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Abstract
Aone-dimensional fermionic system, such as a superconductingwire,may hostMajorana zero-
energy edgemodes (MZMs) at its edges when it is in the topological phase.MZMs provide a path to
realising fault-tolerant quantum computation, and so are the focus of intense experimental and
theoretical studies. However, given aHamiltonian, determiningwhetherMZMs exist is a daunting
task as it relies on knowing the spectral properties of theHamiltonian in the thermodynamic limit.
TheKitaev chain is a paradigmatic non-interactingmodel that supportsMZMs and theHamiltonian
can be fully diagonalised.However, for interactingmodels, the situation is farmore complex. Herewe
consider a different classification ofmodels, namely, ones with frustration-freeHamiltonians.Within
this class ofmodels, interacting and non-interacting systems are treated on an equal footing, andwe
identify exactly whichHamiltonians can realiseMZMs.

1. Introduction

Majorana fermions werefirst conceived by EttoreMajorana as a real solution to theDirac equation [1], and
being realmeans that these fermions are their own anti-particles. In condensedmatter systems, theMajorana
fermion is aHermitian fermionic operator. It is of particular importance when it commutes with the system’s
Hamiltonian and corresponds to a localised zero-energymode. The reason for this is that the presence of such
modes indicates that the fermionic system is in a topologically-ordered phase. The prototypical example of such
a system is a theoreticalmodel for a superconductingwire, the ‘Kitaev chain’ [2], and it describes a line of non-
interacting spinless (complex) fermions, where theCooper pairs are bound via a p-wave pairing. Kitaev
demonstrated that, for certain ranges of theHamiltonian parameters, there is a phase where two gapless
boundarymodes exist and these correspond toMajorana fermions exponentially localised at opposite end of the
chain. Themodes persist even in the presence of symmetry-preserving local perturbations.Wewill call such
topologically-protectedMajorana fermions ‘Majorana zeromodes’ (MZMs).

The presence of twoMZMs implies theHamiltonian possesses a two-fold degenerate ground space,
therefore this degeneracy is also robust against local noise and the ground states cannot be distinguished by local
measurements. The ground space states can be used to encode quantum information in a fault-tolerant way.
Subsequent studies have demonstrated that, indeed, systemswithMZMs formpromising candidates for
building a quantummemory [3]. Furthermore, asMZMsdisplay non-Abelian statistics upon braiding, a
collection ofMajoranawires could provide a realisation of a topological quantum computer. For a review of this
topic see [4, 5]. A number of theoretical proposals, including those, for instance, in [6–9], have addressed the
challenging task of producing and controllingMZMs in systems ranging from cold atomic gases to solid state
materials. Signatures ofMZMs have been reported in several recent experiments at the interface of topological
insulators and superconductors [10–13], in ferromagnetic chains on a superconductor [14], and in quantum
spin liquids [15].

TheKitaevmodel, though the subject of substantial research effort, is somewhat idealised in that it neglects
interactions between the fermionic particles. The robustness of topological phaseswith respect to interactions is
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an important question, especially for practical purposes. In fact, in some cases, repulsive interactionsmay be
beneficial as they have been shown to lead to a stabilisation of the topological phase [17–20].

In thismanuscript, we analyse a particular class of interacting and non-interacting 1DHamiltonians to
determinewhetherMZMs are present. The class that we are interested in is the collection ofHamiltonians with
two-body and nearest-neighbour interactions that are frustration-free (FF). Let L be the number of spins in the
system, then such aHamiltonian is given by = å =

-
+H hi

L
i i1

1
, 1, andH being FFmeans that the ground state ofH

is simultaneously a ground state of each dimer term +hi i, 1 for all = ¼i L1, , . This is a non-trivial statement as
the +hi i, 1may not commutewith one another, and eigenstates that are not the ground statesmay be frustrated.
Frustration-free (FF) systems form an important class ofmany-body localHamiltonians. Examples of FF spin
systems include the toric code [21] (actually the toricHamiltonian is a sumof commuting terms) and the AKLT
model [22]. They are also used in the study of tensor network states: given amatrix product state (MPS), it is
possible to construct a parentHamiltonian that is gapped and FF [23].

FF fermionicHamiltonians have been studied in [24] for the purposes of identifying phases withMZMs. In
their work, they beginwith a physical fermionHamiltonianwith the appropriate symmetries then demand that
it be unfrustrated. They indeed find interactingHamiltonians in topological phases supportingMZMs.Our
work complements these results by approaching the task from amore abstract setting which allows a complete
systematic deduction of all FFHamiltonians, andwe can conclusively say there are no additional FF phases for
MZMs. A central ingredient in ourwork is [25]which fully characterises the ground space and spectral
properties of all 1D FF spinHamiltonians with two-body and nearest-neighbour interactions.We apply a
Jordan–Wigner transformation tomap the spinHamiltonians to fermionic ones. The Jordan–Wigner
transformation has proven to be a very useful tool for analysing fermionic systems, especially those in one spatial
dimension, and the connection between spin and fermion pictures in theKitaev chain has been thoroughly
explored and extended to parafermions, the higher-dimensional analogues ofMZMs, in [16]. By virtue of the
Jordan–Wigner transformation, the spectral and FF properties carry over to the fermion picture, however, as the
transformation is non-local, we are not guaranteed a local fermionicHamiltonian.Nevertheless, aHamiltonian
forMajoranasmust preserve fermionic parity (fermion numbermodulo 2), and imposing this symmetry results
in local fermionicHamiltonians. In this waywe obtain a complete characterisation of all gapped FF fermionic
Hamiltonians. From this, wemay then identify the topologically-ordered systems.Wefind that they are Kitaev
chains, whichmay be non-interacting or interacting, with nearest-neighbour interactions that are either
attractive or repulsive. Figure 1 helps visualise the set ofHamiltonianswe are interested in.

A noteworthy observation that arises from analysing the FF spinHamiltonians is a connection between them
and the ‘one-dimensional line’ (ODL) of Peschel and Emery [26]. TheODL is a line in the phase diagramwhere
the time evolution operator of a kinetic spinmodel can be related to the transfermatrix of certain Isingmodels.
An example of anODLoccurs in the axial nearest-neighbour Ising (ANNNI)model [26, 27]. Along theODL, the
ANNNImodel is dual to the FFHamiltonian, equation (14), that we find is capable of hostingMZMs in the
fermion picturewhen its parameters are constrained in a certainway (the hopping amplitude t is equal to the p-
wave pairing gapΔ).

The paper is divided in the followingway. In section 2we present amore formal definition ofMZMs, and in
section 3we deduce the FFHamiltonians hostingMZMs, given in equation (14) in the spin picture, and
equations (15) and (16) for fermions. During our analysis we encounter an FFHamiltonian, equation (24), that
supportsMZMs, however, they are not spatially separated.Hence, even though these fermionicmodes satisfy

Figure 1.Our goal is to find the set of frustration-freeMajorana zeromode (MZM)models (the red region).We shall see that this set
includes both interacting and non-interactingMZMmodels.
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most of the conditions for them to beMZMs, they are not topologically protected.We comment on how this
differencemanifests itself in the spin picture in section 3.4. Section 4 analyses theMZMHamiltonian
equation (14) and its ground space equation (13) using the language ofMPSs. In section 5we briefly discuss FF
Hamiltonians that arise fromdropping certain symmetries, andwe conclude ourwork in section 6.Details of
calculations are deferred to the appendices.

2.Majorana zeromodes

Consider aHamiltonianH for a chain of (complex) fermions where the operators †cj and cj create and annihilate,
respectively, a fermion at site j. They obey the standard fermionic anti-commutation relations ={ }c c, 0j k ,

={ }† †c c, 0j k , and d={ }†c c,j k jk. The term = †n c cj j j is the number operator.Majorana operators can be defined
as

= + = - -( ) ( )† †a c c b c c, i , 1j j j j j j

so that they areHermitian, and it is possible to rewrite theH in terms of the a b,j j with j= 1,K, L.
For some gapped, fermionicHamiltonians (such as for superconducting nanowire systems), gapless edge

modes calledMajorana zero-energy edgemodes (MZM), which are a special type ofMajorana fermion,may be
present. Their existence implies a degenerate ground space, which is protected by particle-hole symmetry. In the
thermodynamic limit, the the gap between the ground states vanishes, whereas infinite systems the gap is (at
most) exponentially small in the size of the chain. TheMZMs cannot be gapped out by any local symmetry-
preserving perturbations; they are amanifestation of topological order in the system.

AnMZM is a fermionic operator γ that satisfies the following conditions [16]:

(a) g g=† ,

(b) g- ={( ) }1 , 0F , where -( )1 F is the fermion parity operator and = å =F nj
L

j1 ,

(c) g =[ ]H, 0,

(d) ‘normalisable’, that is, �g =2 as l ¥L ,

(e) γ is localised near an edge.

Condition (a) ensures that the operator corresponds to aMajorana (i.e. real) fermion, then (b) says that γmaps
between even parity and odd parity sectors, while (c) implies that the spectrum in these sectors are identical.
Condition (d) ensures that themode is normalisable in the thermodynamic limit, and finally (e) is necessary for
MZMs to be topologically protected i.e. robust when subjected to local noise. However, in section 3.3.3wefind a
settingwhere conditions (a) through (e) aremet, but theMZMs can be gapped by a local perturbation because
they are not spatially separated (they are localised on the same end of the chain), so this condition needs to be
strengthened.

MZMs always occur in pairs, since each is, in a sense, ‘half a fermion’, and n2 MZMs implies the existence of
a 2n-dimensional degenerate ground space. Note that condition (c)may be relaxed so that γ does not exactly
commutewith theH for all L, but only needs to as l ¥L [4, 5]. For a single Kitaev chain n=1 [2].

