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Abstract

A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-
energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to
realising fault-tolerant quantum computation, and so are the focus of intense experimental and
theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting
task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit.
The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian
can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we
consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within
this class of models, interacting and non-interacting systems are treated on an equal footing, and we
identify exactly which Hamiltonians can realise MZMs.

1. Introduction

Majorana fermions were first conceived by Ettore Majorana as a real solution to the Dirac equation [1], and
being real means that these fermions are their own anti-particles. In condensed matter systems, the Majorana
fermion is a Hermitian fermionic operator. It is of particular importance when it commutes with the system’s
Hamiltonian and corresponds to a localised zero-energy mode. The reason for this is that the presence of such
modes indicates that the fermionic system is in a topologically-ordered phase. The prototypical example of such
asystem is a theoretical model for a superconducting wire, the ‘Kitaev chain’ [2], and it describes a line of non-
interacting spinless (complex) fermions, where the Cooper pairs are bound via a p-wave pairing. Kitaev
demonstrated that, for certain ranges of the Hamiltonian parameters, there is a phase where two gapless
boundary modes exist and these correspond to Majorana fermions exponentially localised at opposite end of the
chain. The modes persist even in the presence of symmetry-preserving local perturbations. We will call such
topologically-protected Majorana fermions ‘Majorana zero modes’ (MZMs).

The presence of two MZMs implies the Hamiltonian possesses a two-fold degenerate ground space,
therefore this degeneracy is also robust against local noise and the ground states cannot be distinguished by local
measurements. The ground space states can be used to encode quantum information in a fault-tolerant way.
Subsequent studies have demonstrated that, indeed, systems with MZMs form promising candidates for
building a quantum memory [3]. Furthermore, as MZM:s display non-Abelian statistics upon braiding, a
collection of Majorana wires could provide a realisation of a topological quantum computer. For a review of this
topic see [4, 5]. A number of theoretical proposals, including those, for instance, in [6—9], have addressed the
challenging task of producing and controlling MZMs in systems ranging from cold atomic gases to solid state
materials. Signatures of MZMs have been reported in several recent experiments at the interface of topological
insulators and superconductors [10—13], in ferromagnetic chains on a superconductor [14], and in quantum
spin liquids [15].

The Kitaev model, though the subject of substantial research effort, is somewhat idealised in that it neglects
interactions between the fermionic particles. The robustness of topological phases with respect to interactions is
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Figure 1. Our goal is to find the set of frustration-free Majorana zero mode (MZM) models (the red region). We shall see that this set
includes both interacting and non-interacting MZM models.

an important question, especially for practical purposes. In fact, in some cases, repulsive interactions may be
beneficial as they have been shown to lead to a stabilisation of the topological phase [17-20].

In this manuscript, we analyse a particular class of interacting and non-interacting 1D Hamiltonians to
determine whether MZMs are present. The class that we are interested in is the collection of Hamiltonians with
two-body and nearest-neighbour interactions that are frustration-free (FF). Let L be the number of spins in the
system, then such a Hamiltonian is given by H = 5" ; ;| , and H being FF means that the ground state of H
is simultaneously a ground state of each dimer term h; ;1 forall i = 1, ..., L. This is a non-trivial statement as
the h; ;1 ; may not commute with one another, and eigenstates that are not the ground states may be frustrated.
Frustration-free (FF) systems form an important class of many-body local Hamiltonians. Examples of FF spin
systems include the toric code [21] (actually the toric Hamiltonian is a sum of commuting terms) and the AKLT
model [22]. They are also used in the study of tensor network states: given a matrix product state (MPS), it is
possible to construct a parent Hamiltonian that is gapped and FF [23].

FF fermionic Hamiltonians have been studied in [24] for the purposes of identifying phases with MZMs. In
their work, they begin with a physical fermion Hamiltonian with the appropriate symmetries then demand that
itbe unfrustrated. They indeed find interacting Hamiltonians in topological phases supporting MZMs. Our
work complements these results by approaching the task from a more abstract setting which allows a complete
systematic deduction of all FF Hamiltonians, and we can conclusively say there are no additional FF phases for
MZMs. A central ingredient in our work is [25] which fully characterises the ground space and spectral
properties of all 1D FF spin Hamiltonians with two-body and nearest-neighbour interactions. We apply a
Jordan—Wigner transformation to map the spin Hamiltonians to fermionic ones. The Jordan—-Wigner
transformation has proven to be a very useful tool for analysing fermionic systems, especially those in one spatial
dimension, and the connection between spin and fermion pictures in the Kitaev chain has been thoroughly
explored and extended to parafermions, the higher-dimensional analogues of MZMs, in [16]. By virtue of the
Jordan—Wigner transformation, the spectral and FF properties carry over to the fermion picture, however, as the
transformation is non-local, we are not guaranteed a local fermionic Hamiltonian. Nevertheless, a Hamiltonian
for Majoranas must preserve fermionic parity (fermion number modulo 2), and imposing this symmetry results
in local fermionic Hamiltonians. In this way we obtain a complete characterisation of all gapped FF fermionic
Hamiltonians. From this, we may then identify the topologically-ordered systems. We find that they are Kitaev
chains, which may be non-interacting or interacting, with nearest-neighbour interactions that are either
attractive or repulsive. Figure 1 helps visualise the set of Hamiltonians we are interested in.

A noteworthy observation that arises from analysing the FF spin Hamiltonians is a connection between them
and the ‘one-dimensional line’ (ODL) of Peschel and Emery [26]. The ODLis a line in the phase diagram where
the time evolution operator of a kinetic spin model can be related to the transfer matrix of certain Ising models.
An example of an ODL occurs in the axial nearest-neighbour Ising (ANNNI) model [26, 27]. Along the ODL, the
ANNNI model is dual to the FF Hamiltonian, equation (14), that we find is capable of hosting MZMs in the
fermion picture when its parameters are constrained in a certain way (the hopping amplitude ¢is equal to the p-
wave pairing gap A).

The paper is divided in the following way. In section 2 we present a more formal definition of MZMs, and in
section 3 we deduce the FF Hamiltonians hosting MZMs, given in equation (14) in the spin picture, and
equations (15) and (16) for fermions. During our analysis we encounter an FF Hamiltonian, equation (24), that
supports MZMs, however, they are not spatially separated. Hence, even though these fermionic modes satisfy
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most of the conditions for them to be MZMs, they are not topologically protected. We comment on how this
difference manifests itself in the spin picture in section 3.4. Section 4 analyses the MZM Hamiltonian
equation (14) and its ground space equation (13) using the language of MPSs. In section 5 we briefly discuss FF
Hamiltonians that arise from dropping certain symmetries, and we conclude our work in section 6. Details of
calculations are deferred to the appendices.

2. Majorana zero modes

Consider a Hamiltonian H for a chain of (complex) fermions where the operators cf and j create and annihilate,
respectively, a fermion at site j. They obey the standard fermionic anti-commutation relations {c;, ¢t} = 0,

{c/, ¢/} = 0,and {¢c;> ) = Ojk- The term n; = c]T ¢j is the number operator. Majorana operators can be defined
as

aj=ci+c, bj=—ilg—ch), M

so that they are Hermitian, and it is possible to rewrite the H in terms of the a;, b; withj=1, ..., L.

For some gapped, fermionic Hamiltonians (such as for superconducting nanowire systems), gapless edge
modes called Majorana zero-energy edge modes (MZM), which are a special type of Majorana fermion, may be
present. Their existence implies a degenerate ground space, which is protected by particle-hole symmetry. In the
thermodynamic limit, the the gap between the ground states vanishes, whereas in finite systems the gap is (at
most) exponentially small in the size of the chain. The MZMs cannot be gapped out by any local symmetry-
preserving perturbations; they are a manifestation of topological order in the system.

