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Abstract

This thesis is mostly based on the research presented in [1, 2, 3]. We intro-

duce a novel efficient framework to treat infinite periodic vortex lattices in

rotating superfluids under a mean-field Gross-Pitaevskii description. In do-

ing so, we introduce a generalisation of the Fourier transform which correctly

diagonalises the kinetic energy terms while respecting the required twisted

boundary conditions. We call this integral transform a Magnetic Fourier

transform. Testing the method, we re-obtain known results in the lowest-

Landau-level regime, and further extend to stronger interacting regimes.

We provide an extension of the above method to treat multicomponent

systems, demonstrating that new degrees of freedom need to be introduced for

each new component. We then employ this method to investigate the ground

states of binary superfluid systems whose constituents have equal masses,

thereby extending previous work carried out in the lowest-Landau-level limit

to arbitrary interactions within Gross-Pitaevskii theory. In particular, we

find that the interactions depauperate the phase diagram, with only the

triangular lattice phase surviving in the limit of strong interactions. Withal

we prove this applies regardless of the mass ratio of the constituents.

We further investigate binary superfluid systems with non unitary mass

ratios, obtaining a range of novel and exotic vortex lattice configurations. Fi-

nally we derive a linear relation which accurately describes the phase bound-

aries in the strong interaction regime.
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Introduction

“What kind of computer are we going to

use to simulate physics?”

Richard P. Feynman, Simulating Physics

with Computers, 1981

It was June 1924 when Satyendra Nath Bose, until then a relatively un-

known Indian physicist, sent a letter to Albert Einstein describing his work

on the quantum statistics of quanta of light, a kind of particle later named

bosons by P.A.M. Dirac in honour of the Indian physicist. Just a month later,

Einstein would extend this work to ideal gases [4], and a year later led him

to speculate on the existence of what today is known as Bose-Einstein Con-

densation, a purely quantum mechanical phase transition occurring when,

at sufficiently low temperatures, a macroscopic fraction of the system falls

into the lowest energy quantum state. In 1938 [5], Fritz London proposed

that Bose-Einstein condensation might be responsible for a perplexing phe-

nomenon that had been observed since the beginning of the century in 4He

at low temperatures, namely superfluidity [6]; Heike Kamerlingh Onnes had

already liquefied helium in 1908, which allowed him to cool down mercury

to temperatures low enough to observe superconductivity, granting him the

Nobel price in 1913. However, today it is known that in liquid helium, the

15
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fraction of the system which is condensed is only about 10%. London’s work

was followed in 1941 by Lev Landau’s revolutionary two-fluid model [7], and

in 1946 by Nikolay Bogolyubov’s. The theoretical understanding was fur-

thered by the subsequent work of David Gross and Lev Pitaevskii, one of

Landau’s pupils. But it wasn’t until June 1995 that Bose-Einstein was actu-

ally achieved in a laboratory.

Seventy-one years after Bose’s letter, in June 1995, Eric Cornell and Carl

Wieman at the JILA lab in Boulder cooled a gas of Rubidium (87Rb) atoms

to 170nK, and shortly after Wolfgang Ketterle at MIT did the same with

Sodium atoms (23Na), thereby producing the first atomic condensates, which

led to the Nobel price in 2001 and paved the way for more theoretical and

experimental exciting research.

The following decades saw a significant growth in interest for the topic,

a growth also fostered by the rapid advances in cooling technology, which

enabled for accurate and precise probing of such systems. Furthermore, it

Figure 0.1: Interest in the literature (as rate of occurrence of the topics) for
Bose-Einstein Condensation and Cold Atoms in time [8].

was soon realised [9] that inter-atomic interactions could be tuned, from at-

tractive to repulsive, through the use of so-called Feshbach resonances, which
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made cold gases much more than just a simple experimental demonstration.

Confining ultracold atomic gases into optical lattices [10], a technique which

introduced the prospect of more exotic potential, tight spatial confinement

and reduced dimensionality as well as synthetic dimensions [11], opened up

the investigation of a most diverse range of systems and theoretical models,

and to the creation of quantum simulators, the viability of which was firstly

envisaged by R.P. Feynman in the early eighties. The prospect of realising

a quantum simulator was effectively brought to reality by the more recent

introduction of synthetic gauge fields [12, 13], which allowed the study a

broader class of systems, under both Abelian and non-Abelian gauge fields.

In recent years, about a dozen1 different atomic species have been shown to

condense at low enough temperatures, as well as molecules, composite parti-

cles and quasiparticles, including, inter alia, magnons (quantised spin-waves

in magnetic materials)[22], excitons (electron-hole pairs)[23] and polaritons

(photon-exciton entangled states)[24].

Quantum Fluids

Although the relation between Bose-Einstein condensation and superfluidity

is not univocal, the two are intimately connected. The term superfluidity

was originally coined by Pyotr Kapitza to describe the anomalous absence of

viscosity observed in 4He below the characteristic lambda point (this is the

so called He-II phase occurring at T < Tλ ≈ 2.17K) by his group in Moscow

[25] and by John F. Allen and Donald Misener in Cambridge in 1938 [26].

A few decades later, Lee, Osheroff and Richardson [27, 28] found that 3He

enters a superfluid phase as well, below 2.7mK. No other superfluids were

thereafter discovered, until the realisation of Bose-Einstein condensation in

ultracold dilute atomic gases in 1995.

1Amongst others, 7Li (1995) [14], H (1998) [15], 85Rb (2000) [16], 41K (2001) [17],
133Cs (2003) [18], 174Yb (2003) [19], 52Cr (2005) [20], 39K (2007) [21].
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Among the most peculiar effects of superfluidity is the existence of a

critical velocity for dissipation, a property observed from the earliest exper-

iments and firstly explained by Landau. Although such a property has been

observed in Bose-Einstein condensates [29], it is not a defining property of a

condensate: one suitable example here, is that of an ideal Bose gas for which

the critical velocity is expected to vanish, hence depriving the system of its

lack of viscosity; another, that of a condensate in a random potential [30].

Such systems, exhibiting Bose-Einstein condensation but lacking superfluid-

ity are known as Bose Glasses. The converse might be true as well: it is

indeed possible to find systems lacking condensation but exhibiting all the

defining properties of superfluidity; probably the simplest example of such a

system is that of a 1D gas at low temperatures.

Other defining properties of superfluidity include phase coherence – a

straightforward consequence of which is interference [31, 32]–, and the un-

usual response to rotation. A quantum fluid cannot in fact rotate as a classi-

cal fluid, and acquires angular momentum through the nucleation of vortices

carrying quantised angular momentum. These effects have also been observed

in Bose-Einstein condensates [33, 34].

Quantum Vortices

Quantum vortices exist, as predicted in the late fourties by Lars Onsager2

and independently by Feynman in 1955 [35], due to the quantisation of the

circulation, and appear as zero density lines in the density of the superfluid.

In 1957, Alexei Abrikosov, taking the lead from Onsager and Feynman’s

work, studied the energetics of different lattice configurations in the lowest

Landau limit, arriving to the claim that the energy is minimised by a pe-

riodic square array of quantum vortices. Shortly after, it was shown [36]

that a wrong assumption had misled Abrikosov, and that the correct struc-

2Noticed by F. London in his book Superfluids, Wiley (1954)
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ture minimising the energy is that of a periodic triangular array of quantum

vortices. Nonetheless, despite Abrikosov’s wrong prediction, the correct tri-

angular configuration bears today his name. The experimental proof of this

result came in the late sixties [37, 38] and Abrikosov was granted the Nobel

price in 2003, sharing it with two other major players, who gave invaluable

contribution to the physics of superfluidity: Vitaly L. Ginzburg and Anthony

J. Leggett. Abrikosov’s triangular configuration is known to be stable at any

Figure 0.2: Early imaging of stable vortex configurations in superfluid 4He
[39].

given interspecies interaction strength. The physics is however very much

enriched when considering two or more interacting superfluids. Here the

configurations are not necessarily triangular anymore, and it is possible to

achieve both complex vortex lattices at the variation of the interaction pa-

rameters, and lattices made of multiply quantised vortices, which are usually

otherwise unstable against decay into singly quantised vortices.

How to create a vortex

The experimental observation of vortices in superfluid 4He, dates back to 1956

[40], the creation of which could be achieved by cooling Helium while rotating

it in its non-superfluid phase I. However, it was not until 1999 that the first

observation of vortices in a BEC was made at the JILA group in Boulder,
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Colorado [41], following a method proposed earlier that year [42], known as

phase imprinting. In order to overcome technical difficulties associated with

condensing the system while in rotation, a procedure was instead proposed

to generate vortices from a non-rotating condensate. Considering a two-level

system (such as one made by the two hyperfine levels of 87Rb), in which

each state is confined in a separate harmonic potential, and simultaneously

applying an electromagnetic field coupling the two states, so as to cause

atoms to cycle between levels, one can obtain one component with a quantised

vortex, circulating around the second non-rotating component. Notice that,

Figure 0.3: In the method proposed by [42], the two traps V|1〉 and V|2〉 are
rotated about each other at a frequency ωr, while the transition between
states |1〉 and |2〉 are driven at the effective frequency Ωeff =

√
Ω2 + δ2. Here

Ω is the Rabi frequency at which the population would oscillate between the
two states if the detuning δ was absent. A singly quantised vortex can be
obtained when ωr ≈ Ωeff ≈ δ.

in contrast to the one-component U(1) order parameter (as for He-II) which

has the topology of a circle, the coupled two-component system effectively

behaves as an SU(2) spin-1
2

system with the topology of a sphere. As a

consequence the latter system is not required to exhibit quantised vorticity,

as it is instead true for the on-component system [43].

The vortex creation is specifically achieved by transferring the system

adiabatically to a spherical trap, rotating a beam around the condensate,
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thus inducing an AC Stark shift on one of the two components, as shown in

Fig. 0.4, and finally turning off the Rabi coupling at the appropriate moment,

thereby leaving a 2π winding of the phase in this component. The vortex

Figure 0.4: The detuned off-resonance laser gives rise to a rotating gradient
in the AC Stark shift, thus imprinting a 2π winding of the phase in the
condensate [41].

core in this system is much larger than the natural healing length, due to the

core being filled with the non-rotating component. Its size clearly depends on

the fraction of the non-rotating component, and has been found to reach up

to 10µm, thus allowing for non-destructive imaging with visible light. This

is particularly important if one is interested in tracking the motion of the

vortex.

In the same experiment, the JILA group was also able to remove the

non-rotating component in the core through an intense laser pulse, so as

to leave a single component with one singly quantised vortex with core size

of order of the healing length ξ ≈ 0.2µm. By imaging the two component

system first, removing the core, turning of the confining trap so that the

condensate expands ballistically, and imaging the expanded vortex core, it

was made possible to measure the precession rate of the empty-core vortex:

these measurements were found to consistently agree with the theoretical

predictions [44].
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It is also worth mentioning the existence of a different elegant and sophis-

ticated procedure to imprint a geometrical Berry phase [45], which relies on

engineering a spatially dependent phase contingent on the path of a slowly

varying magnetic field [46]. With this method it has also been possible to cre-

ate vortices with two and four units of circulation [47]; however, as we will

argue later, in a bulk condensate, these are energetically unstable against

decay into singly quantised vortices.

What is probably the most popular method, pioneered by the ENS group

in Paris and by the MIT group [48, 34], consists instead in mechanically

stirring the condensate through a laser beam. This method in particular,

allowed for the creation of many vortices (in the order of hundreds) thus

making it possible to observe the Abrikosov lattice. Cornell’s group at JILA

was instead to achieve condensation of a rotating cloud of atoms, in analogy

with the process of cooling 4He in the rotating bucket; moreover, although as

metastable states, they achieved the first giant vortices containing up to 60

phase singularities [49, 50]. Finally, Anderson’s group in Arizona [51], was

also able to achieve the creation of vortex-antivortex pairs by sweeping the

condensate through a laser beam obstacle.

Vortex lattices

In agreement with theoretical predictions, large arrays of vortices respect the

Feynman relation for the vortex density ρv = Ωm
π~ (see Chapter 1), and the

lattice formed rotates around the axis of rotation so as to simulate rigid rota-

tion. The two characteristic lengths of the system, namely the healing length

and the intervortex spacing ` ≈ 2
√

1
πρv

(again, cf. Chapter 1) are helpful

to define two defining regimes of the system. One is the Thomas-Fermi (or

Coulomb) regime, in which the interaction and confining energies are both

large compared with the gradient energy associated with variations in the

density, and consequently `� ξ. On the other hand, when the interaction is

weak, or equivalently for large rotation rates, one defines the lowest Landau
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level (LLL) regime. Here the vortex cores overlap, so that the healing length

is in the order of ` or greater, and the energy associated with density varia-

tions is far from negligible. The linearised one-body problem is then exactly

solvable, and, as we will discuss in more detail later, equivalent to Landau’s

original problem of an electron in a uniform magnetic field (hence the name

LLL regime, which is sometimes also referred to as mean field quantum Hall

regime). For a single component system, the Abrikosov lattice is known to

be stable in both these regimes and in between. Despite theoretical predic-

tions of circular lattice distortions near the boundary of a finite condensate,

experiments with many vortices found instead a high degree of regularity

[52].

Small perturbations of the vortex lattice were first studied by Tkachenko

in the mid sixties [53]: the triangular lattice was shown to support stable

normal modes, which in the limit of long-wavelengthseffectively consists of

transverse phonons with linear dispersion relation. Such Tkachenko oscilla-

tions were reported in liquid 4He [54], but it was not until recently that a

conclusive demonstration of their existence was obtained [55].

Figure 0.5: Tkachenko oscillations of the vortex lattice in Bose-Einstein con-
densate [55]. The black lines are sines fitted to the vortex lattice distortion.

It is however possible to find more exotic configurations when considering
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strong long-range interactions. One such example is that of 52Cr, an atom

with large magnetic dipole moment [20]. When dipolar interactions are suf-

ficiently strong, in addition to the common Abrikosov phase, one can find a

square configuration, a stripe crystal (or rectangular), and a bubble crystal

phase [56].

Condensates in rotating optical lattices

Very much interest was drawn to the effect of a pinning optical lattice on

the vortex configuration [57, 58]: this is in fact a phenomenon of remark-

able importance as naturally arising in in systems such as multicomponent

condensates, in the context of high temperature superconductors [59, 60],

and in neutron stars where the pinning and unpinning of superfluid vor-

tices in the highly degenerate neutron matter to the outer stellar crust, is

thought to be responsible for pulsar glitches (sudden changes in the star’s

rotational frequency)[61, 62]. Furthermore, recent proposals also put forward

the pinning of vortices in superfluids as a method to engineer the braiding

of Majorana bound states in topological superconductors [63].

The nature of the ground states here depends both on the densities of

vortices and pinning sites, which also raises the problem of commensurability

[64], as we will discuss in the last chapters of this manuscript. The pinning

of vortices in atomic condensates can be achieved by rotating optical lattices

[65], and depending on the condensate’s coupling strength and the depth of

the pinning sites, one can observe transitions between the Abrikosov lattice

and phases where the vortices are pinned to the underlying optical lattice,

with a range of different structures, including the stable accommodation of

vortices with multiple units of circulation within one pinning site.
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Systems with multiple components

As we will extensively discuss in the later chapters, one finds more complex

configurations when considering systems with multiple components, although

the Abrikosov lattice is always favoured in the lighter or more strongly in-

teracting component, for large enough couplings.

The first results in the classification of ground states for a mixture of two

interacting condensates with components of equal masses were obtained in

the lowest Landau level by [66] and are summarised in Fig. 0.6: one finds the

ground state consists of two overlapping triangular lattices in the attractive

interspecies interaction case, and of two interlaced triangular, oblique, square,

or rectangular lattices in the case of repulsive interspecies interaction. We

will discuss extensively of these results and of their extension away from the

lowest Landau level regime in chapters 5 and 6.

Figure 0.6: Predicted ground state configurations for a mixture of two con-
densates with components of equal masses [66]. Panel (a) refers to attractive
interspecies interactions, while (b-e) to different growing magnitudes of re-
pulsive interspecies interactions.

In these systems, one usually finds great and accurate experimental con-

trol over the interaction parameters, which allows to study a whole range of
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lattice configurations and to move continuously from miscible to segregated

phases [67]. However, the relative populations of each component are usually

constant.

Until about a decade ago, most experiments would trap atomic conden-

sates with hyperfine spins F = 2 or F = 1 magnetically. A system of con-

densed spin-F bosons is described by the spinor field operator ψ̂m such that

〈ψ̂m(r, t)〉 = ζm(r, t)ψ(r, t), where m labels Fz (−F ≤ m ≤ F ), ψ is a scalar,

and ζ†m · ζm = 1. When trapped magnetically, the atomic spins are max-

imally aligned along the magnetic field, so that the dynamics of 〈ψ̂m〉 is

completely determined by the scalar ψ. One can instead trap the system

optically [68], thus leaving the spin degrees of freedom unconstrained. More-

over, the populations of the spin components are no longer constant, and

the population balance can vary via spin exchange collisions. The physics is

thus even more enriched in spinor systems. As an example, spin-1 systems

(such as 23Na, 39K, 87Rb), depending on the different scattering lengths at

play, can exist in either a polar phase, in which the system tries to minimise

the local spin density 〈Ŝ〉 = 0, or a ferromagnetic phase, where the system

acts to maximise the total spin, so that the expectation 〈Ŝ〉 acquires a non-

zero value. Different topological momentum carrying excitations exist in the

form of spin-textures, varying in the two phases: in polar systems these are

known as π-disclinations of the polar phase (half-quantum vortices), while in

the ferromagnetic case one finds core-less vortices, also known as skyrmions

[69, 70].

Outline of this thesis

This thesis constitutes a study of perfect vortex lattices in superfluids. Com-

mon approaches involve either analytical treatment in experimentally re-

strictive regimes, or the direct simulation of the system within an harmonic

trapping potential. The latter approach in particular, is both inefficient and
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inconvenient, since the harmonic trap distorts the vortex lattice. We aim

instead at simulating such systems in a manner which allows access to any

interaction regime, while preserving the exact shape of the lattice.

The present thesis comprises the research published in [1], where we de-

scribe a novel computational scheme to investigate the lowest energy states

of rotating superfluid systems. This work constitutes the bulk of Chapter 3

and some of Chapter 2. A second contribution [2], describes an extension of

the above mentioned method, to multicomponent systems, extends results

by [66] providing a complete characterisation of the phase diagram for su-

perfluids whose components have equal masses, and discusses on the results

in the regime of strong interactions, demonstrating that a simple linear re-

lation for the phase boundaries can be obtained in this limit. These results

are presented in Chapter 5. Finally, Chapter 6 contains the work recently

submitted for publication on Phys.Rev.Lett. [3], in which the method for

multicomponent system is applied to mixtures with non unitary mass ratios,

predicting new exotic lattice configurations.

The thesis is organised as it follows.

• Chapter 1 is a broad introduction to superfluidity and Bose-Einstein

condensation. The properties of single vortices are also discussed. In

the last section we discuss on the symmetries of the system, specifically

with particular attention to the Magnetic Translation group arising

from the synthetic gauge field associated with rotation. Finally we show

how standard periodic boundary conditions should not be a preferred

choice for rotating systems, demonstrating that a more natural and

suitable choice exist, namely Twisted Boundary conditions.

• Chapter 2 is devoted to an overview of the numerical methods used.

In particular, a description is given of the imaginary time propagation

method, indispensable to the search for the lowest energy states, and

split-step methods needed for time propagation. We explain why the

imaginary time method in its standard form, is in principle applicable
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to linear systems only. We further argue that the method is however

applicable to the non-linear case of our interest (namely that of the

Gross-Pitaevskii equation), by showing the energy is monotonically de-

creasing in imaginary time. The same argument applies to split-step

methods: the standard procedure giving a second order method for lin-

ear problems, does not apply directly for non-linear ones; a second order

method for the non-linear problem of interest was already presented in

[71], but this method is shown to lose accuracy when propagating in

imaginary time. We provide here a different split-step method which

is second-order accurate in imaginary time.

• In Chapter 3, we introduce a non-linear anisotropic Hofstadter model,

showing it reduces to the continuum Gross-Pitaevskii theory describing

the system in the continuum limit; moreover, we discuss on different

approaches to the implementation of the required twisted boundary

conditions. Specifically, we introduce a generalisation of the Fourier

transform which extends its action of diagonalisation over systems with

periodic boundary conditions to systems respecting twisted boundary

conditions: this is the Magnetic Fourier Transform. After discussing

the positive implications of this transform for the discrete model, we

test the method against the early results of Abrikosov and Kleiner et

al. [72, 36], obtained in the Lowest Landau limit. We further extend

these results to stronger interaction regimes.

• Chapter 4 describes the results for mixtures of two superfluids under

attractive interactions. In particular, we show that a lattice of mul-

tiply quantised vortices is attainable in this regime. The chapter is

included both for completeness and to demonstrate the applicability of

the method introduced in Chapter 3 to a broader class of problems.

• Chapter 5 gives a generalisation of the method from Chapter 3 to

multicomponent systems. This involves a non trivial constraint on the

boundary conditions of the additional component(s). Then, we proceed
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to extend the results Mueller and Ho [66] obtained in the Lowest Lan-

dau limit for two components whose constituents have equal masses,

and we thereby provide a complete characterisation of the whole phase

diagram. Finally we consider the limit of strong interaction (Coulomb

limit), to find that a simple linear relation can be found for the phase

boundaries.

• Chapter 6 is dedicated to the case of a mixture of two superfluids

with a non unitary mass ratio. We start from some general considera-

tions concerning the commensurability of the two systems. We further

present a characterisation of the phase diagram for the particular case

m2/m1 = 2, and finally we give an overview of the possible exotic lat-

tice configurations attainable for higher mass ratios. A generalisation

of the expression for the phase boundaries provided in the previous

chapter is also given.
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Chapter 1
Bose-Einstein Condensation,

Superfluidity and Symmetries

This first chapter is devoted to the introduction of the background concepts

needed to build up the models presented in the rest of this thesis. A brief

description of the physical significance of Bose-Einstein condensation will be

given, starting from a statistical argument, then introducing the standard

argument for condensation in non-interacting systems, and finally looking

at this phenomenon in an interactive perspective, and in the scenario of

condensates of different species interacting with each other. The superfluid

properties of such a system will also be discussed, together with the implica-

tions for what concerns their response to rotation. Finally we will discuss on

the symmetries of the system. This discussion will prove particularly relevant

for the construction of the models, which will be approached in Chapter 3.

1.1 Bose-Einstein Condensation

The concepts underpinning the process of Bose-Einstein condensation can

be grasped at once from a concise statistical argument. If one considers the

problem of distributing N particles among S states so that the jth state

31
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contains nj particles, he will find substantially different answers depending

on whether the particles under consideration are distinguishable or indistin-

guishable. If, as it is done classically, the particles are distinguishable, then

there are N !/
∏S

j=1 nj! different possible configurations. On the other hand,

if the particles are indistinguishable there is only one configuration possi-

ble (assuming there are no extra constraints, as it is for the bosonic case).

When the discrepancy becomes particularly evident, i.e. when N ≥ S, the

configurations in which more particles occupy the same state have a higher

relative weight. This result, although not particularly rigorous, is remarkably

instructive and very general. No mention was in fact made of thermal equi-

librium nor interaction; regardless of these considerations, bosons, because

of their very own nature, have a tendency to cluster together.

1.1.1 Non-interacting systems

We will now discuss the case of an ideal, i.e. non-interacting, Bose gas. The

mean occupation number of single particle states of energy εj ≤ εj+1, at tem-

perature T and with chemical potential µ, is given by the Bose distribution

〈nν〉 =
(
e
εν−µ
kBT − 1

)−1

. (1.1)

It is worth noticing that for large temperature T , the effect of the quantum

statistics becomes negligible, and one obtains back the Boltzmann distribu-

tion f(εν)
T→∞−−−→ exp[−(εn − µ)/kBT ] known from classical mechanics. One

implication of this result, inter alia, is that, in order to observe the quantum

nature of the system, it is either necessary to have low temperatures or high

densities at fixed temperature.

If the energy of the ground state is set to zero ε0 = 0, it is evident

that in order to avoid unphysical negative occupation numbers, the chemical

potential must remain negative. We can now consider the total particle
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number, which can be obtained from the distribution function as

N =
∑
ν

f(εν). (1.2)

For large particle numbers, one may replace the sum in the above expression,

with an integral over the single-particle energy, taking care to include the

lowest energy state explicitly, lest obtain problematic and unphysical results:

N ≈ f(ε0) +

∫ ∞
0

dεf(ε)g(ε). (1.3)

Here g(ε) is the density of states, an expression for which can be obtained

recalling that, due to Heisenberg uncertainty relation, there is one quantum

state per phase space cell of volume (2π~)3. Writing for the real space volume

V = ∆x∆y∆z, and for the volume in momentum space containing states with

momentum less than p as 4
3
πp3, it is possible to write the total number of

states with energy less than p2

2m
as

G(ε) =
V 4

3
πp3

(2π~)3
= V

√
2

3π2~2
(mε)3/2, (1.4)

so that the density is given by

g(ε) =
dG(ε)

dε
= V

√
2

3π2~2
(m)3/2

√
ε. (1.5)

More generally, it is possible to write g(ε) = cαε
α−1, where cα is a constant

and α = d/2 for the homogeneous case in d dimension, or α = d for the

harmonic oscillator case in d dimensions [73].

If we now assume to keep the temperature fixed, while adding more par-

ticles, we find that in general the density n will rise as

n =
f(ε0)

V +
cα
V

∫ ∞
0

dε
εα−1

e
ε−µ
kBT − 1

. (1.6)
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Moreover, because an increase in the particle number must be followed by

an increase in the chemical potential, we find that in the limit N →∞, the

chemical potential must approach its upper limit µ = 0 (from below). Then,

for the second term in (1.6), usually referred to as the critical density nc, one

finds

nc =
cα
V

∫ ∞
0

dε
εα−1

e
ε

kBT − 1
=

(kBT )αcα
V

∫ ∞
0

dx
xα−1

ex

=
(kBT )αcα
V ζ(α)Γ(α),

(1.7)

where we have made the substitution x = ε/kBT , and where Γ(x) is the

Gamma function and ζ(z) the Riemann zeta function. For α = 3/2 for in-

stance, one finds ζ(α)Γ(α) ≈ 2.315.

Therefore, one can see that increasing the number of particles N , the

chemical potential µ approaches zero, the second term in (1.6) approaches

the critical density nc, and the remaining particles start falling all in the

lowest energy state. This process, also attainable with similar arguments in

the limit T → 0, is known as Bose-Einstein condensation [74].

Let us finally notice, that since nc ∼ ζ(α)Γ(α), the process of condensa-

tion might be forbidden for systems of certain dimensionalities. In particular,

because the Riemann zeta functions diverges in α = 1 and is negative on the

domain [0, 1), and the Gamma function diverges in α = 0, one finds conden-

sation at finite temperatures, only for an harmonically confined system in

dimensions d > 1, or for a homogeneous system with dimensions d > 2.

More rigorous results concerning the existence of the process of conden-

sation for more realistic systems can of course be obtain [75, 76] as a function

of the number of particles, the strength of interaction, etc., but are out of

the scope of this thesis.
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1.1.2 Interacting systems: the Gross-Pitaevskii equa-

tion

For a fully condensed system, all particles occupy the same (normalised)

single particle state φ(r), and the wavefunction describing the condensate

in the mean field approach (Hartree-Fock) is a symmetrised product of the

single particle wave functions

Ψ(r1, r2, ..., rN) =
N∏
j=1

φ(rj). (1.8)

In addition, the interactions are typically well approximated at low energies,

by a constant effective interaction in momentum space g = 4π~2a/m (with

a the s-wave scattering length), which in coordinate space, translates to

the effective contact potential of the form gδ(rj − rk). The corresponding

Hamiltonian then can be written as

H =
N∑
j=1

(
p2
j

2m
+ V (rj)

)
+ g

∑
j<k

δ(rj − rk); (1.9)

introducing the scaled quantity ψ(r) =
√
Nφ(r), known as the condensate

wave function, and neglecting terms of order 1/N , which is safe for large

N , it is possible to write the expectation value of the Hamiltonian (1.9),

corresponding to the energy associated with the state (1.8), as

E[ψ] =

∫
dr

[
~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

g

2
|ψ(r)|4

]
. (1.10)

An expression for the wave function can now be obtained by minimising this

energy functional with respect to independent variations of ψ and ψ∗ subject
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to the constant normalisation condition

N =

∫
dr|ψ(r)|2; (1.11)

this constraint can be accounted for by a Lagrange multiplier µ, i.e. the

chemical potential ensuring constancy of the total particle number. Writing

the variations in the wave function as ψ → ψ+ δψ, and dropping the explicit

dependence on r, we find1

δ(E − µN) =

∫
dr

[
~2

2m
∇ψ∇δψ∗ + V ψδψ∗ + g|ψ|2ψδψ∗ − µψδψ∗

]
+ c.c.,

(1.12)

and finally equating to zero the variation of the quantity E − µN with re-

spect to ψ∗, one obtains the so-called time independent Gross-Pitaevskii

equation2[77, 78]:

− ~2

2m
∇2ψ + V ψ + g|ψ|2ψ = µψ, (1.13)

thereby greatly simplifying the full many-body problem into a single non-

linear differential equation. In the limit of a non-interacting system, it is

worth noticing that (1.13) reduces to the Schrödinger equation, as the in-

teraction strength vanishes, and the chemical potential becomes the mean

energy per particle.

