =
â1 + â2√

2
and b̂y = −i

â1 − â2√
2

. (8.7)

In the new basis the Hamiltonian reads

Ĥ =
U

4

(
b̂†σyb̂

)2

− J b̂†σzb̂. (8.8)

where σy = ( 0 −i
i 0 ) is the remaining second Pauli matrix. Employing the

general formalism of the previous chapter and defining

|Ω〉 ≡ 1√
N !

(
Ω · b̂†

)N
|0〉 and |ψ〉 =

∫
S1

dΩψ(Ω) |Ω〉 , (8.9)

where b̂ =
[
b̂x, b̂y

]T
and Ω = [Ωx,Ωy]

T , allows one to apply the general

mapping rule in Eq. (7.36) to obtain the rotor Hamiltonian

Ĥ =
U

4
L̂2
xy − J (N + 2) Ω̂TσzΩ̂ + JΩ̂Tσz∇. (8.10)

After this stage, working with the constrained Euclidean coordinates Ω does

not really offer any advantages, due to the simplicity of the circle, and the

above Hamiltonian simplifies when expressed with respect to the angular

coordinate ϕ. One has Ω = [cosϕ, sinϕ]T , ∇ = [− sinϕ∂ϕ, cosϕ∂ϕ] and

L̂xy = −i∂ϕ. Furthermore, this implies ΩTσzΩ = cos 2ϕ and ΩTσz∇ =

− sin 2ϕ∂ϕ, so that Hamiltonian (8.10) is equivalent to

Ĥ = −U
4
∂2
ϕ − J (N + 2) cos 2ϕ̂− J sin 2ϕ̂ ∂ϕ. (8.11)

At first sight the last term of Ĥ does not look Hermitian. The truth is

that the notion of Hermiticity depends on the inner product, and the last

term indeed is Hermitian with respect to the induced rotor inner product,

∗One may again follow representation-theoretic reasoning for the basis, although it is
hardly illuminating in this case, given the simplicity of the problem. σz can be taken
to generate a reducible representation of U(1), a direct sum of the ±1 representations.
This is exactly the complexification of the fundamental real representation, so a similarity
transform between the two may be found.
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〈φ|ψ〉 =
∫∫

dϕ1dϕ2 φ
∗(ϕ1) cosN (ϕ1 − ϕ2)ψ(ϕ2). However, the spectrum of

an operator does not depend on the inner product, so one is allowed to

work with the simpler single-integral inner product when diagonalising Ĥ.

The latter is not Hermitian with respect to the standard inner product, but

in the case of the double-well rotor Hamiltonian, a simple Hermitianising

transform may be found.8 Letting Ŝ = J
U

cos 2ϕ̂, the Hermitian Hamiltonian

is obtained as

Ĥ′ = e−ŜĤeŜ = −U
4
∂2
ϕ − J (N + 1) cos 2ϕ̂+

U2

J
sin2 2ϕ̂ (8.12)

The large-N limit of the above Hamiltonian can be seen to agree with the

Josephson Hamiltonian of Eq. (8.2), and also possesses the same periodicity

conditions, due to the general (anti)symmetrisation requirements of the rotor

mapping. Hamiltonian (8.12) is, however, exact for arbitrary N .

8.2 Tightly confined spin-1 condensates

Tightly confined spin-1 condensates obey the SMA Hamiltonian introduced

in Eq. (6.1). Due to the fixed number of particles N and the fact that g2 = 0

for spin-1, the Hamiltonian may be rewritten as

Ĥ =
g1

2N
F̂ 2 − qâ†0â0

F̂ i ≡ â†F iâ for i = x, y, z (8.13)

where â = [â1, â0, â−1] and F i are the spin-1 matrices, given by:

F x =
1√
2

0 1 0

1 0 1

0 1 0

 F y =
i√
2

0 −1 0

1 0 −1

0 1 0

 F z =

1 0 0

0 0 0

0 0 −1

 .

(8.14)

Applying the general basis-simplifying rule of thumb is particularly rewarding

in this case. Choosing the new operators as

b̂x = − â1 − â−1√
2

, b̂y = −i
â1 + â−1√

2
, and b̂z = â0 (8.15)
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and arranging them into a vector b̂ =
[
b̂x, b̂y, b̂z

]T
allows one to express

F̂ i = b̂†M ib̂ with (M i)jk = −iεijk, where ε is the Levi-Civita tensor. Even

more concisely, F̂ = −ib̂† × b̂.

This also gives the overcomplete rotor basis |Ω〉 = 1√
N !

(Ω · b̂†)N |0〉 an addi-

tional interpretation as the degenerate family of ground states at the mean-

field level for an antiferromagnetic condensate at zero external field,89 i.e.,

with c1 > 0 and p = q = 0 in the notation of Eq. (5.4). In other words,

members of the rotor basis correspond to the spatial rotations of the polar

states (5.7) or (5.8).† Recalling that polar states have Majorana representa-

tions consisting of two diametrically opposite points, these can even be seen

to be given by ±Ω for the state |Ω〉.

Under the rotor mapping, the F̂ i map onto −L̂i, the i-th component of the

three-dimensional angular momentum, and F̂ 2 onto L̂2 = −∇2. Performing

the mapping, in complete analogy with the previous section, we obtain

Ĥ = − g1

2N
∇2 − q (N + 3) Ω̂2

z + q Ω̂z∇z. (8.16)

We will again benefit by changing to spherical coordinates with

Ω = (sin θ cosϕ, sin θ sinϕ, cos θ) and ∇z = − sin θ ∂θ. (8.17)

The final term is again not Hermitian with respect to the standard inner

product on the sphere. Fortunately, in this case too there turns out to

exist a simple Hermitianising similarity transform.12 This time letting Ŝ =
qN
4g1

cos 2θ̂, we obtain

Ĥ′ = e−ŜĤeŜ = − g1

2N
∇2 + q

(
N +

3

2

)
sin2 θ̂ +

q2N

8g1

sin2 2θ̂ (8.18)

†This can be seen from the mean-field energy expression in Eq. (5.4). Working in the

present b̂ basis, the c-number vector χ is replaced by Ω and the spin expectation value
becomes F = −i Ω∗ ×Ω = 0, where the last equality follows on account of Ω being real.
At zero external field the mean-field energy is simply equal to c1n

2 F
2. Since c1 > 0 and

F 2 ≥ 0, on account of F̂ ’s Hermiticity, the expression is obviously minimised by the |Ω〉
states.
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where the final two terms represent an effective potential. Note that nei-

ther the Hamiltonian nor the similarity transform depend on the azimuthal

angle ϕ. A derivative with respect to it appears in the Laplacian, ∇2 =

sin−1 θ ∂θ (sin θ ∂θ) + sin−2 θ ∂2
ϕ. F̂ z can be shown to map onto −L̂z = i∂ϕ un-

der the rotor mapping, and restricting to an F̂ z eigenspace with eigenvalue

m allows one to replace the second term of the Laplacian by −m2 sin−2 θ.

This reduces the problem to a single dimension, parametrised by θ ∈ [0, π],

vastly simplifying calculations.

Let us also remark that for the particular Hamiltonian (8.13), the first

(N + 1) (N + 2) /2 lowest-energy eigenstates span the rotor’s physical sub-

space, while all higher-energy eigenstates are unphysical and map to zero, as

can be demonstrated by an elegant perturbative argument.12

Finally, the rotor mapping Hamiltonian (8.18) may be applied to finding

the spectra in different regimes of the parameters N and q/g1. In accordance

with the results presented in Chapter 6, for N−2 � q/g the Hamiltonian may

be expanded about the pole, θ = 0, yielding an effective isotropic harmonic

oscillator Hamiltonian. The mode energy is close to q when q/g1 � 1 and

close to
√

2g1q when N−2 � q/g1 � 1. Both of these results may be derived

through Bogoliubov theory.

The regime q/g1 � N−2 is, however, inaccessible to Bogoliubov theory due

to the emergence of a very-low-energy mode, driving up the depletion. It

is nevertheless treatable through the rotor mapping and yields, to a good

approximation, the spectrum of the free rotor, E` = g1

2N
` (`+ 1) with degen-

eracies 2` + 1, for ` taking values of the same parity as N between 0 and

N .

8.3 Tightly confined spin-2 condensates

In the spin-2 case, the single mode Hamiltonian retains its full form (6.1):

Ĥ =
g1

2N
F̂ 2 +

g2

2N
Â†Â+ qẐ

F̂ i ≡ â†F iâ for i = x, y, z, (8.19)
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where â = [â2, â1, â0, â−1, â−2] and F i are now the spin-2 matrices. Recall

from Eq. (5.3d) that Â = 2â2â−2 − 2â1â−1 + â0â0. The spin-2 matrices are

given by

F x =
1

2


0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2

0 0 0 2 0

 F y =
i

2


0 −2 0 0 0

2 0 −
√

6 0 0

0
√

6 0 −
√

6 0

0 0
√

6 0 −2

0 0 0 2 0



F z =


2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

 . (8.20)

The quadratic Zeeman operator is given by Ẑ = â† (F z)2 â.

The Cartesian basis, antisymmetrising the spin matrices, is given by:

b̂1 = â0

b̂2 =
i√
2

(â1 + â−1)

b̂3 =
1√
2

(â−1 − â1)

b̂4 =
i√
2

(â−2 − â2)

b̂5 =
1√
2

(â2 + â−2)
(8.21)

In the new basis, the spin operators become F̂ i = b̂†M ib̂, where the M i are
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given by

Mx = −i


0

√
3 0 0 0

−
√

3 0 0 0 −1

0 0 0 1 0

0 0 −1 0 0

0 1 0 0 0

 My = −i


0 0

√
3 0 0

0 0 0 1 0

−
√

3 0 0 0 1

0 −1 0 0 0

0 0 −1 0 0



M z = −i


0 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 0 2

0 0 0 −2 0

 . (8.22)

We also denote Q ≡ (M z)2 = diag (0, 1, 1, 4, 4). The quadratic Zeeman

operator becomes Ẑ = b̂†Qb̂.

The matrices above, while imaginary and antisymmetric, display a lot less

regularity compared to those of the spin-1 problem, and are somewhat more

difficult to work with. This is likely due to the spin-1 representation being

similar to the fundamental representation of SO(3), which is also its adjoint

representation, while the spin-2 representation is similar to the traceless sym-

metric representation, which is rather undistinguished.

We proceed as in the previous sections, namely by constructing the overcom-

plete basis

|Ω〉 =
1√
N !

(
Ω · b̂†

)N
|0〉 (8.23)

where Ω is a norm-1 5-component real vector, i.e., belonging to the 4-sphere

S4.

Like in the spin-1 case, members of the basis minimise the mean-field energy

in a certain region of the phase diagram. For spin-2 this turns out to be

the nematic region, and members of the rotor basis are correspondingly the

spatial rotations of nematic mean-field states, characterised by the order

parameter Ψn(η) =
(

sin η√
2
, 0, cos η, 0, sin η√

2

)T
of Eq. (5.12). The connection

with the Majorana representation is more obscure than for the spin-1 case,
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but the following exact statement can be made: each distinct mean-field state

with an order parameter of the form R(g)Ψn(η) (where g ∈ SO(3) ranges over

all rotations and R(g) is the matrix corresponding to g in the 5-dimensional

representation), can be expressed in the form of Eq. (8.23) with Ω belonging

to exactly one pair of diametrically opposite points on the 4-sphere.

Again taking into account the general bilinear rotor mapping rule in Eq. (7.36)

we find

F̂ x → −
(√

3 L̂12 − L̂25 + L̂34

)
F̂ y → −

(√
3 L̂13 + L̂24 + L̂35

)
F̂ z → −

(
L̂23 + 2 L̂45

)
Â†Â → ∇2 +N2 + 3N (8.24)

Assembling these transformations as appropriate for the full Hamiltonian (8.19)

finally yields

H =
g2

2N
∇2 +

g1

2N
M̂ 2 + q (N + 5) Ω̂TQ Ω̂− q Ω̂TQ∇,

M̂ i ≡ Ω̂TM i∇ = − i

2
M i

αβL̂αβ for i = x, y, z. (8.25)

When q = 0, the resulting Hamiltonian is Hermitian with respect to the

standard inner product over the 4-sphere, with the ground state uniformly

delocalised about the sphere. Given the previously derived spectrum at

q = 0,60,131 summarised in Sec. 6.3, this is seen to correspond, loosely speak-

ing, to a condensate of singlet pairs. It is interesting to comment on this

result in light of the recent publication by Jen and Yip52 who pointed out

that, even though näıve averaging of nematic states over rotations in all of

SO(3) produces the correct spin-singlet ground state for confined antifer-

romagnetic spin-1 bosons, extending this to spin-2 does not work, as the

singlet is no longer unique in this case.‡ The rotor mapping demonstrates

‡More precisely, for a given even number of particles there is a unique spin-1 many-body
singlet state, composed of spin-singlet pairs. In the spin-2 setting, an additional building
block for many-body singlets emerges, a spin-singlet trio. For a fixed particle number there
are now generally several non-equivalent many-body singlet states, composed of different
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that the correct state can in fact be obtained by averaging over the associated

4-sphere.

In the general case, the obtained Hamiltonian is not Hermitian with the

standard inner product. Unlike with the double-well Bose-Hubbard Hamil-

tonian or the analogous spin-1 case, the angular momentum terms of the

Hamiltonian appear too complicated for a simple Hermitianising similarity

transform, depending only on the position operators Ω̂α, such as those of

Eqs. (8.12) and (8.18), to exist. It may, however, be found exactly when

g1 = 0, and approximately when N |q| � |g1,2| This is the topic of the next

chapter.

As remarked at the end of chapter 7, one may obtain a Hamiltonian, Her-

mitian with respect to the standard inner product, by working from the

start in the special basis (7.12). This would also have the advantage that

it would Hermitianise rotor Hamiltonians derived from any Hermitian Fock-

space Hamiltonian. Working with the special basis is the subject of ongoing

research. The corresponding algebra appears rather involved, but displays

interesting features that may, hopefully, ultimately make the special basis

feasible to work with.

numbers of spin-singlet pairs and trios.
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9
Effects of the quadratic

Zeeman effect on tightly

confined spin-2 atoms

In this chapter, analytical and numerical results elucidating the response

of tightly confined spin-2 atoms to an applied quadratic Zeeman field are

presented. The problem has previously evaded an analytical description.

The latter is obtained through an application of the rotor mapping, whose

abstract properties were introduced in Sec. 7.3 and example applications

described in Chapter 8. This chapter also builds upon Sec. 8.3 of the previous

chapter which introduces the necessary algebra for the tightly-confined spin-2

mapping.

The numerical results were obtained through a surprisingly successful exact-

diagonalisation scheme, which is briefly presented first. In Sec. 9.2, the Her-

mitianising transform at g1 = 0 is described. Then, in Sec. 9.3, the approx-

imate Hermitianising transform for the N |q| � |g1,2| regime is introduced,

separately for each sign of q. This yields effective low-energy spectra, and is

further applied to finding ground-state overlaps with limiting large-|q| ground

115



states in Sec. 9.4.

