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Abstract
Impurities immersed into a surrounding ultra-cold Bose gas experience interactions mediated by
the surrounding many-body environment. If one focuses on two impurities that are sufficiently
close to each other, they can form a bipolaron pair. Here, we discuss how the standard methods
based on linearizing the condensate field lead to results only valid in the weak coupling regime and
for sufficiently large impurity separations. We show how those shortcomings can be remedied
within the Born–Oppenheimer approximation by accounting for boson–boson interactions
already on the mean-field level.

1. Introduction

The interaction between an impurity and a surrounding many-body environment can lead to the formation
of a quasiparticle called a polaron [1, 2]. When multiple impurities are present, exchange interactions, also
mediated by the surrounding environment, can lead to impurity–impurity bound states known as
bipolarons. Such exchange mediated interactions are ubiquitous in physical systems, being relevant for
Cooper pairs in superconductors [3] and quark–gluon interactions [4]. In the solid-state context, lattice
phonon vibrations are responsible for the mediated interactions. The resulting bipolarons may play a role in
high-Tc superconductivity [5, 6] and are also a vital ingredient for understanding the electric conductivity
of polymers [7, 8].

In more recent years, neutral atoms immersed in ultra-cold quantum gases have provided an excellent
platform to investigate the physics of polarons. Being highly tuneable via Feshbach resonances [9], such
systems allow access to novel regimes. Here the density fluctuations of the ultracold gas mediate the
interaction between impurities which can result in a bound state as illustrated in figure 2. Using ultracold
quantum gases, the Fermi-polaron has been investigated in a several experiments [10–18] and in recent
years the experimental progress in Bose-polarons has also made considerable advances [19–23]. A common
starting point for describing impurities in an ultracold Bose gas is the linearized Fröhlich model [24–26].
Despite its applicability to the weak coupling regime, it is known from the single impurity case [27, 28],
that the Fröhlich model becomes inadequate when applied to strongly interacting impurities. A natural next
step is to consider the extended Fröhlich model which systematically accounts for impurity–boson
interactions of higher order, i.e. by retaining second order phonon impurity process while still neglecting
phonon–phonon interaction [28]. Although the extended Fröhlich model, has been applied with
considerable success to dynamical phenomena and describing repulsive and weakly attractive interactions
[28–33], it too possesses some significant shortcomings. For instance an instability can form due to the
emergence of a bound state. The extended Fröhlich model predicts that an infinite number of bosons
populates this energetically low-lying bound state which is typically unphysical [28]. That is, in a realistic
interacting Bose gas, the high occupancy of the bound state is balanced by the boson–boson repulsion
[34, 35]. Describing the interaction between two neutral impurities immersed in a Bose gas is crucial for
understanding the interplay between several impurities. Here, the Fröhlich model predicts, within the
Born–Oppenheimer (BO) approximation, an attractive Yukawa potential between two impurities in 3D
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[36]. In [37] it was noted however that the Yukawa potential is not entirely accurate, being only valid for
weak couplings and sufficiently large impurity separation. Building on the single impurity case, one
therefore might expect that the results obtained from the Frölich model for weak couplings can be
improved upon in a straightforward way by including higher-order phonon impurity scattering terms.
However, we will show that if one proceeds in a naive manner for two impurities, this can lead to
unphysical divergences in the ground state energy due to the bound state formation between the two
impurities and the excitations of the Bose gas, something that has also been demonstrated in [38]. In
contrast to the single impurity case, this occurs for attractive and repulsive impurity–boson scattering
lengths. The mechanisms leading to this bound state are similar to those leading to the bound state formed
between two localized potentials known from standard quantum mechanics [39].

