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Abstract

Self-Organised Criticality (SOC) has been suggested by PER BAK, CHAO TANG

and KURT WIESENFELD to explain the abundance of scale-invariant spatio-temporal
structures in nature. It can be observed in many slowly driven, highly interacting
non-equilibrium systems which develop into a scale-invariant state without explicit
tuning of any parameters. Focusing on particular features of these systems, toy mod-
els have been developed to study the phenomena in detail both numerically and
analytically. The presence of scale-invariance indicates the presence of universality,
so that apparently unrelated systems are intimately linked by their fundamental in-
teractions and symmetries.

Even after more than 16 years of research, the necessary and sufficient conditions
for the appearance of SOC remain to a large extent unclear.

Within the enormous zoo of SOC-models, there is hardly any system that is well-
behaved and non-trivial while nevertheless showing all the expected features of a
scale-invariant system. However, reliable models are required to pursue the analyti-
cal understanding of SOC.

In this thesis, characteristic features of scale invariant systems are identified
against the background of classical critical phenomena. They form the basis for a
numerical simulation of the Forest Fire model on large scales. The results refute for-
mer findings: The Forest Fire model is shown to lack important characteristics of
scale-invariance.

Nevertheless, a stochastic process, known as the Oslo model, is found to show
consistent scale-invariant behaviour. In the second part of the thesis it is discussed in
detail. It transpires that the Oslo model is in fact a discrete realisation of the quenched
EDWARDS-WILKINSON equation. This finding opens the door for further analytical
investigations. Moreover, an anisotropic variant of it, representing a very large uni-
versality class, is solved exactly. This raises the issue of the rôle of a drift term in the
quenched EDWARDS-WILKINSON equation, which is examined in some depth.
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Introduction

A phenomenological approach to Self-Organised Criticality

It is not easy to fully understand the history of Self-Organised Criticality (SOC). It
seems it caused major uproar when it was first proposed by PER BAK, CHAO TANG

and KURT WIESENFELD (Bak et al., 1987) in 1987. Probably the most exciting message
is: There are, apparently, scale-invariant systems, which do not have to be tuned to a
critical value. After almost 60 years of research into critical phenomena1 the crucial
notion of a “critical point” seems to have disappeared.

The 1987 article has, to use an overstrained pun, truly triggered an avalanche. Lit-
erally thousands of articles have been published on SOC — BAK, TANG and WIESEN-
FELD’s paper alone has accumulated 1947 citations.2 Looking at this sheer volume,
but also at the phenomena reported, there can hardly be any doubt that SOC exists,
and that it is, in fact, ubiquitous.

Indeed, sightings of SOC have been reported in every conceivable and inconceiv-
able area of science, encompassing sociology (Roberts and Turcotte, 1998; Bentley and
Maschner, 1999/2000), computer science (Gorshenev and Pis’mak, 2003), engineer-
ing (Carreras et al., 2002) and biology (Sepkoski Jr., 1993). Further examples, most
of them more profound, are given in Chapter 1. The key problem is that in many of
these studies, SOC remains on a purely descriptive level. Rather than providing any
insight into the underlying mechanisms and the nature of the problem, it is used as a
name tag to label power law observations. Attempts to go further and to draw con-
clusions at least on the level of analogy sometimes look rather grotesque, or simply
outrageous [(Turcotte, 1999, p. 1419), which contains further interesting references]:

1One might set the beginning of research on critical phenomena to the publication of LARS ON-
SAGER’s paper in the The Physical Review in 1944 (Onsager, 1944) (which did not arrive in most of Europe
before the end of the war). It is worth noting that ERNST ISING refuted the possibility of spontaneous
order in his model, (Ising, 1925).

2Number of citations according to the “ISI Web of Knowledge

�

”, in particular the “ISI Web of
Science®”, namely the “Science Citation Index Expanded®”, “Social Sciences Citation Index®” and
“Arts & Humanities Citation Index®”, http://wos.mimas.ac.uk/, 5th February 2004. According
to the American Physical Society, http://prola.aps.org/forward/PRL/v59/i4/p381_1, there
are 713 citations as of 20th January 2004.
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Similarly, a war must began [sic!] in a manner similar to the ignition of a for-
est. One country may invade another country, or a prominent politician may be
assassinated. The war will then spread over the contiguous region of metastable
countries. Such regions of metastability could be the countries of the Middle
East (Iran, Iraq, Syria, Israel, Egypt, etc) or of the former Yugoslavia (Serbia,
Bosnia, Croatia, etc). These are then the metastable clusters. In some cases the
metastable clusters could combine. Albania and Greece bridge the gap between
the metastable clusters of the Middle East and the former Yugoslavia.

One might speculate that one reason for the popularity of SOC and power laws
is the fact that a few numbers, the exponents, seem to characterise an observation
and make them comparable to other, possibly completely unrelated phenomena. So
rather than getting lost in details, exponents seem to capture all the relevant informa-
tion at once.

This, in fact, points to a scientifically more profound motivation for SOC: Univer-
sality. Critical, or rather scale-invariant behaviour is interesting because it is univer-
sal, i.e. seemingly different systems share the same critical properties such as critical
exponents and amplitude ratios. This is usually caused by a common underlying
interaction or symmetry.

Towards an analytical approach to SOC

Thus, even though questionable as the sole scientific aim, identification of common
critical properties can teach us something about the underlying mechanisms.

However, before one can really appreciate the “ubiquity of power laws in nature”,
one should develop an insight into what causes these power laws and what they ac-
tually signify. That is, SOC must gain some explanatory power. The central question
is thus:

What are the necessary and sufficient conditions for SOC?

The sufficient conditions point to the causes of SOC, the necessary conditions
point to phenomena caused by SOC. The most realistic approach to that question is
to make the phenomena under the label “SOC” accessible to established physical and
mathematical techniques. Those techniques which have already proven their power
by tackling classical critical phenomena seem most promising.

As a first step, one has to define SOC carefully and identify toy models which
undoubtedly show at least some of the expected features. In a second step, these
models can be investigated in detail. This also sets out the philosophy of the thesis.
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INTRODUCTION 

Outline of the thesis

First, SOC as a phenomenon is reviewed. Without redefining SOC, generic scale-
invariance is identified as its most crucial feature. Some toy models are presented,
the Forest Fire model in great detail. The latter can be thought of as a good example of
the problems for which SOC meanwhile is notorious for: Sufficiently close inspection
typically reveals that the phenomenon or model under consideration is just not scale-
invariant.

However, most remarkably, there are proper, “sandpile-like” models which show
generic scale invariance. One such model is the Oslo model, to which the entire
second part of this thesis is dedicated.

Overview chapter by chapter

Part I

Chapter 1. Overview: This chapter contains an overview on SOC mainly in the form
of a literature review: The meaning of the term, observations, established mod-
els. Moreover, it discusses a very simple mechanism supposedly explaining
SOC, which continues to gain support in the community, but has some serious
shortcomings.

This chapter gives an introductory overview.

Chapter 2. Scaling: Scaling and power laws are central theoretical, experimental and
numerical themes in SOC. This chapters tries to demonstrate some intimate
links between “classical critical phenomena” and SOC. An understanding of
the key concept of simple scaling allows us to give a clear prescription for good
numerical analyses. In particular, moment analysis and universal amplitude
ratios are introduced and discussed in detail.

This chapter develops some key tools for the analysis of SOC.

Chapter 3. The Rôle of Conservation: Very early in the history of SOC, conserva-
tion and dissipation was discovered to be a central issue. This chapter presents
some results of a LANGEVIN approach to these phenomena. Additionally, some
details of the OFC model are briefly discussed. Today, the OFC model enjoys
paradigmatic status among the models which supposedly display SOC in the
presence of bulk dissipation. The bulk of this chapter concerns a solvable, ran-
dom neighbour model, which shows a power law event size distribution in the
presence of dissipation.

This chapter is mainly analytical. Results have been published in (Pruessner
and Jensen, 2002b).
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Chapter 4. The Forest Fire Model: The Forest Fire model is another established, dis-
sipative model of SOC. A large scale numerical analysis, however, reveals that
there is actually no reason to suspect that this model is scale-invariant in any
limit. The algorithm which made the simulation possible is presented in detail.

This chapter is mainly numerical and contains many technical details. Re-
sults have been published in (Pruessner and Jensen, 2002a, 2003b). The tech-
niques developed have been further exploited in (Moloney and Pruessner, 2003;
Pruessner and Moloney, 2003, 2004).

Part II

Chapter 5. The Oslo Model and Its Variants: The Oslo model has turned out to be
one of the few models displaying SOC and all features expected from classi-
cal critical phenomena. The model is introduced together with a number of its
variants. An overview of numerical results is presented at the end of the sec-
ond section. Furthermore, an operator approach is introduced, which will be
explored in a similar manner in Chapter 8.

This chapter gives an introductory overview on the Oslo model.

Chapter 6. The Oslo Model and the qEW: Most remarkably, the equation of mo-
tion for the Oslo model is a discrete realisation of the quenched EDWARDS-
WILKINSON (qEW) equation. This discovery allows us to investigate the Oslo
model on a well-founded analytical level. Some concrete calculations show full
correspondence to analytical results for the qEW found in the literature. The
same method can be applied to the periodic Oslo model, but this leads to some
serious difficulties.

This chapter is mainly analytical. Results have been published in (Pruessner,
2003c).

Chapter 7. Universality, Anisotropy and Crossover: Exploring the universal fea-
tures of the Oslo model further, one can introduce anisotropy which turns out
to be relevant. Thus, any degree of anisotropy drives the Oslo model even-
tually (in the thermodynamic limit) to the “fixed point” of the Totally Asym-
metric Oslo Model (TAOM). For very small degrees of anisotropy a crossover
behaviour is observed and analysed. The TAOM can be solved exactly, see
Chapter 8. Because of its link to the qEW, this amounts to an exact solution of
the qEW equation with an extra drift term. Based on the qEW, some exact cal-
culations regarding toppling frequency and avalanche size can be performed
quite easily. The latter can also be tackled using a random walker approach.
Implications for experimental systems are discussed.

This chapter is partly numerical and partly analytical. Results have been pub-
lished in (Pruessner and Jensen, 2003a).
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it has a much more complicated algebraic structure.
ii) There are many interesting open questions regarding the boundary driven qEW
equation, i.e. the SOC version of the qEW. Developing the field-theory of the qEW a
bit further, the Oslo model, and in particular the exact solution of the totally asym-
metric Oslo model. seems to be the perfect toy model for such a theory.

SOC is a complex problem — in many ways. It would not by very wise to with-
draw from the ill-behaved models completely: they are abundant and do have some-
thing in common, most notably distribution functions which show intermediate, ef-
fective power laws. The significance of these power laws might be debatable, yet
they cover many orders of magnitude. So, it is important to develop a clearer un-
derstanding of those ill-behaved models. However, critical phenomena, as currently
understood, might not be the most suitable framework.

INTRODUCTION 

Chapter 8. Exact Solution of the TAOM: This chapter contains details of the calcu-
lations leading to the exact solution of the TAOM as mentioned above. A
MARKOV matrix ansatz leads to a recursive expression for the eigenvectors and
finally gives a moment generating function of the avalanche size distribution.
After mapping the model on a reaction-diffusion process, a continuum theory
is developed which fully agrees with the results on the lattice.

This chapter is mainly analytical. Results are to be published in (Pruessner,
2003b).

Chapter 9. The Thermal EW Equation with Drift: It is remarkable that the qEW
equation becomes solvable, apparently solely due to the presence of a drift term
— thereby, of course, leaving the qEW universality class. What can one infer
from the critical properties of the model with drift to the model without drift?
The (asymptotic) solution of the thermal EDWARDS-WILKINSON (EW) equation
with drift addresses this problem in detail. In this context dimensional analysis
is discussed, as it seems to suggest incorrect results for the EW with drift.

This chapter is mainly analytical. Results are to be published in (Pruessner,
2003a).

The key chapters are probably Chapter 6 (The Oslo Model and the qEW) and Chap-
ter 7 (Universality, Anisotropy and Crossover).

Style

This thesis is comparatively long, which certainly needs justification. The guiding
principle was to provide some background information and extra details to the pub-
lished work. That way, the thesis might actually be of some use. Here are some
precautions and remarks regarding the style:

• Whenever results are already published, detailed calculations and discussions
are presented, whenever I felt that they might help to develop the problem
further.

• Material presented in the thesis that has not been published contains much
more detail.

• I did not hesitate to use references wherever possible. It should become clear
from the context which references have been used in detail and which refer-
ences only serve as a “backup”.

• Even though the chapters relate to each other, they should be completely self-
contained — which is one more reason for the length of the thesis. Nevertheless
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they are ordered hierarchically, either in the sense that chapters pick up some
of the themes developed in preceeding chapters or simply in a temporal sense
(i.e. the material in later chapters has typically been developed later).

• Every chapter starts with an abstract and ends with a summary.

• Many results presented in this thesis have naturally raised new questions. Fur-
thermore, there are cases, where the results must be regarded as preliminary or
incomplete. The thesis contains marginal notes in the form “Open issue” if a
detailed investigation is still missing or a method still needs clearing up. “Open
problem” stand for a concrete problem, such as a contradiction or a controversy,
which requires further investigation. Finally “Open question” or “Open task”
indicates a concrete question to be answered or concrete task to be performed.
They are listed on page 29 in short form.

• Many discussions might appear rather mundane and maybe not even suitable
for a thesis. I have tried to use the thesis as a chance to write down the status of
many of the issues I have touched during my PhD — that actually is a collection
of rather mundane problems!

• Finally, in contrast to published work, I did not hesitate to present arguments
and results which turn out to be dead ends.

Summary and Outlook

An investigation of SOC models can only be as good as the underlying methods of
analysis. In this thesis, a comparison has been made with classical critical phenom-
ena in order to benefit from established techniques in that field. It also makes clearer
in which sense SOC is really different from traditional criticality. Furthermore, SOC
itself might help to illuminate the hitherto elusive problems of non-equilibrium sta-
tistical mechanics.

Starting from the basic question concerning whether there is anything that could
justifiably be called SOC, the first step was to find a robust model which shows all the
expected features. While the Forest Fire model might look very appealing because of
its close relation to standard percolation, it turns out to be yet another instance of a
class of ill-behaved models, showing no sign of convergence towards simple scaling.

Fortunately, it transpires that the Oslo model is an almost ideal model of SOC:
It is very simple, resembles features of a sandpile and possesses stochasticity. More
importantly, it shows truly universal behaviour and this thesis has demonstrated
how to link it to the quenched EDWARDS-WILKINSON (qEW) equation. The latter is
a known problem in the field of non-equilibrium critical phenomena and thus by the
relation to the Oslo model it can be turned into a self-organised system.

The universal features of the Oslo model allow us to introduce anisotropy and to
observe the crossover behaviour in the thermodynamic limit. Due to the link between
the Oslo model and the qEW equation, any result obtained for the Oslo model can
also be used in the examination of this equation. As discussed in this thesis, the exact
solution of the totally asymmetric Oslo model represents an entire universality class,
which in particular includes the qEW equation with drift.

Studying the effect of a drift term in the thermal EDWARDS-WILKINSON equation
then allows us to understand the rôle of such a term. Ironically, in the thermal case,
there is a close relationship between the equation with and without drift, but no such
direct connection exists in the quenched case.

Two very promising perspectives have emerged from this thesis:
i) It seems worthwhile to push the exact solutions a bit further. The MANNA model
has a major advantage and a major disadvantage in this respect: it has a simpler ma-
trix representation and might be tractable as a fermionic problem. At the same time,





 CHAPTER 9. THE THERMAL EW EQUATION WITH DRIFT

lated in detail. It transpires that the drift term does not change the scaling of
the width.

• In Sec. 9.3 the effect of a drift term in a system with fixed boundary conditions
is discussed. It becomes clear that the exponents, characterising the scaling of
the roughness, are now affected by a drift term.

• To understand the apparent failure of dimensional analysis, Sec. 9.4 discusses
this technique in detail and points out some possible misconceptions. Relating
back to the preceeding sections, it becomes evident why the EW equation with
drift is not accessible to dimensional analysis.

• The effect of the drift term can be understood on physical grounds quite easily,
as is shown in Sec. 9.5. The drift leads to a continuous reinitialisation of the in-
terface, so that it remains in its initial growth phase with an age proportional to
tX = L/v. Therefore, the width saturates atw2 ∝ (L/v)2β , effectively converting
the growth exponent β into the roughness exponent χ.

• Finally, Sec. 9.6 contains a summary of the chapter and links back to the
quenched EDWARDS-WILKINSON equation as discussed in Chapter 6.

List of Acronyms

AS Absorbing State or sometimes Absorbing State phase transition

BC Boundary Conditions

BTW BAK-TANG-WIESENFELD

DS-FFM DROSSEL-SCHWABL Forest Fire Model

DP Directed Percolation

EW EDWARDS-WILKINSON (equation)

EWd EDWARDS-WILKINSON equation with drift

FBC Fixed Boundary Conditions

FFM Forest Fire Model see also DS-FFM

FSS Finite Size Scaling

KPZ KARDAR-PARISE-ZHANG

LE LANGEVIN Equation

LHS Left Hand Side see also RHS

MCS Monte Carlo Step

MF Mean Field

OFC OLAMI-FEDER-CHRISTENSEN

PBC Periodic Boundary Conditions

PDE Partial Differential Equation

PDF Probability Density Function

qEW quenched EDWARDS-WILKINSON (equation)

qEWd quenched EDWARDS-WILKINSON equation with drift

RG Renormalisation Group

RHS Right Hand Side see also LHS

RNG Random Number Generator

SOC Self Organised Criticality
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9.6. DISCUSSION AND CONCLUSION 

Boundaries Drift χ for EW χ for qEW
Periodic boundaries v = 0 1/2 1.25(1) (Leschhorn, 1993)
Periodic boundaries v 6= 0 1/2 1/2 (Tang et al., 1995)
Fixed boundaries v = 0 1/2 1.25(2) Chapter 5
Fixed boundaries v 6= 0 1/4 1/2 Chapter 7

Table 9.1: The roughness exponents observed for the EW equation with thermal and
with quenched noise. Most remarkably, the drift term changes the roughness exponent
to 1/2 in the qEW equation independent from the boundary condition. In case of peri-
odic boundary conditions, it is identical to the value for thermal noise.

ponent of the qEW equation with FBC and PBC (see Tab. 9.1) in the same way, very
different from the thermal EW equation.

As discussed already in Sec. 7.7, from the values of the exponents obtained, it
might seem reasonable to argue that the drift term converts the quenched noise ef-
fectively to a thermal noise. This conversion can be obtained by a Galilean transfor-
mation. However, apart from those presented in Sec. 7.7, page 309, there are several
other reasons, why this does not explain the exponents, as discussed in the following.

First of all, as already stated above, such a transformation cannot be done for the
case of FBC without introducing highly non-trivial boundary conditions. So, if the
drift would make the noise in the qEW equation thermal, this could only explain
the behaviour of the qEW with PBC. However, as mentioned above, the same ex-
ponents are obtained for PBC and FBC. In case of PBC the conversion of quenched
noise would in turn suggest that the roughness of the interface changes if the ob-
server changes to a comoving frame, which does not make much sense. Secondly, if
nevertheless one accepts that the noise in the qEW equation with FBC becomes in-
deed thermal by a drift, one would expect the exponents of the EW equation with
FBC and drift. This, however, does not correspond to the exponents observed. So,
conclusively, for PBC, the drift term in the qEW must work completely differently
compared to the drift term in the EW equation.

Ironically, as seen above, the roughness exponent χ of the EW equation with drift
corresponds to the growth exponent β of the EW equation without drift. Unfortu-
nately, no such correspondence can be found in case of a quenched noise.

9.6.2 Summary

Motivated by the observation made in Chapter 7 that an additional drift term in the
quenched EW equation leads to a model, the universal properties of which can be ob-
tained exactly (Chapter 8), in this chapter the effect of a drift term to the EW equation
with thermal noise has been studied.

• After the introduction, Sec. 9.2 discusses the effect of a drift term in the EW
equation with periodic boundary conditions. Correlator and width are calcu-
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to the physical explanation above, the equation would effectively remain in the initial
growth phase, thereby providing a stationary state which is strongly influenced by
the presence of the non-linearity.

It is not yet completely clear how to generalise this arguments to higher dimen-
sions. For two dimensions it is tempting to speculate whether exponents observed
in experimental molecular beam epitaxy are related to such a drift term, for example
when χ ≈ β (You et al., 1993) or when χ is close to βKPZ ≈ 0.24 (Kardar, 2001; Eklund
et al., 1991). Interestingly, only one boundary needs to be fixed in order to observe the
phenomenon, namely the boundary perpendicular to the velocity. In one dimension,
it is the boundary the velocity points away from, in Fig. 9.2 the right boundary.

The mechanism stresses once more the relevance of boundary conditions as
prominently pointed out by DAVID LANDAU and KURT BINDER (Landau and Binder,
1988). However, it is worth emphasising that in the present case, the change of
boundary conditions leads to a change of the bulk critical exponents.

The argument does not extend to models with quenched noise in an obvious
way, because the interface might be pinned locally so that the horizontal movement
does not apply uniformly to the entire interface, thereby possibly introducing non-
linearities and interactions, which are not present originally. Moreover, as different
parts of the interface will experience the same noise when sweeping over the surface
horizontally, effectively the noise acquires some extra correlations also not present in
the model without drift term. For example, in the qEW, the growth exponent without
drift is β = 0.88(2) (Leschhorn, 1993; Leschhorn et al., 1997), quite different from the
roughness exponent observed in the qEW with drift, χ = 1/2. See also the discussion
below.

In conclusion we have presented a remarkably simple mechanism which reduces
the roughness exponent to the value of the growth exponent for any small amount
of drift in the LANGEVIN equation in the presence of fixed boundary conditions,
provided that in the original model, the dynamical exponent z is larger than unity.
On sufficiently large scale, this mechanism should be visible in many experimental
and numerical systems. Most unexpectedly, it can even be found in the EDWARDS-
WILKINSON equation, which consequently shows anomalous exponents, depending
on the boundary conditions imposed.

9.6.1 Relation to the qEW

The behaviour of the quenched EW (qEW) equation under drift was the initial mo-
tivation (see Chapter 7, especially Sec. 7.7, page 310) of the study presented above.
However, it is now clear that the mechanisms responsible for the exponents in the
qEW equation must be different from those obtained here for the standard EW equa-
tion with thermal noise. Most significantly, the drift term affects the roughness ex-

List of Symbols

This is an incomplete list of some frequently used symbols.

Symbol Explanation

a metric factor
b metric factor
d spatial dimension
D cutoff exponent
D diffusion constant
E expectation value
Ė external driving frequency
E(t) external drive (boundary condition, height)
f probability to ignite a tree in the Forest Fire model
hi height of a ricepile at position i
h(x) number of charges of a site, or height of an interface over a substrate at

position x
gn nth universal moment ratio
H number of topplings of a site
H unit of interface height
jn flux of the nthe moment in the exact solution of the TAOM
kn nth wavenumber
L linear system size
LX crossover length
L unit of length
M magnetisation or, in general, an order parameter
M0 cutoff in the order parameter distribution
n̄(s) cluster size distribution
O operator in a MARKOV process

P(s) avalanche size distribution, or, in general, a distribution function

continued on next page
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continued from previous page

Symbol Explanation

p probability to grow a tree in the Forest Fire model, or probability for
various processes otherwise

S local update in a Markovian sandpile without toppling
s avalanche size
t time
TM burning time in the Forest Fire model
T unit of time
T local update in a Markovian sandpile with toppling
U local update in a Markovian sandpile with double toppling
v driving velocity
v anisotropy parameter, drift
vX crossover drift
w2 width of an interface
x spatial coordinate or exponent of the crossover drift
zi slope of a ricepile at position i
zc
i critical slope of a ricepile at position i

z(x) interface position over a substrate at position xwith trivial contribution
removed

α Driving position as fraction of system size
η noise
θ crossover exponent in the Oslo model or driving parameter in the For-

est Fire model
θ(x) HEAVISIDE theta function
λ cutoff exponent in the Forest Fire model
µ auxiliary exponent
ν exponent of the correlation length
ξ correlation length
ρ density of particles, trees etc.
τ avalanche exponent

Υ(n) indicator function; is 0 for even n, −1 otherwise
ϕ dimensionless form of h
ψn nth conditional moment in the exact solution of the TAOM
ω frequency
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develop the roughness. Thus, for L2/D � L/v, i.e. L � D/v = LX, the interface
will remain in its initial growth phase; the characteristic length scale LX represents
an effective cutoff for correlations. At the same time it enables the system to display
anomalous exponents. Depending on the direction of the drift, the interface “comes
out” of the right boundary initialised to h = 0 and moves to the left boundary, as
shown in Fig. 9.2. The average “age” is proportional to tX = L/v, so that according
to (9.43) w2 ∝ t

1/2
X

∝ L1/2, therefore χ = 1/4. Regarding β, the interface cannot “see”
the drift initially, so that β = 1/4 just like for the case without drift. Indeed, even the
amplitude of the leading term in (9.92a) corresponds to the amplitude obtained for
the problem without drift, see (9.67) and also the problem with periodic boundary
conditions (9.55). The identity χ = β already indicates z = 1, which can also be
derived from the fact that saturation should be reached as soon as the interface has
swiped through the system once, i.e. after tX = L/v.

The mechanism is illustrated in Fig. 9.2: The upper panel shows a snapshot of
an interface configuration. The “local age” of the interface can be read off the local
roughness (in an appropriate ad hoc definition, as the width within a small window
around a particular position x) as shown in the panel below, because spending more
time between the boundaries increases the local roughness according to w2 ∝ t1/2 =

((L− x)/v)1/2, with x being the position where the roughness has been measured.

9.6 Discussion and Conclusion

The physical explanation presented above goes beyond the EW equation; provided
that the crossover time of the original model without drift scales faster in L than tX,
i.e. z > 1, the argument should apply, so that at sufficiently large system sizes χ ob-
tains the value of β and therefore z = 1. It is a very efficient mechanism, which works
under very general circumstances even in the most simple, linear case. It therefore
speaks a clear warning as to the interpretation of numerical and experimental stud-
ies: the true value of χ might have been “washed away” by a very small drift.

Especially, one expects the KPZ (Kardar et al., 1986; Krug and Spohn, 1991;
Halpin-Healy and Zhang, 1995; Krug, 1997) equation (z = 3/2) to show this be-
haviour. Using one of the standard methods to analyse it (COLE-HOPF transforma-
tion) (Halpin-Healy and Zhang, 1995) the problem boils down to an equation very
similar to those discussed above. However, a quick numerical check did not unam-
biguously confirm this. What makes this case particularly interesting is the fact that
the non-linearity of the standard KPZ equation does not lead to a stationary ensem-
ble being qualitatively different from the standard EW one; the non-linearity is only
important during the initial growth phase (β = 1/3) and becomes insignificant in the
stationary regime (χ = 1/2). However, by adding an additional drift term, according
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Figure 9.2: A qualitative picture of an interface snapshot with its “local roughness”;
scales are irrelevant. Upper panel: An example of an interface profile with fixed bound-
aries and drift term. Lower panel: The ensemble averaged local width squared (nu-
merical data, circles) is proportional to the square root of the position where measured,
(L− x)1/2 (fitted, dashed line).

scales introduced in the last point. For example, η(0, 0) could in principle provide a
valid scale.

If there are sufficiently few parameters in a problem, dimensional analysis pre-
dicts the exponents. Otherwise, it does not make any statement, even if the functions
involved have a proper, analytic, smooth asymptotic behaviour.

9.5 Physical Explanation

After this detour, we want to continue to understand the physical origin of the
anomalous exponent found in the EW equation with drift.

The fact that the results in Sec. 9.3 cannot be derived directly from dimensional
analysis and require tedious algebra, might suggest that the mechanism leading to
these exponents is very subtle. However, it turns out that it can be understood quite
easily.

The drift term makes the entire interface configuration move from one boundary
to the other. Without noise, a peak starting somewhere in the bulk gets slowly moved
by the drift to one of the boundaries, while diffusively broadening. It eventually
disappears at the boundary. The time it spends between the boundaries depends
on the starting position and the direction of the movement. The maximum time is
L/v, which is also the maximum time, any noise-generated structure has to develop.
However, as known from the model without drift, it takes time L2/D in order to fully
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so that the scaling function in (9.128) has the following two limits

lim
x→0

G̃(x, y′x−1/2)x−1/2 =
1√
2π

(9.136a)

lim
x→∞

G̃(x, y) = (
2

3
√

2π
|y|−1/2 − 1

2
|y|−1 (9.136b)

where according to (9.128) x = tD/L2 and y = vL/D. In (9.136a) the new parameter
is y′ = v

√
t/D, but in the limit G̃ is independent of it anyway; in the initial growth

phase, the drift is invisible and therefore (9.55) (initial growth in the thermodynamic
limit with periodic boundaries) is identical to (9.135a) (initial growth in the thermo-
dynamic limit fixed boundaries).

According to (9.136b), w2 acquires some extra corrections in the stationary state
of order y−1 ∝ 1/L. They have been included already in (9.45a), so that apparently

lim
t→∞

w2(t, L) =
2

3
√

2π

Γ2

√
vD︸ ︷︷ ︸

aL

L1/2
︸︷︷︸
L2χ

(
1 − 3

√
2π

4

D

Lv

)

︸ ︷︷ ︸
1+cL(Lv

D
)

(9.137)

It might look surprising that the expression does not seem to suggest a proper
crossover to χ = 1/2 as v vanishes. The reason for that is twofold: First of all, the
derivation is based on a saddle point approximation, which becomes exact only as
q = Lv/D diverges. So, the limit v → 0 produces a correct result if the thermodynamic
limit is taken first, which allows access to the initial growth phase, see Eq. (9.135a),
identical to (9.55).

9.4.6 Summary

To summarise this section, dimensional analysis is an exact method, which helps to
reduce the number of free parameters in a problem. However, one must take great
care to include all scales present in a problem, such as all parameters in

• in the original PDE

• the boundary conditions

• the initial conditions

• the noise term

The latter includes all parameters characterising the noise, which relates to the dis-
cussion on page 270. The only reason why the noise itself does not enter as a scale
(or actually the entire ensemble), is that it is assumed to be parametrised solely by the
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However, in the case of v = 0 the exponents remain unchanged, if periodic bound-
aries are replaced fixed boundaries, h(x = 0, t) = h(x = L, t) = 0; the exact solution
changes, but as the new boundary condition does not contain any new non-zero pa-
rameter and therefore cannot introduce any new scale, the scaling form Eq. (9.123)
must necessarily remain unchanged; there are just not enough (independent) param-
eters for the form Eq. (9.123) to change.

The reason for the change of the exponents as fixed boundaries are introduced in
case of v 6= 0 is not that the fixed boundaries introduce a further length scale. They
only avoid the additional length scale, D/v, to disappear from the problem.

In fact, only in the presence of additional length scales such as D/v, a behaviour different
from trivial dimensional analysis is actually possible. There are, in principle, three differ-
ent scenarios if further length scales (or in general further independent parameters)
enter the problem.

i) The exponents do not change, i.e. the new parameter does not actually change
the problem.

ii) More importantly, the resulting behaviour could be non-critical; for example, if

lim
x→∞

G̃(x, y) = e−y (9.133)

then

lim
t→∞

w2(t, L;D, v,Γ) =
Γ2L

D
e−

vL
D . (9.134)

where D/v is a saturation length for the roughness. Note that this is perfectly com-
patible to χ = 1/2 at v = 0.

iii) A new exponent appears, which differs from the one obtained by dimen-
sional analysis, as has been discussed in (9.129). This is, in fact, what happened
in Eq. (9.92a): For large x = tD/L2, the scaling function G̃(x, y) behaves like y−1/2,
provided that y is large enough, i.e. in the limit23 y → ∞. Conclusively, µ = −1/4 in
the notation of (9.129) and the new roughness exponent is χ = 1/4.

Moreover, an additional scale allows corrections of the form discussed in (9.45).
It is very instructive to rewrite (9.92) in the form (9.128)

lim
L→∞

w2(t, L) = Γ2L

D

(
1√
2π

√
tD

L2

)
(9.135a)

lim
t→∞

w2(t, L) = Γ2L

D

(
2

3
√

2π

√
D

L|v| −
D

2L|v|

)
(9.135b)

That is the reason, why we had to say above (first paragraph of Sec. 9.4.3.2) that η is solely parametrised
by Γ. See also the remark at the end of Sec. 9.4.6.

23This has been used explicitly in the saddle point approximation, q � 1, Sec. 9.3.2.
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9.4.5 The case v 6= 0

In case of v 6= 0 things are not that simple any more. The roughness now acquires an
extra argument:

w2(t, L;D, v,Γ) =
Γ2L

D
G̃
(
tD

L2
,
vL

D

)
(9.128)

The arguments like (9.124) cannot be applied anymore - it is unknown, how the func-
tion G̃ behaves in the various limits. If, for example20

lim
x→∞

G̃(x, y) = y2µ (9.129)

which is dimensionally completely consistent, because G̃, x and y are dimensionless,
then

lim
t→∞

w2(t, L;D, v,Γ) =
Γ2L

D

(
vL

D

)2µ

(9.130)

and therefore21 χ = µ+ 1/2. The same problems appear for L → ∞; it is simply im-
possible to determine the exponents from dimensional analysis alone in the presence
of additional length scales.

9.4.5.1 Additional length scales

One cannot stress enough the rôle of such an additional length scale: If an additional,
independent length enters the problem, it can form a dimensionless ratio in conjuc-
tion withL. Similarly for other parameters. For example, if there was a further length
scale l0 in the problem, then the relation (9.128) would read

w2(t, L;D, v,Γ, l0) =
Γ2L

D
G̃
(
tD

L2
,
vL

D
,
L

l0

)
(9.131)

and G̃(x, y, z) could behave like

lim
x→∞

G̃(x, y, z) = y2µz2λ , (9.132)

leading to an exponent χ = µ+ λ+ 1/2

It is worth stressing that a change of boundary conditions or initial conditions
might introduce new length scales or remove others. For example, if the noise would
have a net contribution22, 〈η〉 6= 0, that would give rise to new scale, 〈η〉/(Γ

√
LD).

20Note, however, that this limit exists and is analytical.
21The behaviour of the function G̃ is probably not completely arbitrary, because one would expect

some crossover from v = 0 to v 6= 0, depending on the dimensionless parameter vL/D as discussed
above (see Eq. (9.93)).

22The scales due to the noise are obtained only when taking ensemble averages. Otherwise, a specific
realisation has in general infinitely many independent parameters, namely the entire function η(x, t).
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Corrections of the form proposed in Eq. (9.45a) are not possible, because there are
simply not enough parameters for a dimensionless function cL(L;D,Γ), because it
is not possible to form a dimensionless argument from them; but in order for a di-
mensionless function to depend on anything, the argument must be dimensionless as
well, otherwise it changes value if physical units are changed. Therefore Eq. (9.124)
and Eq. (9.56) are necessarily exact.

Similarly, if the thermodynamic limit of w2 exists and does not vanish, according
to (9.123) G̃(x) must behave like

√
x for small arguments. Otherwise there is a non-

vanishing power of L left in front of G̃, so w2 would either diverge or vanish in the
thermodynamic limit. Thus

lim
L→∞

w2(t, L;D,Γ) =
Γ2

D

√
tD lim

x→0

G̃(x)√
x

(9.125)

corresponding to (9.55) where, again, no corrections are possible.

Thus, dimensional analysis is in full agreement with the results for v = 0 above
[Eq. (9.57) and Eq. (9.68)], for periodic and fixed boundaries, respectively.

All what was needed in the analysis above was the form (9.123) and in particular
that G̃ depends in only one argument, so that the limit x → ∞ and x → 0 can be
taken, producing a particular scaling behaviour only be assuming the very existence
of these limits. However, the form (9.123) solely comes from dimensional analysis.19

In that sense, the FAMILY-VICSEK scaling of the form

w2(t, L) = aL2χG
(

t

bLz

)
(9.126)

is too naïve — if the number of independent arguments is so small, the exponents are
fixed by dimensional analysis only, see Sec. 9.4.3. One can prove, that any exponent
χ derivable from dimensional analysis must obey (Krug, 1997)

χ =
z − 1

2
. (9.127)

19For example, w2 is linear in L only because of dimensional requirements. Even if one accepts an
alternative form to (9.123),

w2(t, L) =
Γ2L

D

tD

L2

�

G̃

�

tD

L2

�

the existence of the limit t→ ∞ then requires G̃ ∝ x−1, so that χ = 1/2 again.

Part I

SOC in general


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correct, if the original equation (9.2) is parametrised by exactly the variables listed on
the LHS of (9.113). Especially, the only scale characterising η is Γ — no complicated
correlation function is allowed. However, (9.113) does not make use of the fact that
there is a whole ensemble of η-functions, it only states that if the problem is parametrised
by x, t, L, D, v and Γ alone, then a certain symmetry relation, (9.113), holds. Here, Γ en-
ters only to characterise the dimension of the noise, not to characterise its correlator.
Fortunately, one is usually interested in the behaviour of the solutions of Eq. (9.2)
for an ensemble of η-functions, which is characterised solely by Γ, see (9.5), and can
be transformed from one length scale to the other without involving any additional
scales, see (9.100), (9.101). For example, if η was

η(x, t; Γ) = Γ
1√
xt

(9.120)

the “roughness exponent” would be the same, provided thatw2 is finite. But it would
possibly change for

η(x, t; Γ) = Γ
1√

(x0 + x)t
(9.121)

because a new scale, x0, would enter.

The implications of dimensional analysis are considerable. In the following, di-
mensional analysis will be used to analyse the width w2. Since space is integrated
out, there is one less variable, so (compare to (9.113))

w2(t, L;D, v,Γ) =
Γ2L

D
G̃
(
tD

L2
,

v

D/L

)
, (9.122)

where G̃ denotes an unknown, dimensionless function.

9.4.4 The case v = 0

For v = 0 — not in the limit of vanishing v, but based on (9.1) — the problem reduces
further, because then w2 is a function only of t, L, D and Γ. Thus

w2(t, L;D, v = 0,Γ) =
Γ2L

D
G̃
(
tD

L2

)
(9.123)

where the pre-factor Γ2L/D can be fixed up to a constant by imposing that it is inde-
pendent of t, just like as it is imposed in FAMILY-VICSEK scaling, Eq. (9.43). If w2 is
finite for divergent t, it must necessarily scale linearly in L, i.e. χ = 1/2:

lim
t→∞

w2(t, L;D, v = 0,Γ) =
Γ2L

D
lim

x→∞
G̃(x) . (9.124)
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term is irrelevant compared to the drift. However, any D 6= 0 leads, in the limit
L→ ∞, to the exponents (9.94), provided that fixed boundary conditions are applied.
With periodic boundary conditions, the standard exponents are (9.57) recovered. Of
course, without the drift term, the diffusion term is not irrelevant and then it is not
surprising that any D 6= 0 leads to exponents different from D = 0.

9.4.3.1 EW without diffusion

What makes the “apparent result” in Sec. 9.4.2 even worse is the fact that it predicts
the wrong exponent for the EW equation without diffusion term. If the diffusion term
disappears, the process corresponds to random deposition. In fact, the propagator of

∂tφ = v∂xφ+ η(x, t) (9.117)

is just a δ-function in x and the correlator therefore reads

〈φ(x1, t1)φ(x2, t2)〉 = Γ2t1δ(x1 − x2) (9.118)

which leads to a divergent width for any L and t. The value β = 1/2 found in
BARABASI and STANLEY (Barabási and Stanley, 1995) is only due to a finite lattice con-
stant. The correct discussion can be found in KRUG’s review (Krug, 1997, Sec. 3.2.2).
With an appropriate noise correlator (9.102) and periodic boundary conditions,17 one
can again transform the drift term away, φ′(x+ vt, t) = φ(x, t) and one is left with

∂tφ = η(x, t) (9.119)

and therefore z = 0 in KRUG’s terminology which entails that the lattice constant
dominates the physics for all dimensions d > 0. There is no real roughening as the
interface size is increased. 18

9.4.3.2 Scales in η

It is important to highlight the rôle of η, the correlator of which has not been investi-
gated carefully above. How is it possible that (9.113) entails (9.100) without actually
referring to the scaling behaviour of η? The answer is that Eq. (9.113) is of course only

17PBC are required for having

�

n δ(x+ nL) as propagator rather than just δ(x).
18The results of this section can also be obtained by considering the propagator of ∂τ = q∂y, which is

δ(y + qτ ), so that

h(x, t) =

� L

0

dx′

� t

0

dt′η(x′, t′)δ(x− x′ + v(t− t′))) =

� t

0

dt′η(x+ vt′, t′)

which is statistically identical to

� t
0
dt′η(x, t′).

Chapter 1

Overview

The acronym “SOC” stands for “Self-Organised Criticality” and is a subsection of
statistical mechanics. It is concerned with driven systems which contain many cou-
pled degrees of freedom and develop to a scale-invariant state without explicit tun-
ing of parameters. SOC asks not only for the properties of these systems and for their
common features, but also whether criticality due to self-organisation is possible at
all.

In the following sections the meaning of SOC is explained in some detail. Its
significance is motivated by referring to natural phenomena as well as to theoretical
considerations. Sec. 1.3 contains an overview of the most prominent model systems
used in the literature. The last section contains a discussion of a recent suggestion
about “how SOC works”.

1.1 Meaning of Criticality and Self-Organisation

Criticality by its common definition usually means a high susceptibility to external
perturbations. In traditional models displaying critical phenomena1, such as ferro-
magnetic systems like the ISING model, the liquid-vapour transition at the critical
point (Stanley, 1971) or percolation (Stauffer and Aharony, 1994), this naive interpre-
tation is still valid in the context of statistical mechanics. However, in the following,
criticality refers to the absence of a typical length scale; at the critical point all length
scales are relevant. On a handwaving level, this entails divergent fluctuations due
to external perturbations, since in the absence of any length scale the response to a
perturbation cannot give rise to a length scale either.

Most non-critical systems are governed by a hierarchy of scales; certain effects
and certain interactions dominate the behaviour of the systems at certain scales.
Close to the critical point these scales get separated and usually [there are exceptions,

1In the following called “classical” or “traditional critical phenomena’.
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for example, in cases of dimensional crossover (Novotny, 1996; Anisimov et al., 1998)]
one expects then only one length scale to characterise or dominate the behaviour of
the system, like the average cluster size in percolation or the correlation length in the
ISING model. It is a well-established misconception that systems at criticality “forget
all about their microscopic details”. In fact, at least in classical critical phenomena, it
is the tuning of microscopic couplings, which give rise to the critical behaviour, and,
most importantly, only due to the presence of microscopic scales, anomalous expo-
nents can be observed at all (Goldenfeld, 1985) (see also Chapter 9).

At the critical point, the remaining characteristic length disappears, usually by di-
verging. The alternative case of a vanishing characteristic length is usually trivial and
therefore ignored. In the following, “criticality” in “SOC” will refer to the absence of
a characteristic scale.

The term “self-organised” is used in a much less technical sense as the term “crit-
icality” above. What “self-organisation” indicates here is that the system is not tuned
to its critical state, it develops into this stage from (almost) any initial configuration.
Its evolution — either stochastic or deterministic — is determined by local rules, i.e.
if there is any tuning mechanism, it must be intrinsic to the dynamical rules, rather
than explicitly given.

Such an explicit rule might be: “Tune the temperature of the ISING model up if
there is a non-vanishing magnetisation, and tune it down if the net-magnetisation
vanishes.” Such a model might trivially develop to its critical state, as will be dis-
cussed in sec. 1.4, but would make use of global measures like the net magnetisation
(see page 63).

The requirement of local rules does not mean that the resulting processes have to
be local, in fact system spanning events are typically the most interesting.

The term “organisation” hints to some kind of organisation or evolution and this
is usually understood as a non-equilibrium process. Indeed, SOC is concerned with
system far from equilibrium, i.e. the systems are driven externally, do not obey de-
tailed ballance and do not relax towards a state, where detailed balance is obeyed.
Nevertheless, the systems are (usually) studied in the stationary state. For a sta-
tionary state to exists under the presence of an external drive, the systems need a
dissipation mechanism. The rate, as well as spatial and temporal correlation of the
dissipation, are typical observables of an SOC model, apart from the statistical prop-
erties of the configurations themselves. In the histograms of the observables and
correlations in the events power laws are observed, which will be discussed in more
detail in chapter 2.

As will be shown explicitly in sec. 1.3 for a number of popular models, the typical
features of almost all SOC models are:

• (Lattice models) Most models are realised as sites on a lattice, each of which
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tD/L2.

Eq. (9.113) contains a fairly arbitrary choice of ratios, other choices are possible.
However, in the end, hwill always be written as a dimensionful pre-factor times a di-
mensionless function, which depends on exactly three dimensionless quantities. Of
course, (9.113) entails (9.112). In fact, (9.113) is simply a statement about the symme-
tries of a solution of (9.2). Without physical reasoning, it can be obtained by identify-
ing variables, which can be rescaled independently.

The key of dimensional analysis is the identification of dimensionless ratios of dimension-
ful parameters. Dimensional analysis reduces a problem depending on n independent
parameters with m ≤ n independent dimensions to a problem with n−m indepen-
dent variables. With three independent units, L, T and H, the original problem h

depending on 6 parameters becomes a problem depending on 3 parameters.

This is all dimensional analysis does, in contrast to what has been anticipated
in Sec. 9.4.1; dimensional analysis prescribes symmetries like (9.100), but in a much
more general form, (9.113). In fact for v = 0, the latter entails the former as

h(bx, b2t; bL,D, 0,Γ) =
√
bh(x, t;L,D, 0,Γ) . (9.114)

Dimensional analysis suggests a much wider, exact symmetry:

h(x, t; bL,D, v,Γ) = b
z−1
2 h(x/b, t/bz ;L,Dbz−2, vbz−1,Γ) (9.115)

for any exponent z.

In particular, now it becomes clear what happened in Sec. 9.4.2: Based on (9.115),
the limit b → ∞ seems to suggest again, that v is “more important” than D, because
the latter has a smaller exponent. But no exact statement is possible. Only for v = 0

(9.115) states that z = 2 entails a self-affine h like (9.100),

h(bx, b2t; bL,D, 0,Γ) = b1/2h(x, t;L,D, 0,Γ) (9.116)

which, in turn, entails the scaling of the width, as discussed in Sec. 9.4.1.2. The ad-
vantage of Eq. (9.116) over Eq. (9.115) is that it allows us to answer the question for
a solution of the EW equation on large or actually any spatial scale L, keeping the
other parameters, D, v = 0 and Γ, fixed.

While the symmetry relation derived from dimensional analysis predict the expo-
nents properly for v = 0 by self-affinity, there is no such argument for v 6= 0, neither
for periodic nor for fixed boundary conditions; for v 6= 0 the solution is not self-affine.

It is worth noting (thanks to ANDY PARRY for pointing that out) that D constitutes
a dangerously irrelevant variable. Starting from a model with D = 0 but v 6= 0, one
observes a divergent width, see next section. Eq. (9.115) suggests that the diffusion
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9.4.3 The method of dimensional analysis16

The first step in dimensional analysis is to identify the physical dimension of the
variables in a problem. The key to the analysis is a “physical covariance princi-
ple” (Barenblatt, 1996): The same physical observable might be expressed in different
units (a length, for example, in meters or inches) and therefore change its numerical
value, but not its physical meaning.

The solution of the EDWARDS-WILKINSON equation with drift (9.2), for example
is

h(x, t;L,D, v,Γ) , (9.110)

where a δ-correlator (9.5) for η has been assumed. The physical dimension of the
variables, denoted by the bracket [ ], are

[x] = L (9.111a)

[t] = T (9.111b)

[h] = [η]T (9.111c)

[v] = L/T (9.111d)

[D] = L
2/T (9.111e)

[η2] = [Γ2]/(TL) (9.111f)

where the last line comes from the correlator, (9.5). The variable T stands for a time
unit (say second), the variable L for a unit of length etc. Because the problem is linear,
the dimension of Γ is not fixed. If [h] has dimension H, then [Γ2] = H

2
L/T , so that we

can only say that h must be linear in Γ. Changing now the units of length by a factor
b (say, going from meters to centimetres, b = 100), x is transformed like x′ = bx, D by
D′ = Db2 etc., but h does not change because it has an independent dimension:

h(bx, t; bL, b2D, bv, b1/2Γ) = h(x, t;L,D, v,Γ) (9.112)

Instead of following each of the symmetries individually, one can equivalently ex-
press h as a function of dimensionless quantities only. These quantities do not change
under a change of units:

h(x, t;L,D, v,Γ) =

√
Γ2L

D
ϕ

(
x

L
,
tD

L2
;

v

D/L

)
, (9.113)

where ϕ is now also dimensionless. For example L → bL, D → b2D does not change

16A mathematically profound derivation of all results in this section can be found in (Barenblatt,
1996).
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having a degree of freedom, either continuous or discrete.

• (Relaxation) Interaction between sites are usually nearest neighbour like and
governed by local rules.

• (Drive) There is a slow external drive, which triggers a finite relaxation event.
Usually the models are driven only during their quiescent phase, i.e. after they
are completely relaxed.

• (Threshold) Most systems contain some threshold, i.e. activity takes place only,
if certain thresholds are reached.

• (Dissipation) To compensate the external drive, the relaxation somehow in-
cludes a dissipation mechanism (boundary or bulk dissipation).

• (Observables) Typical observables are: histogram of the magnitude of dissipa-
tive or relaxation events, correlation length, occupation probabilities etc.

• (Power laws) Power laws are observed in the observables, very similar to the
cluster size distribution of standard percolation.

Or to say it shortly: “We will expect SOC behaviour in slowly-driven interaction-
dominated threshold systems” (Jensen, 1998, p. 126).

To summarise this section, SOC deals with systems, which have many interact-
ing degrees of freedom. These systems evolve under local updating rules, which
are stochastic or deterministic. Apparently, they evolve into a scale-invariant state
without explicit tuning of parameters.

1.1.1 SOC and generic scale invariance

In the early days of SOC, there was still some hope to establish a sharper definition of
the term SOC. One of the most popular definition has been introduced by GRINSTEIN,
LEE and SACHDEV in 1990 (Grinstein et al., 1990) (see also chapter 3) in an effort to
remove trivial cases of generic scale invariance from SOC. They

. . . reserve the term SOC for the situations where the correlation length is infinite,
so that not only temporal but spatial correlations are long ranged, since in the
presence of conservation laws even equilibrium system under generic conditions
exhibit ’long-time tails’, i.e., correlations that decay algebraically in time at a
given point in space, even though spatial correlations decay exponentially.

This definition has not survived — not least because it would exclude all models
which are not spatially extended, such as any random neighbour model.

The random walker is widely regarded as the simplest case of SOC, even though
its scale-invariant properties exclusively derive from the underlying noise. But to
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exclude the random walker from the class of SOC models because of that would be
very dangerous, because many other models are expected to depend strongly on an
underlying noise term; in fact, all models discussed in sec. 1.3 contain a noise-source
and therefore can be regarded as mechanisms which just process the noise.

1.1.1.1 Interface literature

The arguments by GRINSTEIN et al. presented in (Grinstein et al., 1990) are based on
a LANGEVIN or interface growth background. In recent years, there has been a re-
markable tendency in the interface-community to incorporate SOC into their themes
as another name for “generic scale invariance”, very much in contrast to GRINSTEIN

et al..
In his review (Lässig, 1998) MICHAEL LÄSSIG explicitly mentions SOC as a case

of generic scale invariance in slowly driven systems, which is very similar to the
generic scale invariance observed in interface problems. Similarly, JOACHIM KRUG

(Krug, 1997), mentions SOC as a concept to study mechanisms possibly responsible
for generic scale invariance. He stresses that the association of scale invariance and
critical point behaviour, so strongly pronounced in the term SOC, is lead by equilib-
rium critical phenomena. However, many non-equilibrium phenomena are known
to exhibit scale invariance without a specific critical point. Consequently, he advo-
cates to reserve the term SOC to models which display scale invariance through a
separation of time scales between driving and relaxation.

Finally BARABÁSI and STANLEY discuss SOC in their review (Barabási and Stan-
ley, 1995) on surface growth. This is motivated by an article by HWA and KARDAR

(Hwa and Kardar, 1989) on a LANGEVIN approach to the sandpile model, which will
be, together with the article by GRINSTEIN et al. mentioned above, discussed in chap-
ter 3.

1.2 Power Laws in Nature

As will be explained in chapter 2, power laws are the fingerprint of criticality. The
research in the field of SOC is motivated by the apparent ubiquity of power laws
in nature. They are found virtually everywhere, although it sometimes seems to re-
quire a significant bias to claim them. The most striking problem in order to identify
power laws definitely is the number of decades available to analyse the behaviour.
There seems to be a general inclination towards finding power laws in the scientific
community. A similar problem was reported three years ago for the case of fractals in
nature (Malcai et al., 1997; Avnir et al., 1998). It turned out that the majority of power
law claims were based on only 1.3 decades. Therefore, it seems reasonable to treat
some claims regarding the discovery of power laws with great care, especially if they
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Plugging in (9.96) now leads to

bz−χḣ(bx, bz) = b2−χ
Dh′′(bx, bz) + b1−χ

vh′(bx, bz) + η(x, t) (9.106)

rather than (9.97). Together with (9.98), the “resulting equation” (compare to
(Barabási and Stanley, 1995, appendix B)) is

z − χ = 2 − χ = 1 − χ = (1 + z)/2 (9.107)

which cannot possibly be correct, for example, because 2 − χ = 1 − χ cannot be
obeyed. However, by solving only

z − χ = 1 − χ = (1 + z)/2 (9.108)

one arrives at
χ = 0 and β = 0 and z = 1 (9.109)

(see Eq. (9.36b)) suggesting that the term v∂xh in (9.106) is “relevant compared to the
diffusion term D∂2

xh, because on large scales, b → ∞, the choice of exponents (9.109)
will rescale all terms apart from D∂2

xh in (9.106) by a factor b, while the latter remains
constant.” By dividing the whole equation by b it becomes clear that for b → ∞ the
diffusion term vanishes. Therefore the convection or drift term is relevant compared
to the diffusion term.

9.4.2.1 The conundrum

The latter line of arguments, which is widely accepted, leads to a bizarre conun-
drum: The “dimensional analysis” in Sec. 9.4.1 gives the correct exponents if no drift
is present — Eq. (9.99) agrees with Eq. (9.25). On the other hand, with drift, the
result Eq. (9.109) obtained in Sec. 9.4.2 is wrong (compared to (9.25) in case of pe-
riodic boundaries and (9.94) in case of fixed boundaries, respectively). One might
argue now15 that the reason for the apparent failure of coarse-graining is that the
drift term disappears from the problem due to an additional symmetry, namely trans-
lational invariance (see page 345). So, does coarse-graining prevail if this symmetry
is broken, for example by fixing the boundaries? Apparently not, compare Eq. (9.109)
to Eq. (9.94). So, why then does coarse-graining fail?

The answer to this question is very simple: There is a priori simply no reason why
coarse-graining actually should work at all. In order to understand that, the following
section presents dimensional analysis in a (hopefully) more profound fashion.

15That was my line of arguments, initially.
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idea is that there is a set of solutions {h(x, t)} of a PDE like (9.95) for an ensemble of
noise realisations {η(x, t)}. Eq. (9.100) then provides us with a transformation rule
from one set of solutions to another as L is rescaled to bL, provided that the ensemble
of noise terms transforms according to (9.101a).

It is worth stressing that this interpretation of dimensional analysis as a transfor-
mation prescription simply misses the point of dimensional analysis: Dimensional
analysis is much more fundamental and does in general not produce a simple trans-
formation rule like (9.100).

9.4.1.2 From self-affinity of h to the scaling of the width

The exponents used above, for example in (9.100), have the same symbols as the
width (for example (9.43)) for a good reason. From (9.100) follows for the roughness
of h′, defined in Eq. (9.40), page 351

w2
h′(bzt, bL) = b2χw2

h(t, L) (9.103)

where the subscript indicates the underlying field-variable. The roughness of h ′ is,
as mentioned above, the roughness on the rescaled lattice. Thus, w2 is a generalised
homogenous function,

w2(t, L) = aL2χG
(

t

bLz

)
, (9.104)

with roughness exponent χ and dynamical exponent z, see Eq. (9.43).

9.4.2 Misconception 2: coarse-graining arguments

While the first misconception (Sec. 9.4.1) can be salvaged by an interpretation like
(Sec. 9.4.1.1), there is another much more dangerous misunderstanding of dimen-
sional analysis. It has developed into one of the standard arguments about relevant
and irrelevant terms14 in LANGEVIN equations, and runs under the label “dimen-
sional analysis”, “scaling arguments” or “coarse-graining”, even though the argu-
ment itself is only loosely related to dimensional analysis.

To illustrate it, one needs another term in (9.95), say the EW equation with drift:

∂th(x, t) = D∂2
xh(x, t) + v∂xh(x, t) + η(x, t) (9.105)

14This misunderstanding is, for example, very explicit in the notion of [n] < [x]2 in (Paczuski and
Bassler, 2000), which simply does not make any sense. There is no ordering relation on dimensions
themselves; it makes sense to impose n < x2, implying that both objects are measured in the same
units. But what could [n] < [x]2 mean? Maybe that the units [n] is measured in is smaller than the unit
x2 is measured in, compared after transforming both to the same units?

1.2. POWER LAWS IN NATURE 

lead to conclusions of enormous implications [for example (Smethurst and Williams,
2001) and comments, for example (Ball, 2001; The British Library Science Technology
and Business (STB), 2001; Sornette, 2001)].

Nevertheless, power laws are observed reproducibly and reliably over many
decades, and occur very often in natural processes, such as

• Earthquakes (Johnston and Narva, 1985) [after (Bak, 1996)]: Earthquakes are
the standard example of power laws in nature, not only because they have been
studied and recorded literally for ages, but also because it has been noted very
early that their distribution obeys a power law. The Gutenberg-Richter law says
that the cumulated probability density Pc(E) of obtaining an earthquake of en-
ergy E is a power law, Pc(E) ∝ E−B [(Gutenberg and Richter, 1956) according
to (Olami et al., 1992)]. The exponent B varies in the range [0.80, 1.05], depend-
ing on the fault under consideration, but it is truly an exponent, i.e. it does not
vary with the size of the earthquake. As all earthquakes follow the same statis-
tics, this justifies the remarkable assumption that the underlying mechanisms
of small and large earthquakes is the same! In addition, the intensity of after-
shocks decays scalefree, known as the OMORI law. Recently it has been shown
by BAK et al. (Bak et al., 2002) that the OMORI law and the Gutenberg-Richter
law can be unified.

• Rainfall (Peters et al., 2002): The time signal of rain, i.e. the rain rate (a volume
per area and time) can be recorded with very high precision. The time signal
allows one to define events (rate nonzero), event sizes (total volume) and in-
teroccurance times, which is the time between two events. The interoccurance
time, as well as the event size distribution, show a power law distribution. So
far this is checked for only one spot on the earth, but the data look very promis-
ing.

• Coastlines (Feder, 1988) [after (Bak, 1996)]: This is the classical example of frac-
tals in nature and became very popular in the context of chaos and fractals [for
example (Mandelbrot, 1983)]. The length of a coastline does not change linearly
with the length scale of the embedding space, i.e. taking a linearly increasing
patch of a map and holding the absolute resolution (lower cutoff) fixed, the
length of the coastline measured increases with an exponent different from one.

• Elementary particles (Meng Ta-chung et al., 1999; Rittel, 2000): Instead of using
the framework of Quantum Chromodynamics, it is possible to approach inelas-
tic diffractive high-energy scattering processes on a phenomenological level in
terms of SOC. The resulting predictions agree very well with experimental data.
The idea is that certain colourless objects obtained in so-called LRG events
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(Large Rapidity Gap) have a scalefree size and lifetime distribution. These
events can be seen in highly inelastic electron-proton scattering experiments.
The conclusion is that the proton develops to a scalefree state on the gluon level.
It is remarkable how consistent these assumptions are with experiments. More-
over it is possible to derive the scattering cross section for (anti-)proton-proton
scattering, which is also in impressive agreement with experiments.

• Evolution (Sepkoski Jr., 1993) [after (Bak, 1996)]: Based on the marine fossil
records there are some indicators which allow (again on a phenomenological
level) the conclusion that extinction rates are scalefree. Introducing a tempo-
ral grid of the geological history (time intervals of roughly 25, 000 years) one
counts into a histogram the number of time intervals where the relative extinc-
tion (number of species getting extinct between two time slots over their total
number) was within a certain range. The results seem to indicate that there is
no typical event size, in the sense of a scalefree distribution. Recently this result
has been criticised as statistical artifact (Kirchner and Weil, 1998).

1.3 Overview of Established Models

As explained above, SOC is the theory of critical phenomena which seem to occur
in natural systems without tuning. SOC strives to identify the necessary and suffi-
cient conditions for this behaviour, usually by means of model systems, which are
much easier controllable than real-world experiments. They are designed to mimic
certain features, which are assumed to be important: Spatial order, temporal order,
conservation, certain types of external drive (random, homogeneous, deterministic)
etc. These models are mainly numerical, i.e. they are designed to be studied in com-
puter simulations and the vast majority of publications in the field of SOC consider
these models, mostly in a numerical way.

Although Molecular Dynamics is a standard technique for simulating spatially
continuous models, virtually all SOC models live on a lattice and are therefore in-
vestigated within the framework of Monte Carlo. In the following sections the most
popular models are defined.

