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Abstract. In this work, we consider vortex lattices in rotating Bose–Einstein
condensates composed of two species of bosons having different masses.
Previously (Barnett et al 2008 New J. Phys. 10 043030), it was claimed that
the vortices of the two species form bound pairs and the two vortex lattices lock.
Remarkably, the two condensates and the external drive all rotate at different
speeds owing to the disparity of the masses of the constituent bosons. In this
paper, we study the system by solving the full two-component Gross–Pitaevskii
equations numerically. Using this approach, we verify the stability of the putative
locked state that is found to exist within a disc centered on the axis of rotation
and that depends on the mass ratio of the two bosons. We also derive a refined
estimate for the locking radius tailored to the experimentally relevant case of a
harmonic trap and show that this agrees with the numerical results. Finally, we
analyze in detail the rotation rates of the different components in the locked and
unlocked regimes.
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1. Introduction

One of the most striking manifestations of the quantum-mechanical nature of superfluids
under rotation is the formation of quantized vortices [2, 3]. Perhaps the most natural arena to
controllably investigate the physics of vortices is Bose–Einstein condensates (BECs) of alkali
atoms [4–6]. For the simplest case where the condensate is composed of a single type of atom
without spin degrees of freedom, a triangular lattice is formed [7, 8]. On the other hand, for
multicomponent systems (composed of mixtures of atoms or spinor condensates, for instance),
the order parameter has additional degrees of freedom, resulting in more complex vortex lattice
structures (see, for example, [9–13]).

For the classic problem of an ideal fluid in a container rotating at rate !, the steady-state
local velocity is v = ! × r, where r is the distance from the axis of rotation. Since this velocity
has a nonvanishing curl everywhere (|∇ × v| = 2!), it is not a permissible flow for a superfluid
that is supposed to be inherently irrotational (v = h̄

m ∇θ with θ being the phase of the SF order
parameter). However, superfluids are well known to mimic the classical rigid-body rotation
on average by forming a vortex lattice where the density of these vortices is given by the
Feynman relation [3, 8]

ρv = m!

π h̄
, (1)

where m is the mass of the constituent bosons and ! is the rate at which the superfluid is
rotating, which is equal to the rotational rate of the walls of the container.

In a previous work [1], it was considered how the situation described above generalizes
to the problem of two-component BECs composed of atoms having different masses. More
specifically, equation (1) naturally generalizes, for two-component systems, to

ρ1
v = m1!1

π h̄
, ρ2

v = m2!2

π h̄
, (2)

where m1 and m2 are the masses of the bosons in the two constituent condensates and !1

and !2 are the angular rates at which the two superfluids are rotating. For the case where
there is a negative interspecies scattering length, the attraction between species will lead to an
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attractive interaction between vortices of the two species. When this interaction is sufficiently
large, one has the situation where the vortices form bound pairs, forcing the densities of the
two vortex lattices to be the same: ρ1

v ≈ ρ2
v . For this case, equations (2) imply that the two

superfluids (taking without loss of generality m1 > m2) will rotate at different speeds !1 < !2.
This counterintuitive state results from the quantum mechanical nature of the superfluid and has
no analogue in the classical fluid case.

In [1], we argued for the possible existence of this state by making an ansatz for the short-
ranged interspecies interaction and performed a two-body force calculation using it. This gave
a quantitative prediction for the distance from the center of the condensate at which the vortex
pairs become unbound, resulting from the growth of the Magnus force, which is referred to as
the locking radius. In [1], we also provided numerical results obtained after studying this state
by using the dual coordinate representation for the vortices (using a logarithmic interaction)
and taking an ansatz for interspecies interaction. In the current paper, we study the system
by using numerical integration of the full two-component Gross–Pitaevskii equation (GPE).
The starting point here is more fundamental and makes no assumptions about the way vortices
interact. We will verify that the locked states are stable for a range of parameters. Furthermore,
we will see that the analytic prediction for the locking radius agrees well with the numerical
results.

The paper is organized as follows. In section 2.1, we provide definitions and set the notation
for the treatment of the GPE. In section 2.2, we summarize the derivation of the locking radius
previously given in [1], which is based on a two-body force calculation. The main results of
the paper are presented in section 3. Here, we provide the vortex lattice structures determined
numerically and compare them with the estimate for the locking radius. Finally, in section 4, we
provide a discussion of potential experiments for realizing this effect and then conclude.