In this work, we present a conceptually simple and physically intuitive model to address the bipolaron
problem. This model constitutes a good starting point for more advanced treatments and also rectifies the
shortcomings of the (extended) Fröhlich model when considering the bipolaron problem. We start by
introducing the full microscopic Hamiltonian. We proceed by linearizing the model and integrating out the
phononic degrees of freedom which leads to the Yukawa potential. We then discuss why the Yukawa
potential is inadequate and also outline why some of the standard methods used to go beyond the Fröhlich
model in the single impurity case do not generalize in a straightforward manner. We then show how those
problems can be remedied in a conceptually simple and intuitive way by accounting for boson–boson
interaction at the mean-field level, in line with previous treatments of bipolarons in 1D [40, 41] and single
polarons [34, 35, 42–48]. This is done by applying the Lee-Low-Pines transformation [49] and
transforming to the center of mass coordinates for the two impurities. This brings the Hamiltonian into a
form amenable to the BO approximation. We proceed by minimizing the resulting Gross–Pitaevskii (GP)
energy functional. This leaves us with an effective Schrödinger equation for the two impurities with which
we determine conditions for a bound state to occur.

2. The model

Our starting point is a microscopic theory describing two impurities coupled to a surrounding Bose gas,
consisting of N particles in a box of volume V with periodic boundary conditions. Such a system is
described by the Hamiltonian

Ĥ =

∫
d3r φ̂†(r)

(
−∇2

2m
+

gBB

2
φ̂†(r)φ̂(r) − µ + V(r − R̂1) + V(r − R̂2)

)
φ̂(r) +

P̂2
1 + P̂2

2

2M
. (1)

Here we set ! = 1 and m(M) denotes the mass of the bosons (impurity atoms), φ̂(x) is the bosonic field
operator describing the Bose gas, gBB(gIB) is the boson–boson (boson–impurity) interaction strength,
X̂1,2 (P̂1,2) denotes the position (momentum) operator of the impurities, and µ is the chemical potential of
the Bose gas. The interaction between the impurities and the condensate is modelled by the interaction
potential V(r); most linearized treatments rely on employing a contact potential Vδ(r) = gIBδ(r) [36, 37].
As is known for such models, when keeping the full Hamiltonian and applying a contact interaction for the
impurity–boson interaction and the boson–boson interaction simultaneously, the Hamiltonian only admits
zero energy (bi)polaron solutions [42]. Thus when working with the non-linearized model in the BO
approximation at least one of the two interactions has to be chosen to be of finite range. In this work, we
employ a finite-range potential for the impurity–boson interaction. For the boson–boson interaction we
still employ a contact interaction. We choose the widely-used Gaussian pseudo-potential

VG(r) = −V0e−
r2

L2 , (2)

with depth V0 and range L and also compare the results to the soft van-der-Waals potential

Vvdw(r) = −V0
L6

r6 + L6
. (3)

The connection to the s-wave scattering length aIB and the effective range reff can be made by numerically
solving the two-body Schrödinger equation [50, 51]. For a spherical potential u(r) satisfies the (radial)

differential equation
(
− d2

dr2 + 2mrV(r) + k2
)

uk(r) = 0, where mr = mM/(m + M) and the boundary

conditions are u(0) = 0 and u′(0) = 1. By solving for uk(r) one can now extract the phase shift δ0(k), which
ultimately determines the scattering length and effective range via
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k cot δ0(k) = − 1
aIB

+
1
2

reff k2 + O(k4). (4)

This relation can be used to make the connection to the contact potential used in the linearized case.
To conclude this section, we introduce the relative coordinates and apply a unitary transformation to

eliminate the center of mass degrees of freedom. Starting with equation (1), we transform into the center of
mass frame and denote the relative position (momentum) of the impurities by R̂ (P̂) and the center of
mass position (momentum) by r̂I (p̂I). Subsequently we apply a Lee-Low-Pines transformation
Û = exp(ir̂I · P̂B), where P̂B = −i

∫
ddr φ̂†(r)∇φ̂(r) is the total momentum of the Bose gas. This

eliminates the center of mass coordinate [40, 49] and we arrive at the following Hamiltonian

Ĥ =
:
(
p − P̂B

)2
:

4M
+

P̂2

M
+

∫
d3r φ̂†(r)

(
−∇2

2mr
+

gBB

2
φ̂†(r)φ̂(r) − µ + V(r + R̂/2) + V(r− R̂/2)