An MZM is a fermionic operator -y that satisfies the following conditions [16]:

@ =7
() {(=DF, v} = 0, where (—1)F is the fermion parity operator and F = Z]LZI nj,

© [ HI=0,
(d) ‘normalisable’, thatis, v = las L — oo,

(e) ~vislocalised near an edge.

Condition (a) ensures that the operator corresponds to a Majorana (i.e. real) fermion, then (b) says that y maps
between even parity and odd parity sectors, while (c) implies that the spectrum in these sectors are identical.
Condition (d) ensures that the mode is normalisable in the thermodynamic limit, and finally (e) is necessary for
MZMs to be topologically protected i.e. robust when subjected to local noise. However, in section 3.3.3 we find a
setting where conditions (a) through (e) are met, but the MZMs can be gapped by a local perturbation because
they are not spatially separated (they are localised on the same end of the chain), so this condition needs to be
strengthened.

MZMs always occur in pairs, since each is, in a sense, ‘halfa fermion’, and 2n MZMs implies the existence of
a 2"-dimensional degenerate ground space. Note that condition (c) may be relaxed so that v does not exactly
commute with the H for all L, but only needs toas L — oo [4, 5]. For a single Kitaev chainn = 1[2].

A symmetry-protected topologically ordered (SPTO) phase is a phase that occurs because of some special
symmetry in the system. The Kitaev chain has three symmetries: (i) fermionic parity; (ii) particle-hole; (iii) time
reversal. These symmetries are rather natural because: (i) parity is preserved in all fermionic systems; (ii) particle-
hole symmetry arises naturally in superconducting systems (though it is crucial for protecting the ground space
degeneracy); (iii) it turns out that time-reversal symmetry is not necessary for gapless boundary modes to exist
[28]. Noting this, in the following we will not use the term SPTO, and instead use the phrases ‘topological order’
or ‘topological phase’ in reference to the non-trivial phase of the interacting Kitaev chain which hosts MZMs.

3. Frustration-free Hamiltonians

We begin our analysis in the spin-1/2 (qubit) picture in order to connect with the work of Bravyi and Gosset in
[25]. We are concerned with a one-dimensional chain of L > 2 qubits, and its Hamiltonian is translationally-
invariant with nearest-neighbour dimer interactions and open boundaries. Furthermore this Hamiltonian is
frustration-free. In other words, the Hamiltonian we focus on is given by
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-1
H=> hji. 2
i1

Without loss of generality, we can set the ground state energy of each dimer term h; ; ; | equal to zero. Then H is
FFifa ground state |Q2) of H is simultaneously a ground state of every dimer term, i.e., h; ;1 1|2) = 0 forall
i = 1, ... L. This also means that the ground state energy of H is zero. Open boundary conditions are required so
that the system has the potential to realise MZM:s at the ends of the chain.

Ash = h;;isan operator on C* ® C? with minimum eigenvalue zero, then h > 0 and rank(h) = r with
r € {1, 2, 3}, henceits ground space is (4 — r)-fold degenerate. Let its spectral decomposition be

h=3" Ales) (ejls 3)
=1

with eigenvalues \; > A\, > A3 > Ay = 0(and \; > 0),and corresponding eigenvectors |ej). The number of
non-zero J; is equal to r. In a FF system, the actual values of the strictly-positive \; have no effect on the ground
space of H or whether it is gapped/ gapless (see appendix A). Therefore, we could in principle setall \; > 0 to
unity to simplify the task, as is done in [25] and, for instance, the quantum 2-SAT problem [29, 30]. However, for
our purposes we do not impose this restriction, and, in fact, if we did, we would miss out all the interacting
Hamiltonians!

We now proceed with our investigation into whether the chain Hamiltonian H possesses Majorana edge
modes. The requirement that H be FF depends on the rank r of the dimer term A, and, in most cases, the ground
space is related to the (qubit permutation) symmetric subspace. We begin with the rank r = 1andr = 3 cases
because they are the simplest to handle. The rank 2 case is more involved and so we deal with it last.

3.1. The dimer terms /; ;| are rank-one operators

Iftherankof his land h = |e;) (e;| with |e;) € C?> @ C? entangled, thatis |e;) cannot be separated into a tensor
product of single qubit states, then H is FF and the ground space G of H is isomorphic to the symmetric
subspace on L qubits, which is (L + 1)-dimensional [25, 31]. The rule governing whether the Hamiltonian

H = X" le)) {ell;.iy 1 is gapped is the main result of [25], and it applies to a special set of entangled states [e;).
Within this set, the family of fermionic parity conserving Hamiltonians has (up to constants and scaling)
hijit1=cos0(Z; — Ziy1) + sin0(X; X, 11 + VY1) — Z;Z; 1, where 0 € (0, 7/2) (see appendix B for
details). Therefore any Hamiltonian in this family is a candidate for supporting MZMs. The problem however is
in the degeneracy of the ground space G;. An argument for why there are no MZM:s goes as follows. A ground
space with dimension 2" is a necessary condition for the existence of 2n MZMs. Since dim(Gy) = L + 1, we see
that the system may have 2log,(L + 1) MZMsif log,(L + 1) is an integer. However, the number of MZMs
should not depend on the size of the chain, since this is not a topological property. Furthermore, in the
thermodynamiclimit L — o0, if there were MZMs, there would be a macroscopic number of them. This is an
unstable setting and one would not expect these MZMs to be protected against local perturbations since a large
number of these zero-energy modes would be overlapping. We thus lose the exponential separation of modes
and they would be easily gapped out by local operations.

3.2. The dimer terms /; ; | are rank-three operators

Iftherank of his 3, then H is FF if and only if the ground state of /1 is a product state of the form [¢/)*2. It follows
that ground space of H is the one-dimensional span of |1/)*F [25]. A necessary condition for the presence of
MZMs is a degenerate ground space, therefore there can be no MZMs in this case.

3.3. The dimer terms h; ;| are rank-two operators
In this case, the Hamiltonian H we are considering has nearest-neighbour dimer terms

h = Mley) (el + Xolea) (eal. 4

Wealso assume h is not a product operatori.e. h = hy ® hg. Theorem 3 of [25] states that imposing frustration-
freeness on H results in five independent cases. Two of these cases are irrelevant for our purposes (they are
numbered 1 and 5 in theorem 3 of [25]) as they correspond to the ground space being 1- and 0-dimensional,
respectively. Such a system cannot host MZMs. We therefore turn our attention to the remaining three cases,
which we summarise here in a form more suited to our needs.

Let G be the ground space of FF Hamiltonian H with Lsites, then dim(G;) = 2 and exactly one of the
following holds:

(i) G = spanf{|a)®L, |3)*L} for some linearly independent normalised single-qubit states ), |3).

(i) G = span{|afag...), |Bafa ...)} for some linearly independent normalised single-qubit states |a), |3).
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(i) Gy = span{|a)®t, |daa...a) + floaa...a) + fHaad...a) + ...+ fFaaa... &)} for some ortho-
normal single-qubit states |r), |&), anon-zero f € C.

His gapped in cases (i) and (ii), and it is gapped in case (iii) if | f| = 1.If| f| = 1in case (iii) then the Hamiltonian
is gapless, with spectral gap upper bounded by (1 — cos(w/L)).

As the ground space in cases (i)—(iii) above is two-fold degenerate for any length L, these systems have the
potential for MZMs. We now explore each of these three cases in more detail.