9.1 Exact diagonalisation

Due to the effective spatial 0-dimensionality of the tightly bound system

our problem is that of diagonalising a five-mode many-body Hamiltonian.

By further fixing N and Fz, the relevant Fock bases may be enumerated

by three independent occupation numbers. The sizes of the bases hence

scale as N3 with particle number N , making it quite feasible to diagonalise

Hamiltonian (8.19), or at least find the ground state and its energy, at fixed

values of g1,2, q, Fz and N with regular desktop hardware on timescales on

the order of hours for up to about 300 particles.

Denoting Fock states by

|n2, n1, n0, n−1, n−2〉 ≡
2∏

m=−2

â†nmm√
nm!
|0〉 , (9.1)

one way of enumerating the entire Fock basis for fixed N and Fz is by consid-

ering n2, n1 and n−2 as independent variables and letting n0 = N+Fz−3n2−
2n1 +n−2 and n−1 = 2n2 +n1− 2n−2−Fz. The ranges of the independent n

variables are cumbersome to state but can easily be found programmatically.

What remains is expressing the terms of Hamiltonian (8.19) with respect

to this basis and diagonalising the resulting sparse matrices, which can be

accomplished with standard numerical packages.

9.2 Hermitianising transform at g1 = 0

In this special case the Hamiltonian H of Eq. (8.25) simplifies considerably

as M̂ 2, arguably its most complicated term, is not present. We assume the

correct similarity transform is of the form eŜ where Ŝ = S(Ω̂) is a function of

the position operators only. We seek S such thatHH
0 ≡ e−ŜHeŜ is Hermitian.

The Ω̂TQΩ̂ term of Eq. (8.25) is invariant under this transformation. The

Laplacian transforms as e−S∇2eS = ∇2 +(∇2S)+ |∇S|2 +2(∇S)T∇ and the
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final non-Hermitian term of Eq. (8.25) picks up a Hermitian −qΩTQ(∇S)

term, where hats on operators were suppressed for clarity. Gathering the

evidently non-Hermitian terms and demanding that their sum be zero yields

the condition (g2

N
(∇S)T − qΩTQ

)
∇ = 0. (9.2)

While one could make progress by formally solving a differential equation

for S on the 4-sphere derived from the above, we avoid the tedious aspects

of doing so by positing that S(Ω) = ΩTXΩ for some matrix X. Inserting

the ansatz into condition (9.2) and recalling that Ω̂ ·∇ = 0, we see that

X = qN
2g2
Q indeed satisfies the condition. By defining ρa ≡

√
Ω2

2 + Ω2
3 and

ρb ≡
√

Ω2
4 + Ω2

5 this may be put into simple terms as S(Ω) = qN
2g2

(ρ2
a + 4ρ2

b).

After expanding out S in the remaining terms added by the transformation,

the final Hamiltonian is found to be

ĤH
0 =

g2

2N
∇2 + q

(
N +

5

2
− qN

2g2

)
ρ̂2
a

+ 4q

(
N +

5

2
− 2qN

g2

)
ρ̂2
b +

q2N

2g2

(
ρ̂2
a + 4ρ̂2

b

)2
(9.3)

9.3 Large N |q| limits

9.3.1 Large positive Nq regime

For large positive Nq, the dominant qẐ = qâ†α(F z)2
αβâβ term in Hamiltonian

(8.19) is minimised for the state

a†N0 |0〉 = b†N1 |0〉 =
1

2

∫
S4

d4Ω (sgn Ω1)N
5∏
i=2

δ(Ωi) |Ω〉 , (9.4)

suggesting∗ that the low-lying exact eigenstates are tightly localised about

the Ω1 = ±1 poles. As discussed in Sec. 7.3, the wave function has to have

∗This state minimises the qẐ term among all states with N particles, without regard to
fixing Fz. The state obviously has Fz = 0, as does the limiting state (9.12) in the negative
q regime, suggesting the F̂z null space as a particularly natural choice. We consider Fz to
be fixed at 0 for the remainder of Sec. 9.3.
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parity (−1)N , so we may restrict our attention to the region about one of the

poles and infer the wave function’s behaviour about the other by symmetry.

Choosing to expand about the Ω1 = +1 pole motivates the reparametrisation

Ω = (
√

1− x2,x)T . (9.5)

The indices of x are taken to run from 2 to 5 to avoid excessive arithmetic

in subscripts. Next assume that low-lying states are of the form

ψn(x) = hn(x)e−
N
2
xTΓx (9.6)

where n is a generic (multi)index label, Γ = diag (γ2, ..., γ5) is some diago-

nal matrix, and hn are some residual functions of sub-exponential growth,

such as, for example, Hermite polynomials. The overall factor of N was

extracted for later convenience. The diagonal elements of NΓ can be in-

terpreted as inverse squared oscillator lengths ξi0 for the i-th direction, i.e.,

Nγi = ξ−2
i0 . The assumption of tight localisation amounts to the condition

ξi0 � 1, which has to be checked for consistency at the end of the calculation.

Since
〈
xni ∂

m
j

〉
. ξni0/ξ

m
j0,† this allows us to simplify the Hamiltonian (8.25) by

keeping only the lowest ξi0 terms multiplied by each of g1,2

N
, q, and Nq.

The goal now is to express Hamiltonian (8.25) in terms of xi and ∂i ≡ ∂
∂xi

.

The former follows from the coordinate definitions in Eq. (9.5), while the

latter follows from computing the spherical gradient components ∇α, as in-

troduced in Sec. 7.3.1, expressed in terms of the new coordinate system. This

leads to

∇1 = −
√

1− x2 x · ∂
∇i = ∂i − xi x · ∂ for i > 1 (9.7)

Carrying out the necessary index algebra and truncating at the lowest order

†Due to wave function parity such expectation values may be much less or even vanish,
but the stated quantity is the upper limit on their order of magnitude.
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ξi0 terms yields the simple expressions

∇2 ' ∂ · ∂ ΩTQΩ ' xTQ′x
M 2 ' −3

(
∂2

2 + ∂2
3

)
ΩTQ∇ ' xTQ′∂ (9.8)

where Q′ ≡ diag (1, 1, 4, 4) is Q with the first row and column omitted.

Putting this all together and letting p̂i = −i ∂i, we obtain an approximate

Hamiltonian Ĥ+ =
∑5

i=2 Ĥi where

Ĥi =
Ai
2N

p̂2
i +

NBi

2
x̂2
i − iCix̂ip̂i. (9.9)

The various constants in this Hamiltonian are as follows:

A2,3 = 3g1 + |g2| A4,5 = |g2|
C2,3 = q C4,5 = 4q

Bi = tNCi νi ≡ Ci/Ai

tN ≡ 2 + 5/N (9.10)

The quantities tN and νi are introduced for the purpose of later notation.

This allows us to treat each direction individually. Following reasoning analo-

gous to that of Sec. 9.2 and applying the similarity transform ĤH
+ = e−ŜĤ+eŜ

with Ŝ = −N∑i νix̂
2
i /2, we obtain a Hermitian sum of four independent

harmonic oscillator Hamiltonians, i.e., a Hamiltonian with terms of the same

form as Eq. (9.9), but with new constants A′i = Ai, B
′
i = Bi + C2

i /Ai and

C ′i = 0.

This allows us to simply read off mode energies and oscillator lengths. They

are given by

∆Ei = Ci
√

1 + tN/νi,

ξ−2
i = Nνi

√
1 + tN/νi,

Nγi = ξ−2
i0 = Nνi

(
1 +

√
1 + tN/νi

)
, (9.11)

where ξi are the oscillator lengths of the Hermitianised Hamiltonian whereas

ξi0 are those of the original non-Hermitian Hamiltonian. The solutions are
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indeed of the form assumed in Eq. (9.6). Referring to Eq. (9.10) allows

us to verify that ξi0 � 1 and thus the consistency of our approach when

Nq � |g1,2|.

The obtained mode energies agree very well with the numerically obtained

spectrum. As an illustration, the largest relative discrepancy among the

100 lowest analytically and numerically obtained energies at N = 100, g1 =

|g2|, q = 100|g2| is 1.1 percent. The accuracy of the oscillator lengths, or

rather the wave functions in general, is discussed in Sec. 9.4. A sketch of the

large-positive-Nq rotor ground state is shown in Fig. 9.1.

It is interesting to note that the four modes agree exactly with the continuum

Bogoliubov mode energies at zero momentum, minus the density mode.118

The author believes this to be a non-trivial result as the number of particles

N does not necessarily have to be large. Nevertheless, the limiting state

about which we are expanding is of the mean-field form.

The rotor framework is also capable of describing excitations about frag-

mented states. This is demonstrated in the following subsection. As stated

previously, such excitations are outside the reach of conventional Bogoliubov

analysis.

9.3.2 Large negative Nq regime

For large negative values of Nq, i.e., when −Nq � |g1,2|, the dominant qẐ

term in Hamiltonian (8.19) is minimised for the state(
â†2â

†
−2

)N/2
|0〉 ∝

∫
dϕ
(

eiϕa†2 + e−iϕa†−2

)N
|0〉 (9.12)

∝
∫

dϕ
(

cosϕ b†4 + sinϕ b†5

)N
|0〉

∝
∫

d4Ω δ (Ω1) δ (Ω2) δ (Ω3) |Ω〉

Note that the first line of the above equation clearly demonstrates that we are

working with a fragmented state, with two macroscopically occupied single-

particle states for large N . As mentioned before, the rotor mapping is of
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Ω1

Ω4 Ω5

Figure 9.1: A schematic representation of the ground state wave function at large positive
Nq. Brighter, more opaque colours represent areas of greater wave-function magnitude. The
Ω2 and Ω3 coordinates are omitted and considered set to 0, but the wave function is localised
in both of them as well.

particular utility here.

An appropriate reparametrisation in this case is

Ωi = xi for i = 1, 2, 3,

(Ω4,Ω5) =
√

1− x2 (cosϕ, sinϕ) , (9.13)

where we have reused the label x from the Nq � |g1,2| case for three of the

coordinates and introduced the angular variable ϕ as the fourth. Further

reusing notation from the previous subsection, we assume low-energy states

can be written as

ψn(x, ϕ) = hn(x, ϕ)e−
N
2
xTΓx, (9.14)

in analogy with Eq. (9.6) for large positive Nq. Here hn is of subexponential

growth in |x| and periodic in ϕ, and Γ = diag (γ1, γ2, γ3). We again assume

the ξi0 ≡ (Nγi)
−1/2 are small, allowing us to keep only the lowest ξi0 terms,

multiplied by each of g1,2

N
, q and Nq. Additionally, we assume that the wave
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function is not localised in the ϕ direction, so that ∂ϕ ≡ ∂
∂ϕ

is of order 1, in

the sense that its matrix elements with low-lying states are at most of order

1.

Again let ∂i ≡ ∂
∂xi

and define ∂ ≡ (∂1, ∂2, ∂3). Note that ∂ does not contain

∂ϕ. The gradient components are found to be

∇i = ∂i − xi x · ∂ for i = 1, 2, 3,

∇4 = −
√

1− x2 cosϕx · ∂ − sinϕ√
1− x2

∂ϕ,

∇5 = −
√

1− x2 sinϕx · ∂ +
cosϕ√
1− x2

∂ϕ. (9.15)

Expressing components of Hamiltonian (8.25) in terms of x, ϕ, and their

partial derivatives, and truncating higher-order ξi0 terms yields

∇2 ' ∂ · ∂ ΩTQΩ ' −xTQ′′x
M 2 ' −∂2

2 − ∂2
3 ΩTQ∇ ' −xTQ′′∂ (9.16)

where Q′′ = diag (4, 3, 3) is (4 1 − Q) with the last two columns and rows

omitted. This leads to Ĥ− =
∑3

i=1 Ĥi, with Ĥi of the same form as in

Eq. (9.9) and the relevant constants defined as:

A1 = |g2| A2,3 = (g1 + |g2|)
C1 = 4|q| C2,3 = 3|q|
Bi = tNCi νi ≡ Ci/Ai (9.17)

with tN as in Eq. (9.10). The rest of the calculation proceeds as in the

previous section, again leading to Eq. (9.11) for i = 1, 2, 3, evaluated with

the above constants, and a validation of our assumptions of localised states.

Again, the mode energies are in excellent agreement with the numerics, with

the largest relative discrepancy among the first 100 lowest energies at N =

100, g1 = |g2|, q = −100|g2| equal to 0.16 percent. A sketch of the large-

negative-Nq rotor ground state is shown in Fig. 9.2.
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Ω1

Ω4 Ω5

Figure 9.2: A schematic representation of the ground state wave function at large negative
Nq. Like in Fig. 9.1, the wave function is concentrated in the brighter, more opaque areas,
and is also localised in the omitted Ω2 and Ω3 directions.

9.4 Wave function overlaps

Besides facilitating the analytical derivation of excitation energies, the rotor

mapping also yields insightful information on the wave functions themselves.

The associated 4-sphere often provides a more intuitive picture of the wave

function than the original second-quantised operator picture.

In this section we investigate the overlap of the ground state wave functions,

with arbitrary values of q, with wave functions in the limit of large N |q|.
The ground states are computed in two ways: analytically through the rotor

mapping, and numerically by means of the exact diagonalisation of Sec. 9.1

for modest values of the total particle number. We label the limiting large-
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N |q| ground-state wave functions as

∣∣ψ∞+ 〉 =
1√
N !

(â†0)N |0〉 ,∣∣ψ∞− 〉 =
1

(N/2)!
(â†2â

†
−2)N/2 |0〉 ,

which are appropriate for large positive and large negative Nq, respectively.

The first state has a clear correspondence to the mean-field uniaxial nematic

state oriented along the z-axis, as shown in Fig. 5.2. The second state is

fragmented and can be viewed as an equal-weight superposition of all square

biaxial nematic states lying in the xy plane, as is evident from Eq. (9.12).

One may also view
∣∣ψ∞− 〉 as the Fz = 0 component of any of these mean-field

ground states. For large positive or negative Nq, one expects a large overlap

of the ground state with
∣∣ψ∞+ 〉 or

∣∣ψ∞− 〉, respectively. On the other hand, for

moderate Nq, one may ask if any relic of the order-by-disorder phenomenon

present in the continuum case, as indicated in Fig. 5.2, remains.

The simplest expressions for the overlaps may be obtained in the regime

where N � 1 and |q| is not much smaller than either |g1| or |g2|, to which we

restrict in the following. This is slightly more restrictive than the condition

of the previous section, namely, N |q| � |g1,2|. For the case when N |q| �
|g1,2|, but N is not large compared to unity, the analysis is complicated by

the interplay between asymptotic series convergence and the applicability of

extending Gaussian integration limits to infinity.