A symmetry-protected topologically ordered (SPTO) phase is a phase that occurs because of some special
symmetry in the system. TheKitaev chain has three symmetries: (i) fermionic parity; (ii) particle-hole; (iii) time
reversal. These symmetries are rather natural because: (i) parity is preserved in all fermionic systems; (ii) particle-
hole symmetry arises naturally in superconducting systems (though it is crucial for protecting the ground space
degeneracy); (iii) it turns out that time-reversal symmetry is not necessary for gapless boundarymodes to exist
[28]. Noting this, in the followingwewill not use the term SPTO, and instead use the phrases ‘topological order’
or ‘topological phase’ in reference to the non-trivial phase of the interacting Kitaev chainwhich hostsMZMs.

3. Frustration-freeHamiltonians

Webegin our analysis in the spin-1/2 (qubit)picture in order to connect with thework of Bravyi andGosset in
[25].We are concernedwith a one-dimensional chain of .L 2 qubits, and itsHamiltonian is translationally-
invariant with nearest-neighbour dimer interactions and open boundaries. Furthermore thisHamiltonian is
frustration-free. In otherwords, theHamiltonianwe focus on is given by
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å=
=

-

+ ( )H h . 2
i

L

i i
1

1

, 1

Without loss of generality, we can set the ground state energy of each dimer term +hi i, 1 equal to zero. ThenH is
FF if a ground state Wñ∣ ofH is simultaneously a ground state of every dimer term, i.e., Wñ =+ ∣h 0i i, 1 for all
=i L1, ... . This alsomeans that the ground state energy ofH is zero.Open boundary conditions are required so

that the systemhas the potential to realiseMZMs at the ends of the chain.
As +≔h hi i, 1 is an operator on � �Ä2 2 withminimumeigenvalue zero, then .h 0 and =( )h rrank with

Î { }r 1, 2, 3 , hence its ground space is -( )r4 -fold degenerate. Let its spectral decomposition be

å l= ñá
=

∣ ∣ ( )h e e , 3
j

r

j j j
1

with eigenvalues . . .l l l l = 01 2 3 4 (and l > 01 ), and corresponding eigenvectors ñ∣ej . The number of
non-zero lj is equal to r. In a FF system, the actual values of the strictly-positive lj have no effect on the ground
space ofH orwhether it is gapped/gapless (see appendix A). Therefore, we could in principle set all l > 0j to
unity to simplify the task, as is done in [25] and, for instance, the quantum2-SATproblem [29, 30]. However, for
our purposes we do not impose this restriction, and, in fact, if we did, wewouldmiss out all the interacting
Hamiltonians!

We nowproceedwith our investigation intowhether the chainHamiltonianH possessesMajorana edge
modes. The requirement thatH be FF depends on the rank r of the dimer term h, and, inmost cases, the ground
space is related to the (qubit permutation) symmetric subspace.We beginwith the rank r=1 and r=3 cases
because they are the simplest to handle. The rank 2 case ismore involved and sowe deal with it last.

3.1. The dimer terms +hi i, 1 are rank-one operators
If the rank of h is 1 and = ñá∣ ∣h e e1 1 with � �ñ Î Ä∣e1

2 2 entangled, that is ñ∣e1 cannot be separated into a tensor
product of single qubit states, thenH is FF and the ground spaceGL ofH is isomorphic to the symmetric
subspace on L qubits, which is +( )L 1 -dimensional [25, 31]. The rule governing whether theHamiltonian

= å ñá=
-

+∣ ∣H e ei
L

i i1
1

1 1 , 1 is gapped is themain result of [25], and it applies to a special set of entangled states ñ∣e1 .
Within this set, the family of fermionic parity conservingHamiltonians has (up to constants and scaling)

q q= - + + -+ + + + +( ) ( )h Z Z X X Y Y Z Zcos sini i i i i i i i i i, 1 1 1 1 1, where q pÎ ( )0, 2 (see appendix B for
details). Therefore anyHamiltonian in this family is a candidate for supportingMZMs. The problemhowever is
in the degeneracy of the ground spaceGL. An argument forwhy there are noMZMs goes as follows. A ground
spacewith dimension 2n is a necessary condition for the existence of n2 MZMs. Since = +( )G Ldim 1L , we see
that the systemmay have +( )L2 log 12 MZMs if +( )Llog 12 is an integer. However, the number ofMZMs
should not depend on the size of the chain, since this is not a topological property. Furthermore, in the
thermodynamic limit l ¥L , if there wereMZMs, therewould be amacroscopic number of them. This is an
unstable setting and onewould not expect theseMZMs to be protected against local perturbations since a large
number of these zero-energymodes would be overlapping.We thus lose the exponential separation ofmodes
and theywould be easily gapped out by local operations.

3.2. The dimer terms +hi i, 1 are rank-three operators
If the rank of h is 3, thenH is FF if and only if the ground state of h is a product state of the form yñÄ∣ 2. It follows
that ground space ofH is the one-dimensional span of yñÄ∣ L [25]. A necessary condition for the presence of
MZMs is a degenerate ground space, therefore there can be noMZMs in this case.

3.3. The dimer terms +hi i, 1 are rank-two operators
In this case, theHamiltonianHwe are considering has nearest-neighbour dimer terms

l l= ñá + ñá∣ ∣ ∣ ∣ ( )h e e e e . 41 1 1 2 2 2

Wealso assume h is not a product operator i.e. ¹ Äh h hA B. Theorem 3of [25] states that imposing frustration-
freeness onH results infive independent cases. Two of these cases are irrelevant for our purposes (they are
numbered 1 and 5 in theorem 3of [25]) as they correspond to the ground space being 1- and 0-dimensional,
respectively. Such a system cannot hostMZMs.We therefore turn our attention to the remaining three cases,
whichwe summarise here in a formmore suited to our needs.

LetGL be the ground space of FFHamiltonianHwith L sites, then =( )Gdim 2L and exactly one of the
following holds:

(i) a b= ñ ñÄ Ä{∣ ∣ }G span ,L
L L for some linearly independent normalised single-qubit states a bñ ñ∣ ∣, .

(ii) abab baba= ñ ñ{∣ ∣ }G span ... , ...L for some linearly independent normalised single-qubit states a bñ ñ∣ ∣, .
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(iii) a aaa a aaa a aaa a aaa a= ñ ñ + ñ + ñ + + ñÄ -{∣ ∣ ¯ ∣ ¯ ∣ ¯ ∣ ¯ }G f f fspan , ... ... ... ... ...L
L L2 1 for some ortho-

normal single-qubit states a añ ñ∣ ∣ ¯, , a non-zero �Îf .

H is gapped in cases (i) and (ii), and it is gapped in case (iii) if ¹∣ ∣f 1. If =∣ ∣f 1 in case (iii) then theHamiltonian
is gapless, with spectral gap upper bounded by p-( ( ))L1 cos .

As the ground space in cases (i)–(iii) above is two-fold degenerate for any length L, these systems have the
potential forMZMs.Wenow explore each of these three cases inmore detail.

3.3.1. Case (i): a b= ñ ñÄ Ä{∣ ∣ }G span ,L
L L

This ground space a b= ñ ñÄ Ä{∣ ∣ }G span ,L
L L is a two-dimensional subspace of the L-qubit symmetric subspace.

In appendix C,wework in the spin picture to deduce the translationally invariant FFHamiltonians forwhichGL

is the ground space.We then impose parity conservation in order to identify this with a fermionicHamiltonian.
In the spin picture, parity conservation is the requirement that =Ä[ ]H Z, 0L , where = ñá - ñá∣ ∣ ∣ ∣Z 0 0 1 1 is the
Pauli-Zmatrix. This splits our theHamiltonians into two distinct types.Writing the dimer terms as

= YñáY + FñáF >+ +[ ∣ ∣ ∣ ∣] ( )h A B A B, , 0, 5i i i i, 1 , 1

where Yñ∣ and Fñ∣ are orthogonal, the two types ofHamiltonian, up to symmetry-preserving unitaries of the
form Ä Ä ÄU U U... L1 2 , with ÎUi SU(2), are:

• Type 1

Yñ = ñ - ñ∣ (∣ ∣ ) ( )1

2
01 10 , 6

w w
Fñ = ñ + ñ∣ ∣ ∣ ( )cos

2
00 sin

2
11 , 7

where w pÎ ( )0, . The ground space states are

a
q q

ñ = ñ + ñ∣ ∣ ∣ ( )cos
2

0 i sin
2

1 , 8

b
q q

ñ = ñ - ñ∣ ∣ ∣ ( )cos
2

0 i sin
2

1 , 9

with q pÎ ( )0, and the angles q w, are related through

w
=

+

q

q q
( )cos

2

sin

sin cos
. 10

2
2

4
2

4
2

• Type 2

g g
Yñ = ñ + ñ∣ ∣ ∣ ( )cos

2
01 sin

2
10 , 11

g g
Fñ = ñ - ñ∣ ∣ ∣ ( )sin

2
01 cos

2
10 , 12

with g pÎ ( )0, . The ground space states are añ = ñ∣ ∣0 and bñ = ñ∣ ∣1 .