)
φ̂(r). (5)

Here, mr is the reduced mass and p is the total momentum, which is a conserved quantity and therefore can
be replaced by a real number. Throughout our calculations we set p = 0 since we focus on systems at rest to
obtain the mediated interaction. One might notice that we are neglecting direct impurity–impurity
interactions in our considerations. This is strictly speaking only allowed when the impurities are well
separated. As will be further explained, the range of the bare impurity–impurity interaction will usually be
much smaller than the range of the mediated potential. The standard procedure is to linearize the field
operators and subsequently perform a Bogoliubov rotation, resulting in the (extended) Fröhlich model. The
following section will briefly outline how to retrieve these results by linearizing only the density and
neglecting phase-density interactions.

3. Linearized theory

In this section, we address the bipolaron problem utilizing a path-integral approach, which is expanded in
density fluctuations. Though the resulting expressions can be obtained directly from the Fröhlich model,
the path integral approach gives a clearer picture of how the interaction is mediated by the density
fluctuations of the condensate. Furthermore, it demonstrates that the neglected boson–boson interaction is
the root cause of the shortcomings in predicting the mediated interactions. We start by rewriting the field
operators as φ̂(r) =

√
n0 + δρ̂(r)eiθ̂(r), where n0 = µ/gBB. After performing this redefinition, dropping

terms of order higher than quadratic in δρ and ∂iθ, we arrive at the imaginary-time action

S =

∫
dτ

{∫
d3r

[
δρ∂τθ +

n0(∇θ)2

2mr
+

1
2
δρ

(
−∇2

4mrn0
+ gBB

)
δρ + gIB(δρ(R/2) + δρ(−R/2))

]
+

P2

M

}
.

(6)
It is now straightforward to first integrate out the density and subsequently the phase, which leaves us with
an effective action for the impurities (see [33, 52] for similar calculations for the Bose polaron)

S =
∑

n

{
P2

M
− g2

IB

(2π)3

∫
d3k

n0ek cos (k · R/2)
Ω2

k + ω2
n

}
, (7)

where ωn are Matsubara frequencies, eq = q2/2mr is the energy of the free boson and

Ωq =
√

eq
2 (eq + 2n0gBB) is the Bogoliubov dispersion. This leads to the mediated interaction

Veff(ωn, R) = − g2
IB

(2π)3

∫
d3k

n0ek cos (k · R/2)
Ω2

k + ω2
n

, (8)

where by evaluating the momentum integral and applying the BO approximation, which allows us to take
ωn = 0, one can obtain the mediated interaction in real space. The calculations are straightforward and
yield the Yukawa potential

Vδ
BP(R) = −4n0πa2

IB

mrR
e−

√
2R/ξ, (9)

where we have used the usual relation gIB = 2π
mr

aIB and introduced the healing length ξ = 1√
2gBBn0mr

. We note
that for heavy impurities and moderate couplings, one can find the ground state energy of the biplaron by
solving the resulting Schrödinger equation. For heavy impurities, one can use the generalized parametric
Nikiforov–Uvarov method to calculate approximate eigenenergies for the Yukawa potential [53], which
results in the ground state energy

Eδ
BP = −4π2 Mn2

0a4
IB

m2
r

. (10)
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We note that this bound state only exists when |aIB| !
√

mr√
2Mn0πξ

[53]. One can already see a major

shortcoming of this approach, namely the bound state energy scales linearly in M and the bipolaron energy
diverges for M →∞. This is unphysical. The diverging energy can be traced back to the fact that the
Yukawa potential is unbounded from below, and for M →∞, the kinetic energy becomes irrelevant. The
unboundedness of the mediated interaction is a direct consequence of the delta function constituting a
zero-range potential and therefore requires regularization. The regularization employed for the delta
function regularizes the scattering for each impurity separately and is valid as long as the particles have
non-zero separation, but breaks down when the impurities sit on top of each other, which effectively
constitutes a single impurity with twice the bare interaction. Hence the ground-state energy becomes
proportional to the minimum of the potential, which is −∞ for the Yukawa potential. Additionally this
treatment predicts a divergence at the Feshbach resonance. Repulsive boson–boson interaction prevents an
infinite number of bosons from attaching to the impurity, due to internal pressure arising from an increased
number of bosons in a finite volume and we thus we do not expect such a divergence when accounting for
boson–boson interactions.