The Gross-Pitaevskii equation, similarly to its linear counterpart, the

Schrödinger equation, has a time-dependent version in which the chemical

potential µ is replaced by i~∂t; this can be justified on the basis of Bogoliubov

microscopic theory through Heisenberg time evolution equation, or alterna-

1Disregarding terms of order higher than δψ. In particular we have used:
∇(ψ + δψ)∇(ψ∗ + δψ∗) = |∇ψ|2 +∇ψ∇δψ∗ +∇ψ∗∇δψ +∇δψ∇δψ∗, and similarly for
(ψ + δψ)(ψ∗ + δψ∗).

2Here we have made use of the integration by parts 〈∇ψ | ∇ψ〉 = −
〈
ψ
∣∣∇2ψ

〉
.
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tively, from an action principle3 [73]. The time dependent Gross-Pitaevskii

equation then reads

i~∂tψ = − ~2

2m
∇2ψ + V ψ + g|ψ|2ψ. (1.14)

Conservation of the energy

A property of foremost importance that the equation of motion (1.14) must

respect, is that of energy conservation. We will now briefly show that this is

indeed the case.

One way to prove the energy is conserved in time is to look at the La-

grangian associated with the energy (1.10). Confirming that such a quantity

is invariant under time translations t→ t + δt, one can invoke Noether the-

orem to find that the energy is the associated conserved quantity. However,

more concisely and directly, one can consider the time evolution (1.14) in

terms of the hermitian Hamiltonian operator H = H0 + gρ, using bra-ket

notation, as

i~ |ψ̇〉 = (H0 + gρ) |ψ〉 ,
i~ 〈ψ̇| = −〈ψ| (H0 + gρ),

(1.15)

where we have introduced the density ρ = |ψ|2, and where H0 = − ~2

2m
∇2 +V

is the linear Schrödinger Hamiltonian. The dot denotes, as usual, a time

3δ
∫ t2
t1
Ldt = 0, where the Lagrangian is given by L = i~

2

∫
dr (ψ∗∂tψ − ψ∂tψ∗)− E.



38
Chapter 1. Bose-Einstein Condensation, Superfluidity and

Symmetries

derivative. Then,

dE

dt
= 〈ψ̇|H0|ψ〉+ 〈ψ|H0|ψ̇〉+ g

(
〈ψ̇|ρ|ψ〉+ 〈ψ|ρ|ψ̇〉

)
=

1

i~
(−〈ψ|HH0|ψ〉+ 〈ψ|H0H|ψ〉) +

g

i~
(−〈ψ|Hρ|ψ〉+ 〈ψ|ρH|ψ〉)

=
g

i~
(〈ψ | [H0, ρ] |ψ〉+ 〈ψ | [ρ,H0] |ψ〉)

= 0,

(1.16)

as expected.

Particle number conservation

Another important quantity which is conserved in the time evolution of equa-

tions (1.14) is the total number of particles N = 〈ψ|ψ〉. This can be readily

shown by explicitly taking the time derivative:

dN
dt

= 〈ψ̇|ψ〉+ 〈ψ|ψ̇〉

=− 1

i~
〈ψ|H|ψ〉+

1

i~
〈ψ|H|ψ〉 = 0,

(1.17)

consistently with the normalisation condition (1.11).

1.1.3 Time-independent solutions and characteristic lengths

Although the achievement of the Gross-Pitaevskii equation has provided a

great simplification over the original many-body problem, this is still a non-

linear differential equation with no exact solution. One needs therefore, in

general, to resort to numerical methods.

However, there are a few cases in which we can approximate (1.14) and

still get a good estimate of the wave function. Consider for instance, the case

of an harmonically trapped system, so that V (r) = mω2

2
r2. When the number
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of particles N is large, and interactions are repulsive, the contribution of the

kinetic energy becomes negligible [73], and one can approximate (1.13) by

(V + gρ)ψ = µψ, which has solution

ψTF =

{ √
(µ− V ) /g if V < µ

0 if V > µ
. (1.18)

This result, commonly referred to as Thomas-Fermi approximation, provides

a useful analytic tool for theoretical description of a condensate. Figure 1.1

shows the good agreement of the Thomas-Fermi approximation with a nu-

merical solution for the 1D problem in the harmonic trapping potential. The

boundary of the system is then given by V = µ, which, for a system with

spherical symmetry, provides a way to estimate the extension of the cloud:

this is the so called Thomas-Fermi radius

RTF =

√
2µ

mω2
. (1.19)

Thomas-Fermi
Numerical

Figure 1.1: Thomas-Fermi approximation compared with numerical solution
in 1D.

The concept of radius of the condensate allows one to obtain an approx-

imation for the chemical potential by plugging (1.18) into the normalisation
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condition for the wavefunction∫
dr|ψ(r)|2 = N . (1.20)

Depending on the dimensionality d of the system, this leads

µTF =



1
2

(3gωN√m)
2/3

if d = 1

√
gmω2N /π if d = 2

m3/5

2
(15gω3N /4π)2/5 if d = 3

. (1.21)

We conclude this discussion on the characteristics of the time-independent

system, introducing another important parameter which will be useful through-

out the rest of this work, namely the healing length ξ, also known as correla-

tion length. The healing length, gives a scale of how the density of the con-

densate changes near a local perturbation. In particular, we denote by ξ the

order of spatial variations, so that the kinetic energy in the Gross-Pitaevskii

balances with the interaction energy. Writing ~2/2mξ for the kinetic energy,

and gρ̄ for the interaction energy, one finds the following expression for the

healing length of the condensate

ξ =

√
~2

2mgρ̄
, (1.22)

with ρ̄ = N /V the average density. The healing length is then the distance

over which the wave function heals over defects, such as, for instance, vortices,

as we will see later.

As we have mentioned, in the Thomas-Fermi regime we can neglect the

energy contribution coming from the kinetic term in (1.10) [79]. For a homo-

geneous system we can then approximate the ground state as E0 = ρgN /2.

Thus, in contrast with the case of an ideal gas, a bosonic system experiences
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a non vanishing pressure at zero temperature:

P = −∂E0

∂V =
gρ2

2
. (1.23)

Moreover, one can find a finite compressibility as well

∂ρ

∂P
=

1

gρ
, (1.24)

and using through the hydrodynamic relation

∂ρ

∂P
=

1

mc2
, (1.25)

find an expression for the sound velocity

c =

√
gρ

m
. (1.26)

This expression (1.26) for the velocity of sound is in agreement with that

found in the Bogoliubov dispersion relation for elementary excitations [79, 73]

ε(p) =

√
gρ

m
p2 +

(
p2

2m

)2

, (1.27)

which in the long wavelength limit (i.e. for small momenta p � mc) takes

the phonon-like form

ε(p) = cp. (1.28)

In the opposite limit of short wavelengths, p � mc, the dispersion relation

(1.27) approaches the free particle relation

ε(p) ≈ p2

2m
+ gρ. (1.29)
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It is worth noticing that the healing length defined in (1.22) can be also

defined in terms of the speed of sound as

ξ =
1√
2

~
mc

. (1.30)

1.2 Mixtures of condensates

We now turn our attention to multicomponent systems. The simplest mul-

ticomponent system is one consisting of a mixture of two different atomic

species [80]. These systems are sometimes known as scalar mixtures. An-

other possibility is that of a mixture of the same isotopes, but in different

hyperfine states [81], which has recently become experimentally amenable

with the advent of optical trapping techniques [68]. The introduction of

extra degrees of freedom in this latter case, due to the possibility of each

component to transition into the other hyperfine state, makes the treatment

of these systems more complicated, and we shall concerns ourselves only with

the case of scalar mixtures.

Let us then start considering a mixture of two different condensates, each

described by the wave functions ψ1 and ψ2. One can then write the overall

wavefunction for the composite system as

Ψ =

N1∏
j=1

φ1(rj)

N2∏
k=1

φ2(rk), (1.31)

analogously to what was done for the single component problem (1.8), and

with obvious notation for the single particle wave functions of the first compo-

nent φ1 and second component φ2. Following the same procedure as before,

we introduce the two scaled condensate wave functions ψ1 =
√N1φ1 and

ψ2 =
√N2φ2, and find that neglecting terms of order 1/N1 and 1/N2, the
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total energy of the system is described by the following functional

E =

∫
dr

[
~2

2m1

|∇ψ1|2 +
~2

2m2

|∇ψ2|2 + V1 |ψ1|2 + V2 |ψ2|2

+
g1

2
|ψ1|4 +

g2

2
|ψ2|4 + g12 |ψ1|2 |ψ2|2

]
,

(1.32)

from which, through the variational principle used in Sec. 1.1.2, follow the

equations of motion, namely the two coupled GPEs

i~
∂ψ1

∂t
=

(
− ~2

2m1

∇2 + V1 + g1 |ψ1|2 + g12 |ψ2|2
)
ψ1,

i~
∂ψ2

∂t
=

(
− ~2

2m2

∇2 + V2 + g2 |ψ2|2 + g12 |ψ1|2
)
ψ2.

(1.33)

The interaction strength between atoms of the same kind is here quantified

by gi, while the interspecies interaction is quantified by g12; the latter can be

found to be [73]

g12 = 2π~2a12
m1 +m2

m1m2

, (1.34)

with a12 the scattering lengths between the two different species, and where

m1, m2 are the masses of the constituents of the first and second component

respectively. The system preserves the total energy as well as the number of

particles for each species individually.

Let us consider now spatial variations of the energy (neglecting contri-

butions from the kinetic energy, i.e. being under diluteness conditions): for

a solution to be stable we must require that the energy increases for these
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deviations. The first order variation is found to be

δE =

∫
dr

[∑
i

∂E
∂ρi

δρi

]

=

∫
dr

[∑
i

µiδρi

]
= 0,

(1.35)

where E is as usual the integrand of (1.32), the energy density. In the previous

equation we have used the fact that ∂ρiE = µi with µi the chemical potential

of the ith species, and that

δ

(∫
ρidr

)
= δNi = 0, (1.36)

because of particle number conservation. The second order variation leads

to the following quadratic form instead

δ2E =
1

2

∫
dr

[
∂2E
∂ρ2

1

(δρ1)2 +
∂2E
∂ρ2

2

(δρ2)2 + 2
∂2E

∂ρ1∂ρ2

δρ1δρ2

]
=

1

2

∫
dr

[
∂µ1

∂ρ1

(δρ1)2 +
∂µ2

∂ρ2

(δρ2)2 +

(
∂µ1

∂ρ2

+
∂µ2

∂ρ1

)
δρ1δρ2

]
=

1

2

[
〈δρ|∇ρµ|δρ〉

]
,

(1.37)

where we have introduced the following matrix

∇ρµ =


∂µ1
∂ρ1

∂µ2
∂ρ1

∂µ1
∂ρ2

∂µ2
∂ρ2

, (1.38)

and the vector |δρ〉 ≡ (δρ1, δρ2)T . Then, for the quadratic form to be positive

definite we must require the trace and the determinant of (1.38) to be strictly
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positive; from this we obtain the following conditions

∂µi
∂ρi

> 0,
∂µ1

∂ρ1

∂µ2

∂ρ2

>
∂µ1

∂ρ2

∂µ2

∂ρ1

=

(
∂µ1

∂ρ2

)2

=

(
∂µ2

∂ρ1

)2

. (1.39)

Recalling once again that we are working in a regime where the kinetic energy

can be neglected, one can find that ∂ρiµi = gi and ∂ρ1µ2 = ∂ρ2µ1 = g12, so

that the above translate into

g1 >0,

g2 >0,

g1g2 >g
2
12.

(1.40)

These give the necessary and sufficient conditions for stability, and in partic-

ular, the first and second conditions ensure the stability against collapse of

each component, while the third enforces stability against phase separation.

For this reason the third condition in (1.40) is also known as the miscibil-

ity/immiscibility condition. Further, it is possible to show that the conditions

(1.40), ensure the resilience of the overall uniformity of the system [73, 82].

Finally, let us show more in detail how the above condition gives rise to

a transition between an homogeneous and inhomogeneous phases. The total

energy of the inhomogeneous state can be written as

Ein =
∑
j=1,2

gj
N 2
j

Vj
, (1.41)

where Vj is the volume occupied by the jth component. The total volume is

then V = V1 + V2. A similar expression for the energy associated with the

homogeneous state can be written:

Eho =
g1

2

N 2
1

V +
g2

2

N 2
2

V + g12
N1N2

V . (1.42)

When the intra-species strength is sufficiently small, any variation in the
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densities increases the total energy, which implies that excitations are stable,

and the homogeneous state is the ground state. This might not be true

however when the intra-species strength is larger: in particular we can see

that there exist a state with lower energy. Let us proceed minimising Ein

with respect to the two components volumes, so as to obtain the following

expressions:

V1 =
V

1 +
√

g2

g1

N2

N1

,

V2 =
V

1 +
√

g1

g2

N1

N2

;

(1.43)

moreover the two components’ densities can then be written as

ρ1 =

(
1 +

√
g2

g1

N2

N1

) N1

V ,

ρ2 =

√
g2

g1

ρ1.

(1.44)

Here ρj are the average densities of the two condensates. Further, the energy

for the inhomogeneous state is now written as

Ein =
g1

2

N 2
1

V +
g2

2

N 2
2

V +
√
g1g2
N1N2

V . (1.45)

Thus we can compute the difference between the energy associated with the

homogeneous and inhomogeneous states:

Eho − Ein = (g12 −
√
g1g2)

N1N2

V . (1.46)

The miscibility/immiscibility condition in (1.40) then follows directly [79, 82].

Let us therefore notice that, although this result can also be obtained from

a dynamical stability argument [79, 83], the above energetic stability argu-
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ment is sufficient in order to determine the miscibility/immiscibility transi-

tion point.

The collective excitations for a system with m = m1 = m2, can be found

with the usual Bogoliubov procedure, which in the case of a mixture of two

components leads to a generalisation of (1.27) [79, 73]:

ε(±)(p) =

√
p2

2m

(
p2

2m
+ 2mc2

±

)
, (1.47)

where the squared density sound velocity c2
+ and spin sound velocity c2

− are

eigenvalues of

1

m

(
g1ρ̄1 g12

√
ρ̄1ρ̄2

g12

√
ρ̄1ρ̄2 g2ρ̄2

)
, (1.48)

corresponding to modes in which the two condensates move in phase (density

modes) or out of phase (spin modes). The two sound velocities read:

c2
± =

1

2m

[
g1ρ̄1 + g2ρ̄2 ±

√
(g1ρ̄1 + g2ρ̄2)2 + 4(g2

12 − g1g2)ρ̄1ρ̄2

]
. (1.49)

For g2
12 > g1g2 one has c2

− < 0, which means that ε(−)(p) becomes imaginary

for long wavelengths, leading to dynamical instability, in agreement with

our energetic argument above. Further, notice that in the simplified case in

which g = g1 = g2, and ρ̄ = ρ̄1 = ρ̄2, the velocities above take the simple

form c± = ρ̄
m

(g ± g12).

In analogy with the definition of the healing length in (1.30), one can now

define the density and spin healing lengths for the mixture as

ξ± =

√
~2

2mc2
±
. (1.50)
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Notice in particular that, approaching the miscibility/immiscibility boundary

α = 1, while the density healing length ξ+ slowly decays because of the

increasing density sound velocity c+, the spin healing length ξ− diverges.

Even more generally, when considering different constituents’ massesm2 6= m1,

one finds the following dispersion relation [73]:

ε(±)(p) =

√
p2

2
√
m1m2

(
p2

4
√
m1m2

m2
2 +m2

1

m1m2

+ 2
√
m1m2c2

±

)
, (1.51)

where the sound velocities are now given by

c2
± =

g1ρ̄1

2m1

+
g2ρ̄2

2m2

± 1

2
√
m1m2

√(
p2

4
√
m1m2

m2
2 −m2

1

m1m2

+ g1ρ̄1

√
m2

m1

− g2ρ̄2

√
m1

m2

)2

+ 4g2
12ρ̄1ρ̄2.

(1.52)

One can then write an expression for the two density and spin healing lengths

which accounts for different components’ masses. These expressions offer a

natural way to characterise the phase transitions of the system, such as those

described in chapters 5 and 6.

1.2.1 SU(2) symmetric point

For the case of equal interaction strength g1 = g2 = g12 ≡ g, the system enters

into a particularly symmetric state: the energy becomes in fact invariant

under SU(2) rotations of the condensate wave function [70]. The interaction

energy density can indeed be written as

EI =
g

2

(
ρ2

1 + ρ2
2 + 2ρ1ρ2

)
=
g

2
(ρ1 + ρ2)2 . (1.53)
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Equivalently, defining the overall wave function

Ψ =

(
ψ1

ψ2

)
, (1.54)

the interaction energy density can be written concisely as

EI =
g

2

(
Ψ†Ψ

)2
. (1.55)

The main consequence of this result, is that at the SU(2) symmetric point,

which demarcates the boundary between the miscible and immiscible phases,

the two components will behave as a single component with wave function Ψ.

This result allows to conclude, for instance, that the ground state of a system

under rotation at the SU(2) point will consists of a triangular vortex lattice

(as a combination of the individual vortex lattices of each component), as it

is expected for a rotating single component superfluid. This is indeed the

case, as we will argue in Chapter 5.

In order to make the SU(2) invariance of the system manifest, it is benefi-

cial to reparametrise the condensate wave function as a function of the total

density ρ = ρ1 + ρ2 and the polar and azimuthal angles θ and φ:

Ψ =

(
ψ1(r)

ψ2(r)

)
=
√
ρeiχ

 sin
(
θ
2

)
eiφ/2

cos
(
θ
2

)
e−iφ/2

 , (1.56)

where χ is a global phase. Then at the SU(2) symmetric point, the system is

invariant under rotations of the polar and azimuthal angles θ and φ as well as

the global phase χ. A departure from this highly symmetric point, is expected

to yield anisotropies in the energy [84]. Although probably not expected, the

SU(2) symmetric point is experimentally particularly relevant. One exam-

ple is the mixture of two 87Rb hyperfine states |1〉 = |F = 1,mF = −1〉 and

|2〉 = |F = 2,mF = 1〉, for which g1 = 100.44ā, g2 = 95.47ā and g12 = 98.09ā,
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where ā = 4π~2a0/m87Rb, m87Rb is the rubidium isotope’s atomic mass, and

a0 is the Bohr radius [85].

1.3 Quantum Fluid Dynamics of the Gross-

Pitaevskii equation

In order to shed more light on the physical behaviour of condensates, one may

consider reformulating the Gross-Pitaevskii equation in a different form. The

usual linear Schrödinger equation can be recast in a system of fluid-dynamics-

like equations, as it was firstly shown by Madelung [86]. The formalism

used, also known as Madelung transformations, can be extended to general

non-linear Schrödinger equations [87]. In particular we are interested in the

applications of such methods to the Gross-Pitaevskii equation [79, 73, 88].

Consider the multiplication of the Gross-Pitaevskii equation (1.14) by ψ∗,

i~ψ∗
∂ψ

∂t
= − ~2

2m
ψ∗∇2ψ + V ρ+ gρ2, (1.57)

where ρ(r) = |ψ(r)|2 is the density. Subtracting (1.57) from its complex con-

jugate we immediately obtain a continuity equation for the particle density:

∂ρ

∂t
+∇ · j = 0, (1.58)

where the momentum density is given by

j =
~
2i

(ψ∗∇ψ − ψ∇ψ∗) . (1.59)

Drawing analogies from classical fluid mechanics, we can then identify the

superfluid velocity as v = j/mρ. Writing the wave function in terms of its

amplitude and its phase as ψ =
√
ρeiφ, and plugging this ansatz into the
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expression fo the superfluid velocity, we obtain the following expression

v =
~
m
∇φ. (1.60)

This condition heavily constricts the possible motion of a condensate, which

is said to correspond to potential flow, where the quantity ~φ/m is referred

to as the velocity potential. Provided that the phase φ is not singular, the

condensate is therefore irrotational, since

∇× v =
~
m
∇×∇φ = 0. (1.61)

The phase φ on its own has no physical significance: the state is always

defined up to a phase, which reflects the gauge invariance of the system4;

however, as we can see, once we have fixed the gauge, differences of phases

do have a significance. We will discuss more on this in the next sections.

A substitution of ψ =
√
ρeiφ into the Gross-Pitaevskii equation generates

a set of two equations which can be found by splitting the GPE into its real

and imaginary parts. The imaginary part results in (1.58), whereas the real

part leads to

−~∂φ
∂t

= − ~2

2m
√
ρ
∇√ρ+

1

2
mv2 + V + gρ, (1.62)

or, taking the gradient

Dtv = ∇
(

~2

2m
√
ρ
∇√ρ− V − gρ

)
, (1.63)

where Dt is the so-called material derivative given by the time derivative

plus a self-advective term Dt = m∂t + mv∇. The left hand side comes in

4See Chapter 1, Sec. 1.5.
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particular from the relation

1

2
∇v2 = v∇v + v × (∇× v) , (1.64)

and from the realisation that the latter can be further simplified for irrota-

tional v. Equation (1.63) is analogous to the inviscid Navier-Stokes equation,

also known as Euler equation.

To sum up, we just showed that the Gross-Pitaevskii equation can be rewrit-

ten as a set of equations analogous to well known equations in fluid dynamics,

namely

{
∂ρ
∂t

+∇ · j = 0

Dtv = ∇
(

~2

2m
√
ρ
∇2√ρ− V − gρ

) . (1.65)

The argument of the gradient in the second equation is referred to as quantum

pressure and describes forces due to spatial variations in ρ. In particular this

term can be shown to derive directly from Heisenberg uncertainty principle

[79].

1.4 Rotation of superfluids

Some of the most interesting properties of a superfluid, are related to the

non classical manner in which superfluids react to rotation. We have already

discussed about the irrotationality of the system due to the motion of the

condensate corresponding to a potential flow. We will now consider what are

the consequences of the introduction of rotation in a superfluid by analysing

the problem from a rotating frame of reference.

Recalling that the infinitesimal generator of rotations is the angular mo-

mentum operator L, we can write a general rotation around the axis u as
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Ru(θ) = exp(−iθu · L). In order to consider the action of an operator un-

der rotation we can consider a wave function ψ and its rotated counterpart

ψ̃ = Ruψ. Given an operator A acting on such a wave function, one finds

that this operator is transformed in the rotating frame as

Ru(Aψ) = RuAR
†
uRuψ = RuAR

†
uψ̃. (1.66)

Thus, we infer that a quantum system described by the Hamiltonian H0 with

a rotationally invariant confining potential, will be described under rotation

by a time dependent Hamiltonian H(t) = RΩH0R
†
Ω. The time dependence is

here introduced through the time varying angle θ = Ωt, so that the rotation

operator reads RΩ = exp(−itΩ · L/~). If ψ̃ is the wave function describing

the system governed by this time-dependent Hamiltonian i~∂tψ̃ = H(t)ψ̃,

then we can consider its counterpart in the rotating frame ψ = R†Ωψ̃ and

find the associated equation of motion by considering its time evolution:

i~∂tψ = i~(∂tR
†
Ω)ψ̃ + i~R†Ω∂tψ̃

= i~(iΩ · L/~)R†Ωψ̃ +R†ΩH(t)ψ̃

= −Ω · LR†Ωψ̃ +R†ΩRΩH0R
†
Ωψ̃

= (H0 −Ω · L)ψ.

(1.67)

Assuming rotation along the z-axis, the energy functional in the rotating

frame then reads:

E =

∫
dr

[
~2

2m
|∇ψ|2 + V |ψ|2 +

g

2
|ψ|4 − Ωψ∗Lzψ

]
, (1.68)

where Lz = (xpy − ypx) = −i~(x∂y − y∂x) is the z-component of the angular

momentum operator L = r× p, with p = −i~∇ the canonical momentum.
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The equations of motion are consequently changed into

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + V + g|ψ|2 − ΩLz

)
ψ. (1.69)

Because of the introduction of the rotation term ΩLz, the energy functional

(1.68) is not guaranteed to be lower bounded, i.e. the existence of a ground

state is not necessarily guaranteed to exist, being constrained by the values

of the angular velocity |Ω|; we will discuss further this important detail in

the following Sec. 1.4.3.

It has already been mentioned that a superfluid does not respond in an

ordinary way to rotations. This has far-reaching consequences. After the

discovery of Bose-Einstein condensation in atomic gases, a lot of effort was

spent studying of rotating condensate to match the theoretical predictions

on superfluid states [44]. The main reason for these characteristic properties

is that superfluids have their motion constrained by the potential flow of the

superfluid velocity:

v =
~
m
∇φ. (1.70)

As we have already mentioned, this implies the velocity field is irrotational

∇×v = 0, as long as the phase is not singular. At low angular velocities the

superfluid part of a cloud of condensed atoms will remain at rest. However,

such irrotational state may become energetically unfavourable for a higher

angular velocity: considering the energy E and < L >, which is the expecta-

tion value of the angular momentum in the laboratory frame and the energy

in the rotating frame Erot, the system will tend to minimise

Erot = E −< Ω · L >, (1.71)

which shows that there might be states energetically more favourable than

the irrotational state. Considering the ground state energy E0 and the first
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Center of mass motion Surface mode Vortex

Figure 1.2: Different kind of angular momentum excitations in a superfluid.

excited state energy E1 and comparing them in the rotating frame we find

∆Erot = Erot
1 − Erot

0 = E1 − E0 − ΩL, (1.72)

where we have picked an axis of rotation so as to have only one component

of Ω and < L >. The excited state becomes energetically favourable when

the difference above is negative, so that it turns into the actual ground state.

This argument brings us then to define the critical value

Ω > Ωc =
E1 − E0

L
, (1.73)

known as the critical angular velocity. For any Ω < Ωc the ground state

will be the irrotational ground state, while for Ω > Ωc one can expect more

interesting kinds of excited state, allowing the condensate to acquire angular

momentum.

Contributions to the < Ω · L > term can be achieved through three kind

of excitations: oscillations of the centre of mass, surface modes and vortices;

these excitations are depicted in Fig.1.2. We will focus in particular on the

latter. From the requirement of single valuedness of the wave functions, it

follows that changes in phase ∆φ around any closed contour, must be integer
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multiples of 2π:

∆φ =

∮
∇φ · dl = 2πn. (1.74)

Consequently, one finds the quantisation condition for the circulation Γ:

Γ =

∮
v·dl =

~
m

2πn, (1.75)

a concept firstly put forward by Onsager and Feynman [89, 90]. The only

way the requirements of irrotationality and that of existence of non-zero

angular momentum can then be simultaneously fulfilled, is if the phase φ is

singular. The circulation around such a singularity is then Γv = 2πn~/m and

the excitation forming in such conditions is what we call a quantum vortex.

The quantum number n, often referred to as the charge of the vortex, is

commonly restricted to n = 1 in equilibrium. Indeed, as we will see later,

multiply-quantised vortices (n > 1) are commonly unstable against decay

into singly quantised vortices.