2. Background

2.1. Two-component GPEs

Our analysis starts with the two-component Gross–Pitaevskii energy functional in the frame of
reference rotating at angular rate !d . This is given by E = E1 + E2 + E12, where

E1 =
∫

d2r
(

h̄2

2m1
|∇ψ1|2 + V1n1 +

1
2

g1n2
1 − !dψ

∗
1 Lzψ1

)
, (3)

E2 =
∫

d2r
(

h̄2

2m2
|∇ψ2|2 + V2n2 +

1
2

g2n2
2 − !dψ

∗
2 Lzψ2

)
, (4)

and

E12 = g12

∫
d2r n1(r)n2(r). (5)

In these equations, V1 and V2 are the confining potentials of the BECs, which we will assume to
be harmonic. The intraspecies and interspecies scattering strengths are defined as g1,2 and g12,
respectively. The angular momentum operator, as usual, is defined as Lz = xpy − ypx , where
px,y ≡ −ih̄∂x,y .
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OX

Figure 1. A bound pair of vortices occurring in the locked state composed of
a mixture of BECs with m1 > m2. The vortex in the heavier species is denoted
with an ‘×’, while that in the lighter species is denoted with an ‘◦’. The center of
the condensate is taken to be to the left of this bound pair. The attractive short-
ranged interspecies force F1,2

rstr serves to bind the vortex pairs together. This is
counterbalanced by the Magnus force F1,2

mag, which increases from the center of
the condensate. Note that the healing length of the superfluid is larger than the
sphere representing vortices in this figure.

Varying this energy with respect to ψ1 and ψ2 and introducing the chemical potentials µ1

and µ2 to enforce particle number conservation gives the two-component GPEs

µ1ψ1 = − h̄2

2m1
∇2ψ1 + V1ψ1 + g1n1ψ1 + g12n2ψ1 − !d Lzψ1, (6)

µ2ψ2 = − h̄2

2m2
∇2ψ2 + V2ψ2 + g2n2ψ2 + g12n1ψ2 − !d Lzψ2. (7)

In appendix B, we describe how these coupled equations are solved numerically to find minima
of the energy E .

2.2. Interspecies vortex attraction and locking

In this section, for completeness, we provide an estimate of the locking radius of the vortex-
bound state based on a two-vortex calculation. This calculation is presented in more detail
in [1]. We first consider the state for the case where the interspecies interaction is large and
all of the vortices of one species are bound with that of the other due to the strong short-ranged
attractive force. A bound pair of vortices is depicted in figure 1. The vortex binding causes the
two superfluids to rotate at different rates (because of the different masses and the Feynman
relation), creating a Magnus force that tries to rip the bound pair apart. The Magnus force is
balanced by the short-ranged interspecies vortex interaction resulting from the overlap of the
vortex cores. However, since the Magnus force grows linearly with distance from the center of
the condensate, it will eventually overcome the short-ranged interspecies attraction. The point
at which this occurs we refer to as the locking radius.

We will now put the previous arguments on a more quantitative footing. A vortex sitting at
rest in a superfluid flowing at velocity v will experience a force perpendicular to the flow

Fmag = 2π h̄n0v × κ̂, (8)

the so-called Magnus force [8], where κ̂ is a unit vector centered at the vortex pointing
out of the plane. Assuming that the system is composed of entirely locked vortex lattices, we
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have, for the vortex densities, ρ(1)
v = ρ(2)

v . This, via the Feynman relations, gives

m1!1 = m2!2, (9)

where !1 and !2 are the angular rotational rates of the two superfluids. Since m1 > m2 the
superfluids will rotate at different rates, which will lead to the Magnus forces pulling the bound
pair apart.

The short-ranged interspecies interaction arising from E12 defined in equation (5) will
counteract the Magnus force. We refer to this as the ‘restoring force’. In order to obtain an
analytic expression for this interaction, we take a Gaussian ansatz for the density profile about
a vortex. Specifically, for a vortex in species α centered at r0, we take

nα(r) = nα
0 (1 − e−|r−r0|2/λ2

α ), (10)

where λα is of the order of the superfluid coherence length [1]. We take

λα = 1.781ξα (11)

for the value of this length parameter. This is a slight modification of the analysis in [1], where
the simpler case of λα = ξα was used. We choose the nonuniversal constant in equation (11)
such that the ansatz in equation (10) provides a better fit to the density surrounding a vortex.
For a detailed discussion of this, see appendix A.