Define the overlap of two possibly unnormalised states |a〉 and |b〉 as (a|b) ≡
|〈a|b〉| /

√
〈a|a〉 〈b|b〉. States are completely determined by their wave function

in the overcomplete basis and we follow the usual convention of labelling

states of the original Hamiltonian by the same label as their rotor wave

functions, that is

|ψ〉 ≡
∫
S4

dΩψ(Ω) |Ω〉 . (9.18)

Label the ground states as obtained through the rotor mapping by
∣∣ψR
±
〉
.

The sign in the subscript indicates whether Hamiltonian (8.25) was expanded

about the large-positive- or large-negative-Nq limiting state. Label the nu-
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merically obtained ground states by
∣∣ψN
〉
.

While the overcompleteness of the basis did not manifest itself significantly

in calculating the spectrum, it does affect calculations involving the eigen-

functions. In the thermodynamic limit, one can express this inner product in

terms of delta functions on the four-sphere. However, for finite N , overlaps

must be computed by means of the standard rotor inner product, discussed

at length in Sec. 7.3, involving double integrals over the 4-sphere:

〈ψa|ψb〉 =

∫
S4

dΩ1

∫
S4

dΩ2 ψ
∗
a(Ω1)ψb(Ω2) (Ω1 ·Ω2)N (9.19)

Case of positive q

Here we reuse the x coordinates of Sec. 9.3.1, as defined in Eq. (9.5). We

integrate over only half of the 4-sphere, as this is less cluttered by triv-

ial (anti)symmetrisations. The relevant wave functions in the rotor pic-

ture (9.18) are ψ∞+ (x) = δ(4)(x) and ψR
+(x). The latter is of the form

of Eq. (9.6) with hn equal to 1, i.e., ψR
+(x) = exp

(
−N

2
xTΓx

)
, with Γ =

diag (γ2, γ3, γ4, γ5) and γi as expressed in Eq. (9.11), evaluated at the values

given by Eq. (9.10).

In the new coordinates, we have dΩ = dx/
√

1− x2, and the dot product

between vectors on the four sphere is expressed as

Ω1 ·Ω2 =
√

(1− x2
1) (1− x2

2) + x1 · x2. (9.20)

Assuming tight localisation about x = 0, the main contribution to the in-

tegral (9.19) will come from that region and we may extend the boundary

of integration from |x| = 1 to |x| → ∞. The denominator of the new in-

tegration measure varies relatively slowly, so we may set it to its value at

x = 0.
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Due to the simplicity of ψ∞+ , a straightforward calculation yields〈
ψ∞+
∣∣ψ∞+ 〉 = 1 (9.21)〈

ψ∞+
∣∣ψR

+

〉
=

∫
R4

dx
(
1− x2

)N
2 e−

N
2
xTΓx

'
∫

R4

dx e−
N
2
xT (Γ+1)x

=
5∏
i=2

√
2π

N (γi + 1)
. (9.22)

On the third line we approximated 1− x2 ' e−x
2
, permissible on account of

tight localisation.

Evaluation of
〈
ψR

+

∣∣ψR
+

〉
involves the approximation (valid due to the localised

wave functions) Ω1 ·Ω2 =
√

(1− x2
1) (1− x2

2)+x1 ·x2 ' 1− x2
1

2
− x2

2

2
+x1 ·x2 =

1− 1
2

(x1 − x2)2 ≡ 1− y2
2 ' e−y

2
2 where we introduced new integration vari-

ables y1,2 ≡ (x1 ± x2) /
√

2. With these variables and the above approxima-

tion, the integrand becomes exp
[
−N

2

(
yT1 Γy1 + yT2 (Γ + 21)y2

)]
, leading to〈

ψR
+

∣∣ψR
+

〉
=
∏5

i=2
2π
N

[γi (γi + 2)]−1/2 .

Combining the results of the previous paragraph and Eq. (9.22), we find that

the total overlap
(
ψ∞+
∣∣ψR

+

)
can be expressed as a product of contributions

from individual xi-directions and that the i-th direction contributes a factor

of
[
γi(γi+2)

(γi+1)2

]1/4

. Motivated by this, define

u2
i ≡

(γi + 1)2

γi (γi + 2)
=

1

2

(
1 +

νi + 1√
νi (νi + 2)

)
(9.23)

where the rightmost expression was derived by expanding γi in terms of νi as

in Eq. (9.11) and letting tN ≡ 2 + 5/N ' 2. The νi are defined in Eq. (9.10)

and are summarised here for convenience:

νa ≡ ν2,3 =
q

3g1 + |g2|
νb ≡ ν4,5 =

4q

|g2|
. (9.24)
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Since each direction contributes a factor of u
−1/2
i , the total overlap is(

ψ∞+
∣∣ψR

+

)
= u−1

a u−1
b . (9.25)

The overlap
(
ψ∞+
∣∣ψR

+

)
is plotted in the main panel of Fig. 9.3 for N = 200

particles and g1 = |g2|. For comparison, the analogous overlaps (ψ∞± |ψN),

computed with the numerically determined ground state
∣∣ψN〉 for the same

parameter ranges, are also shown. As is expected, both the analytically and

numerically obtained relevant overlaps approach unity for large |q|. To show

that the two agree in more than just this obvious large-q limit, consider their

asymptotic expansions. Let f± = (ψ∞± |ψR±) = 1 +
∑∞

n=1 anq
−n and g± =

(ψ∞± |ψN) = 1 +
∑∞

n=1 bnq
−n. Define ∆± ≡ |f± − g±| = |

∑∞
n=1 (an − bn) q−n|.

The inset of Fig. 9.3 shows that q∆+ tends to zero with increasing q, implying

that our analytical expressions agree with the numerics to at least the first

order in the asymptotic expansion.

Case of negative q

For this subsection, we reuse the x and ϕ coordinates of Sec. (9.3.2), de-

fined in Eq. (9.13). The limiting large-negative-Nq rotor wave function is

ψ∞− (x, ϕ) = δ(3)(x). The finite-q ground-state, as obtained in section 9.3.2,

is ψR
−(x, ϕ) = exp

(
−N

2
xTΓx

)
, with the matrix Γ = diag (γ1, γ2, γ3) as de-

fined underneath Eq. (9.14), and the γ variables as defined in Eq. (9.11),

evaluated at values from Eq. (9.17).

In the new coordinates, one has dΩ = dϕ dx/
√

1− x2 ' dϕ dx, with the last

approximation being permissible on account of localisation, as in the positive

q case. As before, we may extend the x integration boundaries to infinity.

The range of integration in ϕ is from 0 to 2π. The dot product between

vectors on the four sphere is Ω1·Ω2 = cos(ϕ1−ϕ2)
√

(1− x2
1) (1− x2

2)+x1·x2.

Since the considered wave functions do not depend on the ϕ coordinate,

we may simplify integration over ϕ1,2 by a change of variables. Defining

ϕ ≡ ϕ1 − ϕ2 and, say, ϕ′2 ≡ ϕ2 allows us to immediately perform the now
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Figure 9.3: (a) Overlaps of finite-q ground states with the large-|q| limiting states ψ∞± , at
g1 = |g2|, with respect to q/|g2|. The solid blue and dashed red lines show numerically obtained
overlaps,

(
ψ∞±
∣∣ψN

)
, with the uniaxial and biaxial limiting states, respectively. The dash-dotted

yellow and dotted purple lines show the corresponding analytical estimates,
(
ψ∞±
∣∣ψR
±
)
. For

large |q|/|g2| both tend to one or zero. Inset (b) demonstrates that |q|∆±, where ∆± is defined
under Eq. (9.25), tends to zero with increasing |q|, implying that our analytical and numerical
expressions agree to at least first order in asymptotic expansion. The solid blue (dashed red)
line refers to positive-q uniaxial-overlap (negative-q biaxial-overlap) quantities.
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trivial ϕ′2 integral to obtain

〈ψa|ψb〉 = 2π

∫ 2π

0

dϕ

∫∫
R3

dx1 dx2 ψ
∗
a(x1)ψb(x2)×(

cosϕ
√

(1− x2
1) (1− x2

2) + x1 · x2

)N
(9.26)

where ψa,b are any wave functions that do not depend on the ϕ variable, such

as ψ∞− or ψR
−. Using this expression and approximations analogous to those

of Eq. (9.22), the simpler integrals are found to be:

〈
ψ∞−
∣∣ψ∞− 〉 = 2π

∫ 2π

0

dϕ cosN ϕ ≡ N− (9.27)〈
ψ∞−
∣∣ψR
−
〉
' N−

∫
R4

dx e−
N
2
xT (Γ+1)x

= N−
3∏
i=1

√
2π

N (γi + 1)
. (9.28)

To calculate
〈
ψR
−
∣∣ψR
−
〉
, consider again the factor

f ≡
(

cosϕ
√

(1− x2
1) (1− x2

2) + x1 · x2

)N
(9.29)

of Eq. (9.26). Due to the large exponent N , the significant contributions to

the integral will come from regions of maximum | cosϕ|, that is for ϕ ∼ 0

or π. In both regions, we may expand cosϕ to quadratic order and extend

integration boundaries to infinity, yielding a Gaussian integral in δϕ ≡ ϕ−ϕ0

where ϕ0 = 0 or π. Also expanding the square roots and keeping lowest order

terms in x1,2 and ϕ yields

f ' exp

[
−N

2

(
δϕ2 + 2y2

r +
2∑
i=1

yTi ΓyTi

)]
(9.30)

where y1,2 ≡ (x1 ± x2) /
√

2 as in the positive-q case. The label r equals 1

for the ϕ0 = π region and 2 for the ϕ0 = 0 region. The integrals over y1,2 are

equal in both cases, and twice the δϕ integral is in fact approximately equal
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to N− of Eq. (9.28), as can be verified by applying the same approximate

treatment of integration over ϕ to
〈
ψ∞−
∣∣ψ∞− 〉. This leads to

〈
ψR
−
∣∣ψR
−
〉

=

N−
∏3

i=1
2π
N

[γi (γi + 2)]−1/2.

Combining the above results and expressing everything in terms of ui, defined

in Eq. (9.23) and evaluated at

νc ≡ ν1 = 4

∣∣∣∣ qg2

∣∣∣∣ νd ≡ ν2,3 =
3|q|

g1 + |g2|
, (9.31)

summarised after Eq. (9.17), ultimately yields

(
ψ∞−
∣∣ψR
−
)

= u
− 1

2
c u−1

d (9.32)

The main panel of Fig. 9.3 again demonstrates that both numerical and

analytical overlaps tend to 1 with increasing |q| while the inset shows that

the convergence agrees to at least the first order in the asymptotic expansion.
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10
An exact manifestation of

Order by Disorder in tightly

confined spin-2 atoms

One of the outcomes of the analysis in the previous chapter is the complete

absence of the order-by-disorder phenomenon which is present for the con-

tinuum case.116,127 The present chapter briefly explains how and why this

manifests itself through the ground-state overlaps with limiting large-N |q|
states, in Sec. 10.1, and then proposes subjecting the tightly confined con-

densate to an alternative potential, coupling only to single-particle sublevels

with magnetic number m = ±1. A mean-field order-by-disorder selection is

demonstrated for the continuum problem with this new potential in Sec. 10.2.

Section 10.3 then analyses the low-lying spectrum of the tightly bound sys-

tem in the presence of the new potential in the rotor framework. Through

degenerate perturbation theory, an effective Hamiltonian for the classically

degenerate η degree of freedom is derived. This is argued to be an exact,

fully quantum parallel of the continuum order-by-disorder mechanism. Sec-

tion 10.4 then considers rotor ground-state overlaps with the limiting nematic
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mean-field states of the previous chapter, about which the ground states are

localised, and demonstrates that they tend to zero with increasing particle

number N , implying a stark departure from mean-field-like states. Finally,

in Sec. 10.5, magnetic sublevel occupation expectation values are evaluated

in the rotor formalism and shown to agree with the effects of the continuum

order-by-disorder mechanism.

10.1 Lack of fluctuation effects for the quadratic Zeeman

potential in the single mode approximation

In the continuum with zero external field, an order-by-disorder mechanism

selects different mean-field ground states in two nematic subregions of the

spin-2 phase diagram, as shown in Sec. 5.3. Let us temporarily refer to the

c1 > 0 subregion as the uniaxial region, and the c1 < 0 subregion as the bi-

axial region, after the states of Eq. (5.14) selected at zero field. Turning on a

large enough positive (negative) quadratic Zeeman field q selects the uniaxial

(biaxial) nematic state, regardless of the nematic subregion. However, when

applying a positive q in the biaxial region or a negative q in the uniaxial

region, this may only happen after q exceeds the scale of fluctuation-induced

energy variation, i.e., the difference between the maximum and minimum val-

ues attained by the curves in Fig. 5.8. This is typically tiny in experimentally

relevant settings.127

Even though the exact tightly-bound ground state at q = 0 is known to

be a spin singlet, based on the mean-field behaviour, one may expect to see

signatures of the exact ground states approaching the limiting large-positive-

Nq state faster with increasing q in the uniaxial region, and similarly for the

large-negative-N |q| limiting state in the biaxial region.

The numerically obtained overlaps, however, do not reflect this expectation.

The smaller the value of g1/|g2|, the faster the wave function’s approach to

both limiting states with increasing magnitude of q. This is schematically

shown in Fig. 10.1. The effect is completely smooth in the whole nematic

region, without any qualitative change in behaviour at g1 = 0, where a

fluctuation-induced phase transition occurs in the mean-field analysis.
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Figure 10.1: A qualitative illustration of the disparity between wave-function localisation
behaviour at different values of g1, expected on the basis of a mean-field treatment, and
the actual quantum results from exact diagonalisation. In the q ≥ 0 (q < 0) section of the
plot, the rotor ground-state overlap with the limiting positive-q (negative-q) ground state is
shown. Moving from the uniaxial into the biaxial region, as determined by g1, one may expect
the negative-q limiting state to be approached quicker with increasing −q, and the positive-q
limiting state slower with increasing q, than in the uniaxial region, as argued in the main text.
The former does happens, but the latter does not. Instead, both limiting states are approached
quicker as one moves deeper into the biaxial region.
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The lack of the order-by-disorder selection at the quantum single-mode level

can be accounted for by the fact that the quadratic Zeeman potential breaks

too much symmetry of the Hamiltonian (8.19). Motivated by this, we have

considered an alternative external potential. Specifically, the new potential

replaces

qẐ → λ(â†1â1 + â†−1â−1) (10.1)

in Hamiltonian (8.19). Such a potential could be realised by electro-optical

means. Note that, within mean field theory, all nematic states of Sec. 5.2.2,

whose order parameter is shown in Eq. (10.3) below, are degenerate under

this external potential. Considering the rotor mapping rule in Eq. (7.35), one

can see that the above change propagates through the mapping by changing

the last two terms of Hamiltonian (8.25) to

Hλ = λ
(
(N + 5)

(
Ω2

2 + Ω2
3

)
− Ω2∇2 − Ω3∇3

)
. (10.2)

The following section briefly summarises the degenerate mean-field ground-

state manifold in the presence of such a potential and demonstrates that the

degeneracy is lifted through Order by Disorder. Unlike with the quadratic

Zeeman effect, this selection will be fully consistent with the outcome of the

rotor calculations in Secs. 10.3 to 10.5.