Consider first a type 1Hamiltonian. The ground space is

q q q q
= ñ + ñ ñ - ñ

Ä Ä
⎜ ⎟ ⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭∣ ∣ ∣ ∣ ( )G cos
2

0 i sin
2

1 , cos
2

0 i sin
2

1 . 13L

L L

The totalHamiltonianmay bewritten as �= - + + ¢[( )( ) ]H L A B H1 ,1

4
where

å w w

w

¢ = + - -

- + - -
=

-

+ +

+ +

( ) ( )

( ) ( ) ( )

H B Z Z A B X X

A B Y Y A B Z Z

cos sin

sin , 14
i

L

i i i i

i i i i

1

1

1 1

1 1

and = ñá + ñá∣ ∣ ∣ ∣X 0 1 1 0 , = - ñá + ñá∣ ∣ ∣ ∣Y i 0 1 i 1 0 are the Pauli-X and Pauli-Ymatrices respectively. This is a
HeisenbergXYZ spin-chainwith a localmagnetic field. AsH and ¢H are related simply by a rescaling and
constant shift, they have the same relevant physical properties. Fromnowonwe only consider ¢H . Performing a
Jordan–Wigner transformation (see appendixD) on ¢H gives theHamiltonian for a superconducting Kitaev
chain of interacting spinless (complex) fermions
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� � �

å

å åm

¢ = - + + D +

- - + - -

=

-

+ + + +

= =

-

+

[ ( ) ( )]

( ) ( )( ) ( )

† † † †H t c c c c c c c c

n U n n
1

2
2 2 2 , 15

j

L

j j j j j j j j

j

L

j j
j

L

j j

1

1

1 1 1 1

1 1

1

1

which is time-reversal and particle-hole symmetric (although it does not conserve total fermion number). The
operators †cj and cj create and annihilate, respectively, a fermion at site j, and they obey the standard fermionic

anti-commutation relations. The term = †n c cj j j is the number operator, t is the hopping amplitude,Δ is the p-
wave pairing gap, mj is the on-site chemical potential, andU is strength of the nearest-neighbour interaction.
These terms are related to the parameters in equation (14) in the followingway:

w= D = - = - ( )t A B U B A2 , 2 sin , , 16

and the boundary m w= B2 cosj for j=1 and j=L, which is half the bulk value m w= B4 cosj for
= ¼ -j L2, , 1. Alternatively one can eliminate the spinHamiltonian variables wA B, , to obtain

m = + + - D( ) ( )U tU t4
1

4
, 172 2 2

whereμ is the bulk value. This expression is in agreement with equation (11) of [24]. These relations ensure that
¢H is FF. Given >A B, 0 and w pÎ ( )0, , this restricts >t 0 andD < 0. The sign ofΔ is simply due to the

local basisfixing in equations (8) and (9). Transforming every qubit by the unitarymatrix = ñá + ñá∣ ∣ ∣ ∣V 0 0 i 1 1
has the effect of sending w wl - , and therefore changes the sign ofΔ (only). In the fermion picture, the same
transformation is achieved by lc cij j. As = -U B A, the fermion interactions can be either repulsive >U 0,
non-interactingU=0, or attractive <U 0. It only depends on relative sizes of the eigenvalues A B, of the
dimerHamiltonian +hi i, 1.

The ground states of ¢H in the fermion picture and their indistinguishability with respect to local
measurements are discussed in [24]. In the spin picture, the formof the ground spaceGL in equation (13) is not
in an amenable form since the products states are not orthonormal and they are not of definite parity. Yet the
ground space should split into even and odd parity sectors. In fact, this is easily achieved by taking appropriate
linear combinations:

a b a bñ + ñ ñ - ñÄ Ä Ä Ä∣ ∣ ∣ ∣ ( ), and . 18L L L L

These vectors are noworthogonal and are parity eigenstates with eigenvalues+1 and−1 since b añ = ñ∣ ∣Z .
So far our FFHamiltonian ¢H is gapped, conserves fermionic parity, and has a ground space degeneracy.

However forMZMs to exist, it is also compulsory that ¢H is in a topologically non-trivial phase. In [2], this phase
is defined for a non-interactingHamiltonian.Wenowdemonstrate that our ¢H is adiabatically connected to the
non-interacting case by showing that the system remains gapped and the ground states do not change, hence
they are in the same phase. The argument below follows the one presented in [24].We reproduce it here for
completeness.

Define = - > -( )s B A A2 1

2
, then the family ofHamiltonians ¢ = å ¢=

-
+( ) ( )H s h si

L
i i1

1
, 1, with

� � �

w
w

¢ = - + + + +
+ + + - - - -

+ + + + +

+ +

( ) [( ) ( ) ( )
( ) ( ) ( )( )] ( )

† † † †h s A c c c c s c c c c

s n n s n n

2 1 2 sin

1 2 cos 2 2 , 19
i i i i i i i i i i

i i i i

, 1 1 1 1 1

1 1

all have the same ground spaceGL given in equation (13). The parameter s interpolates between interacting
systemswith ¹s 0 and the non-interacting case s=0, i.e.A=B. The special case ¢ =( )H s 0 corresponds to
theKitaev chain [2] in the topologically-ordered regime: topological order is present in the systemonlywhen

m>∣ ∣ ∣ ∣t2 (whereμ corresponds to the bulk on-site chemical potential value m w= B4 cos ) andD ¹ 0. In
terms of our parameters, these two conditions are w>1 cos and w ¹sin 0, which are clearly true for the full
range of w pÎ ( )0, . Hence ¢ =( )H s 0 is topologically-ordered quite generally, that is, for all allowedω, and it is
known that ¢ =( )H s 0 supportsMZMs localised at the ends of the chain [2, 24].Moreover, from [25] and
appendix A, we know that theHamiltonian ¢( )H s remains gapped for all > -s 1

2
(i.e. for all >A B, 0).

Therefore, since the interacting system is adiabatically connected to the non-interacting one, they are in the same
topologically non-trivial phase.

The condition that the gap does not close along thewhole path smaynot be sufficient to ensure ¢( )H s and
¢( )H 0 are in the same phase. This is because interactionsmodify the topological classifications of fermionic

Hamiltonians, and aHamiltonian in the topological phasemay be connected to a trivial onewithout the gap
closing [32].Without interactions, theseHamiltonians are indexed by an integer 'Îk (the ‘topological
invariant’); adding interactionsmodifies this to 'Îk modulo 8 [33, 34]. TheKitaev chain ¢( )H 0 is in the
Altland–Zirnbauer symmetry class BDI [35] because theHamiltonian commutes with the time-reversal
operator , , with , = 12 , andwith the charge conjugation operator (due to particle-hole symmetry) ( , with
( = 12 . In theKitaev chain, the topological invariant k=1 [28]. To study interactingmodels, one considers n
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parallel Kitaev chains, i.e. n2 MZMs gi, and then asks what kinds of symmetry-preserving interaction terms can
gap out theMZMs and lead to a non-degenerate ground space. It turns out that 8 chains are needed, i.e. an
interaction involving 8MZMs, before such an interaction can arise (hence themodification of ' to 'modulo 8
mentioned above). For all s, our interactingHamiltonian ¢( )H s is still a single chain of fermions, which retains a
gap and the same symmetries. Therefore there is noway of gapping out theMZMs on this chain, and so the
ground space remains degenerate (in fact the ground space is independent of s). Hence, ¢( )H s and ¢( )H 0 are the
same non-trivial phase.

Further evidence for topological order in ¢( )H s is supplied in [24] by identifying two fermionic operators gL
and gR that satisfy conditions (a)–(e) in section 2 for ¢( )H 0 and so are candidateMZMs for the non-interacting
system. In addition they correspond tomodes localised on opposite ends of the chain.However,
g ¢ ¹[ ( )]H s, 0L R, for ¹s 0. Therefore, an analytical form forMZMs in the interacting case is yet to be
found [24].

Consider now a type 2Hamiltonian characterised by equations (11) and (12). It is equal to
�= - + + ¢[( )( ) ]H L A B H11

4
where

å g g¢ = - - + + - +
=

-

+ + + +( )[ ( ) ( )] ( ) ( )H A B Z Z X X Y Y A B Z Zcos sin . 20
i

L

i i i i i i i i
1

1

1 1 1 1

This is adiabatically connected to an IsingHamiltonian (whereA = B)with dimer terms +Z Zi i 1. In the
fermionic picture this has m= D = =t 0, therefore thisHamiltonian is in the topologically trivial phase and
there are noMZMs.

3.3.2. Case (ii): abab baba= ñ ñ{∣ ∣ }G span ... , ...L

Given any two states añ∣ and bñ∣ , it is always possible tofind a unitaryU such that a bñ = ñ∣ ∣U and �=U 2 . This
means that case (ii) is locally unitarily related to case (i), and the derivation of the case (i)Hamiltonian in
appendix C can be easilymodified to account for case (ii).

The topologically non-trivial case (i)Hamiltonian is of type 1. Since b añ = ñ∣ ∣Z and �=Z 2 , then case (ii) is
related to case (i) by a local unitary transformation that is a Pauli-Z on every even qubit

� �= Ä Ä ÄZ Z Z ...even or odd qubit � �= Ä Ä ÄZ Z Z ...odd . Let Î¯ { }Z Z Z,even odd . Then the
Hamiltonian of interest in case (ii) is ¢¯ ¯ZH Z , where ¢H is given by equation (14). TheHamiltonian remains
translationally invariant and preserves fermionic parity. In the fermion picture, Z̄ has the effect of sending
l -t t andD l -D, and corresponds to the local unitary transformation l -( )c c1j

j
j. (Note that if we only

wanted to transform l -t t and change nothing else, this would correspond to a combination of the above
unitaries: in the spin picture it is Ä ¯V ZL , where = ñá + ñá∣ ∣ ∣ ∣V 0 0 i 1 1 , and in the fermion picture l -( )c ci 1j

j
j.)