Inserting this ansatz for two vortices separated by distance d into equation (5), we find

E12 = g12n1
0n2

0π
ξ 2

1 ξ 2
2

λ2
1 + λ2

2

e−d2/(λ2
1+λ2

2), (12)

where we have dropped terms that do not depend on the vortex separation. The interspecies
force immediately follows from the derivative of this interaction energy and is

Fα
rstr = −2π |g12|n1

0n2
0

λ2
1λ

2
2

(λ2
1 + λ2

2)
2
e−d2/(λ2

1+λ2
2)d. (13)

Balancing the forces on each vortex in the frame of reference rotating at the drive frequency, we
have F1

mag = F1
rstr and F2

mag = F2
rstr, as is illustrated in figure 1. Since the restoring force acting on

either species has the same magnitude, we have that F1
mag = F2

mag. The Magnus force on species
α in the frame rotating with the vortex lattice at frequency !v is given by

Fα
mag = 2π h̄nα

o |!α − !v|r, (14)

which grows linearly with the distance from the center of the condensate r . Also, note that
the restoring force will not depend on the position in the condensate. A bound vortex pair will
become unstable when the Magnus force is equal to the maximum possible value of the restoring
force. This works out to

rc =
√

1
2e

|g12|
h̄!v

m1n2
0 + m2n1

0

m1 − m2

λ2
1λ

2
2

(λ2
1 + λ2

2)
3/2

= 0.7638
|g12|
h̄!v

m1n2
0 + m2n1

0

m1 − m2

ξ 2
1 ξ 2

2

(ξ 2
1 + ξ 2

2 )3/2
. (15)
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It also follows from this analysis that inside the locked region of the lattice, the superfluids will
rotate with different angular velocities

!1 = (n1
0 + n2

0)m2

m1n2
0 + m2n1

0

!v < !v < !2 = (n1
0 + n2

0)m1

m1n2
0 + m2n1

0

!v. (16)

A more detailed derivation of these expressions can be found in [1].

3. Results and discussion

We discuss below the results of the numerical simulation. Firstly, we provide the parameters
that were used for the computations. For simplicity, we restrict our attention to the simplest
case where g1 = g2, and we fix the interspecies scattering strength such that |g12|/g1 = 2/3.
Furthermore, we take the number of particles in each species to be the same: N1 = N2. We set
the dimensionless parameter defined as g̃ ≡ m

h̄2 g1 N1 to be g̃ = 2 × 104, which is in line with
the values from typical experiments3. We take the two trapping potentials to be harmonic and
adjust their curvatures ω1 and ω2 so that the density profiles of the two species have the same
Thomas–Fermi profiles4. Finally, we rotate the system at 0.9 times the critical rate at which the
condensate becomes unstable due to centrifugal forces. We discretize the system on a 200 × 200
grid, and propagate the system in imaginary time intervals of ,τ = 0.01 1

h̄ωx
.

We first consider the simplest case where the masses of the two species are the same.
For this state, we take the initial wavefunction to be a perfect triangular lattice of vortices
with density given by the Feynman relation, equation (1). This structure is then relaxed by
evolving the wavefunctions in imaginary time using the methods described in appendix B. As
expected, these vortex lattices remain fully locked. The relaxed structures show small deviations
from the perfect triangular initial structure owing to the effects of the trap [14]. The density
profiles of these are shown in figure 2 in panels (1a) and (1b). The positions of the vortices are
determined by analyzing the phases of the relaxed wavefunctions. Using this relaxed structure
as the initial state, we change the mass ratios and propagate the wavefunctions in imaginary
time until convergence. Specifically, we consider the m1/m2 ratios of 1.2, 1.4. and 1.6, shown
in figure 2.