1.4.1 Density of vortices

In his seminal work [90], Feynman arrived at the conclusion that the lowest

energy state for an irrotational fluid with a given angular momentum, is a

vortex lattice with a 2π winding of the phase around each vortex. Given

the superfluid velocity (1.70) it is straightforward to see that the superfluid

cannot rotate as a rigid body since ∇× v = 0, as it was discussed. That is,

the velocity field is irrotational, unless the phase φ of the order parameter

has a singularity. On the other hand, the vortex lattice can only rotate as

a rigid body in equilibrium. Hence, on average, the region of the superfluid

that is packed with vortices rotates as a rigid body. This allows to estimate

a relation between the angular velocity Ω, and the number of vortices Nv, in

the ground state.
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Let D be a region of area A packed with Nv vortices, and assume, on

average, rigid body rotation so that v = Ω × r. As usual ∂D denotes the

boundary of D. Then, it is possible to compute the circulation of the velocity

as in (1.75):

Γ∂D =

∮
∂D

v · dl =

∫
D

∇× v · dD =

∫
D

∇× (Ω× r) · dD

=

∫
D

∇ ·
(
rΩT −ΩrT

)
· dD

=

∫
D

[Ω(∇ · r)− (Ω · ∇)r] · dD

=

∫
D

(3Ω− Ωj∂jr) · dD =

∫
D

(3Ω−Ω) · dD

= 2ΩA,

(1.76)

where we have used Stokes’ theorem, and the identities ∇ × (A × B) =

∇· (BAT −ABT ) and ∇· (ABT ) = B(∇·A) + (A ·∇)B. Recalling now that

the circulation around a single vortex is Γv = 2π~/m, we can also compute

the circulation on ∂D as

Γ∂D = NvΓv =
2π~
m

Nv. (1.77)

Therefore, introducing the density of vortices ρv = Nv/A, and equating (1.76)

with (1.77), one obtains the well known Feynman relation [90, 91] for the

density of vortices

ρv =
mΩ

π~
. (1.78)

Looking at the above (1.78), one can notice that it is possible to write it in
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Figure 1.3: Vortex lattice in a rotating Bose-Einstein condensate [34].

terms of a parameter with dimensions of length:

ρv =
1

2π`2
Ω

, (1.79)

where, in close analogy with the magnetic length in quantum Hall systems5,

we define

`Ω =

√
~

2mΩ
. (1.80)

The length scale `Ω provides a measure of the characteristic separation be-

tween vortices.

The two length scales characterising the system are then the healing

length ξ and the magnetic length `Ω. We point out that their ratio, clearly

a dimensionless quantity, can be used to extract an expression for the inter-

5As we will argue in Sec. 1.5 of this chapter as well as in Chapter 5, it is possible to
reformulate equations (1.68) and (1.69) so as to make the gauge invariance of the system
apparent. It will then be manifest the full analogy between our system and that of a
charged particle in a magnetic field of strength B = 2mΩ/e, with e the charge of the
particle.
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action strength g as

g =

(
`Ω

ξ

)2

π
ρv
ρ̄

~2

m
. (1.81)

Therefore, the dimensionless ratio `Ω/ξ can be taken as a characteristic mea-

sure of the interaction strength. This will prove convenient in the following

chapters where we will often refer to this ratio to characterise interactions.

1.4.2 Properties of Single Vortices

If we consider a system with cylindrical symmetry we can write an equation

for the density only, since the phase φ will depend only on the azimuthal angle

ϕ. In particular we can insert ψ =
√
ρeiφ = feinϕ into the time independent

GPE (1.13) to find

µf = − ~2

2m

[
1

r

∂

∂r

(
r
∂f

∂r

)
+
∂2f

∂z2
− n2f

r2

]
+ V f + gf 3, (1.82)

where we have used ∇2 ≡ 1
r
∂
∂r

(
r ∂
∂r

)
+ ∂2

∂z2 + 1
r2

∂2

∂ϕ2 . Let us briefly study the

ground state of this result in a limiting case: taking V = 0, n = 1, large

distances (∂rf = 0, 1/r2 = 0) and remembering that the ground state has no

z-dependence (which implies ∂zf = 0) we get

µf = gf 3, (1.83)

so that we have the following solution

ρ =
µ

g
. (1.84)

At short distances the solution is linear, since the centrifugal term propor-

tional to 1/r2 dominates the dynamics. By rescaling f by f 2
0 = ρ, i.e. the

density far away from the vortex core, and r by the healing length of the
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condensate, we can make equation (1.82) adimensional and solve it numeri-

cally. The result is show in Fig.1.4; the latter also shows a comparison with

the following ansatz

ρ = ρ0

(
1− e−r2/λ2

)
, (1.85)

where λ = 1.781ξ [92]. At this point it is worth mentioning that the in-

1 2 3
0

0.25

0.5

0.75

1

r/ξ

f2

f2
0

Numerical solution
Gaussian ansatz (1.85)

Figure 1.4: Vortex profile resulting from numerical solution of equation (1.82)
and comparison with ansatz (1.85).

troduction of vortices, directly affects the spatial extent of the condensate.

The condensate profile is not well approximated by the Thomas-Fermi pro-

file (1.18) any longer, as it can be deduced from the results of numerical

simulations depicted in Fig. 1.5. Of course a more accurate Thomas-Fermi

approximation can be obtained neglecting the kinetic energy term; assuming

again the confining potential to be harmonic with frequency ω one finds [93]:

ρTF =
1

g

[
µ− m

2
(ω2 − Ω2)r2

]
θ(RTF (Ω)− r) (1.86)
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T.F. Ω = 0
Ω1 > 0

Ω2 > Ω1

Figure 1.5: Condensate profile with one and two vortices compared to the
Thomas-Fermi prediction for no rotation.

where θ(x) is the Heaviside theta function, and the Thomas-Fermi radius is

RTF (Ω) =

√
2µ
mω2(

1− Ω2

ω2

)1/4
=

RTF (0)(
1− Ω2

ω2

)1/4
. (1.87)

Now one can easily find the energy with the same procedures as explained

before and compare it with the one associated to a uniform gas; we find that

the energy per unit length is

ε = 2π

∫ Λ

0

rdr

[
~2

2m

(
∂f

∂r

)2

+
~2

2m

f 2

r2
+
g

2
f 4

]
. (1.88)

Λ is a cutoff which needs to be introduced since the integral diverges loga-

rithmically, but which has to be large compared with the characteristic size

of the vortex, i.e. the healing length ξ; the cutoff can be taken to be of the or-

der of the Thomas-Fermi radius RTF [79]. More in general, one must require

Λ� ξ. At first approximation we can find the energy εν associated with the

single vortex state by subtracting the energy ε0 associated with Ω = 0, from

(1.88). Assuming that log (Λ/ξ)� 1, and that the other terms in the energy
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can be neglected, it is possible to find [73]

εν = ε− ε0 ≈
π~2

m
ρ log

(
Λ

ξ

)
. (1.89)

For a multiply-quantised vortex one can instead find that the core size be-

comes |n|ξ [73]. A similar approach allows then to find a similar expression

for the energy associated with a multiply-quantised vortex:

εnν ≈ n2π~2

m
ρ log

(
Λ

|n|ξ

)
. (1.90)

This result is particularly interesting as it permits to see that singly quantised

vortices are more energetically favourable. Indeed, vortices with more than

one quanta of circulation require more energy than a collection of vortices

with a single quantum of circulation:

εnν ≥ nε1ν . (1.91)

The above results can be generalised to account for vortex-vortex interac-

tions. For two vortices separated by a distance d � ξ, with charges n1 and

n2, the interaction potential energy can be found to be [73]

εint ≈
2πn1n2~2ρ

m
log

(
Λ

d

)
. (1.92)

The cutoff must again be the largest length scale Λ � d � ξ, and for

system with many vortices one can take d on the order of the magnetic

length `Ω. As long as this is the case, namely that the logarithmic accuracy

holds (log(Λ/ξ � 1)), the above expression for the interaction energy gives

a Coulomb-like force between two vortices, which, for positive interaction

couplings g > 0, is repulsive for vortex charges with the same signs, attractive

otherwise. Since ξ ∼ g−1/2, one finds that such a Coulomb regime holds as

long as the intra-species interactions are large. In the following we will refer
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equivalently to this regime as Coulomb regime or strong interaction limit.

Finally, let us notice that from the above results, it follows that vortices

with |n| > 1 are metastable states, and should not be expected to appear in

the ground state of rotating homogeneous systems; rather one should expect

the contribution to the circulation to derive from several singly quantised

vortices. Nonetheless, it is possible to observe such vortices with multiple

quanta of circulation in inhomogeneous systems under anharmonic trapping

potentials [73, 94], as we will briefly explain later.

1.4.3 Existence of ground states and their nature un-

der rotation

Let us now briefly consider the case of a superfluid trapped in an harmonic

potential. It can be shown that the problem of minimisation of the energy

functional E [ψ], has a solution E [ψ0] if and only if |Ω| < ω, where Ω is the

angular velocity and ω the trapping frequency; in this case ψ0 is the ground

state of the system. When the system is at rest, the ground state is symmetric

and unique up to a complex phase; introducing angular momentum, i.e.

when Ω exceeds its critical value Ωc, the symmetry breaks: at this point

one finds the minimiser is not unique any more, and an infinitely degenerate

ground state arises. Moreover, it is possible to show that no solution to the

minimisation problem exist when |Ω| > ω. In particular one finds

inf
ψ
E [ψ] = −∞. (1.93)

In order to demonstrate this statement, let us consider, without loss of

generality, the linear case in which the system is governed by the rotating

Schrödinger Hamiltonian operator

H =
p2

2m
+
mω2

2
r2 − ΩLz, (1.94)
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with Lz = xpy − ypx. The first two terms correspond to the quantum har-

monic oscillator and can therefore be written together as

1

2
(p2 + ω2r2) = ~ω

(
c†c + 1

)
(1.95)

where c is the standard lowering ladder operator

c =

√
mω

2~

(
r +

i

mω
p

)
, (1.96)

such that
[
cα, c

†
α

]
= 1. Inverting the relations for the operator c and its

hermitian conjugate c†, one has the expressions

r =

√
~

2mω

(
c† + c

)
,

p =i

√
~mω

2

(
c† − c

)
.

(1.97)

It is then evident that Lz can be written in terms of the components of

c = (a, b)T, resulting in

Lz = xpy − ypx = −i~
(
a†b− b†a

)
. (1.98)

Therefore, the Hamiltonian operator (1.94) can be written as

H =~ω
(
a†a+ b†b+ 1

)
+ i~Ω(a†b− b†a)

=~
(
a†, b†

)( ω iΩ

−iΩ ω

)(
a

b

)
+ ~ω

=~
(
a†, b†

)
(ω1− Ωσy)︸ ︷︷ ︸

M

(
a

b

)
+ ~ω.

(1.99)
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MatrixM has trace tr [M] = 2ω and determinant det [M] = ω2−Ω2; it can

thus be diagonalised into (
ω − Ω 0

0 ω + Ω

)
, (1.100)

by the following change of basis

α =
1√
2

(a+ ib),

β =
1√
2

(a− ib).
(1.101)

In this basis, the angular momentum operator reads Lz = ~(β†β − α†α).

Finally, the Hamiltonian can be put into the revealing form

H = ~ (ω + Ω)α†α + ~ (ω − Ω) β†β + ~ω. (1.102)

Confirming that
[
α, α†

]
= 1 and

[
β, β†

]
= 1, we recognise α and β as ladder

lowering operators and α†α, β†β as particle number operators of clockwise

and counter-clockwise rotations. The ground state of the system is therefore

not guaranteed to exist. More specifically, when Ω > ω, the energy has no

lower bound, as claimed in (1.93), which leads to instability. The reason for

this result can be found in fact that the centrifugal effective potential, which

grows quadratically as the trapping potential, can eventually overcome the

trap’s confining forces.

Anharmonic confinement

In order to get around this problem, one can employ anharmonic trapping.

Since the trapping potential is always strong enough to contain the rotating

condensate, a condensate which is confined anharmonically is expected to

give rise to a rich variety of phases. The physics of anharmonic trapped
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condensates can be summed up qualitatively by the schematic phase diagram

presented in Fig. 1.6 [95]. We can distinguish three different phases: arrays
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y

Singly quantised lattice with hole

Multiple quantisation

Ω

g

Figure 1.6: Qualitative phase diagram for anharmonically confined systems.

of singly quantised vortices arranged in a triangular lattice, vortex lattices

with a finite radius hole in the centre such that the density is zero but the

vorticity is not, and giant multiply-quantised vortices.

Formal accounts which have investigated this phase diagram under di-

verse anharmonic potential [96, 97], have accurately described the transition

between the different regimes [98, 99, 100]. Nonetheless, the phase diagram

can be qualitatively understood unambiguously in terms of the effective po-

tential, arising from the joint action of anharmonic potential and the effective

centrifugal potential. We consider for simplicity a quartic potential, so that

the resulting effective potential can be written as

Veff ∝
(
kr4 − Ω2

effr
2
)
, (1.103)

with Ωeff ∝ |Ω|. This effective potential has a mexican hat shape and the

size of the hat’s crown in the middle is controlled by the parameter Ωeff.

Increasing |Ω| makes the condensate drift away from the centre of the trap
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and arrange into a ring shape. For weak interacting regimes, a state made of

multiply-quantised vortices is always the minimiser of the energy functional

[94]; for larger interaction strengths and small |Ω| (and consequently Ωeff) we

find instead triangular arrays of singly-quantised vortices. Finally, for large

rotating frequencies Ω and strong interactions, one finds a lattice of vortices

carrying a single quantum of circulation, arranged around a hole at the centre

of the condensate [101]. The ‘hole’ differs from a multiply-quantised vortex in

that the former consists in a depleted region created by a cluster of vortices

which do not however necessarily overlap. This can be better understood

observing the phase of the states depicted in Fig. 1.6.

1.5 Symmetries of the system

Let us consider again the Gross-Pitaevskii equation (1.69) under rotation.

Upon the introduction of the gauge field As = Ωm(−y, x), the rotation term

can be written as

−Ωψ†Lzψ =
i~
m
ψ†A†s∇ψ. (1.104)

Notice that ∇×As = 2Ωmẑ, and A†sAs = m2Ω2r2, so that it is possible to

write the energy as

E =

∫
dxdy

[
1

2m
|(−i~∇−As)ψ|2 +

1

2
mω2

effr
2|ψ|2 +

g

2
|ψ|4

]
, (1.105)



68
Chapter 1. Bose-Einstein Condensation, Superfluidity and

Symmetries

where we have introduced the effective harmonic oscillator frequency ωeff =√
ω2 − Ω2. In fact:∫

dxdy

[
1

2m
|(−i~∇−As)ψ|2

]
=

=

∫
dxdy

[
~2

2m
|∇ψ|2 +

1

2m
A†sψ†Asψ +

i~
2m

(ψ†A†s∇ψ −Asψ∇ψ†)
]

=

∫
dxdy

[
~2

2m
|∇ψ|2 +

mΩ2r2

2
|ψ|2 +

i~
m
ψ†A†s∇ψ

]
=

∫
dxdy

[
~2

2m
|∇ψ|2 +

mΩ2r2

2
|ψ|2 − Ωψ†Lzψ

]
,

(1.106)

where, in the second line, we have used integration by parts. The energy in

(1.105) is rearranged in a particularly convenient way. First of all it allows

to draw a clear analogy with charged particles in a magnetic field6, whose

Hamiltonian is identical to (1.105) in the joint limit of weak interactions and

rapid rotation (so that g ≈ 0 and ωeff ≈ 0); this analogy allows to make use of

a set of techniques and well known concepts useful to our problem, as we have

already done in Sec. 1.4.1 and as we are going to do in the following Sec. 1.5.1.

Furthermore, the form of equation (1.105) makes the gauge invariance of the

system manifest: the energy functional is indeed invariant under the gauge

transformation

ψ → e
i
~λψ,

As → As +∇λ,
(1.107)

6The Hamiltonian for a particle of charge e in a magnetic field is given by

H =
1

2m
(p− eA)2,

where A is the vector potentials so that the magnetic field is given by B = ∇×A. Thus,
under the analogy with the rotating superfluid, we have that the magnetic field is related
to the angular velocity as B = 2mΩ/e.
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with the pure gauge λ being an arbitrary function of the xy-coordinates. The

gauge invariance is easily checked as

|(−i~∇−As)ψ|2 →
∣∣∣(−i~∇−As −∇λ)e

i
~λψ
∣∣∣2

=

∣∣∣∣−i~ψ(
i

~
∇λ)e

i
~λ − i~e i~λ∇ψ −Ase

i
~λψ −∇λe i~λψ

∣∣∣∣2
=
∣∣∣e i~λ(∇λ− i~∇−As −∇λ)ψ

∣∣∣2
= |(−i~∇−As)ψ|2 .

(1.108)

This gauge freedom allows for a choice of the gauge which best suits the

problem at hand. The previously defined gauge field As is known as sym-

metric gauge. Another common choice is the so called Landau gauge obtained

from the symmetric gauge by choosing λ = Ωmxy, so that AL = 2mΩ(0, x).

In what follows we will write the vector potential in an arbitrary gauge as

A = AL +∇λ, leaving λ unspecified but noting that we may return to the

original symmetric gauge by putting λ = −Ωmxy. This will make appar-

ent which quantities are gauge invariant. For instance, since the effective

magnetic field, B ≡ εij∂iAj = 2mΩ (summation is implicit over repeated

indices), defined in analogy with quantum Hall systems, is independent of λ,

it is a gauge invariant quantity. This connection in particular, makes evident

that the role played by the Coriolis force in the rotation frame is the same

as that played by the Lorentz force on a charged particle in a magnetic field.

1.5.1 Landau levels

Consider now the limit of rapid rotation, so as to make the effective frequency

ωeff vanishing. In this limit the centrifugal and centripetal terms contributing

to the total energy are completely balanced and the system can effectively

be though of as uniform in the plane perpendicular to the axis of rotation.
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One can then realise that in the limit of weak interactions (so that

ξ � `Ω), it is possible to find a closed form solution to (1.105). Continuing

with the analogy, similarly to what was done by Landau [102] for the case of

a charged particle in a magnetic field, we start considering the Hamiltonian

operator

H =
1

2m
(p−AL)2 =

1

2m

[
p2
x + (py − 2Ωmx)2

]
, (1.109)

associated with the energy functional obtained from (1.105) by enforcing the

approximation ωeff = 0, valid in the limit Nv � 1, and fixing the gauge to

the Landau gauge AL. Here p = −i~∇ is the canonical momentum operator.

Clearly the Hamiltonian commutes with the momentum operator py, so that

the two possess a complete set of common eigenfunctions. Therefore we can

replace the operator py with its eigenvalue ~ky

H =
p2
x

2m
+

1

2m
(ky − 2Ωmx)2

=
p2
x

2m
+

1

2
m(2Ω)2(x− ~ky

2Ωm
)2,

(1.110)

which can be recognised in this form as the Hamiltonian of a quantum oscil-

lator with angular frequency 2Ω, and the minimum of the harmonic potential

shifted by ~ky/2Ωm (clearly such a translation does not affect the energy).

Then, one can immediately write down its energy spectrum:

En = 2~Ω

(
n+

1

2

)
, n ≥ 0. (1.111)

In particular the ground state energy, which we will refer to as Lowest Landau

Level (LLL), is given by E0 = ~Ω. Moreover, it is important to notice that

the system is highly degenerate with respect ky. Such a degeneracy is however

lifted by the existence of non-zero interactions.
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1.5.2 The Magnetic Translation Group and Twisted

Boundary Conditions

The Hamiltonian operator as presented in (1.109), is also indicative of an-

other important symmetry of the system. The kinetic momentum operator

entering (1.109) is given by P = p−AL. It is then clear that the hamiltonian

is not translational invariant. In particular, in the Landau gauge we have[
T̃ (R), Py

]
6= 0, where T̃ (R) = exp

(
i
~p ·R

)
is the standard translation

operator, with the canonical momentum as infinitesimal generator. More

generally, given a different choice for the gauge, one finds
[
T̃ (R), Pj

]
6= 0.

Now, one would like to find a set of operators which generalises the concept of

translation and with respect to which the Hamiltonian is invariant. Consider

then the two operators

Πx = px − 2Ωmy,

Πy = py.
(1.112)

These operators clearly commute with the kinetic momenta (and therefore

with the Hamiltonian): [Πj, Pk] = 0. From these one can define the Magnetic

Translation Operators (MTOs) as

T (R) = e
i
~Π·R, (1.113)

which, when acting on quantities involving only coordinates, operate in com-

plete analogy with the standard translation operators:

T (R)f(r)T−1(R) = f(r + R). (1.114)

The operators (1.112) are specific to the Landau gauge. We can find a

more general expression for the Πj operators which applies for any choice

of the gauge. To do so, let us introduce two arbitrary functions of the xy-
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coordinates f(x, y) and g(x, y), and write the operators in their general form

as

Πx = px − 2Ωmy + f,

Πy = py + g.
(1.115)

The kinetic momenta are now Px = px − ∂xλ and Py = py − 2Ωmx − ∂yλ,

with λ the pure gauge. The conditions [Πj, Pk] = 0 then yield

[Πx, Px] = i~∂2
xλ+ i~∂xf,

[Πx, Py] = i~∂x∂yλ+ i~∂yf,

[Πy, Px] = i~∂y∂xλ+ i~∂xg,

[Πy, Py] = i~∂2
yλ+ i∂yg,

(1.116)

where we have made use of the standard commutation relations [rj, pj] = i~,

[pj, f ] = −i~∂jf . Setting the first two equations to zero one finds f = −∂xλ.

Similarly the last two equations lead to g = −∂yλ. Therefore, the Πj opera-

tors in a general gauge are

Πx = px − 2Ωmy − ∂xλ,
Πy = py − ∂yλ.

(1.117)

These are infinitesimal generators of the magnetic translation operators T (R)

defined in (1.113), elements of the so called Magnetic Translation Group

(MTG) [103, 104].

The first property to note with regards to the infinitesimal generators Πj

as defined in equation (1.117), is their commutation relation. In fact, if the

infinitesimal generators of the standard translations (the canonical momenta)

commute with each other, for the operators in (1.117) one finds

[Πx,Πy] = −2i~Ωm. (1.118)
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Notice that this quantity is gauge invariant, as it can be inferred by the

lack of dependency on λ. This property, translates to MTOs which one can

expect not to commute in general, in contrast again to what happens for

the standard translation operators. It is possible to explicitly compute the

commutator

[T (R), T (R′)] = e
i
~Π·Re

i
~Π·R′ − e i~Π·R′e

i
~Π·R. (1.119)

More specifically, from the Baker-Campbell-Hausdorff formula we have

log
(
e
i
~Π·Re

i
~Π·R′

)
=
i

~
Π ·R +

i

~
Π ·R′ − 1

2~2
[Π ·R,Π ·R′]

=
i

~
Π · (R + R′) +

iΩm

~
(
εijRiR

′
j

)
,

(1.120)

so that

[T (R), T (R′)] = e
i
~Π·(R+R′)e

iΩm
~ (εijRiR′j) − e i~Π·(R+R′)e−

iΩm
~ (εijRiR′j)

= 2ie
i
~Π·(R+R′) sin

(
Ωm

~
εijRiR

′
j

)
.

(1.121)

It is interesting to notice that although the expressions for the magnetic

translations depend on the choice of the gauge, the commutator of two mag-

netic translations is again gauge invariant. Another quantity which can be

shown to be gauge invariant is the composition of magnetic translations

T−1
y (Ry)T

−1
x (Rx)Ty(Ry)Tx(Rx) = e

i
~2ΩmRxRy (here and after we use the no-

tation Tj(R) ≡ T (Rr̂j)).
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e
i
~2ΩmRxRy

Tx(Rx)

Ty(Ry)

T−1
x (Rx)

T−1
y (Ry)

Figure 1.7: Wilson loop (1.122) revealing the acquisition of a phase factor
when translating along a closed loop.

This quantity is known as the Wilson loop7:

Wγ = exp

 i
~

∮
γ=∂D

Adγ

 = exp

 i
~

∫∫
D

∇×AdD


= exp

2iΩm

~

∫∫
D

dD


= exp

[
i

~
2ΩmRxRy

]
,

(1.122)

where D = RxRy is the area enclosed by the closed line γ, and ∂D its

boundary (i.e γ itself). This procedure reveals the acquisition of a phase when

magnetically translating along a closed loop. This phase factor is of great

importance and it is closely connected with the commutator (1.121). Before

discussing more on the importance of this phase factor, let us introduce one

further property of the system.

Consider then the description of a periodic system by a unit cell of size

Lx × Ly. Naively, it would feel natural to impose periodic boundary condi-

7We are ignoring here the path ordering operator since the gauge field A commutes
with itself at different times (there is no time dependance at all).
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tions. This is usually done by requiring

T̃ (Lx)ψ(x, y) = ψ(x, y),

T̃ (Ly)ψ(x, y) = ψ(x, y);
(1.123)

recall that the operators T̃ used here are the standard translation operators

generated by the canonical momenta. Imposing periodic boundary conditions

has the effect of making the order of the MTG finite, and the momenta

quantised:

kj =
2π

Lj
n, n ∈ Z. (1.124)

This is not ideal as the lowest non-zero momentum might be quite large.

A workaround, [105] consists in employing the so called twisted boundary

conditions, as it was found in early work [106], which enforce the acquisition

of a phase ‘twist’ over a period:

T̃ (Lj)ψ(x, y) = eiΘjψ(x, y), (1.125)

so that arbitrary momenta can be attained by varying the twisting phases

Θj:

kj =
2π

Lj
n+

Θj

Lj
, n ∈ Z. (1.126)

The correct twisted boundary conditions can be achieved by employing the

correct translation operators, namely the MTOs with infinitesimal generators

(1.117), as

ψ(x, y) = T (Lx)ψ(x, y),

ψ(x, y) = T (Ly)ψ(x, y).
(1.127)
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Notice that it is then possible to write T (Lj) = e−iΘj T̃ (Lj), and extract an

expression for the Θjs from the definition of the MTOs, given that under

periodic boundary conditions T̃ (Lj) = 1. It is also worth noticing that al-

though the assumption of periodicity of the wavefunction ψ has been relaxed,

the observable density ρ = |ψ|2 retains its periodicity; moreover the Hamil-

tonian operator H = P2

2m
+ gρ is still self-adjoint over the space of functions

satisfying the twisted boundary conditions.

Let us now compute the twisted boundary conditions (1.127) explicitly.

At first, it is essential to notice that an MTO transforms under a gauge

transformation as

Tj → eiλ/~Tje
−iλ/~. (1.128)

Let us check this is the case for the specific case of the MTO Ty in the Landau

gauge. We have already found that in the new gauge obtained through the

pure gauge λ, the operator TLy transforms as

TLy (Ry) = e
i
~Rypy → Ty = e

i
~Ry(py−∂yλ). (1.129)

Here we explicitly labeled the MTO in the Landau gauge as TLy to avoid

confusion. It is now possible to use the Zassenhaus formula

et(A+B) = etAetBe−
t2

2
[A,B]e

t3

3!
(2[B,[A,B]]+[A,[A,B]]) . . . (1.130)

to expand (1.129). Computing the commutators

[py,−∂yλ] = i~∂2
yλ,[

py, i~∂2
yλ
]

= ~2∂3
yλ,

...

[py, [. . . , [py,−∂yλ]]] = −(−i~)n∂n+1
y λ,

(1.131)
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one can expand (1.129) with (1.130) to find

Ty(Ry) = e
i
~Ry(py−∂yλ) = e

i
~Rypye−

i
~Ry∂yλe

R2
y

2~2 [py ,−∂yλ]e
−iR3

y

~36
(2[−∂yλ,[py ,−∂yλ]]+[py ,[py ,−∂yλ]]) . . .

= e
i
~Rypye−

i
~Ry∂yλe

i
2~R

2
y∂

2
yλe

−iR3
y

~36
([py ,i~∂2

yλ]) . . .

= e
i
~Rypye−

i
~Ry∂yλe

i
2~R

2
y∂

2
yλe

−i
6~R

3
y∂

3
yλ . . .

= TLy (Ry) exp

[
i

~

∞∑
n=1

1

n!
(−Ry∂y)

n λ

]

= TLy (Ry) exp

[
i

~

∞∑
n=0

1

n!