1.3.1 The BTW model

The BAK-TANG-WIESENFELD sandpile model (Bak et al., 1987) (BTW model for short)
is the paradigm of SOC. Originally invented to explain 1/f noise (this is a form of
noise with logarithmic correlations), it quickly became a research topic on its own
(Bak et al., 1988; Christensen et al., 1991). To see to what extend it actually resembles
a sandpile, we first give the original definition in terms of heights. This, however,
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9.4.1.1 Self-affinity as transformation

There is a way to understand dimensional analysis in the spirit above. As a result of
dimensional analysis, rather than as the analysis itself, one might be able to show for
some very simple cases12 such as (9.95) that the following statement holds: If h(x, t)
solves (9.95) for a given η(x, t), D and L, then

h′(x′, t′) = bχh(x, t) (9.100a)

where

x′ = bx (9.100b)

t′ = bzt (9.100c)

is a solution of (9.95) for η′(x′, t′), D′ and L′ where

η′(x′, t′) = b−(1+z)/2η(x, t) (9.101a)

where

D
′ = D (9.101b)

L′ = bL , (9.101c)

provided that χ = 1/2 and z = 2. So, in fact, the self-affinity is to be understood
as a transformation from one solution to another. The point is of course, that one is
often looking for exactly that form of transformation: one is looking for the solution
of (9.95) for all (in particular large) L, fixed D and given noise correlator. The latter is
in fact conserved under the transformation (9.101a) if the noise is δ-correlated:

〈
η′(x′1, t

′
1)η

′(x′2, t
′
2)
〉

= b−(1+z)〈η(x1, t1)η(x2, t2)〉 =

b−(1+z)δ(x1 − x2)δ(t1 − t2) = δ(bx1 − bx2)δ(b
zt1 − bzt2)

(9.102)

If that was not the case, (9.100) and (9.101) would merely map families of solutions
onto each other, without much use for the problem one is actually interested in,
namely (9.95) with fixed noise correlator as said above. Regarding L, the underlying
assumption is that the boundary condition transforms properly, for example h(x =

L, t) = h(x = 0, t) (and h analytical13 at x = 0, L) or h(x = L, t) = h(x = 0, t) = 0.

Sometimes it is said that h needs to be statistically independent under the transfor-
mation, without further specifying what that actually means. The proper underlying

12In most interesting cases, there is no such simple transformation — for example there is no such
relation for the EW equation with drift and periodic boundary conditions, even though its exponents
are trivial; if h obeys (9.100), then h̃(x, t) = h(x + vt, t) does certainly not, unless z = 1. See also the
remarks around Eq. (9.18), page 345.

13Otherwise the periodic boundary condition could be met by defining h correspondingly, h(x =
L, t) = h(x = 0, t).
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9.4.1 Misconception 1: self-affinity

Considering the initial equation (9.2)

∂th(x, t) = D∂2
xh(x, t) + η(x, t) , (9.95)

the standard “trick” (Barabási and Stanley, 1995; Kardar, 2001) is to impose that the
solution h is self-affine, i.e. that there are exponents χ and z such that

h(x, t) = b−χh(bx, bzt) . (9.96)

Plugging this into (9.95), one arrives at

bz−χḣ(bx, bzt) = b2−χ
Dh′′(bx, bzt) + η(x, t) (9.97)

where ḣ(bx, bz) means “derivative of h by time, evaluated at bx, bzt” and similarly for
h′′. Taking into account the self-affinity of the noise11 (see also Eq. (9.102)),

η(x, t) = b(1+z)/2η(bx, xzt) (9.98)

one arrives at the condition z − χ = 2 − χ = (1 + z)/2 for (9.97) to be equivalent to
(9.95). The resulting exponents in one spatial dimension are

χ = 1/2 and β = 1/4 and z = 2 (9.99)

where β = χ/z has been used.

There are several important points of criticism:

• The procedure above has simply no mathematical footing whatsoever. The
statement (Barabási and Stanley, 1995, p. 51) “[t]he growth equation [(9.95)]
must be invariant under” x → x′ = bx and h → h′ = bχh is simply wrong. The
equation is in all non-trivial cases not invariant under this transformation and
a priori there is no reason for that. However, it might be invariant under this
transformation asymptotically.

• There is a priori no reason why the noise transforms according to (9.98).

• The procedure above is simply not dimensional analysis, even though it is some-
times called that way, see for example (Barabási and Stanley, 1995, p. 315).

11In spatial dimension d, the exponent 1 + z has to be replaced by d+ z
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is meaningful only in d = 1, so the first definition is applicable only to the one-
dimensional model.

On a one-dimensional lattice (i.e. in Z) each node has a height hi and a slope
derived from this quantity, defined as zi = hi − hi+1. The model evolves as follows
(Jensen, 1998):

• Perturbation: A grain is added to a randomly chosen site k, i.e.

hk → hk = hk + 1

and therefore

zk → zk = zk + 1

zk−1 → zk−1 = zk−1 − 1

• Relaxation (Toppling): If the slope at site k is larger than a certain threshold zc,
that site relaxes by moving one grain from k to k + 1, i.e. it slides down and
decreases the slope:

If zk > zc (1.1)

hk → hk = hk − 1

hk+1 → hk+1 = hk+1 + 1

and therefore

zk → zk = zk − 2

zk±1 → zk±1 = zk + 1

Starting from an empty lattice, the system is perturbed until a slope reaches the
threshold. Then the relaxation rule is applied until no slope is above the threshold
anymore. The toppling of a site is also depicted in Fig. 1.1.

In the definition given above, it seems that the total slope is invariant under evo-
lution, as all rules keep it constant. However, for a finite system of size N it is

Z =

N∑

i=1

zi = h1 − hN+1 (1.2)

reflecting a problem of the rules at the boundaries (hN+1 is not defined). The total
height,

H =

N∑

i=1

hi (1.3)

can only increase. Moreover, the rules are anisotropic, as the slope is defined only “to-
wards the right”. To justify that and in order to make the model consistent, bound-
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1 2 3 4 5 6 7i =

Figure 1.1: A relaxation event in the BTW model. The column of grains at site i− 1 = 4
topples, because its slope (zi−1 = hi−1 − hi) is above the threshold, here zc

4 = 1. The
toppling grain is shown as a dashed and hatched box. Note that in the next step column
i will topple, since it has become unstable, and an avalanche of total size 2 will have
formed. Figure drawn after (Jensen, 1998).

aries are introduced: h0 never topples and hN+1 is always 0 (see Fig. 1.1), so that
there is a sink (hN+1) and a source (random sprinkling) for height and the total slope
becomes simply h1.

One can streamline the definition a bit in order to generalise it to higher dimen-
sions. The height variables hi get abandoned and only the slopes zi are considered.
Moreover the perturbation becomes non-conservative with respect to zi:

• Perturbation: zj → zj + 1

• Relaxation: For zj > zc (zj is said to be “unstable”) do zj → zj − q and zk.nn.j →
zk.nn.j + 1 for all q nearest neighbours k of site j.

Here q denotes the coordination number, so that the model is now defined on arbi-
trary lattices in arbritrary dimensions. Since the perturbation is non-conservative,
units of slope need to dissipate somewhere (note that the relaxation is conservative
with respect to this quantity). Different scenarios are possible at the boundaries: Ei-
ther a unit of z falls over the edge, i.e. dissipates, or q is reduced to the true number
of recipients for events at the boundaries, i.e. relaxation is conservative again. In any
case there must be dissipative processes somewhere, otherwise the model will finally
reach a state where it runs forever.

The most important observable in these models is the avalanche size and its dis-
tribution. An avalanche is the entire relaxation process after a perturbation until the
system reaches a new stable configuration, its size is the number of times sites have
discharged.

9.4. DIMENSIONAL ANALYSIS AND COARSE GRAINING ARGUMENTS 

as found in (9.83).

Thus, the roughness calculated from a saddle point approximation is10

w2(t, L) = Γ2 ×





√
t

2πD
− t

L
− |v|t3/2

3L
√

2πD
+
t2|v|
2L2

for t� L
|v| (9.92a)

2

3
√

2π

√
L

|v|D − 1

2|v| for t� L
|v| , (9.92b)

where the crossover apparently takes place at

tX =
L

|v| . (9.93)

or by equating the leading terms in (9.92a) and (9.92b), tX = (4/9)L/|v|.

As we shall see below (Sec. 9.4.5.1, Eq. (9.137), page 375), all corrections comply
to the form presented in (9.45a) and (9.45b). Therefore the exponents found are

χ = 1/4 and β = 1/4 and z = 1 for v 6= 0 fixed boundaries (9.94)

This is a very remarkable result, because these exponents are “classically” impos-
sible, as dimensional analysis allows in general only exponents according to (9.127),
see below. Therefore the exponents found in (9.94) are anomalous. The details of di-
mensional analysis are discussed in the next section.

9.4 Dimensional Analysis and Coarse Graining Arguments

The aim of this section is to show how and why standard arguments used in con-
junction with dimensional analysis seem to fail. To this end, it is necessary to de-
velop a clear understanding of the way dimensional analysis works. The following
discussion is focused on w2, rather than the correlation function, but can similarly be
applied to that as well.

To motivate this section, we will first look at some general misconceptions and a
specific misleading argument, which produces the wrong answer for the exponents
of the EW equation with drift.

10The modulus of v appears because of the symmetry consideration Eq. (9.70). Based on them, we
would repeat our analysis for negative q and −q would appear where q appears above.
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ments apply, so that n1 + n2 = 0 in (9.69a). The integration over y ′ gives there-
fore a contribution of the form

√
2πτ̃ I

(
1
2(y1 + y2) + τ̃ q

)
. When applying a saddle

point approximation for the second term of (9.69a), the integration over y1 requires
0 ≤ 1

2y2 − n1 + n2 ≤ 1
2 and therefore again n1 − n2 = 0. The total contribution of

(9.69a) therefore is

√
2πτ̃ I

(
1

2
(y1 + y2) + τ̃ q

)
e−

1
8τ̃

(y1−y2)2 (9.85)

where the integration over y1 is not performed yet, even though we derived from it
the condition n1 − n2 = 0 already.

For Eq. (9.69b) one needs ỹ = n1 − n2 − y2 ≥ 0 because of the first term and
0 ≤ 1

2(y1 + y2) + ỹ + τ̃ q ≤ 1 in the third term. The only choice which gives a non-
vanishing contribution to the integral is n1 − n2 = 1. The second term requires 0 ≤
−(n1 + n2 + 1

2y2) ≤ 1
2 for the integration over y1, which is satisfied for no choice of

n1 + n2. Thus, the second term (9.69b) does not contribute. The same applies to the
third term, Eq. (9.69c).

The analysis of (9.69d) gives: n1 + n2 < 0 because of the first term. As for (9.69a),
the second term gives 0 ≤ 1

2y2 − n1 + n2 ≤ 1/2 and therefore n2 − n1 = 0, thus the
sum of n1 and n2 must be an even, negative integer. However, if n1 + n2 ≤ −2, then
the third term has the minimum at y′min ≥ 2 − 1

2(y1 + y2) + τ̃ q, which is unreachable.
So, this term does not contribute neither.

After applying a saddle point approximation for the y1 integration of (9.85), one
finds

〈
ϕ(y, τ)

2
〉

=

∫ τ

0
dτ̃

∫ 1

0
dy2

(
1√
4πτ̃

)2 √
2πτ̃I (y2 + τ̃ q)

√
8πτ̃ (9.86)

=

∫ τ

0
dτ̃

∫ 1

0
dy2I (y2 + τ̃ q) , (9.87)

where the (4πτ̃ )−1 comes from (9.60). For τq ≥ 1 the indicator function truncates the
integration over τ̃ at q−1, so that

〈
ϕ(y, τ)

2
〉

=
1

2q
for τ > q−1 (9.88)

〈
h(x, t)

2
〉

=
Γ2

2v
for t > L/v (9.89)

as already stated in (9.82), while for τq < 1 one has

〈
ϕ(x, t)

2
〉

= τ(1 − 1

2
τq) τ < q−1 (9.90)

〈
h(x, t)

2
〉

=
Γ2t

L
(1 − vt

2L
) for t < L/v (9.91)

1.3. OVERVIEW OF ESTABLISHED MODELS 

As the BTW model is somehow the foundation of SOC, it has been studied in
great detail. In one dimension (height picture, right hand end open), one can easily
derive the probability density function for different avalanche sizes, or “avalanche
size distribution” for short. The system develops into a staircase-like configuration
and arrives there back after each relaxation. The avalanche size is simply determined
by the distance between the location of the perturbation and the right hand end,
where the sand leaves the system. The avalanche size distribution is therefore uni-
form with a sharp cutoff, P(s) = (1/L)θ(L− s).

The standard form of a scalefree distribution is “simple scaling”2, as known from
classical critical phenomena such as percolation:

P(s) = as−τG(s/s0) for s > sl (1.4)

with a system specific constant a, the lower cutoff cl, and critical exponent τ . More-
over s0 = bLD with D another independent exponent and b another system depen-
dent amplitude. The function G is the scaling function and expected to be universal,
i.e. it is the same among all members of the universality class. To bring P(s) of the
one-dimensional BTW model in this form, one writes

P(s) =
1

s

( s
L
θ
(
1 − s

L

))
(1.5)

so that a = 1, τ = 1, D = 1, b = 1 and G(x) = xθ(1−x). This, however, is a somewhat
pathological, since G(0) = 0. Usually it is expected that the scaling function acquires
a finite value at x = 0, so that for sufficiently large system sizes [see (1.4)] tends to
P(s) = as−τ . This, however, is terribly misleading, as it is a priori unknown, whether
this asymptotic regime is reached yet or not. The standard technique to identify the
exponent is therefore a data collapse (Bhattacharjee and Seno, 2001).

In two dimensions the exponent has been found numerically to be τ ≈ 1.22 (Dorn
et al., 2001).

One of the most important properties, which has lead to an impressive amount
of exact results [for example certain height probabilities, see (Priezzhev, 1994), but
also (Priezzhev et al., 1996; Ktitarev et al., 2000)], is the fact that the BTW model in
the definition above is Abelian: Not only do so-called allowed states form a group, but
the outcome of an operation of the relaxation rule on a configuration is independent
of the order in which it is performed, if more than one site is unstable (Dhar, 1990,
1999c)3 . Knowing in advance the number of times all sites will topple within a single

2Actually simple scaling describes distribution with a single relevant scale, that is divergent in some
limit (here the thermodynamic limit) and therefore leads asymptotically to a scalefree distribution.

3If an over-critical site in the BTW model would redistribute all slope units to its neighbours, not
only “bunches” of q, the model would not be Abelian.
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avalanche even allows one to perform the topplings in arbitrary order. This is possi-
ble since the change in z for a given site depends only on the number of times it has
received a unit from its neighbours and the number of times it has toppled.

1.3.2 The OFC model

The OFC-model, named after OLAMI, FEDER and CHRISTENSEN, is derived from the
BURRIDGE-KNOPOFF spring-block model. It was supposed to model earthquakes,
and is therefore also known as the earthquake model in literature (Olami et al., 1992).
Like the BTW model, it lives on a d-dimensional hyper-cubic lattice, but unlike the
BTW, a continuous variable 0 ≤ zi < zc called “force”, where zc = 1, is assigned to
each node i. What distinguishes this model from most other models, is the fact that
it is completely deterministic, as we shall see in the updating rules:

• Perturbation: Find the largest value zm = max{zi|0 < i ≤ N} among all N
sites. Increase the variable on all sites by zc − zm.

• Relaxation: Distribute the force of all unstable sites j with zj ≥ zc to their q
nearest neighbours, by assigning zk.nn.j → zk.nn.j + αzj . Now set zj → zj =

0. Repeat this step until zi < zc for all sites. An uninterrupted sequence of
relaxation events constitutes an avalanche. The parameter α ∈ [0, 1/q] is called
degree of conservation, because it measures to what extend force is dissipated.

These rules represent a simplified mechanism of the way stress spreads in faults
caused by and causing tectonic movement: If a volume element relaxes, its change in
strain gives rise to a change in stress for its neighbours. In leading order this effect is
linear. Because of the anisotropy of tectonic plates, the two dimensional OFC model
is therefore thought of as a simplified model of earthquakes. If it contains all the
important ingredients, it should show the right exponents.

After the perturbation step, which can also be seen as a continuous drive, at least
one site (in simulations virtually always exactly one) is critical, i.e. has a value zm = zc.
However, the fact that more than one site can topple initially, seems to represent a
breakdown of its deterministic behaviour: The problem is that the relaxation is sup-
posed to take place in parallel and if two neighbouring sites topple, they could topple
on top of each other and therefore the outcome of such a relaxation is dependent on
the order. The relaxation does not commute, i.e. the model cannot be Abelian! One
usually solves the problem by performing the relaxation in parallel: All unstable sites
topple at once and all resulting contributions of force to other sites are added after-
wards, i.e. if two neighbouring sites topple at once, they first both topple and receive
the contribution from each other only afterwards. This cures the model from being
undetermined within a single update during an avalanche, but does not make all
updates commuting.

9.3. THE EW EQUATION WITH FIXED BOUNDARY CONDITIONS 

Doing the integral one finds

〈
ϕ2(y, τ)

〉
=

√
τ

2π

(
1 − 1

3
τq

)
for τ < q−1 (9.80)

〈
h2(x, t)

〉
= Γ2

√
t

2πD

(
1 − 1

3

vt

L

)
for t < L/v (9.81)

The second average required for w2 is
〈
ϕ(y, τ)

2
〉

. For long times it can be derived
quite easily from physical considerations. The interface can now be thought of as
moving from the right to the left (positive q), being fixed at ϕ = 0 at both ends. Thus,
it looks like “freshly initialised” close to y = 1, but “very old” towards y = 0. The
integrated inflow of noise depends on the time the interface has spend under the
influence of the noise, which apparently depends on the position, see Fig. 9.1. The
variance of the total volume of noise is then a triangle of height Γ2L/v and length L.
Thus, in the large t limit the spatial average, which gives another factor L−2, is given
by

〈
h(x, t)

2
〉

=
Γ2

2v
for t > L/v . (9.82)

For short times, the interface grows homogeneously, where it has not been “reini-
tialised” by the right boundary. In the latter region it grows like a wedge. According
to Fig. 9.1 the area is Γ2t(L− 1

2vt), so that

〈
h(x, t)

2
〉

=
Γ2t

L
(1 − vt

2L
) for t < L/v . (9.83)

L− vt vt

v (drift)

Figure 9.1: The initial growth of the interface is homogeneous, where it has not yet been
reached by “reinitialisation”. The latter region has length vt.

This result is easily verified. The integral

∫ 1

0
dy1

∫ 1

0
dy2〈ϕ(y1, τ)ϕ(y2, τ)〉 (9.84)

has two independent spatial variables, y1 and y2. However, very similar argu-
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more negative sums. Thus, the only possible contribution comes from n1 + n2 = −1.

The rôle second term in (9.69d) can be understood as soon as τ̃ can be determined.
All four terms (9.69) require 0 ≤ τ̃ q ≤ 1 because of the position of the minimum in
the last term, so that

0 ≤ τ̃ ≤ q−1 . (9.72)

That means the second term in (9.69d) contributes at least −q, which is (negatively)
divergent in the thermodynamic limit. This is because n1 + n2 = −1 entails

(
1

2
(y1 − y2) + n1 + n2

)2

≥ 1 (9.73)

for y1 = y2 = y and n1, n2 ∈ Z. Thus, (9.69d) does not contribute either.

The only term to contribute to
〈
ϕ2(y, t)

〉
in a saddle point approximation is there-

fore the first term, (9.69a). Because of its second term, −(n1 − n2)
2/(2τ̃ ), one needs

n1 − n2 = 0, which makes together with n1 + n2 = 0 from above n1 = n2 = 0.
Therefore

〈
ϕ2(y, t)

〉
=

∫ τ

0
dτ̃

(
1√
4πτ̃

)2 √
2πτ̃ I (y + τ̃ q) (9.74)

where I(x) is an indicator function

I(x)





1 for 0 ≤ x ≤ 1

0 otherwise
(9.75)

For τ ≥ q−1 Eq. (9.74) can be written as

〈
ϕ2(y, t)

〉
=

∫ q−1

0
dτ̃

1

2
√

2πτ̃
I (y + τ̃ q) = 2

√
1 − y

2πq
(9.76)

so that

〈
ϕ2(y, τ)

〉
=

2

3
√

2πq
for τ > q−1 (9.77)

〈
h2(x, t)

〉
=

2Γ2

3

√
L

2πvD
for t > L/v (9.78)

(9.79)

For τ < q−1 the upper limit of the integral is actually given by τ , so that the
indicator function does not necessarily impose any condition on the integral over τ̃ .
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Figure 1.2: The two sub-lattices of a square-lattice, marked by filled and white circles.
The set of all nearest neighbours of one sub-lattice is the other one. If only sites on one
sub-lattice topple at one time step, only sites on the other will topple in the next one.

As shown now, the problem occurs on a hyper-cubic lattice only if more than one
site initially topples at the same time. If there is only one so-called initial seed, the
problem cannot occur: If all relaxing sites are on one sub-lattice of the square lattice
(see Fig. 1.2) they can trigger events only on the other sub-lattice. So in the next time
step, all events will take place on the other sub-lattice. The problem mentioned above
occurs therefore only if the initial seeds are on different sub-lattices. And this is the
only case where one needs to keep track of contributions and order of toppling as
described above — in the case of only one initial seed the relaxations within each
time step commute (but still not within an entire avalanche).

It is clear from the beginning that the statistical properties of the model depend
on the degree of non-conservation α. For α = 1/q it is completely conservative. As
in the BTW model, full conservation of the dynamical variable drives the system in-
evitably into a state where it runs forever. Periodic boundary conditions are therefore
not reasonable in the conservative limit, and the standard boundary conditions are
open like in the BTW model. For the non-conservative regime, it is well established
that periodic boundaries lead — after a transient — to a periodic state (Jensen, 1998).
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Figure 1.3: Cited after (Olami et al., 1992, Fig. 2a): “Simulation results for the probability
density of having an earthquake of energy E as a function of E for a 35 × 35 system.
The curves correspond to α = 0.25, 0.20, 0.15 and 0.10. The slope of the curves becomes
steeper as the α value is decreased.”

So, some open boundaries are necessary in any case. It has been argued that this
inhomogeneity is the cause for statistics which resemble scalefree distribution (Mid-
dleton and Tang, 1995). The role of anisotropy and non conservation is still unclear:
Starting out from some LANGEVIN equations, some authors argue that either of them
are sufficient to observe SOC (Grinstein et al., 1990).

The standard observables of the OFC model are the total amount of energy redis-
tributed, the number of sites which have toppled, and the total dissipation, where
each relaxation event contributes zj(1 − qα). Other observables are spatial, like the
area covered by the avalanche. The distribution of the avalanche sizes turns out to
be scalefree and the exponent depends on α. For α ≈ 0.2 and d = 2 the exponent
found relates very well to the exponent B of Gutenberg-Richter law found in real
earthquakes mentioned in sec. 1.2.

That the exponents are continuous in α is highly remarkable, since continuous
exponents to a certain extent undermine the concept of universality which relies on
the idea that exponents depend only on dimensionality, symmetries and other dis-
crete parameters, rather than a tunable quantity. An example for the histograms and
different exponents is shown as a double logarithmic plot in Fig. 1.3 [the figure is
copied from the original Phys. Rev. Lett. (Olami et al., 1992)].

It is still debated whether and if so for which value of α the OFC model is truly
critical. It is widely accepted that it is scalefree in the conservative limit, i.e. α = 1/q.
For the other extreme, α = 0 it is easy to see that the sites completely decouple — but
there is no proof that the behaviour for α→ 0 corresponds to α = 0.

9.3. THE EW EQUATION WITH FIXED BOUNDARY CONDITIONS 

in y′ are supposed to lie within the interval [0, 1], for the exponential to contribute√
2πτ̃ .

It is worth rewriting (9.69) in the form

ỹq − 1

2τ̃

(
1

2
(y1 − y2) + n1 − n2

)2

− 1

2τ̃

(
y′ −

[
1

2
(y1 + y2) + ỹ + τ̃ q

])2

(9.71a)

where ỹ = n1 + n2

ỹq − 1

2τ̃

(
1

2
(y1 + y2) + n1 + n2

)2

− 1

2τ̃

(
y′ −

[
1

2
(y1 + y2) + ỹ + τ̃ q

])2

(9.71b)

where ỹ = n1 − n2 − y2

ỹq − 1

2τ̃

(
1

2
(y1 + y2) + n1 + n2

)2

− 1

2τ̃

(
y′ −

[
1

2
(y1 + y2) + ỹ + τ̃ q

])2

(9.71c)

where ỹ = −n1 + n2 − y1

ỹq − 1

2τ̃

(
1

2
(y1 − y2) + n1 − n2

)2

− 1

2τ̃

(
y′ −

[
1

2
(y1 + y2) + ỹ + τ̃ q

])2

(9.71d)

where ỹ = −n1 − n2 − y1 − y2

First we derive the expression for
〈
ϕ2(y, t)

〉
, i.e. y1 = y2 = y in (9.69), (9.71). The

minimum in y′ of the last term of (9.71a) is at y + ỹ + τ̃ q. Whether we want to derive
the exponent χ or β, in any case we are interested in the large L behaviour. Since
q = vL/D, in this limit7 ỹ = n1 + n2 must be non-negative because of the first term
ỹq in (9.71a). Moreover qτ̃ ≥ 0, so that 0 ≤ y + ỹ + τ̃ q ≤ 1 requires8 ỹ = n1 + n2 ≤ 0.
Thus, in the first expression, the exponential of (9.69a) contributes only if n1 +n2 = 0

and if 0 ≤ y + τ̃ q ≤ 0.
Similarly, the minimum in the last term of (9.69b) requires9 n1−n2 ≤ 0. However,

then the first term is −yq or smaller, which suppresses the contribution of (9.69b) for
divergent q. The same argument applies to (9.69c).

The last expression, (9.69d) or alternatively (9.71d), is a bit more complicated. For
this term to contribute one needs for the minimum 0 ≤ −y − n1 − n2 + τ̃ q ≤ 1 and
at the same time −n1 − n2 − 2y ≥ 0 for the first term, ỹq. Since y ≥ 0, this first term
requires a negative n1 + n2. If that sum is −1, the difference must be of the form
n1 − n2 = −1 − 2n2 6= 0. That means, the second term in (9.69d), −(n1 − n2)

2/(2τ̃ ) =

−1/(2τ̃ ) contributes as well. This deserves somewhat more discussion, but we first
need to check, whether even more negative sums n1 + n2 contribute. The next one is
n1+n2 = −2, but then −y−n1−n2+ τ̃ q = 2−y+ τ̃q ≥ 1 is not accepted anymore as a
valid position of the minimum in a saddle point approximation. The same applies for

7It is worth noting that even if q is divergent, τ̃ q still covers the whole positive real line.
8Note that ỹ is integer in (9.71a), so that the next larger choice for ỹ obeying 0 ≤ y + ỹ + τ̃ q ≤ 1 is

ỹ = 1, which is marginal since y, τ̃q ≥ 0.
9Again, the case n1 − n2 = 1 is marginal.
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9.3.2 The case v 6= 0

The case of non-vanishing drift is what actually interests us in this chapter. From the
form of the two point correlation function (9.61) and the propagator ((9.60a), (9.60b))
it is clear that a non-vanishing velocity v remains in the problem even in the equal-
time correlation function. The velocity gives rise to an extra length scale D/v, which
makes possible critical exponents deviating from the results of dimensional analysis.

Moreover, the extra length scale makes corrections possible (see Sec. 9.4.5.1) as de-
scribed in Eq. (9.45), which make the analysis significantly more complicated. When
plugging (9.60a) into (9.61) at τ1 = τ2 = τ , the two correlators give rise to four terms,
over which one has to integrate. The arguments of the exponentials are

(n1 + n2)q − 1

2τ̃

(
1

2
(y1 − y2) + n1 − n2

)2

(9.69a)

− 1

2τ̃

(
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[
1

2
(y1 + y2) + n1 + n2 + τ̃ q

])2
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2τ̃

(
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2
(y1 + y2) + n1 + n2

)2

(9.69b)

− 1

2τ̃
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])2
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(9.69c)

− 1

2τ̃

(
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1
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(y1 − y2) − n1 + n2 + τ̃ q

])2

(−n1 − n2 − y1 − y2)q − 1
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(9.69d)

− 1

2τ̃

(
y′ −

[
1

2
(−y1 − y2) − n1 − n2 + τ̃ q

])2

where τ̃ = τ−τ ′. It is instructive to identify the mirror symmetry q → −q, x1 → 1−x1

and x2 → 1 − x2 in all four terms, which requires the following transformations of
the variables:

n1 → −n1 n2 → −n2 y′ → 1 − y′ for (9.69a)
n1 → −n1 n2 → −(n2 + 1) y′ → 1 − y′ for (9.69b)
n1 → −(n1 + 1) n2 → −n2 y′ → 1 − y′ for (9.69c)
n1 → −(n1 + 1) n2 → −(n2 + 1) y′ → 1 − y′ for (9.69d)

(9.70)

Clearly, these transformations become irrelevant, when n1 and n2 are summed
from −∞ to ∞ and y′ integrated from 0 to 1 (see Eq. (9.60a) and Eq. (9.61)). Therefore,
one can fix the sign of q to be positive without restrictions.

In a saddle point approximation (Dingle, 1973) the minima of these polynomials
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It is — actually — easy to see that the random neighbour version of the OFC
model cannot have a divergent average dissipation (Lise and Jensen, 1996; Chabanol
and Hakim, 1997; Bröker and Grassberger, 1997) and therefore to exclude exponents
≤ 2 for the dissipation distribution. The argument is that in the random neighbour
model the energy inflow between two topplings is constant, because the density of
sites at zc scales as N , N being the total number of sites in the system, and therefore
the average distance between zm and zc scales as 1/N . The global inflow of energy is
then N(zc − 〈zm〉) ∈ O(1). But this means that the average outflow is also constant
(see also (1.7)). Mapping the model onto a random walker along an absorbing wall
(Bröker and Grassberger, 1997) to derive the exponent for the dissipation rate and
onto a branching process for the distribution of durations, produces the standard
(Mean Field) exponents 3/2 and 1. This rules out criticality in the non-conservative
regime at the same time.

1.3.3 The Forest Fire model

This subsection only sets the Forest Fire model in the context of other models. There
is an entire chapter dedicated to its detailed analysis (see Chapter 4).

The first model, the BTW-model, is conservative with respect to the dynamical
variable. The OFC-model is either conservative or non-conservative, depending on
the parameter α, but might be considered as a model of extremal dynamics, as de-
scribed below. The Forest-Fire Model (FFM) is the standard model of SOC for com-
plete non-conservation: The dissipative events are complete and happen only within
the bulk. There is no spreading of force, just like α = 0 in the OFC model. The usual
boundary conditions for the FFM are periodic.

The strength of the external drive in all lattice models described so far is either
unity or given by the system size. For the response of the systems to an external per-
turbation to diverge, it is therefore necessary that either energy can be accumulated,
or the external drive must diverge.
In the case of the Forest Fire model the external drive is a tunable parameter and
the model becomes supposedly scalefree in the thermodynamic limit for divergent
external drive. One might argue that this is a form of external tuning, but the diver-
gence of the external drive is a natural requirement and trivial in the sense that not
an external drive of particular strength is necessary.

A first version of the FFM was proposed by BAK, CHEN and TANG (Bak et al.,
1990) but later turned out (Grassberger and Kantz, 1991; Moßner et al., 1992) not to
be critical. The following definition is known as the critical DROSSEL-SCHWABL For-
est Fire model (Drossel and Schwabl, 1992): As in standard site percolation, on a
d-dimensional hyper-cubic lattice each node is either occupied or empty. A configu-
ration of such a lattice is updated as follows:
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• Choose randomly θ−1 sites, one after the other. If its state is “empty” turn it
into “occupied”.

• Choose one site randomly. If it is empty continue with the first step. Other-
wise turn the state of all sites in the entire cluster with which the chosen site is
connected to “empty” (a cluster is defined in the standard fashion via nearest
neighbour interactions). In this case one says “the cluster was struck by light-
ning” and the update is considered to be successful. Continue with the first
step.

This model becomes critical for θ−1 → ∞, in the sense that the cluster size distribu-
tion becomes scalefree, as known for example in percolation. However, the definition
above is actually already a simplification. It is instructive to see how it is derived
from the original definition of the critical model, which contained a third state of
sites, namely “burning”. All lattice sites are updated simultaneously according to
one of the following rules (Jensen, 1998):

• An empty site becomes occupied with probability p.

• A burning site becomes empty.

• An occupied site becomes burning, if at least one of its nearest neighbours is
burning or ...

• ... with probability f , independent of the state of the neighbours.

It is immediately clear that this definition lives on a microscopic timescale: In the
definition before, thousands (according to the parameter θ−1) of trees are “planted” at
once and fires are instantaneous (second step). In the second description, the model
obviously contains at least two timescales, p−1 and f−1. The latter is clearly the fre-
quency of fires measured in microscopic time-units, i.e. in update steps as used in the
second set of rules. It is reasonable to impose

p, f → 0 (1.6)

for criticality, as the corresponding timescales must be large compared to the micro-
scopic one. This means, that fire spreading (the process which defines the micro-
scopic timescale) must become instantaneous. But more than this is required for this
model to develop into the critical state, as it is shown now:

In the stationary state, the inflow of trees by growing must compensate the out-
flow of trees by burning, so that

pρe = fρo〈s〉 (1.7)

9.3. THE EW EQUATION WITH FIXED BOUNDARY CONDITIONS 

In the limit of divergent time, these sums give

lim
τ→∞

〈
ϕ2
〉

=
1

12
for fixed boundaries (9.65a)

lim
τ→∞

〈
ϕ2
〉

=
1

24
for fixed boundaries . (9.65b)

Plugging this into (9.40) one arrives at exactly the same result as (9.56). Prima facie it
looks surprising that an interface fixed to the substrate at its two ends has the same
roughness as a freely floating, periodic interface. However, by choosing an appro-
priate reference height, it is alway possible to transform a freely floating interface
into one, which intersects this reference line at least once and can therefore be seen
as an interface fixed to the substrate at these intersections. This is of course only a
handwaving argument which gives a good idea why the roughness of the two models
might be the same, but it is not sufficient to show that the two ensembles are identical.
Of course,

〈
ϕ2
〉

are different in the two models.

Taking the thermodynamic limit in (9.64) means to investigate its behaviour for
small τ . Clearly, the expressions have to vanish at least as fast as 1/L, otherwise
w2 diverges because of the extra pre-factor Γ2L/D in (9.40). One finds in a sloppy
notation

lim
τ→0

〈
ϕ2
〉

=

√
τ

2π
(9.66a)

lim
τ→0

〈
ϕ2
〉

= τ − 8

3

√
2τ

π
τ (9.66b)

It is very important to stress that the corrections on the right-hand-side of (9.66b) are
in τ . Only the first term, Eq. (9.66a), does not vanish, if the thermodynamic limit with
a pre-factor Γ2L/D is taken. A correction of the form ct(t; . . . ), as described in (9.45b)
cannot occur, because there is no additional timescale.

Thus, one arrives for the initial growth at

lim
L→∞

w2(t, L) =
Γ2

D

√
Dt

2π
(9.67)

This is again the same result as obtained for the freely moving interface with periodic
boundaries, Eq. (9.55). It simply means that the interface cannot see the fixation of
the boundaries initially and any small influence of the boundary simply disappears
in the thermodynamic limit.

Conclusively, the exponents of the EDWARDS-WILKINSON equation with fixed
boundary conditions is

χ = 1/2 and β = 1/4 and z = 2 for v = 0 with fixed boundaries (9.68)
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to (9.9), now kn = nπ, because of the circle now having a circumference of 2.

In the subsequent integration with τ2 ≥ τ1

〈ϕ(y1, τ1)ϕ(y2, τ2)〉 =

∫ 1

0
dy′
∫ τ1

0
dτ ′ϕ0(y1, τ1 − τ ′; y′, q)ϕ0(y2, τ2 − τ ′; y′, q) (9.61)

the dimensionless velocity q remains in the problem even for equal times τ1 = τ2.
Consequently, the integral cannot be calculated in a closed form. At the heart of this
problem lies the circumference of the circle used now. While the propagator (9.9) has
the nice property

∫ 1

0
dy′

∞∑

n=−∞
e

−(x+n)2

4τ f(x) =

∫ ∞

−∞
e

−x2

4τ f(x) (9.62)

for any periodic function f(x), the propagator for fixed boundaries has a factor 2 in
front of the n and a negative sign in front of the exponential representing the other
half of the circle [−1, 1], where the mirror charge resides, even for vanishing q.

9.3.1 The case v = 0

For vanishing velocity, the roughness should in the thermodynamic limit tend to the
bulk values, because “it cannot see” the fixed boundaries. Nevertheless, for fixed
boundaries the interface cannot float away and

〈
h

2
〉

cannot diverge as t→ ∞.

It is important to note again that the corrections suggested in Eq. (9.45) cannot ex-
ist for v = 0, because they require an extra scale, which does not exist, see Sec. 9.4.5.1.
For example, to obtain a correction cL(L; . . . ), one needs a “counter-length-scale” by
which L can be divided. Otherwise, cL cannot be dimensionless. Since this correc-
tion applies in the limit t → ∞, there is no such scale left, so that cL(L; . . . ) must be
independent of L and is therefore absorbed in the constant.

For q = 0 the propagator (9.60b) adapts a very simple form,

ϕ0(y, τ ; y0, q) = 2
∞∑

n=1

sin(kny) sin(kny0)e
−k2

nτ , (9.63)

so that

〈
ϕ2
〉

=
1

2π2

∞∑

n=1

1

n2

(
1 − e−2n2π2τ

)
(9.64a)

〈
ϕ2
〉

=
4

π4

∞∑

n=1,3,5,...

1

n4

(
1 − e−2n2π2τ

)
(9.64b)
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Figure 1.4: The two-dimensional Forest Fire model. Occupied sites are black. The model
develops a patchy structure because regions which become completely empty due to the
removal of a cluster become homogeneously reforested.

where ρe (ρo) denotes the density of empty (occupied) sites and 〈s〉 the expected size
of fires (Clar et al., 1996). In the thermodynamic limit, this is not a mean field or single
side approximation, as one might suspect — to see that one simply multiplies both
sides of (1.7) by a number of time steps T , so that the LHS is a total number of trees
grown in this time and the RHS is the product of Tfρo and 〈s〉. The first factor is just
the expected number of times a fire was triggered, the second factor its average size,
so that the product becomes the total number of burnt trees.

Provided that neither ρe nor ρo behave singularly, the average fire size scales as

〈s〉 ∝ p

f
. (1.8)

This makes sense, as p/f is related to the number of trees grown between two burning
events. For a large scale structure to form it is therefore necessary to have p � f .
Together with the requirement (1.6) from above this gives

1 � p� f (1.9)

This however is not enough, because it just fixes the relation between the microscopic
timescales (spreading, growing, triggering). In addition the macroscopic timescale
needs to be related. This is the relation of the entire burning process to growing and
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burning, measured in microscopic units. The entire burning (not only the spreading!)
should be instantaneous compared to both of them, so especially

p

f
� p−1 (1.10)

if one assumes the timescale of burning to be of the same order as the average burnt
cluster size [the relation between burning time and size is certainly more compli-
cated, but this does not matter for the argument, for details see (Clar et al., 1996)].
Both sides of (1.10) are measured in units of the microscopic timescale, which is as-
sumed to be dimensionless. Both relations (1.9) and (1.10) together can be written in
the form of timescales as

p

f
� p−1 � f−1 (1.11)

This relation is known as the double separation of timescales in the FFM: Burning
time is much shorter than growing time which in turn is much shorter than lightning.

By introducing burning, which is perfectly instantaneous compared to growing
and triggering, one realizes the first inequality in (1.11) perfectly and all that is left is

p−1 � f−1 . (1.12)

In such a system the shortest timescale is p−1, so one can simply write everything
in terms of this scale. Trees are then grown with frequency 1 and fires are triggered
with frequency f/p � 1 (as all frequencies are then ≤ 1, they can be considered as
probabilities). Such a model is then exactly represented by

• Choose a site at random. If it is occupied go to the next step. Otherwise turn it
into occupied. Continue with first step.

• With probability f/p trigger a fire, i.e. remove the entire cluster connected to
the site chosen. Continue with the first step.

On average p/f growing trials happen before a fire is triggered (Poisson process). A
possibly more computer friendly version of the rules is therefore the first one given
in this section, where θ−1 = p/f .

The observable in the FFM is the cluster size distribution of the burnt cluster.
As this cluster is chosen randomly, the distribution of burnt clusters is simply the
size-biased distribution of the global cluster size distribution n(s), which is the site
normalised density of clusters of size s in the system, so that the distribution of the
burnt cluster then reads n(s)s. This distribution again is assumed to behave like

n(s) = s−τG(s/s0) (1.13)

where G is the scaling function. Further observables consider mainly the geomet-

9.3. THE EW EQUATION WITH FIXED BOUNDARY CONDITIONS 

One can compare the pre-factor in (9.56) to the one cited in (Foltin et al., 1994),
which is 1/12. The reason for the discrepancy is that the authors of (Foltin et al.,
1994) start from a random walker representation of the interface, rather than growing
it “by hand”, i.e. directly from the LANGEVIN equation. Of course, the roughness
of the interface depends on the diffusion constant of the random walker, which is
apparently not the diffusion constant in the LANGEVIN equation (9.1).

9.3 The EW Equation with Fixed Boundary Conditions

The original motivation of these calculation was to understand the mechanism be-
hind the fact that adding a drift term to a quenched EDWARDS-WILKINSON equation
with fixed boundary conditions, makes it solvable or at least makes the model fall into
a universality class, which can be represented by an exactly solvable model. So far,
the effect of a drift term has only been studied for the EDWARDS-WILKINSON equa-
tion with thermal noise in case of periodic boundary conditions. In this section it is
extended to the EW equation with fixed boundary conditions,

h(x = 0, t) = h(x = L, t) ≡ 0 (9.59)

In that case, the propagator ϕ0 for (9.2) becomes a bit more complicated:

ϕ0(y, τ ; y0, q) =
1√
4πτ

∞∑

n=−∞

(
e−

(y−y0+2n)2

4τ − e−
(y+y0+2n)2

4τ

)

× e−
1
2
(y−y0)q− 1

4
τq2

(9.60a)

= 2

∞∑

n=1

sin(kny) sin(kny0)e
−k2

nτe−
1
2
(y−y0)q− 1

4
τq2

(9.60b)

where y0 is the “starting point”, i.e. limτ→0 ϕ(y, τ, y0, q) = δ(y − y0). One can easily
check that the propagator is invariant under mirroring, i.e. applying q → −q, y →
1 − y, y0 → 1 − y0 leaves ϕ0 unchanged.

There is another symmetry, which can be immediately spotted, but is physically
less intuitive, ϕ0(y, τ ; y0, q) = ϕ0(y0, τ ; y,−q). It is caused by the linearity of (9.1);
it makes it impossible to find out from local information at y only the sign of the
velocity without knowing the relative position (to the right or to the left) of the source.

The propagator (9.60) is essentially a mirror charge version of Eq. (9.9), where on a
circle of circumference 2 a positive charge sits at y0 and a negative one at −y0. Without
drift term the field would vanish at y = 0 and y = 1. The drift makes the additional
factor exp(−(1/2)(y−y0)q−(1/4)τq2) necessary. Just like in Eq. (9.9), the second line,
(9.60b), comes from properties of ϑ3 (Farkas and Fülöp, 2001; Magnus et al., 1966), or,
equivalently, from a Poisson summation. It is very important to note that in contrast
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and 〈
ϕ(x, t)

2
〉

= τ . (9.53)

This equation can also be derived by considering the time and space integrated in-
flow due to the noise, the variance of which is Γ2tL. A spatial normalisation produces
a factor 1/L2, leading to Γ2t/L altogether. Comparing (9.53) to (9.12) confirms this.

Therefore

w2(t, L) =
Γ2L

D

∞∑

n=−∞
n6=0

1

2k2
n

(
1 − e−2k2

ntD/L2
)
. (9.54)

Again, the form of this solution actually follows directly from the physical covariance
principle, as discussed in Sec. 9.4. Similar to Eq. (9.17) and Eq. (9.23), the thermody-
namic limit converts the sum into an integral and one arrives at

lim
L→∞

w2(t, L) =
Γ2

D

√
Dt

2π
periodic boundaries. (9.55)

The limit t→ ∞ is even more trivial, because the exponential in (9.54) simply disap-
pears and with

∑∞
n=1 1/n2 = π2/6 one has

lim
t→∞

w2(t, L) =
Γ2L

D

1

24
periodic boundaries. (9.56)

Once more, the resulting exponents are, according to Eq. (9.45), the standard expo-
nents already listed in Eq. (9.25),

χ = 1/2 and β = 1/4 and z = 2 for any v with periodic boundaries (9.57)

As a test for consistency one integrates (9.21) according to (9.46b) and finds

1

L2

(∫ L

0
dx1

∫ L

0
dx2|∆x| −

∫ L

0
dx1

∫ L

0
dx2

∆x2

L

)
=

1

6
L (9.58)

and therefore again (9.56). It is worth noting that only taking the spatial average of
(9.34a) does not work, because all expressions in Eq. (9.34) contain already a thermo-
dynamic limit, as mentioned in Sec. 9.2.2.1. However, even though Eq. (9.34) is valid
only in the stationary state, one can recover (9.55) from Eq. (9.34), by a spatial integral
of (9.34b) and replacing ∆t by t (as well as dividing by 2, according to (9.46a)).

The equations above, (9.55) and (9.56), are exact and do not contain any of those
corrections mentioned in (9.45). This is because there are simply no independent
scales available which could define a reference for t in (9.55) or L in (9.56). This is
expected to change, as soon as v remains as parameter in w2, because D/v2 provides a
timescale and D/v provides a length scale. More details on these issues are presented
in Sec. 9.4.
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Figure 1.5: The cluster size distribution n(s) of the FFM. The arrow points in the direc-
tion of increasing θ−1, which are from left to right 125, 250, 500, 1000, 2000, 4000, 8000,
16000, 32000 and 64000. The exponent is roughly 2.10, but apparently fits quite well to
2.14 for smaller values of θ−1.

ric properties of the clusters, for example the maximum Manhattan distance from a
randomly chosen starting point to all other points within the same cluster.

The FFM is obviously closely related to percolation. What makes it different
from standard percolation is the presence of additional global occupation correlations;
these correlations are different from those usually investigated in percolation, which
are quantified by the correlation function for sites being occupied and belonging to
the same cluster. The global two-point correlation function for occupation is just a
δ-peak in the case of percolation, as occupation is uncorrelated. This is not true for
the FFM, where the long-ranged removal procedure introduces correlations, by set-
ting the average density of sites within a region which was struck by lightning to
the same value. Those “patches” which are uniformally reforested afterwards then
show a correlation for their occupation: If two sites within the same (former) patch
are considered and one of them is occupied, the other one is occupied with a certain
probability depending on the time since the lightning, even if the two sites are now
not in the same cluster anymore.

In spite of its differences to standard percolation, the FFM has inherited its no-
tation and some simulation techniques from percolation as well as the value of its
upper critical dimension, which is expected to be 6 (Christensen et al., 1993; Clar
et al., 1994). An analytical approach to the FFM is still lacking, even for d = 1 the
results are disappointingly rough and vague (Drossel et al., 1993). Therefore virtually
all results for the FFM are numerical; they consistently suggest that the FFM is not in
the same universality class as percolation, i.e. the exponents consistently differ and
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converge only above the upper critical dimension, where both models become trivial
(i.e. correlations of whatever nature become irrelevant) and they simply share the
same theory.

SOC is notorious for the problem that careful investigations of the models re-
veal an unexplainable variety of effects and structures. The FFM is not an exception
(Pruessner and Jensen, 2002a; Grassberger, 2002) — recent speculations (Schenk et al.,
2002) try to map it again on percolation (at least for d = 2) to account for defects in
the scaling behaviour of n(s). The idea is that the FFM is effectively a superposition
of percolation histograms due to the patchy structure as shown in Fig. 1.4. If a local
density p has frequency w(p), the resulting cluster size histogram is

∫

0,1
dpw(p)nperc(s, p) ∝ s−(τperc+σ) . (1.14)

where nperc(s, p) ∝ s−τpercG(−s/s0) is the histogram of standard percolation. As usual
G denotes the cutoff function with s0 ∝ |p− pc|−1/σ .

1.3.4 Extremal dynamics: the BAK-SNEPPEN model

The OFC model is in a certain sense a model of extremal dynamics, which in gen-
eral means that the dynamics is defined with respect to the extreme value among
local variables. The BAK-SNEPPEN (BS) model (Bak and Sneppen, 1993) is proba-
bly the most carefully studied model of this class. Defined in general again on a
d-dimensional lattice with N nodes, each of them, identified by i, gets assigned a
fitness zi ∈ [0, 1] and is updated as follows:

• Find the smallest value zs = min{zi|0 < i ≤ N} among all sites.

• Assign this site and its nearest neighbours new fitnesses, which are randomly
chosen from the interval [0, 1].

Since the fitnesses are chosen randomly, the probability of a degeneracy of the mini-
mum vanishes even for a finite system. This model was invented as an oversimplified
version of biological evolution, where the extinction of the least fittest species leads
to the extinction of the species depending on it. The ecological niche appearing is
immediately occupied by mutants with random fitnesses.

The most important observable is the minimal fitness in the lattice,

fmin(t) = min{zi(t)|1 < i ≤ N} . (1.15)

where its time dependence is measured in units of updates. Starting from a com-
pletely random configuration, it is clear that fmin(t) will increase often, but it cannot
reach 1 and there is always a probability that a newly chosen fitness is below the

9.2. THE EW EQUATION WITH PERIODIC BOUNDARY CONDITIONS 

More general, in case of translational invariance one has for (9.46b)

2w2(t, L) =
1

L

∫ L

0
dx
〈
(h(0, t) − h(x, t))2

〉
. (9.48)

For small x the integrand is always finite, while for x2 � Dt it converges to a function
independent of x, see for example (9.24b). Thus, in the thermodynamic limit, the
value of the integral is dominated solely by the large x behaviour and the averaging
simply reproduces its large x value (Krug, 1997, Eqn. (3.46)):

2 lim
L→∞

w2(t, L) = lim
∆x→∞

lim
L→∞

〈
(h(0, t) − h(∆x, t))2

〉
. (9.49)

This is confirmed by comparing (9.24b) and (9.55).

Similarly, for t → ∞ the correlator
〈
(h(0, t) − h(x, t))2

〉
is expected to be a power

law in ∆x, so that the averaging (9.48) should only change the pre-factor. Doing
simply an integration over (9.24a) like6

2

L

∫ L/2

0
d∆x

Γ2

2D
|∆x| =

Γ2L

8D
(9.50)

gives the correct scaling behaviour, namely the same exponent as (9.24a), χ = 1/2,
but compared to (9.56) the wrong pre-factor, because of the second term in the bracket
of (9.21), which disappears in the thermodynamic limit taken in (9.24a). Subtracting

2

L

∫ L/2

0
d∆x

Γ2

2D

∆x2

L
=

Γ2L

24L
(9.51)

reproduces (9.56) doubled, as predicted by (9.48).

9.2.3 Calculation of the width

The behaviour of the width is much easier to calculate than the behaviour of the
correlator: Contrary to the correlation function, the width depends only on two pa-
rameters, namely L and t. Having obtained already the correlator in Eq. (9.17), it is
straight forward to calculate the two contributions:

〈
ϕ(x, t)2

〉
= τ +

∞∑

n=−∞
n6=0

1

2k2
n

(
1 − e−2k2

nτ
)
, (9.52)

6The idea to integrate only over[0,L/2] and to multiply by 2 is due to translational invariance. The
same result is obtained, when averaging (9.21) over x1 for any fixed x2, namely (1/6)LΓ2/(2D).
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The term c(t, L; . . . ) in Eq. (9.43), which is usually omitted, accounts for corrections
and vanishes in the appropriate limits. To be more specific

lim
t→∞

w2(t, L) = aLL
2χ(1 + cL(L; . . . )) (9.45a)

lim
L→∞

w2(t, L) = att
2β(1 + ct(t; . . . )) (9.45b)

where aL and at are constants and cL(L; . . . ) = limt→∞ c(t, L; . . . ) is a dimen-
sionless function, which vanishes as L diverges. As a dimensionless function it
must be representable as a function of dimensionless parameters only. Those ad-
ditional parameters required are included in . . . . Similarly, the correction ct(t; . . . ) =

limL→∞ c(t, L; . . . ) vanishes for small t.

In Eq. (9.43) the exponent z is independent of χ and β. However, for large L one
has

lim
L→∞

w2(t, L) = lim
L→∞

L2χ

(
t

Lz

)2β

at(1 + ct(t; . . . )) . (9.45c)

If the RHS of this equation is finite, i.e. independent of L, as suggested in (9.45b), then
χ = zβ. It is important to keep in mind that generalised homogeneity, (9.43), even
without corrections, does not entail χ = zβ. It can only be derived from an additional
assumption such as (9.45b).

9.2.2.1 Relation between width and correlator

In principle, the correlator contains much more information than the width. How-
ever, in order to see scaling behaviour in the correlator, various limits had to be taken.
For example, Eq. (9.34) includes already the thermodynamic limit and describes only
the behaviour in the stationary state.

From the definition of the width (9.40) one has by pulling the spatial average out
the ensemble average

2w2(t, L) =
1

L

∫ L

0
dx1

〈
h(x1, t)

2
〉

+
1

L

∫ L

0
dx2

〈
h(x2, t)

2
〉

−2
1

L2

∫ L

0
dx1

∫ L

0
dx2〈h(x1, t)h(x2, t)〉 (9.46a)

=
1

L2

∫ L

0
dx1

∫ L

0
dx2

〈
(h(x1, t) − h(x2, t))

2
〉
. (9.46b)

By translational invariance one has
〈
h(x1, t)

2
〉

=
〈
h(x2, t)

2
〉

and therefore

〈
h(x1, t)

2
〉

=
〈
h(x2, t)2

〉
. (9.47)
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Figure 1.6: The transient behaviour of fmin(t) and g(t) (see text). The thick line is g(t)
and consists of dense values of fmin(t), which changes often but in small steps, because
the values of zi are very dense and if the system gets rid of one small zi, there is another,
only slightly larger value somewhere else in the system. Moreover, fmin(t) decreases for
small t only rarely because the probability for an update to arrive below the current g(t)
is only g(t). Dimension is d = 1 and N = 1000 as in Fig. 1.8. The inset shows the long
time behaviour of g(t) in a log-linear plot obtained in the same simulation.

current value of fmin(t). The maximum value of the function within a time win-
dow defines the so-called gap function [(Paczuski et al., 1996) after (Rittel, 2000)]
g(t) = max{fmin(t′)|0 ≤ t′ ≤ t}. It is the largest free region between 0 and the fit-
nesses within all time steps up to t. The evolution of this quantity is shown in Fig. 1.6
for short times and logarithmically for long times in the inset of the same figure.
Since the actual value of fmin(t) is caused by randomly chosen values, this quantity
seems to be distributed completely randomly under the envelope g(t). Looking a bit
more carefully reveals that there is a gradient towards smaller values in the density
of fmin(t) values below g(t). This makes sense, because if there is more than one
zi < g(t) then fmin(t) will be the smallest one, i.e. for fmin(t) 6= g(t) this quantity is
more likely to be close to 0 than to g(t). Since the updated value of zi is chosen ran-
domly, it is also not surprising that the PDF (probability density function) above g(t)
is uniform. Fig. 1.7 shows the distribution for different system sizes in the stationary
state.

Fig. 1.8 shows three different configurations of the model with time increasing
from left to right: The homogeneous initial configuration, a transient configura-
tion, which has typically almost no zi below g(t) and a late configuration, when g(t)
changes only very slowly and the typical configuration has a number of sites in the
gap.
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Figure 1.7: The distribution of fitnesses for different system sizes. ForN = 105 the jump
at fc becomes very sharp. Note the strong fluctuation in the large z region. All data from
108 updates for equilibration and the same number for statistics.

From its definition, it is clear that g(t) is monotonic and bound, i.e. it must con-
verge. However, it is not necessarily increasing, so its limit is a priori unknown. For
a finite system, there is a finite probability density for all fitnesses being 1, so for
any finite system limt→∞ g(t) must be 1. However, this is not the value suggested in
Fig. 1.6. But applying first the thermodynamic limit and starting from a completely
random configuration, means that limt→∞ g(t) = 0, as there are infinitely many sites
at (around) 0 (for the mathematician it might be more appropriate to say that the
entire real interval [0, 1] consists of cluster points, i.e. Q and R are dense). Fig. 1.7
helps to understand the asymptotic behaviour of g(t): If the fitnesses are distributed
according to the PDF shown, a further increase of g(t) in time will be stopped by the
jump in density. However, for this mechanism to work perfectly one needs the ther-
modynamic limit, otherwise g(t) just starts to creep at the edge of the distribution.
Therefore, it does not seem to be reasonable to define an asymptotic value of g(t) in
any sense. The magic number around 2/3, as seen in Fig. 1.6 and Fig. 1.7 must be
quantified using a different approach.

An f0-avalanche is defined as the event when all fitnesses initially above a thresh-
old f0 are perturbed such that for a certain time there are some below f0. The event
ends as soon as all fitnesses are again above f0. For a certain value of f0, namely
f0 = fc one obtains scalefree avalanches, i.e. their distribution in size and duration
follows a power law. The exponent of this power law is not easy to measure and still
debated (Datta et al., 2000; Grassberger, 1995). As mentioned above, the distribution
above fc seems to be uniform, and asymptotically one expects a step function for the
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of the correlator for large arguments.

In this context an interesting line is (9.34g). Here, the correlator seems to indicate
a linear space dependence, i.e. χ = 1/2, however, for large v∆t it is divergent, indi-
cating an asymptotic independence from ∆x, so that χ = 0. Thus, it seems as if there
was a crossover, governed by the timescale 1/v. Below the crossover, ∆x dominates
and one sees the standard exponent, above the crossover, the correlator diverges and
χ = 0.

One other aspect in which (Biswas et al., 1998) differs from standard treatments
is that the growth starts at t = −∞. Thus, there is no initial configuration, i.e. the
growth exponent β can only be seen in local, temporal correlation, not in the devel-
opment of the roughness. It remains an open issue to fully understand the causes for Open

issuethe exponents (9.36).

9.2.2 Exponents from the interface width

Still considering the case of PBC, the exponents characterising the EW equation with
drift are now derived from the width.

The width has actually already been defined in Eq. (9.3) — we repeat its properties
here for further reference:

w2(t, L) =
〈
h(x, t)2

〉
−
〈
h(x, t)

2
〉

(9.40)

with A denoting the spatial average in dimensionful space as well as dimensionless
space:

A(x) =
1

L

∫ L

0
dxA(x) (9.41)

A′(y) =

∫ 1

0
dyA′(y) . (9.42)

Assuming a FAMILY-VICSEK scaling behaviour (Family and Vicsek, 1985), three ex-
ponents, χ, β and z, are defined for the asymptotic behaviour of w2

w2(t, L) = aL2χG
(

t

bLz

)
(1 + c(t, L; . . . )) , (9.43)

with appropriate, system dependent parameters a and b (metric factors) which make
the universal scaling function G(x) a dimensionless function of a dimensionless ar-
gument. The scaling function behaves asymptotically like

lim
x→∞

G(x) = aL (9.44a)

lim
x→0

G(x)x−2β = at (9.44b)



 CHAPTER 9. THE THERMAL EW EQUATION WITH DRIFT

Similar to Eq. (9.16), one might expect (Biswas et al., 1998) this two-time correlator
to scale like:

〈h(x1, t1)h(x2, t2)〉L→∞,t→∞ =




|∆x|2χ for large ∆x and ∆t = 0

|∆t|2β for large ∆t and ∆x = 0
(9.37)

It is very important to note that this is not the standard definition of the exponents:
For example RAMASCO, LÓPEZ and RODRÍGUEZ (Ramasco et al., 2000) or GALLUC-
CIO and ZHANG (Galluccio and Zhang, 1995) use the equal time correlation function,
and so does KRUG (Krug, 1997), LÄSSIG (Lässig, 1998) as well as KRUG and SPOHN

(Krug and Spohn, 1991) as well as HALPIN-HEALEY and ZHANG (Halpin-Healy and
Zhang, 1995). BISWAS et al. go even further and assume a scaling behaviour like

〈h(x1, t1)h(x2, t2)〉L→∞,t→∞ ≈ |∆x|2χF
( |∆t|
|∆x|z

)
(9.38)

which is according to (9.30b) simply impossible: Eq. (9.30b) is not divergent in the
limit t → ∞, while

〈
h2
〉

is so [see (9.52), (9.47)]. However, according to Eq. (9.26b),
then 〈h1h2〉 must be divergent as well, hence Eq. (9.38) is ill-defined on the LHS.

If 〈h(x1, t1)h(x2, t2)〉 was not divergent, one might think that a reasonable choice
for the exponents in (9.38) is χ = 0 and z = 1, in order to allow the correlator for
v 6= 0 to be expressible in terms of the correlator for v = 0:

〈h(x1, t1)h(x2, t2)〉v 6=0 = 〈h(x1 + v∆t, t1)h(x2, t2)〉 (9.39)

The exponent z = 1 would make the ∆t cancel in the argument of F . These exponents
are exactly those shown in (9.36).

9.2.1.4 A critique

However, BISWAS et al. derive their exponents in k-space, suggesting a structure
factor, which, however, is defined as the modulus squared of the FOURIER transform
of h(x, t) − 〈h(x, t)〉, see footnote 5 on page 349. That is probably the reason why
they do not encounter the divergence of their correlator. They perform a FOURIER

transform of the correlator and consider its scaling for small k and ω. All limits in t

and x have already been taken in the FOURIER transform. If one wants to understand
their results from Eq. (9.34), one has to mimic the limits they take in k and ω in real-
space. Of course, these arguments must remain handwaving.

Based on the correlator calculated in Eq. (9.34) and the new definition of the ex-
ponents in (9.37), one has χ = 1/2 from (9.34a) for any v, but β = 1/4 for v = 0 from
(9.34d) and β = 1/2 for v 6= 0 from (9.34e). This is, apart from z, not what they find,
(9.36). The reason is their FOURIER transform, which is dominated by the behaviour
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Figure 1.8: The configuration for a system of size N = 1000 after three different t. Typ-
ically only a few number of sites are active (below g(t)) and even less for early t. The
value of the gap function is indicated by a straight line.

distribution of fitnesses. The idea is that if the system is set up in this way, small
perturbation will produce scalefree f0 = fc-avalanches, but these avalanches are just
not over-critical, i.e. the sum over the probabilities of finite avalanches is exactly 1.
And choosing a slightly larger f0 will, in the thermodynamic limit, result in infinite
avalanches. It is therefore natural to define fc as the f0-value of avalanches to become
scalefree. This would be a dynamical definition of fc.