To compare these numerical results to our estimate for the locking radius described in
section 2.2, we need to tailor equation (15) to the case of a harmonic trap. We take the density
profiles used in equation (15) to have the Thomas–Fermi form

n1,2 = n0

(

1 −
(

r
RTF

)2
)

, (17)

where n0 is the density at the center of the trap and RTF is the Thomas–Fermi radius (note that
we are considering only the case where the two condensates have the same radius). Inserting
this profile into equation (15) (taking the correct dependence of the coherence lengths on the

3 Such a value would be obtained, for instance, for a condensate of 3 × 106 87Rb atoms with condensate
thickness dz = 10 µm. This then gives g̃ = 4πa

dz
N ≈ 2 × 104, where we take a = 106a0 for the s-wave scattering

length.
4 We choose the trapping potentials such that the density profiles are the same for simplicity. For the more general
cases where the particle density and size of the clouds vary, the same physics of vortex locking will survive.
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(3a) (3b) (3c) (3d)

(2d)

(1c)

(2a)

(1b)

(2b)

(1a)

(2c)

(1d)

Figure 2. Relaxed vortex lattices for several mass ratios. Rows 1 and 2 are
the density profiles of species 1 and 2, respectively, as a function of position.
Superimposed over these images are the vortex positions marked with red ×s
and black ◦s. Row 3 gives the positions of both vortex species for comparison.
In this row, the dotted circle is the estimate for the locking radius based on the
two-body calculation showing good agreement with the numerics. Columns a, b,
c and d are for the mass ratios of m1/m2 = 1.0, 1.2, 1.4 and 1.6, respectively.

density), one finds

rc = r 0
c

√

1 −
(

rc

RTF

)2

, (18)

where r 0
c is equation (15) evaluated for parameters at the center of the trap. This equation can

then be solved for rc to obtain the renormalized value of the locking radius

rc = r 0
c√

1 +
(

r0
c

RTF

)2
. (19)

This indicates that near the center of the condensate, we will have rc ≈ r 0
c as expected. Also, the

locking radius will never exceed the radius of the condensate as expected. The reduction of the
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bare value of the locking radius can be qualitatively understood as follows. The Magnus force
is proportional to the superfluid density, while the restoring force is proportional to this density
squared. Therefore, near the edge of the condensate where the density is considerably smaller
than its value at the center, the Magnus force will be favored, thereby suppressing the locking
radius.

The third column of figure 2 shows the positions of the vortices of the two species,
labeled as ×s and ◦s. The widths of these labels are roughly the size of the coherence length
of the condensates. Superimposed on this is the locking radius predicted by equation (19)
(using equation (19) for the bar locking radius) shown as a dotted line. This shows that the
analytic results provide an excellent estimate of the locking radius. Note that due to the strong
interactions between the two condensates, an unbound vortex in one species will create a local
minimum in the other. Such features can be seen in columns c and d of figure 2. These local
depletions should not be mistaken for vortices, which are defined by the phase behavior of the
wavefunctions.

To obtain a more detailed understanding of the locking phenomena, it will be useful to look
at the phase gradients of the wavefunctions in addition to the densities we were considering
above. In fact, equation (16) makes a quantitative prediction for the angular velocities in the
locked regime which can be directly tested by our numerics. Recalling that, for simplicity, we
have chosen the trapping potential such that n1

0 = n2
0, equation (16) directly gives

!1 = 2m2

m1 + m2
!d = m2

m1
!2. (20)

From our relaxed vortex structures, we can compute the rate at which each constituent superfluid
is rotating. The average angular velocity of each component at distance r from the center
of the condensate is given by !1(r) = v1(r)/r and !2(r) = v2(r)/r , where v1 and v2 are the
superfluid flow velocities averaged over a circle of radius r from the center of the condensate.
More specifically, these are defined as

v1 = 1
2πr

∮
dr · v1, v2 = 1

2πr

∮
dr · v2. (21)

Here v1 and v2 are, as usual, given by the gradient of the phase of the wavefunctions:
v1 = h̄

m1
∇θ1, v2 = h̄

m2
∇θ2. In figure 3, we plot v1, 2m2

m1+m2
vd and m2

m1
v2, which directly provides

a test for equation (20); all the quantities should be equal in the locked regime. We plot the
above quantities for the two larger mass ratios m1/m2 = 1.4 and m1/m2 = 1.6 and note that
the other mass ratios exhibit similar behavior. One sees that each of the three quantities shows
good agreement in the locked regime. Note that due to the discreteness of the circulation of
the vortices (each contributes a unit of h

m1
or h

m2
to equations (21)), the curves for v1 and v2 are

nonmonotonic.
As we have shown, our theory provides a good description of the behavior inside the locked

regime and the distance at which this state will become unstable. However, the general behavior
for r > rc is a more complicated matter to address quantitatively. Qualitatively, as shown in
figure 2, the vortices outside of the locking radius form triangular lattices. However, if vortices
of two different species are nearby, the short-ranged attractive interaction given by E12 will
serve to bind them together, locally distorting the triangular lattice to minimize the energy.