10.2 Continuum Order by Disorder

The new potential does not break the zero-field nematic degeneracy, and all

of the states with nematic order parameters

Ψn(η) =

(
sin η√

2
, 0, cos η, 0,

sin η√
2

)
, (10.3)

remain valid ground-state candidates. Like with the dice lattice calculation

in Sec. 4.1 or the zero-field spin-2 calculation in Sec. 5.3, the first step in

deriving the fluctuation-induced degeneracy lifting is calculating the modes

about each of the mean-field degenerate nematic states Ψn(η). Obtaining

these involves a straightforward but lengthy Bogoliubov analysis. Adding
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a chemical potential, letting ψ̂α(r) =
√
nΨnα(η) + δψ̂α(r), where n is the

uniform condensate density, expanding the Hamiltonian to quadratic order

in δψ̂α(r), and diagonalising the resulting quadratic Hamiltonian, one finds

the mode energies of the usual form

Ek,n =
√
ξk,n(ξk,n + 2γn) (10.4)

where the particular parameters for the five modes are

ξk,1 = ξk,2 = εk + λ (10.5)

ξk,3 = ξk,4 = ξk,5 = εk (10.6)

and

γj = n

(
|c2|+ 4c1 sin2

(
η +

2π

3
j

))
for j = 1, 2, 3 (10.7)

γ4 = n (c0 − |c2|) (10.8)

γ5 = n|c2| (10.9)

Here, εk = k2

2m
is the free particle dispersion. Note that these modes are

equivalent to those in the absence of an external field, as treated in Sec. 5.3,

with the sole difference that εk is shifted to εk+λ for two of the η-dependent

modes.

Proceeding in analogy with the zero-field case, the zero-point contribution of

the Bogoliubov modes is found to be ∆E = 1
2

∑
k,n(Ek,n − Ek,n|η=0) where

Ek,n|η=0 is subtracted to regularise the summation. It is found that, for

sufficiently large λ > 0, the biaxial nematic state with η = π/2 is selected

when c1 > 0, while the uniaxial nematic state with η = 0 is selected when

c1 < 0.

We now proceed to show that a consistent result arises in the rotor frame-

work for the tightly bound system. The initial steps of the rotor mapping

proceed completely analogously to the previous chapter, but a rather differ-

ent effective Hamiltonian on the 4-sphere soon emerges, with clear parallels

to the order-by-disorder selection mechanism.
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10.3 Rotor treatment

The results of this section are similar to the large-N |q| limit in that, for

sufficiently large λ and depending on the sign of g1, the rotor wave function

is localised either about the Ω1 poles or around the 4-5 equator of the 4-

sphere. However, the localisation widths scale differently with N than in the

quadratic Zeeman case, leading to important qualitative differences. Locali-

sation at the poles (equator) also occurs at negative (positive) g1, which is in

fact the opposite of the effect in the continuum in the absence of an external

potential.

For the calculations of this section we introduce a third, more general coor-

dinate system:

Ω =


cos η
√

1− x2

x1 cosϕ− x2 sinϕ

x1 sinϕ+ x2 cosϕ

sin η cos 2ϕ
√

1− x2

sin η sin 2ϕ
√

1− x2

 (10.10)

This can be put into a more compact form by using rotation matrices. In

particular let Rαβ(ϕ) be the matrix which rotates in the αβ plane by angle

ϕ from the positive α axis towards the positive β axis. Then the current

coordinate system can be written as

Ω = R23(ϕ)R45(2ϕ)R14(η)
(√

1− x2, x1, x2, 0, 0
)T

. (10.11)

Note that R23(ϕ)R45(2ϕ) = exp(−iϕM z). Recalling that each point of the

4-sphere is associated with a spatial rotation of a mean-field nematic state,

the η coordinate is seen to correspond exactly to the η parametrising the

accidentally degenerate family of nematic states in Eq. (5.12), while ϕ and

x determine their spatial orientations.

An appropriate range of the coordinates is as follows: η takes values in the

interval [0, π] and x in the unit disk. The wave functions are periodic in ϕ
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with period 2π, with the additional constraint

ψ(η,x, ϕ+ π) = ψ(η,−x, ϕ). (10.12)

The integration measure is 2
√

1− x2 sin η. To concisely state the spherical

gradient components in the new coordinates, denote ∂i ≡ ∂
∂xi

, ∂η ≡ ∂
∂η

,

∂ϕ ≡ ∂
∂ϕ

, and let ∂ ≡ (∂1, ∂2)T . Let R(ζ) be the matrix of anti-clockwise

rotation by ζ radians in the plane. Then we have

∇1 = − sin η√
1− x2

∂η − cos η
√

1− x2 x · ∂ (10.13)(
∇2

∇3

)
= R(ϕ)(1− xxT )∂(

∇4

∇5

)
=

(
cos 2ϕ

sin 2ϕ

)(
cos η√
1− x2

∂η − sin η
√

1− x2 x · ∂
)

+
1

2 sin η
√

1− x2

(
sin 2ϕ

− cos 2ϕ

)
(x1∂2 − x2∂1 − ∂ϕ) .

Finally, the coordinates of a point diametrically opposite to a reference point

are given in terms of the reference point coordinates as

PΩ (η,x, ϕ) = Ω
(
π − η,R

(π
2

)
x, ϕ+

π

2

)
= Ω

(
π − η,R

(
−π

2

)
x, ϕ− π

2

)
(10.14)

with the last equality following on account of constraint (10.12).

As usual, we consider the F̂ z null space, which in the present coordinates

implies our wave functions will be independent of ϕ. Constraint (10.12) then

also demands that the wave functions be even in x. We also consider the

regime of large particle number, N � 1. Since the potential in Eq. (10.1) is

independent of η at the mean-field level, we may heuristically consider η as

the low-energy coordinate and accordingly seek wave functions less localised

in the η direction than in the x coordinates.

By observing factors of N in Hamiltonian (8.25), expanded in current coor-
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dinates, one finds that low-lying wave functions may be taken to be localised

in x about zero on a length scale of order N−1/2, and in η about some value

η0 on a length scale of order N−1/4, subject to some consistency conditions.

This allows one to separate the Hamiltonian into two parts, Ĥ0 of order 1

and Ĥη of orders between N−1/4 to N−3/4, and we discard terms of higher

order in 1/N . For compact notation, introduce matrices

A(η) ≡
(

1 +
2g1

|g2|

)
1 +B(η) with (10.15)

B(η) ≡ g1

|g2|
diag

(
cos 2η +

√
3 sin 2η, cos 2η −

√
3 sin 2η

)
.

Reusing notation introduced below Eq. (10.12), denote δη ≡ η − η0 and let

L̂x ≡ −i (x̂1∂2 − x̂2∂1) and T̂1 ≡ x̂1∂1 + x̂2
2∂

2
1 − (1↔ 2). Then one may write

Ĥ0 = −|g2|
2N

Aij(η0)∂i∂j + λN x̂2 − λx̂ · ∂

Ĥη = −|g2|
2N

[
∂2
η +

(
cot η̂ −B′ij(η0)x̂i∂j

)
∂η

+ δη̂B′ij(η0)∂i∂j +
1

2
δη̂2B′′ij(η0)∂i∂j

− csc2 η̂

4
L̂2
x

]
+

g1

2N

√
3 csc η̂ T̂1. (10.16)

The last line is of a non-negligible order only when the distance between η0

and 0 or π is on the order of N−1/4 or less.

Noting that Ĥ0 does not depend on δη̂, we may tackle the above with degen-

erate perturbation theory. First note that Ĥ0 may be brought to Hermitian

form by applying the similarity transformation e−ŜĤ0eŜ where

Ŝ = − Nλ

2|g2|
x̂TA(η0)−1x̂. (10.17)

The transformed Hamiltonian has the ground state energy

E0(η0) = λ

(
1 +

1

2
Tr

√
1 +

2|g2|
λ

A(η0)

)
(10.18)
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and ground state eigenfunction

ψ0(x) = (2π)−
1
2 det

1
4 C(η0) exp

[
− Nλ

2|g2|
xTC(η0)x

]
;

C(η0) ≡ A(η0)−1

√
1 +

2|g2|
λ

A(η0). (10.19)

This yields a greatly degenerate zeroth-order ground-state subspace, consist-

ing of wave functions ψ of η and x that factor as ψ(η,x) = φ(η)ψ0(x). We

can then project e−ŜĤηe
Ŝ into this low-energy subspace to obtain an effective

Hamiltonian, acting only on the η coordinate, as

Ĥeff
η =

∫
dx ψ∗0(x)e−ŜĤηe

Ŝψ0(x).

Now observe the following expectation value:

Mij 〈∂i∂j〉 = −NTr

[
M

(
1 +

2|g2|
λ

A(η0)

)− 1
2

]
(10.20)

where M is an arbitrary matrix. Observe that this case covers the coefficients

of both the linear and quadratic δη̂ terms in Ĥη, Eq. (10.16), by choosing

M to be − |g2|
2N
B′(η0) and − |g2|

2N
B′′(η0), respectively. At this point, note that

should the expectation value of the linear δη̂ term be of its natural order,

order 1, completing the square in δη̂ would yield another term of order 1,

invalidating its placement into Ĥη, which is supposed to be of higher order

in 1/N . Note also that the coefficient of the linear δη̂ term is exactly the

derivative of the zeroth-order energy E0(η0) from Eq. (10.18) with respect

to η0. The above problem is avoided if we expand about a local extremum

of E0(η0), eliminating the linear term. For Ĥeff
η to be bounded from below,

the extremum must be a minimum. Note that we do not get any apparent

order inconsistencies if we expand about an η0 a distance of order N−1/4 away

from the local minimum, but the analysis is vastly simplified when the linear

term is exactly zero, particularly for the last line of Eq. (10.16) when close

to η0 = 0, so we focus on expansions about zeroth-order energy minima from

now on.
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For large enough λ, these occur only at η0 = 0 for negative g1 and η0 = π/2

for positive g1. The former corresponds to localisation about the Ω1 poles,

and the latter about the 4-5 equator, as anticipated in the opening paragraph

of this section. In both of these cases, A(η0) is proportional to 1, so both

ψ0(x) and e±Ŝψ0(x) are isotropic in x1, x2. As is easy to verify, this makes the

expectation values of the last line of Eq. (10.16) zero, eliminating those terms

from Ĥeff
η . Additionally, we have B′(η0) ∝ diag (1,−1). This, combined with

isotropy in x, leads to B′ij(η0) 〈x̂i∂j〉 = 0 as well. Finally noting B(0, π
2
) =

± g1

|g2|1 and B′′(η0) = −4B(η0) and evaluating the coefficient of the quadratic

δη̂ term via Eq. (10.20), we obtain

Ĥeff
η = −|g2|

2N

(
∂2
η + cot η̂ ∂η

)
+ 4|g1| (1 + 2Fη0)−

1
2 δη̂2 (10.21)

where Fη0 equals F0 = (|g2|+ 3g1) /λ when expanding about the Ω1 poles,

that is η0 = 0, and Fπ/2 = (|g2|+ g1) /λ when expanding about the 4-5 equa-

tor, that is η0 = π/2. Also note that cot η ∂η is of lower order for η0 = π/2

and may be neglected, while for η0 = 0, ∂2
η − cot η ∂η ' η−1∂ηη∂η, the radial

contribution to the two-dimensional Laplacian. In both cases, the low-lying

eigenfunctions are those of a harmonic oscillator: unconstrained eigenfunc-

tions of the one-dimensional oscillator for η0 = π/2, and the isotropic, zero-

angular-momentum eigenfunctions of the two-dimensional isotropic oscillator

for η0 = 0. The energy scale and the oscillator length have the same form

in both cases when expressed in terms of the η0-dependent Fη0 . For brevity,

introduce another η0-dependent quantity, Bη0 ≡
√

8|g1|
|g2| (1 + 2Fη0)−1/4. The

oscillator length then equals ξ−2
η =

√
NBη0 and the energy scale equals ∆E =

N−1/2|g2|Bη0 .∗ The n-th eigenlevel has energy
(
n+ 1

2

)
∆E for η0 = π/2 and

(2n+ 1) ∆E for η0 = 0. The unnormalised ground state in both cases is

ψgs
η (δη) = exp

[
−1

2
B
√
Nδη2

]
, (10.22)

except for odd N when expanding about η0 = π/2, as the above state then

∗The η0-dependence of the oscillator length and energy scale has been suppressed from
notation. This will be a general notational convention for quantities directly or indirectly
dependent on Fη0 from now on, including Bη0 and Fη0 itself.
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has incorrect parity and is hence unphysical. In that case, the first excited

state of the harmonic oscillator represents the physical ground state. For

simplicity, we focus on even numbers of particles hereafter.

10.4 Ground-state overlaps with limiting nematic states

This section derives scaling laws with respect to N of ground-state overlaps

with the limiting nematic states, as encountered in the quadratic Zeeman

treatment of Chapter 9. The ground states of the previous chapter retained

an amount of mean-field-like character, in that their overlaps with the lim-

iting large-|q| nematic states, closely related to mean-field states, were inde-

pendent of N , as evidenced by Eqs. (9.25) and (9.32). The resulting overlap

expressions were given in terms of u-factors, defined in Eq. (9.23) without

reference to any N -dependent quantities. As the overlap between any two

mean-field states, characterised by linearly independent order parameters,

i.e., not equal up to a phase, tends to 0 with increasing N ,† this may be

interpreted as the ground state containing a robust mean-field component.

Since the ground-state overlap with the limiting nematic state tends to 1

with increasing |q|, this mean-field component alone becomes a good approx-

imation to the full ground state at large |q|.

The situation is different with the alternative potential (10.1) of the present

chapter. For g1 > 0 (g1 < 0) the overlap of the ground state with the z-

oriented biaxial (uniaxial) nematic state is still the biggest among mean-field

states, but even this tends to zero as an inverse power of N . The aim of the

present section is deriving the N dependence of the largest mean-field over-

laps, with emphasis on the leading-order terms of the obtained expressions.