3.3.1. Case (i): Gy = span{|a)®L, |3)*F}

This ground space G; = span{|a)*L, |3)*!} isa two-dimensional subspace of the L-qubit symmetric subspace.
In appendix C, we work in the spin picture to deduce the translationally invariant FF Hamiltonians for which G
is the ground space. We then impose parity conservation in order to identify this with a fermionic Hamiltonian.
In the spin picture, parity conservation is the requirement that [H, Z®F] = 0, where Z = [0) (0] — |1) (1]is the
Pauli-Z matrix. This splits our the Hamiltonians into two distinct types. Writing the dimer terms as

hiiv1 = [AIV) (¥] + B|®) (®])iir1, A, B >0, (%)

where |¥) and | ) are orthogonal, the two types of Hamiltonian, up to symmetry-preserving unitaries of the
formU; ® U)® ... @Up, with U;e SU(2), are:

+ Typel
1
) = —(|01) — |10)), 6
%) Nl (lo1) — [10)) (©)
|®) = cos ﬂ|00> + sin £|11>’ 7)
2 2
where w € (0, 7). The ground space states are
|a) = cos glO} + isin g|1>, 8)
2 2
0 .. 0
= cos —[0) — 1sin—|1), 9
16) = cos=10) — isin 1) ©
with § € (0, 7) and the angles , w are related through
w sin? 2
08— = —o—2 (10)

[eimd O 4§.
51n2+cos 5

* Type2

) = cos L[01) + sin 2|10), (11)
2 2
|®) = sin 2]01) — cos ~|10), (12)
2 2
with v € (0, 7). The ground space states are |o) = |0)and |3) = |1).

Consider first a type 1 Hamiltonian. The ground space is

0 6, \* ( 0 0 )M
Gy = 4| cos—|0) + isin—|1 , lcos—|0) — isin—|1 . 13
: {( 210p+ isin 2] (cos 210) — isin 211 (13
The total Hamiltonian may be writtenas H = i[(L — 1)(A + B)1 + H'],where
-1

H = Z Bceosw(Z; + Z; 1) — (A — Bsinw)X; X,
i=1

— (A + Bsinw)Y;Yi1 — (A = B)ZiZisy, (14)

and X = [0) (1] + |1)(0], Y = —i|0) (1| + i|1) (0| are the Pauli-X and Pauli- Y matrices respectively. Thisis a
Heisenberg XYZ spin-chain with alocal magnetic field. As Hand H' are related simply by a rescaling and
constant shift, they have the same relevant physical properties. From now on we only consider H'. Performing a
Jordan—Wigner transformation (see appendix D) on H' gives the Hamiltonian for a superconducting Kitaev
chain of interacting spinless (complex) fermions
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-1
H' = " [—t(c]cjp1 + ¢fp16) + Alcjejn + ¢ 46))]
=1
1 L -1
— =D p@nj =)+ UY Cnj — H@2njyy — ), (15)
250 =1
which is time-reversal and particle-hole symmetric (although it does not conserve total fermion number). The
operators c]’ and ; create and annihilate, respectively, a fermion at site j, and they obey the standard fermionic

anti-commutation relations. The term n; = cj ¢j is the number operator, ¢ is the hopping amplitude, A is the p-
wave pairing gap, 4, is the on-site chemical potential, and Uis strength of the nearest-neighbour interaction.
These terms are related to the parameters in equation (14) in the following way:

t=2A, A= —-2Bsinw, U=B-—A, (16)
and the boundary i; = 2B coswforj = landj = L, whichis half the bulk value y1; = 4B cosw for
j =2, ..., L — 1. Alternatively one can eliminate the spin Hamiltonian variables A, B, w to obtain
,u:4\/U2—|—tU+i(t2—A2), (17)

where 1 is the bulk value. This expression is in agreement with equation (11) of [24]. These relations ensure that
H'isFF.Given A, B > 0and w € (0, ), thisrestricts t > 0and A < 0. The sign of A is simply due to the
local basis fixing in equations (8) and (9). Transforming every qubit by the unitary matrix V = 0) (0| + i|1) (1]
has the effect of sending w — —w, and therefore changes the sign of A (only). In the fermion picture, the same
transformation is achieved by ¢; — icj. AsU = B — A, the fermion interactions can be either repulsive U > 0,
non-interacting U = 0, or attractive U < 0. It only depends on relative sizes of the eigenvalues A, B of the
dimer Hamiltonian h; ; ;.

The ground states of H' in the fermion picture and their indistinguishability with respect to local
measurements are discussed in [24]. In the spin picture, the form of the ground space G; in equation (13) is not
in an amenable form since the products states are not orthonormal and they are not of definite parity. Yet the
ground space should split into even and odd parity sectors. In fact, this is easily achieved by taking appropriate
linear combinations:

la)®t +18)°F,  and  o)®F — |B)°F. (18)

These vectors are now orthogonal and are parity eigenstates with eigenvalues +1 and —1 since Z|3) = |a).

So far our FF Hamiltonian H’ is gapped, conserves fermionic parity, and has a ground space degeneracy.
However for MZMs to exist, it is also compulsory that H' is in a topologically non-trivial phase. In [2], this phase
is defined for a non-interacting Hamiltonian. We now demonstrate that our H’ is adiabatically connected to the
non-interacting case by showing that the system remains gapped and the ground states do not change, hence
they are in the same phase. The argument below follows the one presented in [24]. We reproduce it here for
completeness.

Defines = (B — A)/2A > —%, then the family of Hamiltonians H'(s) = Zf;ll B (s),i+1, with

W($)iit1=—2A1(¢] civ1 + ¢y e) + (1 + 29)sinw(eicipr + ¢, ¢)
+ (14 25)cosw(n; + nipy — ) = s@2nj — DQ@nipy — D], (19)

all have the same ground space Gy given in equation (13). The parameter s interpolates between interacting
systems with s = 0 and the non-interacting cases = 0,i.e. A = B. The special case H'(s = 0) corresponds to
the Kitaev chain [2] in the topologically-ordered regime: topological order is present in the system only when

2|¢| > |p| (where p corresponds to the bulk on-site chemical potential value ¢4 = 4B cosw)and A = 0.1In
terms of our parameters, these two conditionsare 1 > cosw and sinw = 0, which are clearly true for the full
range of w € (0, 7). Hence H'(s = 0) is topologically-ordered quite generally, that is, for all allowed w, and it is
known that H'(s = 0) supports MZM:s localised at the ends of the chain [2, 24]. Moreover, from [25] and
appendix A, we know that the Hamiltonian H’(s) remains gapped forall s > —% (i.e.forall A, B > 0).
Therefore, since the interacting system is adiabatically connected to the non-interacting one, they are in the same
topologically non-trivial phase.

The condition that the gap does not close along the whole path s may not be sufficient to ensure H'(s) and
H'(0) are in the same phase. This is because interactions modify the topological classifications of fermionic
Hamiltonians, and a Hamiltonian in the topological phase may be connected to a trivial one without the gap
closing [32]. Without interactions, these Hamiltonians are indexed by an integer k € Z (the ‘topological
invariant’); adding interactions modifies this to k € Z modulo 8 [33, 34]. The Kitaev chain H’(0) is in the
Altland-Zirnbauer symmetry class BDI [35] because the Hamiltonian commutes with the time-reversal
operator 7, with 72 = 1, and with the charge conjugation operator (due to particle-hole symmetry) P, with
P? = 1.In the Kitaev chain, the topological invariant k = 1[28]. To study interacting models, one considers n
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parallel Kitaev chains, i.e. 2n MZMs +, and then asks what kinds of symmetry-preserving interaction terms can
gap out the MZMs and lead to a non-degenerate ground space. It turns out that 8 chains are needed, i.e. an
interaction involving 8 MZMs, before such an interaction can arise (hence the modification of Z to Z modulo 8
mentioned above). For all s, our interacting Hamiltonian H'(s) is still a single chain of fermions, which retains a
gap and the same symmetries. Therefore there is no way of gapping out the MZMs on this chain, and so the
ground space remains degenerate (in fact the ground space is independent of s). Hence, H'(s) and H'(0) are the
same non-trivial phase.