As case (i) and case (ii) are related by a local unitary that commutes with the parity operator, ¢¯ ¯ZH Z has all the
same physical properties as ¢H . In otherwords, it has the required symmetries and is also in the topologically
non-trivial phase and can hostMZMs localised at opposite ends of the chain.

3.3.3. Case (iii): a aaa a= ñ ñÄ{∣ ∣ ¯G span , ...L
L aaa a aaa a+ ñ + ñ∣ ¯ ∣ ¯f f... ...2 aaa a+ + ñ- ∣ ¯ }f... ...L 1

Let �a añ ñ Î∣ ∣ ¯, 2 be a pair of orthonormal qubit states. In [25], it is shown that theHamiltonian

å aa aa n n= ñá + ñá >
=

-

+ +∣ ¯ ¯ ¯ ¯ ∣ ∣ ∣ ( )H A B A B, , 0 21
i

L

i i i i
1

1

, 1 , 1

with n aa aañ = ñ - ñ +∣ (∣ ¯ ∣ ¯ ) ∣ ∣f f1 2 and non-zero �Îf has the two-fold degenerate ground space
a aaa a aaa a aaa a aaa a= ñ ñ + ñ + ñ + + ñÄ -{∣ ∣ ¯ ∣ ¯ ∣ ¯ ∣ ¯ }G f f fspan , ... ... ... ... ...L

L L2 1 . In fact, amore gen-
eral FFHamiltonianwith this ground space is permissible, and that is one that is a sumof dimer terms

aa aa n nñá + ñá +[ ( ∣ ¯ ¯ ¯ ¯ ∣ ∣ ∣) ]†U A B U i i, 1whereU rotates only in the subspace aa nñ ñ{∣ ¯ ¯ ∣ }span , . TheHamiltonian is
gappedwhen ¹∣ ∣f 1. Imposing parity conservation onHfixes añ = ñ∣ ∣0 , añ = ñ∣ ¯ ∣1 , �=U , and it is possible to
choose a local basis such that �Îf . Then the ground states ofH are ñÄ∣0 L and

ñ + ñ + + ñ + ñ- -∣ ∣ ∣ ∣ ( )f f f1000 ... 00 0100 ... 00 ... 0000 ... 10 0000 ... 01 , 22L L2 1

which is left unnormalised. Since ¹∣ ∣f 1, this ground state is not permutation symmetric. TheHamiltonian is
given by �= - + + + ¢-[( )([ ] ) ]H L f B A H1 1 ,1

4
2 1 with ¢ = å ¢=

-
+H hi

L
i i1

1
, 1 and

¢ = - -
-
+

- +
-
+

-
+

+ + -

+ +

+ + +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( ) ( )

h A
B f

f
Z A

B f

f
Z

Bf

f
X X Y Y A B Z Z

1

1

1

1

2

1
. 23

i i i i

i i i i i i

, 1

2

2

2

2 1

2 1 1 1
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The fermionic dimerHamiltonian (see appendixD) is

� �

� �

¢ = -
-
+

- + +
-
+

-

-
+

+ + - - -

+ +

+ + +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )

( ) ( )( )( ) ( )† †

h A
B f

f
n A

B f

f
n

Bf

f
c c c c A B n n

1

1
2

1

1
2

4

1
2 2 . 24

i i i i

i i i i i i

, 1

2

2

2

2 1

2 1 1 1

Following the same procedure as in case (i), we introduce a variable µ -s A B such that ¢( )H s is a one
parameter family ofHamiltonians which is adiabatically connected to the non-interacting system ¢ =( )H s 0 . As
long as wefix ¹∣ ∣f 1 the system remains gapped and the ground space is constant aswe vary s, so ¢( )H s and
¢ =( )H s 0 are in the same phase. Is theHamiltonian ¢ =( )H s 0 topologically non-trivial? The two necessary

conditions from [2] for this areD ¹ 0 and m> ∣ ∣t2 . Immediately we see thatD = 0, which is already bad news.
Furthermore m> ∣ ∣t2 from [2] turns out to be false. To see this, note that the bulk m = A4 , andwith =

+
t Bf

f

4

1 2 ,

the inequality leads to - <( )f1 02 which is false for all real f. Therefore, ¢( )H s is adiabatically connected to a
non-interactingHamiltonian in the trivial phase.Now,while the non-interactingHamiltonian ¢ =( )H s 0 may
not hostMZMs, it does not immediately preclude the possibility that the interacting onemay. If ¢ =( )H s 0 is in
the trivial phase, then its topological invariant k=0 [28].Whenwe switch on interactions, the topological
invariant of the interacting system goes to = =k 0 mod 8 0 [32, 34], hence the interacting system is also trivial
and so it does not supportMZMs.

Thismodel does, however, possess zeromodes due to theway it was constructed. These are easiest to analyse
in the non-interacting limitA=B. TheHamiltonian becomes quadratic in the fermionic operators †c c,j j , and

sowe can express it as ¢ =( ) †H Q WQ0 1

2
where = ¼( )Q c c, , L

T
1 . In this case,W is aHermitian tri-diagonal

L×Lmatrix, and its null vector has the form = ( )u f f f f, , , ..., L T2 3 . Hence onefinds that the complex
fermionic zeromode is &= å =ic f cj

L j
j1 , where & is a normalisation constant. Thismode commutes with the

Hamiltonian: =i[ ]c H, 0.When <∣ ∣f 1 this corresponds to an edgemode localised on the left side of the chain
while for >∣ ∣f 1 themode is localised on the right. The twoMajorana fermions, g = +i i†c c1 and
g = - -i i( )†c ci2 , composing c̃ each satisfy the conditions set out in section 2 and therefore correspond to zero
modes, however they are localised at the same end. Since thesemodes are not spatially separated, theMajoranas
can be easily gapped by a local perturbation.

There is anotherway to interpret the topological triviality of theHamiltonian in equation (24) by noticing
that it preserves fermion number (not just fermion parity). Then the degenerate ground states are states of
definite fermion number, 0 or 1 (and opposite parity). These distinguishable by the local operator = å =N̂ ni

L
i1 ,

and hence they do not enjoy the topological protection thatHamiltonians of case (i) do. The ground states of the
case (i)Hamiltonians are superpositions of all number states of definite parity, and therefore suffer huge
fluctuations inmeasurements of N̂ , and so effectively, when L is large, one cannot distinguish the ground states
since á ñ »N̂ L

2
for both states. Notice that the rank 1Hamiltonian of section 3.1, and the case (i) type 2

Hamiltonian of equation (20), also conserve fermion number and are topologically trivial. Nevertheless, because
number conservation is a natural symmetry in several systems, proposals for constructingMZMmodel within
number-conserving systems have been presented in [36, 37]. There the authors consider two coupledKitaev
chains and demonstrate topological properties by analytically diagonalising the fullHamiltonians, which are FF.

3.4. Comparison of the spin and fermion pictures
There are a few observations to bemade that arise from switching between the spin and the fermion pictures.
Consider first the spin picture. A key difference between the cases (i) (or (ii)) and (iii) is that, in the former, cases
(i) or (ii), the ground space is invariant if we close the chain. That is,making theHamiltonian in equation (14)
periodic by adding a coupling h L1, termbetween sites 1 and L does not affect the ground spaceGL equation (13).
In fact, for case (i)GL is invariant under the addition of a coupling hi j, between any two spins (not just nearest-
neighbour). In a sense, case (i) is topologically-trivial in the spin picture. This is in stark contrast to theMajorana
picture, where closing the chain results in a loss ofMZMs since there is noMajorana operator γ that commutes
with h L1, . Therefore topologically trivial spin systemsmay correspond to topologically non-trivial systems of
fermions.

On the hand, let us now consider case (iii). For the spin system, if we close the chain the ground space
degeneracy is lost and the only remaining ground state is ñÄ∣0 L. The spin ground space now is sensitive to the
topology. The ground state degeneracy of the fermion system is similarly removed by closing the fermion chain.
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4. Examining theMZMHamiltonian through the lens ofmatrix product states

In section 3.3.1we derived the FFHamiltonian, equation (14), that supportsMZMs.Wenow formulate the spin
ground states of thisHamiltonian asmatrix product states (MPSs). This was explored previously in [38] but
there the connectionwith frustration freeness and other properties was not so explicit. Herewe highlight these
observations, as well as discussing additional aspects like injectivity, and confirm that the system satisfies an
area law.

TheMPS is a particular representation of a quantum state. TheMPS for a state of L qudits is

åyñ = ñ
¼

∣ ( ) ∣ ( )[ ] [ ]A A i itr ... ... , 25
i i

i i
L

, ,
1

L

L

1

1

where Î ¼ -{ }i d0, , 1k for all =k L1 ... . The ik label the physical qudits with dimension d and the [ ]A ik are
´ +D Dk k 1matrices where =D Dmaxk k is the ‘bond dimension’. For open boundary conditions
= =D D 1L1 . Any quantum state can bewritten inMPS form for large enoughD, however, theMPS ismost

useful whenD is constant in L since this enables efficient computation ofmeasurable quantities [39, 40]. The
MPS formalism is useful for approximating ground states of one dimensional quantum spinmodels. Both the
AKLT [22] andMajumdar–Ghosh [41]Hamiltonians have ground states that can be efficiently represented using
MPSs.MPSs, and their generalisations to tensor networks, are a powerful resource in the study ofmany body
systems.MPSs form the variational domain for the densitymatrix renormalisation group [39, 42], and provide
an invaluable tool for analysing area laws [43]. Furthermore, for everyMPS, there is a FF ‘parentHamiltonian’
for which theMPS is the ground state [23].We study this inmore detail below, after we recast ourMZM
Hamiltonian (in the spin picture) ground states asMPSs.