†Even more is true when considering coherent mean-field states, |
√
Nχ〉 ≡

exp[−N2 +
√
Nχαâ

†
α] |0〉 with χ a unit-norm complex vector, since |〈

√
Nρ|
√
Nχ〉| =

exp[N
(
Reρ†χ− 1

)
]. This tends to zero with increasing N even when ρ = eiϕχ for a

real non-zero phase ϕ, and remains 1 only when ρ = χ. With fixed-particle-number
mean-field states, |χN 〉 ≡ (N !)−1/2(χαâ

†
α)N |0〉, the overlap is 〈ρN |χ〉 = (ρ†χ)N and

tends to 0 when |ρ†χ| < 1 and remains 1 when ρ = χ. When ρ = eiϕχ for real non-zero
ϕ, the finite-N overlap is e−iNϕ which has no well-defined infinite-N limit. In the rotor
treatment this ambiguity is circumvented by considering only real χ and wave-function
(anti)symmetrisation.
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When considering expansions about η0 = 0, π/2, most of the expressions

involving the matrices A(η), B(η) of Eq. (10.15) simplify dramatically as

A(η0) =
λ

|g2|
Fη01, (10.23)

with Fη0 defined under Eq. (10.21). This further implies that Eq. (10.17)

simplifies to

Ŝ = − N

2F x̂
2 (10.24)

and that the matrix C(η0) of Eq. (10.19) simplifies to

C(η0) =
|g2|
λF
√

1 + 2F 1. (10.25)

The x-dependent factor of the ground state of the non-similarity-transformed

Hamiltonian (10.16) is proportional to eSψ0(x), with the latter factor defined

in Eq. (10.19). It is given, up to constant factors, by

ψgs
x (x) = exp

[
− N

2F
(

1 +
√

1 + 2F
)
x2

]
≡ exp

[
−1

2
NAx2

]
. (10.26)

The uniaxial and biaxial limiting states of the previous chapter are given in

the new coordinates, up to constant factors, by

ψlim
0 (η,x) = η−1δ(η)δ(2)(x) uniaxial (10.27)

ψlim
π/2(η,x) = δ(η − π

2
)δ(2)(x) biaxial (10.28)

where we have not performed the (anti)symmetrisation in the uniaxial case,

since we shall again integrate over only half of the sphere in that case. This

yields equivalent results and allows for a more streamlined derivation.

At this point notice that all of the considered wave functions, both the phys-

ical ground states as well as the limiting states, are independent of ϕ, are

isotropic in x, and have a product structure with a factor depending solely

on η and another factor depending solely on the x coordinate, for which the

general notation ψ(η,x) = ψη(δη)ψx(x) will be used. These properties will

come handy in simplifying expressions for the overlaps.
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The latter are again defined as

(ψ1|ψ2) ≡ 〈ψ1|ψ2〉√
〈ψ1|ψ1〉 〈ψ2|ψ2〉

(10.29)

and we are particularly interested in calculating
(
ψgs
∣∣ψlim

)
with ψlim de-

fined in Eq. (10.28) and where ψgs are rotor ground states whose η- and

x-dependent factors are given in Eqs. (10.22) and (10.26), respectively.

In calculating the unnormalised overlaps 〈ψ1|ψ2〉, one finally needs the form of

the dot products Ω1 ·Ω2 when the Ωi are parametrised as Ωi = Ωi(ηi,xi, ϕi).

Denoting ∆ϕ ≡ ϕ2 − ϕ1 and x′2 ≡ R(∆ϕ)x2, where R(·) is again a rotation

matrix, one obtains, after using some trigonometric identities, the expression:

Ω1 ·Ω2 =
(
cos (η1 − η2) cos2 ∆ϕ+ cos (η1 + η2) sin2 ∆ϕ

)
×

×
√

(1− x2
1) (1− x2

2) + x1 · x′2 (10.30)

The unnormalised overlap expression is then, schematically,

〈ψ1|ψ2〉 = C
∫ π

0

d(∆ϕ)

∫ π

0

dη1dη2 sin η1 sin η2

×
∫
D

dx1dx2

√
(1− x2

1) (1− x2
2) (Ω1 ·Ω2)N

× ψ∗1η(δη1)ψ∗1x(x1)ψ2η(δη2)ψ2x(x2) (10.31)

where the ranges of coordinates and the integration measure, described above

and below Eq. (10.12), respectively, were taken into account. D denotes the

unit disk. As in the negative-q case of the previous chapter, the integral

over one of the angles ϕ1, ϕ2 has been performed, leaving an integral over the

variable ∆ϕ which appears in (Ω1 · Ω2)N . The performed angular integral,

along with factors from the integration measure, is the source of the constant

factor C, which in this case just equals 4π. However, since C obviously cancels

from the normalised overlaps in Eq. (10.29), the notation emphasises that any

wave-function-independent factors arising from further simplifications may

be absorbed into C and thus effectively ignored, as we shall do in the following.

On account of tight localisation in x of all wave functions considered, the
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√
1− x factors may also be ignored. Finally, the ∆ϕ integral is performed

after the x2 integral so that the integration variable in the latter may be

changed to x′2 = R(∆ϕ)x2 which does not affect the integration measure nor

the x-isotropic wave functions considered. Renaming the integration variable

back to x2, this amounts to substituting x′2 in the overlap expression (10.30)

with x2, a step we will implicitly perform in all overlap calculations.

Expression (10.31) may be further simplified and made more amenable to

analytical manipulation, but the specific simplifications admitted depend

on the value of η0 about which we’re expanding, and the two values must

be considered separately. We first consider the simpler case of η0 = π/2,

applicable when g1 > 0.

10.4.1 Limiting-state overlaps at η0 = π/2

In this case, the first factor of the first term of Eq. (10.30), which we denote

by f , may be simplified by letting ηi = π
2

+ δηi and expanding the cosines to

second order in δηi as follows:

f ≡ cos (η1 − η2) cos2 ∆ϕ+ cos (η1 + η2) sin2 ∆ϕ

' cos 2∆ϕ

(
1− 1

2
(δη2

1 + δη2
2)

)
+ δη1δη2. (10.32)

Since it is part of an expression exponentiated to the large number N , the

main contributions to the overlap integrals will come from the region where

| cos 2∆ϕ| is close to 1, similarly to the negative-q calculation of the previous

chapter. Introduce variables δη± ≡ (δη1 ± δη2)/
√

2. Letting ∆ϕ = ϕ0 + δϕ

with ϕ0 = 0, π/2 and expanding cos 2∆ϕ in δϕ, f of Eq. (10.32) may be

approximated by

f ' ±
[
1− 2δϕ2 − δη2

∓
]
, (10.33)

where the upper (lower) sign corresponds to expansion about ϕ0 = 0 (ϕ0 =

π/2). Consider now the full expression for Ω1 ·Ω2 in Eq. (10.30) with f re-

placed by its simplified form. Replace x′2 by x2, as justified below Eq. (10.31),

and introduce variables x± ≡ (x1 ± x2)/
√

2. Expanding the square roots,
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one finds

Ω1 ·Ω2 ' ±
[
1− 2δϕ2 − δη2

∓ − x2
∓
]

(10.34)

with the signs as in Eq. (10.33). Since we are considering only even values

of N for simplicity, as mentioned below Eq. (10.22), this also implies

(Ω1 ·Ω2)N ' exp
[
−N

(
2δϕ2 + δη2

∓ + x2
∓
)]
. (10.35)

Due to the tight localisation of the above expression and the wave functions,

all integration limits may be extended to infinity. As it turns out, we may

actually evaluate the overlaps to within terms of relative order N−1/2. For

this level of accuracy, we need to expand the η-dependent measure factors

as sin η1 sin η2 = 1 − 1
2

(δη2
1 + δη2

2) = 1 − 1
2

(
δη2

+ + δη2
−
)
. With this, the

unnormalised overlap expression (10.31) becomes

〈ψ1|ψ2〉 = C
∑
±

∫ ∞
−∞

dδϕ e−2Nδϕ2

×
∫ ∞
−∞

dδη1dδη2

(
1− 1

2

(
δη2

+ + δη2
−
))

e−Nδη
2
±ψ∗1η(δη1)ψ2(δη2)

×
∫

R2

dx1dx2 e−Nx
2
±ψ∗1x(x1)ψ2x(x2). (10.36)

It is not difficult to see that the ± contributions to the outer sum are equal

when ψ1,2 above are taken to be ψlim or ψgs. For our purposes, the sum can

thus be converted to a factor of 2 and absorbed into C. Furthermore, the

δϕ integral is independent of the wave functions and may also be absorbed

into C. We shall consider C set to 1 from now on, since it cancels from final

expressions.

The rest of the integral then factorises. Define

〈ψ1|ψ2〉η =

∫ ∞
−∞

dδη1dδη2

(
1− 1

2

(
δη2

+ + δη2
−
))

e−Nδη
2
±ψ∗1η(δη1)ψ2(δη2),

〈ψ1|ψ2〉x =

∫
R2

dx1dx2 e−Nx
2
±ψ∗1x(x1)ψ2x(x2), (10.37)
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so that 〈ψ1|ψ2〉 = 〈ψ1|ψ2〉η 〈ψ1|ψ2〉x. Furthermore, define

(ψ1|ψ2)c ≡
〈ψ1|ψ2〉c√

〈ψ1|ψ1〉c 〈ψ2|ψ2〉c
(10.38)

where c is either η or x. The total overlap, as defined in Eq. (10.29), is then

given by (ψ1|ψ2) = (ψ1|ψ2)η (ψ1|ψ2)x.

Recalling that ψgs
x (x) = exp

[
−N

2
Ax2

]
, with A defined in Eq. (10.26), and

ψlim
x (x) = δ(2)(x), one may directly invoke results of Sec. 9.4 to ascertain

that (
ψgs
∣∣ψlim

)
x

=

√
A (A+ 2)

A+ 1
. (10.39)

Now recall that ψgs
η (δη) = exp

[
−B
√
N

2
δη2
]
, with B defined above Eq. (10.22),

and that the limiting wave function, when rewritten in terms of δη rather

than η, is in this case ψlim
η (δη) = δ(δη). The η integrals involving delta

functions are straightforward and equal〈
ψlim

∣∣ψlim
〉
η

= 1〈
ψgs
∣∣ψlim

〉
η

=

∫ ∞
∞

dδη

(
1− 1

2
δη2

)
e−

1
2(N+B

√
N)δη2

=

√
2π

N

(
1− B

2
√
N

+O
(
N−1

))
(10.40)

Finally, 〈ψgs|ψgs〉η is a Gaussian integral over δη1 and δη2, with the inte-

grand’s exponent equal to −Nδη2
−− B

√
N

2
(δη2

1 + δη2
2) = −

(
N + B

√
N

2

)
δη2
−−

B
√
N

2
δη2

+. Since dδη1dδη2 = dδη+dδη−, the Gaussian integral is now straight-

forward and yields

〈ψgs|ψgs〉η =
2π√
2B

N−3/4

(
1− 2 + B2

4B
√
N

+O
(
N−1

))
(10.41)

Assembling the above factors into
(
ψgs
∣∣ψlim

)
η

and multiplying by
(
ψgs
∣∣ψlim

)
x

finally yields

(
ψgs
∣∣ψlim

)
=

√
A (A+ 2)

A+ 1
(2B)

1
4 N−

1
8

(
1 +

2− 3B2

8B
√
N

+O
(
N−1

))
. (10.42)
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This expression tends to 0 as N−1/8 with increasing N , in marked contrast

to the situation in the presence of the quadratic Zeeman field. While compu-

tationally accessible particle numbers are hardly in the large-N regime, the

numerical results shown in the (a) subpanel of Fig. 10.2 qualitatively support

our analytical conclusions as all overlaps are seen to decrease with increasing

N . The relative error of expression (10.42) with respect to the numerically

obtained overlaps is just under 10% at the parameter values and range of N

of Fig. 10.2, and slowly decreases with N . The agreement is thus expected

to become better for larger values of N .

10.4.2 Limiting-state overlaps at η0 = 0

In this case the f component of the general positional overlap, as defined

in the first line of Eq. (10.32), may again be simplified by expanding the

cosines to second order in ηi, which themselves are tightly localised about

zero, yielding

f ' 1− 1

2

(
η2

1 + η2
2 − 2η1η2 cos 2∆ϕ

)
(10.43)

Following reasoning analogous to that of the previous subsection, the expo-

nentiated dot product is found to be well approximated by

(Ω1 ·Ω2)N ' exp

[
−N

2

(
η2

1 + η2
2 − 2η1η2 cos 2∆ϕ+ 2x2

−
)]
. (10.44)

Combining this with appropriately extending integration limits to infinity

and approximating the sines appearing in the integration measure by sin ηi '
ηi, allows the unnormalised overlap expression of Eq. (10.31) to be rewritten

as

〈ψ1|ψ2〉 = C
∫ 2π

0

dζ

∫ ∞
0

dη1dη2 η1η2 e−
N
2 (η2

1+η2
2−2η1η2 cos ζ)ψ∗1η(η1)ψ2η(η2)

×
∫

R2

dx1dx2 e−Nx
2
−ψ∗1x(x1)ψ2x(x2) (10.45)

where ζ corresponds to 2∆ϕ. Note that the lower integration limits of the η

integrals cannot be extended beyond 0 as η here has the character of a radial
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Figure 10.2: (a) The absolute value of overlaps between the limiting states
∣∣ψ∞± 〉 and nu-

merically computed ground states. The left linear axis corresponds to the bigger overlaps,
represented by lines, and the right logarithmic axis to the smaller overlaps, represented by
markers. (b) The numerically computed expectation value of the fraction of particles in the
m = 0 single-particle magnetic sublevel. (See the end of Sec. 10.5 for details and explanation
of notation.) Both (a) and (b) are plotted with respect to particle number N at λ = 10|g2|. (c)
and (d) show relative occupations of individual single-particle magnetic sublevels at N = 200
for positive and negative g1, respectively.
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coordinate. Additionally, extending the limits to −∞ would demonstrably

make the norm of any state 0.

Again set C to 1 and let 〈ψ1|ψ2〉 = 〈ψ1|ψ2〉η 〈ψ1|ψ2〉x with

〈ψ1|ψ2〉η =

∫ 2π

0

dζ

∫ ∞
0

dη1dη2 η1η2 e−
N
2 (η2

1+η2
2−2η1η2 cos ζ)ψ∗1η(η1)ψ2η(η2),

〈ψ1|ψ2〉x =

∫
R2

dx1dx2 e−Nx
2
±ψ∗1x(x1)ψ2x(x2), (10.46)

as well as (ψ1|ψ2) = (ψ1|ψ2)η (ψ1|ψ2)x, with the factors defined by Eq. (10.38).

In analogy with previous calculations,
(
ψgs
∣∣ψlim

)
x

can again be seen to be

given by
√
A(A+ 2)/(A+ 1).

Recalling ψlim
η = η−1δ(η) and ψgs

η = exp
[
−
√
NB
2
η2
]
, the simpler unnormalised

overlaps, involving ψlim, are found to be:〈
ψlim

∣∣ψlim
〉
η

= 2π (10.47)〈
ψgs
∣∣ψlim

〉
η

= 2π

∫ ∞
0

du e−(N+B
√
N)u =

2π

N + B
√
N
.

The form of the final unnormalised overlap is

〈ψgs|ψgs〉η =

∫ 2π

0

dζ

∫ ∞
0

dη1dη2 η1η2 e−
1
2((N+B

√
N)(η2

1+η2
2)−2Nη1η2 cos ζ).

(10.48)

The inner integral is of a less frequently encountered form, compared to

Gaussian integrals over all of Euclidean space, but one that nevertheless also

admits a closed-form solution. For positive α and real β such that |β| ≤ α,

one has

Iα,β ≡
∫ ∞

0

dη1dη2 η1η2 e−
1
2(α(η2

1+η2
2)−2βη1η2) = (10.49)

1

α2 − β2

[
1 +

β√
α2 − β2

(
π

2
+ arctan

β√
α2 − β2

)]
.