Further evidence for topological order in H'(s) is supplied in [24] by identifying two fermionic operators +,
and , that satisfy conditions (a)—(e) in section 2 for H'(0) and so are candidate MZM:s for the non-interacting
system. In addition they correspond to modes localised on opposite ends of the chain. However,

[, H'(s)] = 0for s = 0. Therefore, an analytical form for MZMs in the interacting case is yet to be
found [24].
Consider now a type 2 Hamiltonian characterised by equations (11) and (12). Itis equal to
H= %[(L — 1)(A + B)1 + H']where
-1
H' =3 (A= B)lcosy(Zi — Ziy1) + siny(X;iXip1 + YY)l — (A + B)ZiZiy. (20)
i=1
This is adiabatically connected to an Ising Hamiltonian (where A = B) with dimer terms Z;Z; , ;. In the
fermionic picture thishas t = A = p = 0, therefore this Hamiltonian is in the topologically trivial phase and
there are no MZMs.

3.3.2. Case (ii): G;, = span{|afaf...), |Bafa...)}
Given any two states |«) and | 3), it is always possible to find a unitary Usuch that U|a) = |3)and U? = 1. This
means that case (ii) is locally unitarily related to case (i), and the derivation of the case (i) Hamiltonian in
appendix C can be easily modified to account for case (ii).

The topologically non-trivial case (i) Hamiltonian is of type 1. Since | 3) = Z|a) and Z? = 1, then case (ii) is
related to case (i) by alocal unitary transformation that is a Pauli-Z on every even qubit
Zewen =10 Z®1® Z...orodd qubit Zogq = Z 1 ® Z® 1....Let Z € {Zeyens Zoad}- Then the
Hamiltonian of interest in case (ii) is ZH'Z, where H' is given by equation (14). The Hamiltonian remains
translationally invariant and preserves fermionic parity. In the fermion picture, Z has the effect of sending
t — —tand A — —A, and corresponds to the local unitary transformation ¢; — (—1)/c;. (Note that if we only
wanted to transform t — —t and change nothing else, this would correspond to a combination of the above
unitaries: in the spin picture itis V®!Z, where V = |0) (0| + i|1) (1], and in the fermion picture ¢; — i(—1)/c;.)
As case (i) and case (ii) are related by a local unitary that commutes with the parity operator, ZH'Z has all the
same physical properties as H'. In other words, it has the required symmetries and is also in the topologically
non-trivial phase and can host MZMs localised at opposite ends of the chain.

3.3.3. Case (iii): G, = span{|a)®F, |aaaq...a) + flada...a) + fHaad...a) + ...+ fI oo ... &)}
Let|a), |&) € C?bea pair of orthonormal qubit states. In [25], it is shown that the Hamiltonian

-1

H =) Alaa)(aalii + Blv) (Yiiv1, A, B>0 (21)

i=1
with [v) = (Jaa) — f|da>)/\/ 1 + |f]* and non-zero f € C has the two-fold degenerate ground space
Gp = span{|a)®t, |aaa...a) + flaaa...a) + facd...a) + ...+ fFaaw... &)} Infact, amore gen-
eral FF Hamiltonian with this ground space is permissible, and that is one that is a sum of dimer terms
[U(Alaa) (aa@| + Blv) (1) UT]; ;1 where Urotates only in the subspace span {|@a), |v/)}. The Hamiltonian is
gapped when | f| = 1. Imposing parity conservation on H fixes |a) = |0), |&) = |1), U = 1, and itis possible to
choose alocal basis such that f € R. Then the ground states of H are |0)*L and

11000...00) + £]0100...00) + ... + f£~2/0000... 10) + fL=10000...01), (22)

which is left unnormalised. Since | f| = 1, this ground state is not permutation symmetric. The Hamiltonian is
givenby H = L[(L — 1)(I1 + f2"'B + A)l + H'],with H' = ¥_{"' b/, and
B(1 — f? B(1 — f?
hi/,i+1 = _(A - i_’_if]:))zi - (A + i—l—ifé))ziﬂ
2Bf

- W(XiXiH + YY)+ A —-BZZ. (23)
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The fermionic dimer Hamiltonian (see appendix D) is

, B(1 — f?) B(1 - f?)
Litl = (A — WJ(Z”; - Jl) + (A + WJ(zni+l - ]1)
(¢ cip1 + ¢ y0) + (A = B)@ni — DQ2nigy — D). (24)

— T

Following the same procedure as in case (i), we introduce a variable s o« A — B such that H’(s) isa one
parameter family of Hamiltonians which is adiabatically connected to the non-interacting system H'(s = 0). As
long as we fix | f| = 1 the system remains gapped and the ground space is constant as we vary s, so H'(s) and
H'(s = 0) are in the same phase. Is the Hamiltonian H'(s = 0) topologically non-trivial? The two necessary
conditions from [2] for thisare A = 0and 2t > |u|. Immediately we see that A = 0, which is already bad news.

Furthermore 2t > |u| from [2] turns out to be false. To see this, note that the bulk x = 4A, and with t = 1?}2 R

the inequality leads to (1 — f)? < 0 which is false for all real f. Therefore, H'(s) is adiabatically connected to a
non-interacting Hamiltonian in the trivial phase. Now, while the non-interacting Hamiltonian H'(s = 0) may
not host MZMs, it does not immediately preclude the possibility that the interacting one may. If H'(s = 0)isin
the trivial phase, then its topological invariant k = 0[28]. When we switch on interactions, the topological
invariant of the interacting system goes to k = 0 mod 8 = 0 [32, 34], hence the interacting system is also trivial
and so it does not support MZMs.

This model does, however, possess zero modes due to the way it was constructed. These are easiest to analyse
in the non-interactinglimit A = B. The Hamiltonian becomes quadratic in the fermionic operators c;, c]-T, and

so we can express itas H'(0) = %QTWQ where Q = (g, ..., ¢)!. Inthis case, Wis a Hermitian tri-diagonal

L x Lmatrix, and its null vector has the form u = (f, f2, f>, ..., f1)T. Hence one finds that the complex
fermionic zeromodeis ¢ = N Zle fi ¢j, where N is a normalisation constant. This mode commutes with the
Hamiltonian: [¢, H] = 0. When | f| < 1this corresponds to an edge mode localised on the left side of the chain
while for | f| > 1the mode islocalised on the right. The two Majorana fermions, 7, = ¢ + ¢'and

v, = —i(¢ — &"), composing ¢ each satisfy the conditions set out in section 2 and therefore correspond to zero
modes, however they are localised at the same end. Since these modes are not spatially separated, the Majoranas
can be easily gapped by a local perturbation.

There is another way to interpret the topological triviality of the Hamiltonian in equation (24) by noticing
that it preserves fermion number (not just fermion parity). Then the degenerate ground states are states of
definite fermion number, 0 or 1 (and opposite parity). These distinguishable by the local operator N = Y%,
and hence they do not enjoy the topological protection that Hamiltonians of case (i) do. The ground states of the
case (i) Hamiltonians are superpositions of all number states of definite parity, and therefore suffer huge
fluctuations in measurements of N, and so effectively, when L is large, one cannot distinguish the ground states
since (N) ~ % for both states. Notice that the rank 1 Hamiltonian of section 3.1, and the case (i) type 2
Hamiltonian of equation (20), also conserve fermion number and are topologically trivial. Nevertheless, because
number conservation is a natural symmetry in several systems, proposals for constructing MZM model within
number-conserving systems have been presented in [36, 37]. There the authors consider two coupled Kitaev
chains and demonstrate topological properties by analytically diagonalising the full Hamiltonians, which are FF.