In principle, one can improve upon these results by expanding the action perturbatively and resumming
certain classes of diagrams. However, as shown in [34] for the case of a single impurity, this is strictly
speaking beyond the validity of the model and can lead to unphysical results near the scattering resonance
due to the breakdown of the model associated with the bound state formation. In appendix A, we show
with the help of the extended Fröhlich model for two impurities, that this can be problematic and can lead
to divergences in the mediated potential. The idea is simple, in analogy with the case of a single particle
interacting with two delta potentials (see [39] and appendix B), a bound state can form between the
excitations and the two impurities. This bound state is energetically favorable and, without
phonon–phonon interaction preventing an accumulation in this state, the condensate breaks down. To
alleviate those problems, one has to incorporate phonon–phonon interaction and employ an interaction
potential with finite range. The following section describes how this can be done by considering the
boson–boson interaction at the mean-field level.

Repeating the above analysis using the Gaussian potential (instead of a contact potential), one finds

VG, lin
BP (R) = −2V2

0 L6πm
R

∫ ∞

0

sin(qR)n0q
q2 + 2/ξ2

exp
(
−q2L2/2

)
dq. (11)

Note that with this potential, VGauss
BP stays finite for small R. This can be understood by noting that the

exponential cut-off exp
(
−q2L2/2

)
is an effective UV-regulator, which is absent in the case of a delta

function potential. However, if one uses this scattering potential for the extended Fröhlich model, the
bound state problem will persist. Additionally, the model loses the appeal of being analytically tractable
when including higher-order phonon terms. To summarize, while both (9) and (11) are obtained by
linearizing the model only (9) assumes a contact potential and is thus ill-defined for R = 0.

4. Main methodology and results

In this section, we describe an approach which eliminates the difficulties encountered in the previous
section. The Hamiltonian (5) will serve as the starting point for the mean-field treatment. The GP energy
functional in the BO approximation that needs to be minimized to find the ground state can now be simply
read off from (5)

E(φ, R) =

∫
d3r

{
|∇φ|2

2mr
+

gBB

2
(|φ|2 − n0)2 +

(
V(r + R/2) + V(r − R/2)

)
|φ|2

}
. (12)

To minimize the energy functional we have used the split-step Fourier algorithm in imaginary time [54].
This, in turn, allows us to calculate the mediated interaction through

VGP
BP (R) = E(R) − E0 − E(∞), (13)

where E0 is the energy of the Bose gas without impurities and E(∞) is the energy of the two polarons at
infinite separation and is subtracted to obtain the purely attractive part attributed to the bipolaron. Before
discussing the main results we want to show that the problem can in fact be characterised by a few re-scaled
parameters, which can then be used to interpret the results in terms of experimentally observable quantities.
First we note that the chemical potential can be written as µ = 4πaBB

mr
n0. By rescaling φ→ φ

√
n0, r → rξ and
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Figure 1. The mediated potential for the two impurities near the Feshbach resonance. We can see that the transition for a more
realistic pseudo-potential is smooth across the resonance. In contrast the diverging scattering length leads to a breakdown of the
Yukawa predictions. It also becomes clear that for larger aIB, the Fröhlich model, even with a UV regulated pseudo-potential,
becomes inadequate. The inset shows the mediated interaction potential for small aIB (corresponding to small V0). Here we can
see that the linearized theory and the GP results agree fairly well. Additionally it should be noted that the Yukawa potential
obtained by using a regularized contact interaction is only accurate for large separations.

V → V/µ we then find

E(φ, R)
µξ3n0

=

∫
d3r

{
|∇φ|2 +

1
2

(|φ|2 − 1)2 +
(
V(r + R/2) + V(r − R/2)

)
|φ|2

}
, (14)

which shows that within the validity of the c-field treatment our results are characterised only by the
re-scaled energy, interaction strength, and impurity mass.