The spin state for whichwe seek anMPS is any vector in the ground spaceGL from equation (13) i.e.

y a bñ Î ñ ñ =Ä Ä∣ (∣ ∣ ) ( )Gspan , , 26L L
L

with the local basis states chosen such that a q q bñ = ñ + ñ = ñ∣ ( )∣ ( )∣ ∣Zcos 2 0 i sin 2 1 . The ground spaceGL is a
subspace of the symmetric subspace SL on L qubits, where = +( )S Ldim 1L . All states in SL can bewritten as an
MPSwith diagonalmatrices [ ]A ik and bond dimension = +D L 1 [44]. The linear growth ofDwith system size
maymean that the area law does not apply when the ground space of aHamiltonian is SL (an example of such a
FFHamiltonian is when it is a sumof rank 1 projectors, see section 3.1 above). Nevertheless, it has been shown
that this does in fact satisfy an area law [29]. In any case, since =( )Gdim 2L , the size of the ground spaceGL of
theMZMHamiltonian is constant in L. Therefore, any state in ÍG SL L can be represented anMPSwith
diagonalmatrices [ ]A ik withD=2, and this satisfies an area law [45, 46].We show in appendix E that the bond
matrices for the state y a bñ = ñ + ñ ÎÄ Ä∣ ∣ ∣u v GL L

L, with the local basis choice
a q q bñ = ñ + ñ = ñ∣ ( )∣ ( )∣ ∣Zcos 2 0 i sin 2 1 , are

�q q= =( ) ( ) ( )[ ] [ ]W W Zcos 2 , i sin 2 , 270 1k k

for = ¼ -k L2, , 1, and the boundarymatrices are row and column vectors due to open boundary conditions:
q= ( )( )[ ]W u vcos 2 ,01 , q= -( )( )[ ]W u vi sin 2 ,11 , q= ( )( )[ ]W cos 2 1, 1 T0L , and q= -( )( )[ ]W i sin 2 1, 1 T1L .

The parentHamiltonianH of thisMPS is the onewe find in equation (14), which can supportMZMs. As its
ground state spaceGL is degenerate, thisMPS is non-injective. Such anMPS corresponds to systemswith discrete
symmetry breaking [47]. An arbitrary state y a bñ = ñ + ñ ÎÄ Ä∣ ∣ ∣u v GL L

L does not possess the symmetries of
MajoranaHamiltonian, which are fermionic parity conservation, and, additionally, invariance under time
reversal. This can be seen from their action in the spin picture, which happens to coincide for the local basis
choice: * *a b a b b a yñ + ñ = ñ + ñ = ñ + ñ ¹ ñÄ Ä Ä Ä Ä Ä Ä( ∣ ∣ ) ∣ ∣ ∣ ∣ ∣Z u v u v u vL L L L L L L . If anMPS is, on the other
hand, injective, then it is the unique ground state of a parentHamiltonian, and, in 1D, it is known that this
Hamiltonian is gapped [23]. So ourMZMHamiltonian is an example of a non-injective but gapped system.

5. A broader class of FFHamiltonians

In the precedingwork, we have only considered FFHamiltonianswith certain symmetries, namely translational
invariance and fermionic parity conservation. However, given a ground spaceGL, there is awhole family of FF
Hamiltonians that share this ground spaceGL. This family is obtained by applying a unitaryUi to each dimer
term +hi i, 1 that only rotates in the range of +hi i, 1. That is, if = å +H hi i i, 1 is aHamiltonianwith ground space
GL, then so is = å +

†H U h UU i i i i i, 1 as long as =+ +( ) ( )†h U h Uker keri i i i i i, 1 , 1 for all i. Notice that the unitaryUi

can be site-dependent, i.e. we can drop translation invariance. If we also relax parity conservation then in case (i)
we can obtain spin dimerHamiltonians like equation (14)with an antisymmetricDzyaloshinskii–Moriya
interactionXZ−ZX [48, 49]. However, because the system is FF, the coefficients in the dimerHamiltonian are
not independent and so the antisymmetric interaction always appears alongwith an additional local transverse
magnetic field in theXdirection.
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6. Conclusion and future directions

Employing known results about gapped FF spin system [25], we use a Jordan–Wigner transformation to deduce
the full set of dimer FF fermionicHamiltonians that can supportMZMs.Wefind that interactingHamiltonians
arise quite generically (the interactions can be either attractive or repulsive), and that they are adiabatically
connected to the non-interacting Kitaev chain [2], as previously observed in [24] using differentmethods. The
MZMHamiltonian in the spin picture corresponds to aHeisenbergXYZ chainwith a localmagnetic field.We
show that the ground states have an efficientMPS representation, and furthermore that theHamiltonian is non-
injective, gapped, and satisfies an area law.

Restricting theHamiltonian to consist of dimer terms (two-body and nearest neighbour terms +hi i, 1) in the
spin picture is initially an assumption. The resultingHamiltonians in the fermion picture are of the same form
because fermionic parity precludes anything other than fermionic dimer terms. Conversely, a dimer fermionic
Hamiltonian only gives rise to dimer spinHamiltonians. Thuswithin this setting, our classification ofMajorana
phases is exhaustive.We focussed on this setting because it allowed us tomake conclusive statements, and
because it is physically well-motivated as dimerHamiltonians appear inmany experimental settings. One could
considermore general terms e.g. (i) three-local terms hijk, or (ii) two-local but not nearest neighbour. Regarding
(i), we are not aware of theoretical results classifying the FF and gapped regimes for suchmodels, thus this
questionwould need to be addressed first, and it certainly forms an interesting future direction. As for (ii), there
may be scope for deriving results forHamiltonianswith terms like +hi i, 2. The reason is that it turns out that our
case (i) spinHamiltonians (when = Dt , or equivalently w=A B sin ) are dual to the ‘axial next-nearest
neighbour Ising’ (ANNNI)Hamiltonians, and these have terms like +hi i, 2 [26]. Because of duality, the phases of
our case (i) and the ANNNImatch, therefore one could use ourmethods to analyseMajorana phases in the
fermion picture of ANNNI. Also, this set ofHamiltonians happen to lie on the ‘ODL’ of Peschel and Emery [26].

The FF requirement couldmake it difficult to realise ourMZMHamiltonians in an experiment due to the
fine-tuning of parameters. Therefore, an analysis of the effects of perturbations needs to bemade, and
considerations for how the system changes as theHamiltonian varies away from the FFmanifold.

Nevertheless there is stillmuch to be exploredwithin the FF set. Although the ground states of such
Hamiltoniansmay be easy to determine, this does not hold for the excited states, which generally are frustrated.
Characterising thewhole spectrumwould desirable for the purposes of perturbation theory, and also forfinding
an expression of theMZM for the interacting FFHamiltonian.

Finally, one can ask about 1DFFHamiltonians for parafermions, the higher dimensional analogue of
MZMs, or for qudits. Already this has been analysed for the non-interacting chain in [16]. Perhaps it is tractable
also in the interacting case.
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AppendixA. Gap properties and the spectrumof the dimer terms +hi i, 1

Weconsider the following lemma for translationally invariantHamiltonians but it is not difficult to show it also
holds when this assumption is dropped.

Lemma1.Consider a system of L spins, where each is associated with an n-dimensional Hilbert space �n, and the
total space is �= Ä( )n L. Let = å =

( )H hi
L i

1 be a k-local, translationally invariant FFHamiltonianwith ground
space G.Without loss of generality we choose all ( )h i to be positive semidefinite andwith lowest eigenvalue equal to

zero. Each term m= å ñá= ∣ ∣( ) ( )h e ei
j
n

j j j
i

1

k

, and .m 0j . Let" &Ì ¼≔ { }n1, , k denote the set of all indices j for

which m > 0j , i.e. "m= å ñáÎ ∣ ∣( ) ( )h e ei
j j j j

i , and by assumption" ¹ Æ and" &¹ . Define = å P~
=

( )H i
L i

1 , where

"P = å ñáÎ ∣ ∣( ) ( )e ei
j j j

i is the projector onto the range of ( )h i . Let the ground space of
~
H be iG . Then (a)

~
H is FF if and

only if H is, and = iG G ; and (b)
~
H is gapped in the thermodynamic limit l ¥L if and only if H is.
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Proof. (a)Define

åm= ñá
=

+∣ ∣ ( )( ) ( )A e e , A1i

j

n

j j j
i

1

k

where m m=+
j j if m > 0j , i.e. "Îj , otherwise m =+ 1j . Then ( )A i is invertible and strictly positive, that is,

w wá ñ >∣ ∣( )A 0i for all  wñ ¹ Î∣ 0 . Furthermore = P( ) ( ) ( )h Ai i i for all =i L1, ... . SinceH is FF, then

f fñ = P ñ =∣ ∣ ( )( ) ( ) ( )h A 0 A2i i i

for any fñ Î∣ G and all =i L1, ... . Now, since ( )A i is a (strictly) positive definite operator, then this implies that
the only vector wñ∣ that satisfies wñ =∣( )A 0i is the null vector, hence wemust have w fñ = P ñ =∣ ∣( ) 0i for all
=i L1, ... . But this is precisely the condition for

~
H to be FF. Since this holds for any fñ Î∣ G, we deduce that

Ì iG G , where iG is the ground space of
~
H .