It would be mathematically much more convenient to define fc, which somehow
holds the key for almost all effects obtained in the model, using only static or station-
ary properties of the system. This could be done as follows: Let P(f, t;N) be the PDF
of the fitnesses f in a system of size N at time t, then fc is the point, where P(f, t;N)

makes a jump. The thermodynamic limit must be applied after t → ∞, otherwise P
does not change in time, so we define

P̃ (f) = lim
N→∞

lim
t→∞

〈P(f, t;N)〉 (1.16)

where the average 〈〉 runs over an ensemble. We assume that both limits exist. Then
fc ∈]0, 1[ is the point, where P̃ (f) is discontinuous, i.e. where

lim inf
f→fc

P(f) 6= lim sup
f→fc

P(f) (1.17)

A simple but extremely slow version of the model is easy to implement, see
Fig. 1.9. The major flaw is that the entire lattice is scanned again and again for finding
the minimal site. It is much more efficient to simply keep track of it; if all sites are
somehow organised according to their value, one only needs to update this structure,
whenever the value of a site changes. These data are probably best stored in form of
a binary search tree (in (Grassberger, 1994) a hashed, degenerate tree is proposed for
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#include <stdio.h>
#include <stdlib.h>

/* Some parameters */
#define N (1000) /* System size, i.e. length */
#define INIT_THRESHOLD (0.0) /* Init sites ran-
domly above this thershold */
#define MAX_LOOPS (1000000) /* Number of itterations */

/* Use the poor(?) random number generator provided by libc.
* They are choosen from [0,1] rather than [0,1[ */
#define RND() (((double)rand())/((double)RAND_MAX))

double site[N];

int main(int argc, char *argv[])
{
double g;
int min_i, i, loop;

/* Init */
for (i=0; i<N; i++)
site[i]=RND()*(1.0-INIT_THRESHOLD)+INIT_THRESHOLD;

g=-1.0;

/* Main loop */
for (loop=0; loop<MAX_LOOPS; loop++)
{
/* Find minimum */
for (min_i=0, i=1; i<N; i++)

if (site[i]<site[min_i]) min_i=i;
if (site[min_i]>g) g=site[min_i];
printf("%i %g %g\n, loop, site[min_i], g);

/* Update the minimum and its two neighbours */
site[min_i]=RND();
site[(min_i+1)%N]=RND();
site[(min_i-1+N)%N]=RND();
}

return(0);
}

Figure 1.9: A very simple implementation of the BAK-SNEPPEN model as a C-program.

a similar purpose in the OFC model).

This remarkably simple model has proven to be rock stable against any attempt
to solve it. How frustratingly slow the progress in this field is can be seen in a re-
cent impressive work of RONALD MEESTER and DIMITRI ZNAMENSKI (Meester and
Znamenski, 2001), who prove for a simplified model the existence of a mean fitness,
which is bounded away from 1.

It should be mentioned that the value of fc is given in (Paczuski et al., 1996)
as fc = 0.66702(3) in (d=1) and fc = 0.328855(4) in d = 2. GRASSBERGER finds
fc = 0.66702(8) for the one-dimensional case (Grassberger, 1995). Although one-
dimensional models are mostly designed to be solvable, the BS model is notorious
for its unusual behaviour. For example fc 6= 2/3 is generally accepted.

The random neighbour version of this model is fairly straight-forward to solve
(Rittel, 2000). The exponents are then those of the critical branching process (time-
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the interfaces. Based on the idea of asymptotic independence, one might think
this is simply 〈

(h1 − h2)
2
〉
→
〈
h2

1

〉
− 2〈h1〉〈h2〉 +

〈
h2

2

〉
(9.35)

which differs from the correct form by the cross term being 〈h1〉〈h2〉 instead of
〈h1h2〉. Here, the short-hand notation h1,2 = h(x1,2, t1,2) has been used. Thus
Eq. (9.35) should be dominated by (9.52). However, the latter expression is di-
vergent, as the limit t → ∞ has been taken before the thermodynamic limit.
Thus, for any finite temporal distance ∆t there are apparently correlations en-
coded in the interface due to its history, which violate 〈h1h2〉 → 〈h1〉〈h2〉.

• Eq. (9.34d) is essentially (9.34b), just that now the relation
√

∆tD � ∆x is re-
alised by small ∆x.

• Eq. (9.34e) and Eq. (9.34f) are Γ2/(2π)|v∆t|g̃(D/(v2∆t)), keeping ∆t finite. If
∆t becomes large compared to D/v2 (note the second timescale), the correlator
behaves like (9.34c), otherwise one sees initial growth, like (9.34b). The simi-
lar distinction has been made implicitly in (9.34c) by effectively comparing the
timescales ∆t and ∆x/v. In (9.34e) and (9.34f), however, ∆x has already disap-
peared.

• Eq. (9.34g) is essentially again (9.34a).

9.2.1.3 Exponents in the literature

In the literature (Biswas et al., 1998), one finds the following exponents:

χ = 1/2 and β = 1/4 and z = 2 for v = 0

χ = 0 and β = 0 and z = 1 for v 6= 0

(9.36a)

(9.36b)

However, these exponents were based on the two-time correlator,

〈h(x1, t1)h(x2, t2)〉L→∞,t→∞ ,

where the thermodynamic limit has to be taken first, then the stationary state is con-
sidered by taking t2 + t1 to ∞ while keeping ∆t = t2 − t1 constant, denoted by a
subscript t → ∞. If the limits are taken the other way around, one is directly con-
fronted with a divergence, as h(x, t) simply floats away (diverges) as t→ ∞. BISWAS

et al. try to fix that by subtracting 〈h〉 or
〈
h
〉

which, however, both vanish.5

5What they actually would need to do is either subtracting h, i.e. write

�

(h(x1, t1) − h(t1))(h(x2, t2) − h(t2))

�

or use the correlator Eq. (9.26a), (Kardar, 2001).
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and therefore ∂qg(x = 0, q) =
√
π/q, so that g(x = 0, q) = 2

√
πq using again g(x =

0, q = 0) = 0. This transfers to g̃(u), i.e.

g̃(u) =

{
π for u→ 0

2
√
uπ for u→ ∞

(9.33)

Together with (9.30b), it is now easy to determine the various limits of the two time
correlation function, always assuming that the other argument remains finite. One

finds

〈
(h(x1, t1) − h(x2, t2))

2
〉
L→∞,t→∞

=
Γ2

D





1
2 |∆x| for ∆t→ 0√

∆tD
π for ∆t→ ∞ and v = 0

1
2 |∆x+ v∆t| for ∆t→ ∞ and v 6= 0√

∆tD
π for ∆x→ 0 and v = 0

1
2 |v∆t| for ∆x→ 0 and v 6= 0 and ∆t→ ∞√

∆tD
π for ∆x→ 0 and v 6= 0 and ∆t→ 0

1
2 |∆x+ v∆t| for ∆x→ ∞

(9.34a)

(9.34b)

(9.34c)

(9.34d)

(9.34e)

(9.34f)

(9.34g)

Again, if a variable appears which has actually been taken to a limit, it is there to
show how the equation behaves in the limit.

9.2.1.2 Interpretation of the correlator

It is very helpful to develop a physical understanding of the behaviour of the corre-
lator.

• Eq. (9.34a) is exactly (9.21) for L→ ∞.

• Eq. (9.34b) is the correlator of the following procedure: Take a measurement
at t1, then wait a very long time and take another measurement somewhere
else. Repeat this procedure for increasing temporal distances and observe the
asymptotic behaviour. The two measurements are asymptotically not indepen-
dent for a given distance ∆x, because at long time the diffusion covers the entire
substrate. The variance is dominated by the time span between the two mea-
surements and the growth of the interface in the meantime. This behaviour
corresponds to initial growth.

• Eq. (9.34c) would behave like (9.34b), but as ∆t diverges, the distance of the
(effective) position of the second measurements, diverges much faster than the
diffusion could cover it. Thus, the two measurements are not correlated by the
processes happening after the first measurement, but only due to the history of
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exponent 1, where time needs then to be redefined) and the random walker (size
exponent 3/2) as already mentioned above. That the nearest neighbour property is
of fundamental importance becomes clear when calculating fc in the the random
neighbour model: The average number of newly activated sites must be 1 for each
update, i.e. fc = 1/3 in case of overall 3 updates.

1.4 The VESPIGNANI mechanism4

For obvious reasons, it is very interesting to try to reduce SOC behaviour to estab-
lished critical phenomena. The hope is that if a mapping of SOC models to existing,
well-understood models can be done, it would be possible to identify “where criti-
cality comes from” in SOC.

One such ansatz, under the rather ambitious title “How self-organised critical-
ity works”5 was published by VESPIGNANI and ZAPPERI (Vespignani and Zapperi,
1998)6 and re-adopts ideas first introduced by TANG and BAK (Tang and Bak, 1988)7 .
It was later explained in detail in (Dickman et al., 2000). The aim is to identify a link
between SOC and absorbing state phase transitions (AS). To describe the latter in
detail is beyond the scope of this thesis; we refer especially to the review by HIN-
RICHSEN (Hinrichsen, 2000).

In the following, AS is briefly introduced to set the stage for the “VESPIGNANI

mechanism”, that is the mechanism VESPIGNANI proposes as an explanation for
SOC. In the following subsections the fundamental shortcomings of this mechanism
are explained. One should stress that the VESPIGNANI mechanism enjoys increasing
acceptance in the SOC community.

1.4.1 A brief overview of AS

The paradigmatic example of AS is directed percolation (DP), which is described in
the following for a 1 + 1-dimensional system, as a dynamical model. The dynamical
interpretation is more obviously understandable as an absorbing state phase tran-
sition; the notation of the dimensionality 1 + d, refers to an anisotropy, where one
dimension acquires a special rôle. In the dynamical representation, this dimension is
time.

4I would like to thank OLE PETERS for the many discussions we have had about this subject.
5In obvious relation to the even more ambitious title of the popular science book by PER BAK (Bak,

1996).
6There is a second issue raised in this paper, which is whether the critical behaviour of SOC can in

principle be recovered from an AS-type study. There are two contradicting papers with an emphasis
on this problem, both by VESPIGNANI, DICKMAN, MUÑOZ and ZAPPERI, (Vespignani et al., 1998) and
(Dickman et al., 2000).

7Thanks to OLE PETERS for pointing that out to me.
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Figure 1.10: An example of directed percolation [similar to figure 11 in the preprint of
(Hinrichsen, 2000)]. The time evolves from the top row to the bottom row. Bonds are
active (solid lines) with probability p, otherwise they are inactive (dashed lines). Sites
in generation t are occupied (black circles), if either their left or right neighbour in the
preceeding generation (t− 1) is occupied and connected via an active bond. Otherwise
they are unoccupied (white).

Fig. 1.10 shows an example of DP in the dynamical interpretation: starting from
a completely occupied lattice at time t = 1, sites in the next generation t + 1 are oc-
cupied, if they are connected to an occupied site in the preceeding generation t via
an active bond. Bonds are active with probability p. In this interpretation, a new one
dimensional lattice is generated from the preceeding one in every time step, inde-
pendent from any history, i.e. the probability distribution of the configuration of the
lattice is a Markovian process (van Kampen, 1992), parametrised by the probability
p.

This model possesses exactly one absorbing state, namely the empty lattice: Once
the lattice is empty, there is no way to escape from this configuration. Thus, the
configuration is, what is known as “absorbing” in stochastic processes (van Kampen,
1992). However, even though the probability to reach the absorbing state is finite for
p < 1 and any finite system, this probability decays extremely fast in the system size
at sufficiently large p. In this large p region, the system virtually never reaches the
absorbing state and remains in the active transient for a very long time. Therefore,
this regime is called the “active phase”.

The most commonly investigated observable is the stationary occupation density,
which is the ensemble averaged fraction of occupied or active sites in the stationary
state. If

〈
ρAS

a (t)
〉

denotes the ensemble averaged fraction of active sites after time t,
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for which one can take the limit τ1,2 → ∞ keeping ∆τ = τ2 − τ1 fixed. Then the
correlator becomes

lim
τ1,2→∞

〈
(ϕ(y1, τ1) − ϕ(y2, τ2))

2
〉

= τ2 − τ1 +
∞∑

n=−∞
n6=0

1

k2
n

(
1 − e−k2

n∆τeikn(y1−y2−q∆τ)
)

(9.27)
and by taking into account the pre-factor (9.12) one can take the thermodynamic limit:

〈
(h(x1, t1) − h(x2, t2))

2
〉
L→∞,t→∞

=
Γ2

D

∫ ∞

−∞
dz

1

(2π)2z2

(
1 − e−(2π)2z2∆tD−2πiz(∆x+v∆t)

)
(9.28)

where the subscript on the LHS denotes the limits limL→∞ lim t1, t2 → ∞, again with
constant ∆t = t2 − t1, so that the second limit represents only a single limit. The
integral can be written as

g(x, q) =

∫ ∞

−∞
dz

1

z2

(
1 − e−izx−z2q

)
(9.29a)

= |x|
∫ ∞

−∞
dz′

1

z′2

(
1 − e−iz′−qz′2/x2

)
(9.29b)

where the second line contains a leading term |x| because of the transformation of
the boundaries when doing z ′ = zx; if x < 0 the boundaries of the integral change
sign. This second line can be denoted as |x|g̃(q/x2), so that one arrives at

〈
(h(x1, t1) − h(x2, t2))

2
〉
L→∞,t→∞ =

Γ2

2πD
g (∆x+ v∆t,∆tD) (9.30a)

=
Γ2

2πD
|∆x+ v∆t| g̃

(
∆tD

(∆x+ v∆t)2

)
.(9.30b)

Finally this reveals the structure of the correlator: Just as predicted, it is the correlator
for v = 0 with ∆x replaced by ∆x+ v∆t. The various limits of this correlator depend
on the behaviour of g̃(s) or g(x, q). For q = 0 one has for the latter

g(x, q = 0) =

∫ ∞

−∞
dz

1 − e−izx

z2
(9.31)

and therefore ∂2
xg(x, q = 0) = 2πδ(x). This differential equation is solved using

g(x, q = 0) = g(−x, q = 0) and g(x = 0, q = 0) = 0, so that g(x, q = 0) = π|x|. Since
g(x, q) = |x|g̃(q/x2), it is g̃(0) = π.

For x = 0 one has

g(x = 0, q) =

∫ ∞

−∞
dz

1

z2

(
1 − e−z2q

)
(9.32)
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This function, (9.21), can actually be related to the width calculated below, see
Eq. (9.56).

From (9.21) one can already derive the exponent χ = 1/2 according to (9.16).

When taking the thermodynamic limit before taking t → ∞, one has to bear in
mind the L-dependent pre-factor in Eq. (9.12). Taking it into account, the thermo-
dynamic limit renders the sum in (9.11) a Riemann sum with mesh 1/L, while the
leading time gets removed and one arrives at

〈
(h(x1, t) − h(x2, t))

2
〉
L→∞

=
Γ2

2πD

{√
8πDt

[
1 − e(∆x)2/(8Dt)

]
+ π|∆x|

[
1 − E

( |∆x|√
8Dt

)]}
(9.23)

where E(x) ≡ 2/
√
π
∫ x
0 dz exp(−z2) is the error function and ∆x ≡ x2 − x1. The two

relevant limits are:

lim
tD/∆x2→∞

〈
(h(x1, t) − h(x2, t))

2
〉
L→∞ =

Γ2

2D
|∆x| (9.24a)

lim
tD/∆x2→0

〈
(h(x1, t) − h(x2, t))

2
〉
L→∞ =

2Γ2

√
2πD

√
t (9.24b)

Equivalently the first limit, Eq. (9.24a), could be replaced by limt→∞ or lim∆x→0 and
similarly for the second.

The first limit, (9.24a), is equivalent to the limit t → ∞ in (9.21) and confirms
χ = 1/2. The second limit implies β = 1/4 and therefore z = 2. To summarise the
exponents:

χ = 1/2 and β = 1/4 and z = 2 for any v in the periodic case (9.25)

9.2.1.1 The two-time correlator

In order to understand the literature, it is helpful to consider the two-time correla-
tion function. As the drift can be gauged away in the periodic case, one expects an
expression of the form |∆x+ v∆t|g(∆t/(∆x+ v∆t)2). Indeed, from (9.14) one has

〈
(ϕ(y1, τ1) − ϕ(y2, τ2))

2
〉

(9.26a)

=
〈
ϕ(y1, τ1)

2
〉

+
〈
ϕ(y2, τ2)

2
〉
− 2〈ϕ(y1, τ1)ϕ(y2, τ2)〉 (9.26b)

= τ1 + τ2 − 2τ1 +
∞∑

n=−∞
n6=0

1

2k2
n

(
2 − e−2k2

nτ1 − e−2k2
nτ2
)

(9.26c)

−2

∞∑

n=−∞
n6=0

1

2k2
n

(
e−k2

n(τ2−τ1) − e−k2
n(τ1+τ2)

)
eikn(y1−y2+q(τ1−τ2))
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Figure 1.11: An example of the temporal evolution of the density of active sites in di-
rected percolation at p = 0.6435 for a one-dimensional system of size L = 500. The time
is given in Monte Carlo Steps (MCS).

then for any finite system and any p < 1

lim
t→∞

〈
ρAS

a (t)
〉

= 0 . (1.18)

However, this is not what is numerically found. Numerically one has to stop the
process after a finite number of generations and in the high-p region it becomes in-
creasingly unlikely that the absorbing state is found within accessible times. What
one is interested in, is the stationary activity in the thermodynamic limit,

ρAS, stat
a = lim

t→∞
lim

L→∞

〈
ρAS

a (t)
〉

(1.19)

One established, numerical procedure (Dickman, 2003) to study this quantity which
is theoretically inaccessible by numerics, is to take the average activity conditional to
activity; for every given p the average activity of an ensemble of active realisations is
taken for a series of times. By visual inspection, the activity is derived as the plateau
before the onset of strong fluctuations. An example for the time-dependent condi-
tional activity is shown in Fig. 1.11.

The stationary activity ρAS, stat
a is generally accepted as the order parameter de-

scribing a continuous phase transition between the absorbing and the active phase.
The transition is driven by the probability p and takes place at some non-trivial value
pc. Correspondingly, the critical exponent β is defined as

ρAS, stat
a = A

ρAS, stat
a

(p− pc)
β for p > pc , (1.20)
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with an amplitude A
ρAS, stat

a
, just like for classical critical phenomena. Naturally, other

exponents, characterising the correlation lengths in the two directions, the time-
integrated activity etc., can be defined in a straight forward way. For the sake of the
following arguments, the only other important exponent is the one describing the
divergence of the spatial correlation length (as opposed to the temporal correlation
length)

ξ⊥ = Aξ⊥ |p− pc|−ν⊥ , (1.21)

again with an amplitude Aξ⊥ . As expected from classical critical phenomena, ρAS, stat
a

shows finite size scaling,

ρAS, stat
a (L, p) = L−β/ν⊥G

(
p− pc

L−1/ν⊥

)
(1.22)

with system size L and a universal finite size scaling function G(x). One expects the
size ∆p of the finite size scaling region to scale like L−1/ν⊥ .

It is most remarkable, that the understanding of 1 + 1 DP is still far from an ex-
act solution, as opposed to the extremely well understood equilibrium critical phe-
nomena in two dimensions, such as percolation (Cardy, 1992; Langlands et al., 1992;
Aizenman, 1997). There are, however, series expansions (most prominently by IWAN

JENSEN) of remarkable accuracy (Jensen, 1999). Although it is very hard to estimate
the error of a series expansion, it is generally accepted that the exponents of DP are
not rational numbers, which is very different to the general results obtained in equi-
librium critical phenomena (Henkel, 1999). In this context, it is interesting to consider
the recent work by CLEMENT SIRE (Sire, 2002), who finds, using an improved mean
field theory,

β =
1

2

(
1 − 1√

5

)
= 0.276393202250... (1.23)

very close to the best known estimate by a series expansion, β = 0.276486(8) (Jensen,
1999).

1.4.2 AS picture of SOC

In terms of AS, SOC models can, quite generally, be described as follows: An SOC
model has an active phase, where the updating rules operate, and an inactive phase,
where the system is quiescent. Without the external drive, the SOC would stay there
forever, i.e. this is an absorbing state. Above it has been pointed out that the driving
takes place only if the system is in this state. This suggests a global mechanism, which
makes sure that the system is in the quiescent state whenever a grain is introduced.
In order to avoid that, one generally uses the notion of an infinitely slow drive, so
that there is a constant external driving rate h, which is, however, so small that the
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Evaluating Eq. (9.14) for equal times, τ1 = τ2 = τ , one has

〈ϕ(y1, τ)ϕ(y2, τ)〉 = τ +
∞∑

n=−∞
n6=0

1

2k2
n

(
1 − e−2k2

nτ
)
eikn(y1−y2) . (9.17)

It is not surprising to see that at equal times the drift q disappears: The system is
translational invariant, so the drift can be compensated by observing the interface
in a comoving frame, i.e. a Galilean transformation. If ϕ obeys the equation for the
problem at q = 0, ∂τϕ = ∂2

yϕ+ η, then a transformed ϕ′(y, τ) = ϕ(y + qτ, τ) obeys4

∂τϕ
′ = ∂2

yϕ
′ + q∂yϕ

′ + η (9.18)

According to (9.17), at equal times, the movement of the moving frame becomes
invisible to an observer of the correlator.

The leading τ indicates that h is actually divergent for t → ∞. This is not sur-
prising as well; there is no mechanism which binds the interface to the substrate, i.e.
the interface floats freely above (or below) it. The time integrated influx per site due
to the noise leads to an average height of variance τ . This can be seen directly in
Eq. (9.53) below.

Based on the observation that

g(y) ≡
∑

n=−∞
n6=0

1

2kn
eikny (9.19)

obeys g(y)′′ = (δ(y) − 1)/2 and g(y = 0) = 1/24 one easily finds

g(y) =
1

24
− 1

4

(
|y| − y2

)
. (9.20)

Thus, for a correlator of the form (9.15) one finds in the stationary state without taking
the thermodynamic limit

lim
t→∞

〈
(h(x1, t) − h(x2, t))

2
〉

=
Γ2

2D

(
|x1 − x2| −

|x1 − x2|2
L

)
, (9.21)

which obeys translational invariance for 0 ≤ x1,2 ≤ L

|∆x| − ∆x2

L
= |∆x− L| − (∆x− L)2

L
for 0 ≤ ∆x ≤ L (9.22a)

|∆x| − ∆x2

L
= |∆x+ L| − (∆x+ L)2

L
for −L ≤ ∆x ≤ 0 (9.22b)

4Note the remarks on the correlator of η, Eq. (7.80), page 310.
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Moreover, in (9.11) the convention τ2 ≥ τ1 has been applied.3

The integration over y′ produces a KRONECKER δn1,−n2 , so that after integration
over τ ′ the correlator (9.11) becomes

〈ϕϕ〉 = τ1 +

∞∑

n=−∞
n6=0

1

2k2
n

(
e−k2

n(τ2−τ1) − e−k2
n(τ1+τ2)

)
eikn(y1−y2+q(τ1−τ2)) (9.14)

where the leading τ1 comes from the integration at n = 0. The time order enters
the exponentials when the integration runs over the δ-function of the correlator. The
reason why 〈ϕϕ〉 is a function of the sum of τ1 and τ2 and the difference, is that the
substrate is flat initially.

9.2.1 Exponents from the correlator

Before deriving the roughness exponents from the width of the interface (defined
below), it is very instructive to obtain the scaling of the correlator. Using the nota-
tion 〈〉L→∞ for limL→∞ 〈〉, the definition of the exponents is based on the equal-time
correlator in the thermodynamic limit (Krug and Spohn, 1991; Meakin, 1998):

〈
(h(x1, t) − h(x2, t))

2
〉
L→∞

=
〈
h(x1, t)

2
〉
L→∞ +

〈
h(x2, t)

2
〉
L→∞ − 2〈h(x1, t)h(x2, t)〉L→∞ (9.15)

= |x2 − x1|2χG
(

t

|x2 − x1|z
)

(9.16)

with a universal scaling function G(z), which converges to a non-zero constant for
z → ∞ and behaves like z2β for small arguments. It is important to do the thermo-
dynamic limit before considering exponents, otherwise there would be an additional
spatial parameter in addition to x1 and x2. Clearly, because of translational invari-
ance, the correlator can only depend on the difference x2 − x1, which is therefore the
only purely spatial parameter. The exponentχ is obtained as the behaviour in |x2−x1|
when taking t to infinity, and β as the behaviour in t when taking |x2 −x1| to infinity.
As one expects spatial independence in the short time limit, β = χ/z.

To characterise asymptotic behaviour in the following, a rather sloppy but use-
ful notation of limits will be used, for example limz→0 G(z) = az2β to indicate
limz→0 G(z)z−2β = a.

3This convention comes into play when evaluating integrals of the form

� τ1

0

dτ ′1

� τ2

0

dτ ′2δ(τ
′
1 − τ ′2)f(τ ′1, τ

′
2) =

� τ1

0

dτ ′1f(τ ′1, τ
′
1) . (9.13)
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model is effectively driven only if it is completely relaxed. From the point of view of
AS, it is this external drive, which brings the SOC model from the absorbing phase
back into the active phase. It would remain there forever, if dissipation would not
restrict the event sizes. Denoting the fraction of sites active in the system at time t
as ρSOC

a (t), one might introduce a bulk dissipation rate ε such that the dissipation
at time t is given by ερSOC

a (t); thus, ε is the dimensionless probability to dissipate a
grain during toppling. In most of the models described in sec. 1.3, this dissipation
takes place at the boundaries, but it seems that in some cases, it can be replaced by
a bulk dissipation or at least there are models apparently displaying SOC with bulk
dissipation (Olami et al., 1992; Manna et al., 1990; Vespignani and Zapperi, 1997, 1998;
Dickman et al., 1998; Barrat et al., 1999).

This dissipation will eventually bring the system back into an absorbing state. In
the stationary state of this procedure, dissipation and drive (measured as inflow per
site and unit time) must compensate, so that

h = ε
〈
ρSOC

a

〉
(1.24)

where 〈〉 denotes the ensemble average (in the stationary state). It is important to
note that for sufficiently small h, the activity ρSOC

a (t) at time t is most of the time 0.
It is therefore not the same activity as the one described above which is a conditional
average. One can see this immediately by considering very small h: by reducing the
external drive further, one can make ρSOC

a (t) arbitrarily small.

If now the external rate is tuned down to 0 in order to prevent the relaxation
events to overlap (Corral and Paczuski, 1999) and thereby introducing a timescale,
the average activity is bound to converge to 0 as well. The average size of the dissipa-
tion event 〈s〉 is the integrated activity between two driving steps; the time between
two of those steps is (in appropriate units) 1/h, so that

〈s〉 =

〈
ρSOC

a

〉

h
=

1

ε
. (1.25)

This equation is indeed exact and does not neglect any correlation: If the activity is
observed over a time span T , then the total number of events in this time span is∫ T
0 dtρSOC

a (t). In this time N(T ) avalanches take place, so that

〈s〉 = lim
T→∞

∫ T
0 dtρSOC

a (t)

N(T )
=
〈
ρSOC

a

〉
lim

T→∞
T

N(T )
=
〈
ρSOC

a

〉1

h
. (1.26)

From the two equations, (1.24) and (1.25), it is clear that two limits are needed in
order to see scale-invariant behaviour: h/ε → 0 in order to arrive at ρSOC

a = 0 and
ε → 0 in order to arrive at a divergent avalanche size. Even if one does not impose
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Figure 1.12: An illustration of VESPIGNANI’s mechanism to explain SOC by absorbing
state phase transition. The dissipation is proportional to ρSOC

a and occurs with rate ε,
the external drive runs at constant rate h. The intersection of h and ερSOC

a determines
the particle density ρ in the stationary state.

a divergent avalanche size, any finite ε seems, at least on a handwaving level, to
suppress system spanning events, i.e. it establishes a characteristic size of dissipative
events. In total, one arrives at h, ε→ 0 and h/ε→ 0.

The limit h → 0 is actually meaningless in this form, because it could be imple-
mented by a redefinition of the units of time. What is actually meant by this limit
is that the time an avalanche runs should be much shorter than the time between
two “kicks” of the system. In the Forest Fire model, where similar limits are needed,
this has been properly identified [for example (Clar et al., 1996)] very early in the
literature, see also the discussion on timescales in the Oslo model Sec. 6.1.3.3, page
253.

In SOC all these limits are perfectly obeyed: h is always chosen to be a slow rate
compared to any other mechanism, ε vanishes implicitly with the system size and
ε/h diverges, even though not by explicit tuning.

Fig. 1.12 shows a cartoon8 of the dissipation ερSOC
a as a function of the overall

density of particles, ρ, which, in turn, depends on the external driving rate h and the
dissipation. On the microscopic timescale9 the resulting equation of motion for ρ can
be written as

ρ̇ = h− ερSOC
a (t) , (1.27)

8 Open
task

It would certainly be very useful to produce real numerical data for such a diagram. However, it
requires a meaningful definition of activity in the model under consideration.

9Just like in the Forest Fire model, the microscopic timescale is where local updates take place,
while the macroscopic timescale evolves from avalanche to avalanche. On the macroscopic timescale
avalanches are instantaneous.
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order correlations are usually chosen to be those of Gaussian white noise and the
average is set to 〈η(x, t)〉 = 0.

The first step to solve the EDWARDS-WILKINSON equation2 (9.2), is to write it in
dimensionless form:

∂τϕ(y, τ) = ∂2
yϕ+ q∂yϕ+ ξ(y, τ) (9.6)

where y = x/L, τ = t/(L2/D), q = vL/D and

ϕ(y, τ ; q) =
1

Γ
√
L/D

h(x, t;L,D,Γ, v) (9.7)

are all dimensionless quantities. The same applies to the noise ξ = η/(Γ
√

D/L3/2), so
that 〈

ξ(y, τ)ξ(y′, τ ′)
〉

= δ(y − y′)δ(τ − τ ′) and 〈ξ(y, τ)〉 = 0 . (9.8)

The propagator ϕ0 of this problem is a Gaussian “wrapped around the circle and
evaluated at y + qτ”, i.e. essentially Jacobi’s ϑ3 function (Farkas and Fülöp, 2001;
Magnus et al., 1966)

ϕ0(y, τ) =
1√
4πτ

∞∑

n=−∞
e−

(y+qτ+n)2

4τ =
∞∑

n=−∞
eikn(y+qτ)e−k2

nτ (9.9)

with kn = 2πn and τ ≥ 0. Plugging this into

ϕ(y, τ) =

∫ 1

0
dy′
∫ τ

0
dτ ′ϕ0(y − y′, τ − τ ′)ξ(y′, τ ′) , (9.10)

and using the properties of the noise (9.8), one has

〈ϕϕ〉 =

∞∑

n1,n2=−∞

∫ τ1

0
dτ ′
∫ 1

0
dy′eikn1 (y1−y′+q(τ1−τ ′))e−k2

n1
(τ1−τ ′) (9.11)

× eikn2 (y2−y′+q(τ2−τ ′))e−k2
n2

(τ2−τ ′) ,

where the short-hand notation 〈ϕϕ〉 for 〈ϕ(y1, τ1)ϕ(y2, τ2)〉 has been used. In the same
spirit we note explicitly

〈hh〉 =
Γ2L

D
〈ϕϕ〉 . (9.12)

2The solution of the standard (thermal) EDWARDS-WILKINSON equation with periodic boundaries is
ubiquitous in the literature and is carried out here only for completeness. It is performed in real-space
simply because k-space does not help much and the FOURIER-transforms are trivialities anyway.
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However, it is shown below that, depending on the boundary conditions, such
a drift term changes the exponents dramatically to anomalous values, which appar-
ently have been missed in the literature. The drift in conjunction with the boundary
condition poses a relevant perturbation to the original equation. While it is not possi-
ble to capture its effect by the simple methods mentioned above, it can be understood
using physical arguments. The mechanism turns out to be very powerful and extends
far beyond the EW problem.

9.2 The EW Equation with Periodic Boundary Conditions

The EDWARDS-WILKINSON equation (Edwards and Wilkinson, 1982) describes the
temporal evolution of an interface characterised by its height h(x, t) over a substrate
of length L, x ∈ [0, L], at time t under the influence of a thermal noise η(x, t). In one
dimension it reads

∂th(x, t) = D∂2
xh(x, t) + η(x, t) , (9.1)

with a diffusion constant or surface tension D. The initial conditions are usually (Nat-
termann and Tang, 1992; Krug, 1997) chosen to be h(x, t = 0) ≡ 0 and periodic bound-
ary conditions (PBC) are applied.1 Correspondingly, the EDWARDS-WILKINSON with
drift (or convection) is

∂th(x, t) = D∂2
xh(x, t) + v∂xh(x, t) + η(x, t) . (9.2)

In the following, two statistical properties of (9.1) are of special interest: the cor-
relator of h and the width. While the definition of the former needs some discussion,
the latter is defined as

w2(t, L) =
〈
h2
〉
−
〈
h

2
〉
, (9.3)

where A denotes the spatial average,

A =
1

L

∫ L

0
dxA(x) (9.4)

and 〈 〉 is the ensemble average, averaging over all realizations of the noise η. In order
to determine w2, the only property of η which enters is

〈
η(x, t)η(x′, t′)

〉
= Γ2δ(x− x′)δ(t − t′) , (9.5)

where Γ parameterises the strength of noise. To fully specify the noise, the higher

1Periodic boundary conditions are realised by imposing h(x = 0, t) = h(x = L, t) and h(x, t)
analytic at x = 0, L.
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which, remarkably, contains global measures.10 Clearly, in the stationary state 〈ρ̇〉 = 0

and therefore Eq. (1.24). As illustrated in Fig. 1.12, the density ρ increases whenever
h > ερSOC

a (t) and decreases when h < ερSOC
a (t). The full line shows

〈
ρSOC

a

〉
(ρ) as

obtained in a finite system, while the dotted line shows the behaviour in the thermo-
dynamic limit. The latter allows the definition of a critical density ρc, where an AS
phase transition takes place.

1.4.3 Criticism I: comparing AS and SOC

The preceeding section contained merely a description of SOC in terms of AS. This
description itself does not posses any explanatory power. It has a potential for an
explanation by pointing out that the critical point of SOC can be interpreted as an AS
critical point. This statement can be made much stronger by claiming that the same
critical behaviour of the SOC model (by tuning h and ε and therefore implicitly ρ) can
be observed in the corresponding AS model (by tuning only the density ρ, without
ε and h). This is not obvious — for example, the behaviour of an ensemble of an AS
model at particle density ρ is not necessarily the same as the behaviour of the SOC
model with the same ensemble-averaged particle density.

It seems easy to compare AS and SOC numerically: First one investigates the AS
behaviour of a model system by fixing the density ρ, then one repeats the experiment
for SOC, either by explicitly tuning h and ε, or by introducing an external drive which
acts only at quiescent time and dissipation on the boundaries. The main problem oc-
curs when looking for an observable to compare between the two models: the focus
of AS is on the microscopic scale, when activity is spreading through the system from
one time-step to the other, while the main focus of SOC rests on macroscopic prop-
erties, such as avalanches, which are instantaneous and do not have a microscopic
structure. Abelian models (see Sec. 1.3.1, page 40, especially page 52) contain the
extra difficulty that their statistical properties do not depend on the specific choice
of the order of updates and therefore are very flexible regarding the definition of the
timescale. This is certainly not expected for AS models.

Focusing on the SOC point of view, one can measure the avalanche size distribu-
tion P(s; ρ) in AS models while driving ρ from 0 to a maximum value. There is no
dissipation which would make possible the arbitrary tuning of ρ in AS. Just like in
SOC, the density is increased only in the quiescent state. Assuming simple scaling

10Actually Eq. (1.27) is correct only asymptotically (thermodynamic limit), because in (1.27) dissipa-
tion and drive are expressed as global, de facto spatially averaged properties, while in the model they
are realised as purely local processes. Therefore in a finite system there are additional fluctuations on
top of the average rates ε, h.
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(1.4) with the cutoff s0 = bLD one has

〈sn〉P(ρ) =

∫ ∞

0
snP(s; ρ) = AsnLD(1+n−τ) + . . . (1.28)

where Asn denotes an unknown amplitude and . . . stands for finite size corrections.
The subscript on 〈sn〉P(ρ) stresses that this an average over the distribution P(s; ρ). If
one plots the nth moment of the avalanche size distribution as the ratio 〈sn〉P(ρ)/L

γn

versus ρ, then curves for different L will intersect at one specific ρ, if one chooses the
correct γn. Plotting these estimates of γn as a function of n, one can estimate τ and D
by fitting against D(1 + n− τ).

This method was developed by the author in a collaboration with KIM CHRIS-
TENSEN, NICHOLAS MOLONEY and OLE PETERS. Within this collaboration the Oslo
model (see Chapter 5 and also Sec. 6.3, page 273) was investigated. The main results
(Christensen et al., 2004) are

• The exponentD is the same in the original Oslo model and the AS variant.

• The exponent τ is not the same, however, it gets close to a value known from
the bulk-driven variant of the Oslo model (see Sec. 5.2.2.1, page 220). There are
good arguments, why this happens.

• The universal moment ratios do not correspond to those of any known (SOC)
variant of the Oslo model, which can easily be understood from the difference
in boundary conditions, see Sec. 2.2.1.1, page 77.

1.4.4 Criticism II: converting AS to SOC

The crucial claim regarding the relation between AS and SOC, particularly explictly
expressed in (Dickman et al., 2000), is that SOC can be obtained in an AS model,
simply by tuning h, ε and h/ε to 0, which brings the model automatically to the AS
critical point. One might argue that neither a bulk dissipation ε nor a fixed external
driving rate h can be found in most models of SOC. Nevertheless, the statement that
under very general circumstances AS models can be driven in a way that make them
behave like SOC models, is a very strong one.

In the following, it will be shown that the exponents obtained in an AS model
in the limits of vanishing h, ε and h/ε, depend crucially on the way this tuning is
performed.

The order parameter of the AS model is actually the conditional activity (i.e. the
zero activity of quiescent time stretches is ignored), which was introduced above as
ρAS, stat

a . The relation between the conditional activity ρAS, stat
a and the “instantaneous

activity” ρSOC
a is unknown, and might be a very complicated function. If h is very

Chapter 9

The Thermal
EDWARDS-WILKINSON Equation
with Drift

The effect of a drift term in the presence of fixed boundaries is studied for the one-
dimensional EDWARDS-WILKINSON equation to reveal a general mechanism that
causes a change of exponents for a very broad class of growth processes. This mech-
anism represents a relevant perturbation and therefore is important for the interpre-
tation of experimental and numerical results. In effect, the mechanism leads to the
roughness exponent assuming the same value as the growth exponent. In the case
of the EDWARDS-WILKINSON equation this implies exponents deviating from those
expected by dimensional analysis.

In the course of deriving various properties of the EDWARDS-WILKINSON equa-
tion with periodic and fixed boundary conditions as well as with or without drift,
some general results obtained in the theory of growth processes are reviewed.

9.1 Introduction

The EDWARDS-WILKINSON (EW) equation (Edwards and Wilkinson, 1982), as it is
discussed below, is probably the best-studied equation describing surface growth
processes. Due to its linearity it is solvable by standard methods and has been stud-
ied analytically as well as numerically in great detail (Krug and Spohn, 1991; Halpin-
Healy and Zhang, 1995; Krug, 1997). The equation is very well-behaved, so that the
outcome of these investigations are usually quite predictable. There is no reason to
suspect that well-accepted methods, such as dimensional analysis and coarse grain-
ing, produce wrong results, even if applied to the EW equation with an extra drift
term (EWd), which still represents a linear problem.


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small, ρSOC
a will roughly be linear in h, however, for large h this is probably different.

For the sake of the following argument, it is only important to know that there is a
relation. If h and ε are given, then ρAS, stat

a = ρAS, stat
a (h, ε).

VESPIGNANI et al. are not concerned with these subtleties; their explanation is
rather fuzzy in this respect. This poses a major obstacle to any solid criticism, as the
counter argument can hardly be sharper than the claim.

The only scaling behaviour accessible to most SOC systems is finite size scaling
— SOC models ideally have only one tuning parameter, the system size. This is even
true for the behaviour of distributions like the avalanche size distribution P(s), the
cutoff of which is only a function of the system size. In fact, as discussed in Chapter 2,
the only reliable way to determine the exponents directly from such a distribution
is to make a data collapse among results for different system sizes. Remarkably,
mean field arguments have been used to substantiate the claims by VESPIGNANI et al.
(Vespignani and Zapperi, 1998; Lübeck, 2003a), which, however, are bound to show
improper finite size scaling (see for example the problems in Sec. 3.3.5.2, page 126.).

The idea is now to ask the following question: Given a certain sequence of choices
of h(L) and ε(L) with system size L, what values are assumed by observables? Sub-
sequently, which exponents are derived from their scaling behaviour?

To this end, one assumes that in leading order the choice of h(L) and ε(L) leads
to11 ρ∗ − ρc = qL−1/µ, where µ > 0 and ρ∗ now means the average particle density in
the system, which plays the rôle of the effective particle density of the underlying AS
transition. It is clear that the actual density fluctuates around the average ρ∗, but by
decreasing ε, one can reduce these fluctuations (see sec. 1.4.4.1) almost arbitrarily.

If one accepts the correspondence between AS and SOC, then the observables
obtained in the SOC model should correspond to those in the AS model at the density
ρ∗. Especially, the stationary, conditional activity ρAS, stat

a is expected to behave like12

ρSOC
a (h, ε) = ρAS, stat

a (ρ) = L
− β

ν⊥ G
(
ρ∗ − ρc

L−1/ν⊥

)
(1.29)

where — at least within a certain range of ρ and sufficiently large L — the scaling
function G is expected to behave like G(x) ∝ xβ for large positive arguments (thermo-
dynamic limit in the active, i.e. “low temperature” phase), to converge to a constant
for small arguments (finite size scaling) and to vanish13 for divergent negative argu-

11Every choice of h, ε has a particular ρ associated with it, either via h/ε =

�

ρSOC
a

�

(ρ), see Eq. (1.24)
and Fig. 1.12, or, alternatively, via ρSOC

a (h, ε) = ρAS, stat
a (ρ).

12Using the notation introduced in Chapter 2 this corresponds to ∂H |H=0fs(t,H;L) , Eq. (2.13), page
77, with H = 0 and t replaced by ξ1/ν and −d+ ∆/ν = −β/ν, Eq. (2.9), page 76.

13In the Ising model, one can show that the scaling function must decay like G(x) ∝ (−x)−γ/2,
based on the idea that in the high temperature phase, patches of size ξ become independent so that the
magnetisation density scales like L−d/2.
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ments (thermodynamic limit in the absorbing, i.e. “high temperature” phase). This is
a standard result in classical critical phenomena (Stauffer and Aharony, 1994; Cardy,
1997). Plugging in ρ∗ − ρc = qL−1/µ then gives immediately the large L behaviour as

ρAS, stat
a (ρ(L)) ∝





L−β/µ for µ > ν⊥ and q > 0 (1.30a)

0 for µ > ν⊥ and q < 0 (1.30b)

L−β/ν⊥ for µ ≤ ν⊥ (1.30c)

Apparently only (1.30c) leads to appropriate finite size scaling behaviour of the order
parameter, independent of the specific choice µ. Apart from the vanishing ampli-
tude in (1.30b), this result is of course not restricted to the observable ρAS, stat

a ; any
observable obeying a scaling form like (1.29) will show similar behaviour.

From (1.30) it is clear that the scaling of ρ∗ must be chosen such that ν⊥ ≥ µ.
Otherwise, the AS version produces exponents which depend on µ, and in general
cannot be the same as those observed in SOC, because µ is (supposedly) completely
arbitrary. However, the identity of the exponents in AS and SOC is a crucial part of
the claim. So, how does one have to scale ρ∗ via h and ε, so that ρ∗− ρc scales with an
exponent µ ≤ ν⊥? There is no simple way without knowing the correct exponents,
as is shown in the following.

The value of ρ∗ is chosen only implicitly via ρAS, stat
a (h, ε). Assuming that ρAS, stat

a

is tuned such that ρAS, stat
a ∝ L−ω, with a certain, unknown exponent ω, how does

ρ∗ − ρc behave? According to (1.29) it is

ρ∗ − ρc ∝





L−ω/β for β
ν⊥

− ω > 0 (1.31a)

L−1/µ with µ > ν⊥ for β
ν⊥

− ω < 0 (1.31b)

L−1/µ with µ ≤ ν⊥ for β
ν⊥

− ω = 0 (1.31c)

It is worth commenting the three cases. The first one, (1.31a), comes from a divergent
product ρAS, stat

a (ρ∗(L))Lβ/ν⊥ and therefore divergentG(x) in (1.29), so that apparently
G(x) ∝ xβ , which is the only way G can diverge. Since β/ν⊥ − ω > 0 the resulting
asymptote L−ω/β has an exponent 1/µ = ω/β obeying µ > ν⊥; the system leaves the
finite size scaling region, the width of which scales like L1/ν⊥ , towards the active, or
“low temperature phase”.

For (1.31b), G converges to 0, so that its argument apparently diverges negatively,
i.e. ρ∗ − ρc vanishes slower than its denominator14 L−1/ν⊥ in (1.29); the system leaves
the finite size scaling region towards the absorbing, or “high temperature phase”.

The last case, (1.31c), is obtained if ρAS, stat
a Lβ/ν⊥ remains constant, which means

14So, actually, (1.31b) should be ρ∗ − ρc ∈ ω

�

L−1/ν⊥

�

, meaning that it decays strictly slower than

L−1/ν⊥ , see (Knuth, 1997, page 110).

8.4. DISCUSSION AND CONCLUSION 

underlying idea is to use a MARKOV matrix not only to evolve the state distribution,
but also to calculate the moment generating function of the relevant observable. In
order to obtain the finite-size scaling behaviour, its set of eigenvectors is generated
recursively. From this recursion relation one can then develop a (discrete) PDE like
(8.36), which can subsequently be used as a starting point for other techniques. In a
two-dimensional variant of the present model, this recursion relation is much more
complicated to obtain and might require the use of a matrix product state ansatz
(Derrida and Evans, 1997). Nevertheless, it seems promising to apply the approach
to more complicated processes, such as the TASEP and recent variants (Parmeggiani
et al., 2003), for which there is no solution known yet.

8.4.1 Summary

In this chapter an operator approach has been developed, closely related to the one
presented in Sec. 5.3, page 225. The focus here, however, was rather on a recursive
expression for the eigenvectors than on an expression for the matrix representation
of the operator itself. The sections cover the following topics:

• The model is introduced and defined in Sec. 8.1. In particular, the Abelian prop-
erty is illustrated.

• The totally asymmetric Oslo model is then cast into a Markov-matrix, the prop-
erties of which are calculated in Sec. 8.2. By “dressing” the Markov-matrix with
powers of a dummy variable, it can be used to calculate the moment generating
function of the avalanche size distribution. The result of this effort is a hierarchy
of generating functions on a lattice which can be solved moment by moment.
This has been done to leading order up to the second moment.

• In Sec. 8.3, the model is mapped onto a reaction-diffusion problem. That way,
links to many closely related models can be identified. Subsequently, a contin-
uum approach to the original problem on the lattice can be formulated and tack-
led with standard techniques. The leading order in this approach fully agrees
with the leading order on the lattice.
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which is exactly (8.40) (n in (8.40) corresponds to x0 here and L in (8.40) to t). This
is actually surprising, because (8.81) is only the leading order and corrections are ex-
pected from higher orders. However, it turns out that in fact all higher order correc-
tions cancel. In fact, remarkably

∫ ∞

0
dxxe−

x2

4t

(x
t
− 2e−

1
4t sinh

( x
2t

))
= 0 . (8.82)

even though x/t is only the leading order of 2 exp(−1/(4t)) sinh(x/(2t)). Especially

∫ ∞

0
dxxe−

x2

4t

(
x3

48t3
− x

8t2

)
= 0 . (8.83)

According to (8.72) the next moment is

〈
s2
〉
(µt;x0) = 2µ5/2

∫ tD/x2
0

0
dτ
x2

0

D

∫ ∞

0
dy
x3

0

D
yx0ψ̃1(y, τ) (8.84)

the leading order of which can be determined using the leading order of ψ̃1,

ψ̃1(y, τ) =

∫ τ

0
dτ ′
∫ ∞

0
dy′

1√
τ ′π

e−
y′2
4τ ′

y′2

2τ ′
1√

4π(τ − τ ′)

(
e
− (y−y′)2

4(τ−τ ′) − e
− (y+y′)2

4(τ−τ ′)

)
+ . . .

(8.85)
which gives the leading order of

〈
s2
〉

〈
s2
〉
(t;x0) =

32

15
√
π
t5/2
√
Dx2

0 + O(t3/2) (8.86)

identical to (8.64). Higher orders become very tedious, so that numerical evaluation
seems to offer the better option.

8.4 Discussion and Conclusion

The results above represent some of the few exact result for sandpile-like models:
Eq. (8.40) and Eq. (8.64) are the exact leading orders of the first two moments of
the avalanche size distribution without making any assumptions about scaling be-
haviour. The conclusion that τ = 4/3 and D = 3/2 can only be drawn by either
assuming (8.1), or by accepting the continuum result (8.80) and then making assump-
tions about the uniqueness of the distribution inferred from its moments.

One important result is that in this exactly solvable case the relation D = 1 + χ,
see Sec. 6.1.4, page 253, is confirmed, since the roughness exponent of a random walkOpen

task along an absorbing wall is χ = 1/2, a result that is certainly quite straight-forward to
verify rigorously.

The method introduced in Sec. 8.2 is not restricted to sandpile-like models. The

1.4. THE VESPIGNANI MECHANISM 

that the argument of G is either constant or vanishes, so that ρ∗ − ρc ∝ L−1/ν⊥ , or
faster; then the system stays in the finite size scaling region.

The crucial outcome of (1.31) is that µ > ν⊥ is obtained for any ω 6= β/ν⊥. While
the specific choice ω = β/ν⊥ leads apparently to the correct finite size scaling be-
haviour of ρAS, stat

a , (1.30c), any other choice leads to a an effective ρ∗ which gives
ω dependent exponents; there seems to be no direct way to derive any “correct ex-
ponent” from the scaling behaviour of the observed activity, moreover, the model
leaves the finite size scaling region, since µ > ν, so that ξ/L → 0, while still ξ → ∞.
Eq. (1.31a) predicts 1/µ = ω/β, so ρAS, stat

a ∝ L−ω, as tuned anyway. So, if ρAS, stat
a is

tuned like L−ω, then ω is the exponent one will see for β/µ in finite size scaling, see
(1.30a). Eq. (1.31b) is somewhat peculiar in this respect: It applies to ω > β/ν⊥ and
predicts 1/µ < 1/ν⊥, so that ω > β/µ, while ω = β/µ might be expected. The an-
swer to this spurious inconsistency is that in the ”high temperature” phase the order
parameter does not scale like |ρ∗ − ρc|β , and therefore no scaling L−(β/µ) of ρAS, stat

a

is expected — it simply decays in a way such that ρAS, stat
a ∝ L−ω, just as tuned. In

fact, (1.30b), applicable because of the negative divergence of the argument in (1.31b),
does not necessarily predict algebraic behaviour of ρAS, stat

a for an algebraic decay of
ρ∗ − ρc and vice versa. To summarise, the difference ρ∗ − ρc just decays somehow
slower than L−1/ν⊥ and in a way to reproduce ρAS, stat

a ∝ L−ω as setup by tuning in
the first place.

Thus, AS critical behaviour cannot be obtained by an arbitrary choice for the lim-
its h, ε, h/ε → 0. Only a choice such that ρAS, stat

a ∝ L−β/ν⊥ , can produce universal
critical behaviour, i.e. reproduce the AS results. If this behaviour of ρAS, stat

a is ob-
tained for a wide variety of choices of h(L) and ε(L), then this is a remarkable, highly
non-trivial property of ρAS, stat

a . This property is then what makes SOC work.

An alternative formulation of the criticism is to say that the mechanism proposed
can reach ρc within an accuracy ofL−1/ν⊥ only if h and ε are tuned such that ρAS, stat

a ∝
L−β/ν⊥ , i.e. in order to see proper finite size scaling, one needs to know the exponents
beforehand. This is the reason why the argument above sounds circular. It actually
is circular, simply because the mechanism is circular; we ask “How do you have to
tune ρAS, stat

a in order to see proper finite size scaling?” And the answer is “You need
to tune exactly according to finite size scaling.” What has been proven above is that
there is no other way than that. All that was needed was that a function ρAS, stat

a (h, ε)

exists, that this functions follows standard AS behaviour (1.29) and that the whole
model can, in the spirit of AS, be parametrised by ρ∗.

Finally, one might consider the whole AS picture as misleading. Firstly, as dis-
cussed above, a fixed inflow h and a dissipation rate ε may not be appropriate to
describe SOC models in general. Secondly, even accepting the parametrisation, the
critical behaviour obtained in SOC is not necessarily the same as the one in AS. As
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c

∆ρ

dq
dρ max

ρ (ρ)
a

ρ

   ρa
ρ

Figure 1.13: A cartoon of the fluctuation of ρ based on Eq. (1.27). The width of the region
of ρ values the system is typically found in, is marked by ∆ρ, the average by ρc. The
maximum slope of the average activity is marked as such. In the upper part the cartoon
of a probability density function shows the position probability as a function of ρ.

mentioned above, there is no obvious correspondence between ρSOC
a and ρAS, stat

a .
Moreover, the observables obtained in SOC by fluctuating around a density ρ are not
necessarily identical to those obtained in AS at the mean value of this density, ρ∗.

1.4.4.1 Supplement: fluctuations

By examining fluctuations, it is possible to find an upper bound for the conver-
gence of ε → 0. For the following derivation we will assume

〈
ρSOC

a

〉
∝ ρAS, stat

a and
σ2〈(ρSOC

a 〉) ∝ σ2〈(ρAS, stat
a 〉).

From (1.27) one can estimate the fluctuations in ρ from the fluctuations in ρSOC
a (ρ).

By dimensional analysis one finds a variance of ρ

σ2〈(ρ〉) = ε

(
dq

dρ

∣∣∣∣
max

)−1

σ2〈(ρSOC
a 〉) × const. (1.32)

where q(ρ) is the average value of ρSOC
a obtained at a given ρ. The derivative is to be

evaluated, where it has a maximum, in order to determine the minimum fluctuations
in ρ. If the width of the fluctuations in ρ becomes larger than the width of the finite
size scaling region, finite size scaling should break down, because the system would
spend more and more time outside the finite size scaling region.

The fluctuations σ2〈(ρSOC
a 〉) in the finite size scaling region scale at least like

L−2β/ν⊥ , which is the scaling of the first moment squared; “at least” here means that

8.3. REACTION-DIFFUSION MAPPING 

and ψ̃0(y, τ) = G(y, τ ; 1), i.e.

ψ̃0(y, τ) =
1√
τπ
e−

y2+1
4τ sinh

( y
2τ

)
. (8.75)

One might be inclined to transfer the problem into k-space, which, however, does not
simplify the problem because of the boundary condition (8.70b). The expression

ψ̃n(y, τ) =

∫ τ

0
dτ ′
∫ ∞

0
dy′ny′ψ̃n−1(y

′, τ ′)G(y, τ − τ ′; y′) (8.76)

is the formal solution. Rescaling the arguments of ψ̃n by powers of µ one finds

ψ̃n(
√
µy, µτ) = µ3/2

∫ τ

0
dτ ′
∫ ∞

0
dy′ny′ψ̃n−1(

√
µy′, µτ ′)G(y, τ − τ ′; y′) . (8.77)

From ψ̃n−1(
√
µy, µτ) = µαn−1 ψ̃n−1(y, τ), then follows ψ̃n(

√
µy, µτ) =

µαn−1+3/2ψ̃n(y, τ). Thus, starting with ψ̃0(
√
µy, µτ) = µα0ψ̃0(y, τ) one has apparently

ψ̃n(
√
µy, µτ) = µ

3
2
n+α0ψ̃n(y, τ) . (8.78)

Unfortunately the scaling behaviour of ψ̃0 is a bit more complicated. Nevertheless, it
can be expanded for large µ, or actually large µτ , as

ψ̃0(
√
µy, µτ) =

1

µ

1√
τπ
e−

y2

4τ

(
y

2τ
+

1

µ

(
y3

48τ3
− y

8τ2

)
+ . . .

)
. (8.79)

Bearing in mind the necessity of large µτ one can now apply the scaling argument
(8.78) order by order in µ since Eq. (8.69) and its dimensionless counterpart are linear.
From (8.79) it is α0 = −1 for the leading order, α0 = −2 for the first sub-leading order
and so on.

Eq. (8.78) immediately translates to 〈sn〉 using (8.72) and (8.73); to leading order
one finds

〈sn〉(µt;x0) = µ(3/2)n+1/2+α0 〈sn〉(t;x0) (8.80)

Assuming (8.1), from (8.2) with t taking the rôle of L it follows that D = 3/2 and
D(1 − τ) = 1/2 + α0, i.e. for α0 = −1 one has τ = 4/3. The next order correction is
D = 3/2 and τ ′ = 2.

Of course, it is also possible to calculate the leading orders of 〈sn〉 exactly. Because
of (8.80), one needs to calculate 〈sn〉(µt;x0) for one value of t only. The simplest
choice is to set t = x2

0/D, which gives 〈s〉(x2
0/D;x0) = x3

0/D for n = 1, i.e.

〈s〉(t;x0) = x0t (8.81)
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one finds in the continuum limit of (8.67) (keeping D∆t/∆x2 constant)

∂tψn(t, x;x0) = D∂2
xψn(t, x;x0) + xnψn−1(t, x;x0) (8.69)

where D = pq again5. The boundary conditions for n = 0 are observed immediately
and transfered to ψn using (8.68) by noting that 〈{s(t, x;x0)

n}〉 is non-divergent,6 so

lim
t→0

ψn(t, x;x0) = δn,0δ(x − x0) (8.70a)

ψn(t, 0;x0) = 0 (8.70b)

and the PDE (8.69) is to be solved for x ∈ [0,∞[.

The avalanche sizes are measured from avalanche trajectories which have died
out or reached the end of the system. Thus, the averages measured in the model are
taken from the random walkers which have reached the absorbing wall or did not do
so until a cutoff time t. Therefore the nth moment observed is

〈sn〉(t;x0) =

∫ t

0
dt′jn(t′;x0) +

∫ ∞

0
dx′ψn(t, x′;x0) (8.71)

where the first integral runs over the “outflow”, jn(t, x = 0;x0) ≡ D∂x|x=0ψn(t, x;x0)

and the second over the contributions at cutoff time (see marks in Fig. 8.4). 〈sn〉(t;x0)

denotes the nth moment of the avalanche size (measured as the number of charges)
for a system of size t starting with x0 initial charges. Using (8.69) one has

〈sn〉(t;x0) =

∫ t

0
dt′
∫ ∞

0
dx′x′nψn−1(t

′, x′;x0) (8.72)

The dimensionless form of ψ is given by

ψn(x, t;x0) =
1

x0

(
x3

0

D

)n

ψ̃n(y, τ) (8.73)

with y = x/x0 and τ = t/(x2
0/D). The propagator G(y, τ ; y0) is easily obtained from

a mirror-charge trick,

G(y, τ ; y0) ≡
1√
4τπ

(
e−

(y−y0)2

4τ − e−
(y+y0)2

4τ

)
, (8.74)

5It is interesting to note that this can be written using a generating function Ψ(t, x;x0, ξ) with ∂tΨ =

xξΨ +D∂2
xΨ, so that indeed dn

dξn

��
��
�

ξ=0
Ψ(t, x;x0, ξ) = ψn(t, x;x0)

6Especially, 〈{s(t, x;x0)
n}〉 > 0 for any t > 0 gives (8.70a) and limt→0 〈{s(t, x;x0)

n}〉 = 0 gives
(8.70b).
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the exponent γ in
σ2〈(ρSOC

a 〉) ∝ L
γ

ν⊥
−d (1.33)

obeys γ − ν⊥ ≥ −2β, where the equal sign applies if the RUSHBROOKE and the
JOSEPHSON scaling law apply (Pfeuty and Toulouse, 1977). The function q(ρ) is sup-
posedly simply ρAS, stat

a (ρ), Eq. (1.29). The maximum slope of this function is obtained
outside the finite size scaling region, because ρSOC

a and therefore ρAS, stat
a is flattened

within the finite size scaling region due to the scaling function. Thus, one estimates
q(ρ) = ρβ and therefore

dq

dρ

∣∣∣∣
max

∝ L
−β−1

ν⊥ (1.34)

where the derivative has been evaluated at the boundary of the finite size scaling
region, see Fig. 1.13, which is the region at least accessible by the equation of motion,
because of non-vanishing fluctuations within there. The slope is overestimated, i.e.
the exponent on the RHS of (1.34) is in fact rather more negative. Thus there is a
non-vanishing constant such that

σ2〈(ρ〉) > εL
β−1
ν⊥ L

− 2β
ν⊥ × const , (1.35)

while the width of the finite size scaling region scales like L−2/ν⊥ . If ε remains con-
stant, one needs

β + 1

ν⊥
>

2

ν⊥
(1.36)

or β > 1 for ρ not to overshoot due to fluctuations σ2〈(ρ〉). If ε changes in L like L−σ ,
one arrives at the relation

β + σ > 1 . (1.37)

If this is not obeyed, the fluctuations in the activity will eventually drive the system
outside the finite size scaling region.

1.4.4.2 Supplement: the ISING argument

The criticism on the mechanism proposed by VESPIGNANI et al. becomes especially
vivid when realising that it ignores fifty years of computational physics based on
Monte Carlo: Why should one run massive Monte-Carlo simulations to pin down
the critical values of the parameters, such as temperature or external field, if there is
a very simple, self-organised mechanism, which drives the model automatically to
the critical point? To illustrate this point further, in the following the mechanism is
translated to the ISING model.