In figure 1 we show the shape of the mediated potential between two impurities for different aIB. The
inset shows the comparison with the linearized model for weak coupling; here, we chose the s-wave
scattering length of the Yukawa potential to match the scattering length of the Gaussian potential. For weak
coupling, there is good quantitative agreement between the linearized model using a Gaussian
pseudo-potential and the result obtained using the GP functional (see inset). We also observe that the
Yukawa potential, which is obtained by employing a zero-range interaction, matches the behavior of the
interaction potential with finite range for larger separations, indicating that the exact effective range of the
potential is not highly relevant for the range of the mediated potential. One main difference between a zero
range interaction and a more realistic Gaussian interaction is that the mediated potential stays finite for
R = 0. A similar discrepancy between the Yukawa potential and the mediated potential was reported in [37]
using a scattering matrix approach.

In figure 1 we also show the mediated interaction close to the Feshbach resonance. Here another
shortcoming of the zero range scattering potential is revealed, namely close to the scattering resonance aIB

diverges, leading to infinite attraction, which is unphysical. The results obtained from the GP energy
functional and the result obtained employing a Gaussian potential give a more realistic picture. Here, the
mediated interaction changes less drastically across the Feshbach resonance. We also note that for larger aIB

(corresponding to larger V0), the linearization approach becomes inadequate and significant deviation from
the GP result can be observed. While the Fröhlich model with Gaussian potential underestimates the
interaction here, we note that it is not a priori clear whether the Fröhlich model overestimates or
underestimates the mediated potential. The two competing effects that the Fröhlich model does not account
for are (i) two and higher-order phonon impurity scattering processes, which lead to enhanced mediated
impurity–impurity interaction and (ii) the boson–boson interaction, which damps the phonon exchange.
We can see that changing aBB, while keeping all other parameters constant effectively results in re-scaling the
impurity boson scattering length. Thus we move from the situation depicted in the inset of figure 1 to the
one shown in the main part of figure 1. This is exactly what one would expect, by noting that for large
boson–boson interaction higher order phonon terms are damped out quickly and by neglecting the
damping in the Fröhlich model we overestimate the mediated interaction.

The bipolaron energy can be calculated by finding the ground-state of the resulting stationary
Schrödinger equation. We note that within the mean-field approximation for p = 0, the wave function φ
can always be chosen to be real. Therefore we do not have to consider the vector-potential typically arising
within the BO approximation [55]. Moreover, we observe that the equation is radially symmetric and that
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Figure 2. (a) Schematic of bipolaron formation. If the interaction strength is weak or the impurities are very light, no bound
state is formed, and only two polarons coexist. (b) For strong enough interactions, a bound state called the bipolaron emerges.
(c) The binding energy and inverse separation of the bipolaron for different impurity kinetic energy scales as a function of the
inverse scattering length. The separation of the impurities is defined through 〈|R̂|〉 = 〈|R̂1 − R̂2|〉. The results are for reff = 1
and obtained using VG. From the inverse separation it can clearly be seen when a bound state (the bipolaron) is formed. This
threshold decreases with mr

Mn0ξ
3 and in fact becomes 0 for mr

Mn0ξ
3 = 0. In the inset we show the scattering length threshold after

which a bound state is formed as a function of the mass ratio.

the ground-state will have zero angular momentum. Hence, we have to solve the following radial
Schrödinger equation to obtain the bipolaron energy

(
− 1

M
d2

dR2 + VGP
BP (R)

)
u(R) = EBPu(R), (15)

with the boundary condition u(0) = 0. The results obtained are shown in figure 2. We note that strictly
speaking, our approach is only valid for m/M * 1. This corresponds to a vanishing impurity kinetic energy
scale mr