Finally, it is worth noting that interesting predictions of locked or ‘vortex molecule’ states
were previously made in [15, 16]. These papers considered a rotating mixture of atoms in two
different hyperfine states which are coupled through an external field. However, for this system
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Figure 3. The quantities v1 (red), 2m2
m1+m2

vd (black) and m2
m1

v2 (blue) as a function of
distance from the center of the condensate. v1 and v2 are the superfluid velocities
of the two species averaged over a circle of radius r from the center of the
condensate. vd is determined through the rotation rate: vd = r!d . The unit of
velocity for these figures is

√
h̄ω1/m1. The vertical dashed lines indicate the

locking radius determined from equation (19).

there is no intrinsic frustration for the vortex lattices since the masses of the two different
bosonic species are the same. Therefore, none of the physics where the subsystems rotate at
different rates will occur there.

4. Experimental considerations and concluding remarks

The main requirement for realizing the locked state is a BEC composed of a binary mixture
of atoms having different masses and negative scattering length. Such a transition could be
tuned with an interspecies Feshbach resonance, which has been found in Li–Na [17] and
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Rb–K [18] mixtures. These mixtures have mass ratios of 3.3 and 2.2, respectively. Another
promising experimental system is mixtures of two isotopes of a particular atom. For instance,
the interspecies scattering lengths of different species of Yb have been analyzed in [19] and are
often found to be negative. Since the mass ratios for different isotopes are closer to unity, it is
not necessary to have a strong attractive interaction (often requiring a Feshbach resonance) to
reach the vortex-locked state for this case.

Note that these results are closely related to the experiment described in [20]. Here a single-
component BEC is stirred by a rotating optical lattice, which acts as vortex pinning sites. When
the optical lattice is rotated at the speed for which the density of the pinning sites matches the
density of the vortex lattice predicted by equation (1), a completely locked state is observed.
Away from this resonance, a similar analysis as described above will predict a disc of bound
vortices.

In conclusion, we report here our confirmation of the putative vortex-locked state that we
proposed in [1]. For this state, the two superfluids and the stirring potential all rotate at different
rates, exhibiting an unusual effect due to the quantum mechanical nature of superfluids. In the
present paper, we show that such a state exists within a disc that is centered on the axis of rotation
and has a size that agrees well with an analytical estimate. Note that our numerical analysis
did not assume anything about the vortex–vortex attraction (unlike our theoretical analysis,
which assumes equation (12) and evolves the GPEs directly). Our results (both analytical and
numerical) rely on approaching this state from the fully locked state. Experimentally, this is
probably most easily realized by controllably adjusting an interspecies Feshbach resonance.
Alternatively, one can use an optical lattice to control the effective masses of the atoms by
varying the lattice depth.
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Appendix A. Density profile for a single vortex

In order to find the short-ranged interspecies vortex interaction, we need to know the behavior
of the density of the condensate about a vortex. To this end, we consider the GPE for a single
component BEC having a vortex at the origin. That is, we write ψ = f eiθ and take θ = ϕ, where
ϕ is the azimuthal angle from the polar coordinates. Substituting this into the GPE leads to the
following equation dictating the density profile:

− h̄2

2m
1
r
∂r(r∂r f ) +

h̄2

2m
f

r 2
+ g f 3 = µ f. (A.1)

The density n = f 2 resulting from the numerical solution of this equation is shown in figure A.1.
The numerical solution shows that the density behavior close to the vortex core (r ) ξ )

is n(r) ≈ 0.340 n0(
r
ξ
)2. On the other hand, the long-distance behavior is found to be
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Figure A.1. Solid line: the density profile for a single vortex at r = 0 found
by numerically solving equation (A.1). Dashed line: ansatz density profile
n(r) = n0(1 − e−r2/λ2

), where λ is selected so that the two densities agree at one
coherence length away from the vortex center. The vertical lines give the locking
radius.

n(r) = n0(1 − ( ξ

r )
2). To make our work amenable to analytic treatment, we take the following

ansatz for the vortex profile:

n(r) = n0(1 − e−r2/λ2
), (A.2)

where λ is a parameter of the order of the coherence length. Note that while this ansatz has
the correct form close to the vortex core, the long-distance behavior differs considerably.
Fortunately, our problem of vortex locking is dominated by the short-distance behavior, and
we choose λ such that the two densities (numerical and ansatz) agree at r = ξ , which requires
λ = 1.781ξ , as shown in figure A.1.