3.4. Comparison of the spin and fermion pictures
There are a few observations to be made that arise from switching between the spin and the fermion pictures.
Consider first the spin picture. A key difference between the cases (i) (or (ii)) and (iii) is that, in the former, cases
(i) or (ii), the ground space is invariant if we close the chain. That is, making the Hamiltonian in equation (14)
periodic by adding a coupling h; | term between sites 1 and L does not affect the ground space G; equation (13).
In fact, for case (i) G is invariant under the addition of a coupling k; ; between any two spins (not just nearest-
neighbour). In a sense, case (i) is topologically-trivial in the spin picture. This is in stark contrast to the Majorana
picture, where closing the chain results in a loss of MZM:s since there is no Majorana operator - that commutes
with hy ;. Therefore topologically trivial spin systems may correspond to topologically non-trivial systems of
fermions.

On the hand, let us now consider case (iii). For the spin system, if we close the chain the ground space
degeneracy is lost and the only remaining ground state is |0)*L. The spin ground space now is sensitive to the
topology. The ground state degeneracy of the fermion system is similarly removed by closing the fermion chain.
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4. Examining the MZM Hamiltonian through the lens of matrix product states

In section 3.3.1 we derived the FF Hamiltonian, equation (14), that supports MZMs. We now formulate the spin
ground states of this Hamiltonian as matrix product states (MPSs). This was explored previously in [38] but
there the connection with frustration freeness and other properties was not so explicit. Here we highlight these
observations, as well as discussing additional aspects like injectivity, and confirm that the system satisfies an
arealaw.

The MPS is a particular representation of a quantum state. The MPS for a state of L qudits is

[) = > (AW LAl | L), (25)
[T

where it € {0, ...,d — 1}forall k = 1... L. The i; label the physical qudits with dimension d and the Al are
Dy X Dy 1 matrices where D = max;, Dy is the ‘bond dimension’. For open boundary conditions
D, = D; = 1. Any quantum state can be written in MPS form for large enough D, however, the MPS is most
useful when D is constant in L since this enables efficient computation of measurable quantities [39, 40]. The
MPS formalism is useful for approximating ground states of one dimensional quantum spin models. Both the
AKLT [22] and Majumdar—Ghosh [41] Hamiltonians have ground states that can be efficiently represented using
MPSs. MPSs, and their generalisations to tensor networks, are a powerful resource in the study of many body
systems. MPSs form the variational domain for the density matrix renormalisation group [39, 42], and provide
an invaluable tool for analysing area laws [43]. Furthermore, for every MPS, there is a FF ‘parent Hamiltonian’
for which the MPS is the ground state [23]. We study this in more detail below, after we recast our MZM
Hamiltonian (in the spin picture) ground states as MPSs.

The spin state for which we seek an MPS is any vector in the ground space Gy from equation (13) i.e.

lY) € span(|a)®*, |8)°") = G, (26)

with the local basis states chosen such that |a) = cos(6/2)]0) + isin(6/2)|1) = Z|3). The ground space Gy isa
subspace of the symmetric subspace S; on L qubits, where dim(S;) = L + 1. All states in Sy can be written as an
MPS with diagonal matrices A"l and bond dimension D = L + 1[44]. The linear growth of D with system size
may mean that the area law does not apply when the ground space of a Hamiltonian is Sy (an example of such a
FF Hamiltonian is when it is a sum of rank 1 projectors, see section 3.1 above). Nevertheless, it has been shown
that this does in fact satisfy an area law [29]. In any case, since dim(G) = 2, the size of the ground space G; of
the MZM Hamiltonian is constant in L. Therefore, any statein G; C S; can be represented an MPS with
diagonal matrices Al with D = 2, and this satisfies an area law [45, 46]. We show in appendix E that the bond
matrices for the state [¢) = u|a)®L + v|3)®! € Gp, with the local basis choice

la) = cos(0/2)|0) + isin(8/2)|1) = Z|B), are

W = cos(6/2)1, WU = isin(9/2)Z, (27)

fork = 2, ..., L — 1,and the boundary matrices are row and column vectors due to open boundary conditions:
WO = cos(0/2)(u, v), Wil = isin(0/2) (4, —v), W = cos(0/2)(1, 1)T,and Wl = isin(6/2)(1, —1)T.
The parent Hamiltonian H of this MPS is the one we find in equation (14), which can support MZMs. As its
ground state space Gy is degenerate, this MPS is non-injective. Such an MPS corresponds to systems with discrete
symmetry breaking [47]. An arbitrary state |1)) = u|a)®F + v|8)®L € G| does not possess the symmetries of
Majorana Hamiltonian, which are fermionic parity conservation, and, additionally, invariance under time
reversal. This can be seen from their action in the spin picture, which happens to coincide for the local basis
choice: ZL (u]a)?t + v|B)*L) = ula®)®F + v|F¥)EL = u|B)®F + v|a)®L = |¢)). Ifan MPS s, on the other
hand, injective, then it is the unique ground state of a parent Hamiltonian, and, in 1D, it is known that this
Hamiltonian is gapped [23]. So our MZM Hamiltonian is an example of a non-injective but gapped system.

5. A broader class of FF Hamiltonians

In the preceding work, we have only considered FF Hamiltonians with certain symmetries, namely translational
invariance and fermionic parity conservation. However, given a ground space Gy, there is a whole family of FF
Hamiltonians that share this ground space G;. This family is obtained by applying a unitary U; to each dimer
term h; ;1 that only rotates in the range of h; ; ;. Thatis, if H = 3, h; ;; is a Hamiltonian with ground space
Gp,thensois Hy = ), U,-hi,iHUf aslongas ker(h; ;1) = ker(Uihi,iHUiT) for all i. Notice that the unitary U;
can be site-dependent, i.e. we can drop translation invariance. If we also relax parity conservation then in case (i)
we can obtain spin dimer Hamiltonians like equation (14) with an antisymmetric Dzyaloshinskii-Moriya
interaction XZ—ZX [48, 49]. However, because the system is FF, the coefficients in the dimer Hamiltonian are
not independent and so the antisymmetric interaction always appears along with an additional local transverse
magnetic field in the X direction.
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6. Conclusion and future directions

Employing known results about gapped FF spin system [25], we use a Jordan—Wigner transformation to deduce
the full set of dimer FF fermionic Hamiltonians that can support MZMs. We find that interacting Hamiltonians
arise quite generically (the interactions can be either attractive or repulsive), and that they are adiabatically
connected to the non-interacting Kitaev chain [2], as previously observed in [24] using different methods. The
MZM Hamiltonian in the spin picture corresponds to a Heisenberg XYZ chain with a local magnetic field. We
show that the ground states have an efficient MPS representation, and furthermore that the Hamiltonian is non-
injective, gapped, and satisfies an area law.

Restricting the Hamiltonian to consist of dimer terms (two-body and nearest neighbour terms #; ;) in the
spin picture is initially an assumption. The resulting Hamiltonians in the fermion picture are of the same form
because fermionic parity precludes anything other than fermionic dimer terms. Conversely, a dimer fermionic
Hamiltonian only gives rise to dimer spin Hamiltonians. Thus within this setting, our classification of Majorana
phases is exhaustive. We focussed on this setting because it allowed us to make conclusive statements, and
because it is physically well-motivated as dimer Hamiltonians appear in many experimental settings. One could
consider more general terms e.g. (i) three-local terms h;j, or (i) two-local but not nearest neighbour. Regarding
(i), we are not aware of theoretical results classifying the FF and gapped regimes for such models, thus this
question would need to be addressed first, and it certainly forms an interesting future direction. As for (ii), there
may be scope for deriving results for Hamiltonians with termslike h; ;. ,. The reason is that it turns out that our
case (i) spin Hamiltonians (when t = A, or equivalently A = B sin w) are dual to the ‘axial next-nearest
neighbour Ising’ (ANNNI) Hamiltonians, and these have terms like 4; ;1 , [26]. Because of duality, the phases of
our case (i) and the ANNNI match, therefore one could use our methods to analyse Majorana phases in the
fermion picture of ANNNI. Also, this set of Hamiltonians happen to lie on the ‘ODL’ of Peschel and Emery [26].