Mn0ξ3 , which serves as a control parameter for the BO approximation. It is notable that the
dependence on the mass ratio is weak compared to the linearized case (compare with (10), where the energy
scales linearly in the impurity mass), which can be explained by realizing that the effective potential stays
finite. This can be understood by comparing kinetic energy to the potential energy. If the mass ratio
becomes small, the kinetic energy becomes less important, and the solution of (15) will be localized around
the minimum of the potential. Furthermore, we observe a critical aIB after which a bipolaron characterized
by EBP < 0) is formed, see d, see also the inset of figure 2. In figure 2 this can also be clearly identified from
the inverse separation of the impurities. We also note that the transition across the scattering resonance is
smooth and the bipolaron binding energy further increases after crossing the scattering resonance. This can
be understood by noting that the amplitude of the mediated potential VGP

BP increases further after crossing
the resonance. Additionally, for heavy impurities the binding energy is approximately related to polaron
energy through the approximate relationship EBP ≈ Epol(2V0) − 2Epol(V0), which becomes exact in the limit
M →∞, since here the impurity kinetic energy becomes negligible and thus 〈|R̂|〉 → 0. Since in the regime
after crossing the resonance the polaron energy scales faster than linearly [34, 35] we expect the bipolaron
binding energy to increase further across the resonance. We remark that the above argument relies on the
validity of the GP treatment. In fact for aIB > 0 two body bound states can appear that invalidate the GP
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Figure 3. (a)–(c) The bipolaron energy for different aIB as a function of the effective range reff . In (d), the effective range is fixed
and the bipolaron energy is plotted as a function of inverse scattering length. The plots demonstrate that the bipolaron energy is
almost completely determined by the scattering length and the effective range and using different underlying potentials leads to
similar results. All curves are for the M = ∞ case.

treatment and while a detailed study of this regime is beyond the scope of this work it could be an
interesting direction for further studies.

In figure 3 we show the bipolaron energy for the M = ∞ case for two different impurity–boson
interaction potentials. Namely, we compare a Gaussian potential with the soft van-der-Waals potential. Here
we either fix the effective range or the scattering length. We find that on either side of the scattering
resonance and at the resonance the exact shape of the potential does not influence the results considerably
and the exact choice of the underlying potential is not highly relevant for the obtained bipolaron energy.
Interestingly, the bipolaron binding energy increases with a decreasing effective range. In figure 3(d) we
show the binding energy across the resonance for fixed effective range and we can see that the binding
energy across the resonance is smooth.

In figure 4 we show the separation of the impurities and the bipolaron binding energy for different mass
ratios as a function of the effective range for (a) ξ/aIB = −1 and (b) ξ/aIB = 0. As in the infinite mass case
we observe, that energy decreases with the effective range. Additionally we see that impurity separation
defined trough 〈|R̂|〉 = 4π

∫∞
0 dR R|u(R)|2 stays of the order of the effective range of the underlying

interaction potential.
As mentioned earlier, it is essential to compare the localization of this bound state to the range of the

direct impurity–impurity interaction. Here we note that, on average, the separation is much greater than
the range of the direct impurity–impurity interaction, which in this case is actually the important length
scale since after integrating out the bosonic degrees of freedom, we have reduced the problem effectively to
a single particle scattering problem, with two competing length scales. To make this statement a bit more
quantitative, we compare some characteristic effective ranges. Considering a microscopic van-der-Waals
interaction the effective range is given by r0 ∼ (C6m/me)1/4a0 [56], where a0 is the Bohr radius and typical
values are C6 ∼ 103 and m/me ∼ 104 –105, which gives the estimate r0 ∼ 100a0. To put this into context,
one can estimate the healing length in terms of the Bohr radius for typical experimental values (see for
example [20]), which leads to ξ ∼ 107 –1010a0. Hence the effective range of the direct impurity–impurity
interaction typically a fraction of the range of the effective interaction potential mediated by the condensate.
In figure 4 it can also be clearly seen that the separation of the impurities is much larger than the effective
range of the direct impurity impurity interaction. In the case of large impurity–bath interactions, the direct
impurity–impurity interaction can no longer be neglected, and few-body physics, like the bound state
between the two impurities due to direct impurity–impurity interaction, can become relevant.
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Figure 4. The effective range dependence of the bipolaron energy and size the for different mass ratios and (a) ξ/aIB = −1 and
(b) ξ/aIB = 0. All results are obtained using VG and the colors indicate the same values as in figure 2. As expected the separation
of the impurities increases with the effective range of the potential and also for lighter impurities. The bipolaron binding energy
decreases with increasing effective range and for lighter impurities.