The VESPIGNANI mechanism needs only two ingredients: external drive and dis-
sipation. While it makes the argument certainly more appealing that there is a natural
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relation between activity and particle density, this is formally irrelevant. Thus

−Ṫ = h− εM (1.38)

is a perfect realisation of this mechanism for the ISING model. Here, T denotes the
temperature (Tc being the critical temperature) and M the instantaneous magneti-
sation. To claim that this mechanism would automatically lead to proper finite size
scaling makes it very suspicious: Why would one invest considerable amounts of
CPU-time to find Tc and do standard finite size scaling if there is such a simple mech-
anism, which automatically produces these values? One would usually expect that
an “economic principle of computational physics” applies: The quality of the esti-
mates for numerical values, such as exponents and amplitude ratios, is roughly con-
stant among different approaches to a problem in a mature field for a given amount
of CPU-time, provided that the best available algorithms are used. Clearly, this ig-
nores effects of, for example, self-averaging, dynamical exponents or any progress in
general, but it is a fair representation of the minute achievements possible in a mature
field.

Of course all arguments presented in sec. 1.4.4 apply here as well and explain,
why one cannot use (1.38) to do finite size scaling. For the ISING model it trans-
lates to tuning h/ε exactly like L−β/ν . Only in that case one can observe correct fi-
nite size scaling exponents and only in that case Tc is reached within an accuracy of
L−1/ν (Hasenbusch, 1999). While many other choices lead to an approach of Tc in the
thermodynamic limit, they lead to finite size scaling behaviour dependent on ω in
h/ε ∝ L−ω . Can one derive any useful information from these exponents?Open

task

1.4.5 Discussion

During all this critique one must bear in mind that there is a choice of an equation
of motion like (1.27) or (1.38) such that proper finite size scaling is observed. This is
because apparently numerical physicist are able to observe proper finite size scaling,
while changing the density or the temperature in time, i.e. with an equation like (1.27)
or (1.38) but with a more complicated right hand side.

In fact, the argument above cannot and should better not rule out the existence of
such a “proper equation of motion”, which makes proper finite size scaling possible.
Indeed, this is not what it claims; it merely claims that the choice of h and ε is not
arbitrary. One standard choice is h = 0, ε = 0, namely determining Tc with very
high accuracy using (for example) the behaviour of the BINDER cumulant (Landau
and Binder, 2000) and then using this estimate for finite size scaling without chang-
ing the temperature any further. Most remarkably, using this technique makes results
obtained from larger L (when using the BINDER cumulant to determine Tc) enter the

8.3. REACTION-DIFFUSION MAPPING 

duced. It quantifies the properties of a random walker along an absorbing wall. For
n = 0 it is the probability density of random walkers at time t and height x over the
absorbing wall, starting at height x0, which is x0 = 1 for a single initial kick. Here, t
takes on the rôle of the horizontal (continuous) position between t = 0 and t = L in a
picture like Fig. 8.2. To motivate the following calculation, one imagines a large set of
trajectories of random walkers along the absorbing wall from t = 0, x = x0 to t and x.
The set of areas under the trajectories, as exemplified in Fig. 8.4, is then {si(t, x;x0)},
where i is indexing the elements in the set. 〈{sn(t, x;x0)}〉 is the average of the nth
moment over this set. Now one can express the time-evolution of this average as the
sum of three contributions of the three processes of up, down or straight movement
of the random walker. Thus, up to terms of order ∆t∆x (see caption of Fig. 8.5)

ψ0(t+ ∆t, x;x0)〈{sn(t+ ∆t, x;x0)}〉
= pqψ0(t, x+ ∆x;x0)〈{(s(t, x+ ∆x;x0) + x∆t)n}〉 (8.67a)

+(p2 + q2)ψ0(t, x;x0)〈{(s(t, x;x0) + x∆t)n}〉 (8.67b)

+pqψ0(t, x− ∆x;x0)〈{(s(t, x− ∆x;x0) + x∆t)n}〉 (8.67c)

where each term corresponds to a process like the one shown in Fig. 8.5. The multi-
plication by ψ0(t, x;x0) is necessary in order to weight each of the ensembles for each
contribution properly. For example, there might a much larger contribution from be-
low, even though on average the moment at this position is smaller than at the other
positions.

x

∆t

(t, x− ∆x)

(t+ ∆t, x)

Figure 8.5: A new segment (hatched area) is added to the currently considered path,
increasing all areas in the ensemble {si(t, x−∆x;x0)} by x∆t+O(∆t∆x) and producing
a new ensemble {si(t + ∆t, x;x0)}. The example shown corresponds to (8.67c), which
starts at (t, x − ∆x). Starting points of other contributions are shown as empty circles.
The coordinates of the two black points are given in the form (t, x).

Defining
ψn(t, x;x0) ≡ ψ0(t, x;x0)〈{s(t, x;x0)

n}〉 (8.68)
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8.3.1.1 Anisotropic BTW model

DHAR and RAMASWAMY (Dhar and Ramaswamy, 1989) developed an anisotropic
variant of the well-known BTW sandpile model (Bak et al., 1987), which is now
known as the directed sandpile model. This model, however, is situated on a 1 + 1-
dimensional lattice and the annihilating random walkers represent the contours of
the compact area covered by an avalanche. The randomness here comes solely from
the randomness of whether a site charged by particles from toppling sites topples in
turn. An equivalence to a variant of directed percolation has been already pointed
out in (Domany and Kinzel, 1984), see also (Mohanty and Dhar, 2002).

MORTON KLOSTER, SERGEI MASLOV and CHAO TANG (Kloster et al., 2001) have
studied a stochastic directed sandpile model, which was originally proposed by
PASTOR-SATORRAS and VESPIGNANI (Pastor-Satorras and Vespignani, 2000b). This
model is closely related to the one presented in this paper, even though it is also
situated on a 1 + 1-dimensional lattice. The authors find the same exponents by scal-
ing arguments. The mapping to the two-dimensional reaction-diffusion process pre-
sented above, questions their assertion that their model is in a different universality
class than the model by DHAR and RAMASWAMY.

For these models it is fairly obvious how to extend them systematically to higher
dimensions. Using scaling arguments in conjunction with some simplifying assump-
tions, PACZUSKI and BASSLER (Paczuski and Bassler, 2000) arrive at a general ex-
pression for the value of the exponents of this model in higher dimensions. Unfortu-
nately, it is not so clear how to generalise the model studied in this paper to higher
dimensions, because it is unclear how to generalise the driving and what boundary
conditions to apply.

8.3.2 Continuum solution

t

x

outflow

cu
to

ff

(t, x)

(0, x0)

Figure 8.4: The area under the trajectory (hatched) is the avalanche size. The two filled
circles mark the starting point (0, x0) and the end point (t, x)

Having mentioned already the mapping to an annihilating random walk, the con-
tinuum description is straight forward. To this end, the quantity ψn(t, x;x0) is intro-

1.5. SUMMARY 

simulation for smaller L (when doing the finite size scaling). Moreover, the accuracy
with which Tc can be determined from finite size scaling scales with the size of the
region where the correlation length is of the order of the system size, i.e. the region
scales like L−1/ν which is also the leading order correction (Hasenbusch, 1999).

It is worth pointing out, that in the Forest Fire model the L-dependence of the
choice of f/p, which is closely related to h/ε, has not received much attention. The
finite size behaviour of the model discussed in Sec. 3.3 (see page 126) suffers from the
same problem.

One might argue that the VESPIGNANI mechanism is a perfect explanation for
the wide variety of non-trivial exponents observed in SOC. This mechanism predicts
non-universal exponents, because of the dependence of the exponents on the scaling
of ε and h in L. But apart from that, the mechanism also predicts that the models
sooner or later leave the finite size scaling region, i.e. in the thermodynamic limit the
ratio ξ/L vanishes. This is not what is observed. On the contrary, in SOC, accept-
ing the description in terms of ε and h, these parameters are tuned implicitly by the
model rules and produce universal, scale-invariant behaviour. These crucial properties
are rejected by the AS approach.

But after all this critique — how then is SOC possible?
Because of the presence of the AS critical point for the SOC models, at least for

those with bulk dissipation, the only way to obtain the same critical behaviour in
SOC as in AS is by proper tuning. Otherwise the AS behaviour is either not seen,
or SOC is non-universal and depends on the tuning, which is, however, not what is
observed. The only way to get around the tuning necessity of h and ε in order to
keep ρAS, stat

a (h, ε) at the right value, is that ρAS, stat
a (h, ε) somehow does not depend

on them. Whatever the way to avoid tuning, this is what explains SOC. The status of Open

issueVESPIGNANI’s mechanism as well as this issue needs further investigation.

1.5 Summary

This chapter provides an overview of some general features of SOC.

• In Sec. 1.1 the actual meaning of the term “SOC” is discussed.

• The next section, Sec. 1.2, discusses the “apparent ubiquity of power laws in
nature”.

• The models of paradigmatic status, such as BTW, OFC and DS-FFM, are dis-
cussed in Sec. 1.3.

• VESPIGNANI et al. have proposed a trivial mechanism of how SOC works. It
is discussed and criticised in Sec. 1.4. It transpires that there are many good
arguments why this mechanism is bound to fail.
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(a) p = q = 1/2 (b) p = 0.6

Figure 8.3: Examples for sequences of trajectories resulting from different values of p.

L+ 1; similarly for L = 1. Moreover, the number of charges on site i = 1 is exactly 1

per avalanche, while there is only one toppling on average on site L. More explicitly,
if ti,i+1 denotes the number of units transported from site i to site i + 1 during an
avalanche, the total number of topplings is

L∑

i=1

ti,i+1 (8.65)

where tL,L+1 is the number of units leaving the system. If, correspondingly, t0,1 is the
initial kick, then

L∑

i=1

ti−1,i = t0,1 +

L∑

i=1

ti,i+1 − tL,L+1 (8.66)

is the total number of charges. In the following, we will consider the number of
charges as the avalanche size, because the total number of charges is simply the area
between two of those trajectories described above, namely the sum over all activities.
From this it is also clear that the avalanche size is actually uniquely determined by
the initial and the final configuration, see Sec. 8.1.1, page 316, especially page 318.

8.3.1 Relation to other models

Before the above identification of the process as a random walker is cast into an
continuum problem and subsequently solved, it is worth pointing out other mod-
els which are closely linked to the present one.
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the former configuration points up (probability p), while the line segment of the new
configuration points down (probability q), so that the gap between the two trajec-
tory decreases, see Fig. 8.2 at the dotted line 3. Similarly, if the activity goes up, then
∆zi > 0 and the gap increases.

After the activity vanishes, the profile of the new configuration remains un-
changed compared to the former, i.e. the gap between the two configurations is a
constant. In fact, if the gap was initially 1 and goes up and down by 1 as described
above, then the gap will be 0 as soon as the activity vanishes. This is exactly what
is shown in Fig. 8.2: The thick dashed line shows the new configuration and its distance to
the old configuration is the activity during the avalanche. This avalanche occurs within
the configuration shown as a thick line, initiated by a single kick. Initially the gap
is a1 = 1. If the dashed line would go down immediately on site 1, the site would
have “absorbed” the initial unit and would be in state z = 2 (i.e. a segment pointing
down). Instead, in the example, it goes up twice; first just like in the old configura-
tion so that the activity does not increase, and then in the opposite direction to the
old configuration so that the activity increases by 1. On site 3 and 4 it goes down
twice; the toppling on site 4 is particularly interesting. Here, initially the activity is
1, i.e. the site has received one unit. But the site is in state z = 1, so it absorbs the
unit with probability q, corresponding to the probability of the dashed line segment
to point downwards.

The activity is measured half a unit left of each site as the distance between old
and new trajectories, which, in turn, is measured in such units that the vertical dis-
tance between two circles is 1. The reason for the shift is that one wants to measure
how many charges have arrived at a site, not affected by the value of the resulting
activity.

To repeat this important point, the trajectory of an avalanche becomes the config-
uration for the next avalanche, i.e. the thick dashed line in Fig. 8.2 becomes the thick
solid line for the next avalanche.

One can calculate the probability of the changes of activity explicitly: The new
segment goes up with probability p and down with probability q, the same applies to
the old segment. Thus, they point in the same direction (no change of activity) with
probability p2 + q2, the gap widens with probability pq and shrinks with qp. Hence,
the gap between the two trajectories is in fact a symmetric random walk, even though
the individual trajectories might have a bias, according to p − q. Fig. 8.3(a) shows a
sequence of trajectories for p = q = 1/2 and Fig. 8.3(b) for p = 0.6.

As described above (see Sec. 8.1.1), the avalanche size is measured as the number
of topplings. For convenience, one can define it as the number of charges, which
makes hardly any difference, because the number of topplings of site i is identical
to the number of charges on site i + 1, unless i = L, simply because there is no site

Chapter 2

Scaling

This chapter is a collection of basic analytical results and the subsequent numerical
techniques. Most of the discussion is very detailed and contains plenty of technical
remarks, which hopefully increases its usability; this chapter is meant as a manual.
Most examples are taken from numerical simulations of the Oslo model or percola-
tion (which is not discussed in detail in this thesis).

2.1 Introduction

Finite Size Scaling is obtained in many different areas of critical phenomena. Most
traditional critical phenomena are studied in terms of moments of an underlying dis-
tribution, while the distributions themselves are subject to the investigation typically
only in percolation and Self-Organised Criticality. In the latter field there is alarming
confusion about scaling and how to analyse it [see for example (Pastor-Satorras and
Vespignani, 2000a,b)]. This chapter introduces these concepts, tries to clarify some
of the confused issues1 and to identify some important relations between different
scaling assumptions.

Scaling behaviour is the hallmark of criticality (Fisher, 1967), as it implies scale
invariance: The statistical properties of a system on one scale are, apart from some
factors, identical to the statistical properties of the system on another scale. The fac-
tors depend only on the ratio of the two scales and not on the scales themselves. The
scales might be the system sizes, in which case the scaling is obtained right on the
critical point and is then known as “Finite Size Scaling” (Cardy, 1988). Alternatively
the scales are the correlation lengths, in which case the scaling is obtained away from
the critical point.

In the following, various features of scaling are discussed with special attention
to their application to SOC. Nevertheless, many of them are presented with their

1While probably introducing new misunderstandings.


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relation to equilibrium critical phenomena. The aim of this chapter is to provide a
general theoretical basis for the numerical and analytical analysis of SOC models.

Most of the following derivations are based on a presumed probability density
function P (M) of a quantity M . This quantity will be the total magnetisation in case
of equilibrium statistical mechanics and the avalanche size in case of SOC. However,
this identification is only for illustration purposes and most of the results are valid
under more general circumstances.

2.2 Moments and Distributions

The traditional observables in magnetic systems, such as the ISING model, are inter-
nal energy, specific heat, magnetisation and susceptibility. Also the higher moments
are of interest, such as those used in the BINDER cumulant [see, for example the re-
view (Landau and Binder, 2000)], which effectively measures the deviation of the
underlying distribution from a Gaussian. This section shows various equivalent rep-
resentation of such an underlying distribution.

In the following the term “distribution” is used synonymously with probability
density function (PDF). It will not refer to the cumulative distribution usually pre-
ferred by mathematicians. The latter is related to a PDF P(M) by

∫M+0+

−∞ dM ′P(M ′).
The moments of the distribution P(M) are defined by

〈Mn〉 ≡
∞
∑∫

−∞

dMMnP(M) , (2.1)

where especially 〈1〉 = 1 is the normalisation of the PDF. The moment generating
function (MGF) is 〈exp(HM)〉, because

〈Mn〉 =
dn

dHn

∣∣∣∣
H=0

∞
∑∫

−∞

dMeHMP(M) =
dn

dHn

∣∣∣∣
H=0

〈exp(HM)〉 . (2.2)

To escape all problems of existence of the integrals, convergence and analyticity, all
the derivations are restricted to PDF’s which are strictly 0 beyond a finite cutoff, as
obtained, for example, for the distribution of the magnetisation density in a finite
ferromagnetic system.

Because all moments exist, one can try to Taylor expand 〈exp(HM)〉:

〈
eHM

〉
=
∑

n

Hn

n!
〈Mn〉 (2.3)

According to (2.1), 〈exp(HM)〉 is the LAPLACE transform of P(M), so that (2.3) al-

8.3. REACTION-DIFFUSION MAPPING 

8.3 Reaction-Diffusion Mapping

It is possible to map the model onto a very simple reaction-diffusion process of the
form A + A → A (ben-Avraham and Havlin, 2000). To this end, the configuration of
the lattice is described by the thick line shown in Fig. 8.2. The line consists of seg-
ments, which can either point up or down by an angle of 45◦. If the line correspond-
ing to the ith site goes up, it indicates that the ith site is in state z = 1, otherwise the
line goes down indicating the state of the site to be z = 2. According to (8.28b) the
configuration of the lattice after an avalanche is a product state, where a site is in state
z = 1 with probability p and in state z = 2 with probability q. Thus, the thick line is
in fact the trajectory of a random walker with drift corresponding to the difference
p− q.

1 2 3 4 5 6 7

p q
a1

Figure 8.2: The thick, full line shows the configuration of the lattice after an avalanche
has passed through. Each up or down-pointing segment corresponds to a single site, the
position label of which is shown under the dotted line. A segment pointing upwards
corresponds to a site being in state z = 1 (with probability p, see Eq. (8.28b)), a segment
pointing downwards corresponds to state z = 2 (probability q), as indicated. The dashed
line corresponds to a “toppling trajectory” as explained in the text.

The avalanche itself, on the other hand, is a random walk with the same proba-
bilities. One can see that by considering the activity ai, which is the number charges
received at site i during an update-sweep as described in Sec. 8.1.2, page 318. The
activity can either remain constant or change by 1 up or down. Apparently a1 = 1 is
the driving. If a site receives ai charges and changes state by ∆zi = zi(t) − zi(t + 1),
then its right neighbour receives ai+1 = ai +∆zi charges. If ∆zi = 0, then the vertical
distance between two consecutive configuration trajectories (as shown as thick and
dashed lines in Fig. 8.2) does not change. If, however, the new configuration of site
i has an increased value zi(t + 1) > zi(t), the activity goes down, because ∆zi < 0.
The only way to increase zi is to go from state 1 to state 2, i.e. the line segment of
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single kick this gives

Q̃′′
L,1 =

L∑

l=1

2Dl2(φL−l,0,0 + φL−l,1,0) (8.57a)

=
L−1∑

l=0

2D(L− l)2
l∑

m=0

(
l

m

)
p2l−2mq2m

((
l

m

)
+

(
l

m+ 1

)
q

p

)
(8.57b)

In order to analyse the asymptotic behaviour for L→ ∞, one writes

Q̃′′
L,1 =

L−1∑

l=0

2D(L− l)2φ∗(l) (8.58)

with

φ∗(l) =

l∑

m=0

(
l

m

)
p2(l−m)q2m

((
l

m

)
+

(
l

m+ 1

)
q

p

)
. (8.59)

The binomial can be approximated by

(
l

m

)
pl−mqm → 1√

2πpql
e−

(m−lq)2

2pql (8.60)

and the summation can be written as an integral:

φ∗(l) →
∫ l

0
dm

1

πpql
e
− 2(m−lq)2

2pql (8.61)

=
1

2
√
lpqπ

(
E(
√
lp/q) + E(

√
lq/p)

)
(8.62)

where E(x) ≡ 2
∫ x
0 dz exp(−z2)/

√
π. The two binomials have been treated identically,

so that finally

Q̃′′
L,1 →

∫ L−1

0
2D(L− l)2

1

2
√
lpqπ

(
E(
√
lp/q) + E(

√
lq/p)

)
(8.63)

which, to leading order, turns out to be

Q̃′′
L,1 → 32

15
√
π

√
pqL5/2 . (8.64)

This is perfectly confirmed by numerical simulations of the model.

The two exponents γ1 = 1 (see Eq. (8.40)) and γ2 = 5/2 (8.64) lead together with
(8.3) to τ = 4/3 and D = 3/2.

2.2. MOMENTS AND DISTRIBUTIONS 

lows to reconstruct P(M) from the set of all moments using an inverse LAPLACE

transform. This suggest a unique P(M) for a given set of moments. However, this
holds only if the RHS of (2.3) actually exists and converges. This is assumed every-
where below.2

The cumulant generating function (CGF) is ln 〈exp(HM)〉, where the nth cumu-
lant 〈Mn〉c is defined as

〈Mn〉c ≡
dn

dHn
ln 〈exp(HM)〉 . (2.4)

Of course, there is a close relation between the free energy and the cumulant gener-
ating function, which will be discussed in sec. 2.2.1. For n = 0 (2.4) is well behaved
and gives 〈1〉c = 0.

Provided that all moments are finite, it is obvious how to get from the PDF to the
generating functions and from there to the moments and the cumulants. The only
technical difficulty is to find a closed form of the RHS in (2.3) and to perform the
inverse LAPLACE transform to derive the PDF from it. In sec. 2.3 it is shown that
under very general conditions, the task boils down to determine a universal scaling
function.

2.2.1 Free energy

In a ferromagnetic system the cumulants of the magnetisation at zero-field are given
as derivatives of the free energy by the conjugated field:

L−d〈Mn〉c = −(kT )n−1 dn

dHn

∣∣∣∣
H=0

f(t,H) (2.5)

where 〈Mn〉c is again the nth cumulant of the total magnetisation M at vanishing
external fieldH , f is the free energy density, T is the temperature and t = (T −Tc)/Tc

the reduced temperature around the critical point at H = 0 and T = Tc. The reason
for having the total magnetisation on the LHS is that the Hamiltonian in the Boltz-
mann factor in the partition sum contains the total magnetisation. Thus, deriving the
free energy density gives only one factor L−d. The powers of kT appear for a similar
reason. For the following arguments, these powers are completely irrelevant.

In the thermodynamic limit, close to the critical point, the singular part of the free
energy density fs obeys (Cardy, 1997)

b−dfs(b
yt, by∆H) = fs(t,H) (2.6)

2This it is actually a very important detail: The moments could all exist but the sum might not, for
example if 〈Mn〉 = (2n)!. It seems that something similar happens for P(M) = exp−tβ for β > 1/2
(Akhiezer, 1965; Chen and Lawrence, 1999). Thanks to YANG CHEN for advice on this problem.



 CHAPTER 2. SCALING

where the exponents y and ∆ are a priori unknown. From (2.5) and (2.6) one has
immediately

L−d〈Mn〉c(t) = −b−d+ny∆f (n)
s (byt, 0) , (2.7)

where f (n)
s (byt, 0) is the nth derivative by external field H of the singular part of the

free energy density evaluated at temperature byt and vanishing external field. It is
important to note that (2.7) applies only to the singular behaviour of 〈M n〉c at the
critical point.

Choosing byt = 1 one arrives at the final expression

〈Mn〉c(t) = Ldtd/y−n∆a±n , (2.8)

where a±n denote unknown amplitudes, dependent on the sign of the reduced tem-
perature, but otherwise independent from temperature and external field. Using
RUSHBROOKE, WIDOM and JOSEPHSON scaling (hyperscaling) (Pfeuty and Toulouse,
1977) one derives for the so-called “gap exponent” ∆

∆ = β + γ = βδ = νd− β (2.9)

and for y

y =
1

ν
. (2.10)

In the following, a theory obeying these standard scaling laws (RUSHBROOKE and
JOSEPHSON, but also WIDOM and FISHER) will be called “equilibrium critical phe-
nomena”.

For finite systems, the free energy density can be re-parametrised3 in terms of
ξ(t)/L rather than t, where the correlation length ξ is supposedly measured in an
infinity system. At the critical point this yields

〈Mn〉c(L) = Ln∆′
a′n (2.11)

with ∆′ = ∆/ν = d− β/ν the gap exponent for finite size scaling and a′n new, appro-
priately defined, L-independent amplitudes related to the amplitudes in (2.8). One
easily confirms ∆′ = d− β/ν and 2∆′ = d+ γ/ν for the scaling behaviour of the total
magnetisation and the total susceptibility.

The crucial difference between Eq. (2.8) and Eq. (2.11) is that the latter equation
has only a power of L linear in n on the RHS, while the former has additionally a
constant power of L and t as well. The structure of 〈M n〉c(L) makes it possible to
derive the behaviour of the moments as a function of L by induction: Starting with

3Finite size scaling is introduced a bit less ad hoc below.

8.2. MARKOV MATRIX APPROACH 

The propagator, now without the boundary condition φL,n=0,m = 0, is transla-
tionally invariant, φL,n,m = φL,n−m,0 . It can be constructed by FOURIER transforming
(8.44) using D̃ = 1 − 2D, so that

φ̃L+1,k = φ̃L,k(D(eik + e−ik − 2) + 1) (8.50)

where φ̃L,k =
∑∞

n=−∞ φL,n,0e
−ink. Therefore

φ̃L,k =
[
D(eik + e−ik) + D̃

]L
=

L∑

m=0

(
L

m

)
DmD̃L−m

m∑

l=0

(
m

l

)
eikle−ik(m−l) (8.51)

using φ̃L=0,k = 1 from φL=0,n,0 = δn,0. Transforming back via (1/(2π))
∫ π
−π dke

ikn

gives

φL,n,0 =
L∑

m=0

(
L

m

)
DmD̃L−m

m∑

l=0

(
m

l

)
δm−2l,n =

L∑

m=0

(
L

m

)(
m

m−n
2

)
DmD̃L−m (8.52)

where the second binomial is defined as 0 for odd or negative differences m− n and
for m− n > 2m.

There is, however, another way to find the same propagator in a more useful
form, namely by writing D̃ = p2 + q2 and D = pq again and therefore according to
(8.50)

φ̃L,k =
[
(peik/2 + qe−ik/2)(pe−ik/2 + qeik/2)

]L
(8.53)

which gives after a similar calculation as above

φL,n,0 =

L∑

m=0

(
L

m

)(
L

m− n

)
p2L−2m+nq2m−n (8.54)

For p = q = 1/2 this simplifies to the well known solution of the diffusion equation
on the lattice of (

2L

L+ n

)
2−2L (8.55)

using “VANDERMODE’s convolution” (Knuth, 1997)

L∑

m=0

(
L

m

)(
L

m− n

)
=

(
2L

L+ n

)
. (8.56)

Eq. (8.54) can now be plugged into (8.49) to give the full solution for Q̃′′
L,n. For a
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the homogenous boundary conditions, Q′′
L,n=0 = 0 and Q′′

L=0,n = 0. One defines

Q′′
L+1,n = SL+1,n + Q̃′′

L+1,n (8.45)

with

SL,n =
L−1∑

i=0

n2 − n+ 2in2 = −nL+ n2L2 (8.46)

which has the useful property SL+1,n−SL,n = −n+2n2L+n2 and SL,n+1 +SL,n−1 =

2SL,n + 2L2, so that

Q̃′′
L+1,n = 2D(L+ 1)2 + D̃Q̃′′

L,n +D(Q̃′′
L,n+1 + Q̃′′

L,n−1) . (8.47)

with a source term, which is now independent of n. The solution is therefore

Q̃′′
L,n =

L∑

l=1

2Dl2
∞∑

m=1

φL−l,n,m (8.48)

with the propagator φL,n,m obeying φL,n=0,m = 0 and the sources only being placed at
m ≥ 1, as the whole problem lives only at n ≥ 0 and for n = 0 the boundary condition
Q̃′′

L,n=0 = 0 applies (and (8.47) does not). It is not even necessary to construct this
propagator explicitly by a mirror charge trick. One simply discards those regions of
sources, which are cancelled by the mirror charge, as shown in Fig. 8.1. Therefore

Q̃′′
L,n =

L∑

l=1

2Dl2
2n∑

m=1

φL−l,n,m . (8.49)

(L, n)

L

n

2n

⊕

	

Figure 8.1: The “light cone” of the position marked as (L, n) contains positive and neg-
ative sources. However, the negative sources exactly cancel out some of the positive
ones.

2.2. MOMENTS AND DISTRIBUTIONS 

〈M〉c(L) = 〈M〉(L) one notes that all cumulants are sums of products of moments,
where each product has the same dimension, i.e. the same total power of M . Thus,
if 〈Mm〉(L) ∝ Lm∆′

holds for all m < n, this is also true for m = n because of (2.11).
Thus, there are amplitudes a′′n so that the moments obey

〈Mn〉(L) = Ln∆′
a′′n . (2.12)

The same argument cannot be repeated for the t-dependence of M in (2.8), because
of the presence of additional powers of L and t. Below we will see that this is what
makes it impossible to conclude that P(M) obeys so called “simple scaling” outside
the finite size scaling regime.

2.2.1.1 Universal scaling function: remarks

The scaling behaviour of the free energy can be expressed in a more formal way. The
singular part of the free energy of a finite system behaves around the critical point
like (Privman et al., 1991)

fs(t,H;L) = L−dY (KttL
1/ν ,KhHL

∆/ν) (2.13)

with two non-universal amplitudes Kt and Kh, which are often called “metric fac-
tors” (Privman and Fisher, 1984). The scaling function Y (x, y) is universal among
different models, but it depends on the boundary conditions and the geometric shape
of the system. This applies especially to finite size scaling at the critical point, where

lim
x→0

Y (x, y) = Y (0, y) (2.14)

removes one of the metric factors.

In the thermodynamic limit the free energy density converges to a universal func-
tion (Privman et al., 1991; Cardy, 1997)

Y (x, y) → xdνQ±(yx−∆) for x→ ±∞ , (2.15)

so that
lim

L→∞
fs(ξ,H;L) = Kξξ

−dQ̃±(K̃Hξ∆/ν) (2.16)
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now parametrised in ξ rather than t, to be compared to4 (2.15),

lim
t→0

fs(t,H;L) = lim
ξ→∞

fs(ξ,H;L) = L−dY (0,KhHL
∆/ν) (2.17)

Thus, Q̃± and Q± respectively (the two signs are for high temperature phase (+)
and low temperature phase (−) respectively) is observed in the thermodynamic limit
only, provided that the reduced temperature does not vanish before the limit is taken.
Most remarkably, Q± does not depend on any details of the finite system, like shape,
aspect ration, boundary conditions etc. One is therefore faced with two different no-
tions of universality: Universal finite size scaling, observed in the limit ξ/L→ ∞ and
parametrised by L, (2.17), which is blind to microscopic details (next nearest neigh-
bour interaction etc.) and a more general concept of universality, observed only in the
limit ξ/L→ 0 and parametrised by ξ, (2.16), which even ignores shapes etc. Even the
weak, first form of universality in finite size scaling is a meaningful, useful concept,
as it helps to identify universality classes and what supposedly determines them,
namely the fundamental properties, interactions and symmetries of the microscopic
dynamics or rules. Finite size scaling is the only scaling accessible to SOC.

2.3 Simple Scaling

As known from percolation (Stauffer and Aharony, 1994), where the cluster size dis-
tribution has a similar form, one says that a PDF P(M) obeys simple scaling if

P(M ;L, ξ) = aM−τG
(

M

M0(L)
,
L

ξ

)
for M >Ml (2.18)

where a is a non-universal constant (metric factor), Ml is the so-called “lower cutoff”,
ξ is the correlation length and L is the system size. The universal function5 G is called
the “scaling function” or “cutoff function”, as it effectively cuts off an integral overM
to an integral over a finite range of M -values. Usually, in a finite system all positive
moments exist6

∀n≥0

∫ ∞

0
dxxn−τG(x, y) = finite , (2.19)

4The re-parametrisation of t by ξ is, of course, incorrect; ξ diverges like t−ν only for H = 0, so
that formally, we have to do all derivations first, then set H = 0 and then re-parametrise t. Moreover,
formally t does not prevail over H as a tuning parameter, so that H could be re-parametrised by ξ at
t = 0 equally well. It is just far more established to re-parametrise t rather than H by ξ.

5G is a universal scaling function, dependent on the boundary conditions, shape, aspect ratio etc.,
which has two arguments; the H dependence of fs, (2.13) has been replaced by an M dependence.

6This is because a finite system can only produce finite “events”, so that all (positive) moments must
be finite as well. For the origin of this integral see (2.29) and (2.41).

8.2. MARKOV MATRIX APPROACH 

see (8.17). In the following, the notation

QL,n = QL,n(1; 0) (8.37a)

Q′
L,n =

d

dx

∣∣∣∣
x=1

QL,n(x; 0) , (8.37b)

etc. is used. One finds for n ≥ 1

QL+1,n = D̃QL,n +D(QL,n+1 +QL,n−1) (8.38)

which is solved with the boundary conditions introduced above by QL,n = 1. Of
course, this is just normalisation. Using this result the next derivative is

Q′
L+1,n = n+ D̃Q′

L,n +D(Q′
L,n+1 +Q′

L,n−1) (8.39)

with the boundary conditions Q′
L,n=0 = 0 and Q′

L=0,n = 0. The solution of (8.39) can
easily be guessed as

Q′
L,n = nL . (8.40)

This is not surprising, because it says that the average number of topplings occurring
in the system per n kicks is nL. That is obviously true, because every unit added
must leave the system by travelling through the entire lattice.

The next order is the first non-trivial one. The difference equation then reads

Q′′
L+1,n = (n2 + 2D)(2L + 1) − n+ D̃Q′′

L,n +D(Q′′
L,n+1 +Q′′

L,n−1) . (8.41)

The formal, general solution of the difference equation

Q′′
L+1,n = g(L+ 1, n) + D̃Q′′

L,n +D(Q′′
L,n+1 +Q′′

L,n−1) (8.42)

with a general source term g(L, n) with g(0, n) = 0 is

Q′′
L,n =

L∑

l=1

∞∑

m=−∞
g(l,m)φL−l,n,m , (8.43)

where the propagator φL,n,m obeys

φL+1,n,m = D̃φL,n,m +D(φL,n+1,m + φL,n−1,m) . (8.44)

with φL=0,n,m = δn,m and appropriate boundary conditions.

The source term (n2+2D)(2L+1)−n in (8.41) can be simplified without changing
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vectors. In fact, the limit must be identical to setting ε = 0 in (8.32), as can be shown
from (8.32) by induction in L.4 This finally gives

QL,1(x; 0) = (p2 + q2)xQL−1,1(x; 0) + pq(x2QL−1,2(x; 0) +QL−1,0(x; 0)) , (8.33)

whereQL−1,0(x; ε) = 1 by Eq. (8.16), consistent with Eq. (8.27). In fact, the calculation
above can be generalised to n ≥ 1:

QL,n(x; ε) =
2L−1−1∑

i=0

n∑

j=1

(
n

j

)
εn−j(xδλL−1,i)

j

× 〈0|i〉L−1 〈0|eλ(xλL−1,i)〉1 〈i|0〉L−1 〈eλ(xλL−1,i)|0〉1

+

2L−1∑

i=0

εn 〈0|i(x)〉L 〈i(x)|0〉L

(8.34)

Again, all sums can be written in terms of QL−1,n(x; ε) plus εn:

QL,n(x; ε) =

n∑

j=1

(
n

j

)
δjεn−j (8.35)

×
(
(p2 + q2)xjQL−1,j(x; ε) + pqxj+1QL−1,j+1(x; ε) + pqxj−1QL−1,j−1(x; ε)

)

+εn

For vanishing dissipation this simplifies to the central result

QL+1,n(x; 0) = xn
(
D̃QL,n(x; 0) +D(xQL,n+1(x; 0) + x−1QL,n−1(x; 0))

)
(8.36)

with D = pq and D̃ = p2 + q2 = 1 − 2D. Eq. (8.36) is closely related to a diffusion
equation. The boundary conditions are QL,0(x; ε) ≡ 1 for L ≥ 1 as mentioned above
and QL=0,n(x; ε) ≡ 1. The latter comes from a direct evaluation of (8.27) for L = 1,
which is identical to (8.35) for QL=0,n(x; ε) ≡ 1.

8.2.3 Solving QL,n

There is no general solution for (8.36) known to the author. However, one can solve
it order by order in derivatives by x at x = 1, i.e. calculate every individual moment,

4If limε→0QL−1,j(x; ε) = QL−1,j(x; 0) finite, then by (8.35) limε→0QL,j(x; ε) = QL,j(x; 0) finite for
finite x; the initial condition of the induction is given by the boundary conditions mentioned after (8.36).

2.3. SIMPLE SCALING 

so that the scaling function must decay faster than any power of its first argument,

∀n≥0 lim
x→∞

xn−τG(x, y) = 0 . (2.20)

For example, this is obeyed by G(x) = exp(−x). The fact that there are usually
two scaling functions, one for the high temperature phase and one for the low tem-
perature phase has been incorporated into G by displaying two shapes depending on
the sign of the correlation length, which is chosen according to the phase.

It is important to keep in mind that all following derivations are based on a lower
cutoff Ml being independent of L. Especially a lower cutoff which diverges in L and
therefore renders — in some sense — the entire distribution P(M) asymptotically
non-universal is not compatible with simple scaling.

The function M0(L) in Eq. (2.18) is called the cutoff or characteristic size. It in-
cludes another metric factor b, because one expects a scaling behaviour of the cutoff7

M0(L) = bLD (2.23)

At the critical point, (2.18) simplifies to

lim
ξ→±∞

P(M ;L, ξ) = aM−τG
(

M

M0(L)
, 0

)
for M >Ml (2.24)

with G(x, 0) being the finite size scaling function depending on shape, aspect ratio,
boundary conditions etc. In the context of SOC, often (2.24) alone is called “simple
scaling” rather than the full form (2.18). If the thermodynamic limit is taken first, one
expects

lim
L→∞

P(M ;L, ξ) = ãM−τ G̃
(

M

M̃0(ξ)

)
for M > M̃l (2.25)

where G̃ is universal, even independent of shapes, aspect ratios and boundary con-
ditions. The cutoff M̃0(ξ) of this scaling function is a function of ξ rather than L and

7By restricting M to the domain [0,∞[ and ignoring Ml one might note that the CGF of P(M ;L, ξ)
is

ln

�∞

0

dMP(M ;L, ξ)e−HM (2.21)

which is, up to some irrelevant pre-factors, apparently, (2.7), identical to Ldfs(ξ,H;L), now with ξ
instead of t, as in (2.16). Eqs. (2.18) and (2.18) then give together with (2.13)

ln

�

(bLD)1−τa

�

+ ln

�∞

0

dxG

�

x,
L

ξ

�

e−xHbLD

= Y

�

K′
ξ
L

ξ
,KhHL

∆/ν

�

(2.22)

so that 1−τ = 0 to remove the L dependence in the first term andD = ∆/ν to get the correct exponents
in the second argument of Y . This is confirmed by (2.30). However, note that Ml = 0 implies τ = 1, see
paragraphs after (2.48) and (2.54).
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has a new metric factor b̃ in
M̃0(ξ) = b̃ξD (2.26)

with the same exponent D as in (2.23).

Even though most results are unaffected by the fact that G̃(x) and G(x, 0) cannot
be expected to be the same, it is important to keep that in mind; finite size scaling
produces a single function G(x, 0), while critical scaling8 produces two scaling func-
tions depending on the sign of ξ. Especially, one cannot incorporate everything into a
single function G ′, with

P(M ;L, ξ) = aM−τG′(M/M ′
0(L,L/ξ)) (2.27)

even though one might generalise the cutoff itself to [(2.23) and (2.26)]

M0(L,L/ξ) =

{
bLD for L� ξ i.e. finite size scaling (2.28a)

b̃ξD for L� ξ i.e. critical scaling , (2.28b)

see the analogous forms (2.16) and (2.17) respectively.
It is very instructive to derive the behaviour of the moments from (2.18). All of the

following calculations are done for a statistical quantityM on the continuous interval
M ∈ [0,∞]. Generalisations to discrete quantities or quantities on another (infinite)
set are straight forward.

For the time being, the lower cutoff is assumed to vanish, so that one finds in the finite
size scaling regime

〈Mn〉(L) = a
(
bLD

)(1+n−τ)
∫ ∞

0
dxxn−τG(x) (2.29)

which can be compared to Eq. (2.12) to yield for ferromagnetic phase transitions

τ = 1 D = ∆′ =
∆

ν
. (2.30)

For this choice of exponents and with the other parameters obeying

abn
∫ ∞

0
dxxn−1G(x) = a′′n (2.31)

simple scaling, (2.18), describes the behaviour of the moments of the total magneti-
sation in the finite size scaling regime. Apart from the two parameters a and b, the
scaling function G(x) is fixed by the a′′n. Since the distribution P(M) is uniquely given
by the set of moments, simple scaling must be obeyed by the PDF, if the moments are

8“Critical scaling” refers to the behaviour away from the critical point, when the thermodynamic
limit is taken before T → Tc.

8.2. MARKOV MATRIX APPROACH 

obtained from
xi

d

dxi

∣∣∣∣
x1,...,xL=1

C(x1, x2, . . . , xL) = p− q (8.30)

Correspondingly, the connected two point correlation function of sites i and j is given
by

xi
d

dxi
xj

d

dxj

∣∣∣∣
x1,...,xL=1

C(x1, x2, . . . , xL) − (p− q)2 =

{
4pq for i = j (8.31a)

0 otherwise(8.31b)

This confirms the absence of correlations and is fully consistent with the expected
variance of the state.

8.2.2 The hierarchy of generating functions

Using (8.27), one can now calculate the generating function QL,n(x; ε), by plugging
the hierarchy of eigenvectors (8.21) and eigenvalues (8.22) into (8.27) and using the
properties of ⊗, see Eq. (8.4). For n = 1 it is

QL,1(x; ε) =
2L−1−1∑

i=0

xδλL−1,i 〈0|i〉L−1 〈0|eλ(xλL−1,i)〉1 × 〈i|0〉L−1 〈eλ(xλL−1,i)|0〉1

+

2L−1∑

i=0

ε 〈0|i(x)〉L 〈i(x)|0〉L

where the term proportional to ε comes from the ε in every λL,i (see Eq. (8.22)). From
(8.26) it is clear that the last sum gives 1. The two projections give

〈0|eλ(xλL−1,i)〉1 = xλL−1,ip+ q

〈eλ(xλL−1,i)|0〉1 =
p

xλL−1,i
+ q

so that

QL,1(x; ε) = ε+

2L−1−1∑

i=0

xδλL−1,i 〈0|i〉L−1 〈i|0〉L−1 (8.32)

×
(
p2 + q2 + pq

(
xλL−1,i +

1

xλL−1,i

))

= ε+ δ
(
(p2 + q2)xQL−1,1(x; ε)

+pq(x2QL−1,2(x; ε) +QL−1,0(x; ε))
)

where Eq. (8.27) has been used in the last line. Of course, the generating function
QL,n(x; ε) is defined, (8.16), for all ε and therefore one can take the limit ε → 0. This
limit should not cause any problems, as ε has only been used to construct the eigen-
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In the form (8.19) the operator can now be applied to a stationary distribution to give

QL,n(x; ε) =

2L−1∑

i=0

〈0|i(x)〉L λn
L,i 〈i(x)|0〉L (8.27)

8.2.1.1 The stationary distribution

From (8.21) the stationary distribution can be derived immediately. It is the eigen-
vector with eigenvalue 1 of OL(1). Setting x = 1 in (8.22) it is clear that λL,i = 1

requires a λL−1,j = 1, which, together with (8.24), gives the unique λL,0 = 1 provided
that ε < 1. If ε = 1, then all eigenvalues are 1, but still all eigenvectors are linearly
independent and therefore span the entire space, so that all initial distributions are
stationary. This is not surprising because ε = 1 simply means that any added particle
immediately dissipates from the system, so that adding a particle is in fact just the
identity operation.

For 0 ≤ ε < 1 the stationary distribution is unique3 and all other eigenvalues
have modulus less than 1. The eigenvector corresponding to eigenvalue λL,0 = 1 is,
according to (8.21),

〈0|L = 〈eλ(1)|⊗L = (1, 1)⊗L (8.28a)

|0〉L = |eλ(1)〉⊗L =

(
p

q

)⊗L

(8.28b)

which is consistent with the notation for the stationary distribution and the normal-
isation eigenvector introduced in (8.16) and (8.15). The last line, Eq. (8.28b), indi-
cates that the stationary state is a product measure, i.e. a state at one site does not
depend on the state on any other site. In fact the spatial correlation function of sites
{i1, i2, . . . } can easily be calculated by “dressing” the states of the sites by appropriate
powers of a variable xi, in order to obtain the generating function of the correlators.
The function

C(x1, x2, . . . , xL) = 〈0|L

(
px1

qx−1
1

)(
px2

qx−1
2

)
. . .

(
pxL

qx−1
L

)
=

L∏

i

(pxi + qx−1
i ) (8.29)

is the generating function of the state-correlators, where state 1 stands for z = 1 and
state −1 for z = 2. The states have the useful property that the joint contribution of
two sites is 1 if both sites are in the same state and −1 otherwise. The average state is

3for ε = 0 the eigenvectors do not span the entire space, but still the eigenvector with eigenvalue 1
can be constructed by (8.21) and is unique.

2.3. SIMPLE SCALING 

given by (2.29) and (2.31),

P(M ;L) = aM−1G(M/(bL∆′
)) (2.32)

There is a more general statement regarding Eq. (2.29). If there are n 6= k so that

〈
Mn

〉k
(L) ∝

〈
Mk
〉n

(L) (2.33)

and simple scaling in the form (2.29) applies, then (1 − τ)n = (1 − τ)k, i.e. τ = 1

and therefore 〈Mn〉(L) ∝ LDn which means that (2.33) is true for all k, n for which
the moments exist. However, a relation like (2.33) is indeed found for all equilibrium
phase transitions with a RUSHBROOKE and a JOSEPHSON scaling law, namely

〈M〉2 ∝ L−2β/ν+2d

〈
M2
〉
c

∝ Lγ/ν+d .

RUSHBROOKE implies −2β/ν + 2d = γ/ν + (α − 2)/ν + 2d and JOSEPHSON implies
γ/ν + (α − 2)/ν + 2d = γ/ν + d, so that 〈M〉2 ∝

〈
M2
〉
c

and therefore 〈M〉2 ∝
〈
M2
〉
,

leading to τ = 1 via (2.33). The fact that simple scaling with τ = 1 applies to the
order parameter in a ferromagnetic phase transition has already been pointed out by
AJI and GOLDENFELD (Aji and Goldenfeld, 2001) for the magnetisation density m.
In fact, its probability density P(m) is related to P(M) via P(m)dm = P(M(m))dM

where M(m) = mLd, leading to9

P(m;L) = am−1G(m/(bL−β/ν)) . (2.34)

It is worth noting that a scaling with τ = 1 implies that the distribution P(M)

can be made to collapse by rescaling by the average. Even more general, since for
τ = 1 the rescaled PDF P(M ;L)LD collapses for different L if plotted against M/LD ,
and 〈Mn〉1/n ∝ LD, any P(M ;L)〈Mn〉1/n plotted against M/

〈
Mk
〉1/k collapses for

any n, k (Koba et al., 1972; Nicolaides and Bruce, 1988; Botet and Płoszajczak, 2000)10 .
Vice versa, such a collapse uniquely indicates τ = 1. It is interesting to note, that a
finite BINDER-cumulant is only possible for τ = 1, because

〈
M4
〉
/
〈
M2
〉2 diverges for

all τ > 1. This is consistent with the fact that a non-convergent or vanishing BINDER-
cumulant usually indicates the breakdown of hyperscaling (in case of a vanishing
BINDER-cumulant it is the onset of Gaussian fluctuations). But exactly hyperscaling
has been used to prove that the exponent τ is equal to unity11.

9Eq. (2.9) and Eq. (2.30) give d−D = β/ν.
10Thanks to NICHOLAS MOLONEY for pointing out these references to me.
11Thanks to ANDREA GAMBASSI for interesting discussions about that point.
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Figure 2.1: The probability P(m;L) that the largest cluster in a two-dimensional (site)
percolation system at the critical point covers a fraction m of all sites in a system of
size L, plotted in the form P(m;L)m versus mLβ/ν for L = 300, 3000, 30000. Since m
is the order parameter, P(m;L) is expected to obey Eq. (2.34). That this is the case is
manifested in the fact that data from different system sizes collapse on a single curve.

2.3.1 Percolation

One might ask, why τ 6= 1 is found in the classical critical distribution function,
namely in percolation, which is a standard equilibrium critical phenomenon by the
mapping to the Potts model with q → 1 (Kunz and Wu, 1978).

First of all, in classical percolation, what is usually measured in a distribution
and characterised by an exponent τ is the overall cluster-size distribution, Pa(s), i.e.
the density of clusters of size s per unit volume. However, the order parameter in
percolation, i.e. the observable with respect to which RUSHBROOKE and JOSEPHSON

scaling apply, is the fraction covered by the largest cluster, m. As shown in Fig. 2.1
for two-dimensional percolation, the order parameter indeed obeys (2.34), because
P(m;L)m collapses (in the finite size scaling region) for different system sizes L to a
single function if plotted versus mLβ/ν , where β/ν = 5/48.

However, the distribution of the fraction covered by the largest cluster is of course
contained in the overall cluster size distribution. In fact, one would expect that the
largest clusters are those contained in the bump at the tail of the distribution. There-
fore, one expects that τ = 1 for Pa(s;L) as well.

This transpires to be true, provided that the correct representation Pa(s;L) is
used, namely one where P(m;L) becomes just a subset of it. Defining P̃a(s̃;L) to
be the average number of clusters covering a fraction s̃ = s/Ld of the entire system

8.2. MARKOV MATRIX APPROACH 

both with i = 0, 1, . . . , 2L−1 − 1. To start the hierarchy, one defines

|0〉1 = |eλ(x)〉 (8.23a)

〈0|1 = 〈eλ(x)| (8.23b)

|1〉1 = |eµ(x)〉 (8.23c)

〈1|1 = 〈eµ(x)| (8.23d)

and the eigenvalues as

λ1,0 = ε+ xδ (8.24a)

λ1,1 = ε (8.24b)

Now it is clear why the quantity εwas necessary: For ε = 0 all but one eigenvalues
vanish, which can be seen from the hierarchy of eigenvalues obtained by iterating
(8.22). Therefore, if the vanishing eigenvalue of L − 1 is plugged into 〈eλ| or 〈eµ|
according to (8.21), the result is undefined, as can be seen from (8.8), so that the bra-
eigenvectors cease to exist.

The fact that all but one eigenvalues vanish for ε = 0 is very deceptive. Assuming
that any initial condition |P 〉 can be written in terms of the eigenvectors of OL(1),
say

∑
ai |i〉, this suggests OL(1) |P 〉 = |0〉. This, however, is wrong, because for

vanishing ε the operator OL(x) cannot be written in the form (8.19) for L > 1. And it
must be wrong, because, for example, kicking an empty system once will not make it
produce the stationary distribution.

If the eigenvectors of OL−1 are linearly independent, then one can show, using
the construction (8.21), that the eigenvectors of OL are linearly independent as well,
provided that |eλ(xλL−1,i)〉 and |eµ(xλL−1,i)〉 are linearly independent. This is not
the case for ε = 0 (see the ket vectors in (8.8) with x = 0) and this is the basic reason
why ε 6= 0 is needed for the time being. However, for any ε 6= 0 one can apparently
construct a diagonalising matrix for OL. Thus, it can be written in the form (8.19).
Especially, the eigenvectors have the property (by induction)

〈i(x)|j(x)〉L = δi,j (8.25)

and as all 2L eigenvectors are linearly independent, they must span the whole space
so that

2L−1∑

i=0

|i〉L 〈i|L = 1 . (8.26)
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Moreover, QL,1(x; ε) is also the probability generating function

P (k) =
1

k!

dk

dxk

∣∣∣∣
x=0

QL,1(x; ε) , (8.18)

but this property is not used in the following.

The aim of the following calculations is to find the generating function QL,1(x; ε)

or at least the moments generated by it.

8.2.1 General eigenvectors and eigenvalues of OL(x)

It would be very helpful if OL(x) could be written in the form

OL(x) =
2L−1∑

i=0

|i(x)〉L λL,i 〈i(x)|L , (8.19)

where 〈i(x)|L denote the left hand and |i(x)〉L the right hand eigenvectors of OL(x)

with eigenvalues λi,L(x) and i = 0 . . . 2L − 1. A priori it is not clear whether these
vectors actually exist. In the following they are constructed and it is shown that
setting ε = 0 leads to fundamental problems.

Assuming that |i〉L−1 is an eigenvector with eigenvalue λL−1,i of OL−1(x), the
definition of OL(x), Eq. (8.10), gives for an arbitrary vector |e〉1

OL(x)
(
|e〉1 ⊗ |i〉L−1

)
=

{[
ε1+ δ

(
S + xTλL−1,i + x2

Uλ2
L−1,i

) ]
|e〉1

}
⊗|i〉L−1 (8.20)

where |e〉1 contains two elements such that |e〉1⊗|i〉L−1 is a vector of 2L elements. The
matrix in the curly brackets is simply O1(xλL−1,i). So, if |e〉1 is either |eλ(xλL−1,i)〉 or
|eµ(xλL−1,i)〉 from (8.8), then |e〉1⊗|i〉L−1 is an eigenvector of OL(x) with eigenvalues
ε+ δ(xλL−1,i) or ε. Thus, based on (8.8), one can write the eigenvectors of OL(x) as

|i〉L = |eλ(xλL−1,i)〉 ⊗ |i〉L−1 (8.21a)

〈i|L = 〈eλ(xλL−1,i)| ⊗ 〈i|L−1 (8.21b)
∣∣i+ 2L−1

〉
L

= |eµ(xλL−1,i)〉 ⊗ |i〉L−1 (8.21c)
〈
i+ 2L−1

∣∣
L

= 〈eµ(xλL−1,i)| ⊗ 〈i|L−1 (8.21d)

and the eigenvalues as

λL,i = ε+ xδλL−1,i (8.22a)

λL,i+2L−1 = ε (8.22b)

2.3. SIMPLE SCALING 

per realisation, one has
P̃a(s̃;L)ds̃ = LdPa(s;L)ds , (2.35)

where the factor Ld on the RHS is to bring up P(s;L) to an average number, rather
than a density. The distribution of the order parameter is contained in P̃a(s̃;L) as
the average number of the largest cluster to cover a particular fraction of the entire
system. From the behaviour of Pa(s;L) in the finite size scaling region

Pa(s;L) = as−τG(s/(bL1/(νσ))) (2.36)

with parameters a and b, exponents νσ = 48/91 obeying d − β/ν = 1/(νσ) from
hyperscaling and τ = 187/91 obeying τ − 1 = dνσ from other scaling laws (Stauffer
and Aharony, 1994) and a scaling function G, one has

P̃a(s̃;L) = L2dPa(s̃L
d;L) = aL2d

(
s̃Ld

)−τ
G(s̃/(bL−β/ν)) =

aL2d−τds̃−τ
(
b−1s̃Lβ/ν

)(ν/β)(dτ−2d)
G̃(s̃/(bL−β/ν)) =

ab1−τ s̃−1G̃(s̃/(bL−β/ν)) (2.37)

using a new scaling function G̃(x)xτ−1 = G(x) and the scaling laws cited above,
leading to (ν/β)d(τ − 2) = τ − 1. Thus, expressed in these units, the overall cluster
size distribution has τ = 1.

While this transformation looks a bit artificial, it becomes less so, if one writes
down the average number distribution of clusters of size s (rather than their density
per unit volume):

LdPa(s;L) = aLds−τG(s/(bL1/(νσ))) = ab−νσds−1G̃(s/(bL1/(νσ))) , (2.38)

where the power of L has been absorbed into a new scaling function G̃(x)xνσd = G(x)

and νσd = τ − 1 has been used. Fig. 2.2 shows such a number distribution for a site
percolation system in the form LdPa(s;L)s versus s/L1/(νσ). Of course, the average
number distribution is closely related to P̃a(s̃;L), as can be seen in (2.36).

2.3.2 Cumulants and lower cutoff

The reason why no conclusions can be drawn for τ of the distribution of the order
parameter away from the critical point12 is because of the inconvenient form of the
cumulants (2.8), which does not allow us to infer a behaviour like (2.12) for the mo-
ments. It is therefore very interesting to see how the cumulants of a distribution obey-

12Apart from has been said in footnote 7 on page 79.
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Figure 2.2: The number distribution, i.e. average number per realisation, LdPa(m;L)
of clusters of size s for various system sizes (L = 300, 3000, 30000), plotted in the col-
lapsing form LdPa(m;L)s versus s/L91/48 . The data are binned and shown in a double-
logarithmic plot. The collapse confirms Eq. (2.38).

ing simple scaling look like.

Before the cumulant generating function is calculated, a non-vanishing lower cut-
off is introduced. Later in this section it will become clear why this is necessary. For
the time being, it is only noted that the general form of a PDF obeying simple scaling,
(2.18), is

P(M ;L, ξ) =




aM−τG

(
M

M0(L)
,
L

ξ

)
for M >Ml (2.39a)

f(M ;L, ξ) otherwise (2.39b)

There is some crossover behaviour in the region ofM ≈Ml, which could in principle
be captured by the function f(M ;L, ξ). However, for simplicity, in the following the
(non-universal) function f(M ;L, ξ), which describes the behaviour of the distribu-
tion for small arguments, will be assumed to dependent only on M . In the two limits
as discussed above in (2.24) and (2.25), the same behaviour is of course expected
again in (2.39) for M > Ml. In the following, M0(L) and M̃0(ξ) are both referred to
by M0 alone. The same applies to G(x), which either refers to G(x, 0) as in (2.24) or to
G̃(x) as in (2.25). See, however, the remarks around (2.27).

Apparently one can split the integration for 〈M n〉 into two parts, one for small
M <Ml, one for large M >Ml. Defining

fn =

∫ Ml

0
dM Mnf(M) (2.40)

8.2. MARKOV MATRIX APPROACH 

The distribution of states at time t is the vector |Pt〉L, which has rank 2L, each
row corresponding to the probability for the system to be in the state encoded by that
row. The encoding follows from the row ordering convention introduced above and
the use of the tensor product in (8.10). For example, for L = 2, the four rows encode
the following four states: 



11

12

21

22



. (8.13)

For x = 1 the operator OL(x) is simply the MARKOV matrix acting on |Pt〉L, produc-
ing the distribution of states at time t+ 1 (van Kampen, 1992)

|Pt+1〉L = OL(1) |Pt〉L . (8.14)

There exists at least one eigenvector with eigenvalue 1, which is therefore a stationary
distribution, see Sec. 5.3, page 225. If the eigenvectors represent a complete basis and
the modulus of all other eigenvalues is less than unity, this stationary distribution is
unique and reached by any initial distribution. The stationary distribution, denoted
|0〉L, is the focus of the following calculations. It is shown below that it is unique.

One very important bra-eigenvector with eigenvalue 1 of OL(x = 1) is

〈0|L ≡ (1, 1, . . . , 1︸ ︷︷ ︸
2L times

) (8.15)

by normalisation. As has been indicated above, for general x, the operator OL(x)

becomes a moment generating function of the avalanche size, if sandwiched between
〈0|L and the stationary distribution:

QL,n(x; ε) ≡ 〈0|L O
n
L(x) |0〉L (8.16)

This can be seen from (8.10) containing an x for every toppling. When the operator
acts on a distribution, for each transition from one state to another a power of x cor-
responding to the number of topplings enters and is multiplied by the probability to
be in the initial state (given by the initial distribution) and the transition probabil-
ity given by the transition matrix. The function QL,n(x; ε) for general n is then the
generating function for avalanches caused by n = 1, 2, . . . initial kicks. In particular

〈sm〉L =

(
x
d

dx

)m∣∣∣∣
x=1

QL,1(x; ε) . (8.17)
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vectors are normalised such that

〈ea|eb〉 = δa,b (8.9)

with δa,b denoting the KRONECKER delta-function.2 In order to distinguish vectors
of different size, in the following they are often marked with an index L to indicate a
size 2L.

OL(x) is the operator which adds a unit on site i = 1 and relaxes the entire lattice
of size L. It is a matrix of size 2L × 2L and defined as

OL(x) = ε1⊗L + δ
(
S ⊗ 1

⊗(L−1) + xT ⊗OL−1(x) + x2
U ⊗O

2
L−1(x)

)
(8.10)

again with a dissipation rate ε, leaving the state unchanged. The bracket multiplied
by δ consists of three terms: The first term charges the site without toppling and
leaves the rest of the system unchanged by operating with the identity 1

⊗(L−1). The
second term corresponds to a single toppling, which charges the remaining system
of size L− 1 once. This term is derived using the identity

(
T ⊗ 1

⊗(L−1)
)

(1 ⊗OL−1(x)) = T ⊗OL−1(x) . (8.11)

The third term is a double toppling of the site, giving rise to a double charge of the
remaining system.

The Abelian property mentioned above (Sec. 8.1.2) can be expressed as the com-
mutator for two charges on a system of size L, one at site i = 1, the other one at site
1 +L−L′ with L′ being the size of the subsystem starting from the site receiving the
second charge,

OL(x)
(
1
⊗(L−L′) ⊗OL′(x)

)
=
(
1
⊗(L−L′) ⊗OL′(x)

)
OL(x) (8.12)

where of course L ≥ L′. The tensor multiplication used on OL′ and also in (8.11) en-
sures that both matrices have the same rank; they are “filled with identity” where
they do not act. Eq. (8.12) simply states that it does not matter for the statistics
whether the leftmost site of a right subsystem of size L′ in a system of size L is
charged first, followed by the leftmost site of the entire system, or vice versa. Due to
the asymmetry in the dynamics, it is clear that a system of size L, initially charged at
site i, has the same statistics as a system of size L− i+ 1, charged at its leftmost site.
It might be interesting, however, to formally prove Eq. (8.12), which should be easily
feasible using established methods (Meester et al., 2001; Dhar, 1999c).

2Of course, on the KRONECKER function the a and b are meant to be symbols rather than values, i.e.
δµ,λ = 0, even if x = 0 so that µ = λ = ε.