(
− i
~
Rypy

)n
λ− i

~
λ

]

= TLy (Ry) exp

[
i

~
e−

i
~Rypyλ− i

~
λ

]
= TLy (Ry)e

i
~T

L
y
†
(Ry)λe−

i
~λ

= e
i
~T

L
y (Ry)TLy

†
(Ry)λTLy (Ry)e

− i
~λ

= e
i
~λTLy (Ry)e

− i
~λ.

(1.132)

Taking now one further step, it is possible to find Ty(Ry) = e
i
~ [λ(x,y)− i

~λ(x,y+Ry)]TLy (Ry).

Applying the transformation rule (1.128) to TLx , we find also the second

boundary condition in a general gauge. To sum up, the required twisted

boundary conditions finally are:

ψ(x, y) = Tx(Lx)ψ(x, y) = e−
i
~2ΩmyLxe−

i
~ [λ(x+Lx,y)−λ(x,y)]ψ(x+ Lx, y),

ψ(x, y) = Ty(Ly)ψ(x, y) = e−
i
~ [λ(x,y+Ly)−λ(x,y)]ψ(x, y + Ly),

(1.133)

or equivalently

ψ(x, y) = e−iΘxψ(x+ Lx, y),

ψ(x, y) = e−iΘyψ(x, y + Ly),
(1.134)
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with

Θx =
1

~
[2ΩmyLx + λ(x+ Lx, y)− λ(x, y)] ,

Θy =
1

~
[λ(x, y + Ly)− λ(x, y)] .

(1.135)

These boundary conditions impose an important quantisation condition on Ω.

When restricted our analysis to a periodic unit cell, consistency requires that

ψ = Tx(Lx)Ty(Ly)ψ = Ty(Ly)Tx(Lx)ψ and therefore [Tx(Lx), Ty(Ly)] = 0. Sim-

ilarly, the requirement of single-valuedness of the wavefunction imposes the

constraint Wγ = 1 on the above mentioned Wilson loop. Such requirements

are all satisfied when

2

~
ΩmLxLy = 2πn, n ∈ Z. (1.136)

Rearranging the terms in the expression above, recalling Feynman’s relation

(1.78), we recognise the integer n as a familiar quantity:

n

LxLy
=

Ωm

π~
≡ ρv. (1.137)

The quantisation integer n ≡ Nv corresponds to the number of vortices in

the unit cell.

Going back again to the analogy with a charged particle in a magnetic

field, we realise that this quantisation condition exists in complete analogy

to the quantisation of the magnetic field in quantum Hall systems.



Chapter 2
Numerical Methods

Many-particle systems are hard to describe analytically due to their com-

plex nature and hence usually numerical solutions are necessary. This need

drives, amongst others, the birth of a multitude of numerical methods for ob-

taining the solution to the Schrödinger equation and its non-linear versions,

which find applications in a growing range of fields. In particular we are

interested in one of those non-linear versions, namely the Gross-Pitaevskii

equation. Analytical solutions to the Gross-Pitaevskii equation are known

only in a few particular cases, some of which we have discussed in the pre-

vious chapter. With this motivation in mind, in this chapter we approach

the study of split-step numerical methods. Split-step methods fall under the

category of pseudospectral methods, which are in general faster than finite

difference methods (such as the Crank-Nicolson methods, for instance): this

is, of course, at the expense of losing accuracy; however the great power of

these methods is the ease of implementation and the small computational

power required. The founding idea consists of splitting the Gross-Pitaevskii

equation into two parts in order to isolate position and momentum opera-

tors, and then evolving the wavefunction by one step in position space and

subsequently in momentum space, alternating. This requires employment of

a fast Fourier transform (FFT) algorithm in order to switch from position

79
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to momentum space and vice versa; for this reason such methods are also

known as split-step Fourier methods, or SSFM, and can be extensively found

in the literature.

The Chapter will start considering a clever and powerful method to com-

pute the ground state of a general system, known as imaginary time propa-

gation. This method is conceived for linear systems but, as we will see, it can

be directly applied to non-linear problems as well. We will then introduce

split-step methods for linear systems, giving a few caveats for their imple-

mentation. In particular, we will demonstrate that the standard approach

looses accuracy for the non-linear problem at hand as well as for the case

of propagation in imaginary time, but we will be able to restore the correct

order of accuracy through a simple adaptation of the method.

2.1 Imaginary Time propagation

The problem of finding the ground state can be quite hard and only a few

exactly-solvable cases exists. However, it is possible to approach such a prob-

lem by seeking a solution to the corresponding equation of motion in imag-

inary time τ = it, whose solutions are formally obtained through the prop-

agator exp(−τH). In general, any initial condition, under the action of the

operator exp(−τH), will in this way converge asymptotically to the ground

state for τ → ∞. This technique, usually employed for linear Schrödinger

systems, is known by the name of imaginary time propagation. As we shall

see, the extension to non-linear systems is not trivial, but can be done in

practice at no extra cost.

Let us consider for the moment the case of a system described by an

arbitrary linear Hamiltonian H; then, the equation of motion is

i~
dψ

dt
= Hψ. (2.1)
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An important property of H is its hermiticity, from which it follows that its

eigenvalues are real and non-negative. Moreover, the corresponding eigen-

functions φn form a complete orthonormal set, giving an orthonormal basis

of the underlying Hilbert space. Consequently, it is possible to expand the

wavefunction as

ψ =
∑
n

cnφn, (2.2)

where cn = 〈φn |ψ〉, and write its time evolution in terms of the eigenstates

and eigenvalues of H as

ψ(t) =
∑
n

cne
−iEnt/~φn, (2.3)

where φn is such that Hφn = Enφn. A Wick rotation of the time parameter

t = −iτ transforms (2.1) into a diffusion type equation, and its unitary time

evolution (2.3) into an exponential decay:

ψ(τ) =
∑
n

cne
−Enτ/~φn. (2.4)

As one can see, when propagating forward in the imaginary time τ , each

eigenfunction will decay exponentially to zero, with a rate of decay propor-

tional to its corresponding eigenvalue En. Therefore all the states will die off

exponentially faster than the ground state:

ψn(τ)

ψ0(τ)
∝ e−τ(En−E0)/~. (2.5)

As a consequence, the proportion of the ground state will increase with in-

creasing imaginary time: indeed we have the limit

lim
τ→∞

〈ψ(τ)|c0ψ0(τ)〉
〈ψ(τ)|ψ(τ)〉 = lim

τ→∞
c2

0e
−2τE0/~

c2
0e
−2τE0/~ +

∑
n cne

−2τEn/~
= 1, (2.6)
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which means that for large τ we obtain

ψ(τ) = c0e
−τH/~ψ0(0) +O(e−τ(E1−E0)/~). (2.7)

Notice that the ground state is found up to a constant factor. It is therefore

necessary to normalise after each imaginary time propagation. In conclusion,

the ground state can be written as

ψ0 = lim
τ→∞

ψ(τ)√
〈ψ(τ)|ψ(τ)〉

. (2.8)

Theoretically, this procedure works only by choosing an initial condition

which overlaps with the ground state, i.e. if c0 6= 0. However, in practictice

one finds that the ground state is achieved even if c0 = 0: this is due to the

small numerical errors which might artificially create such an overlap at any

point in the imaginary time propagation procedure. Of course, such initial

conditions require more time to achieve convergence, and an appropriate

choice of the initial state can significantly speed up the algorithm.

2.1.1 Imaginary time propagation for non-linear sys-

tems

The procedure we have just described is particularly suited to explain the idea

behind the imaginary time propagation procedure. This however, relies on

the assumption that a complete set of orthonormal eigenstates exist. This

might not be guaranteed in the nonlinear case. In order to see whether

the imaginary time propagation indeed drives a state to the lowest energy

eigenfunction of the Hamiltonian operator, we can proceed as it follows.

Consider the evolution ˙|ψ〉 = −H |ψ〉 where H now is nonlinear, obtained

by the Wick rotation τ = it of the Gross-Pitaevskii equation, under the
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constraint of constant normalisation∫
|ψ|2dr ≡ 〈ψ|ψ〉 = N . (2.9)

The dot denotes here a derivative with respect to τ multiplied by the reduced

Plank constant: ψ̇ ≡ ~dψ
dτ

. The process of normalisation (2.9) amounts to

multiplication of the wavefunction by a factor: ψ → e−λ(t)ψ. Because of this

reason, it is equivalent to solving the following:

~∂τψ = −Hψ − λ̇ψ. (2.10)

The equation of motion in imaginary time and its complex conjugate

˙|ψ〉 = −
(
H − λ̇

)
|ψ〉 ,

˙〈ψ| = −〈ψ|
(
H − λ̇

)
,

(2.11)

can be multiplied now by 〈ψ| and |ψ〉 respectively and then summed, to

obtain:

∂τ 〈ψ|ψ〉 = 2〈ψ
∣∣∣(H − λ̇)∣∣∣ψ〉 = 0. (2.12)

This allows us to obtain an expression for the time derivative of the parameter

λ:

λ̇ =
〈ψ |H|ψ〉
〈ψ|ψ〉 . (2.13)

Writing for the energy E = 〈ψ |H|ψ〉, it becomes apparent that (2.13) rep-

resents the energy per particle — a quantity, we recall, which is conserved

in real time but not in imaginary time. Considering now the specific case of

the Gross-Pitaevskii equation, we can write the Hamiltonian as a sum of its

linear and non-linear terms: H = H0 +gρ, where ρ = ψ2 denotes the density.
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Taking for simplicity N = 〈ψ|ψ〉 = 1, the imaginary-time variation of the

energy can then be found as it follows:

dE

dτ
= 〈ψ̇ |H0|ψ〉+ 〈ψ |H0| ψ̇〉+

g

2

(
〈ψ̇ |ρ|ψ〉+ 〈ψ |ρ̇|ψ〉+ 〈ψ |ρ| ψ̇〉

)
= −〈ψ

∣∣∣(H0 + gρ− λ̇
)
H0

∣∣∣ψ〉 − 〈ψ ∣∣∣H0

(
H0 + gρ− λ̇

)∣∣∣ψ〉+ g
(
〈ψ̇ |ρ|ψ〉+ 〈ψ |ρ| ψ̇〉

)
= −2〈H2

0 〉 − g〈ρH0 +H0ρ〉+ 2λ̇〈H0〉 − g
(
〈
(
H0 + gρ− λ̇

)
ρ〉+ 〈ρ

(
H0 + gρ− λ̇

)
〉
)

= −2〈H2
0 〉 − 2g〈ρH0 +H0ρ〉 − 2g2〈ρ2〉+ 2gλ̇〈ρ〉+ 2λ̇〈H0〉

= −2〈(H0 + gρ)2〉+ 2
(
〈H2

0 〉+ 2g〈H0〉〈ρ〉+ g2〈ρ〉2
)

= −2
[
〈(H0 + gρ)2〉 − 〈H0 + gρ〉2

]
= −2

(
〈H2〉 − 〈H〉2

)
= −2

〈(
H − 〈H〉

)2〉
≤ 0

(2.14)

This result shows that the energy is a monotonically decreasing function of

the imaginary time τ , which is reassuring. Therefore, in the long imaginary-

time limit the system is guaranteed to converge at least to a local minimum.

This in turns should lead the system to eventually converge to the ground

state (in most cases) even if there is no initial overlap with it, or if the system

is initialised in a local minimum: once a state φj satisfying the equality above

is achieved, any numerical error which drives the system into a higher energy

state will be smoothed out by the imaginary time propagation bringing the

state back to the state φj; on the other hand, any numerical error driving

the system to a lower energy state will necessarily make the imaginary time

propagation procedure drive the state to a lower energy state. An example

of such a process is presented in the following Fig. 2.1. Despite the system

being initialised in the local minimum B, numerical errors can build up a

non-zero density in the global minimum A, thus decreasing the overall energy.

The system will eventually evolve towards the true minimum. Notice that

this happens independently of the space separation between A and B, or
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A

B

Figure 2.1: An example of a pathological system in which imaginary time
propagation achieves nonetheless the true ground state. Despite the density
being initialised in the local minimum B (solid black line), the system will
eventually evolve towards the true minimum A when propagated in imaginary
time. The potential is shown in red. The dashed blue line refers to the
building up of a nonzero density in the true minimum A due to numerical
errors, as explained in the text.

the magnitude of the potential between the two minima. In fact, the same

would happen if considering a particle inside an infinite box potential, and an

adjacent box potential with lower energy. This is because the process does

not occur through tunnelling, but exclusively thanks to the accumulation

of numerical errors and can thus be sped up by employing a larger time

step. This heuristic argument does not clearly have universal validity, but

it probably fails only in presence of very pathological systems and initial

states; empirically, we do not find any initial condition which would not

eventually converge to the true ground state, even though we cannot rule

out the existence of one in which the imaginary time propagation would not

be able to drive the system out of a local minimum.

Although this argument guarantees the eventual convergence in most sce-

narios, still it does not guarantee an effective rate of convergence. As men-

tioned before, it is better, in terms of efficiency, to start the propagation in

imaginary time from a state overlapping with the ground state. In practice,

it is convenient to initialise the wavefunction with random complex values so

that it is statistically guaranteed the presence of any possible state.

Now that we have a method to achieve the ground state by propagating in
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imaginary time, we need an algorithm to actually compute the propagation.

The method we chose is a pseudo-spectral method, and we are now going to

explain in detail how it works.

2.2 Methods for propagation in time

The problem of solving the time dependent GPE can be tackled with sev-

eral methods, most notably with Crank-Nicolson or other finite difference

methods. This class of methods is very powerful as it ensures unitarity for

arbitrary time steps; furthermore the time step is limited only by the re-

quirements on the accuracy but not from stability considerations. On the

other hand, it is a fairly expensive computational method, of uneasy imple-

mentation and not preserving gauge invariance [107]. The alternatives to

Crank-Nicolson are various, but we will focus on split-step pseudo-spectral

methods. This choice is computationally cheaper and particularly suited for

our problem. Unfortunately it does not conserve the total energy but, as we

will see, it is possible to implement a workaround which restores unitarity.

From now on and for the rest of the Chapter, for the sake of brevity, we will

be using units in which ~ = m = 1.

2.2.1 Time propagation

Split-step methods were originally developed for the case of linear equations

such as the linear Schrödinger equation. Consider a system described by the

following initial value problem

∂tψ = (A+B)ψ,

ψ(0) = ψ0,
(2.15)

with formal solution ψ(t) = et(A+B)ψ0. Split-steps methods aim to approx-

imate the operator et(A+B) by an appropriate combination of the operators
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eAt and eBt, when [A,B] 6= 0. More specifically one can write

e(A+B)t =
m∏
i=1

eaiAtebiBt +O (tp) , (2.16)

where ai, bi are constants to be determined and where the order p is ob-

tained for some large enough m. The values of ai and bi can be determined

by matching the p-th order expansion of the left and right hand side of (2.16).

This procedure is particularly useful because we might know how the oper-

ators eAt and eBt operate individually but not how e(A+B)t operates. This is

exactly the case in our problem, as we will see later.

A first example, is what is known by the name of Lie splitting:

e(A+B)t = eAteBt +O
(
t2
)
, (2.17)

or equivalently

et(A+B) = eBteAt +O
(
t2
)
, (2.18)

which is known to be of order one. In order to verify this, we can look at

the error ε(t) = ψapprox(t)− ψ(t), where ψapprox is given by the propagation

through the approximate Lie splitting as ψapprox = eAteBtψ0. In details:

εL(t) =
[
eAteBt − e(A+B)t

]
ψ0

=
[(

1 + tA+
t2

2
A2 +O

(
t3
))(

1 + tB +
t2

2
B2 +O

(
t3
))

+

−
(

1 + t(A+B) +
t2

2
(A+B)2 +O

(
t3
)) ]

ψ0

=
[
1 + tB +

t2

2
B2 + tA+ t2AB +

t2

2
A2 − 1− t(A+B)− t2

2
(A+B)2 +O

(
t3
) ]
ψ0

=
t2

2
[A,B]ψ0 +O

(
t3
)
.

(2.19)
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As we can see this method is accurate to first order, exhibiting a local error of

the order of O (t2). A more accurate splitting is instead the following second

order method, known as Strang splitting [108, 109]:

et(A+B) = e
t
2
BetAe

t
2
B +O

(
t3
)
. (2.20)

The Strang splitting is also known as the symmetric split-step method since

the operator S = e
t
2
BetAe

t
2
B preserves time symmetry, i.e.

S(t)S(−t) = 1, (2.21)

while, as one can easily verify, it is not the case for the operator used in

(2.17). As mentioned, the Strang operator S is able to attain a higher order

of accuracy and, by using a bit more algebra, it is possible to show that the

associated error is

εS(t) =
t3

12
([B, [B,A]]− [A, [A,B]])ψ0 +O

(
t4
)
. (2.22)

The simplicity of the method allows for an easy implementation in any

algebra package such as Mathematica: in [71], Javanainen and Ruostekoski,

having employed Mathematica’s algebra package, report to have obtained

coefficients for an expansion up to order O (t5). The usage of symbolic cal-

culations in carrying out these expansions proves necessary as the expansion

becomes intractable with growing orders.

The convergence and stability of the methods can be demonstrated [110],

provided that (sufficient and necessary conditions)
∣∣∣∣etA∣∣∣∣ ≤ 1,

∣∣∣∣etB∣∣∣∣ ≤ 1

and
∣∣∣∣et(A+B)

∣∣∣∣ ≤ 1.
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2.2.2 Split-step methods for linear Schrödinger equa-

tion

The split-step procedure outlined above becomes particularly interesting

when applied in conjunction with Fourier diagonalisation. Let us see what

this means in particular for the linear Schrödinger equation:

i
∂

∂t
ψ (x, t) = H0ψ (x, t) , (2.23)

where the linear Hamiltonian is given by H0 = K+V , with the kinetic energy

and time-independent potential given by

K = −1

2
∇2,

V = V (x).
(2.24)

Let us consider the Strang splitting ψ(t) = e−iH0tψ0 = e−iKt/2e−iV te−iKt/2ψ0.

Recalling that the kinetic energy operator is diagonalised in momentum

space, the evaluation of the operator e−iKt/2 is better done in momentum

space leading

e−iKt/2ψ0 = F−1
[
e−itk

2/2F [ψ0]
]
, (2.25)

where F [·] denotes the Fourier transform. Therefore, the whole splitting pro-

cedure, combined with the Fourier diagonalisation, amounts to the following

operation, performed repeatedly for each time steps ∆t:

ψ(t+ ∆t) = F−1
[
e−i∆tk

2/2F
[
e−iV∆tF−1

[
e−i∆tk

2/2F [ψ(t)]
]]]

. (2.26)

Such steps can be carried out numerically by employing the readily available

FFT algorithms.
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2.2.3 Split-step methods for the non-linear Gross-Pitaevskii

equation in real time

The method outlined above can be generalised almost straightforwardly to

the non-linear case, even if caution must be taken in order to preserve the

order of accuracy. Let us then consider the particular case of the Gross-

Pitaevskii equation:

i
∂ψ

∂t
=
(
H0 + g |ψ|2

)
ψ. (2.27)

We could now be tempted to write an effective potential as

Veff = V (x) + g |ψ|2 . (2.28)

However, this proves inconvenient as the Strang splitting, in this non-linear

case, loses its second order accuracy and becomes first order accurate. Ja-

vanainen and Ruostekoski [71], suggest instead the following recursive method:

ψ0 = ψ(x, t),

ψ1 = exp

[−i∆tK
2

]
ψ0,

ψ2 = exp
[
−i∆t

(
V (x) + g |c0ψ0 + c1ψ1|2

)]
ψ1,

ψ(x, t+ ∆t) = exp

[−i∆tK
2

]
ψ2.

(2.29)

As we can see the method is analogous to the standard Strang splitting, but

the crucial difference is the step by step evaluation which allows to use a more

“up to date” version of the wavefunction when calculating ψ2; choosing an

appropriate linear combination it is in fact possible to regain the second order

accuracy. In order to do so, we consider the expansion of the wavefunction
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at the first step:

ψ(x, t+ ∆t) =

(
1 + ∆t∂t +

∆t2

2
∂2
t +O

(
∆t3
))

ψ(x, t), (2.30)

where

∂ψ

∂t
= −i

(
H0 + g |ψ|2

)
ψ,

∂2ψ

∂t2
= −i

(
H0 + g |ψ|2

) ∂ψ
∂t
− igψ

(
ψ∗
∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
,

...

(2.31)

et cetera. Expanding now the exponentials in (2.29) we can try to match the

terms in (2.29) with those in (2.30). Once again an algebra package suits this

task perfectly. The result one can find, is that the second order accuracy is

achieved if and only if c0 = 0 and c1 = ±1, which means one has to employ in

expansion (2.29) the most recent version of the wavefunction. The authors,

in [71], trying different cases, showed that this most recent version of the

wavefunction seems to be the best choice, giving the most accurate answer.

It is possible to find this same result following similar considerations:

consider the Hamiltonian H = K + V , where the potential incorporates now

the non-linear interaction term, V = V (x) + gρ. Denoting by ρ̃ the density

entering the Strang splitting, and consequently Ṽ = V (ρ̃), the real time

propagation achieved by the Strang splitting is given by

ψS(t+ ∆t) =
[
e−iK∆t/2e−iṼ∆te−iK∆t/2 +O(∆t3)

]
ψ(t)

=
[
e−iH̃∆t +O(∆t3)

]
ψ(t)

=

[
1− i∆tH̃ − ∆t2

2
H̃2 +O(∆t3)

]
ψ(t),

(2.32)

where clearly H̃ = K + Ṽ . At the same time, from the Gross-Pitaevskii
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equation ∂tψ = −iHψ one finds

ψGPE(t+ ∆t) =

[
1− i∆tH − ∆t2

2
H2 − i∆t

2

2
g∂tρ

]
ψ(t), (2.33)

where we have made use of the fact that ∂2
t ψ = (H2 − ig∂tρ)ψ. Subtracting

(2.33) and (2.32) and equating this to zero:

ψS(t+ ∆t)− ψGPE(t+ ∆t)

ψ(t)
= −i∆t(H̃ −H)− ∆t2

2
(H̃2 −H2) + i

∆t2

2
g∂tρ+O(∆t3)

= −i∆t(H̃ −H) + i
∆t2

2
g∂tρ+O(∆t3)

= ig∆t(ρ̃− ρ)− i∆t
2

2
g∂tρ+O(∆t3) = 0,

(2.34)

where H̃2 −H2 = 0 +O(∆t) .Thus, to second order in the time step ∆t, we

find

ρ̃(t) = ρ(t) +
∆t

2
∂tρ(t)

= ρ(t+
∆t

2
).

(2.35)

Therefore, the second order accuracy of the Strang splitting is restored in

the non-linear case of the Gross-Pitaevskii equation, as long as a more ‘up to

date’ wavefunction is used. Numerically such a wavefunction can be obtained

by a simpler first order Lie splitting as

ρ̃ =
∣∣∣e−i∆t

2
V (ρ)e−i

∆t
2
Kψ
∣∣∣2 . (2.36)
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As a consequence the correct splitting reads

e−iH∆t = e−i
∆t
2
K exp

[
−i∆tV

(∣∣∣e−i∆t
2
V (ρ)e−i

∆t
2
Kψ
∣∣∣2)] e−i∆t

2
K +O(∆t3).

(2.37)

However, it is possible to simplify this result further. Consider the first

order expansion of (2.36), disregarding for simplicity the trapping potential,

so that V = gρ:

∣∣∣e−i∆t
2
V (ρ)e−i

∆t
2
Kψ
∣∣∣2 =

∣∣∣∣(1− i∆t
2
gρ

)(
1− i∆t

2
K

)
ψ

∣∣∣∣2 +O(∆t2)

=

∣∣∣∣(1− i∆t
2
gρ− i∆t

2
K

)
ψ

∣∣∣∣2 +O(∆t2)

=

(
ψ∗ + i

∆t

2
Kψ∗ + i

∆t

2
gρψ∗

)(
ψ − i∆t

2
Kψ − i∆t

2
gρψ

)
+O(∆t2)

= ρ+ i
∆t

2
(ψKψ∗ − ψ∗Kψ) +O(∆t2).

(2.38)

Now, it is possible to observe that to first order, (2.36) is equivalent to

∣∣∣e−i∆t
2
Kψ
∣∣∣2 =

∣∣∣∣(1− i∆t
2
K

)
ψ

∣∣∣∣2 +O(∆t2)

=

(
1 + i

∆t

2
K

)
ψ∗
(

1− i∆t
2
K

)
ψ +O(∆t2).

= ρ+ i
∆t

2
(ψKψ∗ − ψ∗Kψ) +O(∆t2),

(2.39)

so that to second order we have

∆t
∣∣∣e−i∆t

2
V (ρ)e−i

∆t
2
Kψ
∣∣∣2 = ∆t

∣∣∣e−i∆t
2
Kψ
∣∣∣2 +O(∆t3). (2.40)
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Thanks to (2.40), it is then possible to simplify (2.37) into the splitting

e−iH∆t = e−i
∆t
2
K exp

[
−i∆tV

(∣∣∣e−i∆t
2
Kψ
∣∣∣2)] e−i∆t

2
K +O(∆t3), (2.41)

which corresponds exactly to the procedure (2.29) described in [71].

2.2.4 Split-step method for the non-linear Gross-Pitaevskii

equation in imaginary time

Unfortunately, the second order method proposed by [71] and discussed so

far, works exclusively for real time propagation. When we consider instead

propagation in imaginary time, this method loses its second order accuracy

although performing better than the standard Lie splitting. This result is

shown in Fig. 2.2. Luckily, we can still find a procedure which is second order

accurate in imaginary time. Proceeding as it was done before in real time,

recalling the Gross-Pitaevskii equation in imaginary time is ∂τψ = −Hψ, one

finds, as in (2.35), that

ρ̃(τ) = ρ(τ +
∆τ

2
), (2.42)

which can be achieved again numerically with a first order Lie splitting

ρ̃ =
∣∣∣e−∆τ

2
V (ρ)e−

∆τ
2
Kψ
∣∣∣2 . (2.43)

However, in imaginary time there is no equivalent for (2.40), i.e. in general

∆τ
∣∣∣e−∆τ

2
V (ρ)e−

∆τ
2
Kψ
∣∣∣2 6= ∆τ

∣∣∣e−∆τ
2
Kψ
∣∣∣2 +O(∆τ 3). (2.44)
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Figure 2.2: A plot of the error as a function of imaginary time step for differ-
ent methods (arbitrary units). The accuracy of the Javanainen-Ruostekoski
Strang splitting (2.29) described in [71] for real time propagation does not
carry over to imaginary time propagation. In imaginary time the method is
first order accurate. On the other hand, it is possible to see (right) that a
different procedure (2.45) can be used which attains second order accuracy.

Thus, in order to attain second order accuracy one must employ the full

splitting as

e−H∆τ = e−
∆τ
2
K exp

[
−∆τV

(∣∣∣e−∆τ
2
V (ρ)e−

∆τ
2
Kψ
∣∣∣2)] e−∆τ

2
K +O(∆τ 3).

(2.45)

Notice that this modification of the splitting procedure, while increasing

the accuracy of the method, it does not increase its complexity, introducing

only one additional Hadamard product (which has complexity O(n), to be

contrasted with the complexity O(n log n) of the fft algorithm). In particular,
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the whole procedure can be written as:

ψ0 = ψ(x, t),

ψ1 = exp

[−∆τK

2

]
ψ0,

ψ2 = exp
[
−∆τV (|e−∆τ

2
V (|ψ1|2)ψ1|2)

]
ψ1,

ψ(x, τ + ∆τ) = exp

[−∆τK

2

]
ψ2.

(2.46)

Equivalently we could have considered the splitting

e−H∆τ = e−
∆τ
2
V (ρb)e−∆τKe−

∆τ
2
V (ρa) +O(∆τ 3). (2.47)

In this case the requirement found is

1

2
(ρa(t) + ρb(t)) = ρ̃(t) = ρ(τ + ∆τ). (2.48)

Moreover, the splitting (2.47) can be written as(
e−

∆τ
2
V (ρb)e−

∆τ
2
K
)(

e−
∆τ
2
Ke−

∆τ
2
V (ρa)

)
ψ =

(
e−

∆τ
2
V (ρb)e−

∆τ
2
K
)
ψ(τ +

∆τ

2
) +O(∆τ 2),

(2.49)

which suggests that to first order in ∆τ we have

ρb = ρ̃+O(∆τ 2)

= ρ(τ +
∆τ

2
) +O(∆τ 2)

(2.50)
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Therefore, the splitting (2.47) achieves second order accuracy provided that

ρa = ρb = ρ(τ + ∆τ/2), or in full

e−H∆τ = exp

[
−∆τ

2
V

(∣∣∣e−∆τ
2
Ke−

∆τ
2
V (ρ)ψ

∣∣∣2)] e−∆τK ·

· exp

[
−∆τ

2
V

(∣∣∣e−∆τ
2
Ke−

∆τ
2
V (ρ)ψ

∣∣∣2)]+O(∆τ 3).