5. Conclusion

We have presented an approach to the ground-state interaction of two impurities immersed into a three
dimensional Bose gas capable of taking the boson–boson interaction into account. We started by showing
that linearization efforts and the resulting Fröhlich Hamiltonian are inadequate to fully describe the polaron
interaction in a Bose gas. We also discussed how naive extensions of the Fröhlich model are inadequate. We
then outlined how these issues can be addressed using a mean-field treatment paired with the BO
approximation. The BO approximation is valid for heavy impurities. While strictly speaking, the mean-field
approximation neglects quantum corrections in the form of modified phonons completely, it is important
to note that the bipolaron properties are determined by short-scale physics. Therefore, we do not expect the
modified phonons, which arise when including quantum corrections to play a significant role in this
regime. We first minimized the mean-field energy functional, from which we extracted the interaction
potential. Here, we compared our results to the Yukawa potential and the results obtained from the
linearized model with a Gaussian potential. We then calculated the bipolaron energy using the effective
potential by solving the resulting radial Schrödinger equation. A detailed comparison of the results
presented here with other methods and especially with the quasi-exact quantum Monte Carlo method
would be a very interesting direction for future work. The work highlights the fundamental problems like
diverging mediated interactions, associated with approaches based on linearization when studying the
interplay of two impurities and shows a simple way of dealing with these shortcomings. We hope that the
methods presented will serve as fertile ground to explore the bipolaron in and out of equilibrium in greater
detail.
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Appendix A. Breakdown of the extended Fröhlich model

In this appendix we show how applying the standard variational method to the extended Fröhlich model for
the bipolaron problem will yield unphysical results. This occurs because the emerging bound state is
populated by an infinite number of excitations, which leads to a diverging energy. Within the BO
approximation it is indeed possible to predict the position of this resonance fully analytically. Our starting
point is the extended Fröhlich model Ĥ = ĤF + Ĥ2ph [57, 58], adapted to the two impurity case, in the
M →∞ limit where

Ĥ =
∑

k

Ωkâ†
kâk + 2gIB

√
n0

Ld

∑

k -=0

Wk cos

(
k · R

2

)(
â†
k + â−k

)
+

gIB

Ld

∑

k,k′ -=0

cos

(
(k′ − k) · R

2

)

×
[(

WkWk′ + W−1
k W−1

k′
)
â†
kâk′ +

1
2

(
WkWk′ − W−1

k W−1
k′

)(
â†
kâ†

−k′ + â−kâk′

)]
, (16)

with Wk =
(

(ξk)2

2+(ξk)2

)1/4
. In the BO approximation the Hamiltonian is quadratic and can therefore be solved

by a coherent sate ansatz |{αk}〉 (see [28] for a detailed discussion in the case of a mobile single impurity).
Applying the coherent state ansatz one obtains after some algebra, that the {αk} can be chosen to be real,
symmetric in k and are determined by the following self-consistent equation

αk = −2gIB
√

n0
Wk cos(k · R/2)

Ωk
− 2gIB

Wk cos(k · R/2)
Ωk

1
Ld

∑

k′

Wk′ cos(k′ · R/2)αk′ (17)

which can be easily resummed as a geometric series. This leads to the following R-dependent part of the
ground state energy in the thermodynamic limit

E(R) =
n0

1
2gIB

+ 1
(2π)d

∫
ddk

W2
k

Ωk
cos2(k · R/2)

. (18)

The integral
∫

dd k
W2

k
Ωk

cos2(k · R/2) can be solved analytically in 3D using dimensional regularisation and
yields

1
(2π)3

∫
d3k

W2
k

Ωk
cos2(k · R/2) =

m
(2π)2

(
−
√

2π
ξ

+ π
exp(−

√
2R/ξ)

R

)
. (19)

It is now easy to see that the energy diverges when the denominator in (18) is zero, which does not only
depend on the coupling gIB between the impurities but also the separation R. This can be traced back to the
accumulation of an infinite number of phonons in the bound state. This is an effect that in reality is
balanced by phonon–phonon interaction. A similar effect is known from the quantum mechanical setting
see [39] and appendix B, where the bound state formation leads to an infinite energy in the thermodynamic
limit. We note that other approaches that rely on trial wave function that do not re-sum the whole
scattering series will not encounter this divergence.