2.3. SIMPLE SCALING 

one has
〈Mn〉 = fn + aM1+n−τ

0

∫ ∞

Ml/M0

dx xn−τG(x) . (2.41)

To determine the asymptotic behaviour of the moment, one splits the remaining in-
tegral in two parts, defining a threshold y, below which G(x) can be expanded up to
finite order to satisfying accuracy. This is the crucial assumption for the following
calculations: G(x) is analytic around x = 0. Defining

q∞n (y) =

∫ ∞

y
dx xn−τG(x) (2.42)

q1n(Ml/M0, y) =

∫ y

Ml/M0

dx xn−τG(x) (2.43)

for fixed y one has

〈Mn〉 = fn + aM1+n−τ
0

(
q∞n (y) + q1

n(Ml/M0, y)
)

(2.44)

where q1
n can be expanded like

q1n(Ml/M0, y) =
1

1 + n− τ

(
y1+n−τ −

(
Ml

M0

)1+n−τ
)
G(0) (2.45)

+
1

2 + n− τ

(
y2+n−τ −

(
Ml

M0

)2+n−τ
)
G′(0)

+ . . .

for any 1 + n− τ 6= 0. The special case n = τ − 1 is simply

〈
M τ−1

〉
= fτ−1 + aq∞τ−1(y) + a

∫ y

Ml/M0

dx x−1G(x) (2.46)

where the integral q∞τ−1(y) exists and is finite for all y > 0, as G(x) is finite everywhere,
it even decays fast enough such that all its moments exist, see (2.19).13 Expanding
G(x) again around x = 0, the rightmost integral in (2.46) is

∫ y

Ml/M0

dx x−1G(x) =

(
ln(y) − ln

(
Ml

M0

))
G(0) +

(
y − Ml

M0

)
G′(0) + . . . (2.47)

which is asymptotically (in divergent M0) logarithmically divergent for G(0) 6= 0

and convergent for G(0) = 0; there is no other “counter-divergence” for example in
q∞τ−1(y), the value of which depends only on y, which can be hold fixed. The case

13For y > 0 the integral (2.42) could diverge only if G(x) would diverge at some finite value x or if it
would not converge because of the upper bound. The latter, however, cannot be the case if all moments
exist, (2.19). Problems at the lower bound are not important provided that y > 0.
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n = τ − 1 is particularly important for τ = 1, because it represents the normalisation.
This is the first fundamental result of this section: If simple scaling in the form (2.39)
applies and τ = 1, then G(0) = 0, otherwise the distribution cannot be normalised; of
course that does not entail P(0) to vanish in case of τ = 1, in fact it does not if G(x) is
linear in x for small arguments.

The leading order for divergent M0 in the case of 1 − τ + n < 0 is according to
(2.44) and (2.45)

〈Mn〉 = fn − a
M1+n−τ

l

1 + n− τ
G(0) + . . . (2.48)

where all terms hidden in . . . vanish as M0 diverges. For n = 0 this result implies
Ml > 0 if τ > 1 and G(0) 6= 0, otherwise the distribution cannot be normalised.14 Of
course the opposite does not hold: τ = 1 does not imply Ml = 0.

Similarly for 1 − τ + n > 0; the leading term of the result reads

〈Mn〉 = aM1+n−τ
0

(
q∞n +

y1+n−τG(0)

1 + n− τ
+
y2+n−τG′(0)
2 + n− τ

+ . . .

)
(2.49)

where the dots now include further terms which are not asymptotically vanishing
in M0, but can be prepared so by choosing smaller and smaller y as M0 increases.
Moreover all powers of y are contained in the lower boundary of the integral q∞n (y),
see (2.42). In fact, since fn and Ml become asymptotically irrelevant, one has

〈Mn〉 = aM1+n−τ
0 gn (2.50)

where
gn ≡

∫ ∞

0
dx xn−τG(x) . (2.51)

Thus, all moments n > τ − 1 diverge with divergent M0. For n = 0 Eq. (2.49) would
imply a divergent normalisation if τ < 1, which is therefore impossible.15

Thus, there are only two relevant cases: The marginal case τ = 1 as found for the
order parameter in ferromagnetic phase transitions and which entails G(0) = 0. The
general case is τ > 1 and it is abundantly found in SOC; as seen above, such a value
of τ necessarily requires Ml > 0, if G(0) 6= 0.

All results have been derived as asymptotes for divergent M0. This is of course
especially applicable for divergent L in the finite size scaling region or divergent ξ in
the critical region away from the critical point, if the thermodynamic limit has been
taken first. In these cases one can simply replace M0 by bLD or b̃ξD, see (2.23) and

14Clearly, a negative lower cutoff makes sense only if the distribution P(M) is defined for negative
arguments.

15The crucial point is that τ < 1 would make the normalisation divergent in the large M region.
Moreover, to avoid asymptotic violation of

�

M2

�

≥ 〈M〉2 one needs D(3 − τ ) ≥ 2D(2 − τ ) so that
τ ≥ 1 for any D > 0.

8.2. MARKOV MATRIX APPROACH 

where � stands for the appropriate operator: it is a matrix multiplication if A, B,
A′ and B′ are matrices, it is a multiplication of a matrix and a vector if A and B are
matrices and A′ and B′ are vectors or vice versa, or it is an inner product if they are
all vectors. In particular, in the latter case it is

(a⊗ b)(a′ ⊗ b′) = (aa′)(bb′) . (8.5)

First, we consider a single site system, which can be in exactly two states, so that
its distribution of states can be represented by a two-row vector. By convention, the
upper row corresponds to z = 1 and the lower row to z = 2. Three matrices are
introduced, corresponding to the three possible outcomes of a single initial charge.

The matrix S corresponds to a unit being absorbed, i.e. the site is in state z1 =

1 and zc
1 = 2, which occurs with probability q. After the charge, the system is in

state zi = 2. Similarly, T corresponds to a single toppling due to the charge and U

corresponds to a double toppling:

S =

(
0 0

q 0

)
T =

(
p 0

0 q

)
U =

(
0 p

0 0

)
(8.6)

In the following, the aim is to find an expression for the moment generating function
of the avalanche size distribution. To this end, each matrix is multiplied by an ap-
propriate power of x, so that evaluating at x = 1 gives the usual MARKOV matrix of
this process, and deriving by x before evaluating at x = 1 multiplies each process by
the number of topplings occurring in it, and similarly for higher order moments (van
Kampen, 1992).

It will be motivated only a posteriori that a dissipation process is required, say
with probability 0 ≤ ε ≤ 1; this process corresponds to charging without changing
the state, i.e. an identity operation 1, the latter being the 2 × 2 identity matrix. The
resulting single site operator is therefore

O1(x) = ε1 + δ
(
S + xT + x2

U
)

=

(
ε+ xδp x2δp

δq ε+ xδq

)
(8.7)

with δ ≡ 1 − ε. The eigenvectors and eigenvalues of this matrix are found to be

〈eλ(x)| =

(
1

x
, 1

)
|eλ(x)〉 =

(
xp

q

)
λ = ε+ xδ (8.8a)

〈eµ(x)| =
(
− q

x
, p
)

|eµ(x)〉 =

(
−x
1

)
µ = ε (8.8b)

where O1 acts on bra-vectors 〈| from the right and on ket-vectors |〉 from the left. The
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The time series of avalanches, s(t), itself is not Markovian,1 while the sequence of
stable configurations of the system, given by the vector (z1, z2, · · · , zL), is. Since two
consecutive stable configurations are not necessarily linked by a unique sequence
of topplings (however, see Sec. 8.3, page 331, especially at the end, page 333), the
sequence of avalanche sizes is not uniquely determined by the sequence of config-
urations. Nevertheless, in the form of a generating function this ambiguity can be
built into the MARKOV matrix operating on the distribution vector of configurations,
so that the avalanche size distribution can be determined by means of this specially
prepared MARKOV matrix.

8.1.2 Abelian property

Put simply, if a model is Abelian (Dhar, 1999c), it means that the order of updates is
irrelevant for its statistical properties. It is exceptionally simple to see this property
here: Firstly, for an individual site there is no difference between a certain number
of charges arriving at once or arriving sequentially. Secondly, if a site topples, it
pours particles on its right neighbour, but it will never receive anything back from
the neighbour. So, if a site at z = 1 has received 3 units, it topples at least twice, but
for this site it does not make any difference whether it first moves one unit over to
the right neighbour and waits until all sites to its right have relaxed, or whether it
moves all units at once, 2 with probability q ≡ 1 − p (namely the probability to have
zc
i = 2 after the second toppling) and 3 with probability p.

In this informal sense, the Abelian property allows the updating to run from left
to right, completely relaxing each site during a sweep. If there is no toppling on
site i, the avalanche has stopped and sites j > i do not need to be checked for the
toppling condition zj > zc

j at all. This procedure makes very efficient Monte Carlo
simulations possible. Moreover, it defines an activity ai, which is the total number of
charges received at site i during an avalanche. The activity will be used in Sec. 8.3.

8.2 MARKOV Matrix Approach

The tensor product ⊗ used here is explained in detail in (Hinrichsen, 2000). In partic-
ular it has the property (provided that A, B, A′ and B′ have appropriate ranks)

(A⊗B) � (A′ ⊗B′) = (A�A′) ⊗ (B �B′) (8.4)

1Because the conditional probabilities to obtain avalanche sizes si at times ti do not obey the
MARKOV property

P (sn, tn|s1, t1; s2, t2; . . . ; sn−1, tn−1) = P (sn, tn|sn−1, tn−1) ,

where t1 < t2 < · · · < tn, see (van Kampen, 1992).
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(2.26), respectively.

The case τ = 1 implies 〈M〉 ∝ M0. Therefore, the confusion of the average with
the characteristic size does not cause any trouble in equilibrium critical phenomena.
However, when τ > 1, it is highly important to distinguish average and cutoff (or
characteristic size).

2.3.2.1 Cumulant generating function

Along the lines of the calculations above, one can now compute the cumulant gen-
erating function of P(M ;L, ξ). To this end the characteristic function (van Kampen,
1992) has to be calculated, which boils down to

P̂(z;L, ξ) ≡
∫ ∞

0
dM ezMP(M ;L, ξ) (2.52a)

=

∫ Ml

0
dM ezMf(M) (2.52b)

+aM1−τ
0

(∫ ∞

y
dx ezM0xx−τG(x) +

∫ y

Ml/M0

dx ezM0xx−τG(x)

)

In this form it becomes particularly clear why Ml > 0 for τ > 1: if Ml = 0, then the
first integral vanishes and the two integrals in the brackets can be merged to a single
integral, producing a result, which only depends on the product xM0, say

P̂(z;L, ξ) = aM 1−τ
0

∫ ∞

0
dx ezM0xx−τG(x) = aM 1−τ

0 Ĝ(zM0) . (2.53)

Taking the logarithm of this equation gives an expression which depends on τ only
implicitly via Ĝ(zM0); in fact one gets

〈Mn〉c = Mn
0 cn (2.54)

with some constants cn, implying a scaling like in (2.33), as discussed in sec. 2.3 and
therefore τ = 1. Hence, again [see after (2.48)], Ml = 0 implies τ = 1 or no scaling at
all. See also footnote 7 on page 79.

With Ml > 0 the resulting CGF is more complicated; defining

f̂(z) =

∫ Ml

0
dM ezMf(M) (2.55a)

Ĝ(z) =

∫ ∞

y
dx ezM0xx−τG(x) (2.55b)

Ĥ(z,Ml/M0) =

∫ y

Ml/M0

dx ezM0xx−τG(x) (2.55c)
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one can write ln(P̂(z)) in the form

ln(P̂(z)) = ln(f̂(z)) + ln

[
1 + aM1−τ

0

(
Ĝ(z)

f̂(z)
+

Ĥ(z,Ml/M0)

f̂(z)

)]
(2.56)

which, in general, does not give a simple form of scaling for the cumulants 〈M n〉c.
That finally settles the discussions about the difference between (2.8) and (2.11) in
sec. 2.2.1: either τ = 1, but then (2.54) applies which is different from (2.8) (critical
scaling) but fits (2.11) (finite size scaling) perfectly. Or τ > 1 but then simple scaling
does not imply any simple form of the cumulants, especially not (2.8). It remains
unclear how to characterise the PDF for a cumulant scaling like (2.8); apparently itOpen

question is not compatible to simple scaling of the form (2.39) with Ml = 0, because then (2.8)
would be of the form (2.54).

2.3.2.2 Corrections to scaling

From equilibrium critical phenomena, one is used to the idea that scaling forms like
Eq. (2.39) usually contain sub-leading corrections, as famously shown by WEGNER

(Wegner, 1972). As will be shown below, these corrections are expected to be less
important as the system size is increased. Maybe for that reason, these “finite size
corrections” are sometimes confused with “finite size scaling”.

The numerical techniques discussed in the next section will mainly focus on sin-
gle moments. Thus, the main interest in corrections to scaling is for their effect to
the scaling of moments, not so much for the way they change the scaling form (2.39)
itself.

From Eq. (2.45) it is already clear that sub-leading terms will always enter at least
in the form

〈Mn〉 =

{
a0 + a′0M

1+n−τ
0 + a1M

−1
0 + a2M

−2
0 . . . for 1 + n− τ < 0 (2.57a)

b0M
1+n−τ
0 + b0 + +b1M

−1
0 + b2M

−2
0 . . . for 1 + n− τ > 0 (2.57b)

with constants a(′)
n and bn. The seemingly paradox situation, that the 0th moment can-

not have any corrections while it acquires some in the general form (2.39) is resolved
by noting that there is a crossover behaviour around Ml and there are indeed WEG-
NER’s corrections to scaling. Thus, in general, one expects the scaling for 1+n−τ > 0

to be of the form (Landau and Binder, 2000)

〈Mn〉 = M1+n−τ
0 (c0 + c1M

−ω1
0 + c2M

−ω2
0 + . . . ) (2.58)

with constants cn and 0 < ω1 < ω2 < . . . ; these powers are sometimes called “con-
fluent singularities” (Privman et al., 1991).

8.1. INTRODUCTION 

new zc
i is chosen at random from {1, 2}, where zc

i = 1 is chosen with probability
p and zc

i = 2 otherwise.

3. Repeat the second step until zi ≤ zc
i (“stable”) everywhere. Then proceed with

the first step.

During toppling, the right neighbour is charged of course only if it actually exists, i.e.
j ≤ L, otherwise the toppling site i relaxes without charging another site, so that a
unit leaves the system. Apart from this boundary condition, the TAOM differs from
the original Oslo model (Christensen et al., 1996) in redistributing only a unit to the
right, rather than one to each side.

It is important to note that the value of zc
i is determined only after a site has dis-

charged. Thus, if a stable site i is in state zi = 1, its value of zc
i could be randomly

chosen in the moment when it is needed, i.e. when the site is charged again. If a stable
site i is in state zi = 2, then zc

i has necessarily the value 2. When this site is charged,
it will relax to zi = 2 again and a new random zc

i is drawn. If that is zc
i = 1, then the

site topples again and ends up in state zi = 1, otherwise it remains in state zi = 2.

If all sites are stable, i.e. zi ≤ zc
i for all i ∈ [1, L], a configuration is fully described

by the values of the zi alone; if zi = 2 then zc
i = 2, otherwise zc

i is random and has
not yet been used in the dynamics.

The number of times the second rule is applied, that is the number of topplings,
is the avalanche size s. The fundamental observable one is interested in is the proba-
bility density function of these sizes, P (s), which is expected to obey simple scaling
(see Sec. 2.3, page 78) above a fixed lower cutoff sl,

P (s) = as−τG(s/s0) , (8.1)

with s0 = bLD, G the universal finite-size scaling function, and metric factors a and b
(Privman and Fisher, 1984). Eq. (8.1) is the definition of the two exponents τ and D. It
entails that the moments 〈sn〉 of P (s) behave like (Eq. (2.57), page 88)

〈sn〉 = a(bLD)1+n−τ gn for 1 + n− τ > 0 (8.2)

with universal amplitudes gn (Sec. 2.3.3.1, page 90, and Sec. 2.4.5, page 102). Thus,
assuming (8.1) one can derive τ and D from the behaviour of any two moments.
Below, the exponents γn from 〈sn〉 ∝ Lγn will be used; Eq. (8.2) therefore means

γn = D(1 + n− τ) . (8.3)
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and deviations from the expected behaviour.

Some models, however, show all features one would expect from a “self-
organised critical” system: Consistent exponents and scaling, universality, crossover
between different classes etc. One of these models is the so-called Oslo model (Chris-
tensen et al., 1996), which was motivated by an experiment (Frette et al., 1996). In
the preceeding chapter, it has been shown that any (small) amount of anisotropy will
drive this model eventually (in the thermodynamic limit) towards another “fixed
point”, which is represented by the “totally asymmetric Oslo model” (TAOM). As
shown here, this model is solvable directly on the lattice without making any scaling
assumptions. Consequently, it is not only possible to derive exponents, but also to
calculate amplitudes of the moments of the relevant observable.

The TAOM is totally asymmetric in the sense that particles can move in one di-
rection only, similar to the totally asymmetric exclusion process (TASEP) (Derrida
et al., 1992, 1993). The TASEP has been solved using a matrix product state ansatz
(Derrida et al., 1993; Derrida and Evans, 1997), so that it seems reasonable to apply
similar techniques to the present model. However, there is a crucial difference be-
tween these two stochastic processes: The relevant observables in the TASEP exist
on a microscopic timescale, i.e. there is an intrinsic timescale in the time-evolution of
the microstate of the system. In contrast, in the TAOM the relevant observables are
obtained by any dynamics which comply with a certain set of rules. In that sense, the
specific (microscopic) dynamics of the TAOM are irrelevant. This is reflected in its
theoretical treatment, in that the TASEP is updated homogeneously (all sites evolve
equally) but the TAOM is perturbed once and is only observed after it is fully relaxed
(separation of time-scales).

In the following, the model is defined in terms of rules on a lattice. Using a
MARKOV matrix approach it is then solved and exponents and amplitudes derived.
After mapping it to a reaction-diffusion process as well as various other processes, a
more accessible continuum theory is described.

8.1.1 The model

The model is defined on a one-dimensional lattice of size L, where each site i =

1, 2, . . . , L has assigned a slope zi ∈ {1, 2} and a critical slope zc
i ∈ {1, 2}. From a flat

initial configuration zi ≡ 1 and zc
i random, where zc

i = 1 is chosen with probability p
and zc

i = 2 otherwise, the model evolves according to the following rules:

1. (Driving) Increase z1 by one unit (“initial kick”).

2. (Toppling) If there is an i where zi > zc
i , decrease zi by 1 unit, zi → zi − 1, and

increase the right nearest neighbour j = i + 1 by 1, zj → zj + 1 (charging). A
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(rescaled)

Figure 2.3: Comparison of the scaling function of the original and the continuous Oslo
model (see chapter 5). The scaling function is obtained by multiplying the PDF (distri-
bution of the avalanche sizes s) by an appropriate power of s, in this case τ = 1.555 . . . .
One can clearly see the onset of the actual scaling behaviour and the presumably non-
universal behaviour of the distribution below the lower cutoff.

Most remarkably, the insight that corrections to scaling of the WEGNER type are
necessary in order to explain the scaling behaviour of the moments of the avalanche
size distribution in the DS-FFM, has been celebrated in an article by PASTOR-
SATORRAS and VESPIGNANI (Pastor-Satorras and Vespignani, 2000a), ignoring many
of the details discussed above. It is worth stressing that a scaling form (2.58) is what
is usually expected in equilibrium critical phenomena on textbook level (Landau and
Binder, 2000).

2.3.3 Scaling function

One of the most appealing features of critical phenomena is universality. Universality
was almost completely empty, if that just meant that exponents are the same; the way
to decide that two seemingly different models belong to the same universality class
is by finding the same (independent) exponents. But universality means that even
more critical properties are identical, most prominently the scaling function (G(x) in
(2.18)), which encodes the universal moment ratios.

Up to constants, the scaling function can be obtained by multiplying the PDF
P(M) with the appropriate power of its argument. Fig. 2.3 shows the so-produced
scaling function of the original Oslo model (see chapter 5) together with a continuous
variant (see Sec. 5.2.1.2). The observable is the avalanche size s, the exponent τ is
≈ 1.555 . . . . The data of the continuous model is for technical reasons much noisier
than the data for the original model. For the continuous model, ordinate and abscissa
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have been rescaled to accommodate for different non-universal constants a and b as
introduced in (2.18).

These two constants, or metric factors, a and b, are two non-universal degrees of
freedom, which could in principle be absorbed into the scaling function G(x), even
though one certainly want the scaling function to be dimensionless. However, ab-
sorbing the constants would render the scaling function non-universal. The idea is
to impose two size and system independent properties on the scaling function to fix
the two metric factors. These two properties must be chosen such that scaling func-
tions obtained in different systems or at different system sizes collapse if there is any
choice of a and b which would do the job. One obvious choice is to fix the absolute
maximum of the scaling function to sit exactly at x = 1 and y = 1. However, some
scaling function obtain their maximum at x → 0, for example the scaling function of
one-dimensional percolation exp(−x).

As will be shown below, a very useful choice is to impose

g1 =

∫ ∞

0
x1−τG(x) = 1 (2.59a)

g2 =

∫ ∞

0
x2−τG(x) = 1 , (2.59b)

for 2 > τ ≥ 1, where gn have been defined in (2.51). It is important to realise that
these conditions can always be met, i.e. if there is a scaling function G(x) given by
imposing whatever conditions to fix a and b, there is a choice of a′ and b′ such that
G′(x) = a′G(b′x) and G′(x) obeys (2.59). In fact, this is almost a trivial statement,
assuming that the two integrals

∫∞
0 x1−τG(x) = g1 and

∫∞
0 x2−τG(x) = g2 actually

exist, as they have to if the corresponding moments exist. In that case, one easily
shows that the choice b′ = g2/g1 and a′ = b′2−τ/g1 leads to G ′(x) obeying (2.59).

2.3.3.1 Universal moment ratios

Based on (2.50), which is valid for n > τ − 1, and (2.59) one can easily show that16

〈Mn〉〈M〉n−2

〈M2〉n−1 = gn (2.60)

16In the presence of a free energy f obeying (2.5) and (2.13), already ratios like

�

M2n

�

/

�

M2

�

n

are universal in the finite size scaling regime, since the moments are polynomials of derivatives of
f, ∂mf/∂Hm, each of which having an appropriate power of the metric factor Kh in front of it,
Eq. (2.13). These metric factor are the only non-universal quantities and cancel in an expression like

�

M2n

�

/

�

M2

�

n. Of course, similar conclusions cannot be drawn if the thermodynamic limit is taken
before t → 0, where the cumulants obey (2.8), because in that case the moments are not just simple
polynomials of the cumulants, see the comment at the end of sec. 2.2.1. Also, this conclusion cannot be
reached by just putting τ = 1 in (2.61) according to (2.30), because of the remaining power of a.

Chapter 8

Exact Solution of the Totally
Asymmetric Oslo Model

It has been found that a totally asymmetric variant of the Oslo model (Christensen
et al., 1996) represents the entire universality class of the Oslo model with anisotropy
[Sec. 7.1, page 279, and (Pruessner and Jensen, 2003a)]. The totally asymmetric
model can be solved without scaling assumptions by finding the eigenvectors of the
MARKOV matrix recursively, which can then be suitably modified to produce the
moment generating function of the relevant observable. This method, the details of
which are presented in this chapter, should be applicable to many other stochastic
processes. The notation, as well as the general concept, is closely related to the oper-
ator approach introduced for the Oslo model in Sec. 5.3, page 225.

8.1 Introduction

Self-organised criticality (SOC) was originally introduced (Bak et al., 1987) as an ap-
proach to understand 1/f -noise as well as the apparent abundance of power laws in
nature, which is generally accepted as the sign of scale-invariance. The idea is that
under very general circumstances driven stochastic processes develop into a scale-
invariant state without the explicit tuning of parameters, contrary to what one would
expect from equilibrium critical phenomena (Stanley, 1971).

A very large zoo of SOC models has been developed (Jensen, 1998), with each
model having certain special features. However, based on large scale numerical sim-
ulations it has become increasingly clear that many of the models formerly thought
of as representatives of entire universality classes or even paradigms for a specific
type of model, are either not scale-invariant or at least do not follow simple scaling
[Chapter 4 and (Boulter and Miller, 2003; Grassberger, 2002; Pruessner and Jensen,
2002a; Datta et al., 2000)]. In fact, models of SOC are notorious for slow convergence


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with gn defined in (2.51), which is universal as G(x) is so. It is worth noting that (2.59)
has only been used to identify the RHS of Eq. (2.60) and therefore its universality.
However, g1 = g2 = 1 is not needed to actually compute the LHS of Eq. (2.60) from
numerics. As one easily checks by evaluating at n = 1 and n = 2, (2.60) is compatible
with g1 = g2 = 1.

Eq. (2.60) is just one choice of a general way to construct universal moment ratios.
Defining

µn,m ≡ 〈Mn〉
〈Mm〉n/m

=
(
a(bM0)

1−τ
)1−n/m gn

g
n/m
m

(2.61)

any ratio µn,m/µ
q
k,l is universal provided that (1 − k/l)q = 1 − n/m. Eq. (2.60) corre-

sponds to m = 2, k = 1, l = 2 and q = 2 − n. It is worth noting that n does not need
to be integer valued, so that gm+τ is proportional the mth moment (instead of m− τ )
of G(x) (2.51), m ∈ N.

For τ ≥ 2, (2.60) breaks down, because (2.50) does not apply for n = 1. Neverthe-
less, similar expressions can be found via (2.61).

The case τ = 1 deserves special attention, not least because universal moment ra-
tios17 are well-established [for example (Salas and Sokal, 2000)] in equilibrium critical
phenomena (at least in finite size scaling). Again, based on (2.50) one has

〈Mn〉
〈M2〉n/2

= a1−n/2gn (2.62)

where g2 = 1 has been used again and a is in fact dimensionless. The reason why
these amplitude ratios are universal (Privman and Fisher, 1984), which implies a uni-
versal a, provided that (2.59) are obeyed, is because they are based on a universal
singular part of the free energy as discussed in sec. 2.2.1. As suggested in (2.13) and
supported by dimensional analysis, all powers of the order parameter contained in
the cumulants are multiplied by the same non-universal pre-factor, a power of the
metric factor Kh. Their ratio however, is determined by the universal, singular part
of the free energy. This can be seen by summing appropriate powers (van Kampen,
1992) of cumulants to produce individual moments. According to (2.13) they all con-
tain the same leading pre-factor Kn

h which contains all non-universality and cancels
in a ratio like (2.62). Hence, the ratio (2.62) is universal for equilibrium critical phe-
nomena — if b is fixed, a is so too.

Numerically, one finds that this result extends to the cluster size distribution of
percolation (Moloney and Pruessner, 2003); handwavingly one can understand this
by the fact that the order parameter distribution is contained in the overall cluster

17Again, either by taking L → ∞ first and then obtaining the behaviour in ξ or by taking ξ → ∞
first and then obtaining the scaling in L, which, however, produces geometry dependent ratios, see
Sec. 2.2.1.1, page 77.
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size distribution as discussed in sec. 2.3.1. However, it remains an open question,Open

question whether it is possible to derive the universality of a from properties of P(s) (for per-
colation) directly.

There is another way to observe the universality of a: Considering the normalisa-
tion of P(M), the importance of which has already been pointed out around (2.46),
one finds 〈

M0
〉

= f0 + a(yG′(0) + q∞0 (y)) − a
Ml

M0
G′(0) + . . . (2.63)

using G(0) = 0 found for τ = 1 in sec. 2.3.2. The rightmost term and all terms in-
cluded in . . . vanish asymptotically. Since (2.63) is independent from y for sufficiently
large M0, and f0 vanishes if there is no lower cutoff, as for example in magnetisation
density distributions, the RHS of (2.63) contains only universal properties of G(x),
multiplied by a. As this must give identity,

〈
M0
〉

= 1, the universality of a follows.

2.4 Numerical Techniques in SOC

Skimming through the SOC literature it seems that only a few people are actually
concerned about using or even establishing standard numerical techniques to pro-
duce accurate results with reliable error bars. It is important to stress that due to the
absence of temperature-like parameters, finite size scaling is (supposedly) the only
technique available in SOC. Thus, again M0 is identical to bLD.

2.4.1 Data collapse

The most common method of data analysis is to produce a data collapse, i.e. to col-
lapse the data for different system sizes on to a single function. This technique is
based on simple scaling (2.39); however, there is not a unique way of producing a
data collapse. One way is to try to find an exponent τ and for each L consider a value
of M0(L), such that a plot P(M)M τ versus x = M/M0(L) collapses on to a single
function aG(x). This has been used to produce the plots shown in Fig. 2.1, Fig. 2.2
as well as Fig. 2.3. Alternatively one can plot P(M)M τ

0 versus x = M/M0 which
collapses to ax−τG(x). To illustrate the difference, Fig. 2.4 shows the results of these
techniques. It is indeed a rather mundane reason, why the method to collapse to
aG(x) (left plot) is superior than to collapse to ax−τG(x) (right plot): since the latter
drops off continuously over the entire range, one needs to allow for a much wider
range in the ordinate. Thus, details, especially those close to the cutoff, are not as
clearly visible as in the collapse to the scaling function aG(x) alone. In principle there
are infinitely many possibilities to collapse P(M), since for any µ the product

P(M)M τ

(
M

M0

)µ

(2.64)

7.7. OUTLOOK AND SUMMARY 

• A presentation of some of the difficulties in identifying a universal crossover
function (which characterises the change in scaling of the avalanche size distri-
bution) has been attempted in Sec. 7.5.

• Moreover, according to our study, experiments are seriously complicated due
to a coupling between system size and effective anisotropy. That might provide
a clue as to the apparent difficulties in finding theoretically predicted exponents
in the real world. However, there are complications in identifying the correct
boundary conditions in experiments and different boundary conditions might
lead to completely different behaviour, as discussed in Sec. 7.6.
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though it must be tuned to a trivial value, namely to vanish17, it still needs to be
tuned. The most reasonable answer to this criticism is that the anisotropy is a lo-
cal parameter, characterising local dynamics. This is different from a temperature-like
parameter, which represents an energy scale of the global energy.18

7.7.2 Summary

The sections in this chapter can be summarised as follows:

• First, the anisotropic Oslo model, AOM, is defined, see Sec. 7.1.

• In the second section, Sec. 7.2, it is demonstrated that for any amount of
anisotropy, the exponents of the original Oslo model change and are given
by simple rational numbers which can all be obtained exactly, see Chapter 8.
The crossover is studied numerically using a moment analysis, Eq. (7.3), and
universal amplitude ratios, Eq. (7.4), and the crossover length is determined.
The generalised model described above, continuously connects the established
original Oslo model and an exactly solvable, directed variant. This variant has,
compared to the original Oslo model, an enormous basin of attraction, so that
the latter may be regarded a special case of the former.

• In Sec. 7.2.2 numerical results for alternative models are presented, which show
the same crossover behaviour.

• Most remarkably, we find a change in critical behaviour of an SOC model, gen-
uinely due to anisotropy, rather than stochasticity or the presence of multiple
topplings.

• As illustrated in Sec. 7.3, the results are theoretically interesting because of their
relation to the EW equation, the roughness exponent of which has been ob-
tained in case of the presence of a drift term in one dimension to be χ = 1/2.

• It is possible to derive from the qEW equation an exact expression for the top-
pling frequency in the model (Sec. 7.3.5) as well as for the average avalanche
size. The latter can also be achieved by considering the slope units in the model
as individually diffusing particles, Sec. 7.4.

17One might argue that an offset on v would make its “critical value” non-trivial. However, the
important point is that v does not represent an independent scale in the analysis of the LANGEVIN
equation. This remains true even with an offset, because then the anisotropy only enters together with
this offset.

18This argument does not hold against percolation, which can be realised by local probabilities alone.
The global observables are very similar to those in SOC. In fact, the most basic reason why percolation
cannot be called SOC is because it is an equilibrium model.
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Figure 2.4: Comparison of different ways of collapsing data which follows simple scal-
ing in a double logarithmic plot. The data is taken from the original Oslo model,
where s is the avalanche size. The left plot shows P(s)sτ versus s/LD , the right one
P(s)LDτ versus the same s/LD . Due to the continuous decrease, the right plot can-
not show as much details as the left. Data are taken from the original Oslo model with
L = 1280, 2560, 5120, and exponents τ = 1.555 . . . and D = 2.25, i.e. the PDF scales like
P(s) = as−τG(s/(bLD)).

is a function only of M/M0 and therefore collapses when plotted against this ratio.

In any case, these plots usually span many orders of magnitude and therefore it
is standard to plot them double-logarithmically. Fig. 2.5 shows the same data on a
linear scale, stressing the advantages of the plot of P(s)sτ .

To determine an error bar or any measure of quality of a data collapse is a serious
technical difficulty (Bhattacharjee and Seno, 2001). The reason is that two histograms
based on two different system sizes have most likely not a single value of x = s/LD

in common. In fact, the data consists of sets of point for each system size, for which
one is supposed to test, whether they fall on the same continuous function. One
qualitative way is to plot the binned (see Sec. 2.4.2) histograms P(M ;L) with error
bars on each point and connecting these points. If the resulting line for one system
size lies within the error bar of the data points of the other system size, then the
collapse is trustworthy. A technique like this has been employed in (Pruessner and
Jensen, 2002a).

Such a technique can only give a qualitative answer and can much better be used
convincingly to prove that a proper data collapse is not possible, rather than to prove
the opposite. As will be explained in detail in chapter 4, the error bars needed for
each data point must be derived from the variance of the time series of histograms,
which can be computationally very intense.
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Figure 2.5: Similar to Fig. 2.4 and using the same data, comparison of different ways of
collapsing data, but now in a linear plot. The right plot shows P(s)LDτ versus s/LD

using symbols to make the data visible, the left plot shows P(s)sτ .

2.4.1.1 The lower cutoff and how to determine τ

When doing a data collapse, one only assumes that there is a lower cutoff and tries
to perform the collapse. One focuses on the behaviour of the distribution for large
arguments, not only in order to avoid problems with the lower cutoff, but also to
keep corrections as low as possible. The easiest way to perform a collapse, is to
concentrate on a “landmark” in the distribution, such as a pronounced bump before
the PDF drops down, and to change M0(L) and exponent τ , until P(M)M τ collapses
for various L onto the same function for large M when plotted versus M/M0. There
is no need to make assumption about the lower cutoff and the exact scaling of M0; its
dependence on L can be extracted in a second step. The only assumption is that the
landmark is not affected by the lower cutoff or further corrections.

The scaling of the landmark itself in a double logarithmic plot of the data gives
the exponent τ ; if for example the maximum of the scaling function is at x∗, then
the observable M at this maximum is M ∗ = x∗M0(L), so that P(M = M ∗;L) =

a(M∗)−τG(x∗). There are only constants on the RHS, apart from M ∗, which is an
implicit function of L. Thus, the set of points (P(M = M ∗;L),M∗) describes are line
with slope −τ (see Fig. 2.7). Of course, this “trick” is based on the assumption that
one actually identifies in P(M) a feature of the scaling function. However, due to the
presence of the pre-factor M−τ one can never be sure whether one sees a feature of
G(x) alone and not of the product M−τG(M/M0).

One might be tempted to measure the exponent τ simply from the (intermediate)
straight-line behaviour of P(M), i.e. above the lower cutoff and sufficiently far away
from the upper cutoff. For large cutoffs one might assume that G(M/M0) hardly
changes, and therefore P(M) to be effectively proportional to M−τ , so that the lat-
ter exponent reveals itself as the slope of P(M) in a double logarithmic plot. This,

7.7. OUTLOOK AND SUMMARY 

provided the original noise correlator is (as usual) 〈η(x, t)η(x′, t′)〉 = δ(x−x′)δ(t− t′).
Therefore, the problem with drift, Eq. (7.78), cannot be distinguished from the prob-
lem without drift Eq. (7.79) and the roughness exponents are the same. Physically,
that makes sense because the roughness exponent should not depend on the coordi-
nate system of the observer.

Thus, since the roughness exponent of the EW equation with drift is the rough-
ness exponent of the EW equation without drift, this should also be the roughness
exponent of the qEW equation. That is certainly not supported by numerics. Thus,
the trick introduced above [as used in Eq. (7.77)], which changes a quenched noise
essentially into a thermal noise, does not work, at least not in general. The drift does
not make a quenched noise thermal.

All the discussion above does not apply to the case of fixed boundary conditions
(FBC), because a transformation like (7.74) changes h(x = 0, t) ≡ 0 to h(x = −vt, t) ≡
0. Thus, in order for h′ to obey to FBC, one needs moving boundaries in h. However,
periodic boundary conditions (PBC) are not affected by the transformation (7.74), so
that the results above, do apply in that case: The roughness exponent of the (thermal)
EW equation with or without drift is the same, provided that periodic boundary
conditions apply.

Finally, standard arguments of dimensional analysis (Sec. 9.4.2, page 366) suggest
that the convection term v∂xh is relevant compared to the diffusion term D∂2

xh. In that
case, it seems, that quenched and thermal EDWARDS-WILKINSON should be similarly
affected by adding a drift term, but of course, not leading to the same exponents.

In order to study the effect of a drift term, it seems therefore reasonable to turn to
the thermal problem and try to answer some of the following questions:

• Is it possible to say something about the qEW equation from the qEW with
drift? Unfortunately, this transpires not to be possible.

• Does a drift term make the thermal EW equation trivially solvable? That will
turn out not to be so.

• Does the effect of the drift term vary for different boundary conditions? Yes,
indeed.

• Is the drift term relevant? Yes, but so is the diffusion term.

These questions are addressed in Chapter 9 and especially in Sec. 9.6.1, page 378.

7.7.1 Remark: SOC and relevant variables

One might ask in which sense the Oslo model without drift can be called “self-
organised”, since it has in fact a relevant tuning parameter, namely the drift v. Even
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tions solvable as well.

First of all, one has to answer the question, why it is not possible to gauge the
drift away by a change of coordinates. If h solves

∂th = D∂2
xh− v∂xh+ η (7.73)

then, it seems
h′(x, t) = h(x+ vt, t) (7.74)

solves
∂th

′ = D∂2
xh

′ + η . (7.75)

Thus, the qEW equation with drift is essentially the qEW. The point is, however, that
η in (7.73) is η(x, h), while in (7.75) it is η(x + vt, h′). So, the time appears in the
noise. Now, one might argue, the noise is essentially thermal and therefore (7.75) is
the usual EW equation with thermal noise, the exponent of which is χ = 1/2, exactly
as calculated above, Sec. 7.3, page 286. So, is it all trivial then?

Not quite. Accepting the trick above, one might now go ahead and determine the
roughness exponent of the original qEW without drift, by changing into a moving
frame, h′(x, t) = h(x+ vt, t), so that the problem

∂th(x, t) = D∂2
xh(x, t) + η(x, h) (7.76)

becomes
∂th

′(x, t) = D∂2
xh

′(x, t) + v∂xh
′(x, t) + η(x+ vt, h′) (7.77)

If this noise term is now to be interpreted as a thermal noise, the roughness exponent
of the qEW would be the roughness exponent of the EW equation with drift,

∂th(x, t) = D∂2
xh(x, t) − v∂xh(x, t) + η(x, t) . (7.78)

So, what is the roughness exponent of the EW equation with drift? This drift can in
fact be gauged away by changing the coordinate system (into the comoving frame),
again h′(x, t) = h(x+ vt, t), because the resulting noise

∂th
′(x, t) = D∂2

xh
′(x, t) + η(x+ vt, t) (7.79)

has a correlator

〈
η(x+ vt, t)η(x′ + vt′, t′)

〉
= δ(x − x′ + v(t− t′))δ(t − t′) =

δ(x − x′)δ(t − t′) =
〈
η(x, t)η(x′, t′)

〉
(7.80)
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Figure 2.6: Cluster size distribution P(s) for site percolation with L = 300 (main panel)
and L = 30000 (inset). Neither of these systems should be considered as particularly
small. However, the best estimate for the intermediate slope of P(s) for L = 300 in a
double logarithmic plot, is, as shown as a dashed line, τ = 1.855 which is 10% off the
correct value τ ≈ 2.055 shown as a dotted line. In the inset, the correct exponent is
shown to fit fairly good the intermediate slope of the data for L = 30000.

however, does not work: From a single set of data, it is impossible to judge where
the lower cutoff is, therefore it is impossible to decide, what “intermediate” means.
Moreover, it is a priori unclear where the scaling function can be ignored, i.e. in which
region of M values the distribution is dominated by the M−τ .

The danger of ignoring the scaling function becomes particularly clear when ex-
panding the scaling function for small arguments:

P(M) = aM−τ

(
G(0) +

M

M0
G′(0) + . . .

)
(2.65)

If G(0) vanishes [see discussion after (2.47)], the apparent exponent, which would be
measured in a double logarithmic plot, is 1− τ . This, however, would ignore that the
cutoff is allowed to enter the scaling only in the form M/M0. The result is even more
misleading if G(x) is not analytic and can be expanded like xµ0a0 + xµ1a1 + . . . with
non-integer exponents µi.

Even if G(0) 6= 0, a direct “straight line fit” can be very misleading. Fig. 2.6 shows
the high-quality PDF of the cluster size distribution for system size L = 300 and open
boundaries.

The idea mentioned above to concentrate on a landmark is further illustrated by
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Figure 2.7: Left panel: Avalanche size distribution P(s) for the randomly bulk driven
BTW model. The inset shows the data on a linear scale, the main panel shows it on a
logarithmic scale. The “obvious” exponent is τ = 0. The landmark used to facilitate the
collapse is marked by circles and connected by a dashed line, which has slope τ = −1.
Right panel: The only way to bring all landmarks up to the same height is by rescaling
P(s) by s, indicating an exponent τ = 1.

studying a PDF with a scaling function that vanishes at x = 0. A good example18

is the randomly (bulk) driven one-dimensional BTW model (see Sec. 1.3.1, page 40).
The PDF of the avalanche sizes s found in this model is a uniform distribution in the
interval [1, L], i.e.

P(s) = L−1θ(L− s) = s−1 s

L
θ(1 − s

L
) (2.66)

where θ(x) is the HEAVISIDE θ-function. The exponent of this PDF is τ = 1 and
the scaling function is (s/L) θ(1 − s/L), which vanishes for s = 0. When examining
the non-rescaled PDF, shown in Fig. 2.7, it is tempting to claim τ = 0. However,
when trying to collapse the data, especially the “landmarks”, it becomes clear that
one needs a non-vanishing exponent to get the landmarks all up to the same height
via sτP(s) which leads directly to the collapse when shifting horizontally using a
cutoff s0(L).

The paradox outcome of a collapse like the one shown in Fig. 2.7 is the reason
to question the physical relevance19 of cases with G(0) = 0: In most natural system
one cannot derive the data for various system sizes and perform a collapse. The only
accessible property of the distribution is in fact the slope in a double logarithmic plot.
If that gives spurious results for the exponent τ as defined by simple scaling, can that
definition be reasonable?

18Thanks to KIM CHRISTENSEN for explaining that to me.
19Note again τ = 1 entails G(0) = 0, as discussed after (2.47).
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z1 z2 z3 z4 h1 h2 h3 h4
∑

i hi
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3 2 2 2 9 6 4 2 21

1 3 2 2 8 7 4 2 21

2 0 4 2 8 6 6 2 22

2 2 0 4 8 6 4 4 22

2 2 2 2 8 6 4 2 20

Figure 7.18: Similar to Fig. 7.17 (redistribution of two units shown as a double arrow)
this figure shows the relaxation of a four site system, now with an anisotropic toppling
at the second site, between the third and the fourth line. This corresponds to an event
as shown in Fig. 7.15(a), where the grain gets erected when toppling from site 2 to site
3 and topples down the pile in this orientation. When it arrives at the rightmost site it
leaves the system. Again, there is no net-flux through the system, even though one of
the bulk relaxations is anisotropic.

7.7 Outlook and Summary

At this point, this thesis branches into two remaining chapters:

Chapter 8 demonstrates the exact solution of the TAOM, which is one of the very few
exact results in SOC, which do not require any scaling assumptions.

Chapter 9 presents the calculation of the roughness exponent in the thermal EDWARDS-
WILKINSON equation with drift.

To illuminate the motivation for these two chapters, we want to discuss the effect of
the noise in greater detail.

The solution of the TAOM is shown in detail in Chapter 8 and since the TAOM
represents the entire universality class of the quenched EDWARDS-WILKINSON equa-
tion with drift, the question naturally arises, whether it is possible to infer any ex-
ponents of the qEW equation from the exponents of the qEW equation with drift.
To answer this question, the effect of a drift term in the one-dimensional EDWARDS-
WILKINSON equation with thermal noise is studied in Chapter 9.

Moreover, one might ask, how the drift actually makes the problem solvable. It
might be a general mechanism, which could make other quenched LANGEVIN equa-
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z1 z2 z3 z4 h1 h2 h3 h4
∑

i hi

2 2 2 2 8 6 4 2 20
kick!

3 2 2 2 9 6 4 2 21

1 3 2 2 8 7 4 2 21

2 1 3 2 8 6 5 2 21

2 2 1 3 8 6 4 3 21

2 2 2 2 8 6 4 2 20

Figure 7.17: Relaxation events in the BTW model (to be read from top to bottom) to
illustrate anisotropic relaxations of the boundary sites. Solid arrows indicate the trans-
port direction of slope units, dotted arrows indicate additions (external drive) and losses
(relaxation of first site). The first part of the table lists the evolution of the local slopes
zi, the second part the heights (integrated slopes from right to left), and the third part
the total number of grains in the system. The isotropic bulk relaxations only transport
a configuration towards the right hand side, which allows the rightmost site to relax
anisotropically. Every arrow pointing from site i to site i± 1 has a corresponding arrow
pointing in the other direction, so that there is no net transport. Also, whenever a site in
the bulk relaxes, it distributes equal amounts to both sides, so that this process is fully
isotropic. Effectively every slope unit moved forward is moved backwards in the next
time step.

or as number of topplings.

The fact that the rightmost site produces a flux to the left large enough to com-Open

problem pensate any incoming flow also implies that there is no net-flux through the lattice.16

If there was any net flux, the system what simply jam, see page 242. Does that mean
that there is no effective anisotropy possible with these boundary conditions? This
question cannot be conclusively answered. However, it points once more to the task
to repeat the study of the qEW with a Neumann condition. Moreover, having shown
that anisotropy is a relevant field, it would not be surprising to find other relevant
fields which lead to yet another universality class.

16This compensation comes about naturally if the grain is transported to the right boundary leaves
the system without changing orientation.
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2.4.2 Binning

Numerical simulations produce histograms which need to be post-processed in or-
der to extract relevant information from them. The main problem is the sparse cov-
erage of rare events. Since most of the analysis is based most naturally on double-
logarithmic data, a histogram for integer valued events (such as avalanche sizes in
most sandpile-like systems) or a histogram with equally sized bins has a large den-
sity of points on the abscissa for large arguments. At the same time very few events
actually take place there. One way of curing this problem is to bin the data.

The idea is to define intervals [bi, bi+1] and to average the numerically calculated
histogram h(s) over these intervals:

h′(i) =
1

bi+1 − bi

∑∫

[bi,bi+1[

dM h(M) (2.67)

The key question is where to place the bins bi. There are two standard methods.

2.4.2.1 Exponential or logarithmic binning

Apart from the confusion about the name, exponential binning as it will be called
throughout this thesis, means that the bi are chosen according to bi+1 = bbi with
a basis b, the value of which mainly depends on the number of data point one is
aiming at. Clearly, if the goal is to have about N data points, and the histogram is
spread between b0 and bN , then b = (bN/b0)

1/N and bi = b0b
i

When plotting the resulting binned data h′(i), one has to decide about the posi-
tion on the abscissa of data point, or plot a staircase-like function. Most naturally one
takes the geometric mean of the two boundaries of the bin, but whatever method is
applied it should never play a rôle for any numerical conclusion. If it does, the nu-
merical result is rendered useless, because it depends on something which is mainly
a question of taste.

The main advantage of exponential binning is that the data points are equally
spaced on the logarithmic scale, which gives nice, smooth curves. If the points are
dense enough, a change in the method of determining the position of each bin on the
abscissa leads only to a small shift and maybe an invisible distortion of the plot. The
main disadvantage is that for τ > 1 the number of “events” per bin decreases with
increasing bi, assuming power law distributed raw data;

∑∫

[bi,bi+1[

dM M−τ =
(b0b

i)1−τ

τ − 1
(1 − b1−τ ) . (2.68)

The decreasing number of events means that for a finite time simulation the error
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Figure 2.8: If the sample is too sparse in the tail of the distribution, exponential binning
produces a spurious slope τ = 1.

bar increases with increasing event size. Below, an alternative binning method is
proposed which resolves this problem.

Another, more dangerous problem is that exponential binning produces an spu-
rious exponent τ = 1 if the sample size is small, as shown in Fig. 2.8. Depending on
the system under consideration, this can be very deceptive. It is caused by having
too many bins and sparse statistics in the tail of the histogram. Most of the bins are
then empty, i.e. they have 0 density and therefore drop out of a double logarithmic
plot. Noting that the width of the bin is (b − 1)b0b

i = (b − 1)bi the density for those
with a single event is then 1/((b − 1)bi) ∝ b−1

i leading to a sequence of points with
slope −1. Those bins with 2 events in them lead to a parallel line nearby.

2.4.2.2 Power law binning

To tackle the problem of decreasing subsample sizes per bin, one might impose that
bi is chosen such that ∫ bi+1

bi

dss−τ = c (2.69)

with a constant c to be determined according to the number of bins requested, which,
for τ > 1, simply gives

bi = b0
(
1 − ic(τ − 1)bτ−1

0

)1/(1−τ)
, (2.70)

and for τ = 1

bi = b0e
ic , (2.71)

7.6. RELATION TO EXPERIMENTS 
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as v changes
with L; the measurement does not follows on solid line, which corresponds to a specific
v, but keeps jumping tracks. The black blobs connected by the dashed line mark the
exponent measured. The series of black circles towards the left marks the crossover.

tion of slope units in the bulk, with a net drift to the right, if the right most boundary
is closed? Is it possible to have any net flux through the system?

In order to answer the question, it is reasonable to study the boundary driven
BTW model with the original boundary conditions first. The difference to the Oslo
model is only that zc

i ≡ 2, so that the model develops into a unique (absorbing) state
of the stationary distribution, which is zi ≡ zc

i . A four-site version of this model is
shown in Fig. 7.17, where the movement of slope units is depicted by arrows. In fact,
the rightmost and the leftmost sites do not relax isotropically, while the bulk does.
The net-flux of units through the lattice vanishes, because each arrow pointing to
the right has a corresponding arrow pointing to the left; what is really transported
through the system is a configuration that allows the rightmost site to relax anisotrop-
ically.

Fig. 7.18 shows that it is possible to have anisotropic relaxations in the bulk even
with a closed right hand boundary (again zc

i ≡ 2). This is possible, provided that
the rightmost site compensates the flux produced by its left neighbour. Again, all
fluxes cancel and the net-flux vanishes. Moreover, the total height, shown as

∑
i hi

increases due to the anisotropic relaxation between the third and the fourth row, for
example, because a particle gets erected, see Fig. 7.15(a). If that could happen several
times,15 more and more height units would have to leave the system through the right
boundary. That raises the question, whether the avalanche size should be measured
at total height transported through the system, which increases with erected grains,

15This does not make much sense in case of reorientation like those shown in Fig. 7.15.
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Figure 7.15: A stylised toppling of a single grain. Fig. 7.15(a): If an elongated grain of
width b and height a topples from site i to site i + 1, it reduces the height at i by b and
increases the height at i+1 by a, thereby increasing the slope at site i−1 by b, decreasing
the slope at i by a+ b and increasing the slope at i+ 1 by a. The net flux of slope is a− b
to the right. The opposite effect is shown in Fig. 7.15(b).

We do not know if the experiment by FRETTE et al. (Frette et al., 1996) involves
this complication, but the exponents extracted are not consistent.14

Local rearrangements, such as expansions (on the site losing a grain) and com-
pressions (on the site receiving the grain) lead to an anisotropy not vanishing with
L: Say a grain moves from i to i + 1, then column i of height hi expands by ε(hi)

and column i + 1 is compressed by ε(hi+1). Then the changes of the slopes during
toppling are ∆zi−1 = 1 − ε(hi), ∆zi = −2 + ε(hi) + ε(hi+1) and ∆zi+1 = 1 − ε(hi+1).
Assuming that the columns behave elastically, ε would be an increasing function of
h, resulting in a net flow to the right, i.e. v > 0. However, it remains unclear whetherOpen

problem any of these effects can be seen in experimental systems.

7.6.1 Boundary conditions

One possible problem why the considerations above are actually inapplicable are the
boundary conditions. Opposite to the model introduced in Sec. 7.1.1, page 280, in
the original model with original boundary conditions (Sec. 5.1.1, page 205), the right
hand boundary was closed to slope units. This boundary condition was supposedly
modelling the experiment — while one might actually argue that equally well the
boundary condition could be to have vanishing slope at the right end, so that the pile
smoothly runs out. However, accepting that a closed right boundary approximates
the experiment better, one must ask: Is it possible to have an anisotropic redistribu-

14There are some problems in their derivation: The scaling ansatz is unphysical, as higher moments
diverge even in finite systems. The result β = ν is due to a neglect of the lower cutoff. Moreover, the
possible interpretation of α ≈ 2.02 as τ leads to a system size independent, finite first moment, which
contradicts 〈s〉 ∝ L. In this light it would be very interesting to repeat the data analysis. It is remarkable,
however, that a similar behaviour and exponent (α ≈ 2.22) has been observed in (Christensen et al.,
1996).
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which is exponential binning with basis b = exp(c).

This method of binning has two major disadvantages:

• The quantity τ to be estimated from the data analysis enters the data analysis
itself. That might skew the results.

• For τ > 1 the bin sizes increase even on a logarithmic scale to catch more and
more data. For the large event region, that means that the gaps between two
data points become so large, that their exact position starts to matter for the
interpretation of the data.

2.4.3 Determining the cutoff

Rather than tuning the cutoff M0(L) until the collapse looks reasonable, it would be
nice to have a technique to determine it (or any multiple) directly from the data. As
indicated above , this could be the position of the maximum of the “bump” in the PDF
towards the end. An easier method sometimes employed [for example (Nordhagen,
2003)] is to define a very small threshold P ∗ and to define the cutoff M ∗

0 by

P(M∗
0 ) = P ∗ . (2.72)

The idea is that for large arguments the scaling function drops down extremely fast,
so P(M) gets extremely small very quickly, as illustrated in Fig. 2.9. The prob-
lem with this technique is the uncontrolled value P ∗; for sufficiently large M0 the
Eq. (2.72) gives a constant M ∗

0 .

As all data in the plot Fig. 2.9 are normalised, it also illustrates that the small
bump caused by the scaling function at the end of the distribution must be large
enough to make P(s;L) larger than as−τG(0) (if G(0) exists). If the distribution
P(s;L1) would fully cover the distribution P(s;L2), they cannot be both normalised.
In fact, all events in the bump “lurking over the power law” are redistributed in the
tail of the distribution of a larger system.

2.4.4 Moment analysis

While a data collapse contains a lot of information and is very useful to determine the
overall behaviour of a system and even to get a fairly good estimate for its exponents,
it is very hard to quantify the quality of a data collapse. On the other hand, moments
of the distribution contain much less information, however, they allow not only to
determine the value of the exponents, but also to quantify their estimation error.

Also, it is numerically much easier and has much less computational impact to
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Figure 2.9: Avalanche size distribution P(s;L) for the Oslo model. System sizes are
L = 160, 320, . . . , 5120. The position of the cutoff is marked by the up-pointing arrows.
For small system sizes that technique gives reasonable results, but it fails as soon as the
true cutoff becomes too large. Also indicated (two connected arrows) is the small area
of an PDF for a smaller system size not covered by the larger one. This area contains all
the probability which can be redistributed in the PDF of the larger system sizes.

calculate moments 20 rather than to store entire distributions, which could, in fact, be
arbitrarily fine-grained.

In principle one can calculate any moment, but in order to calculate τ and D, it
is most straight-forward to calculate those integer moments n > τ − 1, for which
Eq. (2.50) applies, such that a double logarithmic plot of 〈M n〉 versus L at fixed n

gives the exponents
γn = D(1 − τ + n) , (2.73)

since
〈Mn〉 = a(bLD)1+n−τ gn , (2.74)

using M0 = bLD. In order to account for corrections, one can also fit the moments
against

〈Mn〉 = (bLD)1+n−τ (gn + c1(bL
D)−ω1) . (2.75)

Fig. 2.10 shows the scaling in L of the second moment of the avalanche size of the
Oslo model. To estimate the accuracy, one can plot 〈sn〉/Lγn with the estimated γn

versus L. The resulting set of γn (n = 1, 2, . . . , 6 is typically not too noisy) can then be
fitted against D(1 − τ + n) to give D and τ (in the range n > 1 − τ ). Fig. 2.11 shows

20This rather basic “technique”, actually the most basic technique in traditional numerical estima-
tion of exponents in equilibrium critical phenomena, has apparently been introduced to SOC by DE

MENECH, STELLA and TEBALDI (De Menech et al., 1998; Tebaldi et al., 1999).
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Figure 7.14: Scaling of the two sets of parameters used in the inset of Fig. 7.13 to force a
data collapse. The parameters seem to scale nicely for sufficiently small v, as indicated
by the two thick dashed lines.

could study P(s;L, v) directly.

7.6 Relation to Experiments

We stress that the anisotropy is in the amount of slope transported between sites in-
volved in a relaxation event. Any net flux of the slope is eventually compensated by
the toppling of the last site (see Sec. 7.6.1) and the slope is therefore asymptotically
stationary.

One process leading to an anisotropic redistribution of slope arises when the top-
pling grain is elongated, see Fig. 7.15. Most remarkably, in the original experiment
(Frette et al., 1996) it was noted that only the elongated rice samples showed scale-
invariant behaviour. A reorientation of a single grain as shown in Fig. 7.15(a), leads
to a net flux of slope to the right (or to the left, as shown in Fig. 7.15(b)). It can happen
only once, and in fact the occurrence of a net flux depends on how and whether the
rice enters and/or leaves the system with a typical orientation. If that is the case,
then an average reorientation is distributed among all topplings on its way through
the system, i.e. v ∝ 1/L. Because LX ∝ 1/v and v ∝ 1/L, (7.64), this represents a
marginal case, because it is impossible to decide whether L � LX(v) or not. The
dependence of, say, the ratio 〈s2〉/L2.5 on L would in this case be given by an (un-
known) trajectory through the diagram in Fig. 7.2 since a change in L also leads to a
change in v, which allows non-universal quantities to enter. Two possible scenarios
are shown in Fig. 7.16.
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Figure 7.13: Attempt of an data collapse for the crossover according to Eq. (7.69). The
data collapse fails, but a fairly good collapse is obtained by rescaling the data “by hand”
to appropriate values. The deviation for small values of vL are acceptable as finite size
corrections. The thick dashed line shows the expected slope z0.75, see Eq. (7.70).

collapse, revealing Gn(z). This has been done for the second moment in Fig. 7.13,
with θ2 = 0.75. Unfortunately, the data do not collapse. While one can understand
some deviation from Gn(z) for small L due to finite size corrections, all curves should
asymptotically converge.

Eq. (7.69) can be put on a more general basis (Lübeck, 2003b) by assuming gener-
alised homogeneity for the avalanche size distribution,

P(s;L, v) = bγP(bs; bαL, bβv) (7.71)

with unknown exponents α, β and γ. For v = 0 we know already the scaling be-
haviour (it is the one of the OOM), so that one finally arrives at an expected scaling
form

P(s;L, v) = as−τoG
( s

bLDo
, vLx

)
(7.72)

which allows the derivation of (7.69).

Alternatively, one can force a collapse, as shown in the inset of Fig. 7.13 by plot-
ting an(v)〈sn〉/LDa(n−1)+1 versus bn(v)L. The resulting an(v) and bn(v) can then be
plotted versus v to determine their functional dependence on v. Fig. 7.14 shows the
resulting behaviour, which is very close to the expected one: a2(v) should be propor-
tional to v0.75 and b2(v) should be linear in v.

It is not clear yet whether the deviation from the expected scaling is genuine orOpen

issue only due to numerical problems or finite size effects. In an alternative approach, one
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γn as a function of n. One could calculate γn even for non-integer n two get more
data points within the accessible range of moments; as shown in (Pastor-Satorras
and Vespignani, 2000b) the γn pick up “suddenly” at n = 1− τ . Around this value of
n one expects strong corrections.

It is worth noting that plotting 〈Mn〉 for fixedL versusn cannot produce estimates
for the exponents, since this data is affected by gn to unknown extend; nevertheless,
it contains interesting information about the behaviour of the moments ratios gn.

The fits to calculate the exponents from these plots can be done using standard
tools (Press et al., 1992), either directly on the moments or on their logarithms. The
estimates for their errors, used in the fits to calculate an error of the fitted parameters,
come from the standard estimator21 for the variance of the estimator for the mean
(Brandt, 1998),

σ2(〈Mn〉) =
1

(2τc + 1)N

N

N − 1

(〈
M2n

〉
− 〈Mn〉2

)
, (2.76)

where N is the size of the sample and τc the correlation time (Müller-Krumbhaar
and Binder, 1973; Madras and Sokal, 1988), which can be calculated in various ways
(Anderson, 1964) and might have to account for anti-correlations (see for example the

21For this small section on numerics, it does not make much sense to introduce extra symbols to
distinguish estimators based on numerical data and real averages calculated from the distribution of
the infinite ensemble.
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Figure 2.11: The exponent γn as a function of n from fits of the moments of the avalanche
size distribution of the Oslo model. The straight line is a fit of the γn to D(1 − τ + n).

Oslo model, Sec. 5.2.3, page 224). The RHS,
〈
(〈Mn〉 −Mn)2

〉
is always positive which

means that the exponent of
〈
M2n

〉
, (1 − τ + 2n), must be larger than or equal to the

exponent of 〈Mn〉2, which is 2(1− τ +n) for all n ≥ 0, if simple scaling and especially
(2.50) holds. Thus τ ≥ 1, where τ = 1 implies that the two terms on the RHS of
(2.76) scale equally. For τ > 1, the second, subtracted term becomes asymptotically
irrelevant. Thus, the relative variance scales like

〈
(〈Mn〉 −Mn)2

〉

〈Mn〉2
∝M τ−1

0 , (2.77)

indicating an massively increasing demand of computing time with system size, be-
cause not only does the variance increase, it also become (typically) computationally
more and more complex to simulate larger and larger systems. In that sense, the
concept of self-averaging (Ferrenberg et al., 1991) is completely changed. It is clear
that one needs to simulate larger and larger system sizes in order to avoid problems
with corrections, due to the presence of a lower cutoff and the higher order terms
discussed in sec. 2.3.2.2. There is no systematic way to discriminate events below
the lower cutoff when calculating the moments, which makes the moment analysis
different from data collapse, which does this explicitly.