(2.51)

As for the other splitting (2.45), only one additional Hadamard is introduced

in order to restore the second order accuracy. In particular, no additional

Fourier transform is required, thus not affecting the complexity of the whole

method to leading order.

Finally let us make a short comment on the time step. Consider for sim-

plicity the error associated with the Lie splitting previously given in equation

(2.19). Writing now the Hamiltonian as a sum of its linear and nonlinear

parts as H = H0 + gρ, it is straightforward to see that the error, to a first

approximation, depends linearly on the interaction strength g: |ε| ∼ g|∆t2|.
It is therefore necessary, when comparing two solutions at two different in-

teracting regimes, that the two time steps are carefully chosen, one larger

than the other, so that the accuracy on both solutions is guaranteed to be

the same. This will be particularly important when considering transitions

between different states, as the boundaries of such transitions are determined

by the difference in the energy associated with each state.

2.3 Outlook

In conclusion we have described the imaginary time propagation method,

proved the energy is monotonically decreasing in imaginary time also for

the non-linear Gross-Pitaevskii problem, and found that the method can be

employed to seek ground states of the system. Further, we have discussed

various split-step methods to propagate in time, demonstrating that the stan-
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dard Strang splitting does not retain its second order accuracy when applied

to non-linear systems. More specifically, we have shown that the method

firstly put forward in [71], restores the second order accuracy in real time.

Lastly, we have shown that the latter drops again in accuracy if employed in

imaginary time; we have therefore described a method which achieves second

order accurate imaginary time propagation and, crucially, at no expense for

the algorithmic complexity.



Chapter 3
A Discrete Model for Infinite Vortex

Lattices

“When one has a particular problem to

work out in quantum mechanics, one

can minimise the labor by using a

representation in which the

representatives of the most important

abstract quantities occurring in the

problem are as simple as possible.”

P.A.M. Dirac, from The Principles of

Quantum Mechanics, 1958.

The most straightforward approach to study systems governed by mean-

field Gross-Pitaevskii theory, and the most employed in practice [101, 111,

112], is to directly discretise and solve the equation of motion (1.14) with

positive effective frequency ωeff > 0, using numerical techniques such as the

Crank-Nicholson method or the standard split-step Fourier method [107]. In

this way, the condensate has finite spatial extent being confined by the har-

monic trapping potential. For such calculations, one chooses computational

99
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grids sufficiently large, so that the wave function effectively vanishes at the

boundary. This makes the boundary conditions involving the phase of the

wave function irrelevant, thereby also allowing for the direct application of

standard Fourier methods.

However, this approach has substantial drawbacks. First of all, the un-

derlying trapping potential obscures and distorts the configuration of the

vortex lattice, as it was shown in [93]. In order to infer the ideal periodic

configuration of vortices, one must require the mean inter-vortex spacing `Ω,

to be much smaller than the size of the condensate. In practice, this means

one must numerically simulate systems with at least ∼ 100 vortices, which is

extremely inefficient given that the space of possible configuration becomes

considerably vast with growing number of vortices. Secondly, as we have just

mentioned, one needs to take a sufficiently large computational grid so as to

ensure the wave function vanishes at the boundaries. This means the com-

putation becomes remarkably inefficient, as many computational grid points

are devoted to points of little interest. The method we are going to describe,

aims at overcoming such complications. Specifically, we are going to focus on

the case where the effective frequency vanishes ωeff = 0, so that the conden-

sate is spatially extended and the ideal vortex lattice is expected to form. We

will seek solutions to the Gross-Pitaevskii equation (1.69) which are periodic

in ρ, by enforcing the required twisted boundary conditions (1.133) on the

wave function. As a result, unnecessarily large computational domains can

be avoided and systems sizes can be chosen on the order of the vortex lattice

spacing.

In particular, we start this Chapter by introducing a discrete lattice model

whose energy retains the same gauge symmetries as the continuous energy

functional and converges to the energy functional as the lattice spacing de-

creases. Then, motivated by the magnetic translation group, we introduce

the so-called magnetic Fourier transform and formulate the continuous Gross-

Pitaevskii problem that yields the wave function with the correct periodic
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structure. This correct problem arises since the magnetic Fourier transform

naturally incorporates twisted boundary conditions which must be satisfied

for rotating condensates. We then turn to showing how spatial discretisation

of the discrete model can be achieved through a discrete version of the mag-

netic Fourier transform and how to compute it rapidly using standard fast

Fourier transforms. Further, we implement it with the split-step time inte-

gration scheme described in the previous Chapter 2. We test the method by

showing that it reduces to known results obtained in the lowest-Landau-level

regime.

3.1 A non-linear Hofstadter model

When confronted with the problem of the energy functional (1.68), one can

opt for the direct discretisation of the operators entering (1.68). This pro-

cedure has the major drawback of not preserving the hermiticity and gauge

symmetry of the system. Instead, a more accurate route to take, consists in

choosing an appropriate lattice model which reduces to the energy functional

of interest (1.68) in the continuum limit. In doing so, we can require that

the discrete Hamiltonian is Hermitian, and that the resulting discrete model

inherits the exact gauge symmetry of the continuum model. With this in

mind, let us then consider a linear Hofstadter Hamiltonian [113], defined on

a square lattice of size Nx ×Ny which can be written compactly as

H = −w
∑
〈j,k〉

e
− i

~
∫ rk
rj
A·dr

ψ∗jψk, (3.1)

where the notation 〈i, j〉 denotes sums over closest neighbouring sites i and

j. The exponential phases factor exp(− i
~

∫ rk
rj
A · dr) arise from the so-called

Peierls substitution [113, 114], needed to correctly incorporate the gauge

fields into the lattice model. With an obvious change of notation such that

each site is labelled by its In the Landau gauge AL = 2mΩ(0, x), we can
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write for the Peierls factor

θx ≡
1

~

∫ rn+1,l

rn,l

A · dr,

θy ≡
1

~

∫ rn,l+1

rn,l

A · dr.

(3.2)

With an obvious change of notation, such that the positions on the lattice

are determined by the integer values n and l according to rn,l = (nax, lay),

with ax, ay the discretisation lattice constants, the previous Hofstadter model

(3.1) can be written more explicitly in the Landau gauge AL = 2mΩ(0, x) as

−
∑
n,l

[
wx(ψ

∗
n+1,lψn,l + ψ∗n,lψn+1,l) + wy(e

iθyψ∗n,l+1ψn,l + e−iθyψ∗n,lψn,l+1)
]
,

(3.3)

where θx = 0 and θy = 2mΩayx/~; because of the choice of the gauge,

particles tunnelling in the y-direction acquire a phase, while those tunnelling

along the x-direction are unaffected. This, as we will also see later, explains

the reason for choosing the Landau gauge, namely the simplification of the

problem. Here, we have also allowed for anisotropic tunnelling by introducing

the two tunnelling amplitudes wx and wy. We defer for the moment the

discussion on the need for anisotropic tunnelling (Sec. 3.4.2), but state here

that it will be of fundamental importance for what follows. The integers n

and l labelling respectively the x-direction and the y-direction on the lattice,

are clearly required to satisfy the constraints 1 ≤ n ≤ Nx and 1 ≤ l ≤
Nx. In the above (3.3), the first two terms account for nearest-neighbour

tunnelling along the x-direction, while the last two for nearest-neighbour

tunnelling along the y-direction. Now, through the identification ψn,l =
√
axayψ(axn, ayl), expanding to second order, we can indeed check that this

lattice Hamiltonian reduces, in the continuum limit, to the linear part of the
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Gross-Pitaevskii theory (1.105):

−
∫

dxdy
[
wxψ

∗(x+ ax, y)ψ(x, y) + wye
iθyψ∗(x, y + ay)ψ(x, y) + c.c.

]
≈− w

∫
dxdy

[
wx

(
ψ∗(x, y) + ax∂xψ(x, y)∗ +

a2
x

2
∂2
xψ
∗(x, y)

)
ψ(x, y)+

+ wye
iθy

(
ψ∗(x, y) + ax∂yψ(x, y)∗ +

a2
x

2
∂2
yψ(x, y)∗

)
ψ(x, y) + c.c.

]
=−

∫
dxdy

[
2(wx + wy cos(θy))|ψ|2 + 2wyi sin(θy)ayψ

∗∂yψ

− wxa2
x∂xψ

∗∂xψ − wya2
y cos(θy)∂yψ

∗∂yψ
]

≈−
∫

dxdy
[
2(wx + wy)|ψ|2 − wy

θ2
y

2
|ψ|2 + 2wyiθyayψ

∗∂yψ

− wxa2
x∂xψ

∗∂xψ − wya2
y∂yψ

∗∂yψ
]

=

∫
dxdy

[
~2

2m
|∇ψ|2 + 2mΩ2x2|ψ|2 − 2i~Ωxψ∗∂yψ

]
− 2(wx + wy)N ,

(3.4)

which, up to factors not contributing to the dynamics of the system, is equiv-

alent to ∫
dxdy

[
1

2m
|(−i~∇−AL)ψ|2

]
. (3.5)

In the last line of (3.4), we have made the following choice for the tunnelling

parameters:

wx =
~2

2ma2
x

,

wy =
~2

2ma2
y

.

(3.6)

Therefore one can write the following expression for the discrete energy which

accurately describes, to second order in spatial discretisation, the full Gross-
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Pitaevskii theory in the Landau gauge:

Ed =−
∑
n,l

[
wxψ

∗
n+1,lψn,l + wye

iθyψ∗n,l+1ψn,l + c.c.
]

+
∑
n,l

U
2
|ψn,l|4 + 2(wx + wy)N .

(3.7)

Here we have introduced the on-site interaction U = g/axay, for later con-

venience. Because in the limit U = 0 the above reduces to the well-known

Hofstadter model (3.1), we will refer to (3.7) as a generalised Hofstadter model

because of the anisotropic tunnelling and the nonlinearity distinguishing it

from (3.1).

We can now write the equations of motion for a system described by the

energy functional (3.7), from the variational principle

i~∂tψn,l =
∂Ed
∂ψ∗n,l

, (3.8)

which more explicitly, ignoring terms unimportant for the dynamics, reads

i~∂tψn,l =− wx (ψn+1,l + ψn−1,l)

− wy
(
e−iθyψn,l+1 + eiθyψn,l−1

)
+ U|ψn,l|2ψn,l.

(3.9)

One can realise here, that the above equation can be conveniently diago-

nalised by eigenfunctions of the form ψ̃n,l = e−i(kxaxn+kyayl):

(ψ̃n+1,l + ψ̃n−1,l) = 2 cos(kxax)ψ̃n,l,(
e−iθy ψ̃n,l+1 + eiθy ψ̃n,l−1

)
= 2 cos(kyay − θy)ψ̃n,l.

(3.10)

So that the equations of motion (3.9) are now concisely written as

i~∂tψ̃n,l = −
[
2wx cos(kxax) + 2wy cos(kyay − θy) + U|ψ̃n,l|2

]
ψ̃n,l. (3.11)
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As we have discussed in Sec. 1.5, the system must respect the twisted bound-

ary conditions (1.133). We will discuss in the next section how to implement

such boundary conditions.

3.2 Twisted Boundary Conditions on the lat-

tice

The only problem we are left with is that concerning the implementation of

the twisted boundary conditions (1.133). In particular we are after a term

which enforces such boundary conditions allowing us at the same time to

retain periodicity over the remaining terms of the Hamiltonian allowing us

to diagonalise them in momentum space. We will then start with a simplified

1D problem, which is instructive for the following.

3.2.1 1D lattice, Open Boundary Conditions

1 2 3 · · · N

Figure 3.1: 1D system with open boundary conditions.

Consider the system presented in Fig.3.1. Here there is no tunnelling be-

tween site n = N and site n = 1 and vice versa. The Hamiltonian describing

such a system is the following:

H = −w
N−1∑
n=1

(
ψ∗nψn+1 + ψ∗n+1ψn

)
. (3.12)

Adding and subtracting a term chosen ad hoc, one can find a term in the

Hamiltonian which describes a 1D system with periodic boundary conditions
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and diagonalise such a term in momentum space:

H = −w
N−1∑
n=1

(
ψ∗nψn+1 + ψ∗n+1ψn

)
− w (ψ∗Nψ1 + ψ∗1ψN) + w (ψ∗Nψ1 + ψ∗1ψN)

= −w
N∑
n=1

(
ψ∗nψn+1 + ψ∗n+1ψn

)
+ w (ψ∗Nψ1 + ψ∗1ψN) ,

(3.13)

where with
∑

we denote a sum with periodic boundary conditions, so that

ψN+1 ≡ ψ1.

· · · 1 2 3 · · · N · · ·

Figure 3.2: 1D system with periodic boundary conditions. Here site N + 1
corresponds to site 1.

The first term is promptly diagonalised in momentum space and the

Hamiltonian becomes

H = −2w
∑
k

cos(k)ψ∗kψk + w

(
ψ1

ψN

)†(
0 1

1 0

)(
ψ1

ψN

)
. (3.14)

Since the splitting of the Hamiltonian operator will allow us to consider the

time evolution of each term independently, we can focus our attention on the

evolution of the second term only: the operator splitting can be then done

as before. The evolution of the second term in (3.14) is then described by

the following equation

i∂t

(
ψ1

ψN

)
= w

(
0 1

1 0

)(
ψ1

ψN

)
, (3.15)
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which leads to the propagator

P(1;N) = e
−iw

(
0 1

1 0

)
∆t

= cos(w∆t)1− i sin(w∆t)

(
0 1

1 0

)
.

(3.16)

This expansion is important as it allows us to write{
ψ1(t+ ∆t) = cos(w∆t)ψ1(t)− i sin(w∆t)ψN(t)

ψN(t+ ∆t) = cos(w∆t)ψN(t)− i sin(w∆t)ψ1(t)
. (3.17)

This method enables us to efficiently diagonalise the relevant operators in

momentum space, while having open boundary conditions. As we will see

now, this method is easily generalised to the case of our interest.

3.2.2 2D lattice model with Twisted Boundary Condi-

tions

We consider now the lattice model introduced in (3.3): the underlying dy-

namics is schematically represented in Fig.3.3. As for the previous case, we

are facing the problem of implementing a condition at the boundary while

retaining some sort of periodicity to ensure we can diagonalise in momentum

space. As per what found in Sec. (1.5), one can promptly realise that in the

Landau gauge we have standard boundary conditions along the y-direction

and twisted boundary conditions along the x-direction. In particular the

twisting phases are

Θx =
2ΩmyLx

~
,

Θy = 0,
(3.18)
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and the boundary conditions read

ψ(x, y) = e−iΘxψ(x+ Lx, y),

ψ(x, y) = e−iΘyψ(x, y + Ly).
(3.19)

Similarly we can write the expression for the discrete twisted boundary con-

ditions as

ψn+Nx,l = eiΘxψn,l,

ψn,l+Ny = eiΘyψn,l.
(3.20)

This time we will take into consideration different hopping in the two different

directions from the start. Since the interaction term plays no role in the

current discussion it will be disregarded and reintroduced when needed. As

we will see the twisted boundary conditions can be applied by performing

a transformation on the appropriate set of terms. Let us continue for the

moment our considerations on the system with PBC.

Let us split the energy functional (3.7) as

Ed = Ex + Ey +
∑
n,l

U
2
|ψn,l|4, (3.21)

where

Ex = −wx
∑
n,l

[
ψ∗n+1,lψn,l + c.c.

]
+ 2wxN ,

Ey = −wy
∑
n,l

[
eiθyψ∗n,l+1ψn,l + c.c.

]
+ 2wyN .

(3.22)

Since in the Landau gauge the boundary condition along the y-direction

is a simple periodic boundary condition (Θy = 0), the terms in Ey can be

promptly diagonalised. Let us then consider the term Ex. This can be broken
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θy
θx Θx

Internal tunnelling External tunnelling

1 N N + 1

Figure 3.3: Schematic dynamics on the 2D system in the Landau gauge. A
particle tunnelling acquires the phases θx and θy given in (3.2). For a system
respecting periodic boundary conditions one has ψN+1 ≡ ψ1. On the other
hand, a system respecting twisted boundary conditions has ψN+1 ≡ eiΘxψ1,
where the twisting phase is as given in (3.18).

into two parts as it follows:

Ex = −wx
Ny∑
l=1

Nx−1∑
n=1

(
ψ∗n+1,lψn,l + c.c.

)︸ ︷︷ ︸
internal tunnelling

−
(
ψ∗Nx,lψNx+1,l + ψ∗Nx+1,lψNx,l

)︸ ︷︷ ︸
external tunnelling

 .
(3.23)

We can then proceed, as we have done in the preceding Sec. 3.2.1, by adding
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and subtracting the term wx(ψ
∗
Nx,l

ψ1,l + c.c.), and find

Ex = −wx
Ny∑
l=1

[
Nx∑
n=1

(
ψ∗n+1,lψn,l + c.c.

)
−
(
ψ∗Nx,lψNx+1,l − ψ∗Nx,lψ1,l + c.c.

)]
.

(3.24)

Once again, the first term in the above expression can now be straightfor-

wardly diagonalised. On the other hand, applying the twisted boundary

conditions (3.20) to the second boundary term we find

(
ψ∗Nx,lψNx+1,l − ψ∗Nx,lψ1,l + c.c.

)
=

(
ψ1,l

ψNx,l

)†(
0 e−iΘx − 1

eiΘx − 1 0

)(
ψ1,l

ψNx,l

)
.

(3.25)

Therefore, the second term in Ex leads to the following propagator:

P (1;Nx) = exp

[
−iwx

(
0 (e−iΘx − 1)

(eiΘx − 1) 0

)
t

]
. (3.26)

Notice that, upon the introduction of z = eiΘx − 1, the previous can be

written as

P(1;Nx) = exp

−iwx|z|
(

0 z∗/|z|
z/|z| 0

)
︸ ︷︷ ︸

M

t

 = exp [−iwx|z|Mt] . (3.27)

Now matrix M has the nice following properties

Tr(M) = 0, det(M) = −1 (3.28)

which allow us to infer that its eigenvalues are λ1,2 = ±1. Moreover, M is
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Hermitian (M† =M): the spectral theorem tells us then that M is diag-

onalised by a unitary operator U ; with this information we can proceed as

follows:

P(1;Nx) = U †U exp [−iwx|z|Mt]U †U

= U † exp

[
−iwx|z|

(
1 0

0 −1

)
t

]
U

= U †
[

cos(wx|z|t)1− i sin(wx|z|t)
(

1 0

0 −1

)]
U

= cos(wx|z|t)U †1U − i sin(wx|z|t)U †
(

1 0

0 −1

)
U

= cos(wx|z|t)1− i sin(wx|z|t)
(

0 z∗/|z|
z/|z| 0

)
.

(3.29)

This result allows us to find the following expression for the enforcing of the

twisted boundary conditions:
ψ1,l(t+ ∆t) = cos(wx∆t|z|)ψ1,l(t)− i sin(wx∆t|z|)

z∗

|z|ψNx,l(t)

ψNx,l(t+ ∆t) = cos(wx∆t|z|)ψNx,l(t)− i sin(wx∆t|z|)
z

|z|ψ1,l(t)
. (3.30)

3.3 The Magnetic Fourier Transform

The procedure (3.30) we have just described to enforce the twisted boundary

conditions, turns out not to be the most natural way to go, nor a particularly

efficient one. We will now show that a more natural approach exists and

a more efficient one as well. In order to do that, we will go back to the

continuum, and subsequently translate the results back onto the lattice.

The conventional Fourier transform allows us to expand the wave function

ψ in a basis of functions which are eigenstates of the canonical momentum

operators and which satisfy periodic boundary conditions. We would like
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then to generalise this approach to our system; here we will expand in terms

of eigenfunctions of the generators of magnetic translation and require the

twisted boundary conditions to be satisfied. Let us consider once again then,

the generators (1.117), in the continuum:

Πx = px − 2Ωmy − ∂xλ,
Πy = py − ∂yλ,

(3.31)

in a general gauge. It is straightforward to see that these operators have

eigenfunctions of the form eikxxei2Ωmxy/~eiλ/~f(y) and eikyy/~eiλ/~g(x) respec-

tively, with eigenvalues ~kj, for some arbitrary function f of the y-coordinate,

and g arbitrary function of the x-coordinate. Indeed, writing the eigenfunc-

tions as

Πx |kx〉 = ~kx |kx〉 ,
Πy |ky〉 = ~ky |ky〉 ,

(3.32)

we can proceed by looking at the transformation elements between the coor-

dinate and momentum representations:

〈x |Πx | kx〉 = ~kx 〈x | kx〉 ,
〈x |Πx | kx〉 = (−i~∂x − 2Ωmy − ∂xλ) 〈x | kx〉 ,

(3.33)

where we have acted with the operator Πx first on the right and then on the

left. Equating the last two equations we find the ODE

−i~∂x 〈x | kx〉 = (~kx + 2Ωmy + ∂xλ) 〈x | kx〉 , (3.34)
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with solution

〈x | kx〉 = f(y) exp

[∫ (
ikx +

i

~
2Ωmy +

i

~
∂xλ

)
dx

]
= exp

[
ikxx+

i

~
2Ωmxy +

i

~
λ

]
f(y),

(3.35)

leading to the eigenfunction given above. One can proceed similarly to find

the eigenfunction of Πy. Then, one can make use of the identity operators

1 =

∫ ∞
−∞
|kj〉 〈kj| dkj, (3.36)

(since the set |kj〉 is an orthonormal basis of the Hilbert space), to write an

expression in the position basis as

|x〉 =

∫ ∞
−∞
|kj〉 〈kj |x〉 dkj. (3.37)

This allows for the wavefunctions to be expanded as

ψ(x, y) =
1√
2π

∫ ∞
−∞

ei[kxx+ 1
~2Ωmxy+ 1

~λ]ψ̃(kx, y)dkx,

ψ(x, y) =
1√
2π

∫ ∞
−∞

ei[kyy+ 1
~λ]ψ̃(x, ky)dky,

(3.38)

and consequently, inverting these relations, we have then found a way to gen-

eralise the Fourier transform to what we call a Magnetic Fourier Transforms

(MFT):

ψ̃(kx, y) =
1√
2π

∫ ∞
−∞

e−i[kxx+ 1
~2Ωmxy+ 1

~λ]ψ(x, y)dx,

ψ̃(x, ky) =
1√
2π

∫ ∞
−∞

e−i[kyy+ 1
~λ]ψ(x, y)dy.

(3.39)

The MFT amounts to a standard Fourier transform plus an additional gauge
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dependent phase factor Q: this allows to easily implement the MFT by

means of standard fft packages. It is also straightforward to check that

the normalisation factors of the Fourier Transform and MFT are the same:

indeed

MFT [ψ(x, y)] = F
[
eiQψ(x, y)

]
,

e−iQF−1 [MFT [ψ(x, y)]] = ψ(x, y),

e−iQF−1
[
F
[
eiQψ(x, y)

]]
= ψ(x, y).

(3.40)

For the same reason it is also straightforward to see that Parseval’s theorem1

holds for the MFT.

If we now restrict our discussion, as done in the previous section, on

a finite square domain Lx × Ly, then the momenta become quantised in

multiples of 2π/Lj, the MFTs become

ψ̃(kx, y) =
1√
Lx

∫ Lx

0

dx e−i[kxx+ 2Ωm
~ xy+ 1

~λ(x,y)]ψ(x, y),

ψ̃(x, ky) =
1√
Ly

∫ Ly

0

dy e−i[kyy+ 1
~λ(x,y)]ψ(x, y),

(3.41)

and the corresponding inverses

ψ(x, y) =
1√
Lx

∑
kx

ei[kxx+ 2Ωm
~ xy+ 1

~λ(x,y)]ψ̃(kx, y),

ψ(x, y) =
1√
Ly

∑
ky

ei[kyy+ 1
~λ(x,y)]ψ̃(x, ky).

(3.42)

The MFT we have just described naturally incorporates the twisted boundary

conditions which must be satisfied by the system. We will now complete the

building up of our model, started in the preceding section, employing the

MFT and showing how it diagonalises the relevant terms in the Hamiltonian.

1
∫∞
−∞ f(x)g∗(x) dx =

∫∞
−∞ f̃(k)g̃∗(k) dk.



3.4. The Discrete Model 115

3.4 The Discrete Model

Let us now go back to the expression for the discrete energy (3.7), which

presented in a general gauge reads

Ed = Ex + Ey + Eint, (3.43)

with

Ex = −wx
∑
n,l

[
e−iθxψ∗n,lψn+1,l + c.c.

]
+ 2wxN ,

Ey = −wy
∑
n,l

[
e−iθyψ∗n,lψn,l+1 + c.c.

]
+ 2wyN ,

Eint =
∑
n,l

U
2
|ψn,l|4,

(3.44)

which is, as we mentioned, accurate to second order in the spatial discreti-

sation: E − Ed = O(a2
x) + O(a2

y). Introducing a discrete expression for the

pure gauge as λn,l = λ(axn, ayl)/~, and also, for simplicity, the dimensionless

quantity B = 2Ωmaxay/~, one finds from (3.2), that in a general gauge the

expression for the tunnelling phases are given by

θx = λn+1,l − λn,l,
θy = Bn+ λn,l+1 − λn,l.

(3.45)

We can write the discrete Magnetic Fourier Transform (dMFT) as

ψ̃kx,l =
1√
Nx

∑
n

e−i[kxn+Bnl+λn,l]ψn,l,

ψ̃n,ky =
1√
Ny

∑
l

e−i[kyl+λn,l]ψn,l,
(3.46)
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and the respective inverses as

ψn,l =
1√
Nx

∑
kx

ei[kxn+Bnl+λn,l]ψ̃kx,l,

ψn,l =
1√
Ny

∑
ky

ei[kyl+λn,l]ψ̃n,ky .
(3.47)

We are now ready to consider the action of the dMFT on the energy func-

tional (3.43). Consider the term entering Ex:(
e−iθxψ∗n,lψn+1,l + c.c.

)
=

=
e−iθx

Nx

[(∑
kx

e−i[kxn+Bnl+λn,l]ψ̃∗kx,l

)
·
(∑

kx

ei[kx(n+1)+B(n+1)l+λn+1,l]ψ̃kx,l

)]
+ c.c.

=
e−iθxei(Bl+λn+1,l−λn,l)

Nx

∑
kx

∑
k′x

e−ik
′
xnψ̃∗k′x,le

ikx(n+1)ψ̃kx,l

+ c.c.

=
eiBl

Nx

[∑
kx

e−ikx
∣∣∣ψ̃kx,l∣∣∣2

]
+ c.c.

=
1

Nx

∑
kx

(
ei(kx+Bl) + e−i(kx+Bl)) ∣∣∣ψ̃kx,l∣∣∣2

=
2

Nx

∑
kx

cos (kx + Bl)
∣∣∣ψ̃kx,l∣∣∣2 .

(3.48)
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Similarly, one can consider the term entering Ey, and find(
e−iθyψ∗n,lψn,l+1 + c.c.

)
=

=
e−iθy

Ny

∑
ky

e−i[kyl+λn,l]ψ̃∗n,ky

 ·
∑

ky

ei[ky(l+1)+λn,l+1]ψ̃n,ky

+ c.c.

=
e−iθyei(λn,l+1−λn,l)

Ny

∑
ky

∑
k′y

e−ik
′
ylψ̃∗n,k′ye

iky(l+1)ψ̃n,ky

+ c.c.

=
e−iBn

Ny

∑
ky

eiky
∣∣∣ψ̃n,ky ∣∣∣2

+ c.c.

=
1

Ny

∑
ky

(
ei(ky−Bn) + e−i(ky−Bn)

) ∣∣∣ψ̃n,ky ∣∣∣2
=

2

Ny

∑
ky

cos (ky − Bn)
∣∣∣ψ̃n,ky ∣∣∣2 .