In the case of Eq. (10.48), we may set α = N + B
√
N and β = N cos ζ.
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Denote thus

g(ζ) ≡ IN+B
√
N,N cos ζ =

1

γ(ζ)

[
1 + τ(ζ)

(π
2

+ arctan τ(ζ)
)]

(10.50)

where γ(ζ) ≡ N2
(

sin2 ζ + 2B√
N

+ B2

N

)
corresponds to α2 − β2 and τ(ζ) ≡

cos ζ/
√

sin2 ζ + 2B√
N

+ B2

N
to β/

√
α2 − β2 of Eq. (10.49). The function g(ζ)

is even, periodic with period 2π, heavily peaked about ζ = nπ, n ∈ Z, and is

essentially zero elsewhere. For symmetry reasons we thus shift ζ integration

boundaries to [−π, π]. Since τ(ζ) is very large in the vicinity of ζ = 0, we

may use the asymptotic expansion arctanx ' π
2
− x−1. This yields

g(ζ) ' π
τ(ζ)

γ(ζ)
= N−2π

cos ζ(
sin2 ζ + 2B√

N
+ B2

N

) 3
2

≡ g̃(ζ) (10.51)

The effective function g̃(ζ) agrees with g(ζ) remarkably well for |ζ| . π
2
. In

the range π
2
< |ζ| < π, however, the asymptotic expansion becomes unwar-

ranted, and g̃(ζ) takes on large negative values, while g(ζ) is effectively zero.

One may nevertheless still use the simpler asymptotic g̃(ζ) to extract the

leading-order behaviour of 〈ψgs|ψgs〉η =
∫

dζ g(ζ) with respect to N . This is

achieved by integrating only over [−ζ0, ζ0] with ζ0 ∼ π
2
. Neglecting terms of

relative order N−1 and utilising the indefinite integral∫
dζ cos ζ

(
sin2 ζ + a

)−3/2
=

sin ζ

a
√
a+ sin2 ζ

(10.52)

allows one to find

〈ψgs|ψgs〉η = N−2π

∫ ζ0

−ζ0
dζ

cos ζ(
sin2 ζ + 2B√

N

) 3
2

= 2πN−2 sin ζ0

2B√
N

√
sin2 ζ0 + 2B√

N

=
π

BN
− 3

2

(
1 +

2B√
N sin2 ζ0

)− 1
2

=
π

BN
− 3

2

(
1 +O

(
N−

1
2

))
. (10.53)
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Putting all of the factors together finally yields

(
ψgs
∣∣ψlim

)
=

√
2BA (A+ 2)

A+ 1
N−

1
4

(
1 +O

(
N−

1
2

))
(10.54)

Again, the overlaps steadily tend to zero with increasing N , once more

demonstrating the non-mean-field nature of the ground states. Compared

to the numerically obtained results in Fig. 10.2, the above leading-order ex-

pansion overestimates the results by about 20%, most likely reflecting the

fact that some of the approximations enacted are not entirely applicable for

such low particle numbers, though the discrepancy does get smaller with

increasing N .

10.5 Magnetic sublevel occupations

In this section we demonstrate that, even though the rotor ground states have

been shown to differ significantly from mean-field-like states, some qualitative

aspects of the exact quantum treatment agree with the effects of the order-by-

disorder mechanism in the related continuum problem. Notably, the ground-

state magnetic sublevel occupation expectation values 〈n̂m〉 =
〈
â†mâm

〉
are in

good qualitative agreement.

Since we are working with unnormalised states, the expectation value of Ô
in state |ψ〉 is defined as 〈Ô〉 ≡ 〈ψ|Ô|ψ〉/ 〈ψ|ψ〉. To calculate 〈n̂m〉, first

consider general matrix elements of operators of the form b̂†αb̂β. These are

particularly simple in the rotor framework and are given by

〈
ψ1

∣∣b̂†αb̂β∣∣ψ2

〉
=

∫
dΩ1dΩ2

〈
Ω1N

∣∣b̂†αb̂β∣∣Ω2N

〉
ψ∗1(Ω1)ψ2(Ω2)

= N

∫
dΩ1dΩ2 (Ω1 ·Ω2)N−1 Ω1αψ

∗
1(Ω1)Ω2βψ2(Ω2)

' N
〈
Ω̂αψ1

∣∣Ω̂βψ2

〉
. (10.55)

The second equality follows from the definition |ΩN〉 ≡ 1√
N !

(
Ωαb̂

†
α

)N
|0〉,

while in the last approximate equality, the exponent N − 1 is approximated

by N .
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The rotor ground state ψgs is independent of ϕ. Referring to the definition of

current coordinates in Eq. (10.10) and the fact that the x variable is localised

on a scale ∼ N−1/2, this implies, by symmetry,

〈b̂†2b̂2〉 ' N
〈Ω̂2ψ

gs|Ω̂2ψ
gs〉

〈ψgs|ψgs〉 ∼ 1 ∼ 〈b̂†3b̂3〉. (10.56)

Furthermore, 〈b̂†2b̂2 + b̂†3b̂3〉 = 〈n̂1 + n̂−1〉. Since
∑2

m=−2〈n̂m〉 = N , at least one

of the 〈n̂m〉 has to be of order N and thus the occupations of the m = ±1

sublevels can safely be neglected. We also have 〈n̂0〉 = 〈b̂†1b̂1〉 and 〈b̂†4b̂4 +

b̂†5b̂5〉 = 〈n̂2 + n̂−2〉. Since the original Hamiltonian, in terms of the â
(†)
m

operators, is invariant under the single-particle sublevel interchange such

that m → −m, and we are considering the F̂z null space, we also expect

〈n̂2〉 = 〈n̂−2〉 ' (N−〈n̂0〉)/2. We thus only need to calculate 〈b̂†1b̂1〉 and infer

the occupations through the simple relations listed above.

We first do so at g1 < 0, where the ground state is localised about η0 = 0.

To be thorough, we shall attempt to calculate 〈ψgs|b̂†1b̂1|ψgs〉 as given in the

second line of Eq. (10.55), rather than in the approximate form on the third

line. The resulting integral is equivalent to that for 〈ψgs|ψgs〉 with the inte-

grand multiplied by L ≡ N(Ω1)1(Ω2)1/(Ω1 ·Ω2). Recall from the coordinate

definitions in Eq. (10.10) that Ω1 = cos η
√

1− x2 and from Eqs. (10.43)

and (10.44) that Ω1 · Ω2 ' 1 − 1
2

(
η2

1 + η2
2 − 2η1η2 cos ζ + 2x2

−
)
. Expanding

to relative order N−1/2 yields L ' N (1− η1η2 cos ζ). 〈ψgs|b̂†1b̂1|ψgs〉 again fac-

tors into 〈ψgs|b̂†1b̂1|ψgs〉η and 〈ψgs|b̂†1b̂1|ψgs〉x. Since L does not depend on x1,2,

〈ψgs|b̂†1b̂1|ψgs〉x = 〈ψgs|ψgs〉x, implying 〈b̂†1b̂1〉 = 〈ψgs|b̂†1b̂1|ψgs〉η/〈ψgs|ψgs〉η.
The other factor equals

〈ψgs|b̂†1b̂1|ψgs〉η =

∫ 2π

0

dζ

∫ ∞
0

dη1dη2 η1η2 L e−
1
2((N+B

√
N)(η2

1+η2
2)−2Nη1η2 cos ζ) =

N 〈ψgs|ψgs〉η −N
∫ 2π

0

dζ

∫ ∞
0

dη1dη2 η
2
1η

2
2 cos ζ e−

1
2((N+B

√
M)(η2

1+η2
2)−2Nη1η2 cos ζ)

≡ N〈ψgs|ψgs〉η −NK. (10.57)

On the second line we have formally replaced
√
N with

√
M , considered inde-

pendent fromN , to simplify the following step, after which we will setM = N
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again. Writing η1η2 cos ζ in the suggestive form −1
2
((η2

1 + η2
2 − 2η1η2 cos ζ)−

(η2
1 + η2

2)), we find K =
(

∂
∂N
− 1√

M
∂
∂B

)
〈ψgs|ψgs〉η, had 〈ψgs|ψgs〉η also been

evaluated with
√
N substituted by

√
M . The term arising from the ∂

∂N

derivation is of lower order and may be neglected, and M may be renamed

back to N . Referring to the form of 〈ψgs|ψgs〉η in Eq. (10.53), showing that

〈ψgs|ψgs〉η ∝ B−1, we may infer

K ' − 1√
N

∂

∂B〈ψ
gs|ψgs〉η =

〈ψgs|ψgs〉η
B
√
N

. (10.58)

Putting the above results together finally yields

〈n̂0〉 =
〈
b̂†1b̂1

〉
=
〈ψgs|b̂†1b̂1|ψgs〉η
〈ψgs|ψgs〉η

= N −
√
N

B +O (1) (10.59)

and, by the previous discussion,

〈n̂2〉 = 〈n̂−2〉 =

√
N

2B +O (1) . (10.60)

In the large-N limit, the
√
N terms become negligible compared to N and

essentially all particles occupy the m = 0 sublevel. Note that this is exactly

the sublevel distribution arising in the related continuum problem through

Order by Disorder.

The above occupation expressions are in agreement with trends discernible

from numerical results. Subpanel (b) of Fig. 10.2 shows the numerically

computed expectation value of the fraction of particles in the m = 0 single-

particle magnetic sublevel with respect to particle number N at λ = 10|g2|.
For compactness, the quantity actually plotted is

∣∣∣ 〈n̂0〉
N
−
(
〈n̂0〉
N

)
∞

∣∣∣ where 〈·〉
denotes the ground-state expectation value and (·)∞ denotes taking the limit

of N → ∞.
(
〈n̂0〉
N

)
∞

is predicted analytically. As we have just shown, it

equals 1 for negative g1. For positive g1, it turns out to be 0, as will be

shown shortly. Numerical results also confirm that 〈n̂0〉 = N −〈n̂2 + n̂−2〉 to

a very good approximation, with 〈n̂1 + n̂−1〉 already being negligible for the

values of N shown in Fig 10.2. Qualitative features of the sublevel particle

distributions are visible in subpanels (c) and (d) of Fig 10.2, showing relative
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occupations of individual single-particle magnetic sublevels, labelled by m,

at N = 200 and λ = 10|g2|, for both signs of g1, as obtained through exact

diagonalisation.

The fractional occupation expectation differences decrease with N for both

signs of g1, indicating the correct trend. Compared to the numerical results

in Fig. 10.2(b), expression (10.59), appropriate for g1 < 0, overestimates 〈n̂0〉
N

by about 0.03, but gets better with increasing N .

For g1 > 0, i.e., when expanding about η0 = π/2, truncating expressions

at the lowest order suffices, and yields (Ω1)1(Ω2)1/(Ω1 · Ω2) ' ±δη1δη2 =

±
(
δη2

+ − δη2
−
)
/2. We may also set the sines appearing in the integration

measure to 1. x again factors out of the problem. One finds

〈ψgs|b̂†1b̂1|ψgs〉η =
N

2

∫ ∞
−∞

dδη+dδη−
(
δη2

+ − δη2
−
)

e
−
(
N+B

√
N

2

)
δη2
−−
B
√
N

2
δη2

+

'
√
N

2B 〈ψ
gs|ψgs〉η (10.61)

and consequently 〈n̂0〉 =
√
N/2B + O(1). This overestimates the results of

Fig. 10.2(b) by about 0.02, with the relative discrepancy slowly decreasing

with N . The qualitative conclusion of agreement with continuum results,

however, remains the same.

The final picture that emerges is that of a system that may be treated at the

quantum level with only very mild approximations, shows distinct features,

not seen in the mean-field treatment, and yet follows the same qualitative

patterns. In particular, the single-particle sublevel occupation values are fully

consistent with those determined by a Bogoliubov-theory order-by-disorder

mechanism in the continuum. This follows from an application of degener-

ate perturbation theory, yielding an effective Hamiltonian for the classically

degenerate η degree of freedom, which may be viewed as a fully quantum

counterpart to the (beyond-)mean-field phenomenon of Order by Disorder.
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11
Conclusion

This thesis has presented new results on a pair of systems with strong ex-

perimental links to cold atoms, putting particular emphasis on how the

fluctuation-induced phenomenon of Order by Disorder arises and manifests

itself in them. Both have been found to feature the phenomenon in a manner

that affords further physical interpretation.

In the dice lattice at half-flux, this takes the form of what seem like fluctuation-

mediated interactions between the extended mean-field domain walls. These

domain walls already take centre stage at the mean-field level, before taking

into account fluctuations, and closely relate the mean-field treatment of the

full Bose-Hubbard Hamiltonian (2.1) to that of the XY model in the same

geometry and the corresponding results by Korshunov.61,63,62 The two types

of domain walls also provide a convenient means of classifying members of

the greatly degenerate mean-field ground-state manifold. Its extensive degen-

eracy may be interpreted to originate from a completely flat single-particle

spectrum, including a ground-state band exhibiting a vast degeneracy, that

the interactions fail to completely lift. An order-by-disorder analysis has

been performed by calculating the Bogoliubov excitation spectra of the four

smallest-unit-cell mean-field states. State (b) of Fig. 3.1 has been found to
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be universally selected as the true ground state, both at zero temperature,

and even more robustly so at finite temperature. Bogoliubov spectra have

been calculated and summed up for another set of mean-field states. These

were periodic, having a large unit cell, for the most part resembling state

(a) of Fig. 3.1, with two domain walls of the same type inserted at variable

separations. These were enforced to be small compared to the unit-cell size.

The zero-point contributions to the free energy are consistent with a picture

wherein type-I domain walls interact attractively and type-II domain walls

repel each other. This is consistent with state (b), having the highest density

of type-II domain walls, always being lowest in energy, and state (c), having

the highest density of type-II domain walls, always being highest in energy.

These results alone suggest a rather broad range of options for further work

on the dice lattice, that include studying finite temperature behaviour and

interactions between intersecting domain walls of different types. As we

demonstrate in the following appendix, there is another class of mean-field

states, closely related to that of domain walls inserted into state (a), that

does not exhibit translational symmetry, but rather rotational symmetry

about a point. These were discovered only after the publication of the work

on the dice lattice, presented in this thesis. On the basis of the domain-

wall-interactions picture, they should not pose a threat to state (b) as the

lowest-energy state. However, their point-like nature is peculiar and one may

even hope to form an effective Hamiltonian governing their dynamics, along

the lines of the lowest Landau-level study by Möller and Cooper.85 While

the author admits that this may seem optimistic, the dice lattice at half-flux

appears to host no shortage of curious and surprising low-energy phenomena

in its various phases. These all seem to be traceable, in one way or another,

back to the exceptional localisation mechanism of Aharonov-Bohm cages.

Whatever the outcomes of future studies of the dice lattice, it thus seems

highly unlikely that they would not be interesting.

The other system considered was that of a tightly confined spin-2 condensate.