Our positive results, confirming the vortex-locked state, also confirm our intuition that the
origin of the phenomena is in the short-ranged attraction between vortices. As explained in [1]
(but without proof), the algebraic decay of the superfluid order parameter of a single vortex does
not imply that vortices of one species, when in a lattice, exhibit a power-law decaying force on
the vortices on the other species. Unlike the single-species vortex–vortex force, which is the
result of the inductive (kinetic) energy term in the GPEs, the interspecies force is a result of
a density–density interaction. The density suppression due to a single vortex occurs since the
superflow of the vortex effectively increases the mass terms V1 and V2 in equation (4). But in
a lattice of vortices, the combined superflow vector is nearly zero (i.e. negligible compared to
h̄/mαξα) and, therefore, so is the respective density suppression.

Appendix B. Numerical methods

Since there are only rare occasions when the time-dependent GPE permits analytic solutions,
numerical simulation is often the method of choice for theoretically studying BECs (for a recent
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account of the numerical solution of the GPE, see [21]). In this section, for simplicity, we will
only consider the single-component case, noting that the generalization to the two-component
case is straightforward. To this end, the equation we wish to solve is

h̄
∂ψ

∂τ
= Hψ, (B.1)

which describes the evolution of ψ in imaginary time, τ = it . Under long enough evolution ψ
will relax to the ground state of the Gross–Pitaevskii energy functional. In the above equation,
H is given by

H = − h̄2

2m
∇2 + Vtrap + g|ψ |2 − !Lz. (B.2)

We use a split-operator method to evolve the order parameter ψ as in equation (B.1).
The idea behind the split-operator method is to approximate the evolution operator through
imaginary time interval ,τ , U (,τ) = e−H,τ , by a product of terms that are easily
diagonalizable. Neglecting for the moment the rotational term in equation (B.2), H can be
written as the sum of two terms, H = T + V , where T = − h̄2

2m ∇2 and V = Vtrap + g|ψ |2. These
terms are easily diagonalized in momentum and position space, respectively. The wavefunction
ψ can then be advanced in time by ,τ by

ψ(τ + ,τ) = e−H,τψ(τ)

≈ e−(1/2)T ,τ e−V ,τ e−(1/2)T ,τψ(τ), (B.3)

which is accurate to second order in ,τ . The order parameter can then be evolved by taking
successive Fourier (and inverse Fourier) transforms of ψ and multiplying by the factors
e−(1/2)T ,τ , e−V ,τ and e−T (1/2),τ , respectively. Such Fourier transforms account for the bulk of
the computational cost in this algorithm; thus, the use of the efficient fast Fourier transform
algorithm is crucial.

A complication in the above occurs due to the nonlinearity of the GPE. That is, V in the
above prescription for time evolution depends on the density n = |ψ |2, and it is at first unclear
for what time this quantity should be evaluated. It is shown in [22] that, provided we use the most
updated version of the time-dependent density n = |ψ |2, equation (B.3) will retain its second
order accuracy. The final complication occurs from the rotational term in H , which is

R ≡ −!Lz. (B.4)

We have so far neglected this term since it is diagonalized in neither position nor momentum
space and therefore cannot be included in either T or V . However, we note that R commutes
with both T and V , so we can write

ψ(τ + ,τ) = e−H,τψ(τ)

≈ e−(1/2)T ,τ e−R,τ e−V ,τ e−(1/2)T ,τψ(τ). (B.5)

Then we can perform a similar split-operator decomposition of the additional term as

e−R,τ ≈ e(1/2)h̄!xpy,τ e−h̄!ypx,τ e(1/2)h̄!xpy,τ . (B.6)

Evolution of ψ by this factor can then be performed by taking the partial Fourier transform of
ψ , that is, transforming over the x variables but leaving the y variables unchanged (and vice
versa). This completes the overview of the numerical method used to solve the GPE. As stated
earlier, the generalization to the two-component case is straightforward.
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