For the converse, we proceed in an analogousmanner, and establish that ÌiG G . Hence = iG G .
(b) Let s be the smallest non-zero eigenvalue of the set of all the ( )h i , and < = < ¥∣∣ ∣∣ ∣∣ ∣∣( )h h0 maxi

i (the
Schatten operator 1-norm) is the largest eigenvalue. Then since . .P P∣∣ ∣∣ ( ) ( ) ( )h h si i i for all i, it follows that

. .y y y y y yá ñ á ñ á ñ~ ~∣∣ ∣∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )h H H s H , A3

for all  yñ Î∣ . LetE (iE ) be theminimum strictly positive eigenvalue ofH (~H )with eigenvector ñ∣E ( ñi∣E ). Then
ñ ñ Î ^i∣ ∣E E G, , the orthogonal complement ofG (andG is equal to iG from (a)).
First we establishH gappedº~

H is gapped. AssumeH is gapped. By assumption = ( )E E L remains strictly
positive as the number of spins l ¥L . Then from the first inequality in equation (A3), with yñ = ñi∣ ∣E , we
have

.á ñ = á ñ~i i i i i∣∣ ∣∣ ∣ ∣ ∣∣ ∣∣ ∣ ∣ ( )h E H E h E E H E A4

but by definition, the right-hand side is lower bounded by á ñ =∣ ∣E H E E. Hencewe have established that
.i ∣∣ ∣∣E E h . Since ∣∣ ∣∣h is bounded and independent of L then the right-hand side remains strictly positive as
l ¥L hence

~
H is gapped ifH is.

Nowwe establish
~
H gappedºH is gapped. Assume

~
H is gapped. By assumption =i i ( )E E L remains strictly

positive as the number of spins l ¥L . Then from the second inequality in equation (A3), with yñ = ñ∣ ∣E , we
have

.á ñ = á ñ~∣ ∣ ∣ ∣ ( )E H E E s E H E , A5

but by definition, the right-hand side is lower bounded by á ñ =~i i i∣ ∣s E H E sE . Hencewe have established that
. iE sE . Since >s 0 and independent of L then the right-hand side remains strictly positive as l ¥L henceH

is gapped if
~
H is. ,

Appendix B.Hamiltonianwith rank 1 dimer terms

Consider a general two-qubit state

yñ = ñ + ñ + ñ + ñ∣ ∣ ∣ ∣ ∣ ( )a b c d00 01 10 11 , B1

and theHamiltonian = å =
-

+H hi
L

i i1
1

, 1with y y= ñá+ +∣ ∣hi i i i, 1 , 1. To qualify as a validMZMHamiltonian, it
must be preserve fermionic parity. In the spin picture this condition is =Ä[ ]H Z, 0L , which is equivalent to

=+ +[ ]h Z Z, 0i i i i, 1 1 for all i, and this can only be satisfied if

�y y fÄ ñ = ñ Îf∣ ∣ ( )Z Z e , . B2i

This is an eigenvalue equation for the parity operator ÄZ Z . The eigenvalues of ÄZ Z are+1 and−1, and the
corresponding eigenvectors are even and odd parity respectively. In qubit language, even (odd) parity states are
linear combinations of computational basis states with an even (odd)number of 1s.Hence, for two qubits, the
even parity sector is spanned by ñ ñ{∣ ∣ }00 , 11 , and odd parity is spanned by ñ ñ{∣ ∣ }01 , 10 .

Hence yñ∣ is either y ñ = ñ + ñ+∣ ∣ ∣a d00 11 or y ñ = ñ + ñ-∣ ∣ ∣b c01 10 . Ref. [25] considers only entangled yñ∣ ,
and it is stated thatH is gapped if and only if thematrix

y y
y y

á ñ á ñ
-á ñ -á ñy

⎛
⎝⎜

⎞
⎠⎟≔ ∣ ∣

∣ ∣ ( )T
01 11

00 10
, B3

has eigenvalues l1 and l2 such that l l¹∣ ∣ ∣ ∣1 2 .
The eigenvalues of y+T are * *oa d , hence this is gapless. The eigenvalues of y-T are b* and *-c , hence this is

gapped as long as ¹∣ ∣ ∣ ∣b c . Let = qb cos
2
and = w qc e sini

2
. The product of qubit unitaries + = Ä = Sk

L
k1 , where
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= ñá + ñáw-∣ ∣ ∣ ∣( )S 0 0 e 1 1k
ki 1 , commutes with the parity operator ÄZ L, preserves translational invariance and

removes the phase wei . Hencewe can instead consider = qc sin
2
without loss of generality. Also required by [25]

is q pÎ ( )0, 2 so that yñ∣ remains entangled. Then

�

åq y y

q q

= = ñá

= - + - + + -

=

-

+

+ + + +

( ) ∣ ∣

[( ) ( ) ( ) ] ( )

H H

L Z Z X X Y Y Z Z
1

4
1 cos sin . B4

i

L

i i

i i i i i i i i

1

1

, 1

1 1 1 1

AppendixC.Deriving the FFHamiltonian for case (i) in section 3.3

Recall that .h 0 is a two-qubit, rank-2 operatorwhich cannot bewritten as Äh hA B, for some single qubit
operators h h,A B.We adapt a paragraph from [25]which shows that the range of h is spanned by two linearly
independent states y fñ ñ∣ ∣, which are both entangled. Consider the product operator Äh hA B. This is positive
and rank-2 if and only if it is of the form c cñá Ä∣ ∣ M or c cÄ ñá∣ ∣M , where �cñ Î∣ 2 andM is a positive
definite operator (i.e. rank =( )M 2). The range of Äh hA B is then of the form c cñ Ä ñ ñ Ä ñ(∣ ∣ ∣ ∣ )span 0 , 1 or

c cñ Ä ñ ñ Ä ñ(∣ ∣ ∣ ∣ )span 0 , 1 . These are the only two-dimensional subspaces of � �Ä2 2 that contain only
product states.Moreover, the rank-2 positive operators with such ranges are always product operators. Since, by
assumption, ¹ Äh h hA B, then the range of h is not of this form and so itmust contain at least one entangled
state. Call it yñ∣ . Let nñ∣ also be in the range of h but linearly independent from yñ∣ . Then f y nñ = ñ + ñ∣ ∣ ∣z with

�Îz is also in the range of h, andwe can always choose a z such that fñ∣ is entangled and it is linearly
independent of yñ∣ .

To the state yñ∣ we associate a 2×2matrix

y y
y y

=
á ñ á ñ

-á ñ -á ñy

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
∣ ∣ ( )T
01 11

00 10
, C1

and similarly for fñ∣ . Note that

�*y xñ = Ä ñy y
-∣ [ ( )] ( ) ∣ ( )†T Tdet , C2

where xñ = ñ - ñ∣ ∣ ∣01 10 is the (unnormalised) singlet state, and =y y y
- - -≔ ( ) ( )† † †T T T1 1 . Furthermore,matrix

Tψ (Tf) is invertible if and only if yñ∣ (fñ∣ ) is entangled, which it is by assumption.
Recall that theminimumenergies of +hi i, 1 andH are zero, so the ground space is equal to the null space. In a

FF system, an L-qubit state is in the null space ofH if and only if it is in the null space of y yñá +∣ ∣i i, 1 and of
f fñá +∣ ∣i i, 1 for all = ¼ -i L1, , 1. The formof the ground states can be presented in terms of thematricesTψ
andTf. In [25] it is shown that the cases (i)–(iii) in section 3.3 break down into conditions on the eigenvectors of
f y
-T T1 andTψ. Belowwe consider case (i) andwork backwards from [25] in order to obtain the FFHamiltonian

whose ground space is a b= ñ ñÄ Ä{∣ ∣ }G span ,L
L L . Case (ii) is simply a local unitary rotation away from case (i)

(see section 3.3.2), and for case (iii) theHamiltonian is already given in [25].
In case (i), thematrix f y

-T T1 has linearly independent eigenvectors a bñ ñ{∣ ∣ }, and these are also eigenvectors
ofTψ. Hence they are also eigenvectors ofTf:

a a a a añ µ ñ µ ñ º ñ µ ñf y f f
- -∣ ∣ ∣ ∣ ∣ ( )T T T T , C31 1

and similarly for bñ∣ . Note that the assumption yñ∣ and fñ∣ are linearly independentmeans f y
-T T1 is not

proportional to the identity. SinceTψ andTf are d×dmatrices (here d = 2), and they have a common set of d
linearly independent eigenvectors, then these eigenvectors form a (non-orthogonal) basis for �2. It follows that
Tψ andTf commute, and that they are simultaneously diagonalisable. Let ñ ñ{∣ ∣ }0 , 1 be an orthonormal basis for
the qubit space �2. Define a b= ñá + ñá∣ ∣ ∣ ∣Q 0 1 as thematrix whose columns are the eigenvectors añ∣ and bñ∣ ,
andDψ,Df are diagonalmatrices of eigenvalues ofTψ andTf respectively. Then

=y y
- ( )T QD Q , C41

=f f
- ( )T QD Q . C51

From equation (C2) the entangled vectors in the range of h then are

�*y xñ = Ä ñy y
- -∣ [ ( )] ( )( ) ∣ ( )† † †D Q D Qdet , C61

�*f xñ = Ä ñf f
- -∣ [ ( )] ( )( ) ∣ ( )† † †D Q D Qdet . C71
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Using the identity

*
*

=- ( )†Q
YQ Y

Qdet
, C8

wefind * b a= ñá - ñá- -[ ] (∣ ¯ ∣ ∣ ¯ ∣)†Q Qdet 0 11 , where añ∣ ¯ and bñ∣ ¯ are the normalised states orthogonal to añ∣ and
bñ∣ respectively. Let = ñá + ñáy ∣ ∣ ∣ ∣†D u u0 0 1 10 1 and = ñá + ñáf ∣ ∣ ∣ ∣†D v v0 0 1 10 1 , then

y ab bañ = ñ - ñ∣ ∣ ¯ ¯ ∣ ¯ ¯ ( )u u , C91 0

f ab bañ = ñ - ñ∣ ∣ ¯ ¯ ∣ ¯ ¯ ( )v v . C101 0

These two states are required to be linearly independent, i.e. the vectors of eigenvalues ( )u u,0 1 and ( )v v,0 1 must
be linearly independent. Hence the FFHamiltonianwith ground space a b= ñ ñÄ Ä{∣ ∣ }G span ,L