Besides demonstrating the correspondence between the mean-field notion of

Order by Disorder and a full quantum computation for a specific external

potential, a considerable number of pages has been devoted to the main an-
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alytical tool, the rotor mapping. This has been instrumental in deriving, for

the first time, non-mean-field analytical results for tightly confined conden-

sates in the presence of a quadratic Zeeman field for spin-1 species, and, in

the publication discussed and expanded upon in this thesis, spin-2 species

as well. While generalising the mapping includes transferring the domain of

our effective description from a regular 2-sphere to a geometrically much less

intuitive 4-sphere, and giving up favourable representation-theoretic proper-

ties that significantly reduce the amount of algebra in the spin-1 setting, the

shift proves entirely manageable. This makes the rotor mapping an attrac-

tive tool with which to study even higher-spin condensates. On the other

hand, rotor mappings may be fruitfully applied to systems other than those

consisting of spinors. A prominent example of this is the two-dimensional

Bose-Hubbard mapping of Anglin et al.,8 recast into the rotor formalism by

Barnett et al.12 and adapted to the present treatment in Sec. 8.1. According

to the algebraically motivated rule of thumb of Chapter 8, the rotor mapping

is likely to offer significant simplifications whenever the system Hamiltonian

is expressible in terms of creation/annihilation operator bilinears â†M â, such

that the matrix M is largely similar to an imaginary antisymmetric matrix.

It is not easy to conjure up such systems, but the author believes they will

be discovered spontaneously and be analysed in the rotor framework accord-

ingly. Finally it should be mentioned that the feasibility of calculations in the

special Hermitianising basis of Eq. (7.12) is currently being investigated for

the rotor mapping, and that the preliminary observations seem very promis-

ing.

After extensively introducing the rotor mapping as the main calculational

tool and treating several examples, the previous two chapters of this thesis

applied the mapping to the specific problem of tightly confined spin-2 con-

densates. Analytical results for the low-energy spectra in the presence of

a non-zero quadratic Zeeman field were derived. This includes excitations

about a fragmented condensate in the large negative-Nq regime, that does

not admit a Bogoliubov analysis and has consequently evaded an analytical

description to date. Where it is stable, Bogoliubov theory appears to agree

with the mapping in general, i.e., including its applications to the spin-1 sys-
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tem and the double-well Bose-Hubbard Hamiltonian. This is also the case for

the large-positive-Nq regime. In both cases, the effective rotor Hamiltonians

were found to be those of independent one-dimensional harmonic oscillators,

yielding spectra in excellent agreement with an exact-diagonalisation numer-

ical study, admitting up to about 300 particles. Ground-state wave-function

overlaps with the limiting large-N |q| ground states were also considered, and

analytical expressions for them derived. The latter were verified to reproduce

the numerically computed overlaps to first order in an asymptotic expansion,

yielding good agreement at large |q|.

One of the features that was näıvely expected to be seen in the overlap plots

with respect to q was ground states approaching the limiting large-N |q| states

in a particular manner, depending on the region of the spin-2 diagram, de-

termined by the effective spin interaction constants gi. Notably, one would

expect the uniaxial state to be approached faster with increasing q and the

biaxial state slower with increasing −q in the uniaxial region, compared to

the speed of the respective approaches in the biaxial region. This, however,

is not observed, and the deeper in the biaxial region we are, the faster both

limiting states are seen to be approached with increasing |q|. This was then

seen to originate from the quadratic Zeeman field breaking too much of the

original Hamiltonian’s symmetry and has prompted studying a new exter-

nal field that leaves the mean-field degeneracy among nematic states entirely

intact. It was demonstrated to lead to an order-by-disorder mechanism in

the continuum, highly analogous to the calculation at zero field, but select-

ing exactly the opposite states in the two nematic subregions at large enough

potential magnitudes. A parallel rotor analysis was then carried out in a new

set of coordinates. The effective Hamiltonian was separated into a zeroth-

order and a first-order part. The zeroth-order part was seen to not depend

on one of the coordinates at all, leading to a highly degenerate zeroth-order

ground-state manifold, lifted by the first order perturbation. This is argued

to be an exact manifestation of the order-by-disorder phenomenon. Finally,

a number of analytical predictions were made and found to be consistent

with the numerics. While the obtained ground state is demonstrably non-

mean-field, its spin-sublevel occupation values qualitatively agree with those
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of the mean-field analysis. These features make the spin-2 condensate with

the modified quadratic Zeeman potential an interesting one to attempt to

realise experimentally. For g1 > 0, the selected state is also seen to be frag-

mented. Issues of crossover between the continuum mean-field state and the

highly consistent tightly bound non-mean-field state, with respect to trap

size, could also be addressed in the future, both experimentally and the-

oretically. Finally, the rotor-framework study of dynamics of the effective

low-energy Hamiltonian appears to be an interesting problem, possibly ex-

hibiting a dynamical instability in an appropriate configuration, representing

another possible avenue of further research on this curious system.
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A
Enumeration of possible

vortex-lattice states in the

dice lattice

This appendix exhaustively lists all the mean-field vortex lattices that may

be realised through exclusive repetition of the triple gauge-invariant-phase-

difference link, consisting of phase differences of magnitude Φs,Φm, and Φl,

summarised in Eq. (3.8). From Eq. (3.3) it may be seen that, at fixed sub-

lattice densities, all such states yield the same mean-field energy. Following

Korshunov,62 one can further demonstrate that given uniform sublattice den-

sities, this energy is necessarily the lowest attainable. It has so far not been

rigorously proved that uniform sublattice-density states globally minimise

the mean-field energy. However, they are demonstrably local minima. Addi-

tionally, their high level of symmetry, further enhanced by the highly regular

phase profiles they admit, and physical intuition from other systems with

repulsive interactions favouring spatially uniform states, such as condensates

in the continuum or on the square lattice, suggest the uniform sublattice

density states as virtually the only realistic candidates for a global minimum
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of the mean-field energy. All of Chapter 4 has been written under the as-

sumption that they indeed are global minima, and we continue under that

assumption here. In the author’s opinion, a rigorous proof of their global

minimisation property should also be found in the not-too-distant future.

With the key assumption set out, let us briefly re-examine the phase-difference

magnitudes Φi appearing in what we will refer to as the “Korshunov link.”

These are given by the system of equations:

2Φs + 2Φl = π type 1 vortex

−Φs + 2Φm + Φl = π type 2 vortex

sin Φs + sin Φm = sin Φl continuity equation (A.1)

where the first two equations provide the two ways these phases may provide

an Aharonov-Bohm phase of ±π upon encircling a plaquette, and the third is

the continuity equation. A simpler and more convenient way to think about

the resulting vortex lattices is in terms of, as the term suggests, vortices

themselves. The first order of business will be to demonstrate that chains of

like vortices in consistent states, formed solely out of a repeated Korshunov

link, are necessarily all of length three. Before that, however, a note on the

terminology used is in order.

A.1 Terminology

Hub and rim sites are defined as in Chapter 2. Sites are connected by edges.

A plaquette is surrounded by four edges, and the three edges, adjacent to

a rim site, form a link. The words “edge” and “link” will be used to mean

either a physical feature of the lattice, or the values of phase differences

across such a feature, when no confusion can arise. Additionally, the phase

differences Φs,Φm, and Φl will occasionally be referred to as the single, double,

and triple edge, respectively, in accordance with the number of arrowheads

usually attributed to each in graphical representations. A Korshunov link is

defined to be any rotation of a link consisting of an inward single edge, an

inward double edge, and an outward triple edge, or an outward single edge,
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an outward double edge, and an inward triple edge.

Vortices are considered pinned to plaquette centres and are said to have pos-

itive vorticity if the phase differences across edges surrounding the plaquette

sum up to +π in the counter-clockwise direction. On the other hand, if they

sum up to −π, the vortices are said to have negative vorticity. From now

on, positive-vorticity vortices will be referred to and represented as black

vortices, and the negative-vorticity ones as white vortices.

Two derived lattices will be of interest. The first is the lattice of vortices.

Since these are pinned to plaquettes, this will be the standard dual lattice, in

which sites and plaquettes are exchanged, and the sites of the dual lattice are

connected by an edge iff the corresponding plaquettes of the original lattice

shared an edge. The dual lattice of the dice lattice is the Kagome lattice,

discernible from figures below. In addition, again dualising the Kagome

lattice yields the original dice lattice.

The dual-lattice sites are occupied by black or white vortices, and the word

“vortex” will again be taken to mean either the dual-lattice site itself or

the actual vortex occupying the site. Chains of vortices are sequences of

dual-lattice sites in which every contiguous pair of sites in the sequence is

connected by an edge and no site appears more than once. We will mostly

be interested in chains of vortices of the same colour. When a vortex is said

to be part of an unqualified chain, this refers to the longest chain of vortices

of the same colour containing it that may be formed.

The other lattice of interest will be the honeycomb lattice of rim sites, in

which hub sites are entirely discarded, and two rim sites are connected by an

edge if they appeared as corners of the same plaquette in the original lattice.

This lattice is “dual” to the Kagome vortex lattice in a non-standard, non-

invertible sense. Replacing edges of the honeycomb lattice with sites, and

letting every pair of such new sites be connected iff the corresponding edges

of the original lattice intersected at a site, yields the Kagome lattice. This

will come handy in Sec. A.3.

Finally, the class of states where every link is a Korshunov link, in which we

are interested, will occasionally be called “Korshunov states.” Furthermore,
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Figure A.1: Basic neighbouring properties of vortices.

the small unit-cell periodic vortex lattices of Fig 3.1 will simply be referenced

by their single-letter labels in the figure, with particularly frequent references

to state (a).

A.2 Korshunov states consist of vortex chains of length three

Let us now show that Korshunov states can only form chains of vortices of like

colour of length three. We begin with a few qualitative observations about

the states that we already know to contain only such chains of length three,

such as the state (a) of Fig. 3.1, with any number of consistently inserted

type-I or type-II domain walls.

1. Every vortex is either at one of the ends of a chain, in which case we

shall refer to it as a peripheral, or P vortex, or at the centre of a chain,

in which case we shall call it a central, or C vortex.

2. Due to the geometry of the Kagome lattice every vortex has 4 neigh-

bours.

3. A P vortex has a neighbour of the same colour, while the rest of the

neighbours have to be of the opposite colour. Again due to the ge-

ometry of the Kagome lattice, whose relevant features and the corre-
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A

B

Figure A.2: An inconsistent chain of length 1.

sponding notation are shown in figure A.1, two of these have to be

neighbours, so they cannot both be central. The remaining oppositely

coloured vortex also has to be peripheral, as its chain has only two

other neighbouring vortices to which it can expand. If it were a C

vortex we would have thus obtained a white triangle, which we shall

shortly show to not qualify as a chain of length three. Every P vortex

hence has 2 P neighbours of the opposite colour and a C neighbour of

the same colour.

With these properties in mind, let us now adopt an agnostic stance as to

whether any other length of chains besides 3 is possible. It is useful to

consider a third division of vortices into two groups, depending on whether

the Aharonov-Bohm phase ±π of a vortex originated from two Φl and two

Φs phases on the edges of its plaquette, oriented in the same fashion, or from

two Φm and one Φl phase, oriented in the same fashion, and an oppositely

oriented Φs phase. We will refer to such vortices as type-1 and type-2 vortices,

respectively, as summarised in the first two lines of Eq. (A.1).

We can now start listing the observations that will eventually lead to the

demonstration that all Korshunov states possess exclusively chains of length

three:

1. An edge between two vortices will contribute in the positive direction

to one of the vortices and in the negative direction to the other. Hence
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Figure A.3: An inconsistent chain of length 2.

the only edge that can appear between two vortices of the same colour

is the single edge Φs, as it is the only one that features in the first two

lines of Eq. (A.1) with both signs.

2. This eliminates the possibility of having a triangle of contiguous vor-

tices of the same colour. Such a triangle surrounds a Korshunov link.

Hence there are also double and triple edges between sites of equal

colour, which is impossible.

3. Suppose we had a chain of length 1, i.e., an isolated vortex of a partic-

ular colour, say black. The situation is shown in Fig. A.2. All of the

black vortex’ neighbours must be white, but some are also neighbours

to each other. Thus the edge between them must be Φs. Since the

edges around rim sites A and B comprise a Korshunov link, the edges

bordering the black vortex must be double or triple. Additionally one

can quickly see that, due to the continuity equation (A.1), the double

and triple edge must always contribute to the black vortex’ vorticity in

the same direction. From the first two lines of Eq. (A.1) one can derive

that Φl + Φm = 3π
4

. By adding or subtracting these it is impossible

to obtain π, which thus yields a contradiction, implying that chains of

length 1 are not allowed.

4. Now suppose we have a chain of length two. This is illustrated in

Fig. A.3. This time we demand that the sum of edge phase differences

along the path ABCDEF , i.e., around two plaquettes, has to equal 2π.

165



Since the edges AD, CG and EH have to be single due to neighbour-

ing plaquettes of equal colour, sections FAB, BCD and DEF again

contribute ±3π
4

each, out of which we cannot form 2π, again yielding a

contradiction.

5. We know that chains of length three are consistent, so what remains to

be done is check that chains of length more than that are inconsistent.

We can observe that a chain of n black vortices must have n− 1 single

edges between neighbouring black vortices and two more single edges

between the two white vortices terminating the chain, which altogether

prescribes the locations of n+ 1 single edges. The continuity equation

then implies that this will yield n + 1 contributions of magnitude 3π
4

to the n-vortex complex. For consistency, these contributions must

add up to nπ. The maximum vorticity that can be formed this way

is Ω = 3(n+1)
4

π. Since n > 3 ⇒ 3n + 3 < 4n ⇒ Ω < nπ, no open

chains of length more than three are possible. Temporarily allowing

for closed chains, the difference in the case of those is found to be even

more pronounced, so we may conclude this part of the discussion.

Note that the above discussion establishes a necessary condition. A state

cannot be a Korshunov state if it possesses vortex chains of lengths other

than three. That every state, exhibiting exclusively vortex chains of length

three, can be obtained through repetition of only the Korshunov link, has

not been demonstrated. However, in the following section, the necessary

condition, or rather an even less specific, but related condition, is applied to

narrow down the set of Korshunov-state candidates, for which the realisation

through Korshunov links may be more easily verified.

A.3 Exhaustive list of Korshunov states

We now proceed to show that all valid Korshunov states are geometrically

equivalent to a state, obtained from state (a) through insertions of type-I and

type-II domain walls, or to a point defect and circular domain walls around

it. By geometrically equivalent, we mean that the two states are related by
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1 2 3

Figure A.4: The three types of hexagons occurring in the related honeycomb lattice problem.

translations, rotations, reflections, and time (colour) inversion.