2.4.5 Universal moment ratios

While the scaling of the moments are the handle to identify the exponents, their am-
plitudes ratios characterise the scaling function. Universal amplitude ratios allow an

7.5. TOWARDS A UNIVERSAL CROSSOVER FUNCTION 
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Figure 7.12: Equation (7.56) for L = 160, as already shown in Fig. 7.10. The asymptotic
maximum average avalanche size is marked by a dashed horizontal line, the dashed
arrow indicates the position of this maximum, see (7.63b). The long dashed line is (7.66)
and the double arrow is vX derived from this equation. The arrow from top (labelled
“estimated”) is the estimate for the crossover velocity as derived from Fig. 7.11.

relative position of the feeding, for example in the centre of the system at x = L/2.
Thus, in general

γ1 = 2 − µ ≤ 2 , (7.68)

with γ1 introduced in Sec. 5.2.3, page 224 [and Eq. (2.73), page 100] as 〈s〉 ∝ Lγ1 .

7.5 Towards a Universal Crossover Function

It would be very satisfying to cast the crossover behaviour observed in the
anisotropic Oslo model into a single scaling function. Similarly to (Tsuchiya and
Katori, 1999b), one might make an ansatz like

〈sn〉(L, v) = LDa(n−1)+1
v
−θnGn

(
v

L−x

)
(7.69)

where θn is the crossover exponent for the nthe moment and Gn the crossover func-
tion, which mediates between AOM behaviour for large arguments and OOM be-
haviour for small arguments. The latter entails

Gn(z)
z→0−−−→ O(zθn) (7.70)

in leading order with θn = Do−Da
x (n − 1). Thus, plotting the nth moment of the

avalanche size distribution as vθn〈sn〉/LDa(n−1)+1 versus vLx should lead to a data
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close to 0, can be quantified. The idea is to find a “GINZBURG-criterion” which would
allow us to make a quantitative statement in which small region around v = 0 to ex-
pect OOM behaviour. To do that explictly, one sets D = (1/2)(1− v2) from above and
α = 1/L (noting that these results from the lattice violate dimensional consistency).
The maximum average avalanche size in the anisotropic TAOM is therefore at

vmax =
D

L
√
α/2

=
1√
2L

(
1 − 1

2L
+ . . .

)
(7.63a)

where

〈s〉max =
L2α

D

(
1 −

√
2α
)

= 2L(1 −
√

2

L
+ . . . ) . (7.63b)

It is reasonable to assume that somewhere in the region [0, vmax] the crossover oc-
curs. Unfortunately, this regions contracts only as fast as 1/

√
L, while one ex-

pects the crossover to occur, when the ballistic motion dominates over the diffusion,
L2/D > L/v, leading to an crossover length

LX(v) ∝ D

v
(7.64)

and a crossover anisotropy

vX ∝ D

L
(7.65)

This has been confirmed numerically, based on heuristic estimation of LX, as shown
by the marks in Fig. 7.2, page 284. Plotting LX versus v as derived from these marks
gives a plot shown in Fig. 7.11. The exponent associated with the scaling of the
crossover anisotropy vX in L is x, i.e. vX ∝ L−x.

For small v, the average avalanche size in the anisotropic TAOM behaves like

〈s〉 = Lα(L− 1) +
L3α

12D2
v + O(v2) , (7.66)

using (7.60) and (7.62). The limit v → 0 is fully consistent with Eq. (7.47). Using
approximation (7.66) to calculate vX, one finds

vX ≈ 3

L
(7.67)

by equating 〈s〉 from (7.66) and 〈s〉max from (7.63b). The various estimates for the
crossover velocity are shown in Fig. 7.12. A comparison to the numerical results in
Fig. 7.11 supports (7.67) very well.

One interesting direct implication of (7.66) for the scaling law D(2 − τ) = 1 in
the OOM and the TAOM is that for a scaling of α like α ∝ L−µ, one has in general
〈s〉 ∝ L2−µ. Especially, the random drive corresponds to a constant α, as does a fixed
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easily accessible quantitative comparison of scaling functions found in different sys-
tems. According to (2.60) it is straight-forward to calculate these ratios. However,
contrary to common believe, the best estimator22 of a ratio of averages is not neces-
sarily the ratio of the best estimator of the averages. While one might ignore these
subtleties and simply apply Eq. (2.60) to the estimators of the averages, one often
cannot ignore them for the error.

To illustrate the problem, we consider the standard error propagation of the ratio
〈X〉/〈Y 〉 for two observablesX and Y . The variance for this ratio is usually estimated
as σ2〈(X〉)/〈Y 〉2 + σ2〈(Y 〉)〈X〉2/〈Y 〉4. For non-vanishing variances of X and Y this
gives a non-vanishing result. However, this is certainly wrong for a strong correlation
like X = Y . In fact, standard error propagation completely ignores correlations. This
is unacceptable, when calculating ratios between averages of different powers of the
same observable.

The Jackknife (Efron, 1982; Berg, 1992) provides a way out. For 〈X〉/〈Y 〉 is sug-
gests (in leading order of N )

σ2〈(X〉)
〈Y 〉2

+
σ2〈(Y 〉)〈X〉2

〈Y 〉4
− 2

〈X〉〈Y 〉
〈Y 〉4

(
〈XY 〉 − 〈X〉〈Y 〉

)
, (2.78)

with an additional, third term accounting for correlations. Indeed, this term would
cancel the other terms if X ∝ Y .

Using the same technique for the universal amplitude ratios, one finds for the
variance of the estimator of gn (i.e. the square root of it is the error):

σ2(gn) =
1

N

〈Mn〉2〈M〉(2n−4)

〈M2〉(2n−2)

×
{〈

M2n
〉
− 〈Mn〉2

〈Mn〉2
+ (2n− 4)

〈
M (n+1)

〉
− 〈Mn〉〈M〉

〈Mn〉〈M〉

+ (n− 2)2
〈
M2
〉
− 〈M〉2

〈M〉2
+ (n− 1)2

〈
M4
〉
−
〈
M2
〉2

〈M2〉2

− 2(n− 1)

〈
Mn+2

〉
− 〈Mn〉

〈
M2
〉

〈Mn〉〈M2〉

−2(n− 1)(n− 2)

〈
M3
〉
−
〈
M2
〉
〈M〉

〈M2〉〈M〉

}
+ O(N−2)

(2.79)

22A “good estimator” is not biased, i.e. the expectation value of the estimator is identical to the
expectation value to be estimated, and it is consistent, i.e. it converges to the expectation value for
divergent sample size. (Brandt, 1998)
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2.5 Summary

Power laws and scaling are the fingerprints of criticality. The SOC literature displays
widespread inconsistencies regarding appropriate methods of analysis and the rela-
tion of SOC to standard results in statistical physics. The individual sections in this
chapter can be summarised as follows:

• After an introduction, some general relations between moments, distributions
and generating functions are established in Sec. 2.2. It is found that the observ-
ables used in classical critical phenomena and SOC are closely related.

• In Sec. 2.3 simple scaling is discussed in detail. Most importantly, the exponents
τ and D are introduced and related to the behaviour of the singular part of the
free energy in the case of classical critical phenomena. Moreover, corrections are
identified as well as the lower cutoff, which is often neglected in the literature.

• Simple scaling is the central theme of SOC, its notion lays the foundation for
an investigation of numerical techniques in SOC, see Sec. 2.4. They boil down
to two main tasks when characterising a critical model: Determination of the
moments τ and D via a moment analysis, and determination of the universal
moment ratios to characterise the universal scaling function. For all these prop-
erties an error bar can be determined as well.

7.4. EXACT AVERAGE AVALANCHE SIZE 
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Figure 7.11: Scaling of the crossover system size versus the anisotropy vX in the
anisotropic TAOM (see Fig. 7.7(a), page 289) and the AOM (Fig. 7.2, page 284). The
dashed line corresponds to (7.67). The horizontal arrow marks the crossing velocity for
L = 160, which is shows as arrow in Fig. 7.10 and Fig. 7.12.

7.4.1 Details in the continuum

Focusing on the continuum problem, it is very instructive to study the solution (7.56)
in some detail. For further analysis it is very convenient to define a function

fb(x) =
1 − exb

(1 − ex/b)xb2
+

1

b
− 1

x
(7.59)

so that

〈s〉aniso TAOM = −L
2α3/2

D
f√α

(
−
√
αLv

D

)
+
L2α

D
. (7.60)

The function fb(x) behaves for x < 0 asymptotically in b (more specifically −x � b

and x2b� |x| and x2b� 1/|x|) like

lim
b→0

fb(x) = −1

2
x− 1

x
. (7.61)

Moreover

lim
x→0

fb(x) =
1

2

1 + b2

b
(7.62a)

lim
x→0

d

dx
fb(x) =

1

12b2
. (7.62b)

The function has a minimum at x = −
√

2 where fb(−
√

2) =
√

2.

Now, the sharp crossover shown in Fig. 7.10, where 〈s〉 drops from about 2L to
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Figure 7.10: Comparison of the average avalanche size 〈s〉 in the anisotropic TAOM to
a random walk in the continuum (7.56). The simulation results of the anisotropic TAOM
are shown as open circles, the results from a pure diffusion process on a lattice as filled
squares. While they correspond perfectly, the continuous approximation (straight line)
seems to deviate in the intermediate regime especially around v = 0.5. The dotted
perpendicular line marks v = 0, the dashed arrow marks the crossover as derived from
Fig. 7.11. The proper solution on the lattice (7.58) is shown as a thick dashed line, which
agrees perfectly with the numerical results.

Stirzaker, 1992, p. 74).13 The key idea is not to start with the actual diffusion process
as a function of space and time, but to write down the average number of moves Uk

of a random walker as a function of its starting point k:

Uk = pr(1 + Uk) + (1 − pr)(1 + Uk−1) (7.57)

with appropriate boundary conditions. The solutions is

Uk =





k(N − k) for v 6= 0 (7.58a)

−1

v


k − L

1 −
(

1−v

1+v

)k

1 −
(

1−v

1+v

)L


 otherwise (7.58b)

where the first line is of course the limit of the second, v → 0. This solution fully
agrees with the numerical results shown in Fig. 7.10.

13I am indebted to MATTHEW STAPLETON for pointing out this reference to me.

Chapter 3

The Rôle of Conservation

In the following, some key ideas of HWA and KARDAR as well as GRINSTEIN et al. are
discussed briefly. Then, some objections against the criticality of the OFC model are
presented; they represent an unfinished, yet quite interesting project. In the following
section, a solvable mean field model is presented, the results of which have been
published in (Pruessner and Jensen, 2002b). The last section of this chapter contains
a random walker approach to the finite size scaling problems found in the mean field
model. Again, this is unfinished work, however, it shows an elegant way of tackling
random walker problems, based on orthogonal polynomials.

Very early on, conservation has been recognised as an important feature in sys-
tems (supposedly) displaying SOC behaviour, most famously in the articles by HWA

and KARDAR (Hwa and Kardar, 1989) and GRINSTEIN, LEE and SACHDEV (Grin-
stein et al., 1990). Naively, one might think that a lack of conservation necessarily
leads to a characteristic scale in the distribution of event sizes. Therefore, the devel-
opment of the OLAMI-FEDER-CHRISTENSEN (OFC) model (Olami et al., 1992) and
the DROSSEL-Schwabl Forest-Fire-Model (DS-FFM) (Drossel and Schwabl, 1992) ap-
parently displaying SOC in spite of dissipation, was and still is very surprising.

3.1 Conservation: A LANGEVIN Approach

It is fair to say that HWA and KARDAR made the use of LANGEVIN equations (LE’s)
popular in SOC (Hwa and Kardar, 1989). They consider the spatio-temporal evolu-
tion of the height profile h(x, t) of a sandpile over a substrate x in time. Due to the
presence of a particular “transport direction” (grains toppling downhill), the result-
ing LE is anisotropic. The most general form of it is

∂

∂t
h(x, t) = F(h(x, t)) + η(x, t) , (3.1)


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where F is some functional describing the deterministic dynamics and η(x, t) is a
noise, obeying

〈η(x, t)〉 = 0 (3.2a)
〈
η(x, t)η(x′, t′)

〉
= Γ2δd(x− x

′)δ(t− t′) (3.2b)

in d spatial dimensions. The simplest equation of motion including the leading non-
linearity is

F(h(x, t)) = ν‖∂
2
‖h(x, t) + ν⊥∇2

⊥h(x, t) −
λ

2
∂‖h(x, t) + η(x, t) (3.3)

with the first term being the Laplacian in the flow-direction, the second covering the
other directions and the third the leading non-linearity. The two constants ν‖ and ν⊥
are the diffusion constants parallel to the transport direction and perpendicular to it.
The absence of certain other terms in (3.3) is a crucial point and is justified below. It
is important to note that the splitting of the Laplacian cannot be undone by a spatial
transformation, without affecting the noise; the form of the noise correlator (3.2b)
would change if the Laplacian was changed into an isotropic ∇2.

HWA and KARDAR refer to conservation on average, when they say that

[t]he conservative nature of the deterministic part [,F(h(x, t)), ] of the dynam-
ics rules out terms such as −h/τ in the equation of motion. (Such a term would
introduce a characteristic time τ and characteristic length scales in the problem
that would remove scale invariance.)

The latter is in line with the general confusion that a characteristic length scale other
than the system size automatically destroys scale invariance. This is not true; on the
contrary, only the presence of an additional scale actually makes possible anomalous
scaling, i.e. scaling behaviour deviating from dimensional analysis. This point is
further illustrated in Chapter 9.

Nevertheless, the crucial point is that conservation rules out certain terms and
apparently their absence allows the solution of (3.1) to be generically scale-invariant.
This is further substantiated by a dynamic RG analysis in (Hwa and Kardar, 1989).
The exponents from these calculations agreed fairly well with the numerical results
by BAK, TANG and WIESENFELD. Almost 15 years later, it is highly questionable
whether the BTW model develops into a scale-invariant state at all (Dorn et al., 2001).

GRINSTEIN et al. use the approach introduced by HWA and KARDAR, to gener-
alise their results. They analyse conservation in much finer detail and distinguish
between a) conservation on average, where F is conservative, and the noise fluctu-
ates according to (3.2), and b) strict conservation, where the noise can be written as a
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7.4 Exact Average Avalanche Size

The toppling frequency in the stationary state is one way to calculate the average
avalanche size. The other way is to consider each slope unit fed into the model as a
random walker. This is possible because the slope units are moved through the sys-
tem at random whenever they move12 — they might get stuck or buried but provided
that they move, they do that diffusively. Thus, for a given slope unit, a time-step
elapses only if it moved, and the average time they spend in the system is identical to
the average number of moves, i.e. charges. Thus, the average avalanche size is given
by the mean time a random walker spends in the system, until it leaves through one
of the boundaries.

That way, the anisotropy v simply becomes the net drift of a random walker be-
tween two absorbing boundaries, with diffusion constant D. The latter follows from
the probabilities on the lattice. In the following, all results presented are for the
anisotropic TAOM , simply because it was the first model studied in this context
and it is slightly simpler to follow, because it depends only on one parameter, pr. For
the anisotropic TAOM it is D = 2pr(1 − pr) (binomial-to-Gaussian mapping) and
v = 2(pr − 1/2), see Sec. 7.2.2, page 285. Thus D = 1

2(1 − v2) in the following.

The problem of a biased diffusion between two absorbing walls in one dimension
is straight forward and has been discussed in detail by Farkas and Fülöp (Farkas and
Fülöp, 2001). Their calculations give for the anisotropic TAOM

〈s〉aniso TAOM =
L

v

(
1 − e−

αLv

D

1 − e−
Lv

D

− α

)
(7.56)

where α = 1/L is the “continuum approximation” (with ∆x = 1) of the point where
the particles are fed in, as in Sec. 7.3.5.

Because of the presence of two length scales, D/v and L, it is actually not too
surprising that the continuum result (7.56) deviates slightly from the simulations on
the lattice, see Fig. 7.10. The result for a simulation of the anisotropic TAOM is
also compared to a pure diffusion process on the lattice, which is shown in the same
figure. The actual cause of the lattice/continuum problem is that the continuum
transition is usually performed by rescaling time by a factor b2 and space by a factor
b. However, the presence of a net drift introduces a fixed ratio between space and
time direction.

However, the lattice problem is actually solvable in closed form (Grimmett and

12In a concrete implementation one might have to formally introduce this randomness by claiming
that a stack of (indistinguishable) slope units is randomly mixed whenever it is updated to avoid biases,
for example that the top slope unit has a higher probability to move to the right than the unit below.
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which will be recovered in Sec. 7.4.11

Since the second spatial derivative ∂2
x of the toppling frequency [(7.44) or (7.50)]

does not vanish in the case of v 6= 0, the interface h(x, t) develops an ever increasing
slope and curvature. Nevertheless, (7.44) and (7.50) are stationary states, and adding

h′(x, t) = h(x, t) + f(x)t0 (7.54)

is — apart from the initial condition — a solution of (7.34) [or (7.48)] for E(t) being
replaced byE(t)+Ėt0. It might look unphysical to have an ever increasing curvature
in the interface; in fact on page 253 and page 264 it has been argued that such a
curvature is not supported by the interface. This remains true in the case of v = 0, for
which Eq. (7.45) holds or for (7.48)

lim
v→0

f(x) =
Ė

D
(x(1 − α) = (x− αL)θ(x− αL)) (7.55)

which is only linear in x. For non-vanishing v, however, an ever increasing curvature
can be balanced by the convection term.

For small α, one should expect that (7.51) becomes similar to the boundary driven
case (7.46). Above, it has been estimated from consideration on the lattice that the
boundary needs to be driven as 2E/(1 + v), (7.38) in order to deliver height E(t) to
site x = 1, so that (7.46) should correspond to (7.51) at least in the limit of large L,
where the region [0, αL], which is inconsistent in these two picture, vanishes. At least
for vanishing v, this is confirmed, see (7.47) and (7.66).

11There is a little, surprising twist in this section: In Eq. (7.44) f(x) has the same dimensions as Ė,
while in Eq. (7.50) it has the dimension of Ė/v. Similarly the difference in the dimension of 〈s〉 in (7.46)
and (7.51). The reason for this inconsistency has actually already been discussed in Sec. 6.3.1, page 274.
In the boundary-driven case, the driving term E(t) retains its meaning during the transition from the
lattice to the continuum as a certain, given number of charges at h(x = 0, t). However, in the bulk-
driven case, the difference equation governing the lattice model is to be interpreted as an equation of
motion of local averages. The driving term in an expression like

h(x, t+ 1) − h(x, t) = h(x+ 1, t+ 1) − 2h(x, t) + h(x− 1, t) +E(t)δx,αL (7.52)

with a KRONECKER-δ fixing the position of the driving in the bulk must be interpreted as the total
(integrated) influx during time ∆t = 1; it should better be written as

h(x, t+ ∆t) − h(x, t) = h(x+ ∆x, t+ 1) − 2h(x, t) + h(x− ∆x, t) +E(t)δx,αL∆t (7.53)

So, E(t)δx,αL has the dimension of a number of slope units per time and space.
The inconsistency in the dimensions is fixed by D, L and v, which are dimensionless on the lattice,

but not so in the continuum.
The only reason why these inconsistencies come up again and again is because one starts out from

a form like h(x, t + 1) = h(x + 1, t + 1) + h(x − 1, t) + E(t)δx,αL where E(t) is just a number of
charges. Then one changes this into the difference equation (7.52). In principle, this is the same change
of dimension as observed in the transition from h(t+ 1) = E, where E has the same dimension as h to
h(t+ 1) − h(t) = E, where E is “naturally” a rate.

3.1. CONSERVATION: A LANGEVIN APPROACH 

gradient of another noise, so that

〈
η(x, t)η(x′, t′)

〉
=

d∑

i

(Γ2
i ∂

2
i )δd(x− x

′)δ(t− t′) (3.4)

where the sum, running over all spatial dimensions, allows the noise to have different
amplitudes in all directions. At the same time, the deterministic part of the LE is
rewritten as

F(h(x, t)) = ν∇2h(x, t) + η(x, t) , (3.5)

now prohibiting a spatial transformation to make the noise isotropic. In case of a
noise correlator (3.4) the LE (3.1) can now be written as a gradient, so the equation is
strictly conservative provided that the integral over the boundaries vanishes.

Essentially based on power-counting arguments, it is then possible to show that
correlations decay exponentially in space only if Γ2

1 = Γ2
2 = · · · = Γ2

d. In that case, a
Hamiltonian can be found for the problem and detailed balance holds. In turn that
means that a very small anisotropy in the noise is enough to make produce generic
scale invariance. In d = 1, there is in fact “no SOC” in the strictly conservative case.

A noise being conservative only on average,

〈
η(x, t)η(x′, t′)

〉
= Γ2δd(x − x

′)δ(t − t′) (3.6)

which breaks detailed balance and therefore renders the problem non-equilibrium
again. In that case, SOC is to be expected in all dimensions.

In some models, it is not obvious how to distinguish strict conservation and con-
servation on average. For example, in the Oslo model, slope-grains can get “buried”.
They do not disappear from the system and are bound to reappear sooner or later.
Thus, they are conserved; however, they get trapped randomly, so that one could
also argue that the trapping represents a noise term, which renders the model only
conservative on average.

Conservation can lead to scaling relations1; in the Oslo model, the average conser-
vation of grains leads immediately to the scaling behaviour of the average avalanche
size and therefore to a scaling law, relating τ and D. The argument can be extended
to an exact result for the average avalanche size, using a random walker approach to
the behaviour of individual grains. This, however, does not contain any information
about the collective behaviour of these grains.

1In general, arguments about particle creation and annihilation, especially non-conservation, can
lead to rigorous results for the first moment of the avalanche size distribution.
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3.1.1 Discussion

The authors cited above have introduced a LANGEVIN approach to SOC 2. Probably
the most remarkable outcome of these papers is that scale invariance is the rule and
exponential correlations the exception, mostly found in equilibrium models. But, do
the two papers presented above explain SOC?

They explain generic scale invariance found in an enormous class of problems,
which can be described by the LE’s introduced above. There are, however, a number
of problems:

• Anisotropy: Prima facie, it seems that the anisotropy is a natural ingredient in
these sandpile models (for example the Oslo model chapter 5), since grains
topple downhill. However, analysing the toppling rules, one finds that the
anisotropy comes purely from the definition of slope, see Sec. 5.1.3.1, page
211. Expressed in different variables, the anisotropy completely disappears.
All what is left are the boundary conditions, which might be different at differ-
ent boundaries. However, the rôle of boundary conditions is not discussed in
the papers or even explicitly neglected.3

• Thermal noise: One can regard a LANGEVIN equation as a transformation pre-
scription for the noise term; the solution of the equation is a functional of the
noise and for every sampling of the noise, there is a unique solution corre-
sponding to it. Thus, one might not be too surprised, if a scale-invariant noise,
η(bx, bz

′
t) = bα

′
η(x, t) with rescaling factor b and exponents z ′ and α′ trans-

forms into something which is scale-invariant again.

• Models: Even though viewed in this light the result is not very surprising, it is
still valid. The remaining question is then, whether there are any relevant mod-
els, obeying the LE’s discussed. From a comparison with the numerical values
of the exponents, this does not seem to be the case; at least the LE’s are not the
generic class for sandpile models. It seems that one of the crucial ingredients of
SOC, thresholds (see Sec. 1.1, page page 36), is not properly represented. Since
it is nevertheless possible to write down a (noisy) equation of motion for these
models, one might argue that such thresholds need to be expressed as multi-
plicative and/or quenched noise (see Chapter 6).

What is not discussed in these articles, is the case of a non-conservation deter-
ministic part of the equation, which also includes a noise with drift that can be ab-
sorbed in F , violating 〈η〉 = 0. Most remarkably, there are models apparently ex-

2As was done in parallel by GARRIDO, LEBOWITZ, MAES and SPOHN (Garrido et al., 1990) and others
3Most remarkably, the possible relevance of a drift term (Chapter 9) is ignored in (Grinstein et al.,

1990).

7.3. RELATION TO THE QUENCHED EDWARDS-WILKINSON EQUATION 

0) = Ė and f(x = L) = 0 as right hand BC, one immediately has

f(x) =
2Ė

1 + v

e−
v

D
(L−x) − 1

e−
v

D
L − 1

. (7.44)

For v → 0 one has
lim
v→0

f(x) = 2Ė
L− x

L
, (7.45)

up to discretisation effects in full agreement with Eq. (5.11), page 214. For very
small D (7.44) is roughly constant everywhere on the lattice apart from a very small
“boundary layer” of size D/v where it drops to 0. This is exactly what is expected
from sec. 7.3.4.1. These analytical results are still to be tested numerically. Open

taskThe spatial integral gives the total toppling frequency, i.e. the total number of
charges if driving with speed Ė, so dividing by Ė it is the average avalanche size,
measured as the number of charges instead of topplings.

〈s〉 =

(
L

1 − e−
v
D

L
− D

v

)
2

1 + v
(7.46)

The limit v → 0 gives, as expected,

〈s〉 = L (7.47)

see Eq. (5.7), page 211, the factor 1/2 in which comes from the fact the it measures the
avalanche size as the number of topplings. It is worth stressing that the form of E(t)

in this section comes from (7.38), which is a lattice result.
It is worthwhile to extend this calculation to the problem of a source in the bulk

at position αL, i.e. Eq. (7.34) now becomes

∂th = D∂2
xh− v∂xh+ η(x, h) +E(t)δ(x − αL) (7.48)

with homogenous boundaries h(x = 0, t) = h(x = L, t) = 0. With
〈
ḣ
〉

= f(x) the
problem is now

0 = D
d2

dx2
f(x) − v

d

dx
f(x) + Ėδ(x− αL) , (7.49)

with BC f(x = 0) = f(x = L) = 0. The solution of this inhomogeneous linear ODE is

f(x) =
Ė

v

{
e

v

D
L(1−α) − 1

e
v

D
L − 1

(
e

v

D
x − 1

)
+
(
1 − e

v

D
(x−αL)

)
θ(x− αL)

}
, (7.50)

where θ(x) is the HEAVISIDE θ-function. The resulting average avalanche size is

〈s〉 =
L

v

{
1 − e−

v

D
Lα

1 − e−
v

D
L

− α

}
(7.51)
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where 〈〉 denotes the ensemble average. Of course, this constant is time-independent
only if the drive is constant. Thus, in general

c =
2

1 + v
Ė(t) (7.40)

Depending on the boundary conditions, it is then 〈h(x, t)〉 = tc. The last site in the
bulk, just left from the right boundary, has therefore an ever growing value of h,
while the boundary site stays at h = 0: A jump develops. Does this make sense?

Yes, in fact, it does. First of all, one can solve the stationary velocity equation
(see below) and arrives at an expression, which exactly develops such a kink. This,
however, does only happen if D vanishes, in fact v/D must diverge. But as discussed
above (see footnote 8 on page 293), the TAOM corresponds actually to D = 1/2 and
v = 1. A vanishing diffusion constant is obtained only if the gradient term is a back-
ward slope only. This ambiguity is a lattice versus continuum problem.

7.3.5 Toppling frequency

There is a very elegant way to calculate the exact toppling frequency for the full,
generalised qEW equation with drift, Eq. (7.34). This leads to an expression for the
average avalanche size, which can also be calculated by other means, see Sec. 7.4.

The average charging frequency is 〈∂th〉 and expected to approach a stationary
value,

〈
ḣ
〉

= f(x), so by taking the ensemble average in Eq. (7.34) and deriving once
by time

0 = D
d2

dx2
f(x) − v

d

dx
f(x) , (7.41)

where ∂t〈η(x, h)〉 =
〈
ḣ∂h

〉
η(x, h) = 0 has been used, which is part of the stationarity

assumption. Actually, one has only

∂2
t

〈
ḣ
〉

= 0 = ∂t

(
D∂2

xf(x) − v∂xf(x)
)

+ ∂2
t 〈η(x, h)〉 , (7.42)

so that ∂2
t 〈η(x, h)〉 = 0, i.e. 〈η(x, h)〉 = c1t + c0, with unknown constants c1 and c0.

That c1 = 0 follows naturally on the lattice, because there the noise is bound.

Eq. (7.41) is a linear, homogenous ODE, so it can easily be solved for any drive

f(x = 0) =
2

1 + v

d

dt
E(t) . (7.43)

Here we have the simple drive E(t) = Ėt, where Ė is constant.10 Thus, taking f(x =

10In Chapter 6 Ė was called v [see Eq. (6.71), page 273], but this variable can easily be confused with
the anisotropy parameter v.

3.2. THE OFC MODEL 

hibiting SOC, while belonging to this class, for example the OFC model (see next
section) or the forest fire model (see Chapter 4). It was conjectured that any de-
gree of non-conservation can always by compensated by an external drive (Dickman
et al., 2000), which will be discussed in sec. 3.3. However, it is not always obvious
whether non-conservation apparent in one description of a model, is visible in other
descriptions as well — it might well be possible that a model looks completely non-
conservative in one quantity, but is conservative in the quantity governed by the LE.
The anisotropic Oslo model, discussed in Sec. 7.1, represents such a case: Expressed
in terms of height, it creates grains, while being completely conservative (apart from
boundaries) when expressed in terms of slopes. Again, height and slope are related
by an arbitrary choice of the definition of “downhill”.

3.2 The OFC Model

The OFC model has already been introduced in Sec. 1.3.2, page page 44. In this
section, an argument about why one cannot expect scale invariance in the random
neighbour version of it was already outlined. The following argument for the near-
est neighbour version is neither rigorous nor finished, but it provides a very strong Open

issuenecessary condition for a divergent first moment of the avalanche size distribution.4

It therefore offers an alternative way of settling the issue whether the OFC model is
critical in the non-conservative regime or not.

We recapitulate the most important features of the OFC model on a square lattice
in this context. Every site i has a height zi ∈ [0, zc]. All sites are driven homoge-
neously by a small amount ε such that zi → zi +ε until a site gets above a threshold zc

(Grassberger, 1994). Every site i exceeding the threshold zc topples by redistributing
zi according to the rule zj → zj + αzi where j are all nearest neighbours, and zi → 0.
The fact that a site redistributes everything to the neighbours makes the model non-
Abelian. The model is closely related to the MANNA model (Manna, 1991), which is
discrete and has randomised topplings, and even closer to the ZHANG model (Zhang,
1989). The ZHANG model is driven randomly by an amount δ; the OFC model is re-
covered in the ZHANG model in the limit δ → 0, which mimics homogenous drive.

In the stationary state, one expects a height distribution P(z) as depicted in
Fig. 3.1. It shows the average fraction of sites in the system, which have a height
in the interval [z, z + dz]. The average is taken after each avalanche. The total inflow

4This theme repeats again and again: The behaviour of the first moment can be related to the be-
haviour of the individual degrees of freedom. Higher moments, however, relate to their collective be-
haviour, which requires the notion of an avalanche, as a single, coherent event, which connects them.
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Figure 3.1: Height distribution in the two dimensional OFC model on a square lattice
for L = 256, open boundaries and α = 0.24 after 10 × 106 avalanches, averaged over
106 avalanches. The four bumps correspond to four charges of a site. There is a general
problem of slow convergence in the OFC model (not discussed here), which is illustrated
by the distribution after 105 avalanches (averaged over the same number) shown as a
dashed line.

due to the external drive, ∆E(t), is given by

∆E(t) = N(zc − zmax(t)) (3.7)

with N being the total number of sites and zmax the (currently) largest height in the
system. Of course, this value fluctuates over time, which is why the quantities above
are shown as a function of t. The time in this context is best taken to be the macro-
scopic time, i.e. an integer numbering sequentially the avalanches.

In the non-conservative regime, the average dissipation ∆E ′, i.e. the average
amount dissipated by the system per avalanche, is bounded by

∆E′ ≥ (1 − qα)〈s〉 (3.8)

where 〈s〉 is the average avalanche size measured as the average number topplings, q
is the coordination number and α ≤ 1/q is the “degree of conservation”. The relation
sign in Eq. (3.8) becomes an equal sign, if the boundaries are non-dissipative. In the
stationary state ∆E ′ = 〈∆E〉, so that

〈s〉 ≤ N
zc − 〈zmax〉

1 − qα
(3.9)

It seems straight forward to estimate 〈zmax〉 from P(z): If it was only one site dis-
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because of the different signs in front of the two noise terms. This could possibly
be fixed, for example by changing the sign of E(h(x + 1, t)) and changing the initial
condition. More serious, however, is the problem that according to the arguments
presented in the preceeding section, in the stationary state η ∝ H with fluctuations,
which eventually become irrelevant. If that is true, the equation of motion for the
MANNA model would not contain a quenched noise. Maybe that is resolved by the
derivative-like form of the last two terms.

7.3.4 Boundary conditions of the qEWd

In general the right hand boundary condition of (7.28) must be h(x = L + 1, t) = 0,
which just states that all slope units are lost there and nothing enters from there. The
same applies to the driving term: One simply fixes h(x = 0, t) = E ′(t) to a particular
value and chooses the noise terms such that their combined effect on site x = 1 is as if
it was “kicked” an appropriate number of times. After fixing all noise terms at x = 0

to 0, the only terms involving the left boundary which enter into ∂th(x = 1, t) are the
h− terms: 1

2h
− + 1

2vh
−, so that h(x = 0) = E ′(t) provides 1

2(1 + v)E′(t) kicks to the
site at x = 1.

Therefore, the left hand boundary condition is

h(x = 0, t) =
2E(t)

1 + v
, (7.38)

where E(t) is now the number of initial kicks delivered to the system in total until
(microscopic) time t, very similar to Eq. (6.7), page 248. The right hand boundary is
h(x = L+ 1, t) ≡ 0 (clearly the +1 disappears in the continuum).

7.3.4.1 Again the TAOM

All that is very straight forward, but the right hand boundary now seems to contra-
dict the expected shape of h in the TAOM: In the TAOM the right hand side is the
only point where slope units can leave the system. So, every unit must pass through
every single site, so that on average every site topples with the same frequency;9 the
velocity of the interface is everywhere the same:

〈∂th(x, t)〉 = c (7.39)

9This is very similar to the OOM with original boundary condition, Sec. 5.1.4, page 212.
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every single slope unit moves to the right, corresponding to the TAOM. Plugging in
v = 1 and resolving the spatial derivatives, one has

∂+
t h =

1

2
h+ − h+

1

2
h− − 1

2
(h+ − h−)

+ (η+ + η−) + (η− − η+) (7.32)

= h− h− + η− (7.33)

and the last line is indeed (7.10).

In the OOM it has turned out that all noise terms can be collected into a single
effective noise term, such that

∂th = D∂2
xh− v∂xh+ η(x, h) (7.34)

is the final equation, the quenched EDWARDS-WILKINSON equation with drift
(qEWd).

7.3.3.1 The MANNA model and the qEW

After the results discussed above had been published (Pruessner and Jensen, 2003a),
a similar calculation for the MANNA model (Sec. 5.2.2.3, page 223) suggested that the
argument for ξ̃ → 0 presented above leads to serious problems. In the MANNA model
again, H(x, t) is the total number of topplings and h(x, t) the number of charges
received. Then

h(x, t) = H(x−1, t)+η(H(x−1, t), x−1)+H(x+1, t)−η(H(x+1, t), x+1)+ (7.35)

where η(H,x) =
∑H

H′=1 η(H
′, x) is the sum over the noise η, which decides about the

distribution of the two slope units during toppling: it is +1 if both units have been
redistributed to the right, −1 for both left and 0 if one has been redistributed to either
side. Since

H(x, t+ 1) =

⌊
h(x, t)

2

⌋
=
h(x, t) + Υ(h(x, t))

2
(7.36)

with Υ(h) = 0 if h is even and −1 otherwise, one arrives at

∂th =
1

2
∂2

xh(x, t)+Υ(h(x−1, t))+Υ(h(x+1, t))+η(H(x−1, t), x−1)−η(H(x+1, t), x+1) .

(7.37)
Of course, this equation can be written in terms of h only, by using (7.36).

There are a number of problems with this equation. First of all, it does not seemOpen

issue to be possible to absorb E into the noise as periodicity like in Sec. 6.1.2, page 247,

3.2. THE OFC MODEL 

tributed according to it, then the probability that this site had a value lower than
z′ is

∫ z′

0 dzP(z). For N independent sites, the probability that all zi are below z′ is(∫ z′

0 dzP(z)
)N

, leading to

Pmax(zmax) =
d

dz′

∣∣∣∣
z′=zmax

(∫ z′

0
dzP(z)

)N

= NP(zmax)

(∫ zmax

0
dzP(z)

)N−1

(3.10)

where Pmax(zmax) denotes the PDF of the maximum zi. Thus, the average maximum
is in the limit of large N

〈zmax〉 → zc −
1

P(zc)(N + 1)
(3.11)

where P(z) has been expanded around z = zc. Even though Fig. 3.1 does not seem
to indicate a vanishing P(zmax), one can find similar results even in that case. The
crucial point is that the population density around zc increases linearly in N , so that
the distance to zc of the largest value in this population vanishes like 1/N . Thus, in
case of uncorrelated heights, there is a constant c such that

〈s〉 ≤ c
N

(N + 1)(1 − qα)
(3.12)

with c = 1/P(zc) if the density around zc is finite. For α < 1/q the RHS of Eq. (3.12)
remains finite for all N , so that 〈s〉 does not diverge. However, that contradicts nu-
merical findings (namely τ < 2) (Lise and Paczuski, 2001b,a; Boulter and Miller,
2003), even though the latter remain inconclusive.

The most serious assumption made above was that the heights are uncorrelated.
One can see that immediately by considering the extreme case, namely that all sites
have exactly the same value after an avalanche. This value would be randomly cho-
sen from the distribution P(z), so that this ensemble of δ-peaked distribution gives
on average P(z). In that case, the average maximum does not get closer to zc as the
system size is increased.

A numerical study of the average position of the maximum is exactly identical
to a numerical study of the average avalanche size. Plenty of these studies can be
found in the literature and they all remain inconclusive. So, by focusing on another
approach, one might find stronger evidence in favour or against a divergent first
moment.

The most obvious question to ask is whether there are correlations between the
consecutive zmax, in space or in amount. Fig. 3.2(a) shows the correlation function

Cr(t) =
〈rin(t′)rin(t′ + t)〉 − 〈rin(t′)〉〈rin(t′ + t)〉

〈rin(t′)2〉 − 〈rin(t′)〉2
, (3.13)
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Figure 3.2: Correlation function Cr(t) of the position of the seed of the avalanches
and correlation function Cz(t) of the value of the maximum site at time t in the two-
dimensional OFC model on a square lattice for L = 256, open boundaries and α = 0.24,
after 106 avalanches, averaged over 3 × 106 avalanches.

where rin(t) is the location of the the site with the largest height after the tth
avalanche. The average 〈〉 runs over t′ and is — supposedly — identical to the ensem-
ble average. The plot indicates that there is almost no correlation between the location
of consecutive “seeds” of avalanches. However, the correlations are markedly higher
or at least more structured for α = 0.24 than for α = 0.25 (not shown). Similarly for
the correlation function of zmax(t), Cz(t), shown in Fig. 3.2(b).

In order to identify which sites actually trigger the avalanches, Fig. 3.3 shows
the probability for each site to be the seed of an avalanche5. As already suggested
by MIDDLETON and TANG (Middleton and Tang, 1995), the boundaries are typically
triggering an avalanche. That seems to be surprising, because the boundaries are
most dissipative, so one should expect boundary sites typically to be at very low
height. However, most of the height driven into the bulk leaves the system via the
boundaries. Moreover, having less neighbours means also less charges; Fig. 3.4 sup-
ports that view. This figure shows the average time between two hits.

One major problem in the OFC model is its enormous, practically unknown equi-
libration time. This problem has rendered a comparison of (3.10) to the numerical
result very problematical. It is illustrated in terms of the PDF P(zmax) in Fig. 3.5:
The PDF changes drastically with the equilibration time. The numerical problems
with the OFC model have been discussed by DROSSEL (Drossel, 2002), claiming that
one essential mechanism in the OFC model is the limited numerical accuracy when
simulated. This is consistent with the findings in the next section, where a model is

5Fig. 3.3 remains essentially unchanged if avalanches of size 1, i.e. those which do not actually
spread, are omitted.
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In the OOM, this simplifies to the form given in Eq. (6.4), page 248, as ξ ≡ 0. However,
in general ξ is a random variable. To understand its rôle, we introduce ξ̃

ξ(x,H) = H(v + ξ̃(x,H)) (7.25)

where the velocity v is now defined just like above, (7.1) v = (〈Hr〉−〈Hl〉)/〈H〉, using
ensemble averages, so that 〈Hr,l〉 = pr,l〈H〉/(pr + pl). Thus for example

ξ+ = ξ(x+ 1,H(x + 1, t+ 1)) (7.26)

= (h(x+ 1, t) + η(x+ 1, h(t, x + 1)))

× (v + ξ̃(x,H(x + 1, t+ 1))) (7.27)

so that

∂+
t h =

1

2
∂2

xh+
1

2
(η+ + η−) (7.28)

+
1

2
v(h− − h+) +

1

2
(ξ̃−h− − ξ̃+h+) (7.29)

+
1

2
(v + ξ̃−)η− − 1

2
(v + ξ̃+)η+ (7.30)

The crucial point is now that ξ̃ vanishes for sufficiently large H , because it quanti-
fies only the deviation from the prescribed anisotropy. One expects it to decay like
1/
√
H . That sounds dangerous,7 because it might represent a relevant perturbation

or not vanish fast enough. However, the latter objection does not hold; one of the key
assumptions is that the interface develops into a stationary state and all statistics be-
comes time translation invariant. So, after “arriving” in this stationary state, nothing
changes anymore, but ξ̃ keeps decaying. For t → ∞ it vanishes, but this limit must
be equivalent to the stationary state.

The term h−−h+ in (7.28) can be written as −2∂xh, now with a symmetric deriva-
tive. Thus

∂+
t h =

1

2
∂2

xh− v∂xh+
1

2
(η+ + η−) +

1

2
v(η− − η+) (7.31)

For v = 0, corresponding to the OOM, one recovers the result in Chapter 6, which is
based on ξ = 0. For v = 1, one also has ξ = 0 on the lattice8, because that means that

7One reason why that actually appears to be wrong is that if v alone parametrises the model com-
pletely, why then is pr = pl = 0.75 different in the amplitude from pr = pl = 1, see Fig. 7.2? Note that
D = 1/2 in any model on the lattice.

8But there are some dangerous ambiguities on the lattice: For example, D = 1/2 and v = 1 in (7.34)
is identical to D = 0 and v = 1 if the single derivative is replaced by its backwards form:

1

2
(h+ − 2h + h−) − 1

2
(h+ − h−) = −h+ h− .
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Just like in Chapter 6 (Sec. 6.1.2, page 247), the total number of topplings is controlled
by a quenched noise η, so that

H(x, t+ 1) = h(x, t) + η(x, h(x, t)) (7.17)

where h(x, t) is the number of charges received by the site at x,

h(x, t) = Hr(x− 1, t) +Hl(x+ 1, t) . (7.18)

Thus, η represents the number of units stored at a given site, −η = z − z0, where z0
is the initial value. That can be easily checked for Hr(x, t) = Hl(x, t) as in the OOM.
In that case, as shown in Chapter 6, starting from z = 1 and h = 0 everywhere, one
finds z = 1 corresponds to η = 0, z = 2 corresponds to η = −1 and z = 0 to η = 1, just
as it should (see also Tab. 6.1, page 257).6 To quantify the anisotropy, we introduce

ξ(x,H(x, t)) = Hr(x, t) −Hl(x, t) (7.19)

which is 0 in the OOM. From that we have H − ξ = 2Hl and H + ξ = 2Hr. Now one
derives

h(x, t+ 1)

= Hr(x− 1, t+ 1) +Hl(x+ 1, t+ 1) (7.20)

=
1

2
H(x− 1, t+ 1) +

1

2
ξ(x− 1,H(x− 1, t+ 1))

+
1

2
H(x+ 1, t+ 1) − 1

2
ξ(x+ 1,H(x+ 1, t+ 1)) (7.21)

=
1

2
h(x− 1, t) +

1

2
η(x− 1, h(x − 1, t)) +

1

2
ξ+

+
1

2
h(x+ 1, t) +

1

2
η(x+ 1, h(x + 1, t)) − 1

2
ξ− (7.22)

(7.23)

where we have used the obvious abbreviations ξ± = ξ(x± 1,H(x ± 1, t+ 1)). Intro-
ducing a lattice Laplacian and (forward) time derivate one has

∂+
t h =

1

2
∂2

xh+
1

2
(η+ + η−) +

1

2
(ξ− − ξ+) (7.24)

6Note that the variable H used in Chapter 6 is half the H used here. In Chapter 6 it represents the
number of topplings rather than the number of units redistributed.
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Figure 3.3: Average number n̂ of times a site was the seed of an avalanche in the OFC
model, i.e. probability to be seed per site. Simulation parameters: L = 32, open bound-
aries, α = 0.24, 2 × 105 avalanches for transient and 5 × 105 for statistics.

presented, which becomes particularly difficult to handle numerically, whenever α is
of the form 1/n, n ∈ N, see Sec. 3.3.4.

3.3 A Solvable Random Neighbour Model

As an example of non-conservative SOC, we present the first solvable non-
conservative sandpile-like critical model of Self-Organised Criticality (SOC). This will
help to substantiate on mean field level the suggestion by VESPIGNANI and ZAP-
PERI (Vespignani and Zapperi, 1998) that a lack of conservation in the microscopic
dynamics of an SOC-model can be compensated by introducing an external drive
and thereby re-establishing criticality. The model shown is critical for all values of
the conservation parameter. The analytical derivation follows the lines of BRÖKER

and GRASSBERGER (Bröker and Grassberger, 1997) and is supported by numerical
simulation. In the limit of vanishing conservation the Random Neighbour DROSSEL

SCHWABL Forest Fire model (R-DS-FFM) is recovered.

3.3.1 Introduction

The rôle of conservation in SOC-models is an old issue (Grinstein et al., 1990; Mid-
dleton and Tang, 1995; Jensen, 1998) and is still unsettled. The number of non-
conservative models which are definitely critical is, however, strikingly small. The
Random Neighbour DROSSEL SCHWABL Forest Fire model (R-DS-FFM) (Christensen
et al., 1993) is one of them, while the Random Neighbour OLAMI-Feder-Christensen
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Figure 3.4: Average time t̂ (measured in number of avalanches) between two charges of
a site. Simulation parameters: L = 32, open boundaries, α = 0.24, 2 × 105 avalanches
for transient and 5 × 105 for statistics.

model (R-OFC) has been shown not to be critical in the non-conservative regime
(Bröker and Grassberger, 1997; Chabanol and Hakim, 1997). The nearest neighbour
OFC model is widely accepted to be critical in the conservative limit, but whether this
model is critical in the non-conservative regime is still debated (Middleton and Tang,
1995; Lise and Paczuski, 2001b) — a way to tackle the problem has been proposed
above.

In (Vespignani and Zapperi, 1998; Dickman et al., 2000) it has been suggested that
non-conservation in the microscopic dynamics can be compensated by an external
drive in order to re-establish criticality. Applying this concept directly to a model
known to be non-critical in its original definition provides the ideal basis to identify
the effect of such an external drive. In this letter such a model is defined and solved
semi-analytically. The results are compared to simulations and the (trivial) critical
exponents are extracted. Several limits are discussed.

3.3.2 The model

The model, which is derived from the DS-FFM (Drossel and Schwabl, 1992) and the
ZHANG model (Zhang, 1989), has three main parameters: N is the total number of
sites, which diverges in the thermodynamic limit. The number of randomly chosen
“neighbours” is given by n, where n = 4 in all examples, corresponding to a two-
dimensional square lattice. The conservation parameter is α. The degree of non-
conservation is then 1 − nα, as it is shown below. Each site i ∈ {1, 2, · · · , N} has
associated a value zi for its “energy”. Sites with 0 ≤ zi < 1−α are said to be “stable”,
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� � � � � � �

� � � � � �

� �

��

Figure 7.9: This figure illustrates how a kink propagates in the TAOM: On a given site
the “backwards slope” decides about propagation, which then “relaxes” this slope (new
configuration shown in gray), but produces a new “fault” at the right. This “fault” prop-
agates through the system towards the right. For illustration purposes the effect of the
noise is not shown.

the site at x = 1 receives the correct number of charges:

h(x = 0, t) = E(t) and η(x = 0, h) ≡ −1 (7.13)

where the noise just needs to be fixed to any value. The termE(t) is the driving term,
i.e. E(t) is the number of times an avalanche has been started at time t, which is the
microscopic time (just like in Chapter 5). For example

E(t) =

⌈
t

L+ 1

⌉
(7.14)

would be appropriate, because an avalanche cannot last longer than it takes to sweep
through the entire system (the +1 is there because the system size with boundary is
L+ 1). The avalanche size is then measured as

∫ L

1
h(x, t+ 1) − h(x, t)dx (7.15)

The right hand boundary turns out to be irrelevant. With nearest neighbour inter-
actions only, the only site which could be in contact with it, is x = L. But it turns out
that the right hand boundary gets never actually evaluated, as can be seen by setting
x = L in (7.12).

7.3.3 LANGEVIN approach to the full model

The results for the TAOM above and the OOM in Chapter 6 can be captured in a
single equation as follows: H(x, t) is the number of slope units which have toppled
from site x. This can be split into two contributions Hr and Hl, denoting the amount
distributed towards the right and towards the left, i.e.

H(x, t) = Hr(x, t) +Hl(x, t) (7.16)
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Putting (7.6) and (7.7) together and subtracting h(x+ 1, t) on both sides leads to

h(x+ 1, t+ 1) − h(x+ 1, t) = h(x, t) − h(x+ 1, t) + η(x, h(x, t)) (7.10)

or
∂+

t h(x+ 1, t) = −∂+
x h(x, t) + η(x, h(x, t)) . (7.11)

As indicated by the superscript, both differentials are “forward differences”. One can
rewrite this equation as

∂+
t h(x, t) = −∂−x h(x, t) + η(x, h(x − 1, t)) , (7.12)

to make the derivatives local. Interpreting this equation on a lattice, one can think of
an interface where the sites sitting right of a negative slope, try to pull up the interface
to compensate the slope, as illustrated in Fig. 7.9. The noise η(x, h(x−1, t)) adds some
extra random slope everywhere.

7.3.2 Boundary conditions for the TAOM

The left hand boundary condition of the LANGEVIN equation is where the system is
driven, which can be realised by setting the site at x = 0 to a particular value, so that
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Figure 3.5: The distribution of the maximum P(zmax) for two different equilibration
times and two different initial seeds of the random number generator. System size L =
200, open boundaries, α = 0.24. The number of avalanches rejected as transient and
accepted as statistics are given in the form “transient, statistics”.

sites with 1 − α ≤ zi < 1 are called “susceptible” and sites with 1 ≤ zi are “active”.
Negative energies are not allowed. The probability density function (PDF) for the
variable zi is P (z) with z ∈ [0, 1[ and is defined only when no sites are active. P (z)

contains most of the stationary properties of the model.

The dynamics of the model are defined as follows: After an initial choice of zi

(i = 1, 2, ..., N) from a uniform distribution in the interval [0, 1[, the model is updated
by repeatedly (i) “driving”, (ii) “triggering” and (iii) “relaxing” the system. During
the drive (i), i = 1, ..., θ−1 sites are chosen randomly [θ−1 = p/f in the notation of
(Drossel and Schwabl, 1992)], one after the other, and their energies zi are set to 1−α,
if the site is stable, otherwise zi remains unchanged. Subsequently one random site j
is chosen and if it is susceptible, the system is triggered (ii) by setting the energy of the
chosen site to 1, i.e. making it active (initial seed). Otherwise zj remains unchanged
and the model is driven again by repeating (i). As long as N and θ−1 are finite, the
system will escape from the driving loop sooner or later. In the thermodynamic limit
this is ensured by a non vanishing density of susceptible sites.

During the relaxation (iii) the energy of each active site i is redistributed according
to the conservation parameter α to n randomly chosen sites j and the energy of zi is
then set to 0:

zj → zj + αzi zi → 0 (3.14)

Each visit or “toppling” (3.14) defines a microscopic time step and dissipates exactly
(1 − nα)zi energy units. The sites j are chosen randomly one after the other and are
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not necessarily different. In the thermodynamic limit the probability of choosing a
target site which is already active or was already charged during the same avalanche,
vanishes and therefore the order of these visits is irrelevant. In this very restricted
sense the model might be considered as “Abelian”. In contrast, sites in finite systems
have always a finite probability to get charged more than once. Nevertheless, this
probability decreases rapidly with increasing system size.

3.3.3 Calculations

The number of active sites relaxed by (3.14) defines the avalanche size s, which is
always positive due to the initial seed. In the stationary state the avalanches must
dissipate, on average, the same amount of energy as is supplied by the external drive
and the initial seed. The average dissipation depends on the avalanche size weighted
average energy of active sites zact, which is equivalent to the average energy of active
sites per toppling. Therefore

(1 − nα)zact〈s〉 = θ−1pst

pc
(1 − α− zst) + (1 − zc) (3.15)

must hold exactly in the stationary state even for finite systems and does not intro-
duce any approximation. Here 〈s〉 is the average avalanche size, pst (pc) is the den-
sity of stable (susceptible) sites (the drive stage is, on average, repeated 1/pc times),
zst and zc are the average energy of stable and susceptible sites respectively. As in
(Bröker and Grassberger, 1997) the only crucial assumption is that 〈s〉/N as well as
θ−1/N vanishes in the thermodynamic limit, which turns out to be entirely consistent
with the results. This assumption allows us, for example, to assume the distribution
P (z) to be essentially unaffected by external drive or relaxation for sufficiently large
systems.

From (3.15) it is clear that in general 〈s〉 diverges for diverging θ−1 or vanishing
dissipation rate 1−nα. From the microscopic dynamics it is clear that there is always
a non-vanishing fraction of sites with z = 0, therefore (1 − α) − zst is finite and a
divergence of θ−1 entails a divergence of 〈s〉, which is a signature of criticality.

In the following outline of the actual calculation, which is adapted from (Bröker
and Grassberger, 1997), the PDF’s of the model are derived.

After an avalanche, each site belongs to one of m + 2 classes, where m = b1/αc.
The index k = 0, 1, · · · ,m of the class indicates the number of charges received from
other toppling sites since their last toppling, while k = m + 1 indicates the class of
sites, whose energy has been set by external drive. A site charged more than m times
must be active. For each of these classes a conditional distribution function Qk(z)

is introduced, describing the distribution of energy among non-active sites, which
have been charged k = 0, ...,m times or externally driven, k = m + 1. The distribu-
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/L2.5 in the anisotropic TAOM versus L for various values of v. For larger v the
TAOM behaviour is observed much earlier. At v = 1 the anisotropic TAOM is identical
to the TAOM. The dashed lines are for the corresponding data of the OOM and the
TAOM. The line for v = 0 runs parallel to the OOM data. The arrows show the estimated
crossover as shown in Fig. 7.11. Fig. 7.7(b): Moment ratio g3 in the anisotropic TAOM
for different v as indicated, The smaller v the later the crossover to the TAOM sets in.

complete mapping is therefore (compare to Tab. 6.1, page 257):

η(x, h(x, t)) = −2 ⇒ zc(x, t) = 2

η(x, h(x, t)) = −1

η(x, h(x, t) + 1) = −1

}
⇒ zc(x, t) = 1

η(x, h(x, t)) = −1

η(x, h(x, t) + 1) = −2

}
⇒ zc(x, t) = 2

(7.8)

This is an example for a mapping the sequence of η values to zc:

h 1 2 3 4 5 6 7 8 9 10 11

η(x, h) −1 −1 −1 −2 −2 −2 −1 −1 −2 −1 −2

zc
i (h) 1 1 2 2 2 2 1 2 2 2 2

(7.9)

The reason for this apparent asymmetry, namely that zc = 2 is much more likely
than zc = 1, is that if a site relaxes and draws a new random zc, then zc = 2 will
render it stable for z = 2, while zc = 1 leads to an additional relaxation in that case.
For example, if z = 3 relaxes to z = 2 and draws the new random threshold zc = 2

then nothing more happens. However, if it draws zc = 1 another toppling occurs,
after which another zc is to be drawn. This makes zc = 1 less likely than zc = 2.
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where H(x, t) is the number of topplings a site x has performed at time t and h(x, t)

is the number of charges it has received.5 The quenched noise η(x, h) describes the
effect of the critical slope zc

i : If η(x, h+ 1) = η(x, h) − 1, then a newly arriving charge
does not trigger a toppling. The exact meaning of η can be derived as follows: The
initial configuration is zi = 0 everywhere as well as h(x, t = 0) = 0 and H(x, t = 0) =

0. If a site has received h charges and has now value z, then H = h − z, because of
conservation of slope units. From (7.6) it follows that η = −z in the stable state.

In the TAOM every site can only be in one of two stable states: z = 1 or z = 2 (see
Chapter 8). Therefore η is a sequence of −1 and −2 in t. If zc

i = 1 the only stable state
is zi = 1, for zc

i = 2 both states are possible. Thus η = −2 entails zc = −2. However,
η = −1 just means z = 1 and a priori nothing is known for zc. But if η(x, h) = −1

and η(x, h + 1) = −1, a further charge would not increase z, so that zc must be 1.
Otherwise, i.e. η(x, h) = −1 and η(x, h + 1) = −2, the critical slope is zc = 2. The

5As in Chapter 6 the index i refers to a site in the discrete, sandpile-like description and x refers to
the description in terms of h(x, t) and H(x, t).
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tion of sites which have not been charged since their last toppling, Q0(z), is a delta
peak at z = 0. For convenience the normalisation of Q0(z) is chosen to be unity and
all other distribution functions are normalised relative to class 0. The distribution of
sites which have not changed after once being driven externally, Qm+1(z), is obvi-
ously a weighted delta peak at 1 − α. If the fraction of these sites is g (“accumulated
susceptible sites”), P (z) can be written as

P (z) = N
m+1∑

k=0

(1 − g)Qk(z) (3.16)

where N (1 − g)Qm+1(z) = gδ((1 − α) − z) and N < 1 is an appropriately chosen
normalisation. The upper bound for the energy of an active site is the geometric sum
1 + α(1 + α(· · · )) = 1/(1 − α), neglecting double charges. Therefore, the support of
the distribution function of active sites C(z) is [1, 1/(1 − α)[. If this distribution is
normalised, the expected increase per avalanche in the class k > 0 is given, in the
thermodynamic limit (where multiple toppling can be neglected), by the convolution

n〈s〉
∫ 1/(1−α)

1
dz′C(z′)Qk−1(z − αz′) , (3.17)

where the factor n〈s〉 takes into account the expected total number of charges. There
are three different ways in which the classes k < m+ 1 may be decreased:
1) By charges, Qk(z)n〈s〉
2) By external drive, Qk(z)θ

<((1 − α) − z)θ−1pc
−1, where θ< is the HEAVISIDE step

function with θ<(0) = 0.
3) By initial seed, Qk(z)θ

>(z − (1 − α))/pc, where θ>(0) = 1 correspondingly.
Adding these contributions together and assuming stationarity leads to m equations
for Qk, k = 1, · · · ,m:

Qk(z)l(z) =

∫ 1/(1−α)

1
dz′C(z′)Qk−1(z − αz′) , (3.18)

where

l(z) = 1 +
θ−1

pcn〈s〉
θ<((1 − α) − z) +

1

pcn〈s〉
θ>(z − (1 − α)) (3.19)

has been used. For diverging θ−1, the last term in (3.19) becomes irrelevant and the
RHS of (3.15) is dominated by the first term, meaning that the initial seed becomes
irrelevant compared to the external drive. It is reasonable to restrict the range of α so
that single charges cannot activate a site, α/(1 − α) < 1 ⇔ α < 1/2 (due to nα < 1,
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this is a restriction only for n = 1). For k = 1 (3.18) can be written as

C
( z
α

)
= αQ1(z)l(z) , (3.20)

due to the particularly simple form of Q0(z).

Since Q0(z) = δ(z), by definition, and N (1 − g)Qm+1(z) = gδ((1 − α) − z) as
mentioned above [see (3.16)], one further equation is necessary in order to findm+3

distributionsQk, k = 0, · · · ,m+1 and C(z). This equation concerns the construction
of the distribution of active sitesC(z). Since active sites are created due to charging or
as the initial seed the average distribution of the number of those sites per avalanche
is given by

〈s〉C(z) = n〈s〉
∫ 1/(1−α)

1
dz′C(z′)P (z − αz′) + δ(z − 1) (3.21)

where the δ-function represents the initial seed.

Although it is a priori unknown whether there exists a stable solution, or whether
it is unique, the set of equations given above is enough to start an iteration procedure
in order to find a solution. The scalar parameters required are 〈s〉 from (3.15), pst, pc,
zst, zc, which are easily derived from (3.16) and zact, the first moment of C(z). While
n and θ−1 parameterise the problem, g remains the only unknown quantity, which is
found to be

g =
pstθ

−1

n〈s〉pc + 1
(3.22)

by comparing the in- and outflow of class m + 1, the externally driven sites, per
avalanche.

3.3.3.1 Invariant I

As a test for the derivations above, one can derive invariants, i.e. quantities whose
value is independent from the specific form of the solution. This is of particular
interest if these invariants are easy to derive from the original model but do not enter
directly the solution.

The first such object is the normalisation of C(z). Since C(z) is normalised, it
suffices to impose

〈s〉C(z) = µ

(
n〈s〉

∫ 1/(1−α)

1
dz′C(z′)P (z − αz′) + δ(z − 1)

)
(3.23)

with an arbitrary µ > 0, rather than the stronger Eq. (3.21) which implies µ = 1. This
quantity has a direct physical meaning; the average number of topplings triggered
by the toppling of a site, i.e. the average number sites which become active by the
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Figure 7.5: Scaling in the anisotropic OOM. Fig. 7.5(a): Rescaled second moment

�

s2

�

/L2.5 in the anisotropic OOM versus L for various values of v with pr = 1 (filled
circles). For larger v the TAOM behaviour sets in much earlier. The dashed lines are
the corresponding data of the OOM and the TAOM. The data with opaque circles and
v = 0.2 (in brackets) is for pr = 0.8 and pl = 0.6. Similar for v = 0.05 for pr = 0.7
and pl = 0.65. Fig. 7.5(b): Moment ratio g3 for different values values of v (from top
to bottom the same order as in Fig. 7.5(a)) in the anisotropic OOM (pr = 1 for all filled
symbols) and different system sizes L. The upper and the lower dashed lines are the g3

data of the OOM and the TAOM. For pr = pl = 1 the anisotropic OOM is identical to
the OOM.

pinning (Tang et al., 1995). For v = 0 numerics for the OOM suggest correspondingly
that χ = 1.25(2).