The FF requirement could make it difficult to realise our MZM Hamiltonians in an experiment due to the
fine-tuning of parameters. Therefore, an analysis of the effects of perturbations needs to be made, and
considerations for how the system changes as the Hamiltonian varies away from the FF manifold.

Nevertheless there is still much to be explored within the FF set. Although the ground states of such
Hamiltonians may be easy to determine, this does not hold for the excited states, which generally are frustrated.
Characterising the whole spectrum would desirable for the purposes of perturbation theory, and also for finding
an expression of the MZM for the interacting FF Hamiltonian.

Finally, one can ask about 1D FF Hamiltonians for parafermions, the higher dimensional analogue of
MZM:s, or for qudits. Already this has been analysed for the non-interacting chain in [16]. Perhaps it is tractable
also in the interacting case.
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Appendix A. Gap properties and the spectrum of the dimer terms /; ; |

We consider the following lemma for translationally invariant Hamiltonians but it is not difficult to show it also
holds when this assumption is dropped.

Lemma 1. Consider a system of L spins, where each is associated with an n-dimensional Hilbert space C", and the
total spaceis H = (C"®L. Let H = Zleh(i) be a k-local, translationally invariant FF Hamiltonian with ground
space G. Without loss of generality we choose all h'" to be positive semidefinite and with lowest eigenvalue equal to

zero. Each term h®) = Z?k:l,ujle]) (ejlV, and g = 0.Let JC N= {1, ..., 1%} denote the set of all indices j for
which f1; > 0,i.e. K = Zjej,ujlej> (ejlV, and by assumption J = @ and J = N . Define H = S O, where
IO = 3. slej) ()| is the projector onto the range of h%". Let the ground space of H be G. Then (a) H is FFifand
onlyif H is,and G = G;and (b) H isgapped in the thermodynamic limit L — oo ifand only if H is.

10
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Proof. (a) Define
nk
AD = Zlujle» (e, (A1)
=

where ,u]+ = pif y1; > 0,i.e. j € J, otherwise uj,* = 1. Then A? isinvertible and strictly positive, that is,
(wlAD|w) > 0forall|w) = 0 € H.Furthermore h') = ADTI® forall i = 1, ... L. Since His FF, then

KO |g) = AOTIO|G) = 0 (A2)
forany|p) € Gandalli = 1, ... L. Now, since A” is a (strictly) positive definite operator, then this implies that
the only vector |w) that satisfies A?|w) = 0 is the null vector, hence we must have |w) = T1?|¢) = 0 forall

i = 1, ... L. But this s precisely the condition for H to be FF. Since this holds for any |¢) € G, we deduce that

G C G,where G isthe ground space of H.

For the converse, we proceed in an analogous manner, and establish that G C G.HenceG = G.

(b) Let s be the smallest non-zero eigenvalue of the set of all the 1, and 0 < ||h|| = max;||i?|| < oo (the
Schatten operator 1-norm) is the largest eigenvalue. Then since ||4||TI?) > h® > sTI® for all i, it follows that

IBIIIHTY) > (VIHIY) > s (VIHIY), (A3)
forall [¢)) € H.LetE (E)be the minimum strictly positive eigenvalue of H (ﬁ ) with eigenvector |E) (E)). Then
|E), |E ) € G*, the orthogonal complement of G (and G is equal to G from (a)).

First we establish H gapped = H is gapped. Assume H is gapped. By assumption E = E(L) remains strictly
positive as the number of spins L — o0o. Then from the first inequality in equation (A3), with [) = |E), we
have

IRIEIH|E) = ||hI|E > (E|HIE) (A4)
but by definition, the right-hand side is lower bounded by (E|H|E) = E.Hence we have established that
E > E/||h||. Since ||h|| is bounded and independent of L then the right-hand side remains strictly positive as
L — oohence H is gapped if H is.
Now we establish H gapped = H is gapped. Assume His gapped. By assumption E = E (L) remains strictly

positive as the number of spins L — c0. Then from the second inequality in equation (A3), with [¢)) = |E), we
have

(E|H|E) = E > s(E|H|E), (A5)

but by definition, the right-hand side is lower bounded by s (E|H|E) = sE. Hence we have established that
E > sE.Since s > 0and independent of L then the right-hand side remains strictly positive as L — oo hence H
is gappedif H is. O

Appendix B. Hamiltonian with rank 1 dimer terms

Consider a general two-qubit state
[v) = a]00) + b|O1) + c[10) + d|11), (B1)

and the Hamiltonian H = Y>F ' by with Fy ;= |1) (¢];;4 1. To qualify as a valid MZM Hamiltonian, it
must be preserve fermionic parity. In the spin picture this condition is [H, Z®'] = 0, which is equivalent to
[hiir1, ZiZiy1] = 0foralli, and this can only be satisfied if

Z @ ZW) = ey, ¢ €R. (B2)

This is an eigenvalue equation for the parity operator Z ® Z. The eigenvalues of Z ® Z are +1and —1, and the
corresponding eigenvectors are even and odd parity respectively. In qubit language, even (odd) parity states are
linear combinations of computational basis states with an even (odd) number of 1s. Hence, for two qubits, the
even parity sector is spanned by {|00), |11)}, and odd parity is spanned by {|01), [10)}.

Hence |¢)) iseither [¢),) = a|00) + d[11)or[i) = b|01) + |10). Ref. [25] considers only entangled [¢)),
and it is stated that H is gapped if and only if the matrix

( (ylo1) <w|11>)
—(¥100) —(¥[10))’

= (B3)

has eigenvalues A; and A, such that | A = |\y].
The eigenvalues of Ty, are +-a*d*, hence this is gapless. The eigenvalues of Ty, are b™ and —c*, hence this is

gapped aslongas |b| = |c|.Let b = cos g and ¢ = e¥sin g. The product of qubit unitaries S = ®%_, Sk, where

11
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Sk = 10) (0] + e'®~D«|1) (1|, commutes with the parity operator Z®*, preserves translational invariance and
removes the phase e!. Hence we can instead consider ¢ = sin g without loss of generality. Also required by [25]
is @ € (0, /2) so that|1) remains entangled. Then

-1
H=H(®) = > |¥) (¥t

i=1

1 .
= Z[(L — DI+ cos0(Z; — Zipy) + sin0(X;Xip + YY) — ZiZigq]. (B4)

Appendix C. Deriving the FF Hamiltonian for case (i) in section 3.3

Recall that i > 0isatwo-qubit, rank-2 operator which cannot be written as iy ® hg, for some single qubit
operators hy, hg. We adapt a paragraph from [25] which shows that the range of /1 is spanned by two linearly
independent states |1)), |¢) which are both entangled. Consider the product operator k4 ® hg. Thisis positive
and rank-2 ifand only ifitis of the form | ) (x| ® M or M ® |x) (x|, where |x) € C*and M s a positive
definite operator (i.e. rank (M) = 2). Therange of hy ® hg is then of the form span(|x) ® [0), |x) ® |1))or
span(]0) ® |x), |1) ® |x))- These are the only two-dimensional subspaces of C> @ C? that contain only
product states. Moreover, the rank-2 positive operators with such ranges are always product operators. Since, by
assumption, h = hy ® hg, then the range of h is not of this form and so it must contain at least one entangled
state. Callit [¢)). Let |) also be in the range of h but linearly independent from |¢)). Then |¢) = [¢)) + z|v) with
z € Cisalso in the range of h, and we can always choose a zsuch that | ) is entangled and it is linearly
independent of |¢)).

To the state |¢)) we associatea2 X 2 matrix

(plo1)  (11)
= N Cl1
v (<w|00> <w|10>) (b
and similarly for |¢). Note that
[v) = [det(THFA ® T, )IE), (C2)

where [§) = |01) — |10) is the (unnormalised) singlet state, and T, = (TJ))*1 = (T, . Furthermore, matrix
Ty (T,) isinvertible ifand only if [¢)) (|¢)) is entangled, which it is by assumption.