Working with vortex chains rather than the Korshunov links giving rise to

them already presents a simplification, but the problem may be simplified

even further. Consider the derived honeycomb lattice, consisting of the orig-

inal lattice’s rim sites, introduced in Sec. A.1. If one populates such a lattice

by placing a black dot on rim sites, surrounded by more black vortices than

white ones, and vice versa, it can be shown that a necessary condition for

having only vortex chains of length exactly three is that there are no chains

longer than two on this new lattice. This is a somewhat more manageable

problem. Even though it isn’t a sufficient condition, as it allows for like-colour

triangular vortex clusters and situations as in Fig. A.2, a consistent vortex

lattice may always be reconstructed from the simpler honeycomb problem’s

solution. Furthermore, all solutions of the full dice problem corresponding

to the same honeycomb image are related to each other by type II domain

walls.

Barring the cases of triangular clusters and Fig. A.2, one can see that a chain

of length n on the honeycomb lattice implies a chain of length n + 1 on the

Kagome vortex lattice. This can be seen by recalling that the vortex Kagome

lattice corresponds to the edges of the honeycomb lattice. For two adjacent

honeycomb sites of the same colour, admissible vortex configurations will

have a vortex of the same colour on the edge between the honeycomb sites.

The situation where only this edge vortex is of the opposite colour is also

possible, but this is exactly the case of Fig. A.2, which we have explicitly

excluded. For the present application, all honeycomb chains must thus be of

length 2.
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Figure A.5: Possible ways of continuing a chain of type 2 hexagons.

Let’s first find all the possible configurations of the honeycomb lattice sites.

Only three types of hexagons, up to rotation, reflection and colour inversion

symmetry, shown in fig A.4, can occur in the honeycomb lattice. All others

imply chains of length more than 2. Considering which types of hexagons

can appear next to each other eventually yields a complete description of the

ground states. Let us thus write down some key observations:

1. Starting with a hexagon of type 3, there is a unique, easy way to colour

all the surrounding sites such that all chains are of length 2, shown

in fig A.6d. Hence we can have at most one hexagon of type 3 per

configuration.

2. Now suppose we have a hexagon of type 2, as shown in fig. A.5. We can

uniquely determine the colours of the sites of the hexagon to its left,

which turns out to be a colour-inverted type 2 hexagon, but have two

choices for the hexagon on its right. One of them is a type 3 hexagon. If

we encounter this, we already know that the rest of the state is uniquely

determined. The other choice is another colour inverted type 2 hexagon,

after which we are faced with the same choices for the next hexagon

on the right. Restricting to states without type 3 hexagons, this means

that type 2 hexagons can only appear within infinite rows of type 2

hexagons. Denote these type 2 rows.

3. The neighbouring row of a type 2 row can either be another type 2 row,
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(a) States (a) and (c). (b) Panel (2) of Fig. 3.2.

(c) States (b) and (d). (d) Radial state.

Figure A.6: Honeycomb lattice images of different mean-field states, listed in the subcaptions,
up to geometrical transformations. Red lines indicate the position of type I-domain walls/type 2
rows or, in the first image, locations where they may be inserted, and green lines mark tubes
or, equivalently, locations where type-II domain walls may be inserted.

or an infinite row of type 1 hexagons. Call such a row a type 1 row,

accordingly.

4. Furthermore, a neighbouring row of a type 1 row may be either a type 2

row or a type 1 row.

5. There is a unique honeycomb image consisting only of type 1 hexagons.

The last three properties can be very easily verified by drawing a few hex-

agrams. This completely determines the possible honeycomb images: an

arbitrary sequence of type 1 and type 2 rows, or a type 3 hexagon-induced

radial image.

Note that should we have an image composed solely of type 1 rows and a

single type 2 row, the region, consisting exclusively of type 1 hexagons, on

one side of the type 2 row would correspond to the mirrored and colour-

inverted type 1 hexagon region on the other side of the type 2 row. This

heavily resembles a type-I domain wall. Indeed, the honeycomb image of
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state (a) consists entirely of type-I hexagons, and acquires a single type 2

row when a Type-I domain wall is inserted, coinciding with location of the

type 2 row.

The correspondence is not accidental, as we are about to show. A good

organising principle for enumerating all the vortex lattice states, correspond-

ing to a given honeycomb image, is locating what we’ll call tubes : double

lines of equally coloured honeycomb sites. In Fig. A.6a, these are indicated

by dashed green lines. We’ll furthermore refer to the nearest equal-colour

pairs of honeycomb sites that form the walls of the tube as its joints. Note

that tubes may be harder to identify in the presence of type 2 rows, as they

bend and change colour when crossing them. This is illustrated in Fig.A.6b.

They are particularly well concealed when there are many type 2 rows, as in

Fig.A.6c, but are nevertheless well defined.

Consider now a horizontal black tube. The sections of the dice lattice that a

single joint of the tube can represent are shown in Fig. A.7. Subfigure A.7b

is eliminated immediately as it contains a chain of length 1. The remaining

representations in Figs. A.7c and A.7d and their mirror images are admissible.

The situation is, however, only consistent if every joint of the tube represents

this same pattern. This is also true for bending tubes, where the pattern

needs to be mirrored and colour-inverted every time the tube passes a type 2

row. Assuming any other configuration leads to a contradiction in a very

small number of steps, as can easily be verified.

Given a honeycomb image, we may in fact fully specify the underlying vortex

lattice by choosing a joint pattern for each tube. Note that, if this is done in

order for contiguous tubes, the previous tube determines the “chirality” of

the next tube’s joint pattern. We are, however, free to choose whether our

joints will form straight vortex chains, or crooked ones. As may again be

verified graphically, choosing all but one of the tubes to have straight joints,

and the remaining tube to have crooked joints, is completely analogous to

inserting a type-II domain wall into state (a) at the position of the crooked-

joint tube. This may be further used to show that type 2 rows satisfy all the

properties of a Type-I domain wall, and may hence be considered completely

equivalent.
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(a) An example dice-lattice vortex configuration that yields a black tube in the honeycomb
image.

(b) Inconsistent link. (c) Straight consistent link. (d) Crooked consistent link.

Figure A.7

Recalling that state (a) yields the honeycomb image without any type 2 rows,

the following is seen to be true: Apart from the radial states, commented

on briefly, vortex-lattice states exhibiting exclusively chains of length three

correspond exactly to state (a) with an arbitrary number of consistently

inserted domain walls of both types, up to geometric transformations. Recall

that we are specifically interested in Korshunov states and that we have only

demonstrated the chain-length condition to be a necessary one. In this case,

however, we know from Chapter 3 and previous work by Korshunov61,63,62

that these vortex lattices can be constructed in terms of the Korshunov link,

and that the constructions are unique.

The radial state, shown in Fig. A.6d, is a new, previously unanticipated

feature. A consistent Korshunov link construction may be found, for arbi-

trarily inserted type-II circular domain walls, meaning that these are not

an artefact of the honeycomb analysis, but correspond to legitimate mem-

bers of the degenerate set of dice-lattice mean-field ground states. While

the interacting-domain-walls interpretation of fluctuation zero-point energy

contributions of Sec. 4.4 does not appear to favour such states, particularly
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when type-II domain walls are present, this would still need to be explicitly

verified. They should also be taken into account with any future calculations

at finite temperature. For now, their existence implies that the mean-field

degeneracy is even greater than previously anticipated on the basis of the

remainder of Korshunov states.

The above analysis shows that the arbitrarily geometrically transformed ra-

dial states, with any number of radial type-II domain walls inserted, and

the mean-field states of Chapter 3, completely parametrise the space of Ko-

rshunov states.
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[40] N Goldman, G Juzeliūnas, P Öhberg, and I B Spielman. Light-induced

gauge fields for ultracold atoms. Reports on Progress in Physics, 77(12):

126401, 2014. URL http://stacks.iop.org/0034-4885/77/i=12/a=

126401.

[41] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hansch,

and Immanuel Bloch. Quantum phase transition from a superfluid to

a Mott insulator in a gas of ultracold atoms. Nature, 415(6867):39–44,

January 2002. ISSN 0028-0836. URL http://dx.doi.org/10.1038/

415039a.

[42] Axel Griesmaier, Jörg Werner, Sven Hensler, Jürgen Stuhler, and

Tilman Pfau. Bose-Einstein Condensation of Chromium. Phys. Rev.

Lett., 94:160401, Apr 2005. doi: 10.1103/PhysRevLett.94.160401. URL

http://link.aps.org/doi/10.1103/PhysRevLett.94.160401.

[43] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell.

Measurements of Relative Phase in Two-Component Bose-Einstein

Condensates. Phys. Rev. Lett., 81:1543–1546, Aug 1998. doi:

10.1103/PhysRevLett.81.1543. URL http://link.aps.org/doi/10.

1103/PhysRevLett.81.1543.

[44] Charles E. Hecht. The possible superfluid behaviour of hydro-

gen atom gases and liquids. Physica, 25(7):1159 – 1161, 1959.

ISSN 0031-8914. doi: http://dx.doi.org/10.1016/0031-8914(59)

178

http://link.aps.org/doi/10.1103/PhysRevA.73.041602
http://link.aps.org/doi/10.1103/PhysRevA.73.041602
http://link.aps.org/doi/10.1103/PhysRevA.59.1514
http://link.aps.org/doi/10.1103/PhysRevA.59.1514
http://stacks.iop.org/0034-4885/77/i=12/a=126401
http://stacks.iop.org/0034-4885/77/i=12/a=126401
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://link.aps.org/doi/10.1103/PhysRevLett.94.160401
http://link.aps.org/doi/10.1103/PhysRevLett.81.1543
http://link.aps.org/doi/10.1103/PhysRevLett.81.1543


90035-7. URL http://www.sciencedirect.com/science/article/

pii/0031891459900357.

[45] Christopher L. Henley. Ordering by disorder: Ground-state selection

in fcc vector antiferromagnets. Journal of Applied Physics, 61(8):3962–

3964, 1987. doi: 10.1063/1.338570. URL http://link.aip.org/link/

?JAP/61/3962/1.

[46] Christopher L. Henley. Ordering due to disorder in a frustrated vec-

tor antiferromagnet. Phys. Rev. Lett., 62:2056–2059, Apr 1989. doi:

10.1103/PhysRevLett.62.2056. URL http://link.aps.org/doi/10.

1103/PhysRevLett.62.2056.

[47] Tin-Lun Ho. Spinor Bose Condensates in Optical Traps. Phys. Rev.

Lett., 81:742–745, Jul 1998. doi: 10.1103/PhysRevLett.81.742. URL

http://link.aps.org/doi/10.1103/PhysRevLett.81.742.

[48] Tin-Lun Ho and Sung Kit Yip. Fragmented and Single Condensate

Ground States of Spin-1 Bose Gas. Phys. Rev. Lett., 84:4031–4034,

May 2000. doi: 10.1103/PhysRevLett.84.4031. URL http://link.

aps.org/doi/10.1103/PhysRevLett.84.4031.
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[97] F. Pereira Dos Santos, J. Léonard, Junmin Wang, C. J. Barrelet,

F. Perales, E. Rasel, C. S. Unnikrishnan, M. Leduc, and C. Cohen-

Tannoudji. Bose-Einstein Condensation of Metastable Helium. Phys.

Rev. Lett., 86:3459–3462, Apr 2001. doi: 10.1103/PhysRevLett.86.

3459. URL http://link.aps.org/doi/10.1103/PhysRevLett.86.

3459.

[98] C.J. Pethick and H. Smith. Bose-Einstein Condensation in Di-

lute Gases. Cambridge University Press, 2nd edition, 2008. ISBN

9780521846516.

[99] Sylvain Petit, Julien Robert, Solène Guitteny, Pierre Bonville, Clau-

dia Decorse, Jacques Ollivier, Hannu Mutka, Michel J. P. Gingras,

and Isabelle Mirebeau. Order by disorder or energetic selection of the

ground state in the XY pyrochlore antiferromagnet Er2Ti2O7: An in-

elastic neutron scattering study. Phys. Rev. B, 90:060410, Aug 2014.

doi: 10.1103/PhysRevB.90.060410. URL http://link.aps.org/doi/

10.1103/PhysRevB.90.060410.

[100] Nguyen Thanh Phuc, Yuki Kawaguchi, and Masahito Ueda.

Fluctuation-induced and symmetry-prohibited metastabilities in spinor

Bose-Einstein condensates. Phys. Rev. A, 88:043629, Oct 2013. doi:

10.1103/PhysRevA.88.043629. URL http://link.aps.org/doi/10.

1103/PhysRevA.88.043629.

[101] Nguyen Thanh Phuc, Yuki Kawaguchi, and Masahito Ueda. Quan-

tum Mass Acquisition in Spinor Bose-Einstein Condensates. Phys.

Rev. Lett., 113:230401, Dec 2014. doi: 10.1103/PhysRevLett.113.

186

http://link.aps.org/doi/10.1103/PhysRevA.94.023605
http://link.aps.org/doi/10.1103/PhysRevA.94.023605
http://link.aps.org/doi/10.1103/PhysRev.104.576
http://link.aps.org/doi/10.1103/PhysRev.104.576
http://link.aps.org/doi/10.1103/PhysRevLett.86.3459
http://link.aps.org/doi/10.1103/PhysRevLett.86.3459
http://link.aps.org/doi/10.1103/PhysRevB.90.060410
http://link.aps.org/doi/10.1103/PhysRevB.90.060410
http://link.aps.org/doi/10.1103/PhysRevA.88.043629
http://link.aps.org/doi/10.1103/PhysRevA.88.043629


230401. URL http://link.aps.org/doi/10.1103/PhysRevLett.

113.230401.

[102] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle.

Vortex Nucleation in a Stirred Bose-Einstein Condensate. Phys. Rev.

Lett., 87:210402, Nov 2001. doi: 10.1103/PhysRevLett.87.210402. URL

http://link.aps.org/doi/10.1103/PhysRevLett.87.210402.

[103] Matteo Rizzi, Vittorio Cataudella, and Rosario Fazio. Phase diagram of

the Bose-Hubbard model with T3 symmetry. Phys. Rev. B, 73:144511,

Apr 2006. doi: 10.1103/PhysRevB.73.144511. URL http://link.

aps.org/doi/10.1103/PhysRevB.73.144511.

[104] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Bo-

iron, C. I. Westbrook, and A. Aspect. A Bose-Einstein Condensate of

Metastable Atoms. Science, 292(5516):461–464, 2001. ISSN 0036-8075.

doi: 10.1126/science.1060622. URL http://science.sciencemag.

org/content/292/5516/461.

[105] K. A. Ross, Y. Qiu, J. R. D. Copley, H. A. Dabkowska, and B. D.

Gaulin. Order by Disorder Spin Wave Gap in the XY Pyrochlore

Magnet Er2Ti2O7. Phys. Rev. Lett., 112:057201, Feb 2014. doi: 10.

1103/PhysRevLett.112.057201. URL http://link.aps.org/doi/10.

1103/PhysRevLett.112.057201.

[106] Hiroki Saito and Masahito Ueda. Diagnostics for the ground-state

phase of a spin-2 Bose-Einstein condensate. Phys. Rev. A, 72:053628,

Nov 2005. doi: 10.1103/PhysRevA.72.053628. URL http://link.

aps.org/doi/10.1103/PhysRevA.72.053628.
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