(3.49)

We can therefore write for the energy components Ex and Ey:

Ex = −2wx
∑
l

∑
kx

cos (kx + Bl)
∣∣∣ψ̃kx,l∣∣∣2 + 2wxN ,

Ey = −2wy
∑
n

∑
ky

cos (ky − Bn)
∣∣∣ψ̃n,ky ∣∣∣2 + 2wyN .

(3.50)

Finally, recalling the trigonometric relation 2 sin2
(
x
2

)
= 1 − cos(x), we can

incorporate the constant terms in the above expression and obtain

Ex = 4wx
∑
kx,l

sin2

(
kx + Bl

2

) ∣∣∣ψ̃kx,l∣∣∣2 ,
Ey = 4wy

∑
n,ky

sin2

(
ky − Bn

2

) ∣∣∣ψ̃n,ky ∣∣∣2 . (3.51)
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Notice the gauge invariance of both expressions in (3.51). This form of

the energy functional, in which all the three terms are diagonal in their

respective spaces, allows for an easy and efficient implementation of the split-

step methods described in Chapter 2.

3.4.1 The Split-Step Magnetic Fourier Method

The system described by the energy functional Ed = Ex + Ey + Eint where

each term is diagonal, is particularly suited to be solved by split-step meth-

ods. Since we are interested in the ground states of such a system we will

make use of the generalised second order method (2.51), consisting in the

imaginary time evolution of the equations of motion associated with the

energy functional Ed, once again obtainable through the Wick-rotated varia-

tional principle (3.8) −~∂τψn,l = δEd/δψ
∗
n,l. The resulting wave function will

be the minimiser of the energy functional Ed. As discussed in Chapter 2,

the method of choice for simulations involving the real time dynamic of the

system is instead the method described in equation (2.29), as proposed in

[71].

Because the energy functional Ed is composed of three pieces, the splitting

method (2.51) needs to be applied twice. The split-step MFT procedure, to

advance the wave function ψ(τ) evolving through the imaginary-time Gross-

Pitaevskii equation by a single time step ∆τ , then proceeds with the following

computations:

1. ψ1 = e−Hint(ρa) ∆τ
2~ ψ(τ)

2. ψ2 =MFT −1
x

[
e−Hx

∆τ
2~MFT x [ψ1]

]
3. ψ3 =MFT −1

y

[
e−Hy

∆τ
~ MFT y [ψ2]

]
4. ψ4 =MFT −1

x

[
e−Hx

∆τ
2~MFT x [ψ3]

]
5. ψ(τ + ∆τ) = e−Hint(ρb)

∆τ
2~ ψ4

where MFT x and MFT y are the operations defined in (3.46). The quan-

tities in the exponents directly follow from (3.44) and (3.51). In particu-
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lar, Hx = 4wx sin2
(
kx+Bl

2

)
, Hy = 4wy sin2

(
ky−Bn

2

)
, and Hint(ρ) = Uρ. As

discussed in Chapter 2, for certain choices of the densities ρa and ρb (e.g.

putting ρa = ρb = |ψ(τ)|2 or even ρa = |ψ(τ)|2 and ρb = |ψ4|2), the method

will lose its second-order accuracy. Instead, one finds that with the choices

ρa = |e−Hint(|ψ(τ)|2) ∆τ
2~ ψ(τ)|2, ρb = |ψ4|2, (3.52)

the method will be second-order accurate. Additionally, as considered in

Chapter 2, at the end of each time-step propagation, the resulting wavefunc-

tion should be normalised.

Note that the extension of the split-step method from linear to non-linear

equations, as done above, is of small influence on the computational time.

For instance, if we put g = 0 making the Gross-Pitaevskii equation linear,

the computational cost of the split-step method at leading order will not be

affected. The MFT can be implemented in a straightforward way by using

existing fast Fourier transform packages as it can be written in terms of direct

multiplications and Fourier transforms as:

MFT x [ψ] =Fx
[
e−iBnle−iλn,lψ

]
(3.53)

MFT y [ψ] =Fy
[
e−iλn,lψ

]
(3.54)

where Fx and Fy denote the standard Fourier transforms. Thus the MFT

algorithm is as fast as the conventional fast Fourier transform to leading

order. More specifically, for N discretisation points, the method has N logN

computational cost.

3.4.2 Dynamical variation of the aspect ratio

Thusfar we have neglected the discussion on the anisotropic tunnelling ampli-

tudes wx and wy introduced in (3.3). As discussed in Chapter 1, the ground

state solution of a homogeneous rotating superfluid consists of a triangular
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lattice of vortices carrying quantised circulation. The unit cell describing a

triangular lattice necessarily has an irrational aspect ratio. Hence, the in-

troduction of the anisotropic tunnelling amplitudes was foresightedly made

necessary by the need to account for irrational aspect ratios. In fact, we can

relate the anisotropic tunnelling amplitudes to the aspect ratio of the com-

putational unit cell as R = Ly
Lx

= Ny
Nx

√
wx
wy
. In order for the discrete theory to

accurately describe the continuum theory, the discretisation lattice constants,

ax and ay, must be the smallest length scales in the problem. Specifically, we

require ax, ay � ξ, `Ω. On the other hand, we note that the discrete theory

remains well-defined and physically relevant away from this limit.

With this in mind, assuming Nx = Ny, we can once again re-formulate

the energy functional as

Ed[ψn,l,R] = 4
√
wxwy

(
R
∑
kx,l

sin2

(
kx + Bl

2

) ∣∣∣ψ̃kx,l∣∣∣2
+

1

R
∑
n,ky

sin2

(
ky − Bn

2

) ∣∣∣ψ̃n,ky ∣∣∣2
)

+
∑
n,l

U
2
|ψn,l|4.

(3.55)

The energy functional Ed can be directly minimised with respect to R as

dR
dτ

=
dEd
dR = 0, (3.56)

and the minimiser found is

R =

√√√√√√√
∑
n,ky

sin2
(
ky−Bn

2

) ∣∣∣ψ̃n,ky ∣∣∣2∑
kx,l

sin2
(
kx+Bl

2

) ∣∣∣ψ̃kx,l∣∣∣2 . (3.57)

Notice this implies that the total energy is minimised when Ex = Ey. Then,

at the end of each time-step advancement in the split-step procedure, we
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can vary dynamically the aspect ratio of the computational unit cell by en-

forcing (3.57). In the long imaginary time limit, the wave function and the

aspect ratio will both converge to the true minimisers of the energy functional

Ed[ψn,l,R].

20 40 60 80

√
3

2

2.5

3

N

R

Figure 3.4: Convergence of the lattice model aspect ratio to the continuum
value R =

√
3 for increasing number of computational points N = NxNy.

The simulation considers a periodic unit cell containing two vortices.

The minimiser R of the lattice energy functional, is therefore going to

be exact for the given wave function. However, this is going to be just

an approximation to the true continuum minimiser. More specifically, the

accuracy is going to be a function of the number of computational points (or

equivalently the size of the lattice discretisation constant). In Fig. 3.4 we

considered an infinite triangular lattice with two vortices per unit cell. The

true minimiser in the continuum limit is R =
√

3: Fig. 3.4 shows the lattice

minimiser quickly converges to this value.
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3.5 Numerical Tests

In this Section, we will provide some preliminary applications of the split-

step magnetic Fourier method, showing how it can reproduce known results in

appropriate regimes and also how these results can be extended. We start by

considering the lowest lowest-Landau-level regime, since this case has several

known results with which we can compare.

To characterise vortex lattices, following [72], it is helpful to introduce

the dimensionless inhomogeneity parameter

β = A

∫
|ψ|4dxdy(∫
|ψ|2dxdy

)2 , (3.58)

where A = LxLy is the area of the computational unit cell. This dimen-

sionless parameter depends only on the geometry of the system, i.e. on the

geometry of the vortex lattice. Moreover, it is of particular interest because it

can be directly related to the interaction energy of the system as g
2
βN

2

A
, with

N =
∫
|ψ|2dxdy. In the LLL regime the remaining terms in the energy are

quenched, thus minimising the energy is equivalent to minimising β. When

the number of vortices is restricted to two per computational unit cell, one

can compute β analytically as a function of the aspect ratio R [36]

βA(R) =

√
R
2

(
f 2

0 + 2f0f1 − f 2
1

)
, (3.59)

with

fn =
∞∑

m=−∞
e−πR(2m+n)2/2, (3.60)

where the vortices are placed within the unit cell so as to maximise the

separation between neighbouring vortices. A depiction of equation (3.59)

can be found in Fig. 3.5. The minima correspond to the aspect ratios
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Figure 3.5: Plot of the inhomogeneity parameter defined in equation (3.59).
The stationary points corresponding to triangular and square lattices are
labelled.

R4 = {3 1
2 , 3−

1
2}, where one finds triangular lattices, while the local maxi-

mum has aspect ratio R2 = 1 corresponding to a square lattice. The corre-

sponding values of βA are reported in the following Table 3.1.

βA4 = 1.159595

βA2 = 1.180341

Table 3.1: Minimum and local maximum of the inhomogeneity parameter βA

corresponding to triangular and square lattices respectively.

Recall that a unit cell commensurate with that of the ground state vortex

lattice of infinite spatial extent must be chosen to obtain the ground state

energy. Unit cell sizes differing from this will introduce frustration. Therefore

β should be minimised with respect to R. One expects minima to occur at

aspect ratios which are commensurate with a triangular vortex lattice [36,

115]. Since β(R) = β(R−1)2, in the following we will restrict our attention

2This can be proved by realising that f0(R) + f1(R) = f0(R/4) and that
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Figure 3.6: Numerical solutions for Nv = 4 and Nv = 1 leading to triangular
and square lattices. The aspect ratios are R = 2/

√
3 and R = 1 respectively.

to R ≥ 1.

We now turn to numerically computing β using the split-step magnetic

Fourier method. For fixed values of R and `Ω/ξ, starting with an initial

randomised state, the imaginary-time GPE is evolved on a 256 × 256 grid

until a time-independent state is obtained. Convergence as a function of the

time step ∆τ is also checked. In Fig. 3.7, several curves of β versus the

aspect ratio R are shown for different values of `Ω/ξ for systems containing

two vortices per computational unit cell. In the limit `Ω � ξ one finds

excellent agreement with the LLL analytical expression βA as expected. The

scheme naturally allows one to extend beyond the LLL regime for which

simple analytical expressions for β are not available. As `Ω/ξ is increased,

one finds that β decreases, reflecting the system’s tendency towards a nearly

uniform density (apart from the vortex cores) in the large interaction limit.

Also, as expected, the minimum for all curves occurs at R =
√

3, which is

commensurate with the triangular vortex lattice. A local maximum occurs

f0(R) =
√

1
2Rf0

(
1
4R
)
. The first expression can be shown by expanding the series telescop-

ically, while the second follows directly from the Poisson summation formula. Plugging
these two into (3.59) one obtains that β(R) = β(R−1).
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Figure 3.7: Numerical results of the dimensionless inhomogeneity parameter
β (3.58) characterising the interaction energy of the system as a function of
the aspect ratio of the computational unit cell. Excellent agreement is found
between the numerical results and the analytical expression βA in the lowest
Landau level regime.

at R = 1 which corresponds to the square vortex lattice.

Because the energy of the system is an extensive quantity, one might

expect the energy per particle, Ẽ ≡ E
N , to be unchanged when the size

of the computational cell is increased ceteris paribus. This is only true,

however, for computational unit cells commensurate with the ground state

vortex configuration as increasing the size of the cell while keeping the vortex

density fixed allows the system to have more degrees of freedom. In the

following, we consider doubling the spatial dimensions of the computational

unit cell from one containing two vortices to one containing eight vortices.

From general principles one will have Ẽ8 ≤ Ẽ2 where Ẽ8 and Ẽ2 are the
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Figure 3.8: The energy per particle of systems with two and eight vortices
in the computational unit cell, Ẽ2 and Ẽ8, as a function of the ratio R.
The former provides an upper bound for the latter. The triangular lattices
corresponding to the ground states are degenerate and the arrangements of
the vortices in each of the ground states of the eight-vortex system are shown.

energies per particle of the systems with smaller and larger computational

unit cells respectively.

In Fig. 3.8 the energy per particle obtained using the split-step magnetic

Fourier method is shown for systems having two and eight vortices per com-

putational unit cell. As expected, we have Ẽ8 ≤ Ẽ2 for all curves. The

curves coincide near R =
√

3 which is commensurate with the triangular

vortex lattice in both cases. The system with eight vortices can also achieve

a triangular vortex lattice at aspect ratios R = 4/
√

3, 4
√

3 and we note that

degenerate minima of Ẽ8 occur at these values. The computation has been
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carried out for `Ω/ξ = 1 but the same results–namely Ẽ2 being an upper

bound for Ẽ8, their equivalence close to R =
√

3 and the existence of the

three degenerate minima for Ẽ8–hold for any ratio `Ω/ξ.

3.6 Outlook

In conclusion, we have described a computational method which can effi-

ciently find the minimum energy of an infinite vortex lattice within Gross-

Pitaevskii mean field theory. We have shown how to extend the conventional

split-step Fourier method to include twisted boundary conditions through use

of the magnetic translation group. We have tested the method for particular

cases, and showed that it reproduces known results in the lowest Landau

level regime.

In the subsequent chapters we will consider multicomponent systems. It

turns out the method we have just described requires one additional essen-

tial ingredient if one wants to use it to investigate such multicomponent

systems. This is however true only in the case of repulsive inter-species

interactions. Therefore a natura extension of the method can be used to in-

vestigate systems in which the inter-species interaction is attractive. Thus, in

the following chapter, we will briefly study a scalar two-component system

with attractive inter-species interactions, before discussing how to extend

the model and investigate more complicated repulsively interacting systems

in the subsequent chapters.
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Chapter 4
Mixtures of Attractive Superfluids

In this brief Chapter, we are going to briefly consider the case of attractive

interspecies interactions g12 < 0 in a mixture of two rotating superfluids.

The response of the system under rotation in this attractive regime, is

arguably more intuitive, even more so for homogeneous systems. This is pos-

sibly the reason why the problem did not receive much attention in the past

years. The attractive interaction between the two species translates onto the

interaction between vortices of different species, which turns out to be at-

tractive as well. As a consequence, it is for instance simple to conclude that

the ground state of such a system when the masses of the constituents of the

two components are equal is going to consist of two perfectly overlapping tri-

angular vortex lattices. However, when investigated more thoroughly, these

systems can exhibit interesting and unexpected characteristics.

The method used to simulate attractive multicomponent systems is akin

to the method presented in the preceding Chapter 3: one can just evolve a

set of coupled equations of motions, one for each of the order parameter of

each component.

129
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4.1 Locking of vortices

In the early works [116, 92], the case of two condensates under rotation and

within an harmonic confining potential was considered for small deviation

from unity of the constituents’ masses ratio m2/m1. Under such conditions,

one would expect, from Feynman relation (1.78), to find the two components

rotating at the same driving frequency Ωd, and therefore with unequal vortex

densities. However, this turns out to be true only on average. One finds

Figure 4.1: Depiction of bound vortex pairs for species with masses m1 > m2

[116]. Within a certain locking radius rc the vortices of the two species form
bound pairs which rotate together at the driving frequency, while the two
superfluids adapt their rotational rate so as to allow for equal vortex densities.
Outside the disk defined by rc, the pairs become unbound, both vortices and
the superfluids rotate at the driving frequency and the two vortex densities
become unequal.

instead, for large enough attractive interaction, that there exist a locking

radius rc within which the two components do not rotate at the driving

frequency, but at angular velocities inversely proportional to their masses, so
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that m1Ω1 = m2Ω2. The vortex densities in turn, are forced to be the same

in this region. This implies that within the locking radius, the vortex lattices

of the two condensates are perfectly overlapping, locked together, rotating

at the driving frequency Ωd lying between Ω1 and Ω2. Outside the disk

defined by the locking radius, one finds a short healing region where pairs

of vortices of the two species are paired, and eventually the two condensates

will be found rotating at the same frequency and vortices of different species

unbound. In particular, in this outer region, the vortex densities will be

found to respect ρ
(1)
v m2 = ρ

(2)
v m1, as expected on average from Feynman

relation (1.78). This counterintuitive result, derives from a purely quantum

effect, with no analogue in classical physics.

An explanation to this phenomenon can be found in the competition

between the vortices attractive force and the Magnus force1. Indeed, equating

estimates obtained from gaussian ansatzs for the wave functions, it is possible

to find an expression for the locking radius as

rc = |g12|
ρ̄

4~Ωd

√
e

m1 +m2

m1 −m2

ξ, (4.1)

where equal average densities ρ̄1 = ρ̄2 = ρ̄ and equal healing lengths ξ1 = ξ2 = ξ

(and consequently equal interaction strengths g1 = g2 = g) were assumed.

The expression for the locking radius, interestingly reveals that very

quickly, for large mass ratios, this effect vanishes, exception made for the

two vortices sitting at the centre of the trapping paraboloid. The effect is

therefore expected to be observable especially in the range 1 < m1/m2 < 2.

This is indeed the case considered in [116] where, motivated by the experi-

mentally relevant case of a mixture composed of the isotopes 133Cs-87Rb, it

was taken the mass ratio m1/m2 = 1.5 [117]. Lastly, it is important to notice

that also for large rotational frequency Ωd the radius is quenched, and no

such effect should be expected in the limit of vortices.

1Lorentz force in the charged particle in a magnetic field analogy.
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4.2 Vortex lattice configurations

The case of two-species condensates for large rotation rates under attrac-

tive interactions was investigated in [118] for components with different con-

stituents masses. In particular, only integer mass ratios were considered.

Recalling the Feynman relation (1.78), it is clear that to different masses are

going to be associated different vortex densities, if equal rotation is assumed

for each components. This is certainly the case for mass ratio much larger

than unity, even more so in the limit of large number of vortices and low

inter-species interaction, as we have argued in the previous section.

Similarly to the case of unitary mass ratio, one finds that in general the

two vortex lattices tend to arrange in a triangular configuration. As we will

discuss in further detail in the last Chapter 6, such states can be achieved

without frustration only for certain mass ratios: only in these cases are in fact

the two lattices commensurate. Deferring the proof to Chapter 6, we now

simply state that two triangular lattices with a mass ratio m1/m2 = 2 are not

commensurate. On the other hand, the mass ratios m1/m2 = 3 and m1/m2 =

4 do allow the corresponding triangular vortex lattices to be commensurate

(deferring again the proof to the last chapter). In Fig. 4.3, a summary of

some of the ground state configurations for different integer mass ratios is

given. Notice in particular the configuration corresponding to the mass ratio

m1/m2 = 2. Because two triangular lattices would not be commensurate, the

system can choose in this case, the second best configuration which minimises

the total energy, namely the square lattice configuration.
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Figure 4.2: Schematic depiction of the regular vortex lattice ground state
configurations attainable for a binary system of rotating condensates [118].
When the triangular vortex lattices associated with each mass ratio (and
hence vortex density ratios) are commensurate, then the overlapping of these
such triangular lattices provides the ground state configuration of the system.
The triangular lattices associated with the mass ratio m1/m2 are not com-
mensurate. For this reason the configuration minimising the total energy is
not a combination of two triangular lattices but a combination of two square
lattices instead.

4.3 Multiply quantised vortices

For large enough inter-species interaction strength g12, vortices in the heav-

ier species will start forming bounded n-tuples, where n is the integer mass

ratio. At the same time the vortices in the lighter species will arrange into a

triangular configuration and each n-tuple will be centred on one of the lighter

species vortices. The distance of the n vortices composing each n-tuple is con-

trolled by the strength of the inter-species interaction. When g12 approaches
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Figure 4.3: Schematic depiction of bounded pairs of vortices (a) and multi-
ply quantised vortices (b), in the heavier species. The configuration of the
vortices in the lighter species as well as that of the bounded pairs and of the
multiply quantised vortices is triangular.

the miscibility/immiscibility boundary, the numerical calculations [112] seem

to suggest that the n-tuples collapse into a single multiply quantised vortex

with n quanta of circulation. Clearly, for large n (i.e. for large mass ratios),

the existence of such multiply quantised lattices will also depend on the rel-

ative intra-species interaction strengths. In fact, for sufficiently large n, one

can expect not to find such states when g1 = g2.



Chapter 5
Mixtures of Repulsive Superfluids:

Equal Masses

“See how Mathematick rideth as a queen

cheer’d on her royal progress thru’out nature’s realm;

see how physical Science, which is Reason’s trade

and high profession, booketh ever and docketeth

all things in order and pattern.”

Robert Bridges, Testament of Beauty, 1929.

In this chapter we will build on the previously introduced non-linear Hof-

stadter model in order to incorporate more than one component into the

system. Although one might näively think that the generalisation to two

components is as trivial as writing two coupled equations of motion, it turns

out that the model developed in Chapter 3 requires two extra degrees of

freedom for each extra component added to the system.

We will begin this chapter discussing on the extension of the method pre-

sented in the previous Chapter 3 and then proceed to apply the full method

to the study of a system composed of two interacting superfluids.
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5.1 Reconsidering boundary conditions for mul-

ticomponent systems

To begin, for simplicity, let us consider again in more detail the case of a

single-component Bose-Einstein condensate under uniform rotation in the

continuum. The physical quantities describing such a system are the gauge

invariant velocity v = ~
m
∇θ − 1

m
A and the superfluid density ρ. Both of

these quantities follow from the condensate order parameter ψ =
√
ρeiθ and

the vector potential corresponding to uniform rotation for which we choose

the Landau gauge: A = 2mΩ(0, x).

Now let us consider an infinite periodic vortex lattice. Without loss of

generality, we may choose an Lx × Ly rectangular unit cell that tiles the

system. The superfluid velocity and density must have the periodicity of this

unit cell, namely

v(x+ Lx, y) = v(x, y + Ly) = v(x, y),

ρ(x+ Lx, y) = ρ(x, y + Ly) = ρ(x, y).
(5.1)

From the first equality, the x-periodicity requirement reads

∂xθ(x+ Lx, y) = ∂xθ(x, y),

∂yθ(x+ Lx, y)− 2mΩLx = ∂yθ(x, y),
(5.2)

so that upon integration one gets

θ(x+ Lx, y) = θ(x, y) + f(y),

θ(x+ Lx, y)− 2mΩLxy = θ(x, y) + g(x),
(5.3)

with f(y) and g(x) general functions of the y and x coordinates only, which

clearly have to satisfy f(y) = 2mΩLxy + g(x). Thus we find that g(x) = κx

is a constant, and f(y) = 2mΩLxy+κx. Thus one finds that the phase must
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satisfy

θ(x+ Lx, y) = θ(x, y) +
2Ωm

~
Lxy + κx

θ(x, y + Ly) = θ(x, y) + κy

(5.4)

where the constant κy is obtained from the integration of the y-periodicity

condition. For the sake of convenience and clarity, let us introduce a rescaled

version of these constants, namely the phases τj = κj/Lj appearing above

in (5.18) and (5.19). Next we introduce the magnetic translation operator

defined in Chapter 1, T (r) = e
i
~Π·r, where Πx = px − 2mΩy and Πy = py

are the generators of magnetic translation in the Landau gauge (1.117) [1].

Then one can verify that the periodicity condition for the superfluid density,

ρ(x, y) = ρ(x + Lx, y) = ρ(x, y + Ly) and velocity, Eq. (5.4), can be written

succinctly as

e
i
~ΠxLxψ(x, y) = eiκxψ(x, y) = eiτxLxψ(x, y),

e
i
~ΠyLyψ(x, y) = eiκyψ(x, y) = eiτyLyψ(x, y).

(5.5)

Now let us consider magnetically translating this wave function by −r =

−(rx, ry): ψ̃(x, y) ≡ T (−r)ψ(x, y). Due to the symmetries of the problem

(namely that the generators of magnetic translation commute with the kinetic

momenta), the energy per unit area corresponding to ψ(x, y) is the same

as that of ψ̃(x, y). Moreover the densities of these two wave functions are

identical apart from translation: ρ̃(x, y) ≡ |ψ̃(x, y)|2 = ρ(x − rx, y − ry).

Therefore the vortex lattice given by ψ is related to that given by ψ̃ by a

simple translation. By choosing r to satisfy

2mΩry = −~τx,
2mΩrx = ~τy

(5.6)
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we have the simplified boundary condition

e
i
~ΠxLxψ̃(x, y) = ψ̃(x, y) (5.7)

e
i
~ΠyLy ψ̃(x, y) = ψ̃(x, y) (5.8)

which was the condition taken by us previously in [1] (see Appendix A). A

closer look at (5.5) reveals that one can alternatively consider the following

transformation of the operators of the magnetic translation group

Πj → Πj − ~τj. (5.9)

This corresponds to a gauge transformation ψ → eiλψ with λ = τxx+τyy. As

can be readily verified from (5.5), the transformed wave function is invariant

under magnetic translation across a unit cell.

Through the above considerations, one sees that by specifying τx and τy,

a particular unit cell of the vortex lattice is specified. Changing τx and τy

will translate this unit cell, but will not affect the energy per unit cell or the

vortex geometry of the periodic system. Thus, without loss of generality, we

can set τx = τy = 0 for the single component system. However, for the two-

component system, such a freedom does not exist. In the method described

in Chapter 3, we have set the τ -parameters for the first component to zero,

while keeping those of the second component as degrees of freedom to be

minimised over.

5.1.0.1 An example

Consider for example the case of two overlapping triangular lattices. In order

to obtain two interlaced triangular lattices, as those depicted in Fig. 5.1(a),

one of the two lattices needs to be shifted with respect to the other by a

vector r = (0,±Ly
3

) = ( ~κy
2mΩLy

,− ~κx
2mΩLx

). Recalling the Feynman relation

(1.78), and realising that in Fig. 5.1 ρv = 2
LxLy

for each component, it is
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straightforward to see that

κx =∓ 2mΩLx
Ly
3~

= ∓2πρv
LxLy

3
= ∓4π

3
,

κy =0.
(5.10)

(a) (b)

Figure 5.1: Two possible ways of overlapping two triangular lattices with
equal lattice constant. The square and circle marks refer to points (vortices)
corresponding to different lattices. In (a) is what we refer to as interlaced
triangular lattices, while in (b) are shown two interlaced oblique lattices.

On the other hand in order to obtain two interlaced oblique lattices with

aspect ratio R =
√

3, as in Fig. 5.1(b), the shift required is given by the

vector r = (±Lx
2
, 0), which gives the following phase factors:

κx = 0,

κy = ±2mΩLy
Lx
2~

= ±2πρv
LxLy

2
= ±2π.

(5.11)

Thus, it is clear that in this case the same geometrical arrangement can be

equivalently achieved with κx = κy = 0. Moreover, a similar result can be

found for the case of two interlaced triangular lattices in Fig. 5.1(a): all that

is necessary is to take a number of vortices Nv = 6 per unit cell. Then, in
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this case, we can also take κx = κy = 0.

This example shows that the extra phases κjs, are not needed provided

one takes the right unit cell. However, there is a catch. First of all, larger

unit cells are both less accurate (because the density of computational points

is lower) and take longer to converge (because the space of possible config-

urations is larger). Moreover, the κj parameters provide a simple mean to

probe the state of the system and its phase transitions. To be more specific,

it allows for instance to distinguish between configurations (a) and (b) in

Fig. 5.1, while there is no parameter allowing to directly distinguish such

configurations in a unit cell with Nv = 6. Thus, although not strictly neces-

sary, it is more efficient to take the τj parameters into consideration.

5.2 Computational framework for multicom-

ponent systems

The computational framework introduced in Chapter. 3 can now be gener-

alised to multicomponent systems, provided we bear in mind the arguments

given at the beginning of this chapter.

The two-dimensional energy functional associated with a system of Ns

coupled species in a rotating frame of reference is given, within Gross-Pitaevskii

mean field theory, by

E =

∫
E [ψ1, ..., ψNs ]dxdy, (5.12)

where the energy density is

E [ψ1, ..., ψNs ] =
Ns∑
j=1

[ ~
2mj

|∇ψj|2 +
1

2
mjω

2
j r

2|ψj|2

− ψ†jΩLzψj − µj|ψj|2
]

+
1

2
ρTGρ.