Appendix B. Two stationary impurities in ideal Bose gas

In this appendix, we discuss two stationary impurities in an ideal Bose gas. The appeal here is that one can
solve this model analytically and study the emergence of the bound state in more detail. We consider N
bosons interacting with two static impurities located at ±R/2. The Hamiltonian can now be expressed as
the sum of single-particle Hamiltonians

Ĥ =
∑

n

(
P̂2

n

2m
+

2π
m

aIB

[
V(Q̂n − R/2) + V(Q̂n + R/2)

])
, (20)

where the interaction potentials are to be understood as boundary conditions on the wave function [9, 39]
which we will specify below. First we note that for the eigenvalue equation associated with (20) the wave
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function factorises Φ(r1, r2, . . . , rN) = φ(r1)φ(r2) . . .φ(rN) and E = NE . It is therefore sufficient to solve the
following eigenvalue problem

−∇2

2m
φ(r) = Eφ(r), (21)

subject to the boundary condition (see [9] for details on the pseudo potential in the context of ultra cold
gases)

lim
r±→0

(
r±φ(r) + aIB∂r±(r±φ(r))

)
= 0, (22)

with r± = |r ± R/2|. This potential is always attractive and hosts a bound state in the single particle case
only on the right side of the Feshbach resonance. The general solution to (21) in spherical coordinates is
given by G(r) = eikr

4πr . It can now be shown [39], that any solution satisfying (21) and (22) with
Im k = κ > 0 is of the form φ(r) = AG(r+) + BG(r−). From (22) it follows then immediately,

1
aIB

R − κR = ±e−κR. (23)

This equation has at least one solution if −1 < 1
aIB

R. Hence independent of aIB, there is always at least one
bound state as long as the impurities are close enough together. Thus we see that having two impurities
serves to enhance the possibility of having a bound state. Indeed, the above treatment suggests that there
will always be a bound state if the impurities are sufficiently close together. However, it should be noted that
using an approach that involves separate pseudopotentials is only valid when the impurities are sufficiently
well separated. We note that this result does not depend on the choice of the pseudopotential and is also
recovered if one chooses other regularisation schemes.

Appendix C. Solving the radial Schrödinger equation

In this appendix, we outline the numerical approach taken to solve the radial Schrödinger equation. Usually,
the ground state of radial Schrödinger equations is found employing the shooting method [59]. In recent
years the field of scientific machine learning has made large improvements, and it has been shown that
neural networks can be used to solve differential equations by leveraging their property of being universal
function approximators [60, 61]. Another related use employs a neural network as a variational wave
function to minimize an energy functional. This has been shown to yield good results for the ground state
and also the first excited state of the stationary Schrödinger equation in [62]. Here, we are going to combine
these two approaches and minimize the energy functional of the radial Schrödinger equation with an
additional penalty term to enforce the boundary condition u(0) = 0. In practice this can be written as a
minimization problem with loss L

u(x) = net(x), (24)

L[u] = (u, Ĥu)/(u, u) + α(u, u),

where (., .), denotes the standard scalar product, Ĥ = −1
2M

d2

dR2 + VBP(R) is the radial part of the Hamiltonian
and α is a hyper-parameter, that will be chosen such that α / Eg, which ensures, that u(0) = 0. In practice
this is implemented using PyTorch and we note that the derivatives arising in (u, Ĥu) can be calculated
exactly using PyTorch’s automatic differentiation package. For the presented results we used a shallow
network with only one hidden layer and a width of 1000.
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