Recall that the minimum energies of h; ;, ; and H are zero, so the ground space is equal to the null space. Ina
FF system, an L-qubit state is in the null space of Hif and only if it is in the null space of |¢)) (¢/]; ;+ 1 and of
|¢) (@Pliiy1foralli =1, ..., L — 1. The form of the ground states can be presented in terms of the matrices T,
and T. In[25] itis shown that the cases (i)—(iii) in section 3.3 break down into conditions on the eigenvectors of
T, ! Ty and T, Below we consider case (i) and work backwards from [25] in order to obtain the FF Hamiltonian
whose ground space is G; = span{|a)®L, |3)®L }. Case (ii) is simply a local unitary rotation away from case (i)
(see section 3.3.2), and for case (iii) the Hamiltonian is already given in [25].

In case (i), the matrix T, ' T, has linearly independent eigenvectors {|cv), |3) } and these are also eigenvectors
of T,;. Hence they are also eigenvectors of Ty

T, ' Tyloy o |a) < Ty'lla) = Tyla) o« |a), (C3)

and similarly for | 3). Note that the assumption |1) and |¢) are linearly independent means Tgl Ty isnot
proportional to the identity. Since Tyyand Tyared X dmatrices (hered = 2), and they have acommon set of d
linearly independent eigenvectors, then these eigenvectors form a (non-orthogonal) basis for C2. It follows that
T, and T4 commute, and that they are simultaneously diagonalisable. Let {|0), |1) } be an orthonormal basis for
the qubit space C2. Define Q = |a) (0] + |3) (1] as the matrix whose columns are the eigenvectors |a) and | 3),
and Dy, D are diagonal matrices of eigenvalues of T, and T, respectively. Then

T, = QDyQ, (C4)
T, = QD,Q. (C5)
From equation (C2) the entangled vectors in the range of h then are
[¢) = [det(Dy)I1 © (Q (D)™ Q'¢), (Co)
l¢) = [det(Dy)F1 @ (Q~H(D)~'Q7¢). (C7)

12
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Using the identity
i YQY
det Q¥
we find QT = [det Q*]7'(|3) (0| — |&) (1]), where |&) and | 3) are the normalised states orthogonal to |a) and
|3) respectively. Let Dj/; = 1|0) (0] + u|1)(1|and D; = 1|0) (0] + w|1) (1], then
¥) = wlaB) — uolfa), (C9)
lp) = vilaB) — vol Ba). (C10)

These two states are required to be linearly independent, i.e. the vectors of eigenvalues (19, 1) and (vy, v;) must
be linearly independent. Hence the FF Hamiltonian with ground space G; = span{|a)®L, |8)® } has rank-2
dimer terms h; ; , ; with range equal to span(|¢}), |$)). Any such operator can be written as

hiiv1 = [Aln) (nl + BIn) (Alliiv1 (C11)

where A, B > 0and {|n), |)} isan orthonormal basis for span(|¢), |¢)).
We can construct one orthonormal basis by choosing coefficients (1, 1) and (vg, ;) such that |[¢)) and |¢)
are orthonormal (the choice is the same for any |a), | 3) and so this procedure is independent of Gr). Fixing

Uy = w; = [\2 detQ*]"! , then |¢)) — |U) := %(|Ol> — |10)), the singlet state. Let |®) denote the |¢)) with
(vo, v1) chosen so that (¥|¢) = 0. Thisyields v; = —v;. Therefore |¢p) — |®) := %(@B) + |Ba)), where N
ensures (P|®) = 1.

An arbitrary orthonormal basis {|7), |7) } for span(|¢)), |$)) can be achieved by applying a two-qubit

unitary transformation U'to {|¥), |®)} that only rotates in this two-dimensional subspace. Such a unitary Uis of
the form

(C8)

U = exp[—ifn - o], (C12)

where n € R3isaunitvector, § € R, and o is the vector of Pauli-like matrices in the orthonormal basis
{I¥), |@)},ie.

or = W) (D] + |¥) (2|, (C13)
oy = —i[¥) (O] + i|¥) (D], (C14)
o3 = [0) (U] — |®) (D] (C15)
Hence
hiiv1 = [UAI®) (¥| + B|D) (P Ui it1, (C16)
V) = %(IOD - [10)), (C17)
|®) o |af) + |5a), (C18)

is the most general dimer term with ground space G; = {|a)®%, |3)®L}.

Now, in order for the Hamiltonian H = ), h; ;1 ; to be a valid MZM Hamiltonian, it must preserve
fermionic parity. In the spin picture this condition is [H, Z®!] = 0, which is equivalentto [h;;,1, Z;Z;;1] = 0
for all 4, and this can only be satisfied if

Z @ ZUW) = evU|T), (C19)
Z @ ZU|®) = e'%U|®), (C20)

where 6y, 05 € R, and we have dropped the site label i. These are eigenvalue equations for the parity operator
Z ® Z.Theeigenvalues of Z @ Z are +1 and —1, and the corresponding eigenvectors are even and odd parity
respectively. In qubit language, even (odd) parity states are linear combinations of computational basis states
with an even (odd) number of 1s. Hence, for two qubits, the even parity sector is spanned by {|00), |11)}, and
odd parity is spanned by {|01), [10)}.

The states |¥) and |®) are respectively antisymmetric and symmetric under exchange of the two spins.
Already the singlet |U) = %(lOI) — ]10)) has parity —1. The state | ®) is some state in the symmetric subspace,

and it can always be written as a linear combination of definite parity states

@) = wil®p) + wl®y), sl + =1, (c21)
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where
0 L
|®,,) = cos 3 |00) + e“sin 7 [11), 6O €0, 7], w€]0,2n), (C22)
and
1
d ) = —(|01) + |10)). (C23)

The unitary U then produces linear combinations of |¥) and | ®). It is not difficult to see that there are only two
categories of ) and |®) that yield parity preserving dimer terms h; ;, 1. As |¥) has definite parity —1, the only
way it can combine with |®) to produce new states of definite parity is if |®) = |®_;). There is another
independent solution, that is the pair |¥) and |®) = |®,,), and only trivial unitaries U are allowed (identity and
swaps). We summarise as:

Category A
1
|T) = —2(|01) — [10)), (C24)
1
P) = |P_;) = —(]01) + [10)), C25
I>I1>ﬁ(|>|>) (C25)
with any unitary Urotating in span (|¥), |®)) allowed. Note that this is equivalent to defining
[¥) = [|01), (C26)
|®) = |10). (C27)
and allowing any unitary U rotating in span (|01), |10)).
Category B
1
U) = —(|01) — |10)), C28
¥) ﬁ(l ) — [10)) (C28)
0 w0
|®) = |®,,) = cos > |00) + ei“sin > I11), #e[0,n], we [0,27). (C29)

Note that we can always find a local basis such that the parity-conserving Hamiltonian is also real (and
therefore time-reversal symmetric). To see why, consider first category A. Vectors of the form

Ulw) = c0s§|01> + eibsin§|10>, (C30)
. a b a
Uld-,) = sm5|01> — e c055|10> (C31)

willappear in h; ; , 1. Applying the product of qubit unitaries S = ®F_ S, where S, = |0) (0] + e *=D?|1) (1],
commutes with the parity operator Z®%, preserves translational invariance of the Hamiltonian and removes the
phase e'’. Without loss of generality then, we can always consider Uto be real.