L L has rank-2
dimer terms +hi i, 1with range equal to y fñ ñ(∣ ∣ )span , . Any such operator can bewritten as

h h h h= ñá + ñá+ +[ ∣ ∣ ∣ ¯ ¯∣] ( )h A B , C11i i i i, 1 , 1

where >A B, 0 and h hñ ñ{∣ ∣ ¯ }, is an orthonormal basis for y fñ ñ(∣ ∣ )span , .
We can construct one orthonormal basis by choosing coefficients ( )u u,0 1 and ( )v v,0 1 such that yñ∣ and fñ∣

are orthonormal (the choice is the same for any añ∣ , bñ∣ and so this procedure is independent ofGL). Fixing
*= = -[ ]u u Q2 det0 1

1 , then yñ l Yñ ñ - ñ∣ ∣ ≔ (∣ ∣ )01 101

2
, the singlet state. Let Fñ∣ denote the fñ∣ with

( )v v,0 1 chosen so that fáY ñ =∣ 0. This yields = -v v1 0. Therefore f ab bañ l Fñ ñ + ñ∣ ∣ ≔ (∣ ¯ ¯ ∣ ¯ ¯ )
N

1 , whereN

ensures áF Fñ =∣ 1.
An arbitrary orthonormal basis h hñ ñ{∣ ∣ ¯ }, for y fñ ñ(∣ ∣ )span , can be achieved by applying a two-qubit

unitary transformationU to Yñ Fñ{∣ ∣ }, that only rotates in this two-dimensional subspace. Such a unitaryU is of
the form

sq= -[ · ] ( )nU exp i , C12

where �În 3 is a unit vector, �q Î , and s is the vector of Pauli-likematrices in the orthonormal basis
Yñ Fñ{∣ ∣ }, , i.e.

s = YñáF + YñáF∣ ∣ ∣ ∣ ( ), C131

s = - YñáF + YñáF∣ ∣ ∣ ∣ ( )i i , C142

s = YñáY - FñáF∣ ∣ ∣ ∣ ( ). C153

Hence

= YñáY + FñáF+ +[ ( ∣ ∣ ∣ ∣) ] ( )†h U A B U , C16i i i i, 1 , 1

Yñ = ñ - ñ∣ (∣ ∣ ) ( )1

2
01 10 , C17

ab baFñ µ ñ + ñ∣ ∣ ¯ ¯ ∣ ¯ ¯ ( ), C18

is themost general dimer termwith ground space a b= ñ ñÄ Ä{∣ ∣ }G ,L
L L .

Now, in order for theHamiltonian = å +H hi i i, 1 to be a validMZMHamiltonian, itmust preserve
fermionic parity. In the spin picture this condition is =Ä[ ]H Z, 0L , which is equivalent to =+ +[ ]h Z Z, 0i i i i, 1 1

for all i, and this can only be satisfied if

Ä Yñ = YñqY∣ ∣ ( )Z ZU Ue , C19i

Ä Fñ = FñqF∣ ∣ ( )Z ZU Ue , C20i

where �q q ÎY F, , andwe have dropped the site label i. These are eigenvalue equations for the parity operator
ÄZ Z . The eigenvalues of ÄZ Z are+1 and−1, and the corresponding eigenvectors are even and odd parity

respectively. In qubit language, even (odd) parity states are linear combinations of computational basis states
with an even (odd)number of 1s.Hence, for two qubits, the even parity sector is spanned by ñ ñ{∣ ∣ }00 , 11 , and
odd parity is spanned by ñ ñ{∣ ∣ }01 , 10 .

The states Yñ∣ and Fñ∣ are respectively antisymmetric and symmetric under exchange of the two spins.
Already the singlet Yñ = ñ - ñ∣ (∣ ∣ )01 101

2
has parity−1. The state Fñ∣ is some state in the symmetric subspace,

and it can always bewritten as a linear combination of definite parity states

Fñ = F ñ + F ñ + =+ + - - + -∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )w w w w, 1, C211 1
2 2
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where

q q
q p w pF ñ = ñ + ñ Î Îw

+ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ [ ] [ ) ( )cos

2
00 e sin

2
11 , 0, , 0, 2 , C221

i

and

F ñ = ñ + ñ-∣ (∣ ∣ ) ( )1

2
01 10 . C231

The unitaryU then produces linear combinations of Yñ∣ and Fñ∣ . It is not difficult to see that there are only two
categories of Yñ∣ and Fñ∣ that yield parity preserving dimer terms +hi i, 1. As Yñ∣ has definite parity−1, the only
way it can combinewith Fñ∣ to produce new states of definite parity is if Fñ = F ñ-∣ ∣ 1 . There is another
independent solution, that is the pair Yñ∣ and Fñ = F ñ+∣ ∣ 1 , and only trivial unitariesU are allowed (identity and
swaps).We summarise as:

Category A

Yñ = ñ - ñ∣ (∣ ∣ ) ( )1

2
01 10 , C24

Fñ = F ñ = ñ + ñ-∣ ∣ (∣ ∣ ) ( )1

2
01 10 , C251

with any unitaryU rotating in span Yñ Fñ(∣ ∣ ), allowed.Note that this is equivalent to defining

Yñ = ñ∣ ∣ ( )01 , C26

Fñ = ñ∣ ∣ ( )10 . C27

and allowing any unitaryU rotating in span ñ ñ(∣ ∣ )01 , 10 .
Category B

Yñ = ñ - ñ∣ (∣ ∣ ) ( )1

2
01 10 , C28

q q
q p w pFñ = F ñ = ñ + ñ Î Îw

+ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ [ ] [ ) ( )cos

2
00 e sin

2
11 , 0, , 0, 2 . C291

i

Note that we can alwaysfind a local basis such that the parity-conservingHamiltonian is also real (and
therefore time-reversal symmetric). To seewhy, consider first category A. Vectors of the form

Yñ = ñ + ñ∣ ∣ ∣ ( )U
a a

cos
2

01 e sin
2

10 , C30bi

F ñ = ñ - ñ-∣ ∣ ∣ ( )U
a a

sin
2

01 e cos
2

10 C31b
1

i

will appear in +hi i, 1. Applying the product of qubit unitaries + = Ä = Sk
L

k1 , where = ñá + ñá-∣ ∣ ∣ ∣( )S 0 0 e 1 1k
k bi 1 ,

commutes with the parity operator ÄZ L, preserves translational invariance of theHamiltonian and removes the
phase eib.Without loss of generality then, we can always considerU to be real.

Now consider category B. The singlet Yñ∣ has the property that Ä Yñ = Yñ∣ ∣V V Vdet for any unitary
Î ( )V U 2 . Let = ñá + ñáw-∣ ∣ ∣ ∣V 0 0 e 1 1 ,i 2 then applying ÄV V to the singlet Yñ∣ and to F ñ+∣ 1 gets rid of the

phase wei . Hence, since =[ ]V Z, 0, applying ÄV L toH results in a real and translationally invariant
Hamiltonian that is parity conserving. For this reason, without loss of generality, we need only consider

real F ñ = ñ + ñq q
+ ( ) ( )∣ ∣ ∣cos 00 sin 111 2 2

.

Given these results, we nowneed to determine the ground space vectors añ∣ and bñ∣ . Recall that
ab baFñ = ñ + ñ∣ (∣ ¯ ¯ ∣ ¯ ¯ )

N

1 .We can parametrise the qubit states in the standardway:

a añ = ñ + ñ ñ = ñ - ñ∣ ∣ ∣ ∣ ¯ ∣ ∣ ( )u u u u
cos

2
0 e sin

2
1 , sin

2
0 e cos

2
1 , C32v vi i

b bñ = ñ + ñ ñ = ñ - ñ∣ ∣ ∣ ∣ ¯ ∣ ∣ ( )x x x x
cos

2
0 e sin

2
1 , sin

2
0 e cos

2
1 , C33y yi i

where pÎ [ ]u x, 0, and pÎ [ )v y, 0, 2 . Then

Fñ = ñ + ñ+⎜⎛⎝∣ ∣ ∣ ( )( )
N

u x u x2
sin

2
sin

2
00 e cos

2
cos

2
11 C34y vi

- + F ñ-
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟∣ ( )u x x u1

2
e sin

2
cos

2
e sin

2
cos

2
. C35y vi i

1
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Category A: Fñ = F ñ-∣ ∣ 1 . There are twoways this can be achieved:

p= = º = =( ) ( )u x
u xa sin

2
cos

2
0 0, and , C36

p= = º = =( ) ( )x u
x ub sin

2
cos

2
0 0, and . C37

In case (a)wefind añ = ñ∣ ∣0 and bñ = ñ∣ ∣e 1vi , and in case (b) añ = ñ∣ ∣e 1yi and bñ = ñ∣ ∣0 . Since global phases are
irrelevant, these two cases give the same solution.