(5.13)
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Here, Lz = −i~(x∂y − y∂x) is the angular momentum operator along the z-

axes, Ω is the rotational frequency, and mj, µj, ωj are respectively the mass,

the chemical potential, and the trapping frequency of the jth species. The

matrix

G =


g1 . . . g1Ns
...

. . .
...

g1Ns . . . gNs

 (5.14)

accounts for intra and inter-species interactions which are related to the s-

wave scattering lengths ajk: gj = 4π~2ajj/mj, gjk = 2π~2ajk(mj+mk)/mjmk.

Finally ρT = (|ψ1|2, . . . , |ψNs|2). The miscibility condition which ensures the

two species do not phase separate is for G to be positive semi-definite; this can

be analogously expressed in terms of the dimensionless parameter previously

introduced as α ≤ 1.

The energy density functional (5.12) can be rearranged in a convenient

way: introducing the symmetric gauges Aj = Ωmj(−y, x) and setting the

effective frequencies ωeff
j =

√
ω2
j − Ω2 = 0, we can write (5.12) as

E [ψ1, . . . , ψNs ] =
Ns∑
j=1

[
1

2mj

|(−i~∇−Aj)ψj|2 − µj|ψj|2
]

+
1

2
ρTGρ,

(5.15)

where we have retained the chemical potentials µj for later convenience. No-

tice that this term can be removed at any time, as it does not contribute

to the dynamics of the system, and because the total energy can be con-

sistently obtained by the appropriate normalisation of the wave functions.

The preceding energy functional, leads to Ns corresponding coupled Gross-

Pitaevskii equations i~∂tψj = δE/δψ∗j describing the dynamics of the system.

The above form of the energy density functional is particularly appealing as

it makes the gauge invariance of the system explicit. This property allows us
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to switch to the Landau gauge AL
j = 2Ωmjxŷ without affecting the energy

functional (5.12). Such a perspective will prove useful later.

We now approach the problem of the discretisation of the energy (5.15)

following the arguments put forward in Chapter 3 and in [1]. More specifi-

cally, upon defining Ψ = (ψ1, . . . , ψNs)
T , we consider the coupled generalised

Hofstadter model

Ed =−
∑
n,l

[
Ψ†n,lW

(x)Φ
(x)
l Ψn+1,l

+ Ψ†n,lW
(y)Φ(y)

n Ψn,l+1 + h.c.
]

+
∑
n,l

[
1

2
ρ†n,lUρn,l −Ψ†n,lµΨn,l

]
,

(5.16)

defined on a grid of Nx ×Ny points taking values r = axnx̂ + aylŷ, with

n, l ∈ Z+, n ≤ Nx, l ≤ Ny, with lattice constants ak = Lk/Nk, and with

Lx, Ly being the lengths of the computational unit cell. In the above, W (x),

W (y) account for the anisotropic tunnelling for each component while the

Φ
(k)
n arise from the Peierls substitution needed to incorporate the gauge fields:

W (k) =
~2

2a2
k

diag

[
1

m1

, . . . ,
1

mNs

]
,

Φ(k)
n = diag

[
e−iδykB1n, . . . , e−iδykBNsn

]
.

(5.17)

As we have discussed in the preceding chapter, the energy (5.16) reduces to

the energy functional (5.12) provided that the lattice constant is the smallest

length scale in the problem. In doing so, provided one considers the Landau

gauge, it is possible to verify the following identifications: Bj = 2Ωmjaxay/~,

U = G/axay and µ = diag[µ1, . . . , µNs ]− 2(W (x) +W (y)). As we have men-

tioned, an alternative to fixing the chemical potential is to fix the total par-

ticle numbers per unit cell as
∫
|ψj|2dxdy = Nj.
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We next perform Ns−1 local gauge transformations on the wave functions

of the additional components:

Ψn,l → diag
[
1, e−iλ

(2)
n,l , . . . , e−iλ

(Ns)
n,l

]
·Ψn,l, (5.18)

where the pure gauges are λ(j) = τ
(j)
x axn + τ

(j)
y ayl. Clearly here we have

taken τ
(1)
x = τ

(1)
y = 0, which can be done without any loss of generality, as

discussed. Inserting (5.18) into (5.16), one finds that

Φ(k)
n → diag

[
1, e−iτ

(2)
k ak , . . . , e−iτ

(Ns)
k ak

]
·Φ(k)

n , (5.19)

The terms ak entering the phase factors in the above equation (5.19)

arise from the Peierls integrals calculated over the Hofstadter computational

lattice vectors. A comment on the need for this gauge transformation will

be given below. We further assume that Ψn,l can be expanded in the basis

of states

Ψ̃kx,l =
(
ψ̃1;kxl, ψ̃2;kxl, . . . , ψ̃Ns;kxl

)T
Ψ̃n,ky =

(
ψ̃1;nky , ψ̃2;nky , . . . , ψ̃Ns;nky

)T (5.20)

as

ψj;nl =
1√
Nx

∑
kx

ei(kxn+Bjnl)ψ̃j;kxl,

ψj;nl =
1√
Ny

∑
ky

eikylψ̃j;nky .
(5.21)

This is equivalent to demanding Ψn,l to be an eigenfunction of the mag-

netic translation operators with eigenvalue equal to one. In doing so, we

also automatically satisfy the required twisted boundary conditions [1, 106].

Inverting the relation in (5.21), we can then define the discrete magnetic
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Fourier transform (dMFT) of the jth component as

ψ̃j;kxl =
1√
Nx

∑
n

e−i(kxn+Bjnl)ψj;nl,

ψ̃j;nky =
1√
Ny

∑
l

e−ikylψj;nl,
(5.22)

which will be fundamental for the diagonalisation of the problem at hand.

A comment is needed concerning the gauge transformation given above

and the boundary conditions of the system. The gauge transformation (5.18)

has the effect of introducing two new degrees of freedom contributing to an

overall phase of the second component’s wavefunction. In Chapter 3, the

wave functions were taken to be invariant when magnetically translated along

a vortex lattice vector. While this constraint is appropriate for the single-

component case, it must be relaxed for the multi-component system. For the

present case, we must consider the whole set of possible states obtainable

by translating one component with respect to the other. Clearly one needs

to translate only one of the two components to obtain such a set. Such a

translation is accounted for by the parameters (τ
(j)
x , τ

(j)
y ) introduced in (5.18)

and (5.19).

As discussed in the previous chapter, the employment of the magnetic

Fourier transform (MFT) diagonalises the kinetic part of the model. The ex-

pansion (5.21) is of great importance as it allows, through its inverse (5.22),

for the diagonalisation of the linear (kinetic) part of the model (5.16). The

discrete energy (5.16) can now be written compactly as

Ed =4R
∑
kx,l

Ψ̃†kx,lWK
(x)
kx,l

Ψ̃kx,l

+
4

R
∑
n,ky

Ψ̃†n,kyWK
(y)
n,ky

Ψ̃n,ky

+
∑
n,l

1

2
ρ†n,lUρn,l,

(5.23)
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where we have defined the matrices accounting for the kinetic terms

K
(x)
kx,l

=diag

[
sin2

(
kx + B1l

2

)
, . . . , sin2

(
kx + BNsl + τ

(Ns)
x

2

)]
,

K
(y)
n,ky

=diag

[
sin2

(
ky − B1n

2

)
, . . . , sin2

(
ky − BNsn+ τ

(Ns)
y

2

)]
,

(5.24)

and introduced W =
(
W (x)W (y)

)◦ 1
2 , denoting by ‘◦’ element-wise exponen-

tiation. We have also introduced the aspect ratio R = Ly
Lx

= ay
ax

, which

explicitly accounts for anisotropic tunnelling.

Each term in (5.23) is now diagonal and the minimisation of the energy

functional with respect to Ψ can thus be achieved by solving the associ-

ated equations of motion in imaginary time in conjunction with a split-step

method; a further minimisation is then required with respect to τx, τy and

R. Holding Ψ̃, τ
(j)
x and τ

(j)
y fixed, it is straightforward to show that (5.23) is

minimised by requiring

R =

√√√√∑n,ky
Ψ̃†n,kyWK

(y)
n,ky

Ψ̃n,ky∑
kx,l

Ψ̃†kx,lWK
(x)
kx,l

Ψ̃kx,l

. (5.25)

Similarly one can find that holding Ψ̃ and R fixed, the discrete energy (5.23)

is minimised with respect to τ
(j)
x and τ

(j)
y by choosing

τ (j)
x = − arctan

[∑
kx,l

sin(kx + Bjl)|ψ̃j;kx,l|2∑
kx,l

cos(kx + Bjl)|ψ̃j;kx,l|2

]
+ πΘ

(
−
∑
kx,l

cos(kx + Bjl)|ψ̃j;kx,l|2
)
,

τ (j)
y = − arctan

[∑
n,ky

sin(ky − Bjn)|ψ̃j;n,ky |2∑
n,ky

cos(ky − Bjn)|ψ̃j;n,ky |2

]
+ πΘ

−∑
n,ky

cos(ky − Bjn)|ψ̃j;n,ky |2
 ,

(5.26)

where Θ(x) is the Heaviside function.
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The minimisation of (5.23) can then be performed numerically by repeat-

edly alternating the minimisation with respect to Ψ, R and the τ
(j)
x , τ

(j)
y . As

before, the minimisation over Ψ can be performed by solving the imaginary-

time Gross-Pitaevskii equations using a split-step method. In practice, we

find that it is most efficient to perform more steps to evolve Ψ and less for the

remaining parameters. A schematic description of this algorithmic procedure

is given in the following Fig. 5.2. Finally, one must check for convergence in

Random Ψ

~∂τψj = − δE
δψ∗j

Minimise over
R, τ

(j)
x , τ

(j)
y

as per (5.25), (5.26)

Convergence
in Ψ, R, τ

(j)
x , τ

(j)
y ?

Ground
State

Y

N

Figure 5.2: Schematic description of the algorithmic procedure. The equa-
tions of motion in the top left of the figure are obtained by Wick-rotating
the Gross-Pitaevskii equations to imaginary time τ = it.

the time step and the discretisation lattice constants.

5.2.1 The relation between model and physical param-

eters

The parameters entering the model described so far do not necessarily re-

late directly with the physical parameters needed to characterise each vortex
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lattice configuration. For this reason, we will devote this section to the de-

scription of the relation between this two sets of parameters.

Consider the diagram presented in Fig. 5.3 for a system of two components

made of constituents of equal masses. The black circles represent locations of

vortices in the lattice of one species, while the grey squares represent vortices

in the second species lattice. The relevant parameters needed to describe such

a configuration, are the aspect ratio R = |v2|
|v1| , the angle η = arccos (v̂1 · v̂2)

and the vector r = r1v1 + r2v2 defining the relative translation between the

two lattices.

η

v2

v1

r

Figure 5.3: The diagram defines the parameters R = |v2|/|v1|, η and r.

As we have discussed, the τj parameters are directly related to the relative

translation of lattices as mandated by equation (5.6). However it is not clear

yet what relation there exist between R and η and the parameters of the

model. In order to understand the nature of such a relation we need to

consider carefully what possibilities we have in the computational unit cell.

More specifically, it is particularly interesting to look at the interlaced

square lattices case: in fact here it is possible to find two completely equiv-

alent unit cells, both shown in Fig. 5.4. The first unit cell has aspect ratio

Ra = 1 while the second one Rb = 2. Consider now the first unit cell: when

the aspect ratio R is varied this has the effect of changing the angle of the in-

terlaced square lattices which continuously transform into interlaced oblique

lattice. It is now straightforward to find that the angle characterising such
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(a) (b)

Figure 5.4: Two equivalent unit cells tiling a system made of two interlaced
square lattices.

an oblique lattice is given by η = min(2 arctanRa, π − 2 arctanRa). On the

other hand, the lattice aspect ratio is untouched so that R = 1. Consider now

instead the second unit cell: at the variation of its aspect ratio Rb something

different happens. This time the effect is a change in the aspect ratio of the

lattice R. In particular it is easy to see that the relation linking these two

aspect ratios is simply R = Rb/2. This time what remains untouched is the

angle characterising the lattice which stays constant: η = π/2.

5.3 Components with equal masses: the phase

transitions

For simplicity, we will consider here the case of a mixture of two superflu-

ids with constituents of equal masses m1 = m2, which in turn implies equal

vortex densities. Furthermore we will also take the particle densities to be

the same. An early important result for equal masses in the repulsive regime

g12 ≥ 0 was obtained semi-analytically in the LLL [66], assuming equal scat-

tering lengths for the two coupled systems a11 = a22, and consequently equal

intra-species interactions for this equal masses case: g1 = g2 ≡ g. This as-
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sumption in particular allows for the achievement of an SU(2) symmetric

system. One consequence for such a system is, for example, that the sys-

tem becomes invariant under the exchange of the two superfluids, as it was

discussed in Chapter 1.

Figure 5.5: Results from the early work of Mueller and Ho [66]. The relation
of the parameters used in these plots with those used in our treatment can
be understood by comparing with Fig. 5.6.

In [66], the two superfluids were found to transition, at the variation of

the parameter α = g12/
√
g1g2, between four different states. This results

are summed up in the plots presented in Fig. 5.5 below; we will perform a

reparameterization of the problem which are more suitable for our treatment

(see also Fig. 5.6), as it will become apparent later. The attractive regime is

simple and consists of two perfectly overlapping triangular lattices. At low

positive interacting strengths (0 < α < T1 = 0.172) the ground state consists

of two interlaced triangular lattices with a vortex of the first species centered

between three vortices of the second species. At T1 the first transition occurs:

for T1 < α < T2 = 0.373 the system is found to be made of two interlaced
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oblique lattices with varying angle η; the vortices of the first species are

now sitting centered between four vortices of the second species. The second

transitions occurs when η = 90◦ giving place to two interlaced square lattices.

The system remains stable in this state for T2 < α < T3 = 0.926 until the

third and last transition takes place. For α > T3 the square lattices, following

a spontaneous breaking of symmetry, continuously stretches into interlaced

rectangular lattices of aspect ratio R. We recall that above the boundary

α = 1 the two superfluids become immiscible and the so-called stripe phase

is obtained [70]. In this region the density of each superfluid concentrates

in the central area perpendicular to the long side of the rectangle. Because

these results were obtained in the LLL, the connection to experiments is not

immediate as most experiments on vortex lattices are away from this regime.

The method outlined in the previous sections allows for the extension of these

results to regimes of larger intra-species interaction or slower rotation rates.

In Fig. 5.6 we present a detailed characterisation of the transitions undergone

by the system as reflected by the behaviour of the the two parameters η and

R. In particular, η experiences a discontinuous jump at T1; this transition is

also marked by a discontinuous jump in the parameter r1 = r2. The second

transition T2 is characterised instead by a discontinuity in the derivative

of η. Finally, the last transition T3 is marked by a discontinuity in the

derivative of R. This result can be directly compared with that of [66]. It

is also possible to notice that, at the SU(2) symmetric point, the lattice

configuration is independent of the strength of the interactions. Here we

find a lattice configuration consisting of two interlaced rectangular lattices

of aspect ratio R =
√

3, such that the combination of the two lattices gives

rise to a triangular lattice.

Let us finally comment a bit further on the phase transitions. It is in

fact worth noticing that the order parameter critical exponent is given by

β = 1/2, as it is after all expected for mean field theories. In the spirit of the

Ginzburg-Landau treatment of phase transitions [79], we can exploit one of
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Figure 5.6: Extension of the results from [66]. When varying α, the parame-
ter R describes the second order transition transforming a square lattice into
a rectangular lattice; the parameter η instead, experiences at first a jump,
signalling a first order transition responsible for the transformation of the tri-
angular lattice into the oblique lattice. Further observing the behaviour of η,
it is possible to spot where another second order transition occurs, continu-
ously transforming the oblique lattice into the square lattice. For components
of equal masses one always obtains minimisers satisfying r1 = r2. At the oc-
currence of the first order transition r1 experiences a discontinuity as well:
this permits the transition from the triangular to the square configurations.
The beginning of the immiscible regime area is highlighted in grey.
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the symmetries of the system to study the phase transitions. In particular,

recall that E (R) = E (1/R), so that E(R + 1) is approximately even at

the origin1 (see for example Fig. 3.5). Let us now introduce φ = R − 1
R .

We can then write the symmetry associated with the energy functional as2

E(φ) = E(−φ), and φ
R→1−−−→ 0. This is the familiar condition for φ4 Landau

theory. The symmetry allows for an expansion in terms of even powers only

as:

E(φ) = c0(α) + c2(α)φ2 + c4(α)φ4 +O
(
φ6
)
. (5.27)

The smooth expansion coefficients cj entering the expression above, really

are functions of all the parameters cj ≡ cj(g, α, τx, τy). Here it will suffice to

consider the dependence of such coefficients on α = g12/g only. Truncating

at the fourth order, we must assume c4 to be positive in order to have the

energy bounded from below. For c2(α) > 0, the free energy as a function of

R, has a minimum at R = 1 (i.e. at φ = 0). On the other hand, when c2(α)

becomes negative the symmetry breaks: the transition therefore occurs at

c2 = 0. We can thus expand the coefficient c2 around the critical point α∗:

c2(α) = c̄2(α∗ − α), (5.28)

for some constant c̄2. Notice that whenR = 1, all the non-zeroth order terms

vanish: consequently c0(α) is interpreted as the energy associated with the

interlaced square lattices. Now, setting ∂E/∂φ = 0, one finds the minimiser

1More rigorously, one can show that the requirement f(x) = f( 1
x ), imposes a constraint

on the expansion coefficients cj(α)s. In particular, expanding f(1 +x)− f( 1
1+x ), one finds

that f ′(1) = 0, f ′′′(1) = −3f ′′(1), f (5)(1) = 60f ′′(1) − 10f (4)(1), etc. As a consequence,
it must be that the coefficients of the expansion of E(R), respect the conditions c1 = 0,
c2 = −c3, c5 = c2− 2c4, etc. Minimising the free energy with these coefficient constraints,
still leads to the result for the critical exponent R(α) ∼ |α− α∗| 12 .

2Notice in fact that R = φ
2 ± 1

2

√
φ2 + 4, and

(
φ
2 ± 1

2

√
φ2 + 4

)−1
= −φ2 ± 1

2

√
φ2 + 4.
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of E(φ) to be

φ =

√
c̄2

2c4

(α∗ − α)
1
2 . (5.29)

Consequently, the minimiser of E(R) is given by

R(α) =

√
c̄2

8c4

(α− α∗) 1
2 ±

√
c̄2

8c4

(α− α∗) + 4. (5.30)

Furthermore, since from symmetry considerations (cf. Section 1.2.1) we know

that R(α = 1) =
√

3, we can write an expression for the critical point:

α∗ = 1− 2c4

3c̄2

. (5.31)

The behaviour of R(α) can be made clearer by considering small variations

around the transition point. Let us then expand around φ = 0, as

R =
φ

2
+

1

2

√
φ2 + 4 =

φ

2
+

(
1 +

φ2

8
+O

(
φ4
))

, (5.32)

so that to first order in φ, we can write

R(α) = 1 +

√
c̄2

8c4

(α− α∗) 1
2 . (5.33)

The critical exponent is then β = 1/2, as it was mentioned before. The same

argument holds for R(g) when we consider a fixed α.

When considering the transition from interlaced triangular to interlaced

oblique lattices instead, there is no symmetry principle we can invoke which

allows to expand the free energy in even powers only. The other relevant

order parameter here are the τjs which are periodic with period 2π/Lj. The

presence of a non-zero cubic term in particular, gives rise to a different kind

of transition (a first order transition) in which the global minimum suddenly
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jumps from one local minimum to another. This results in a discontinuity in

the order parameter, as shown in the second and bottom panels in Fig. 5.6.

5.4 Components with equal masses: the phase

diagram

It is now possible to go even further and explore the phase diagram going to-

wards the Coulomb limit: Fig. 5.7 shows the complete phase diagram for the

ground states of two interacting superfluids. As can be intuitively expected,

for α < 0 a configuration consisting of two overlapping triangular lattices

is found. In the particular case of α = 0, a configuration consisting of two

non-interacting triangular lattices is found instead and the ground state is

degenerate with respect to translations of the two lattices. The red lines in

Fig. 5.7 mark the three phase boundaries T1, T2 and T3 corresponding to each

phase transition occurring for α > 0; the colours encode the value of either

φ or R. For states below T2 the only varying parameter is φ. The colour

coding the highest value of φ is the same as the colour coding the lowest

value of R: this appears in the region between T3 and T2, where neither of

these two parameters varies. Above T3 the varying parameter is R and the

colour code changes accordingly. Although in the LLL the square configura-

tion is predominant, our results demonstrate that in the Coulomb limit the

triangular lattice configuration takes over while the other configurations are

suppressed.

5.4.1 Linearity of the phase boundaries

While it is convenient to study the phase space in Fig. 5.7 as a function of the

parameters α and `Ω/ξ, this approach conceals some very simple properties

of the phase boundaries T1, T2 and T3. In Fig. 5.8 the phase diagram is plot-

ted in terms of the alternative parameters g and g12. One sees that the phase
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Figure 5.7: Phase diagram describing the ground states of two interacting
superfluids of equal masses and same particle number per unit cell N1 = N2.
The abscissa represents the intraspecies interaction strength (which is as-
sumed to be the same for both species) while the ordinate the interaction
strength amongst the two different species. The area of the phase space be-
low T2 is characterised by the parameter φ, while that above is characterised
by R. Transition T1 is of first order, while T2 and T3 are second order tran-
sitions. For completeness the trivial attractive regime (α < 0) is included as
well, showing a ground state consisting of two overlapping triangular lattices.
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boundaries asymptotically become linear in the Coulomb regime. An argu-

ment explaining this behaviour goes as follows. Deep in the Coulomb regime,

the energy of the system is dominated by terms representing interactions. In

this limit, one can write the energy density as

E(g, g12) ∼ g

2
(ρ2

1 + ρ2
2) + g12ρ1ρ2 =

1

2
gρ2 + (g12 − g)ρ1ρ2, (5.34)

where ρ = ρ1 + ρ2 is the total density. Since a phase boundary T (g) between

a phase configuration A and a configuration B can be defined as the value
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Figure 5.8: Linear phase boundaries in the miscible regime. T 1 marks the
boundary between the triangular phase and the oblique phase, T 2 divides
the oblique and the square phases and T 3 is the last phase boundary leading
to the rectangular phase.
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of the interspecies strength such that EA(g, g12 = T ) = EB(g, g12 = T ), it is

possible to write an expression for T (g). In particular, one finds that

T (g)

g
=

1

2

〈ρ2
A,1〉+ 〈ρ2

A,2〉 − 〈ρ2
B,1〉 − 〈ρ2

B,2〉
〈ρB,1ρB,2〉 − 〈ρA,1ρA,2〉

, (5.35)

where brackets denote spatial average. Next, we note that deep in the

Coulomb regime, variations in the total density are energetically prohibitive

and so the total density, at this level of approximation, is constant. For in-

stance, while ρ1 will approach zero near a vortex in ψ1, ρ2 will have a local

maximum there, making the total density nearly constant. Writing density

with respect to its average as δρA,1 = ρA,1− 〈ρA,1〉 (with similar notation for

the other components) we then have

T (g)

g
=
〈δρ2

A〉 − 2〈δρA,1δρA,2〉 − 〈δρ2
B〉+ 2〈δρB,1δρB,2〉

2 (〈δρB,1δρB,2〉 − 〈δρA,1δρA,2〉)
. (5.36)

In the Coulomb limit, the variances in the total densities become negligible

and the leading order behaviour of the phase boundaries can be found to be

lim
g→∞

T (g)

g
= 1. (5.37)

Therefore, the phase boundaries have the form T j = g + aj
3 where the in-

tercepts aj, are determined by the kinetic energy difference between the

two configurations and likely cannot be determined from such simple argu-

ments. Operating the appropriate transformations to the phase boundaries

in Fig. 5.7, we obtain the linear phase boundaries T j presented in Fig. 5.8.

The numerical solution for the phase diagram indeed verifies these simple

arguments.

For computational convenience, the phase space in Fig. 5.7 was calcu-

3In the next Chapter 6 a generalisation of this expression to general particle numbers
N1 6= N2, masses m1 6= m2 and intra-species interaction strength g1 6= g2 will be given.
The derivation is presented in Appendix B.
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lated with two vortices per species per unit cell. Considering a unit cell

containing only one vortex per species, as done for instance in the early work

by Abrikosov [72], does not allow for configurations other than the square

and rectangular lattices. The smallest unit cell needed to obtain the correct

ground states contains a minimum of two vortices (per species). The results

obtained in this setting can be found to be consistent with those obtained in

larger unit cells, as long as the size of the cell is appropriate (namely if the

unit cell contains an even number of vortices). For other unit cells (e.g. a

unit cell containing an odd number of vortices per species) one will in general

observe frustrated lattices. However, such configurations of the system have

higher energy densities and are therefore disregarded.



Chapter 6
Mixture of Repulsive Superfluids: the

General Case

We will now move on to study systems of two superfluids with different com-

ponents’ atomic masses. While the extension of the method developed in

the previous sections is fairly straightforward, it is important to devote some

attention to a problem which we have so far ignored, namely that of com-

mensurability. In this chapter we will start by discussing the implications of

non unitary mass ratios on the possibility to achieve a consistent and peri-

odic infinite vortex lattice. Recall that given two superfluids with different

atomic masses, the Feynman relation (1.78) clearly indicates that the ratio

of vortex densities will be proportional to the mass ratio:

m2

m1

=
ρ

(2)
v

ρ
(1)
v

. (6.1)

This allows the system to explore new exotic phases and configurations.

However, as we will show, this also constitutes a constraint for some sim-

ple configurations that will not be allowed in the system because of lack of

commensurability. More specifically, we will show that even for simple mass

ratios (e.g. m2/m1 = 2) it will not be possible to find regular triangular
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ground states. In this scenario, the lack of commensurability implies, for

large enough systems, the rise of frustration.

With this in mind we will present a phase diagram, analogous to that

presented in Fig. 1.6 in the previous section, for the case m2/m1 = 2, showing

that although the state consisting of two interlaced triangular lattices is not

allowed, the system can still achieve novel unexpected configurations.

At last we will discuss in generality the results for higher mass ratios

giving a summary of a few results in Table 6.1.

6.1 General considerations regarding commen-

surability

Until now we have ignored an issue that presents itself when considering

infinite vortex lattices, namely that of commensurability. We could do so be-

cause we were considering the case of two species with equal atomic masses.

If we are to investigate the nature of such systems in more generality we ought

to first discuss the topic of lattice commensurability. The simplest scenario

is which such issues arise is that occurring close to the zero intraspecies in-

teraction point α ≈ 0: here, from fundamental considerations, one expects

each component to be found in a triangular lattice configurations. Because

of the lack of interaction between the two atomic species there is not a pre-

ferred position of one lattice with respect to the other. However, as soon as

we consider an infinitesimal positive interaction α = ε we would expect the

two lattices to arrange as to maximise the distance between each other, in

order to minimise the energy arising from their interaction. The ith lattice

associated with a species made of constituents of mass mi, with magnetic

length `
(i)
Ω =

√
~

2Ωmi
, built on the basis vectors bjs can be written in general-

ity as Λi =
{
`

(i)
Ω (ib1 + κib2 + ...)

∣∣∣ i, κi, ... ∈ Z
}

, and given two lattices Λ1

and Λ2, a sufficient condition for commensurability is that the diophantine
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equation |Λ1| = |Λ2| has a countably infinite number of solution. Considering

triangular lattice simplifies things as only two basis vectors are necessary:

Λi =
{
`

(i)
Ω (ib1 + κib2)

∣∣∣ i, κi ∈ Z
}
. (6.2)

More specifically the two basis vectors are given by b1 = [1, 0] and b2 =[
1/2,
√

3/2
]
, so that the commensurability condition then reads

m2

m1

(
21 + 1κ1 + κ2

1

)
= 22 + 2κ2 + κ2

2. (6.3)

As one would expect, the condition for commensurability is clearly satisfied

for the trivial case of m1/m2 = 1. Let’s consider then the next simplest case

of m1/m2 = 2: the condition above (6.3) becomes

2
(
21 + 1κ1 + κ2

1

)
= (22 + 2κ2 + κ2

2). (6.4)

Assume that there exist a set of nonzero integers 1, κ1, 2, κ2 ∈ Z\{0} satis-

fying the above equation. The left hand side in (6.4) is even, so even must

be the term on the right hand side. In turn, for this to be the case both 2

and κ2 are to be even. If that’s the case, we can introduce two new scaled

integer variables 2 = 2/2, κ2 = κ2/2 so that

2
(
21 + 1κ1 + κ2

1

)
= 4(22 + 2κ2 + κ2

2). (6.5)

Thus, by the same argument, also 1 and κ1 both must be even. Now, it

is possible to write any even integer  as 2Jo for some integer J and odd

integer o. Therefore

2(22J1o2
1

+ 2J1+K1o1oκ1 + 22K1o2
κ1

) = (22J2o2
2

+ 2J2+K2o2oκ2 + 22K2o2
κ2

)

22J1+1(o2
1

+ 2K1−J1o1oκ1 + 22(K1−J1)o2
κ1

) = 22J2(o2
2

+ 2K2−J2o2oκ2 + 22(K2−J2)o2
κ2

).