7.3.1 Detailed derivation of the qEW for the AOM

As a first step towards the qEW for the AOM, a LANGEVIN equation for the TAOM is
introduced, which is particularly simple, because in the TAOM toppling sites charge
only their right neighbour, according to pl = 0 and pr = 1. Using exactly the same
approach as for the OOM (see Sec. 6.1, page 245) one derives for the TAOM the fol-
lowing two equations:

H(x, t+ 1) = h(x, t) + η(x, h(x, t)) (7.6)

h(x, t) = H(x− 1, t) (7.7)
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Figure 7.4: Similar to Fig. 7.3, scaling of g4 [see Eq. (7.4)] for different anisotropies. The
filled circles are results for pr − pl in the same vertical order as shown in Fig. 7.2 and
pr = 1. Open circles show other parameters (pr, pl) as indicated. The dashed lines are
the two extreme cases OOM (pr = pl = 1) and the TAOM (pr = 1, pl = 0).

2pr − 1. Fig. 7.7(a) shows again the behaviour of the second moment and Fig. 7.7(b)
the behaviour for g3. Finally, Fig. 7.8 shows g3 as a function of v for different system
sizes. The larger the system, the sharper the jump at small v towards the value of g3

in the OOM.

7.3 Relation to the Quenched EDWARDS-WILKINSON Equa-
tion

The importance of the above result is highlighted when we recall that the OOM in
the continuum limit is described by the qEW equation, see Chapter 6. A similar
derivation (details below) shows that the AOM is a qEW equation with an additional
drift term

∂th(x, t) = D∂2
xh(x, t) − v∂xh(x, t) + η(x, h(x, t)), (7.5)

where D is the diffusion constant and v the anisotropy or drift velocity as defined
above. Just like in the OOM, the quenched noise, η(x, h(x, t)), represents the ran-
domly chosen zc

i and h(x, t) is the number of charges received by site x at time t. The
quenched nature of the noise makes it difficult to solve (7.5) directly. Together with
the boundary conditions (see Chapter 6 and Chapter 9), the noise prevents the drift
term v∂xh from being absorbed by a Galilean transformation. However, the above
results determines the roughness exponent via D = 1 + χ (Paczuski and Boettcher,
1996) to be χ = 1/2 for v > 0, as already suggested in another case of anisotropic de-
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relaxation of a site is

σ = n

∫ 1/(1−α)

1
dz

∫ 1/(1−α)

1
dz′C(z′)P (z − αz′) (3.24)

which is related to (3.23) by σ = 1/µ − 1/〈s〉. Of course, it is well known that the
branching ratio in these processes is simply 1− 1/〈s〉 (Christensen et al., 2001; Harris,
1963), so that µ = 1. The consistency check means now to test whether µ = 1 follows
directly from (3.23).

To this end, the distribution of sites activated after k charges is introduced,

Q>
k (z) = (1 − θ<(1 − z))

∫ 1/(1−α)

1
dz′C(z′)Qk−1(z − αz′) . (3.25)

Moreover, the θ-function implicit in Eq. (3.18) and Eq. (3.19) is made explicit:

Q<
k l(z) = θ<(1 − z)

∫ 1/(1−α)

1
dz′C(z′)Q<

k−1(z − αz′) , (3.26)

so that by defining

l◦(z) = 1 + θ<(1 − z)
θ−1

pcn〈s〉
θ<((1 − α) − z) (3.27)

+θ<(1 − z)
1

pcn〈s〉
θ>(z − (1 − α))

Q◦(z)l◦(z) =

∫ 1/(1−α)

1
dz′C(z′)Q<

k−1(z − αz′) , (3.28)

one can express the distribution of sites charged k times in two parts. One part, Q<
k ,

is not activated by the charges, while the other part, Q>
k is:

Q<
k = θ<(1 − z)Q◦(z) (3.29a)

Q>
k = (1 − θ<(1 − z))Q◦(z) (3.29b)

It is important to note that Q>
m+1(z) has nothing to do with Qm+1(z), which has

only been introduced as a shorthand expression for the sites being moved to z = 1−α
by the external drive. Using (3.16) one finds

∫ 1/(1−α)

1
dz′
∫ 1/(1−α)

1
dzC(z′)P (z − αz′) = g + (1 − g)N

∫ 1/(1−α)

1
dz

m+1∑

k=1

Q>
k (z) , (3.30)
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where the integration over the δ-function requires

∀
z′∈[1,1/(1−α)]

∃
z∈[1,1/(1−α)]

(1 − α) = (z − αz′) (3.31)

which can easily be proven, provided that α2 ≤ α.

To find the RHS integral of (3.30) one integrates (3.28),

∫ 1/(1−α)

0
dz Q◦

k(z)l
◦(z) =

∫ 1/(1−α)

1
dz′

∫ 1

0
dz Q<

k−1(z)C(z′) (3.32a)

=

∫ 1/(1−α)

0
dz

∫ 1/(1−α)

1
dz′ Q<

k−1(z − αz′)C(z′) (3.32b)

=

∫ 1

0
dz Q<

k−1(z) , (3.32c)

where Q<
k (z) ≡ 0 for z 6∈ [0, 1] has been used as well as

∀
z′∈[1,1/(1−α)]

[
− αz′,

1

1 − α
− αz′

]
⊇ [0, 1] (3.33)

It is useful to rewrite the result (3.32c) as

∫ 1/(1−α)

0
dz
(
Q<

k (z) −Q◦
k+1(z)

)
=

∫ 1

0
dz Q<

k+1(z)
(
l◦(z) − 1

)
(3.34)

using the HEAVISIDE function in the definition of l◦(z). Since Q◦
k+1 includes Q<

k+1,
summing the LHS over k cancels these terms and one arrives at

∫ 1/(1−α)

0
dz

m∑

k=0

(
Q<

k (z) −Q◦
k+1(z)

)
=

∫ 1/(1−α)

0
dz
(
Q<

0 (z) −
m∑

k=0

Q>
k+1(z)

)
(3.35)

= 1 −
∫ 1/(1−α)

1
dz

m+1∑

k=1

Q>
k (3.36)

where in the first line Q>
m+1 ≡ 0 has been used. This gives together with the RHS of

(3.34) the exact result

∫ 1/(1−α)

1
dz

m+1∑

k=1

Q>
k = 1 −

∫ 1

0
dz

m∑

k=1

Q<
k (z)

(
l◦(z) − 1

)
(3.37)

However, in order to give a final result for the value of µ in (3.23), it still remains to
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Figure 7.3: Scaling of g3 [see Eq. (7.4)] for different anisotropies. The filled circles are
results for pr −pl in the same vertical order as shown in Fig. 7.2 and pr = 1. Open circles
show other parameters (pr, pl) as indicated. The dashed lines are the two extreme cases
OOM (pr = pl = 1) and the solvable model (TAOM, pr = 1, pl = 0). The short arrows
mark the crossover points in Fig. 7.2.

which can easily be proven to be asymptotically independent of a, b and L. The
two constraints on G, which fix the metric factors a and b in (7.2), can be chosen
such that gn are the moments of x−τG(x) as used in (7.3), namely by imposing that∫∞
0 x1−τG(x) =

∫∞
0 x2−τG(x) = 1. The universal amplitude ratio g3 as shown in

Fig. 7.3 and similarly for g4 in Fig. 7.4 indicate not only the same crossover behaviour
as observed in Fig. 7.2, but also the universality of G.

7.2.2 Numerical results for alternative models

The alternative models described in Sec. 7.1.1.1 produce numerical results fully con-
sistent with those presented above; whenever the net transport of slope units through
the system is positive, the TAOM behaviour is observed in the thermodynamic limit.
Only for v = 0 the OOM is obtained.

Fig. 7.5(a) shows the data of the anisotropic OOM corresponding to Fig. 7.2. As
expected, the smaller v = pr − pl, the larger the system size at crossover to the TAOM
behaviour. For pr = pl = 1 the “anisotropic OOM” is identical to the OOM. Similarly,
Fig. 7.5(b) is the plot for the anisotropic OOM of g3 corresponding to Fig. 7.3.

The fact that OOM behaviour is observed in the anisotropic OOM for any pr = pl

is documented in Fig. 7.6, which shows the scaling of the second and third moments
in this model with varying the value of pr = pl.

Similar results are found for the anisotropic TAOM . Here the drift velocity is v =
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eventually converges to a finite constant. Below, we shall relate the behaviour of
LX(v) to the effective anisotropy relevant to an experiment of a given size. Here it
is emphasised that Fig. 7.2 clearly demonstrates that the universality class of the ex-
tremely anisotropic case, pr = 1, pl = 0, contains all systems with non-vanishing
anisotropy v > 0. That renders the OOM with v = 0 a special case; remarkably, even
for pr = pl 6= 1 the model still shows OOM behaviour.3 Thus, it is not the stochas-
ticity itself (Dhar and Ramaswamy, 1989; Tadić and Dhar, 1997; Pastor-Satorras and
Vespignani, 2000b) which induces the change in critical behaviour.

7.2.1 Universal amplitude ratios4

Eq. (7.2) allows the definition of universal amplitude ratios

gn =
〈sn〉〈s〉n−2

〈s2〉(n−1)
(7.4)

3One might think that all models with pr = pl = const. are identical, because unsuccessful updates
are discounted. However, for small pr, pl the probability of the redistribution of only one slope unit gets
larger. For the AOM, however, v = 1 implies pl = 0, so that the actual value of pr > 0 is irrelevant, as
the right movement is the only possible and unsuccessful updates are discounted. Thus, for v = 1 the
AOM is identical to the TAOM.

4More details on universal amplitude ratios can be found in Sec. 2.3.3.1, page 90, and Sec. 2.4.5, page
102.
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calculate the RHS of Eq. (3.37). Therefore one notes that

∫ 1

0
dz

m∑

k=1

Q<
k (z)θ<((1 − α) − z) =

∫ 1

0
dz

m∑

k=0

Q<
k (z)θ<((1 − α) − z) − 1

=
NP̂

(1 − g)

∫ 1

0
dz P̃ (z)θ<((1 − α) − z) − 1 =

NP̂

(1 − g)
pst − 1 (3.38)

and

∫ 1

0
dz

m∑

k=1

Q<
k (z)(1 − θ<((1 − α) − z)) =

∫ 1

0
dz

m∑

k=0

Q<
k (z)(1 − θ<((1 − α) − z))

=
NP̂

(1 − g)

∫ 1

0
dz
(
P̃ (z)(1 − θ<((1 − α) − z)) − gδ((1 − α) − z)

)
=

NP̂

(1 − g)
(pc − g) .

(3.39)

For (3.37) this gives

∫ 1/(1−α)

1
dz

m+1∑

k=1

Q>
k = 1 − θ−1

n〈s〉
( NP̂

(1 − g)
pst − 1

)
− 1

n〈s〉pc

( NP̂

(1 − g)
(pc − g)

)
, (3.40)

which can now be inserted into (3.30). Integrating over (3.23) this gives

1 = µ

{
n

(
g+(1−g)N−1

P̂

[
1−g0

( NP̂

(1 − g)
pst−1

)
− g0
θ−1pc

( NP̂

(1 − g)
(pc−g)

)])
+

1

〈s〉

}
,

(3.41)
using

g0 =

(
1/θ

n〈s〉

)
(3.42)

and finally
µ = NP̂

(
n(1 − g)(1 + g0)

)−1
. (3.43)

In order to show that this is in fact 1, one imposes stationarity on class k = 0. The
fraction of sites in this class is given by the integral over P (z) from 0 to “infinitesimal
above 0”, which gives a pre-factor N−1

P̂
(1− g), since Q<

0 is normalised. The inflow to
this class by imposing conservation of sites is exactly 〈s〉, which includes the initial
seed. The outflow is due to external drive and hits of toppling sites, therefore

〈s〉 = N−1

P̂
(1 − g)θ−1 + N−1

P̂
(1 − g)n〈s〉 . (3.44)

Rewriting this equation one arrives at

N−1

P̂
(1 − g) =

〈s〉
n〈s〉 + θ−1

=
1/n

1 + g0
, (3.45)
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which gives together with (3.43) as expected µ = 1.

3.3.3.2 Invariant II

The second check for consistency is to derive (3.15) directly from Q◦
k(z) and (3.23):

∫ 1/(1−α)

1
dz zC(z) = zact

=

∫ 1/(1−α)

1
dz zµ

(
n

∫ 1/(1−α)

1
dz′ P̃ (z − αz′)C(z′) +

1

〈s〉δ(z − 1)
)

= µ
( 1

〈s〉 + n

∫ 1/(1−α)

1
dz

∫ 1/(1−α)

1
dz′ zgδ((1 − α) − (z − αz′))C(z′)

+n

∫ 1/(1−α)

1
dz

∫ 1/(1−α)

1
dz′ z(1 − g)N−1

P̂

m∑

k=0

Q<
k (z − αz′)C(z′)

)

= µ
( 1

〈s〉 + ng(1 − α) + ngαzact

+n(1 − g)N−1

P̂

∫ 1/(1−α)

1
dz z

m+1∑

k=1

Q>
k (z)

)

by inserting the definition of P (z) (3.16) and of zact. Just like in (3.30) the last integral
is to be evaluated and the same technique as above can be used. Integrating the first
moment of (3.28) using the definition of l◦(z) (3.27) gives

∫ 1/(1−α)

0
zQ◦

k(z)l
◦(z) =

∫ 1/(1−α)

0
dz

∫ 1/(1−α)

1
dz′ zQ<

k−1(z − αz′)C̃(z′) (3.47)

= αzact

∫ 1

0
dz Q<

k−1(z) +

∫ 1

0
dz zQ<

k−1(z) (3.48)

where (3.33) has been used. Rewriting this equation similar to (3.34) yields

∫ 1/(1−α)

0
z
(
Q<

k (z)−Q◦
k+1(z)

)
=

∫ 1

0
dz zQ<

k+1(z)(l
◦(z)−1)−αzact

∫ 1

0
dz Q<

k (z) (3.49)

The sum over the LHS is

m∑

k=0

∫ 1/(1−α)

0
dz z

(
Q<

k (z) −Qk+1(z)
)

= −
∫ 1/(1−α)

1
dz z

m∑

k=0

Q>
k+1(z) .

while the sum over the RHS of (3.49) gives

∫ 1

0
dz z

m∑

k=0

Q<
k+1(z)(l(z) − 1) =

NP̂

(1 − g)

(
g0zstpst +

g0
θ−1pc

(
zcpc − g(1 − α)

))
. (3.50)
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Figure 7.1: Main panel: Data collapse (P(s;L, pr, pl)s
τ vs. s/LD) of the normalised and

binned distributions for the two extreme cases (pr = 1 with pl = 0 and pl = 1) for
L = 1280, 2560, 5120. The rescaling was done using τ = 1.333 . . . and D = 1.5 for
the AOM and τ = 1.555 . . . and D = 2.25 for the OOM. Inset: Distributions for three
choices of pr > pl, namely (pr, pl) = (1.0, 0.95), (1.0, 0.25), (0.75, 0.25), and two choices
of pr = pl (0.75 and 0.25), for L = 640, 1280, 2560. The data collapse of each tuple
(pr, pl) would form a single line, thereby fixing τ and D. By tuning a and b in Eq. (7.2),
as done in the inset, the result collapses with one of the extreme cases shown in both
panels.

Kloster et al., 2001), which is in turn closely related to the directed sandpile (Dhar
and Ramaswamy, 1989). Numerically, these exponents have been found for all v > 0

studied at sufficiently large system sizes L � LX. The crossover that occurs around
LX is discussed in detail below. The two exponents of the AOM are to be compared
with the exponents for the OOM, of τo = 1.556(4) andDo = 2.25(2). Since the average
avalanche size scales linearly with the system size, the exponents are related byD(2−
τ) = 1 (Christensen et al., 1996; Paczuski and Boettcher, 1996).

The easiest way to derive the exponents from numerical data is by analysis of the
moments (Tebaldi et al., 1999), which scale according to (7.2) for n > τ − 1 in leading
order like [Eq. (2.57), page 88]

〈sn〉 =

∫ ∞

0
dssnP(s;L, pr, pl) = a(bLD)1+n−τgn + . . . (7.3)

where gn is discussed below and . . . denotes sub-leading terms, especially WEG-
NER’s corrections to scaling (Wegner, 1972). In the following, the crossover is studied
by means of the rescaled second moment,

〈
s2
〉
/L5/2, which is shown in Fig. 7.2. For

non-vanishing anisotropy, v > 0, the ratio approaches a constant as L → ∞. For
very small but finite values of v and L the rescaled moment increases with L like
L0.75, corresponding to the OOM behaviour, but at L ≈ LX(v) it crosses over and
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7.1.1.1 Other models

Similarly, other models presented in Chapter 5 can be made anisotropic as well. For
example, it is straight forward to implement a continuous, anisotropic Oslo model
(see Sec. 5.2.1.2, page 219) or a anisotropic Oslo model with next nearest neighbour
interaction (see Sec. 5.2.1.1). Preliminary numerical results suggest full agreement
with the results for the AOM presented below.

It is more interesting to test, whether the observations depend on the way the
anisotropy is implemented. The key question here is whether it is the isotropic or
anisotropic redistribution of slope units which makes the difference, or maybe just
the fact that sometimes only a single unit is redistributed. This is actually also ad-
dressed in the case of the AOM at pr = pl 6= 1, but it deserves full attention in the
following way:

anisotropic OOM — This model is identical to the AOM up to the fact that the
alternative to toppling to the right (left) with probability pr (pl) is toppling to the left
(right), rather than leaving the slope units at the toppling site. That way, always two
units get redistributed. For pr = pl = 1 or pr = pl = 0 the anisotropic OOM is
identical to the OOM. The anisotropy is given by v = pr − pl.

anisotropic TAOM — This model2 is an anisotropic version of the TAOM. The
rules are the same as for the TAOM (AOM with pr = 1 and pl = 0, see footnote
3 on page 284), but the single, redistributed slope unit is moved to the right with
probability pr only, otherwise it is moved to the left. The anisotropy is given by
v = 2pr − 1.

Numerical data for both models are presented in the next section.

7.2 Numerical Results

In Fig. 7.1 is is demonstrated that the avalanche size distributionP(s;L, pr, pl) follows
simple (finite size) scaling

P(s;L, pr, pl) = a(pr, pl)s
−τG

(
s

b(pr, pl)LD

)
for s > sl (7.2)

where G is the universal scaling function, a(pr, pl) and b(pr, pl) are two anisotropy
and system dependent parameters, and sl is the lower cutoff independent of L. The
values for the scaling exponents of the anisotropic model are τa = 4/3 and Da =

3/2, which can be derived exactly in the asymmetric limit v = 1 (Pruessner, 2003b)
and represent the known universality class of the stochastic, directed sandpile in
two dimensions (Pastor-Satorras and Vespignani, 2000b; Paczuski and Bassler, 2000;

2With a rather silly name, “anisotropic totally asymmetric Oslo model”.
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The sum over the second term is simply

∫ 1

0
dz

m∑

k=0

Q<
k (z) = NP̂ (3.51)

The sum of all contributions gives for (3.49)

∫ 1/(1−α)

1
dz z

m∑

k=0

Q>
k+1(z) =

NP̂

(1 − g)
(3.52)

×
(
αzact(1 − g) − g0zstpst −

g0
θ−1pc

(
zcpc − g(1 − α)

))
,

which now can be inserted in (3.46a) to give

zact

nµ
=

1

n〈s〉 + g(1 − α) + gαzact (3.53)

+ αzact(1 − g) − g0zstpst −
g0

θ−1pc

(
zcpc − g(1 − α)

)

= g0pst
(
(1 − α) − zst) + αzact +

1

n〈s〉(1 − zc) (3.54)

where g0/θ−1 = (n〈s〉)−1 has been used. This can be rewritten as the final result

〈s〉 =
((1 − α) − zst)θ

−1pst + (1 − zc)

(µ−1 − nα)zact
(3.55)

which differs from (3.15) only by the a factor µ−1 instead of 1 in the denominator.
Again one findsµ = 1 as soon as Eq. (3.15) is imposed as a “physical” expression since
it relies on conservation, which is not inherent to the recursion relation Eq. (3.18).

To summarise these two sections, whenever conservation is imposed on the pro-
cess, one arrives at an equation for 〈s〉 as seen above and/or µ = 1. These two
quantities are the physical expression of conservation.

3.3.4 Comparison to numerics

All the equations above can alternatively be derived from the micro-dynamics of the
system. This ensures that the solution is exact in the thermodynamic limit given the
stationarity assumption.

The implementation of the iteration procedure is straight-forward. As a criterion
for termination, one could check whether C(z), as defined by (3.21), is properly nor-
malised (Bröker and Grassberger, 1997), as it can be proven that it must be correctly
normalised if it is a solution. However, it would be sufficient to assume C(z) propor-
tional to the RHS in (3.21). Moreover, in the numerical procedure the quality of the
normalisation of C(z) depends strongly on the resolution of the grid chosen, when-
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Figure 3.6: Distribution of energy, P (z), for n = 4 and different values of α. Since there
is only a delta peak in 0 ≤ z ≤ 0.2, results for z < 0.2 are cut off. Continuous lines
indicate results from theory (grid size 32000, integrated in 125 bins), points represent
results from numerical simulations with N = 106 , 106 avalanches for equilibration and
5 106 avalanches for statistics (125 bins for the histogram).
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Figure 3.7: P (z) as in Fig. 3.6, but for α = 0.07 and α = 0.248 and 500 bins.

ever C(z) changes rapidly as function of z. Therefore convergence of the iteration
procedure is better verified by checking whether C(z) approaches a fixed point, i.e.
is invariant under (3.21). Since the distribution is expected to be highly non-analytic
- there are at least two δ-functions in P (z) - sophisticated integration routines are
inappropriate. For n = 4 the procedure quickly converges for 0.07 < α < 0.24,
all non-pathological initial values tested lead to the same stable solutions. Only for
small values of 〈s〉, when the delta peak of the initial seed starts to propagate through
the distribution, a large grid is required for sufficient resolution. The same problem
appears close to the commensurable limits mentioned below. In Fig. 3.6 numerical
simulations of the model are compared to the numerical solution of the analytical
approach. Although the PDF is very structured, discrepancies are small and can be
reduced by increasing the resolution of the underlying grid.

7.1. OSLO MODEL WITH ANISOTROPY 

zi±1 → zi±1 + 1. A new zc
i is chosen, at random, after every successful update, i.e.

when at least one unit has been redistributed. We call this version of the model the
anisotropic Oslo model (AOM). The strength of the anisotropy is described by the
drift velocity

v = (pr − pl)/(pr + pl) (7.1)

which is the net flux of slope units through the system. Clearly it is only sensible
to study pr + pl > 0. The case pr = pl = 1 corresponds exactly to the OOM, while
pr = pl 6= 1 represents a stochastic variant of the OOM. The avalanche exponents
for the extreme, totally asymmetric (TAOM, “Totally Asymmetric Oslo Model”) case
pl = 0 and pr = 1 can be obtained exactly [see chapter 8 and (Pruessner, 2003b)]
and describe, as we shall see below, the scaling behaviour for all v > 0. We are
interested in the statistics of the sizes, s, of the avalanches of relaxation induced by
the driving z1 → z1 + 1. The size of an avalanche is in both versions of the model
defined as the number of times the relaxation rule was successfully applied after the
drive z1 → z1 + 1 in order to make zi < zc

i ∀i yet again. Thus s ≥ 0. The model
remains essentially unchanged if the case of no slope redistribution is omitted, as
was done in the numerical results presented below.

In the totally anisotropic or asymmetric limit (Priezzhev et al., 2001) the model
resembles some features of other exactly solved, directed models (Dhar and Ra-
maswamy, 1989; Maslov and Zhang, 1995; Paczuski and Bassler, 2000; Kloster et al.,
2001; Priezzhev et al., 2001). In two dimensions a very similar model has been stud-
ied numerically (Vazquez, 2000). However, one should stress that contrary to some
other “exact” solutions, the model is solvable directly on the lattice and without as-
suming any scaling behaviour (Chapter 8). Also the amplitudes of the moments can
be calculated exactly.

It is a tedious, but straightforward task to show that the AOM is “Abelian” (see
Sec. 5.3.3.1, page 235), i.e. the order of updates is irrelevant for its statistical proper-
ties. Since the micro-dynamics which prescribes the order of updates is irrelevant,
there is no unique way to define a microscopic timescale. Presumably universal ex-
ponents of the duration of avalanches are therefore mainly a property of the arbitrary
choice of the micro-dynamics. According to DAVID HUGHES and MAYA PACZUSKI

(Hughes and Paczuski, 2002), a non-Abelian variant of an Abelian model may or may
not remain in the same universality class.

Moreover, one notes that the OOM as well as the AOM contains multiple top-
plings, i.e. a single site can relax several times during a single avalanche.
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anisotropic LANGEVIN equations to describe sandpiles (see Sec. 3.1, page 105). On the
cellular automata level, KADANOFF et al. (Kadanoff et al., 1989) have conjectured that
the net flux of particles is a relevant parameter. This chapter confirms this conjecture
for the Oslo model, which shows a clear-cut and consistent relevant dependence on
anisotropy. This is of great importance for the interpretation of experimental results
(Frette et al., 1996) and more generally for the much studied quenched EDWARDS-
WILKINSON (EW) equation (Nattermann et al., 1992; Pruessner, 2003c), see Chapter 6.
Moreover, contrary to suggestions in former studies, the switch between different
universality classes (crossover) is not triggered by the introduction of stochasticity
(Dhar and Ramaswamy, 1989; Tadić and Dhar, 1997; Pastor-Satorras and Vespignani,
2000b; Kloster et al., 2001) nor by multiple topplings (Vazquez, 2000; Pastor-Satorras
and Vespignani, 2000b; Paczuski and Bassler, 2000; Priezzhev et al., 2001).

Similar to TSUCHIYA AND KATORI (1999B,A), the system size at crossover, LX,
depends on the strength of the anisotropy1 v. Two possible mechanisms causing
anisotropy in experiments are exemplified, one of which vanishes with the system
size L fast enough to keep vL constant. This represents a marginal case and conse-
quently makes a unique identification of the critical exponents impossible.

7.1.1 Definition of the models

The original Oslo model with simplified boundary condition (see Sec. 5.1.3, page 209,
this model is called “OOM” henceforth) consists, in one dimension, of a lattice of sites
i = 1, . . . , L. Two coupled dynamical variables are associated with each lattice site:
the primary variable zi ∈ {0, 1, 2, . . . } and the threshold variable zc

i ∈ {1, 2}. The
initial configuration consists of zi = 0 ∀i and a random configuration of the zc

i . The
system is driven by increasing z1 by one (a “slope unit”) followed by a relaxation
of all sites 1 ≤ i ≤ L for which zi > zc

i (“over-critical” sites). In case a site i is
over-critical, the following updates are performed (“toppling” or “relaxation”): zi →
zi − 2 and zi±1 → zi±1 + 1 and, importantly, the existing value of the threshold zc

i

is afterwards replaced by 1 with probability p and by 2 with probability 1 − p. The
boundaries are updated the same way except that for i = 1 (i = L) addition on site 0

(L+ 1) is omitted.

Now a tunable degree of anisotropy is introduced into the dynamics. An over-
critical site i is relaxed in the following way. Only left movement: with probability
pl(1−pr) perform the updates: zi → zi−1 and zi−1 → zi−1+1. Only right movement:
with probability pr(1− pl) perform the updates zi → zi − 1 and zi+1 → zi+1 +1. Both
left and right movement: with probability plpr perform the updates zi → zi − 2 and

1The strength of the anisotropy v must be distinguished from the driving velocity v. That the two
symbols are so similar is unfortunate, but the context should lift any ambiguity.

3.3. A SOLVABLE RANDOM NEIGHBOUR MODEL 

3.3.5 Discussion

The distribution C(z) collapses to a δ-function in at least two limits. Firstly, when
α → 0, the R-DS-FFM-limit, the probability for a site to become susceptible due to a
number of charges vanishes as q(1−α)/α, where q < 1 is the product of the probability
that a site receives a charge from a relaxing site and the probability that a site is not
driven externally between two hits. Hence, for α→ 0 the mechanism of “growing by
charges” becomes negligible and the external drive becomes the dominating source
for susceptible sites. The dynamics now become equivalent to the R-DS-FFM: stable
sites = empty sites, susceptible sites = trees, and active sites = fires. Furthermore,
as α → 0, the support of C(z) becomes smaller and smaller and the distribution of
active sites is strongly peaked at z = 1, collapsing to a δ-function. Therefore, the
distributions Qk, k > 0 are less smeared out, as shown in Fig. 3.7(a) for a small
value of α. Assuming C(z) to be a δ-function, one can easily reconcile the results in
(Christensen et al., 1993, Eqs. (3) and (7)). The assumption that P (z) is unaffected by
single avalanches corresponds to p, f → 0 in the SOC-limit of the DS-FFM (Clar et al.,
1996).

In the second limit, α → 1/n, the model becomes conservative, but more im-
portant, α becomes more and more commensurable in the sense that a site charged
m = n times is almost always active and therefore the support ofQm vanishes, as it is
squeezed between nα and 1. When α is very close to 1/n, most of the active sites are
provided by Qm−1 and their average energy is just above 1, i.e. C(z) becomes more
and more δ shaped and so do the Qi, as shown in Fig. 3.7(b). The same behaviour is
obtained whenever kα = 1 for k ∈ N.

3.3.5.1 Exponents

The critical exponents of the model, for all α ∈]0, 1/n[, can be obtained by mapping
it on to a branching process (Harris, 1963) in order to identify the critical exponent
b = 2, whereP(t) ∝ t−b is the exponent of avalanche duration. The exponent τ = 3/2,
found by mapping the model on to a random walker along an absorbing barrier, is
the exponent of avalanche sizes, P(s) ∝ s−τ . Formally these exponents arise only for
diverging cutoffs in the distributions, which are controlled by the average number of
active sites produced per single toppling, the branching ratio σ. The cutoffs diverge
for σ → 1.

However, the mapping is non-trivial, except when C(z) is a δ-function. This is
because a distribution of active sites entails a distribution in the branching ratio, i.e.
the branching probability itself becomes a random variable. However, it is not neces-
sary to consider the explicit time dependence of the branching probability. In order
to justify the mapping it is sufficient, though not less accurate, to consider the ensem-
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ble average of the process with an annealed disorder in the branching probability, i.e.
writing the probabilities for one given node (active site) to branch into k new nodes
(active sites) as

P(1 → k) =
〈(n

k

)
pk(1 − p)n−k

〉
p

(3.56)

where p denotes the branching probability (which is a function of the energy of
the site) and 〈〉p denotes the weighted average over the probabilities. Therefore
σ =

∑
k kP(1 → k). This branching process is characterised by the same generating

functions as the standard branching process (Harris, 1963), which becomes critical
for σ = 1. Hence the condition for criticality is

∞∑

k=0

k
〈(n

k

)
pk(1 − p)n−k

〉
p

= n〈p〉p = 1 (3.57)

which is the (average) branching ratio, according to (3.21) given by

n〈p〉p = n

∫ 1/(1−α)

1
dz

∫ 1/(1−α)

1
dz′ C(z′)P (z − αz′) = 1 − 1

〈s〉 . (3.58)

Defining C(z, t) to be the averaged distribution of active sites after t updates,
C(z, t) will only gradually change from an initial delta peak at z = 1 towards C(z),
the latter being then the active-site weighted average of C(z, t). However, any de-
viation from C(z) decays exponentially fast, which can be seen by investigating the
MARKOV chain of the repetitive convolution of C(z, t) with P (z) as in (3.21). There-
fore the cutoff, introduced by the deviation of σ from 1, is dominated by the asymp-
totic iteratively stable limit of C(z) only. Since the asymptote is approached expo-
nentially fast the transient cannot influence the value of the exponents. The same
arguments apply for the random walker approach, therefore b = 2 and τ = 3/2 is
true for all α ∈]0, 1/n[.

3.3.5.2 Finite systems

The calculations above are a priori valid only in the thermodynamic limit. However,
a simulation of the model must consider a finite system. Moreover the model relies
on several assumptions, which entail certain finite size scaling: θ−1

N /N (the index
indicates the value to be measured in a system of size N ) as well as 〈s〉N/N must
vanish for diverging N , while θ−1

N /〈s〉N must remain constant. It is a well knownOpen

problem problem in the DS-FFM (Clar et al., 1994) that the number of trees grown between two
ignitions is a parameter, θ−1

N , which needs to be tuned according to the system size; it
is supposed to diverge, but its value is restricted by system size. An inappropriately
chosen parameter produces a small value of the cutoff or a bump in the distribution

Chapter 7

Universality, Anisotropy and
Crossover in the Oslo Model

This chapter focuses on universal features of the Oslo model. It is shown that any
amount of anisotropy moves the Oslo model to another known universality class,
the exponents of which can be derived exactly. This amounts to an exact solution
of the quenched EDWARDS-WILKINSON equation with a drift term. Based on this
equation or, alternatively, a random walker approach, the toppling frequency and
the average avalanche size are calculated exactly. Moreover, the crossover behaviour
is briefly analysed. It is argued that anisotropy is likely to be experimentally relevant
and may explain why consistent exponents have not been extracted in real rice pile
experiments.

7.1 Oslo Model with Anisotropy

The idea to introduce explicit anisotropy into the Oslo model originated from a dis-
cussion with DEEPAK DHAR about the question, whether the Oslo model is intrin-
sically anisotropic, as grains are transported through the system. There are good
reasons to regard the anisotropy in the Oslo model as spurious (see Sec. 5.1.3.1, page
211), so it is reasonable to study the effect of explicit anisotropy.

The general interest and relevance of studies in SOC rely on the assumption,
guided by equilibrium critical phenomena, that the critical behaviour of scale-
invariant systems falls into universality classes determined solely by a few general
characteristics of the system, such as symmetry and dimension. So-called “relevant”
parameters can decide which of the symmetries the system is asymptotically domi-
nated by.

The rôle of anisotropy in SOC has been highlighted very early by HWA and KAR-
DAR (Hwa and Kardar, 1989) and GRINSTEIN et al. (Grinstein et al., 1990), who used


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Results for this are presented in Sec. 6.2.

• The same methods can be applied to the periodic Oslo model, which represents
an absorbing state model (Sec. 6.3). Further analytical progress is hindered by
quadratic terms.

• Finally, Sec. 6.4 gives a very pragmatic approach to mapping sandpile-like mod-
els to the qEW. The task boils down to identifying an ensemble of proper choices
for the noise, which is, in a sense, an exercise in “reverse engineering”.

3.4. SUPPLEMENT: RANDOM WALKER APPROACH 

function of avalanche sizes. Nevertheless, P (z) depends only weakly on θ−1
N . As a

more quantitative measure for the “right choice of θ−1
N ” we compared gN to g [see

Eq. (3.22)] in the thermodynamic limit. Assuming a cutoff of order O(N) in P(s) of a
finite system, the scaling is 〈s〉N =

∫
dsP(s)s ∈ O(N 1/2) and thus θ−1

N ∈ O(N1/2). For
a more quantitative picture one can map the avalanche on to a random walker along
an absorbing barrier with time dependent walking probability p(t) (in the sense of
(Fisher, 1984) a drinking rather than a drunken random walker). An idea how to
solve this technically very interesting problem is presented in the next subsection.

In summary, a solvable SOC model, critical in the entire regime of the conserva-
tion parameter, has been defined and the main properties have been derived. The
critical exponents are as expected the trivial exponents of a critical branching process
and a random walker. The model clarifies the rôle of the external drive and represents
an explicit example of the recovery of criticality by introducing an external drive.

3.4 Supplement: Random Walker Approach

In order to be able to estimate the scaling of the “proper choice” of θ−1
N , one could

map the process described above on a random walker with time-dependent drift and
diffusion constant. The reason for this time-dependence is the gradual decrease of
susceptible sites in the system, so that finally the dissipation kills off any avalanche.
If φ(t, x;x0) is the probability to have x active sites in the system after t updates,
starting from an initial activity x0, then the PDE to solve is

∂tφ(t, x) = d(t)∂2
xφ(t, x) − v(t)φ(t, x) (3.59)

with boundary conditions

φ(t, x = 0;x0) = 0 (3.60a)

lim
t→0

φ(t, x;x0) = δ(x− x0) , x0 > 0 (3.60b)

where the last line imposes the solution to be the propagator of the problem, so
that general initial conditions, given by a source function s(x) would be solved by∫
dx′ s(x′)φ(t, x;x′). Here, v(t) is the time-dependent drift and d(t) is the time-

dependent diffusion constant.

Without boundary condition (3.60a) the problem is trivial — the normalised solu-
tion for x ∈ [−∞,∞] is (as one might expect) given by

φ0(t, x;x0) =
1√

4πD(t)
e
− (x−x0−V (t))2

4D(t) (3.61)
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where D(t) and V (t) are simply the integrals of d(t) and v(t):

D(t) ≡
∫ t

0
dt′ d(t′) (3.62a)

V (t) ≡
∫ t

0
dt′ v(t′) (3.62b)

assuming integrability of d(t) and v(t) respectively.

Since v(t) and d(t) are independent, they represent two independent (time de-
pendent) scales, and it is impossible to gauge v(t) away, as can be done for the time-
independent problem,

∂tφ(t, x;x0) = d∂2
xφ(t, x;x0) − v∂xφ(t, x;x0) (3.63)

by assuming φ(t, x;x0) = g(x, t)φ̃(t, x;x0) where φ̃ obeys (3.63) with v = 0, which
gives g(x, t) = c exp(vx/(2d) − v2t/(4d)).

It is more convenient to rewrite the original problem (3.59) as

∂tφ(t, x;x0) = ∂2
xφ(t, x;x0) − w(t)φ(t, x;x0) (3.64)

so that a φ̃(t, x) ≡ φ(α(t), x) solves the original problem, for α̇(t) = d(t) and w(t) =

v(t)/α̇(t) as
∂tφ̃ = α̇∂tφ = α̇

(
∂2

xφ− wφ
)

(3.65)

using d(t) 6= 0 for t ≥ 0. Therefore we can use D(t) = t from now on, so that the
propagator becomes

φ0(t, x;x0) ≡
1√
4πt

e−
(x−x0−W (t))2

4t . (3.66)

with W (t) ≡
∫ t
0 dt

′ w(t′). Since (3.66) solves the equation and the boundary condi-
tions up to Eq. (3.60a), the goal of the remaining section is to construct a correspond-
ing “source field”, the convolution with which makes the result obey Eq. (3.60). In a
sense the status of the PDE has changed: It is now to be solved for x ∈ [−∞,∞], while
the source field is to be chosen such that (3.60a) is obeyed everywhere and (3.60b) is
obeyed in the upper half plane, i.e.

lim
t→0

θ(x)φ(t, x;x0) = θ(x)δ(x− x0) , x0 > 0 (3.67)

The idea behind this approach is that any field can be expressed in terms of this prop-
agator and therefore any solution, say ϕ(t, x;x0) could serve as a source field for the

6.5. SUMMARY AND CONCLUSION 

the equation numerically, this, however, might require more sophisticated numeri-
cal techniques.

Moreover, it would be interesting to extend the study to the Abelian version of
the MANNA model (see Sec. 7.3.3.1, page 294). However, in this model the quenched
noise comes only into play for the direction in which particles are redistributed. How-
ever, as shown in Chapter 7, it is actually reasonable to discount this randomness,
which would amount to discounting all quenched noise in the MANNA model alto-
gether. Since the MANNA model is widely accepted to be described by REGGEON

Field Theory (Alava, 2003; Vespignani et al., 2000) just like DP, an exact mapping to
the qEW equation would provide an interesting link between sandpile-like models,
the quenched EDWARDS-WILKINSON equation and the field theories of DP.

6.5.1 Summary

In conclusion, the Oslo model has been reduced to a quenched EDWARDS-
WILKINSON equation. In the continuum limit the qEW becomes the exact equation of
motion for the Oslo model. This not only makes possible an analytical approach to
exponents of an SOC-model, but also gives insight into the nature of avalanche-like
behaviour and the relation between SOC and other theories of critical phenomena. It
provides the perfect test bed for analytical methods proposed for SOC.

It is worth pointing out that the qEW equation originally belongs to the realm
of classical critical phenomena with a parameter F (force) to be tuned to a certain
critical value Fc, see Eq. (6.69). By mapping the Oslo model to the qEW equation, this
equation has thereby been placed in the realm of SOC. This does violate the economic
principle of computational physics, see Sec. 1.4.4.2, page 69.

The sections in this chapter can be summarised as follows

• In Sec. 6.1, the relevant variables are identified, for which an equation of motion
can be expressed in closed form without the use of a HEAVISIDE θ-function.
This equation is exact on the lattice and has a well justified continuum form.
The resulting equation of motion is in fact a quenched EDWARDS-WILKINSON

equation, the roughness exponent of which can be directly related to the critical
exponents of the Oslo model. The values of these exponents when obtained
numerically are perfectly consistent.

• The original quenched EDWARDS-WILKINSON (qEW) equation describes a de-
pinning transition of an interface at a certain critical force. The Oslo model does
not posses such a particular critical value of any parameter, since it is a model
of SOC. It is therefore interesting to compare details of the analytical treatment
of the qEW for the Oslo model, which is purely driven via the boundary condi-
tions, to the results for the qEW equation of an interface found in the literature.
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and Lauritsen, 2001)]

∆H

∆t
= D∇2H + η̃(x,H) + F (x, t) (6.82)

where H(x, t) counts the number of topplings at site x and time t. The term F (x, t)

represents the external drive20 while η̃ is a specially prepared quenched noise; the
idea is to run a model according to the rules it is defined by, obtain the spatio-
temporal evolution of the observable H(x, t), and calculate from that which values
the noise η̃ had to assume so that Eq. (6.82) is obeyed.

There is no proof that such a η̃(x,H) exists for every model, let alone whether it
is unique, but it has been obtained and studied numerically, for example for the BTW
model and the MANNA model. That way, the study of different sandpile-like models
becomes merely a study of (6.82) with different ensembles of noise, {η̃}. The question
is then: What can we know and learn from the properties of these ensembles?

6.5 Summary and Conclusion

The established relationship between Oslo model and qEW equation is presently pur-
sued in order to develop a direct approach to the critical exponent τ , clear up the rôle
of the noise and clarify the relation between noise and drive. The framework used
here is also promising for other models, such as the BTW model (Bak et al., 1987),
various other sandpile models (Vespignani et al., 2000; Malthe-Sørenssen, 1999) and
the ZHANG model (Zhang, 1989).

It was conjectured much earlier (Paczuski and Boettcher, 1996) and widely antic-
ipated [for a review on the “good arguments” for it, see (Alava, 2003)] that the Oslo
model is a quenched EDWARDS-WILKINSON equation, mainly based on numerics
and some handwaving arguments. With the work presented above, the analogy of
interfaces and sandpiles (Paczuski et al., 1996) gains further support. However, there
are some open questions which must be addressed in the future.

One of the most urgent tasks is to find an exact relation between τ and χ, or rather
the necessary conditions for such a relation (see Sec. 6.1.4, page 253). This is closely
related to the issue mentioned in Sec. 6.2.1.2, namely that there are two different
mechanism operating in the Oslo model and the qEW which cause χ > 1. Moreover,
the relation between the result of dimensional analysis and dimensional reduction
(Sec. 6.2.4) needs to be cleared up.

Even though the focus of the study of the Oslo model as a qEW is not the nu-
merics, it would be very worthwhile to clear up the various possibilities to treat

20This is a so-called columnar noise, i.e. a noise which is constant along the h-direction
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solution, in the sense that

∫ +∞

−∞
dx′ ϕ(t0, x

′;x0)φ0(t− t0, x;x
′) (3.68)

solves the problem for t ≥ t0 — in other words Eq. (3.68) is a representation of
ϕ(t, x;x0).

A remark on this are worth to be mentioned. Since φ0 as defined in (3.66) obeys
the PDE (3.64), it is clear that (3.68) does also obey the PDE for t ≥ t0. In other words,
there are two solutions for the problem

lim
t→t0

Φ(t, x;x0) = ϕ(t0, x;x0) (3.69)

∂tΦ(t, x;x0) = ∂2
xΦ(t, x;x0) − w(t)Φ(t, x;x0) (3.70)

namely
Φ1(t, x;x0) = ϕ(t, x;x0) (3.71)

and

Φ2(t, x;x0) =

∫ +∞

−∞
dx′ ϕ(t0, x

′;x0)φ0(t− t0, x;x
′) (3.72)

From the uniqueness of the forward diffusion with given initial condition it follows
that Φ1(t, x;x0) = Φ2(t, x;x0) for t ≥ t0. In the limit t0 → 0 the uniqueness for t ≥ 0

follows.

3.4.1 Constructing the source field

The aim is now to find a source function s̄(x;x0) such that

φ(t, x;x0) =

∫ +∞

−∞
dx′ s̄(x′;x0)φ0(t, x;x

′) (3.73)

solves the PDE (3.64) with BC (3.60). The source field has the property

N−1s̄(x′;x0) = δ(x − x0) + ŝ(x′;x0) (3.74)

where N is a normalisation constant and ŝ(x;x0) = 0 for x ≥ 0. In order to obey
(3.60a) one therefore needs

∫ 0

−∞
dx′ ŝ(x′;x0)φ0(t, 0;x

′) = −φ0(t, 0;x0) . (3.75)

Using (3.66) and s(x;x0) = ŝ(−x;x0) it is

∫ ∞

0
dx′ s(x′;x0)e

− (x′−W (t))2

4t = −e−
(x0+W (t))2

4t (3.76)
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The difference in the sign in the exponential in this equation makes the mirror charge
solution possible only forW (t) = 0 or W (t) = bt, b being a constant. That can be seen
by expanding the square in the exponent on both sides and obtaining then simply
exp(−x′2/(4t) + x′b/2) in the integral, so that the solution becomes via

∫ ∞

0
dx′ s(x′;x0) exp((x′ + x0)b/2) exp(−x′2/(4t)) = − exp(−x2

0/(4t)) (3.77)

simply
s(x′;x0) exp((x′ + x0)b/2) = δ(x′ − x0) , (3.78)

which is the mirror charge solution s(x′;x0) = −δ(x′−x0)e
(x0b). However, as W (t) =

bt has been used here, w(t) is just a constant, so that this solution could easily be
obtained by gauging the drift away.

In general the problem consists of finding a solution s(x;x0) of the integral equa-
tion (3.76). Introducing x̃ = (x′−W (t))

2
√

t
makes it possible to rewrite the integral as

∫ ∞

µ(t)
dx̃ σ(t, x̃;x0)e

−x̃2
= g(t;x0) (3.79)

using

µ(t) ≡ −W (t)/(2
√
t) (3.80)

g(t;x0) ≡ − 1

2
√
t
exp

(
− (x0 +W (t))2

4t

)
(3.81)

σ(t, x̃;x0) ≡ s(2
√
t(x̃− µ(t));x0) (3.82)

This is nothing else than an integral transformation, an ansatz for a solution of which
is discussed below. This ansatz will fail, yet it provides a very promising route for
similar problems. One of the key questions yet to be answered is whether the integral
(3.79) actually exists, i.e. whether it converges.

First σ is expressed in terms of polynomials in x with an additional parameter for
the weight which are defined by a orthogonality relation:

∫ ∞

u
dx pi(x, u)pj(x, u)e

−x2
= hi(u)δij (3.83)

For uniqueness one imposes κn,n(u) = 1 (monic polynomials) in

pn(x, u) =

n∑

i=0

κn,i(u)x
i . (3.84)
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fusing if the LHS and therefore also the source terms on the RHS are interpreted as
velocity fields.

As E(t) = vt in the diffusion equation it has to be interpreted as a slowly increas-
ing external source. A source, the strength of which increases linear in time, gives rise
to a total volume quadratic in time — and this is where the t2 in Eq. (6.73) is from.

In fact, if the driving E(t) was just a constant, that would again lead to standard
depinning. But that would not capture the original idea of the Oslo model as an AS
model: The system is kicked at a slow, constant rate and it relaxes between kicks into
a unique state. In order to study the approach to the depinned phase a constant E is
useless. The increase in E and therefore the t2-term are crucial features of the model.

6.3.2 Numerical results

The periodic Oslo model has been studied numerically fairly extensively as an AS
model by KIM CHRISTENSEN, NICHOLAS MOLONEY, OLE PETERS and the author.
The idea was to measure the avalanche size distribution as a function of the density of
slope-units ρ in the system. If the AS to SOC correspondence as discussed in Sec. 1.4,
page 57, indeed applies, then the distribution should show proper finite size scaling
at a particular value of ρ. If it obeys simple scaling, then one expects

〈sn〉 = a(bLD)1+n−τ gn , (6.80)

as discussed around Eq. (2.74), page 100. Thus, for a particular choice of D and τ , the
value

〈sn〉
LD(1+n−τ)

(6.81)

is the same for different system sizes. One can therefore simply plot this ratio for
different sizes L versus the density ρ and search for a particular value of ρ, where all
curves cross. Preliminary results suggest that such a point exist and that the value of
D is surprisingly close to D = 2.25.

6.4 Supplement: Alternative Interface Approach

An alternative, very pragmatic path19 to understand the relation between sandpiles
and interfaces has been proposed by MIKKO ALAVA and BÆKGAARD LAURITSEN

(Alava and Lauritsen, 2001). Effectively they write down an equation of motion for an
appropriate observable of a sandpile-like model, for instance [see Eqn. (5) in (Alava

a conservative Laplacian.
19One might call it “reverse engineering”.
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requires special attention and produces the term vt2/(2L) in (6.73). After a data shift

h(x, t) = h0(x, t) + z(x, t) (6.75)

the remaining problem is

∂tz = D∂2
xz + η(x, h(x, t)) . (6.76)

The noise term, however, is in contrast to (6.15) very difficult to handle, as it actually
reads

η(x, h(x, t)) = η(x,
vt

Lκ
Π2(x) +

v

Lκ2
Π4(x) +

1

2

v

L
t2 + z(x, t)) (6.77)

which is equivalent to

η(x,
vt

Lκ
Π2(x) +

1

2

v

L
t2 + z(x, t)) . (6.78)

The t2-term makes it very hard to find a closed expressions for the FOURIER trans-Open

issue form of the noise. It remains an open issue how to proceed.

6.3.1 Dropping sources, dropping particles

The t2-term points to a confusing inconsistency between the sandpile model and the
continuum PDE of it. In the sandpile model the driving is performed by dropping
slope units on the pile, while in the PDE representation this process becomes an ever
increasing source term, δ(x)vt; it seems to be much more natural to write δ(x)v rep-
resenting a localised source at x = 0 driving the system with velocity v.

However, what is governed by the PDE are not slop-units but their charges. The
number of hits received a the driven site x = 0 from the external drive slowly in-
creases. In the discrete, exact representation, one writes (see (6.4))

h(x, t+ 1) =
1

2

(
h−+ h++ η++ η−

)
+ δx,1E(t) , (6.79)

with periodic boundary conditions h(x = 0, t) ≡ h(x = L, t) and h(x = L + 1, t) ≡
h(x = 1, t). The external drive is represented by E(t), the number of charges addi-
tionally having arrived at site x = 1. Contrary to (6.4), the equation above has is not
a rate equation, i.e. it has no time-derivative on the LHS. Correspondingly, E(t) is
not a rate either, it is a total amount. Only by subtracting h(x, t) the LHS becomes
a (discrete) time-derivative and the conservative Laplacian forms on the RHS, leaving
δx,1E(t) and the noise terms unchanged, which now describe an increase per unit
time, i.e they are source terms.18 This apparent change in character becomes less con-

18In other words: E(t) can take on its rôle as a source term only because h(x, t) can be absorbed into
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The function σ can now be rewritten as

σ(t, x̃;x0) =
∞∑

i=0

ai(t, u;x0)pi(x̃, u) (3.85)

which has the interesting property

∂uσ(t, x̃;x0) = 0 (3.86)

In this notation the problem reduces to determine ai from

〈σ(t, x̃;x0)|pi(x̃, u)〉u ≡
∫ ∞

u
dx̃ σ(t, x̃;x0)pi(x̃, u)e

−x2
= hi(u)ai(t, u;x0) (3.87)

which defines the projection operator 〈·|·〉u used henceforth. As a shorthand notation
〈·〉u ≡ 〈·|1〉u is introduced. One non-trivial information, (3.79), about σ(t, x̃;x0) can
then be written as

〈σ(t, x̃;x0)|1〉µ(t) = a0(t, µ(t);x0)h0(µ(t)) = g(t;x0) (3.88)

using p0(x̃, u) = 1 by definition. The only other information about about σ(t, x̃;x0) is
(3.82)), which implies

2t∂tσ(t, x̃;x0) =
(
x̃− µ(t) − 2tµ̇(t)

)
∂x̃σ(t, x̃;x0) (3.89)

with µ̇(t) ≡ d
dtµ(t).

3.4.2 General properties of the polynomials

Since pn is orthogonal to all polynomials of degree less than n, one has the standard
recurrence relation

xpi(x, u) = pi+1(x, u) + αi(u)pi(x, u) + βi(u)pi−1(x, u) (3.90)

A priori the quantities αi(u) and βi(u) are unknown, but they can be related to hi(u).
From (3.90) and (3.83) one finds by straight-forward integration

βi(u) =
hi(u)

hi−1(u)
(3.91a)

αi(u)hi(u) =
1

2
p2

i (u, u)e
−u2

(3.91b)

βi+1 + α2
i + βi = uαi + i+

1

2
(3.91c)

ihi−1(u) = −pi(u, u)pi−1(u, u)e
−u2

+ 2hi(u) (3.91d)
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In general one finds for p′i(x, u) ≡ ∂
∂xpi(x, u)

〈p′i|pj〉u =





0 for j ≥ i

−pi(u, u)pj(u, u)e
−u2

+ 2hi(u) for j = i− 1

−pi(u, u)pj(u, u)e
−u2

for j < i− 1

(3.92)

3.4.2.1 The rôle of u

The parameter u looks like a simple generalisation of the set of polynomials and for
u→ −∞ one recovers Hermité’s polynomials. But in the light of (3.88) it looks like it
is the t-dependence and hence only the dependence on u, which makes the problem
well defined, as (3.76) must be obeyed for all t.

To find out more about the u dependence, one can derive 〈pi|pj〉u = δijhi(u) by u.
By definition (3.84) ∂upi is a polynomial of order i−1, so that 〈∂upi|pj〉u = 0 for j ≥ i.
In conjunction with (3.91b) the case i = j gives rise to

h′i(u) = −2αi(u)hi(u) (3.93)

while for j < i one finds

〈∂upi|pj〉u =

{
0 for j ≥ i

pi(u, u)pj(u, u)e
−u2

for j < i
(3.94)

Together with (3.92) one finds 〈p′i|pj〉u = −〈∂upi|pj〉u for j ≥ i or j < i − 1. The case
j = i − 1 requires an extra term, namely 〈p′i|pi−1〉u = −〈∂upi|pi−1〉u + 2hi. Together
with (3.91a) this leads to the conclusion

p′i + ∂upi = 2βi(u)pi−1(x, u) (3.95)

which is true even for i = 0, by defining p−1 ≡ 0.

There is another property of this system of polynomials which will be used below.
Based on (Chen and Ismail, 1997) one easily finds

(x− u)p′i = ipi + 2βi (αi + αi−1 − u)pi−1 + 2
hi

hi−2
pi−2 (3.96)

using (3.91d), (3.91b) and (3.91a).
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answer might be to apply dimensional analysis to the discrete, exact equation of mo-
tion, Eq. (6.4), page 248, in a sensible way.

6.3 Supplement: The Periodic Oslo Model

The concepts above can be applied to the periodic Oslo model17 as well. In this model
the boundaries are periodically closed, which removes all dissipation mechanisms
from the model. That way, the Oslo model becomes an absorbing state model. Apart
from that, the rules are exactly the same as for the original Oslo model with simpli-
fied boundary conditions, except for hL+1 being identical to h1 and h0 being iden-
tical to hL. Just like the original model, the periodic model is driven on site i = 1,
even though a random drive is maybe more natural. In the continuum limit, the
LANGEVIN equation for the point-driven model is then

∂th = D∂2
xh+ (1 + λ

d2

dx2
)η + δ(x)vt (6.70)

with the external drive
E(t) = vt . (6.71)

This equation is much closer to the original quenched EDWARDS-WILKINSON equa-
tion, where δ(x)vt is replaced by a homogeneous force F . Just like above, it is cer-
tainly helpful to remove the background, i.e. to subtract the solution of the PDE
without the quenched noise

∂th0 = D∂2
xh0 + δ(x)vt . (6.72)

Using the eigenfunction exp(−iknx − Dk2
nt) with kn = 2πn/L one finds for x ∈

[−L,L], which covers two periods,

h0(x, t) =
vt

2LD
Π2(x) +

1

4!

v

LD2
Π4(x) +

1

2

v

L
t2 (6.73)

with

Π2(x) = x2 − L|x| + 1

3!
L2 (6.74a)

Π4(x) = x4 − 2Lx2|x| + L2x2 − 1

30
L4 . (6.74b)

Just as above (Sec. 6.1.3, on page 250), one can ignore the initial condition h0(x, t) = 0

in the long time limit, since the modes decay as fast as exp(−Dk2
nt). Only n = 0

17This model has been studied together with KIM CHRISTENSEN, NICHOLAS MOLONEY and OLE

PETERS.
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face for pulling. Thus, the curvature would have to diverge as well, and therefore it
seems that a δ-correlated noise is unphysical even in the SOC approach.

Moreover, there is an additional twist in having a δ-correlated noise: Dimensional
reduction (Efetov and Larkin, 1977) predicts that a disordered system in d dimensions
at zero temperature can be mapped to a system without disorder in d− 2 dimensions
at finite temperature. Thus, dimensional reduction immediately predicts χ = (4 −
d)/2, namely the roughness exponent of the thermal EDWARDS-WILKINSON equation
at d′ = d − 2. So, does dimensional analysis contradict dimensional reduction? It
does not seem so: The proof of dimensional reduction relies on the uniqueness of
the ground state and the analyticity of the noise correlator (Wiese, 2002). This is the
reason why it does not apply to the standard (original) qEW problem, (6.69), where
the correlator apparently renormalises to a non-analytical function. The same can be
assumed for the SOC-approach to the qEW equation. Similarly it should not applyOpen

question to a δ-correlated noise, but whether this is the only reason needs to be cleared up.

6.2.4.2 Additional scales

One of the key assumptions for the validity of Eq. (6.66), (6.67) and therefore (6.68) is
that all variables parametrising the problem are listed on the LHS (see Sec. 9.4, page
363). However, in the original qEW equation has an extra term, namely the uniform
force F over the entire interface,

∂tz(x, t) = D∇2z(x, t) + gη(x, z(x, t)) + F . (6.69)

Without any driving, the interface would remain stuck and (6.67) would apply, but C
would vanish. The presence of F , however, renders (6.67) invalid.

There is a related parameter in the SOC version of the qEW equation, namely the
driving velocity v, see Eq. (6.8). Prima facie, it seems this parameter resolves the riddle
in case of the SOC model as well. Clearly, it also must not vanish, in order to make
the interface move and make it develop a non-vanishing roughness. However, while
F needs to be larger than a particular critical force Fc, there is no such threshold in
the SOC version. A rough interface is obtained16 for any v > 0 and in the stationary
regime, i.e. after taking limt→∞, one can even take the limit v → 0 without changing
the roughness. Thus, in the SOC version, there is no additional scale from the driving.

However, there is a source for additional scales even in the SOC version: As soon
as the noise-correlator is non-trivial, it contains scales as well. For example, ∆(0),Open

problem which is certainly finite, could be such an additional scale. So, would the result
(6.68) be really be obtained for the correlator (6.65)? One way to get closer to anOpen

task

16Of course, the same arguments regarding flatness above dc = 4 apply.
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3.4.2.2 Explicit form

Out of curiosity, the first few pi can be calculated explicitly. Defining the error func-
tion E(x) as

E(x) ≡ 2√
π

∫ x

0
dx′e−x′2

(3.97)

one finds after some algebra

〈1〉u =

√
π

2

(
1 − E(u)

)
(3.98a)

〈x〉u =
1

2
e−u2

(3.98b)

〈x2〉u =

√
π

4

(
1 − E(u)

)
+

1

2
ue−u2

(3.98c)

〈x3〉u =
1

2
(1 + u2)e−u2

(3.98d)

〈x4〉u =
3
√
π

8

(
1 − E(u)

)
+

1

4
(3u+ 2u3)e−u2

(3.98e)

〈x5〉u =
1

2
(2 + 2u2 + u4)e−u2

(3.98f)

〈x6〉u =
15
√
π

16

(
1 − E(u)

)
+

1

8
(15u + 10u3 + 4u5)e−u2

(3.98g)

〈x7〉u =
1

2
(6 + 6u2 + 3u4 + u6)e−u2

(3.98h)

〈x8〉u =
105

√
π

32

(
1 − E(u)

)
+

1

16
(105u + 70u3 + 28u5 + 8u7)e−u2

(3.98i)

and their interrelation is found to be

〈1〉u =

√
π

2

(
1 − E(u)

)
(3.99a)

〈x〉u =
1

2
e−u2

(3.99b)

〈x2〉u =
1

2
〈1〉u + u〈x〉u (3.99c)

〈x3〉u = 〈x〉u + u2〈x〉u (3.99d)

〈x4〉u =
3

2
〈x2〉u + u3〈x〉u (3.99e)

〈x5〉u = 2〈x3〉u + u4〈x〉u (3.99f)

〈x6〉u =
5

2
〈x4〉u + u5〈x〉u (3.99g)

〈x7〉u = 3〈x5〉u + u6〈x〉u (3.99h)

〈x8〉u =
7

2
〈x6〉u + u7〈x〉u (3.99i)

which can be written as

〈xn+1〉u =
n

2
〈xn−1〉u + un〈x〉u . (3.100)
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The proof of (3.100) is easily obtained by partial integration,

∫ ∞

u
dx nxn−1e−x2

= une−u2
+ 2

∫ ∞

u
dx xn+1e−x2

. (3.101)

It reduces all efforts to calculate 〈1〉u and 〈x〉u. One notes that 〈xn〉u for odd n could
be expressed in terms of 〈x〉u only, while even n depend on 〈1〉u and 〈x〉u. Only for
u = 0 they become independent from 〈x〉u.