Now consider category B. The singlet |¥) has the property that V ® V|U) = det V|¥) for any unitary
V€ UQ2).Let V= [0)(0] + e “/2|1)(1], thenapplying V ® V to the singlet |¥) and to |, ;) gets rid of the
phase e, Hence, since [V, Z] = 0, applying V®I to H results in a real and translationally invariant
Hamiltonian that is parity conserving. For this reason, without loss of generality, we need only consider

real |®,;) = cos (g)lOO} + sin (§)|11>.
Given these results, we now need to determine the ground space vectors o) and | 3). Recall that
|D) = %ﬂ&ﬁ ) 4 |Ba)). We can parametrise the qubit states in the standard way:

la) = cos =[0) + esin—[1), |&) = sin—[0) — e’ cos =|1), (C32)
2 2 2 2
18) = cos£|0> + eiysin£|1>, 18) = sin£|0) — eV cos f|1>, (C33)
2 2 2 2
where u, x € [0, m]and v, y € [0, 27). Then
2 u X : u X
®) = ——|sin — sin =|00) + el’t)cos — cos =|11 C34
#) = | sin 2 sin 2100 cos ) (€34
1 . u X . X u
———|eYsin — cos — + e'sin — cos —] D C35
«/5[ 3 5 5 > | 1>) (C35)
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Category A: |®) = |®_,). There are two ways this can be achieved:

(a) sin% = cosg =0=u=0, and x=r, (C36)
. X u
(b) smz = COSE =0=x=0, and u=. (C37)

In case (@) we find |a) = |0)and |3) = el|1),and in case (b) |a) = e?|1)and|3) = |0). Since global phases are
irrelevant, these two cases give the same solution.
Category B: |®) = |®,1) x cos (%)|00> + sin (g)lll}.This occurswhen y + v = 27N and

esin 2 cos = + eV sin X cos £ = 0. (C38)
2 2 2 2
Rearranging yields
tan Le? — _tan X, (C39)
2 2
Resolving into real and imaginary parts:

tan % cos2y = —tan g, (C40)

tan % sin2y = 0. (C41)

Thelast equation has a solutionwithu = 0and y € [0, 27). Thisimpliesx = 0,and we find |a) = |5) = |0),
however this violates the requirement that |«) and | 3) are independent vectors. The only other solution to
equation (C41)is y = nm/2forn € {0, 1, 2, 3}since y € [0, 27).

Ifn € {0, 2}, then equation (C40) implies that% = ,% + mm = u = —x + 2mm, where m is an integer,

butas u, x € [0, 7], then u = —x. The vectors in this case are:
la) = cos§|0> + sing|l>, 18) = cosg|0> — sin%ll), for n=0, (C42)
|a) = cos E|O> — sin ﬁ|1>) |8) = cos z|O> + sin2|1>, for n=2, (C43)

2 2 2 2
so both these values of n give the same solution. Since we must have independent |«) and | 3), this restricts
u € (0, 7). Thestate |®, ;) — |®%,) = %(—sin2%|00> + c052%|11>), and the dimer Hamiltonian here is
hiien = ANW) (U] + BIY,) (@], (C44)

Ifn € {1, 3}, then equation (C40) implies that% = g + mm = u = x + 2mm, where mis an integer, but
asu, x € [0, 7], then u = x. The vectors in this case are:

la) = cos%lO) — isin%ll}, 18) = cos%lO} + isin%ll), for n=1, (C45)
la) = cos%lO) + isin%ﬂ}, 18) = cos§|0> — isin%ll), for n =3, (C46)

so both these values of n give the same solution. Since we must have independent |«) and | 3), this restricts
u € (0, 7). Thestate |®, ;) — [P ) = %(sin2 5100) + cos® 7|11)), and the dimer Hamiltonian here is

hiicr = AlD) (W] + B|®L,) (D). (C47)
Notice that |®! ) = S ® S|®Y,), where S = i|0) (0] + |1) (1|, and since | ¥) is the singlet, we find
hiji1 =S ® Shi; " ® S'. (C48)

So since the Hamiltonian with these dimer terms are related by S*I and [S, Z] = 0, the topological properties of
their resulting Hamiltonians will be the same.

Hence we may summarise as follows. Up to a product of qubit unitaries = U} ® U; ® ... ® Uy that
commutes with parity Z®* and preserves translation invariance, the parity symmetric L-qubit FF Hamiltonian
H = Y. h; ;. witha two-dimensional ground space G; = span{|a)®’, |3)* } has dimer terms

hijivr = [UAN) (] + BI®) (@D Uiir1, A, B> 0, (C49)

that split up into two types:

+ Typel

w>=§§mn—umx (C50)
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1 u u u u
®) = —(sin? —|00) + cos?—|11)), N = [sin*— + cos*—, C51
8) =~ Gin? 2100) + cos 211y, N = [sint 2 ¢ cost (@1

where u € (0, w)and U = 1. The ground space states are |«) = cos%lO} + ising|1>
and |3) = cos%lO) - isin%ll) = |a¥) = Z|a).

+ Type2
T) = cos%lOl) + sin%llO), (C52)
|B) = sin%|01> - cos%|10>, (C53)

with v € (0, 7). The ground space states are |o) = |0)and |3) = |1).

Appendix D. The Jordan—Wigner transformation

Here we discuss the conversion of a qubit Hamiltonian into a spinless fermion Hamiltonian using a Jordan—
Wigner transformation. Let c; and ¢;be the (spinless) fermion creation and annihilation operators, respectively,

atsitejwith j = 1, ..., L. They obey the standard anticommutation relations: {c;, ¢c} = 0, {c], ¢/} = 0and

{c, ) = dix. Then the Jordan—Wigner transformation between Pauli spin operators and fermion operators is

j—1

X; = [@Zk](c; + ¢, (D1)
k=1
j—1

Y, = i[@Zk](c} —¢)s (D2)
k=1

Zj =1- an, (D3)

where n; = c]i" ¢j is the fermionic number operator.

In order to have the correct symmetries, the spin Hamiltonians that can support Majorana zero edge modes
will only contain terms like X; X1, Y;Yj41, Z;jZ;,and 1-local Z;. In terms of fermionic operators, the Z terms
are straightforward, and we find

XiXji1 = ¢+ €16 — GG — ¢y, (D4)
YjYjir = ¢l + ¢fia6 + G + ¢y (D3)

Inserting these expressions into the qubit Hamiltonians immediately yields the results in the main text.

Appendix E. MPS form of the states in the case (i) ground space G;

The MPS formulation of an L-qudit state [¢)) is
[¥) = > tr(A Al L), (E1)
ity it

where i, € {0, ...,d — 1}forallk = 1...Landthe Al are D x D matrices. Then

L
Q@FH) = S tr(All . Ay Fll|) ., FILl|jp)

k=1 Ty oeesip

= X AL A )

Ji> oo jL [N

= S (B B ), (E2)
i1 ool
where
k .
FH = 3 910 (u, (3)
Jile
and
] — (k] Alix]
i = S 2
L3
fork=1,...,L.
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The MPS matrices for product state |0)*F are Cli!l = §;y, and for |1)** are Clitl = ¢, foranyk=1, ..., L.
Therefore |a)®t = (Q|0))®! has MPS matrices Al = g, , while|3)*L = (Q|1))®L has Bi¥l = g, , where g;;are
the entries of the matrix Q.

The MPS form of a superposition can be achieved with block-diagonal matrices:

uly) + vy =v > tr(AR LA | L) (E5)
ity it
v S (Bl B i) (E6)
ity oot
= WL Wi iy iy), (E7)
iy it
where
] — uAll 0
win— (4 o) (E8)
and
. Al 0
[ix] —
wi— (A 0) (E9)

forall k = 2, ..., L. Of course there are many choices for where to absorb the coefficients © and v, here we attach
them to the first spin. This construction holds for MPS with periodic boundary conditions, however, we are
interested in open chains (so that MZMs can exist at the ends), and this requires that

dim(Wtly = dim(W!il) = 1, in other words, Wil = (yA, yBlalyand Wil = (Alid) BlithT are row and
column vectors respectively (in which case the trace over all the Ws is redundant).
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