(6.6)
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If 2J1 + 1 > 2J2 then we can write

22(J1−J2)+1(o2
1

+ 2K1−J1o1oκ1 + 22(K1−J1)o2
κ1

) = (o2
2

+ 2K2−J2o2oκ2 + 22(K2−J2)o2
κ2

).

(6.7)

Clearly, (6.7) is a contradiction as the left hand side is even and the right hand

side is odd. Mutatis mutandis, the same holds for 2J1 + 1 < 2J2. Thus we

have proved by contradiction that two triangular lattices, one twice as dense

as the other, are not commensurate as (6.4) holds only when 1 = κ1 = 2 = κ2 = 0.

With more generality it is possible to find that (6.3) has more than one

solution (the trivial one) if and only if the mass ratio is a Löschian numbers

[119], namely if it can be expressed as

m2

m1

= µ2 + µν + ν2 = 1, 3, 4, 7, 9, 12, 13, ... (6.8)

for any µ ≥ ν with µ, ν ∈ Z. This result can be proved by realising that the

following factorisation

(µ2 + µν + ν2)(21 + 1κ1 + κ2
1) = (22 + 2κ2 + κ2

2), (6.9)

always holds with 2 = µ1−νκ1, κ2 = ν(1 +κ1)+µκ1. For a given Löschian

mass ratio it is possible to find that one vortex lattice will be rotated with

respect to the other by an angle θ = arctan
( √

3ν
2µ+1

)
. Thus we find θ = 0

if and only if the mass ratio is a perfect square. This result (6.8) has a

clear geometrical interpretation: in a triangular lattice, the distance from

the origin of the elements of every set of points equidistant from the origin

is given by the square root of a Löschian number. This is clearly depicted

in Fig. 6.1. Looking at the figure it is also possible to better understand

where the above expression for θ comes from: the integers µ > ν composing

the Löschian number (µ2 + µν + ν2), exactly give the closest point to the

x-axis at a distance (µ2 +µν+ν2) from the origin as µb1 +νb2. The simplest
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Figure 6.1: Geometrical significance of Löschian numbers. In a triangular
lattice, the distance from the origin of the elements of every set of points
equidistant from the origin, is given by the square root of a Löschian number.
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Figure 6.2: On the left: two non-commensurate triangular lattices with cor-
responding mass ratio m2/m1 = 2. In the presence of non-commensurability
one would in practice observe geometrical frustration. On the right: two
commensurate triangular lattices with m2/m1 = 3.

case of two such nontrivial commensurate triangular lattices occur for a mass

ratio of 3 and is depicted in Fig 6.2: the two lattices are rotated at an angle

θ = π/6 as expected.

To sum up, we have shown that for the case of mass ratio 2, the two asso-

ciated triangular vortex lattices are not commensurate as 2 is not Löschian.

However we might still be able to find commensurate states for stronger inter-

actions between components. Let’s consider then another lattice: the square

lattice. In this case we have the basis vectors b1 = [1, 0] and b2 = [0, 1], thus

the commensurability condition reads

m2

m1

(21 + κ2
1) = (22 + κ2

2). (6.10)

Similarly to what was done before, one can easily realise that the following
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Figure 6.3: Geometrical significance of (6.12). In a square lattice, the dis-
tance from the origin of the elements of every set of points equidistant from
the origin, is given by the square root of the sum of squares (6.12).

equality holds

(µ2 + ν2)(21 + κ2
1) = (22 + κ2

2), (6.11)

provided that 2 = µ1 + νκ1 and κ2 = µκ1 − ν1. Therefore, given two

integers µ ≥ ν ∈ Z, the diophantine equation (6.10) is satisfied by requiring

m2

m1

= µ2 + ν2 = 1, 2, 4, 5, 8, 9, 10, ... . (6.12)

This time the lattices will be found tilted with respect to each other at an

angle θ = arctan
(
ν
µ

)
. The geometrical interpretation of such a result is

analogous to that of the triangular lattice and is depicted in Fig. 6.3.



166
Chapter 6. Mixture of Repulsive Superfluids: the General

Case

6.2 The mass ratio m2/m1 = 2

As we have just discussed, since the ratio m2/m1 = 2 is not Löschian, and

thus being it impossible to find a regular arrangement for the two triangular

vortex lattices, we will find a non-commensurate configuration close to the

non-interacting limit α ≈ 0. Nonetheless we might still be able to find other

states which are commensurate for higher interspecies interactions. This

mass ratio is of particular relevance, as in experiments one can achieve it

with good approximation with the mixture of isotopes 41K–87Rb (with mass

ratio m2/m1 ≈ 2.1)[120, 121], but also 87Rb–174Yb (m2/m1 ≈ 2.0014) and
84Sr–168Er (m2/m1 ≈ 2.0013).

Again as before we restrict our analysis to equal `Ω/ξ for both compo-

nents. Fig. 6.4 presents the ground states’ phase diagram associated with

the mass ratio m2/m1 = 2. As it is possible to observe, in this scenario we

encounter two new commensurate ground states. For α = 0, as expected

from arguments made earlier, we find a region of non-commensurate ground

states. The first transition we find when increasing α is of second order and

transforms the lighter species ground state into a square lattice, while the

lattice associated with the heavier one is transformed into a snub-square lat-

tice. Such configuration has lattice parameter (
√

3 − 1)`
(1)
Ω , where we can

take `
(1)
Ω to be the lattice constant of the first component due to its simpler

lattice geometry.

Increasing α further, we encounter a second transition, again of second

order: the lighter species’ vortex configuration is transformed into a triangu-

lar lattice while the heavier is transformed into a honeycomb lattice as shown

in Fig.6.6. For the honeycomb case one easily finds the lattice parameter to

be `
(1)
Ω /
√

3.

Fig. 6.5 shows instead the phase diagram obtained under the condition of

equal healing lengths ξ(1) = ξ(2) ≡ ξ. In this regime one finds different intra-

species interaction strenghts, in particular g1 = 2g2. It is interesting here to

notice the important role that strong interactions play for the existence of
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Figure 6.4: Phase diagram for two rotating superfluids with atomic mass
ratio m2/m1 = 2. The intra-species interaction strengths are taken so as to

satisfy `
(1)
Ω /ξ(1) = `

(2)
Ω /ξ(2) ≡ `Ω/ξ. As discussed in the text, this system does

not have a commensurate ground state for small inter-species interactions.
One should hence expect to observe frustration in this regime. For stronger
interactions one finds instead two novel vortex configurations: the snub-
square lattice and the honeycomb lattice.

certain configurations. In fact, close to the LLL, we cannot find a snub-square

configuration and the system evolves from a non-commensurate configuration

to the honeycomb-triangular state.

At last, let us mention that the result (5.37) given in the previous chap-

ter describing the phase boundaries as affine functions of the intra-species

interaction strength, can be generalised to the case of different intra-species
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Figure 6.5: Phase diagram for two rotating superfluids with atomic mass
ratio m2/m1 = 2. Here the intraspecies interactions are taken so as to have
equal healing lengths in each component ξ(1) = ξ(2) ≡ ξ.

interaction strengths g1 6= g2
1. More specifically, in the Coulomb limit, one

can write:

T =
√
g1g2 + a. (6.13)

for some intercept a. It is straightforward to see that the above equation

(6.13) reduces to the linear relation in (5.37) for g1 = g2. This result is

particularly interesting, as it allows for a the characterisation of a vaster

1See Appendix B.
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Figure 6.6: The continuous transformation of the Square-SnubSquare lat-
tices into the Triangular-Hexagonal lattices, occurring between the transition
boundaries T2 and T3.

phase diagram in the Coulomb limit. Once the intercept is obtained from

the simplest linear case g1 = g2, equation (6.13) allows us to infer, at least

under the approximation of strong inter-species interactions, the behaviour

of the phase boundaries for arbitrary interaction strengths g1 6= g2. Notice

however, that the same argument cannot be extended to the mass ratio, as

at its variation different configurations are expected. The intercept should

thus be though of as depending on the mass ratio.

6.3 Higher mass ratios

We now turn our attention to the case of higher integer mass ratios. Ta-

ble 6.1 provides a summary of the commensurate lowest energy configurations

we find for the first integer mass ratios. The next integer case, namely that of

mass ratio m2/m1 = 3, might be of interest for the experimental realisation

with isotopes 41K–133Cs (m2/m1 ≈ 3.2)[122], for 7Li–23Na (m2/m1 ≈ 3.3), or

for 52Cr–164Dy (m2/m1 ≈ 3.1561). In this case we can find again a complete

commensurate phase space. For α ≈ 0 we find two commensurate triangular

lattices, one tilted with respect to the other by an angle θ = π/6. When the

interactions are stronger we find at first that the lighter component’s vortices

form a triangular lattice, while the heavier component arranges its vortices

into a kagome lattice with parameter `
(1)
Ω /2. For higher interspecies interac-
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m2

m1

Ground
State

Species Type
Symmetry
Group

1

1: Triangular p6m
2: Triangular p6m

1: Oblique p2
2: Oblique p2

1: Square p4m
2: Square p4m

1: Rectangular pmm
2: Rectangular pmm

2

1: Square p4m
2: Snub Square p4g

1: Triangular p6m
2: Honeycomb p6m

3

1: Triangular p6m
2: 1

3
Triangular p6m

1: Triangular p6m
2: Kagome p6m

1: Triangular p6m
2: Shifted-Rectangular p2

4

1: Triangular p6m
2: 1

4
Triangular p6m

1: Triangular p6m
2: Fishbone Square pgg

1: Triangular p6m
2: Non-Regular Hexago-

nal
cmm

Table 6.1: Commensurate ground states for different mass ratios. For each
lattice it is given its symmetry classification in IUC notation. We denoted
by ‘ 1

n
Triangular’ the triangular lattice with unit cell an nth of the unit cell

area of the lattice denoted as ‘Triangular’.
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tion, closer to the miscibility-immiscibility boundary α = 1, the latter turns

into a shifted-rectangular lattice (with lattice parameter `
(1)
Ω /2) while the

lighter component retains its triangular arrangement. Notice that through-

out the whole phase diagram, the lightest species remains stable in its tri-

angular configuration. This is a feature that seems to persist at higher mass

ratios.

Finally, the last mass ratio we consider is m2/m1 = 4 which could be

implemented with the isotopes 23Na–87Rb which have mass ratio m2/m1 ≈
3.8 [123] or even more accurately with 41K–164Dy (m2/m1 ≈ 4.0021). As

mentioned at the beginning of this section, because this mass ratio is a perfect

square, at α ≈ 0 we can obtain two commensurate triangular lattices tilted

with respect to each other by an angle θ = 0.

When α is increased, the symmetry is broken along one direction and

we observe the formation of a new state made of squares with diagonal

D =
√

3 − 1, centered on the points belonging to the triangular lattice

formed by the lighter species. The squares are arranged as on a fishbone,

tilted at an angle θ = ±π/12. For higher inter-species interactions, this state

smoothly transitions to a state made of rectangles hinged in a fishbone shape

overlapping the lighter species’ triangular lattice. The rectangles are found

centred on the vortices of the lighter species, characterised by a diagonal of

length D = (1 +
√

7)/3, aspect ratio (1 + 2
√

7)/3
√

3 and tilted at an angle

θ = ∓ arccos
(√

1
2

+ 1√
7

)
. At last, yet a further increase of the interaction

parameter α leads to a lattice made of non-regular hexagons centered on the

triangular lattice of the lighter species.

Notice again that the vortex lattices corresponding to the lighter com-

ponent tend to retain their triangular arrangement for higher mass ratios.

This occurs because of the requirement for `Ω/ξ to be the same in both com-

ponents. For the case of unequal masses in fact, although this requirement

implies equal interaction strength between particles of the same species in

both components g1 = g2, the same does not translate to the force between
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vortices of the same species. Recalling (1.92), it is simple to conclude that the

force between two vortices of the same species scales as |Fj| ∼ gjξ
2
j ∼ 1/mj,

i.e. it is inversely proportional to the constituents’ masses. Moreover, a sim-

ilar calculation [116], suggests the force between two vortices of two different

species scales as

|F12| ∼ |g12|
ξ2

1ξ
2
2

ξ2
1 + ξ2

2

∼ 1

m1 +m2

. (6.14)

Therefore, for m2 > m1, we have that |F1| > |F2| > |F12|. As a consequence,

it is reasonable, for sufficiently large mass ratios, to consider the influence of

the vortex configurations in the heavier components, as a mere perturbation

to the configuration of the vortex lattice in the lightest component (this is

of course true only as long as we consider g1 ≈ g2). With this simple logic,

we can then infer that for higher mass ratios, the lighter component will

always have the strongest interaction within the system and will, ipso facto,

be stable in the triangular lattice configuration, while the heavier component

will arrange its vortices around it so as to minimise the total energy, as it is

after all observed in the results from the numerical simulations.



Conclusion

“The path comes into existence only when we

observe it.”

Werner Heisenberg, The physical content of

quantum kinematics and mechanics, 1927

(contained in Quantum Theory and

Measurement by J.A. Wheeler and W.H. Zurek)

In this thesis, a novel scheme to investigate systems respecting quasi-

periodic boundary conditions was presented, allowing for the study of binary

mixtures of superfluids, and leading to a characterisation of the whole phase

diagram and prediction of novel exotic ground state configurations.

The scheme relies on the introduction of the Magnetic Fourier Transform

(MFT) (3.39), which generalises the action of the Fourier transform to system

symmetric under the operations of elements of the Magnetic Translation

Group (MTG). The MFT allows for the expansion of the wavefunction in a

basis of eigenstates of the generators of the MTG (3.38), and the resulting

integral transform, satisfies the required twisted boundary conditions (1.133).

Furthermore, the MFT diagonalises the linear kinetic energy terms in the

Hamiltonian.

The MFT is then applied in conjunction with a non-linear generalised
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Hofstadter model, which is proved to describe the system under considera-

tion in the continuum limit, while preserving the exact gauge symmetries of

the continuum model. The gauge fields are introduced through the (gauge-

dependent) Peierls substitution, but we arrive at a diagonalised form of the

model which does not depend on the choice of the gauge (3.51). The result-

ing equations of motion are used to evolve the system in imaginary time,

through a split-step method. The evolution in imaginary time is proved to

lead to the lowest energy state even in the case of non-linear systems, but it

is also shown that the standard split-step methods loose in accuracy when

propagating in imaginary time rather than in real time. A novel splitting is

then introduced (3.52), which attains second order accuracy in time when

propagating in imaginary time.

This approach overcomes a number of complications present in the pre-

viously employed methods. On one hand, it allows to attain a much higher

efficiency: in the standard computational approach, the system is simulated

within an harmonic trap with periodic boundary conditions, thus requiring

large computational cells in order to allow the wavefunction to decay to zero

at the boundaries, and consequently wasting many computational points on

regions of limited interest. Moreover, the approach presented here permits to

study periodic unit cells, thus allowing the investigation of the perfect infinite

vortex lattice arising naturally, without the disturbance of the confinement

which acts to distort it. The employment of a fundamental periodic unit

cell also greatly reduces the number of effective degrees of freedom as less

vortices are taken into consideration: when considering the system within

the confining potential, aside to the previously mentioned side effects, one

would also need to consider a large number of vortices in order to be able to

infer the structure of the resulting vortex lattice, resulting in a much more

complicated energy landscape to minimise over. Finally, another major ad-

vantage brought forth by our approach, is the possibility to classifying the

resulting states in terms of parameters directly entering the model, thus al-
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lowing for a more quantitative characterisation of the system. To sum up,

with the method presented in Chapter 3, one can attain solutions both more

efficiently and much more accurately.

We have then employed this scheme to study binary superfluid systems,

first where components’ constituents have equal masses, and then in the more

general case. In the first case, a characterisation of the full phase diagram

was provided in Fig. 5.7. This result extends the previous characterisation of

such systems due to Mueller and Ho [66], which was however restricted to the

lowest Landau level regime. Further, a discussion on the commensurability

of periodic lattices has been given: in particular we have shown that two

triangular latices are commensurate if and only if the ratio of their densities

– which in the case of superfluid vortex lattices equals to the ratio of the

components’ constituents masses – is Löschian (6.8) (or its reciprocal). A

characterisation of the full phase diagram has been given for the mass ratio

m2/m1 = 2 as well (Fig. 6.4). A summary of the different ground states

found for different mass ratio is provided in Table 6.1. Finally, a relation has

been derived (6.13) which accurately describes the phase boundaries, marking

the point of transition from one configuration to another, as a function of

different coupling strengths, in the Coulomb limit.

Although we have here restricted our attention to binary scalar mixtures

of superfluids, the scheme we have presented warrants further investigation in

more complex systems such as spinor condensates, and systems under more

general gauge fields. The effectiveness of this scheme has already encouraged

others [124] to choose this approach into the investigation of vortex lattices,

and we hope it will foster even more research in the future.
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Appendix A
Significance of the phases τx and τy

Let us start considering the following expression

Πx(t) = e−
i
~ (Π·r)tΠxe

i
~ (Π·r)t, (A.1)

with t being a dummy parameter. The expressions for the generators of the

magnetic translations are those in given in the general gauge by equation

(1.117) in Chapter 1. From Heisenberg’s equations of motion we find

−i∂tΠx(t) =
1

~
[Π · r,Πx(t)] =

1

~
[Πyry,Πx(t)]

=
1

~
e−

i
~ (Π·r)t [Πyry,Πx] e

i
~ (Π·r)t

= i2mΩry,

(A.2)

where we have used the commutation relation (1.118). Thus, integrating

−∂tΠx(t) = 2mΩry, we find

Πx(t) = Πx(t = 0)− 2mΩryt. (A.3)
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Setting now t = 1, we obtain

Πx(1) = e−
i
~ (Π·r)Πxe

i
~ (Π·r) = Πx − 2mΩry. (A.4)

Similarly, from

Πy(t) = e−
i
~ (Π·r)tΠye

i
~ (Π·r)t, (A.5)

we obtain

∂tΠy(t) = 2mΩrx, (A.6)

and thus

Πy(t) = Πy(t = 0) + 2mΩrxt. (A.7)

To sum up, we have proved that

e−
i
~ (Π·r)Πxe

i
~ (Π·r) = Πx − 2mΩry,

e−
i
~ (Π·r)Πye

i
~ (Π·r) = Πy + 2mΩrx.

(A.8)

It follows as a consequence that

e−
i
~ (Π·r)e

i
~ΠxLxe

i
~ (Π·r) = e

i
~ (Πx−2mΩry)Lx ,

e−
i
~ (Π·r)e

i
~ΠyLye

i
~ (Π·r) = e

i
~ (Πy+2mΩrx)Ly .

(A.9)

Let us now consider equation (5.5)

e
i
~ΠxLxψ(x, y) = eiτxLxψ(x, y),

e
i
~ΠyLyψ(x, y) = eiτyLyψ(x, y),

(A.10)

and introduce the magnetically translated wave function ψ̃ such that eiΠjLj ψ̃ = ψ̃,
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so that the original wave function can be written as ψ(x, y) ≡ T (r)ψ̃(x, y),

where r = (rx, ry), . Then, we can look at how eiΠxLx operates on ψ:

eiΠxLxψ = eiΠxLxeiΠ·rψ̃ = eiτxLxeiΠ·rψ̃

e−iΠ·reiΠxLxeiΠ·rψ̃ = eiτxLxψ̃

e
i
~ (Πx−2mΩry)Lxψ̃ = eiτxLxψ̃

e−
i
~2mΩryLxψ̃ = eiτxLxψ̃,

(A.11)

therefore

−2mΩry = τx~. (A.12)

Similarly one can find

2mΩrx = τy~. (A.13)

These are the results presented in (5.6).
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Appendix B
Linearity of the phase boundaries

Consider the energy density

E =
g1

2
ρ2

1 +
g2

2
ρ2

2 + g12ρ1ρ2 (B.1)

Since a phase boundary T (g) between a phase configuration A and a con-

figuration B can be defined as the value of the interspecies strength such

that EA(g, g12 = T ) = EB(g, g12 = T ), it is possible to write an expression

for T (g). In particular:

g1

2
〈ρ2
A,1〉+

g2

2
〈ρ2
A,2〉+ T 〈ρA,1ρA2〉 =

g1

2
〈ρ2
B,1〉+

g2

2
〈ρ2
B,2〉+ T 〈ρB,1ρB,2〉

(B.2)

where brackets denote spatial average. Then we can write an expression for

the phase boundary as

T =
1

2

g1

(
〈ρ2
A,1〉 − 〈ρ2

B,1〉
)

+ g2

(
〈ρ2
A,2〉 − 〈ρ2

B,2〉
)

〈ρB,1ρB,2〉 − 〈ρA,1ρA,2〉
. (B.3)
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Let us now introduce the density variations

δρ•,j = ρ•,j − 〈ρ•,j〉 = ρ•,j −Nj. (B.4)

Clearly we have 〈δρ•,j〉 = 0. We can now start computing the terms in (B.3):

the terms in the numerator become

〈ρ2
A,j〉 = 〈δρ2

A,j〉+N 2
j ,

〈ρ2
B,j〉 = 〈δρ2

B,j〉+N 2
j ,

(B.5)

so that

〈ρ2
A,j〉 − 〈ρ2

B,j〉 = 〈δρ2
A,j〉 − 〈δρ2

B,j〉. (B.6)

In the denominator we find instead

〈ρA,1ρA,2〉 = 〈δρA,1δρA,2〉+N1N2,

〈ρB,1ρB,2〉 = 〈δρB,1δρB,2〉+N1N2.
(B.7)

Then we can rewrite (B.3) as

T =
1

2

g1

(
〈δρ2

A,1〉 − 〈δρ2
B,1〉
)

+ g2

(
〈δρ2

A,2〉 − 〈δρ2
B,2〉
)

〈δρB,1δρB,2〉 − 〈δρA,1δρA,2〉
. (B.8)

Let us now introduce the total densities corresponding to each configuration

ρ• = ρ•,1 + ρ•,2. From this definition it is easy to find that

〈δρ2
•,1〉+ 〈δρ2

•,2〉 = 〈δρ2
•〉 − 2〈δρ•,1δρ•,2〉. (B.9)

Using this expression, the first term in the numerator becomes

〈δρ2
A,1〉 − 〈δρ2

B,1〉 = 〈δρ2
A〉 − 〈δρ2

B〉 − 2〈δρA,1δρA,2〉+ 2〈δρB,1δρB,2〉 − 〈δρ2
A,2〉+ 〈δρ2

B,2〉,
(B.10)
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and similarly for the second term. Now the expression for T reads

T = g1 + g2 +
g1 + g2

2

〈δρ2
A〉 − 〈δρ2

B〉
〈δρB,1δρB,2〉 − 〈δρA,1δρA,2〉

− g1

2

〈δρ2
A,2〉 − 〈δρ2

B,2〉
〈δρB,1δρB,2〉 − 〈δρA,1δρA,2〉

− g2

2

〈δρ2
A,1〉 − 〈δρ2

B,1〉
〈δρB,1δρB,2〉 − 〈δρA,1δρA,2〉

.

(B.11)

It is convenient here to introduce the following:

D = 〈δρB,1δρB,2〉 − 〈δρA,1δρA,2〉,

α =
〈δρ2

A,1〉 − 〈δρ2
B,1〉

2D
,

β =
〈δρ2

A,2〉 − 〈δρ2
B,2〉

2D
,

γ =
〈δρ2

A〉 − 〈δρ2
B〉

2D
,

(B.12)

so that it is possible to write compactly

T = g1 + g2 + (g1 + g2)γ − g1β − g2α. (B.13)

Before continuing, it is necessary to make a couple of remarks. First of all,

it is important to notice that

α + β =
1

2D

(
〈δρ2

A,1〉+ 〈δρ2
A,2〉 − 〈δρ2

B,1〉 − 〈δρ2
B,2〉
)

=
1

2D

(
〈δρ2

A〉 − 〈δρ2
B〉+ 2〈δρB,1δρB,2〉 − 2〈δρA,1δρA,2〉

)
=

1

2D

(
〈δρ2

A〉 − 〈δρ2
B〉+ 2D

)
= γ + 1.

(B.14)
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So, α + β = γ + 1. This already allows to re-write the expression for the

phase boundaries as

T = αg1 + βg2. (B.15)

Now we would like to consider the limit in which both g1 and g2 become large,

while preserving a constant ratio between the two. To this end, we write the

ratio of the two interaction strengths as µ = g1/g2. Moreover we write each

of the interaction strength parameters as gj = g0χj, with χ1 = µχ2, in order

to be able to write

T

g0

= µχ2α + χ2β. (B.16)

The Coulomb limit can then be achieved by taking g0 → ∞. Because in

the Coulomb limit the variances in the total densities become negligible, one

finds that

lim
g0→∞

γ = 0, (B.17)

and as a consequence

lim
g0→∞

α + β = 1. (B.18)

Therefore we can take the limit:

lim
g0→∞

T

g0

= µχ2α + χ2(1− α). (B.19)

and write, in the Coulomb limit

T = αg1 + (1− α)g2 + a, (B.20)
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for some intercept a. In the limit of equal interaction strengths g1 = g2 ≡ g,

recalling the equality (B.18) valid in the Coulomb limit, this further reduces

to

T = g + aj. (B.21)

Let us then proceed, trying to find an expression for α. In particular let us

look at the ratio β/α: going back from the expression in terms of density

variations to expressing the parameters α and β in terms of densities one can

find

β

α
=
〈ρ2
A,2〉 − 〈ρ2

B,2〉
〈ρ2
A,1〉 − 〈ρ2

B,1〉
. (B.22)

Let us now assume the following ansatzs [73] for the vortex lattice density

profile:

ρA,j = ρ̄j
∏
m∈Aj

(
2ξ2
j

(r− rm)2
+ 1

)−1

,

ρB,j = ρ̄j
∏
m∈Bj

(
2ξ2
j

(r− rm)2
+ 1

)−1

,

(B.23)

where we have denoted by Aj and Bj the sets of vortex positions in the jth

component, with configurations A and B respectively. With these expres-

sions, the integrals in (B.22) can be computed exactly . One finds that the

numerator and denominator in (B.22) are written, to leading order in ξ, as

〈ρ2
A,j〉 − 〈ρ2

B,j〉 =
3π2

√
2
ρ̄2
jξj
∑
l∈Aj

∑
m∈Bj

|rl| − |rm|. (B.24)

where we have dropped terms that do not depend on the vortex positions,
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and where we have assumed, as it is legit for small ξs, that∫ ∏
m

(
2ξ2

(r− rm)2
+ 1

)−2

dr ≈
∑
m

∫ (
2ξ2

(r− rm)2
+ 1

)−2

dr. (B.25)

The ratio of the sums factors of each component entering (B.24), assuming

m1 = m2, can be written as:∑
l∈A2

∑
m∈B2

|rl| − |rm|∑
l∈A1

∑
m∈B1

|rl| − |rm|
= 1. (B.26)

Thus, we have found that in the Coulomb limit we can write an expression

for the ratio in equation (B.22) as

β

α
=

√
g1

g2

. (B.27)

Recalling that in the Coulomb limit we have β = 1−α, we consequently find

an expression for the two parameters:

α =

(√
g1

g2

+ 1

)−1

,

β =

(√
g2

g1

+ 1

)−1

,

(B.28)

Finally, we can write the general expression (B.20) for the phase boundaries

as

T =
√
g1g2 + a. (B.29)
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