Category B: Fñ = F ñ µ ñ + ñq q
+ ( ) ( )∣ ∣ ∣ ∣cos 00 sin 111 2 2

. This occurs when p+ =y v N2 and

+ = ( )u x x u
e sin

2
cos

2
e sin

2
cos

2
0. C38y vi i

Rearranging yields

= - ( )u x
tan

2
e tan

2
. C39y2i

Resolving into real and imaginary parts:

= - ( )u
y

x
tan

2
cos 2 tan

2
, C40

= ( )u
ytan

2
sin 2 0. C41

The last equation has a solutionwith u=0 and pÎ [ )y 0, 2 . This implies x = 0, andwefind a bñ = ñ = ñ∣ ∣ ∣0 ,
however this violates the requirement that añ∣ and bñ∣ are independent vectors. The only other solution to
equation (C41) is p=y n 2 for Î { }n 0, 1, 2, 3 since pÎ [ )y 0, 2 .

If Î { }n 0, 2 , then equation (C40) implies that p p= - + º = - +m u x m2u x

2 2
, wherem is an integer,

but as pÎ [ ]u x, 0, , then = -u x. The vectors in this case are:

a bñ = ñ + ñ ñ = ñ - ñ =∣ ∣ ∣ ∣ ∣ ∣ ( )u u u u
ncos

2
0 sin

2
1 , cos

2
0 sin

2
1 , for 0, C42

a bñ = ñ - ñ ñ = ñ + ñ =∣ ∣ ∣ ∣ ∣ ∣ ( )u u u u
ncos

2
0 sin

2
1 , cos

2
0 sin

2
1 , for 2, C43

so both these values of n give the same solution. Sincewemust have independent añ∣ and bñ∣ , this restricts
pÎ ( )u 0, . The state F ñ l F ñ = - ñ + ñ+ +∣ ∣ ( ∣ ∣ )sin 00 cos 11

N

u u
1 1

0 2 2
2

2
2

, and the dimerHamiltonian here is

= YñáY + F ñáF+ + +∣ ∣ ∣ ∣ ( )h A B . C44i i, 1
0

1
0

1
0

If Î { }n 1, 3 , then equation (C40) implies that p p= + º = +m u x m2u x

2 2
, wherem is an integer, but

as pÎ [ ]u x, 0, , then u=x. The vectors in this case are:

a bñ = ñ - ñ ñ = ñ + ñ =∣ ∣ ∣ ∣ ∣ ∣ ( )u u u u
ncos

2
0 i sin

2
1 , cos

2
0 i sin

2
1 , for 1, C45

a bñ = ñ + ñ ñ = ñ - ñ =∣ ∣ ∣ ∣ ∣ ∣ ( )u u u u
ncos

2
0 i sin

2
1 , cos

2
0 i sin

2
1 , for 3, C46

so both these values of n give the same solution. Sincewemust have independent añ∣ and bñ∣ , this restricts
pÎ ( )u 0, . The state F ñ l F ñ = ñ + ñ+ +∣ ∣ ( ∣ ∣ )sin 00 cos 11

N

u u
1 1

1 2 2
2

2
2

, and the dimerHamiltonian here is

= YñáY + F ñáF+ + +∣ ∣ ∣ ∣ ( )h A B . C47i i, 1
1

1
1

1
1

Notice that F ñ = Ä F ñ+ +∣ ∣S S1
1

1
0 , where = ñá + ñá∣ ∣ ∣ ∣S i 0 0 1 1 , and since Yñ∣ is the singlet, we find

= Ä Ä+ + ( )† †h S Sh S S . C48i i i i, 1
1

, 1
0

So since theHamiltonianwith these dimer terms are related by ÄS L and =[ ]S Z, 0, the topological properties of
their resultingHamiltonianswill be the same.

Hencewemay summarise as follows. Up to a product of qubit unitaries - = Ä Ä ÄU U U... L1 2 that
commutes with parity ÄZ L and preserves translation invariance, the parity symmetric L-qubit FFHamiltonian

= å +H hi i i, 1with a two-dimensional ground space a b= ñ ñÄ Ä{∣ ∣ }G span ,L
L L has dimer terms

= YñáY + FñáF >+ +[ ( ∣ ∣ ∣ ∣) ] ( )†h U A B U A B, , 0, C49i i i i, 1 , 1

that split up into two types:

• Type 1

Yñ = ñ - ñ∣ (∣ ∣ ) ( )1

2
01 10 , C50
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Fñ = ñ + ñ = +∣ ( ∣ ∣ ) ( )
N

u u
N

u u1
sin

2
00 cos

2
11 , sin

2
cos

2
, C512 2 4 4

where pÎ ( )u 0, and �=U . The ground space states are añ = ñ + ñ∣ ∣ ∣cos 0 i sin 1u u

2 2

and *b a añ = ñ - ñ = ñ = ñ∣ ∣ ∣ ∣ ∣Zcos 0 i sin 1u u

2 2
.

• Type 2
g g

Yñ = ñ + ñ∣ ∣ ∣ ( )cos
2

01 sin
2

10 , C52

g g
Fñ = ñ - ñ∣ ∣ ∣ ( )sin

2
01 cos

2
10 , C53

with g pÎ ( )0, . The ground space states are añ = ñ∣ ∣0 and bñ = ñ∣ ∣1 .

AppendixD. The Jordan–Wigner transformation

Herewe discuss the conversion of a qubitHamiltonian into a spinless fermionHamiltonian using a Jordan–
Wigner transformation. Let †cj and cj be the (spinless) fermion creation and annihilation operators, respectively,

at site jwith = ¼j L1, , . They obey the standard anticommutation relations: ={ }c c, 0j k , ={ }† †c c, 0j k and

d={ }†c c,j k jk. Then the Jordan–Wigner transformation between Pauli spin operators and fermion operators is

= +
=

-⎡
⎣⎢

⎤
⎦⎥⨂ ( ) ( )†X Z c c , D1j

k

j

k j j
1

1

= -
=

-⎡
⎣⎢

⎤
⎦⎥⨂ ( ) ( )†Y Z c ci , D2j

k

j

k j j
1

1

�= - ( )Z n2 , D3j j

where = †n c cj j j is the fermionic number operator.
In order to have the correct symmetries, the spinHamiltonians that can supportMajorana zero edgemodes

will only contain terms like + + +X X Y Y Z Z, ,j j j j j j1 1 1 and 1-localZj. In terms of fermionic operators, theZ terms
are straightforward, andwe find

= + - -+ + + + + ( )† † † †X X c c c c c c c c , D4j j j j j j j j j j1 1 1 1 1

= + + ++ + + + + ( )† † † †Y Y c c c c c c c c . D5j j j j j j j j j j1 1 1 1 1

Inserting these expressions into the qubitHamiltonians immediately yields the results in themain text.

Appendix E.MPS formof the states in the case (i) ground spaceGL

TheMPS formulation of an L-qudit state yñ∣ is

åyñ = ñ
¼

∣ ( ) ∣ ( )[ ] [ ]A A i itr ... ... , E1
i i

i i
L

, ,
1

L

L

1

1

where Î ¼ -{ }i d0, , 1k for all =k L1 ... and the [ ]A ik areD×Dmatrices. Then

å

å å

å

yñ = ñ ñ

= ñ ñ

= ñ

= ¼

¼ ¼

¼

⨂ ∣ ( ) ∣ ∣

( ) ∣ ∣

( ) ∣ ( )

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

F A A F i F i

A A f j f j

B B j j

tr ... ...

tr ... ...

tr ... ... , E2

k

L
k

i i

i i L
L

j j i i

i i
j i j i

L
L

j j

j j
L

1 , ,

1
1

, , , ,

1
1

, ,
1

L

L

L L

L

L L

L

L

1

1

1 1

1

1 1

1

1

where

å= ñá∣ ∣ ( )[ ] [ ]F f j l , E3k

j l
j l
k

k k

k k
k k

and

å= ( )[ ] [ ] [ ]B f A , E4j

i
j i
k ik

k
k k

k

for = ¼k L1, , .
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TheMPSmatrices for product state ñÄ∣0 L are d=[ ]C i
i0k , and for ñÄ∣1 L are d=¯[ ]C i

i1k , for any k= 1,K, L.
Therefore añ = ñÄ Ä∣ ( ∣ )Q 0L L hasMPSmatrices =[ ]A qi

i0
k , while bñ = ñÄ Ä∣ ( ∣ )Q 1L L has =[ ]B qi

i1
k , where qij are

the entries of thematrixQ.
TheMPS formof a superposition can be achievedwith block-diagonalmatrices:

åy fñ + ñ = ñ
¼

∣ ∣ ( ) ∣ ( )[ ] [ ]u v v A A i itr ... ... E5
i i

i i
L

, ,
1

L

L

1

1

å+ ñ
¼

( ) ∣ ( )[ ] [ ]v B B i itr ... ... E6
i i

i i
L

, ,
1

L

L

1

1

å= ñ
¼

( ) ∣ ( )[ ] [ ]W W i itr ... ... , E7
i i

i i
L

, ,
1

L

L

1

1

where

=
⎛
⎝⎜

⎞
⎠⎟ ( )[ ] [ ]

[ ]W uA
vB

0
0

, E8i
i

i
1

1

1

and

=
⎛
⎝⎜

⎞
⎠⎟ ( )[ ] [ ]

[ ]W A
B

0
0

, E9i
i

i
k

k

k

for all = ¼k L2, , . Of course there aremany choices for where to absorb the coefficients u and v, here we attach
them to thefirst spin. This construction holds forMPSwith periodic boundary conditions, however, we are
interested in open chains (so thatMZMs can exist at the ends), and this requires that

= =( ) ( )[ ] [ ]W Wdim dim 1i iL1 , in otherwords, = ( )[ ] [ ] [ ]W uA vB,i i i1 1 1 and = ( )[ ] [ ] [ ]W A B,i i i TL L L are row and
column vectors respectively (inwhich case the trace over all theWs is redundant).
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