The polynomials pi and the function hi can now be written down explicitly for
some i. After some tedious algebra, one finds

p0(x, u) = 1; h0(u) = 〈1〉u
p1(x, u) = x− 〈x〉u

〈1〉u ; h1(u) = 〈x2〉u − 〈x〉2u
〈1〉u

p2(x, u) = x2 + 〈x3〉u〈1〉u−〈x2〉u〈x〉u
〈x〉2u−〈x2〉u〈1〉u x+ 〈x2〉2u−〈x3〉u〈x〉u

〈x〉2u−〈x2〉u〈1〉u ;

(3.102)
and

h2(u) =
〈x2〉3u + 〈1〉u〈x3〉2u + 〈x〉2u〈x4〉u − 2〈x〉u〈x2〉u〈x3〉u − 〈1〉u〈x2〉u〈x4〉u

〈x〉2u − 〈1〉u〈x2〉u
(3.103)

3.4.3 Determining σ(t, x̃; x0)

In order to find a recursion relation for the ai in (3.85) u = µ(t) is chosen and the total
differential with respect to time is calculated:

d

dt
σ(t, x̃;x0) =

∞∑

i=0

ȧi(t, µ(t);x0)pi(x̃, µ(t)) + µ̇(t)∂u

∣∣
u=µ(t)

( ∞∑

i=0

ȧi(t, u;x0)pi(x̃, u)
)

=

∞∑

i=0

ȧipi + µ̇(t)

∞∑

i=0

(
∂u

∣∣
u=µ(t)

ai(t, u;x0)
)
pi(x̃, u) (3.104a)

+

∞∑

i=0

ai(t, µ(t);x0)
(
∂u

∣∣
u=µ(t)

pi(x̃, u)
)

=
∞∑

i=0

( d
dt
ai(t, µ(t);x0)

)
pi(x̃, u) + µ̇

∑

i

ai∂upi (3.104b)

where ȧi denotes the partial derivative of ai by t and µ̇(t) ≡ d
dtµ(t) as already used

above.

Using (3.95) and adding µ̇∂x̃σ to (3.104b) gives
∑

i ai(∂u + ∂x̃)pi on the RHS, so

∂tσ + µ̇∂x̃σ =
∑

i

( d
dt
ai

)
pi + 2µ̇

∑

i

βiaipi−1 (3.105)

Note that although ∂tσ =
∑
ȧipi these terms do not cancel out, as d

dtai contains also
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(6.67) possible.14 Therefore the roughness exponent is

χ =
4 − d

3
(6.68)

and the upper critical dimension is identified as dc = 4, above which the roughness
exponent becomes negative and an ultraviolet divergence appears (Krug, 1997).

For the original qEW, Eq. (6.69) (see below), one can also argue (Leschhorn et al.,
1997) that above d = 4 the curvature contribution in (6.64) is always stronger than
the random force contribution, averaged over a given area. Thus, the interface is
flat and the force exerted by the random background on the interface scales only
like Ld/2 compared to Ld of the force F . Thus, above d = 4, in the thermodynamic
limit even the weakest external force always overcomes the pinning force. However,
below d = 4, the interface is flat only on scales below the Larkin-length (Bruinsma
and Aeppli, 1984) and adapts to the random background force on larger scales, i.e. it
gets pinned.

Remarkably, the simple “calculation” (6.67) gives exactly the same result as the
single loop, very involved calculation by NATTERMANN et al. (Nattermann et al.,
1992) and NARAYAN and FISHER (Narayan and Fisher, 1993). As mentioned above,
the latter authors even claimed that there are no further corrections to this result in
higher loops.

However, there are at least two reasons, why (6.67) and therefore (6.68) is actually
wrong.

6.2.4.1 Noise correlator

The noise correlator chosen in (6.65) is a valid choice within the substrate (i.e. the
δd(x − x

′) term, see Sec. 6.1.3.1, page 251, and Eq. (6.50)), but not in the h-direction.
Above (page 249), it has already been stated that η is correlated in the h direction
because of the sawtooth-like noise required in the discrete model. In fact, the en-
tire h-correlator remains visible even in an RG approach (Nattermann et al., 1992;
Leschhorn et al., 1997; Le Doussal et al., 2002) and it never simplifies to a δ-function.
Moreover, the pinning force on the interface scales like ∆(0)2/(4−d) (Nattermann et al.,
1992), so that for the “non-SOC” approach to the qEW, a δ-function for the noise cor-
relator in the h-direction is not a valid choice.

Such a divergent force does not seem to pose a direct physical problem to the
SOC-approach15, because in SOC, the driving velocity v is fixed. Yet, the driving site
must somehow transmit the force to the other sites using the curvature of the inter-

14For a similar problem see Sec. 9.4.4, page 371.
15”SOC-approach” to the qEW equation here means the boundary driven Eq. (6.12) with λ = 0 as

opposed to Eq. (6.69) with explicit external driving force F .
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picture is fully consistent with the random neighbour approach from the sandpile
picture. However, in order to remain D = 4 for d = 4 and larger, the scaling lawOpen

problem D = d + χ has to break down. What mechanism is responsible for this breakdown?
Does the hyperplane where the interface is lifted get fractal?

6.2.4 Dimensional analysis of the qEW

In this section, dimensional analysis (for more details about this method, see Sec. 9.4,
page 363) is carried out on the qEW. Surprisingly13, dimensional analysis produces
the roughness exponent correctly in leading order of ε = dc − d where dc = 4. This
leading order correction has once been claimed to be the only correction in ε, i.e. there
are no higher order corrections (Narayan and Fisher, 1993), which has been disproved
meanwhile (Le Doussal et al., 2002, 2003).

The solution of the LANGEVIN equation,

∂tz(x, t) = D∇2z(x, t) + gη(x, z(x, t)) (6.64)

with a noise term obeying

〈
η(x, h)η(x′ , h′)

〉
= δd(x− x

′)δ(h − h′) (6.65)

where δd(x− x
′) denotes the d-dimensional DIRAC δ-function, can be expressed as

z(x, t;D, L, g) = L
4−d
3

( g
D

) 2
3
ϕ

(
x

L
,

t

L2/D

)
, (6.66)

where ϕ is dimensionless. Eq. (6.64) is a generalisation and simplification of (6.12)
in higher spatial dimensions d. The correlator (6.65) has actually already been ruled
out as a possible choice in the qEW [see Sec. 6.1.3.1, page 251, as well as (Koplik and
Levine, 1985; Nattermann et al., 1992)]. But being the simplest possible choice, it is
certainly a good starting point for a dimensional analysis.

It is crucial for the further interpretation of (6.66) that all free parameters are listed
on the LHS (see Sec. 9.4.6, page 375). Otherwise, there are also additional parame-
ters on the RHS. Integrating out x in order to determine the width according to the
definition (6.56), and evaluating in the stationary limit gives therefore a function

w2(D, L, g) = L2 4−d
3

( g
D

) 4
3 C (6.67)

with a constant C. This constant might under special circumstances diverge or vanish.
It is worth noting that with such a small set of parameters there are no corrections to

13Remarkably, this is not discussed in the literature.
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a derivative by u. One should stress that this equation is of course only true for
u = µ(t).

The second expression needed is (x̃− µ)∂x̃σ, which can be determined by means
of (3.96):

(x̃− µ)∂x̃σ =
∑

i

ai

(
ipi + 2βi (αi + αi−1 − µ)pi−1 + 2

hi

hi−2
pi−2

)
(3.106)

Using (3.89), one arrives at

2t∂tσ = (x̃− µ− 2tµ̇)∂x̃σ (3.107a)

⇔
2t
(
∂tσ + µ̇∂x̃σ

)
= (x̃− µ)∂x̃σ (3.107b)

⇔
2t
(∑

i

( d
dt
ai

)
pi + 2µ̇

∑

i

βiaipi−1

)
=

∑

i

ai

(
ipi + (3.107c)

2βi (αi + αi−1 − µ)pi−1 + 2
hi

hi−2
pi−2

)

Calculating the projection 〈·|i〉u for the last two lines gives

2t

(
d

dt
ai

)
+ 4tµ̇βi+1ai+1 = iai + 2βi+1(αi+1 + αi − µ)ai+1 + 2

hi+2

hi
ai+2 (3.108)

However, it is more comfortable to work with the variable âi(t, µ(t)) ≡
ai(t, µ(t))hi(µ(t)) so that (3.88) becomes

â0(t, µ(t);x0) = g(t;x0) (3.109)

and relation (3.108) finally becomes

2t
( d
dt
âi

)
+ 4tµ̇(âi+1 + αiâi) = iâi + 2(αi+1 + αi − µ)âi+1 + 2âi+2 (3.110)

and specifically for i = 0:

2t
( d
dt
â0

)
+ 4tµ̇(â1 + α0â0) = 2(α1 + α0 − µ)â1 + 2â2 (3.111)

It is important to stress that all ai are of the form ai(t, µ(t)). Especially a0 on the LHS,
which is the only known one (3.88).

Eq. (3.110) and Eq. (3.111) seem to solve the problem in form of a recurrence rela-
tion for the ai; whatever σ is, it must obey the recurrence relation. However, surpris-
ingly it involves two unknown functions, a1 and a2.
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3.4.4 Discussion

The final result, especially in the form (3.111) seems to suggest that one only needs to
choose a1 and a2 to find a solution to the original problem. However, that turns out
to be wrong. In fact, one can show that

∂uai(t, u) = −2βi+1ai+1(t, u) (3.112)

so that the “solution” (3.111) can be brought in the form

d

dt
a0 =

(
µ̇− α0 + α1 − µ

2t

)
∂ua0 +

1

4t
∂2

ua0 (3.113)

which is to be solved with boundary condition (3.109) in the domain u > µ(t). At
first glance it is surprising that this fairly involved approach finally yields essentially
the original problem. However, such a relation actually follows trivially from the
observation that the contribution to the full solution (3.73) is essentially

∫ ∞

0
dx′s(x′;x0)

1√
4πt

e−
(x+x′−W (t))2

4t

which can be rewritten as
∫ ∞

x−W
2
√

t

dx′s(2
√
t(x̃− x−W

2
√
t

);x0)e
−x̃2

In fact, this is identical to â0(t,
x−W
2
√

t
;x0), i.e. there is a very simple relation between the

full solution φ of the initial PDE (3.59) and the first coefficient a0 in the series (3.85)
of the source term used in (3.73).

Nevertheless, the technique introduced above seems to provide an interesting
path to tackle problems of the form (3.59). What makes it so promising is the fact
that the problem strongly benefits from the many generally known properties of or-
thogonal polynomials and parametrised weighting functions (Szegö, 1975). It mightOpen

issue be worthwhile to pursue the approach presented above a little bit further and see,
which non-trivial information can be derived from it.

3.5 Summary

This chapter is more diverse than the others. Conservation has been identified early
in the research literature as an important feature in SOC. The next chapter is dedi-
cated solely to a single model, a characteristic of which is non-conservation.

The chapter above contains the following sections;

• The first section, Sec. 3.1, contains a short account of the first LANGEVIN-based

6.2. ANALYTICAL RESULTS 

As it is still linear, the solution does not change fundamentally; with the ansatz
h(x, t) = sin(knx) exp(µnt) one finds

eµn − 1 = 2D(cos(kn) − 1) (6.62)

so that the set of orthogonal functions is simply

h(x, t) = sin(knx)(2D cos(λn) + (1 − 2D))t . (6.63)

Luckily it turns out that this more complicated, “proper continuum limit” has no
numerical advantage over sin(knx) exp(−Dk2

n).
Conclusively, one should consider the direct numerical integration of the bound- Open

issueary driven qEW equation with homogenous boundary conditions as an open issue.

6.2.3 Remarks on the mean field theory

The random neighbour Oslo model should be consistent with the mean field (MF)
theory of the qEW equation. Clearly, the random neighbour version of the Oslo
model gives τ = 3/2, namely exactly the return-time exponent of a random walker
(see Sec. 3.3, page 113). On the other hand, the MF exponent of the qEW equation is
χ = 0 with upper critical dimension12 dc = 4 (see below), which seems to suggest
D = 1 by Eq. (6.22), contrary to τ = 3/2 which seems to suggestD = 2 by the scaling
law D(2 − τ) = 1 (6.2). Why are these two exponents inconsistent?

The answer is that neitherD = 1 +χ nor the scaling law D(2− τ) = 1 necessarily
hold in higher dimensions, where the mean field theory becomes actually exact. Both
scaling laws depend crucially on the boundary conditions and the exact implementa-
tion of the higher dimensional models. All this is much more comprehensible in the
randomly, bulk-driven MANNA model, which is well-defined in any spatial dimen-
sion d. In that case, it is probably reasonable to assume that the average avalanche
size scales like L2 in any dimension, because the particles can be thought of as inde-
pendent random walkers (see Sec. 7.4, page 299). For τ = 3/2 that entails D = 4 from
D(2 − τ) = 2. There is no reason to expect that scaling law to break down in any
dimension and there is also no reason to expect that τ changes to a different value at
higher dimensions, once it has reached it random neighbour value. Thus D = 4 is
expected to remain valid for spatial dimensions d ≥ 4.

Moreover, for the isotropic MANNA model, one should expect D = d + χ, which
givesD = 4 at the upper critical dimension. So, at d = 4 the MF theory of the interface

12Here and in the following (spatial) dimension will refer to the dimension of the substrate above
which the interface grows. This differs from the notation of, for example, NARAYAN and FISHER
(Narayan and Fisher, 1993), but underlines the fact that the interface field h(x, t) does not necessar-
ily have to be a spatial distance.
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Figure 6.4: Comparison of a data collapse according to (6.1) for system sizes between
L = 128 and L = 512 for the qEW equation (marked as “continuous”) and the discrete
Oslo model (marked as “discrete”). The same value of τ = 1.55 collapses all curves
within each model onto its scaling function. Due to the omission of the non-universal
constants in Eq. (6.1) the two resulting curves are shifted relative to each other. See also
Fig. 5.6, page 217.

This could of course be corrected by adding

∞∑

n=1

2

L

∫ L

0
dx′P3(x

′) sin(knx
′)e−Dk2

nt sin(knx) (6.58)

which, however, vanishes in the stationary state, limt→∞.

One problem is, for example, that the interface cannot be pulled arbitrarily fast.
Between to driving steps, it takes, depending on the specific implementation of the
lattice Laplacian, a finite number of time steps to “communicate” the new position
of the boundary through the system. If pulled too fast, deviations from the expected
analytical behaviour are observed, which get stronger over time.

In order to capture the effects of discretisation, one could in principle write

h(x, t+ 1) − h(x, t) =
∑

i=1

1

i!
(∂t)

ih(x, t) = (e∂t − 1)h(x, t) (6.59)

and
∂2

xh(t) =
∑

i=1

2

(2i)!
(∂x)2i = 2(1 − cos(∂x)) (6.60)

so that the PDE without noise the reads

(e∂t − 1)h(x, t) = 2D(1 − cos(∂x))h(x, t) . (6.61)

3.5. SUMMARY 

approaches to SOC. The key message is that a wide class of toy models generi-
cally develop into a state which can justifiably be called SOC. These toy models
are expressed as LANGEVIN-equations involving a scale-free, thermal noise.

• The section on the OFC model, Sec. 3.2, contains some arguments about the
possible scale invariance of the OFC model. It represents unfinished research,
which requires further numerical as well as analytical insight.

• In Sec. 3.3 a solvable random-neighbour model is presented and subsequently
solved. In this section, one of the arguments brought forward by VESPIGNANI

et al., is substantiated.

• In the supplemental section Sec. 3.4 an (disputably) elegant mathematical
method for solving random walker problems is applied to the open question
of the finite size behaviour of the solvable model.
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ensemble average, the curvature is not finite. Of course this explanation depends
fundamentally on the definition of χ, which might also be defined via the structure
factor, a self-similarity assumption etc. This discussion is closely related to the prob-
lem of the relation between D and χ in Sec. 6.1.4, page 253.

While the natural explanation of χ > 1 sounds quite reassuring, it actually is Open

problema reason for concern. The problem is that the qEW equation does not have such a
natural explanation for χ > 1, because it is dragged homogeneously, by a constant
force, over the surface. So, if the Oslo model is a qEW, how is it possible that these
two models have different mechanism responsible for χ > 1?

6.2.2 Remarks on numerics

One of the most obvious tests of the theory above is to integrate (6.9) numerically
and compare the results to the discrete model. That way, problems regarding the
transition to a continuum theory become immediately obvious. The numerical study
of (6.9) with boundary conditions and driving as discussed stands at its beginning. It
would be very reassuring to obtain the same results for (6.9) as for the original Oslo
model. However, it is already clear that the numerical study of the qEW equation
is not straight forward; usually alternative models, which supposedly belong to the
qEW universality class are simulated [see, for example, (Leschhorn, 1993; Amaral
et al., 1995)]. Thus, in the following only preliminary numerical studies are presented,
all based on a direct integration of (6.9).

In fact, these studies indeed suggest that (6.9) with λ = 0 is a valid continuous
description of the Oslo model: Fig. 6.4 compares a data collapse for different sys-
tem sizes of the avalanche size distribution obtained from (6.9) in conjunction with
(6.21) and from the original, discrete Oslo model. The best collapse is obtained with
τ = 1.55 for both models. As mentioned in sec. 6.1.4, the scaling law D = 1 + χ

(6.22) (Paczuski and Boettcher, 1996) remains applicable as long as the two configu-
rations at t1 and t2 are correlated. It is in perfect agreement with numerical results
(Leschhorn, 1993; Le Doussal et al., 2002) for the qEW model 11.

The data for the qEW equation have been obtained by direct integration of (6.9)
on a lattice with discrete time steps, i.e. in a Euler-discretisation (Press et al., 1992).
The only continuous (up to numerical resolution) quantity in these simulations is
h(x, t). The discretisation of Eq. (6.9) introduces a number of new parameters in the
simulations, which are not always easy to control.

The first step is to set g = 0 and to test, whether h(x, t) = 2v(x)t + P3(x) is
obtained in the numerics. As mentioned above (Sec. 6.1.3, on page 250), corrections
are expected for the initial behaviour, because the data shift violates h(x, t = 0) = 0.

11Note for χ = 5/4 one has D = 9/4 and τ = 14/9.
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where z′′(x, ω) = d2

dx2 z(x, ω) and taking into account the completeness of sin(knx)

then gives

〈
z′′(x, t)

〉
= − g2

DLπ

∫ ∞

−∞
dq

∞∑

m=1

iq∆̃(q)

Dk2
m + 2iqv(x)

sin2(kmx) (6.53)

and after integration

〈
z′′(x, t)

〉
= − g2

DLπ

∞∑

m=1

√
2π

Dk2
m

sin2(kmx)

∫ ∞

0
due−u/ξm(x)∆′′(u) , (6.54)

where ξm = 2v(x)/(Dk2
m). It is very interesting to see that the second derivative of

the correlator appears here, since this supposedly plays a crucial rôle in the quenched
EDWARDS-WILKINSON equation (Leschhorn et al., 1997; Wiese, 2002). The result is
hardly more than a reassurance that one has not lost track completely; approximating

∫ ∞

0
due−u/ξm(x)∆′′(u) ≈

∫ ξm(x)

0
du∆′′(u) = ∆′(ξm(x)) − ∆(0) < 0 (6.55)

where the latter relation relies on the idea that the correlation function gets “flatter”
for larger arguments, one can at least convince oneself that 〈z ′′(x, t)〉 > 0, i.e. the
interface is really “dragged behind”.

6.2.1.2 Meaning of χ > 1

Usually, χ > 1 is associated with overhangs in h(x, t) (Fisher, 1986; Krug and Spohn,
1991; Jensen, 1995; Barabási and Stanley, 1995). In the current context, however,
h(x, t) must be a single-valued function. The explanation for this inconsistency is
intriguingly simple: the interface bends between the two fixed boundary, possibly
with a finite average curvature as it is dragged over the surface. If χ refers to the
width w2, where

w2 =
〈
h(x, t)2

〉
−
〈
h(x, t)

2
〉

(6.56)

with h denoting the spatial average, then even h(x) = x2 would have a width ofw2 =

(4/45)L4. One can now define the roughness via FAMILY-VICSEK scaling (Family and
Vicsek, 1985),

w2 = aL2χG
(

t

bLz
; . . .

)
(6.57)

where z is the dynamical exponent, G is the scaling function, a and b are metric fac-
tors and . . . denotes further parameters.10 Therefore the parabolic h(x) simply gives
χ = 2, even without any fluctuations. So, χ < 2 even indicates that on spatial and

10These further parameter are crucial to avoid trivialisation of the problem, Sec. 9.4.4, page 371.

Chapter 4

The Forest Fire Model

The DROSSEL-SCHWABL FOREST FIRE MODEL is one of the best studied models of
non-conservative self-organised criticality. However, using a new algorithm which
allows us to study the model on large statistical and spatial scales, it has been shown
to lack simple scaling. We thereby show that the considered model is not critical. This
chapter presents the algorithm and its parallel implementation in detail, together
with large scale numerical results for several observables. The algorithm can easily
be adapted to related problems such as percolation.

4.1 Introduction

The assumption that SOC (Jensen, 1998) is the correct framework to describe and ex-
plain the ubiquity of power laws in nature, has been greatly supported by the devel-
opment of non-conservative models, because natural processes are typically dissipa-
tive. Contrary to these models, analytical work has suggested, that the deterministic
part of the dynamics must be conservative in order to obtain scale invariance (Hwa
and Kardar, 1989; Grinstein et al., 1990). However, on a mean field level, this is not
necessarily true (Vespignani and Zapperi, 1998), which has been exemplified in an
exact solution of a model, that has a forest fire-like driving (Pruessner and Jensen,
2002b). However, as a random neighbour model, the latter lacks spatial extension.

The DROSSEL-SCHWABL Forest Fire model (DS-FFM) (Drossel and Schwabl, 1992)
is one of the few spatially extended, dissipative models, which supposedly exhibit
SOC. Contrary to the OLAMI-FEDER-CHRISTENSEN stick-slip model (Olami et al.,
1992), where criticality is still disputed [for recent results see for example (Lise and
Paczuski, 2001b,a; Boulter and Miller, 2003)], for the DS-FFM the asymptotic diver-
gence of several moments of its statistics, and therefore the divergence of an upper
cutoff can be shown rigorously. Although this might be considered as a sign of crit-
icality, it is far from being a sufficient proof. In equilibrium thermodynamics “crit-


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icality” usually refers to a divergent correlation length (Binney et al., 1998; Stanley,
1971) in the two-point correlation function, which is associated with a scale-invariant
or power law like behaviour. This is how the term “criticality” is to be interpreted
in SOC: Observables need to be scale-invariant1, i.e. power laws in the statistics.
There are many examples of divergent moments without scale invariance, such as
the over critical branching process (Harris, 1963) or over critical percolation (Stauffer
and Aharony, 1994).

Thus, there is a priori no reason to assume that the DS-FFM is scale free. How-
ever, there are many numerical studies, which suggest so (Drossel and Schwabl,
1992; Christensen et al., 1993; Clar et al., 1994), one of them, however, suggests the
breakdown of simple scaling (Grassberger, 1993). Since an analytical approach is still
lacking, numerical methods are required to investigate this problem. In this chapter,
we propose a new, very fast algorithm to simulate the DS-FFM with large statistics
and on large scales. The implementation of the algorithm, has produced data of very
high statistical quality. Some of the results have been already published elsewhere
(Pruessner and Jensen, 2002a).

The structure of the chapter is as follows: The next section contains the definition
of the model together with its standard observables and their relations. Then the
algorithm is explained in detail. The section finishes with a detailed discussion on
the changes necessary to run the algorithm on parallel or distributed machines. In
the third section results for the two-dimensional FFM are presented and analysed.
The chapter concludes with a summary in the fourth section.

4.2 Method and Model

This section is mainly technical: After defining the model, all relevant details of
the implementation are discussed. Apart from concepts such as the change from a
tree oriented algorithm to a cluster oriented algorithm, concrete technical details are
given, for example memory requirements and methods for handling histograms. The
section also contains a description of the performance analysis of the implementation.
A parallelised version of the algorithm is introduced an discussed in the last section.

4.2.1 The model

A Forest Fire model was first proposed by BAK, CHEN and TANG (Bak et al., 1990)
and changed later by DROSSEL and SCHWABL (Drossel and Schwabl, 1992) to what
is now known as the Forest Fire Model (or DS-FFM as we call it): On a d dimensional

1In a finite system the distributions are not expected to be free of any scale, but to be dominated
asymptotically by one scale only, which diverges in the thermodynamic limit.
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+
1

3
+

1

6
+ . . .

which are essentially the diagrams shown in (Leschhorn et al., 1997, Fig. 14). Each
diagram in (6.47) with s noise legs produces s!/(2s/2(s/2)!) diagrams with s/2 loops,
provided that s is even. Each loop contains a term of the form 〈ηη〉 and is therefore
according to (6.12) preceeded by a factor g2. This can also be seen from the fact that
the propagator contains a factor g, and there is one node per propagator and each
node contains exactly one noise term.9 In other words, an expansion in powers of g2

is exactly an expansion loop-by-loop.

6.2.1.1 An exact result

Unfortunately the diagrams are extremely hard to calculate, mainly because of the
presence of v(x). The only accessible term is

.

Assuming a noise correlator of the form

〈
η(x, h)η(x′, h′)

〉
= δ(x − x′)∆(h− h′) (6.50)

with unknown function ∆(h−h′) means to waive the initial condition z(x, t = 0) ≡ 0,
see Eq. (6.37). Then, in the stationary state, one finds

= δ(ω)
1√
2π

2g(1 − λk2
n)

L(Dk2
n + iω)

(6.51)

×
∫ L

0
dx′
∫ ∞

−∞
dq

∞∑

m=1

2g(1 − λk2
m)

L(Dk2
m + 2iqv(x′))

iq∆̃(q) sin2(kmx
′) sin(knx

′)

where ∆̃(q) is the FOURIER transform of ∆(h). The leading δ(ω) is not surprising,
because one expects a time-independent behaviour.

In order to continue in closed form, one has to take λ = 0. Noting that

∑

n

k2
n〈zn(ω)〉 sin(knx) = −

〈
z′′(x, ω)

〉
(6.52)

9It certainly would make sense to absorb the g into η and so in its correlators.
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the form 〈ηη〉 by their correlator, which may or may not be a δ-function.8 Thus, taking
the average of zn(ω) simply means to connect all dashed legs in pairs, in all possible
ways. If there is a leg left, this term does not contribute, because the noise enters
in the form η(x, ω) with x and ω just being fixed arguments or even been integrated
over, so that 〈η(x, ω)〉 vanishes. This is of course different from 〈η(x, 2v(x) + z(x, t))〉,
which is the average noise experienced by the interface. In that expression z(x, t) is
supposedly a solution of (6.12) and is therefore correlated to η; one can see that im-
mediately by writing z(x, t) as a functional of η, z(x, t; [η]), as it is the solution of (6.9)
for a particular realisation of η.

In order to test the continuum theory against the original model, it would be
interesting to calculate the average number of charges as a function of the position.
The average number of charges is simply 〈h(x, t)〉. Using (6.11) gives only a part of
the answer

〈h(x, t)〉 = 2v(x)t + P3(x) + 〈z(x, t)〉 , (6.48)

but the last term is non-trivial. However, it should converge for large t to a func-
tion only in x, otherwise the interface z(x, t), fixed on both ends, would move and
therefore bend forever. However, there is nothing to balance an arbitrary curvature,
as mentioned already around (6.21). On the other hand, it is also clear that the inter-
face is “dragged” through the random medium, so one expects a non-trivial form of
〈z(x, t)〉.

Thus, taking the average of (6.47) gives

〈zn(ω)〉 =

+ + +

+ + + (6.49)

+
1

2
+

1

2
+

1

2

8Usually it is a δ-function in x but not in h, (Leschhorn et al., 1997).
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lattice of linear length L, each site has a variable associated with it, which indicates
the state of the site. This can either be “occupied” (by a tree), “burning” (occupied
by a fire) or “empty” (ash). In each time step, all sites are updated in parallel accord-
ing to the following rules: If a site is occupied and at least one of its neighbours is
burning, it becomes burning in the next time step. If a site is occupied and none of
its neighbours is burning, it becomes burning with probability f . If a site is empty,
it becomes occupied with probability p. If a site is burning it becomes empty in the
next time-step with probability one. As these probabilities become very small, they
are better described as rates in a Poisson like process. From a simple analysis it is im-
mediately clear (Clar et al., 1994), that the model can become critical only in the limit
p→ 0 and f → 0. In this limit, the burning process becomes instantaneous compared
to all other processes (see also Sec. 4.2.2.2) and can be represented by the algorithm
shown in Fig. 4.1.

FOREVER {
/* Choose a site randomly */
rn = random site;
/* If empty occupy with probability p */
IF (rn empty) THEN {

with probability p: rn=occupied;
} ELSE {
/* If occupied start a fire with probability f */

with probability f:
burn entire cluster connected to rn;

}

}

Figure 4.1: The naïve, basic algorithm of the DS-FFM

Compared to the instantaneous burning, both of the remaining processes are
slow. In Sec. 4.2.2.2 it is shown that p � f is required (Clar et al., 1994) for criti-
cality, so that f/p < 1 and the algorithm in Fig. 4.1 can be written as Fig. 4.2, which
is faster than the former, because the number of random choices of a site is reduced,
but equivalent otherwise.

The line with probability p makes sure that the occupation attempt still
happens with probability p and the burning attempt still occurs with pf/p = f . Of
course, the line is completely meaningless, because the alternative, which occurs with
probability 1− p is no action at all. It therefore can be omitted. Then every randomly
picked empty site will become occupied, while burning happens with the reduced
probability f/p.

This rescaling of probabilities is only possible in this form if the two processes are
independent, which is the case because a new occupation can only occur for empty
sites, while a burning attempt operates only on occupied sites. If both processes were
to operate on the same type of site, a reduced probability (1 + f/p)−1 would decide
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FOREVER {
/* The following line is without effect */
with probability p: {

rn = randomly chosen site;
IF (rn empty) THEN {

rn=occupied;
} ELSE {

with probability f/p:
burn entire cluster connected to rn;

}
}

}

Figure 4.2: A faster algorithm, doing essentially the same as the one shown in Fig. 4.1.

between the two alternatives.
The implementation shown in Fig. 4.2 (without the meaningless line) has been

used for example in (Honecker and Peschel, 1997; Henley, 1993). However, probably
for historical reasons, the model is usually (Grassberger, 1993; Clar et al., 1994; Schenk
et al., 2000) implemented as shown in Fig. 4.3, where trees are grown in chunks of p/f
between two lightning attempts. Although this means that sites become re-occupied
only in chunks of p/f , it turns out that apart from peaks in the histogram of the
time series of global densities of occupied sites (Schenk et al., 2000), the statistics do
not depend on these details. Only in order to avoid any confusion, all data for this
chapter have been produced by means of the algorithm in Fig. 4.3. Moreover this
algorithm is much more suitable for parallelisation (see Sec. 4.2.5).

FOREVER {
/* This is just a loop to occupy the
* right number of sites */

REPEAT p/f TIMES {
rn = randomly chosen site;
IF (rn empty) THEN {rn=occupied;}

}
rn = randomly chosen site;
IF (rn occupied) THEN {

burn entire cluster connected to rn;
}

}

Figure 4.3: The traditional implementation.

4.2.2 Statistical quantities

The objects of interest in the DS-FFM are clusters formed by occupied sites: Two
trees belong to the same cluster, if there exists a path between them along nearest
neighbouring, occupied sites. The cluster in the DS-FFM correspond to avalanches

6.2. ANALYTICAL RESULTS 

These diagrams are not dummy-labelled for better readability. The integrals associ-
ated with the first two terms have already been obtained in (6.41):

Rule 2︷ ︸︸ ︷
2g(1 − λk2

n)

L(Dk2
n + iω)︸ ︷︷ ︸�

ω, n

Rule 3︷ ︸︸ ︷∫ L

0
dx′η

(
x′,

ω

2v(x′)

)
sin(knx

′)
2v(x′)︸ ︷︷ ︸�

ω, n, x′

=
ω, n

ω, n, x′

(6.45)

and

Rule 2︷ ︸︸ ︷
2g(1 − λk2

n)

L(Dk2
n + iω)︸ ︷︷ ︸�

ω, n

Rule 5︷ ︸︸ ︷∫ L

0
dx′

∞∑

m=1

sin(kmx
′)

Rule 4︷ ︸︸ ︷∫ ∞

−∞

iq√
2π2v(x′)

dq

︸ ︷︷ ︸�

Rule 3︷ ︸︸ ︷
η

(
x′,

q

2v(x′)

)
sin(knx

′)
2v(x′)︸ ︷︷ ︸�

q, n, x′

Rule 1︷ ︸︸ ︷
zm(ω − q)︸ ︷︷ ︸�

ω − q,m, x′

=
ω, n

q, n, x′

ω − q,m, x′

(6.46)

Based on the rules give above, one can now start the iteration procedure based
on (6.44), by iteratively plugging in the first few orders for the double arrow. The
resulting first few terms are

zn(ω) = � + + +

+
1

2
+ +

1

2

+
1

6
+ . . . (6.47)

When taking the average over the noise, the higher order correlators of the pre-
sumably Gaussian noise are obtained from WICK’s theorem (Le Bellac, 1991; van
Kampen, 1992); one can leave the labelling as discussed above and replace pairs of



 CHAPTER 6. THE OSLO MODEL AND THE QEW

4 For each node ( � ), integrate over all outgoing frequencies and all space vari-
ables. Multiply by (iq/(2v(x)

√
2π))s, where s is the number of outgoing solid

lines (double or single) and x and q are chosen according to the single noise
connected to the node.

5 All outgoing arrows receive a sum
∑

n sin(knx) and an integral
∫
dx with n and

x according to their label.

Apart from the single ingoing arrow, which needs to be labelled, the diagrams are
meaningful even without any other labels, because they all represent dummy vari-
ables. The labelling is done as follows:

a For each node provide dummy frequency variables, starting with the single
node, whose incoming arrow is already labelled (usually ω). Leave one outgo-
ing arrow unlabelled, such that the total incoming frequency equals the total
outgoing frequency.

b The single noise term on each node obtains the same momentum as the incom-
ing arrow (initially n).

c All outgoing legs but the noise obtain a new, individual (dummy) momentum
variable k, l, . . . .

d All outgoing legs obtain a new spatial variable (like x′) to be integrated over at
the node. It is the same for all legs on one node.

The labelling with two different spatial variables, n and x seems to be a bit clumsy,
but is unavoidable, as pointed out around Eq. (6.42). In fact, this kind of labelling and
the associated integrations will also work if it turns out that the boundary condition
discussed in Sec. 6.1.6, which seem to make v(x) a constant, are for some reason not
applicable.

The expansion based on (6.40) is then

zn(ω) =

�

ω, n

=
ω, n

+
ω, n

+
1

2 ω, n
+

1

6 ω, n
+ . . .

(6.44)
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in sandpile-like models (Jensen, 1998). The cluster, which is burnt at each burning
step can be examined more closely, so that various geometrical properties can be
determined either as averages (and higher moments) or as entire distribution: Mass
(in the following this term is used synonymously to size), diameter, time to burn
it etc. The last property is better expressed as the maximum length for all paths
parallel to the axes and fully within the given cluster, connecting the initially burnt
tree and each tree within the same cluster. It is the maximum number of nearest
neighbour moves one has to make to reach all sites in the same cluster, in this sense
a “Manhattan distance” (Cormen et al., 1990, pp. 194, 912). As trees catch fire due to
nearest neighbours only, this maximum distance is the total burning time of the entire
cluster. In the definition above, the “time to burn” TM becomes a purely geometrical
property of the cluster and therefore independent from the actual implementation
(see sec. 4.2.3.4) of the burning procedure.

4.2.2.1 Cluster size distribution

The most prominent property of the model, however, is the size distribution of the
clusters, n̄(s), which is the single-site normalised number density of clusters of mass
s, i.e. the number of clusters of size s per unit volume. The average cluster size, i.e.
the average size of a cluster a randomly chosen occupied site belongs to, is corre-
spondingly defined as

s̃ =

∑
s s

2n̄(s)∑
s sn̄(s)

. (4.1)

As indicated by the bar, n̄(s) denotes the expected distribution, i.e. something to be es-
timated from the observables. On average, the probability that a randomly chosen site
belongs to a cluster of size s is then sn̄(s). If nt(s) denotes the cluster size distribution
of the configuration at time t (see below), then one expects

〈nt(s)〉 = n̄(s) . (4.2)

where 〈〉 denotes the ensemble average (as opposed to ,̃ which denotes the average
over n̄(s; θ)). Assuming ergodicity, one has

lim
T→∞

1

T

T∑

t=1

At → 〈A〉 (4.3)

for an arbitrary quantityAt measured at each step t of the simulation. The limit exists
for all bound observables At.

Regarding the time t, it is worth noting that a step in the simulation is considered
completed, i.e. t → t + 1 if the randomly chosen site for the lightning attempt was
occupied, i.e. the attempt was successful, so that T is the number of burnt clusters.
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For sufficiently large systems, the changes of the system due to growing or light-
ning are almost negligible, and so are the differences between averages taken over all
lightning attempts or all successful lightning attempts. Also, the distributions found
directly before and directly after burning tend to the same expectation value for suf-
ficiently large systems, see sec. 4.3.3.1. It is noted only for completeness, that in this
chapter the cluster size distribution nt(s) has been measured directly after the burn-
ing procedure. Therefore nt(s) does not include the cluster burnt at time step t, just
like nt+1(s) does not in an implementation, where the distribution is measured before
burning.

Introducing
ρ̄ =

∑

s=1

sn̄(s) (4.4)

as average density of occupied sites, the expected distribution of burnt clusters is
sn̄(s)/ρ̄. To see this, Pb

t (s) is introduced, denoting the distribution of clusters burnt
in the tth step of the simulation. This distribution contains only one non-zero value
for each t, namely Pb

t (s) = 1 for the size s of the cluster burnt at time t, and Pb
t (s) = 0

for all other s. Therefore
N∑

s=1

Pb
t (s) = 1 (4.5)

where N is the number of sites in the system, N = Ld, which is also the maximum
mass of a cluster. Since the site where the fire starts is picked randomly, the cluster
burnt in time step t + 1 is drawn randomly from the distribution nt(s) with a prob-
ability proportional to the mass of the cluster. The normalisation of the distribution
sn̄(s) is given by (4.4), so that for t large enough, the effect of the initial condition can
be neglected, 〈

Pb
t (s)

〉
= sn̄(s)/ρ̄ . (4.6)

In the stationary state the average number of trees, ρ̄ is related to s̃ by (Clar et al.,
1994)

s̃ =
1 − ρ̄

θρ̄
. (4.7)

This equation, as well as (4.6), is strictly only exact if the density of occupied sites is
constant over the course of the growing phase. For very large system sizes (4.7) holds
almost perfectly, as shown in Tab. 4.3 (see page 185); however, note the remarks in
Sec. 4.3.3.1.

For a coherent picture Pa
t (s) is introduced, which is the histogram of all clusters,

i.e.
∑

s Pa
t (s) is the number of clusters in the system at time t. According to the

definition of n̄(s) it is
〈Pa

t (s)〉 = Nn̄(s) , (4.8)
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• The propagator acquires an extra factor (1−λk2
n), so that for large n and fixed ω

the propagator converges to λ/D, which might cause problems when summing
∑∞

k . However, according to sec. 6.1.3.2, it seems reasonable to assume that the
proper continuum theory is λ = 0.

6.2.1 Diagrammatic expansion

Eq. (6.41) can be extended to higher orders, but is much more conveniently ex-
pressed in a diagrammatic expansion. The rules are slightly more involved than in
(Leschhorn et al., 1997), because the integration over x in zn(ω), for example Eq. (6.41),
cannot be performed systematically due to the x-dependence of v(x). This becomes
more vivid, when rewriting the second integral in (6.41) as

∫ L

0
dx′
∫ ∞

−∞
dq

∞∑

m=1

η(x′, q)
iq sin(knx

′)√
2π

zm(ω − 2v(x′)q) sin(kmx
′)

=

∫ L

0
dx′
∫ ∞

−∞

dp

2v(x′)

∞∑

m=1

η

(
x′,

p

2v(x′)

)
ip sin(knx

′)

2v(x′)
√

2π
zm(ω − p) sin(kmx

′) .

(6.42)

In principle the integral

∫ L

0
dx′η

(
x′,

p

2v(x′)

)
sin(knx

′) sin(kmx
′)

(2v(x′))2
(6.43)

could now be performed. However, it is certainly not just δm,nη̂n(p), nor could the
x-dependence of v be absorbed into a redefinition of the FOURIER transform, because
in each order, higher (negative) powers of 2v(x′) appear. This will become clearer in
the diagrammatic expansion below. If v(x) would not depend on x, the KRONECKER

resulting from (6.43) would even remove the sum over m in the second integral in
(6.41). This is exactly what happens in (Leschhorn et al., 1997); it is therefore highly
desirable to implement the new boundary conditions discussed in Sec. 6.1.6.

The rules for the diagrams are as follows:

1 A double arrow ( � ) represents a term zn(ω) with n and ω according to the
label. All arrows can be (dummy-) labelled using the rules explained below,
apart from one incoming arrow, which fixes the temporal and spatial variable
n and ω respectively.

2 A single, solid arrow (� ) represents the propagator, 2g(1−λk2
n)

L(Dk2
n+iω) , with n and

ω according to the label.

3 A dashed line (� ) represents the noise in the form
sin(knx)η(x, q/(2v(x)))/(2v(x)), with q, n and x according to the label.
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It is worth stressing that it does not make much sense to take the thermodynamic
limit at this point, since one expects the problem to be self-organised critical, i.e. one
should see pure finite size scaling.

One can now expand η in powers of zn, by writing a Taylor series for η(x, h) in h
and FOURIER transforming:

1√
2π

∫ ∞

−∞
dt′η(x′, 2vt′ + z(x′, t′))e−iωt′ =

1

2v
η(x′, ω/(2v))

+
i√
2π

∫ ∞

−∞
dqη(x′, q)qz(x′, ω − 2vq) + . . .

(6.39)

which can also be obtained using the expansion (Leschhorn et al., 1997)

η(x, 2vt + z(x, t)) =
1√
2π

∫ ∞

−∞
dqη(x, q)eiq(2vt+z(x,t)) (6.40a)

=
1√
2π

∫ ∞

−∞
dqη(x, q) (6.40b)

×
(

1 + iqz(x, t) +
1

2
(iq)2z(x, t)2 + . . .

)
.

Up to second order one therefore arrives at

zn(ω) =
2g(1 − λk2

n)

L(Dk2
n + iω)

( ∫ L

0
dx′η

(
x′,

ω

2v(x′)

)
sin(knx

′)
2v(x′)

+

∫ L

0
dx′
∫ ∞

−∞
dq

∞∑

m=1

η(x′, q)
iq sin(knx

′)√
2π

zm(ω − 2v(x′)q) sin(kmx
′)
)

+ . . .

(6.41)

It is worth pointing out a couple of important differences between (6.41) and the
calculations presented in (Nattermann et al., 1992) and (Leschhorn et al., 1997):

• Due to the boundary conditions the set of orthogonal functions used here
is {sin(knx)} rather than {exp(−ikx)}. This causes many technical problems
when it comes to convolutions.

• As mentioned above, all calculations take place in a finite system and only make
sense in a finite system. Thus,

∑
m cannot be written as

∫
k.

• The x-dependence of v(x) causes massive problems, because∫
dx sin(mx) sin(nx)/x is not orthogonal. As suggested in Sec. 6.1.6, one

could probably resolve this problem by introducing different boundary
conditions.
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and correspondingly

ρt =
1

N

∑

s

sPa
t (s) (4.9)

with 〈ρt〉 = ρ̄. Since (4.6) and (4.8) differ on the RHS only by constants rather than
by random variables, both distribution, Pb

t (s) and Pa
t (s), are estimators of the ex-

pected distribution n̄(s). Clearly, the burnt cluster distribution P b
t (s) is much sparser

than than Pa
t (s) and the estimator for n̄(s) derived from this quantity, is therefore

expected to have a significant larger standard deviation. On the other hand, its auto-
correlation time is expected to be considerably smaller than that of P a

t (s), because on
average only p/f + 1 entries (ρ̄p/f sites are occupied in each “growing loop”, which
is repeated on average 1/ρ̄ times) of the latter are changed between two subsequent
measurements, corresponding to the number of newly occupied sites plus the clus-
ter which is burnt down. So, Pa

t (s) provides a much larger sample size, but is also
expected to be much more correlated. In order to judge, whether it is wise to spend
CPU time on calculating the full Pa

t (s) rather than only Pb
t (s), as it was done in the

past (Clar et al., 1994), these competing effects need to be considered, by calculating
the estimate for the standard deviation of the estimator of n̄(s) from both observables,
which is discussed in detail in Sec. 4.2.4.

4.2.2.2 Timescales

In order to obtain critical behaviour in the FFM, a double separation of timescales is
required (Clar et al., 1996)

f � p�
(
f

p

)ν′

, (4.10)

with some positive exponent ν ′. The left relation, f � p, entails f/p → 0 and there-
fore (4.10) entails p→ 0 and f → 0. This is also the case for

f � p� 1 , (4.11)

and therefore leads to the same prescription to drive the system, however (4.10)
entails (4.11) but not vice versa. This can be seen by noting that (4.10) entails the
non-trivial relation p1+1/ν′ � f � p. Some authors, however, just state (4.11)
(Grassberger, 1993; Vespignani and Zapperi, 1998). The three scales involved are due
to three different processes and their corresponding rates:

1. The timescale on which the burning happens, the typical time of which is
handwavingly estimated as the average number of sites in a burnt cluster,
s̃ ∝ p/f . A more appropriate assumption is that the typical burning timescales
like a power of the average cluster size (Clar et al., 1996). This should be



 CHAPTER 4. THE FOREST FIRE MODEL

distinguished from the scaling of the average time it takes to burn a cluster,
because the typical time represents the characteristic scale of the burning time
distribution, which might be very different from its average.

2. The timescale of the growing, which is 1/p.

3. The timescale of the lightning, 1/f .

Burning must be fast compared to growing, so that clusters are burnt down, before
new trees grow on it edges (Clar et al., 1996), i.e. (p/f)ν′ � 1/p or (f/p)ν′ � p. In
order to obtain divergent cluster sizes, growing must be much faster than lightning,
i.e. p� f . Thus, the double separation reads as stated in (4.10). By making the burn-
ing instantaneous compared to all other processes, the dynamics effectively loses one
timescale. In this case, the rates f and p, measured on this microscopic timescale, van-
ish, i.e. f = 0 and p = 0, so that the right relation of (4.10) is perfectly met, provided
that p/f does not vanish. However, the ratio f/p remains finite, and f � p is still to
be fulfilled. A finite f/pmeans that one rate provides a scale for the other. Measuring
the rates on the macroscopic timescale, defined by the sequence of burning attempts,
f becomes 1 in these new unities, and p becomes p/f ≡ θ−1. The notation θ = f/p

corresponds to (Vespignani and Zapperi, 1998), which is, unfortunately, the inverse
of θ used in (Grassberger, 1993). Eq. (4.10) then means θ → 0. At first sight, this result
seems paradoxical, since θ = 0 is incompatible with instantaneous burning’s compli-
ance with p � θν′

. However, this problem does not appear in the limit θ → 0. In a
finite system, one cannot make θ arbitrarily small, as the system will asymptotically
oscillate between the two states of being completely filled and completely empty. On
the other hand, for fixed θ and sufficiently large system sizes, a further increase in
system size will leave the main observables, such as ρt and Pa (see Sec. 4.2.2.1), es-
sentially unchanged. These asymptotic values, namely the observables at a given θ

in the thermodynamic limit, are to be measured.

4.2.2.3 Scaling of the cluster size distribution

Assuming that finite size effects do not play any rôle, i.e. for θ not too small, the
ansatz

n̄(s; θ) = s−τG(s/s0(θ)) (4.12)

as obtained in percolation (Stauffer and Aharony, 1994) is reasonable for s larger than
a fixed lower cutoff. In the following, the additional parameter θ in n̄(s; θ) is omitted,
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Moreover, the slope zi (not to be confused with the FOURIER components in (6.14)) is
just h̃(x, t) − h̃(x+ 1, t), so that

zi(t) = zi(t = 0) + ∂2
xH(i, t) . (6.35)

Thus, height as well as slope have an immediate meaning in the field-theoretical de-
scription, even though at first glance they seem to be just the most natural quantities
to describe the model as a sandpile. From this observation it was possible to derive
the boundary conditions discussed in Sec. 6.1.6.

Unfortunately, it does not seem to be possible to write an equation of motion
for the slope or the height in the same form as (6.9), because the noise cannot be
quenched in a variable, which approaches a stationary state. Otherwise the evolution
of the model would eventually become periodic.

6.2 Analytical Results

While initially a different outcome was expected, it turned out that the analysis of
(6.9) follows exactly the results in (Leschhorn et al., 1997). This has already been con-
jectured by ONUTTOM NARAYAN (Narayan, 2000). The main problem is the actual
evaluation of the integrals, which seriously suffer from the fixed boundary condi-
tions and the tilt. As is pointed out in sec. 6.1.6, this problem is possibly lifted by
using the original boundary conditions (see Sec. 5.1.1, page 205).

The first step is to write down the propagator explicitly. Replacing ηλ back into
(6.14) and using6 η(x = 0, h) = η(x = L, h) ≡ 0 one has

zn(t) =
2g

L

∫ t

0
dt′
∫ L

0
dx′(1 − λk2

n)η(x′, 2v(x′)t′ + z(x′, t)) sin(knx
′) exp(−k2

nD(t− t′))

(6.36)
One can hide the fact of an initial condition z(x, t = 0) ≡ 0 by defining (Nattermann
and Tang, 1992)

η(x, h) ≡ 0 for h < 0 (6.37)

so that the FOURIER transform7 in t simply becomes

zn(ω) =
2g(1 − λk2

n)√
2π(iω + Dk2

n)

∫ ∞

−∞
dt′
∫ L

0
dx′η(x′, 2v(x′)t′ + z(x′, t)) sin(knx

′) e−iωt′ .

(6.38)

6This is to translate d2

dx2 η to k2
nη by partial integration; this is not needed for the first derivative,

because the sine vanishes on both ends.
7For reasons of readability we do not distinguish symbols for the actual function and its FOURIER

transform, wherever possible.
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a regular noise η(x, h(x = L, t))

H(x = L, t+ 1) =
1

2
[h(x = L, t) + η(x, h(x = L, t))] (6.30a)

h(x = L, t) = H(x = L− 1, t) +H(x = L+ 1, t) . (6.30b)

It is worth noting that — correctly — this site can never be in the stable state zL = 0,
because it can reach this state only temporarily after toppling, but is automatically
charged afterwards.

The new boundary condition H(x = L + 1, t) ≡ H(x = L, t) in the continuum
becomes a von-Neumann boundary condition,

∂x|x=L+1H(x, t) = 0 . (6.31)

To transform that into a boundary condition for h, one could in principle set h(x =

L + 1, t) = h(x = L, t) and η(x = L + 1, h) = η(x = L, h), so that (6.30a) applies to
H(x = L+ 1, t) as well. Thus

∂x|x=L+1 h(x, t) = 0 (6.32a)

∂x|x=L+1 η(x, t) = 0 . (6.32b)

The big advantage of this boundary condition over the Dirichlet boundary condi-
tion (6.6) is that in the original boundary conditions all sites topple equally often on
average (see Sec. 5.1.4, page 212). Therefore, v(x), defined in (6.10), would become
independent of x and would not enter η in (6.14) in such a complicated form. In fact,
as it is demonstrated below, the current form of v(x) causes serious problems. TheOpen

issue usage of a simplified v(x) is still to be explored.

6.1.7 Direct translation into the height picture

I am indebted to OLE PETERS for pointing out that the height h̃(x, t) of the Oslo model
in the height picture is given by

h̃(x, t) = h̃(x, t = 0) + h∗(x, t) −H(x, t) (6.33)

where h∗(x, t) is the number of charges received by a site in terms of height. This is a
further subtlety: while a site can be charged in terms of slope by its right neighbour,
this cannot happen in terms of height, because “height grains” only move to the right.
Thus, h∗(x, t) = H(x−1, t), and ignoring the standard problem of forward/backward
derivatives, one has

h̃(x, t) = h̃(x, t = 0) − ∂xH(x, t) (6.34)
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whenever possible. The quantity s0(θ) is the upper cutoff and supposed to incorpo-
rate all θ dependence of the distribution. It can be shown easily (Clar et al., 1994) that
the second moment of n̄(s; θ) [see (4.1)] diverges in the limit θ → 0 and L → ∞, so
that s0 must diverge with θ → 0. Here, G(x) plays the rôle of a cutoff function, so
that limx→∞ G(x) = 0 and falls off faster than any power for large x, because all mo-
ments of n̄(s; θ) are finite in a finite system. For finite x, G(x) can show any structure
and does not have to be constant. However, assuming lims0→∞ n̄(s; θ) finite, G(s/s0)

can be regarded as constant in s for sufficiently large s0, so that n̄(s; θ) behaves like a
power law, s−τ , for certain s. However, a priori it is completely unknown, whether s0

is large enough in that sense and the only way to determine τ directly from n̄(s; θ) is
via a data collapse. It is already known that “simple scaling” (4.12) does not apply in
the presence of finite size effects (Schenk et al., 2000).

The assumption (4.12) states that the FFM is scale-free in the limit s0(θ) → ∞ and
defines the exponent τ which characterises the scale invariance. One cannot stress
enough, that with the breakdown of (4.12), the proposed exponent is undefined, un-
less a new scaling behaviour is proposed. It has been pointed out that (4.12) certainly
contains corrections (Pastor-Satorras and Vespignani, 2000a). This asymptotic char-
acter of the universal scaling function is well known (Wegner, 1972) from equilibrium
critical phenomena.

While GRASSBERGER concludes that the ansatz (4.12) “cannot be correct” (Grass-
berger, 1993), this is rejected in (Schenk et al., 2000). However, the latter authors do
not actually investigate G(x) and simply plot their estimate of sn̄(s; θ) vs. s/s0(θ). In
the result section it is shown that there is no reason to believe that (4.12) could hold
in any finite system.

4.2.2.4 Other distributions

The exponent τ as defined in (4.12) can be related to exponents of other assumed
power laws. To this end, the distribution P(s, TM; θ) is introduced, which is the joint
probability density function (PDF), for a cluster burnt to be of mass s and burning
time (see sec. 4.2.2) TM at given θ. Then it is possible to define conditional expectation
values as (Christensen et al., 1991).

E(s|TM; θ) =
∑

s′
s′P(s′, TM; θ) (4.13)

E(TM|s; θ) =
∑

TM
′
TM

′
P(s, TM

′; θ) . (4.14)
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Moreover it is clear that n̄(s; θ) is just a marginal distribution, i.e.

sn̄(s; θ) =
∑

TM
′
P(s, TM

′; θ) ≡ Ps(s; θ) . (4.15)

In the assumed absence of any scale, it is reasonable to define for the distribution of
TM similar to (4.12)

PTM(TM; θ) = TM
−bGTM(TM/TM0(θ)) (4.16)

and for the relation between E(s|TM) and TM:

E(s|TM) ∝ TM
µ′

(4.17)

To avoid confusion, it is important to keep in mind that the absence of scales is not a
physical or mathematical necessity: The system could as well “self-organise” to any
other, sufficiently broad distribution, which could have an intrinsic, finite scale, i.e. a
natural constant characterising the features of the distribution. This looks much less
surprising considering the fact that standard models of critical phenomena (Stanley,
1971) like the ISING model, possess such a scale everywhere apart from the critical
point.

An additional assumption is necessary in order to produce a scaling relation:

PTM(TM; θ)dTM = Ps(E(s|TM); θ)d(E(s|TM; θ)) (4.18)

where PTM and Ps denote the marginal distributions of P(s, TM; θ), which leads —
assuming sufficiently large s0 and TM0 — to

b = 1 + µ′(τ − 2) (4.19)

using Ps = sn̄(s; θ) and (4.12). Eq. (4.18) is based on the idea that a cluster requiring
burning time TM is as likely to occur as a cluster of the size corresponding to the
average taken conditional to the burning time TM. If the distribution P(s, TM; θ) is
very narrow, such that E(s|TM) is virtually the only value of s with non-vanishing
probability2, this condition is met. However, the distribution can have any shape
and still obey the assumption, as illustrated in Fig. 4.4.

Scaling relation (4.19) can only be derived via (4.18), which cannot be mathemat-
ically correct, as Ps is actually only defined for integer arguments, while in general
E(s|TM) is not integer valued. However, the scaling relation might hold in some limit.

2The extreme case would be P(s, TM; θ) = δ(s − f(TM))g(TM) with a monotonic function f(TM)
representing the conditional average.
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h(x, t) η(x, h(x, t)) η(x, h(x, t) + 1) zi zc
i Remark

even 0 1 1 1 (topples at charge)
even 0 -1 1 2
odd 1 0 0 η(x, h(x, t) + 2) (irrelevant, as zi cannot

topple)
odd -1 0 2 2 (necessary, as zi must

topple)

Table 6.1: Mapping of h and η to zi and zc
i .

receives a unit from one of its neighbours), while zc
i changes only at each toppling.

But every single toppling is triggered by a charge, so that η changes at least as often
as zc

i . There is no trivial mapping between the value of zc
i and η(x, h(x, t)), because

the latter is a noise with respect to the field h(x, t) mimicking the effect of the z c
i .

It is important to keep in mind that zi is supposed to represent stable configura-
tions only. For the response to a single charge (any multiple charge can be decom-
posed into a sequence of single charges) it is then clear that the actual value of z c

i

plays a rôle only if zi = 1 — in case that zi = 0 a single charge cannot activate site i,
if zi = 2, then the site must topple for any value of zc

i .
To derive the value of zc

i for a given site at the time it receives a charge from its η
value, one must consider η(x, h(x, t) + 1) − η(x, h(x, t)). This quantity is either 1 or
−1. Whenever it is positive, a toppling will occur if the site is charged, whenever it
is negative zi will increase and no toppling will take place. Together with the actual
value of zi [as derived from h(x, t) and η(x, h(x, t)), see explanation after Eq. (6.3)] at
the time the charge occurs, one arrives at the mapping shown in Tab. 6.1.

6.1.6 Boundary conditions

It is very instructive to reconsider the boundary conditions originally used in the
Oslo model, see Sec. 5.1.1, page 205. There, the number of topplings of the rightmost
site is, apart from the effect of zc

L, just the number of charges, i.e.

H(x = L, t+ 1) = h(x = L, t) + η̃(x, h(x = L, t)) (6.29a)

h(x = L, t) = H(x = L− 1, t) +H(x = L+ 1, t) (6.29b)

where H(x = L+ 1, t) ≡ 0 is the “true” boundary condition and η̃(x, h(x = L, t)) ∈
{0,−1} where 0 corresponds to zc

L = 1 and −1 to zc
L = 2. The problem with this

boundary condition is that it actually introduces a special equation of motion for the
rightmost site in the bulk — it is not just a boundary condition.

One very interesting way to cast (6.29a) into the form (6.3) is to introduce H(x =

L+ 1, t) ≡ H(x = L, t), as if the rightmost boundary would “topple back” whatever
it has received. From this point of view x = L becomes a regular site in the bulk with
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Figure 6.3: Eleven consecutive interface configurations. The avalanche size (measured
as number of charges) is shown as a hatched area, which does not include the charge of
site i = 0. The leftmost and the rightmost sites, which are fixed by boundary conditions,
are shown a big black circles. The numbers on the ordinate on the left hand side indicate
the number of charges and on the right hand side they indicate the interface height
h(x, t). The symbols in the boxes indicate the value of η(x, h), where + stands for +1
and − for −1.
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E(s|TM)

E(TM|s)
dTM

ds

T
M

s

Figure 4.4: A schematic joint PDF P(s, TM
′; θ). The gray shading is used to indicate the

density and the straight lines indicate roughly the limits of the distribution. While a
narrower distribution would most easily obey (4.18), it does not necessarily have to be
sharply peaked. In this example the weighted areas of the horizontal and the vertical
stripes might be the same. They cross at the conditional averages.

The exponent defining the divergence of s0 in (4.12) is defined as

s0(θ) = θ−λ (4.20)

leading together with (4.1) and (4.7) to the scaling relation (Clar et al., 1996)

λ(3 − τ) = 1 . (4.21)

The corresponding exponent for TM0 in (4.16) as

TM0(θ) = θ−ν′
(4.22)

The assumption TM0 = E(TM|s0) ∝ s
1/µ′

0 then gives the scaling relation

ν ′ =
λ

µ′
(4.23)

It is interesting to note that this assumption is consistent with the assumption that
clusters, which have a size of the order s0(θ) need of the order TM0 time to burn. In
that case one has PTM(TM0; θ)dTM = Ps(s0; θ)ds and as TM0 ∝ s

ν′/λ
0 , one has using

(4.16) and (4.12):

(1 − b)
ν ′

λ
= 2 − τ (4.24)

corresponding to (4.19) with (4.23).
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4.2.3 The implementation

In this section a new implementation of the DS-FFM is discussed. An implemen-
tation especially capable to handle large scales has been proposed by HONECKER

(Honecker, 1997) earlier. The most prominent feature of it is the bitwise encoding of
the model, which significantly reduces memory requirements. Some of the proper-
ties investigated, profit from this scheme of bitwise encoding, because bitwise logical
operators can be used to determine for example correlations, and operate on entire
words “in parallel”. However, in this implementation it would have been inefficient
to count all clusters, i.e. n̄(s) is determined via Pb(s) rather than Pa(s).

In contrast to standard implementations (Clar et al., 1994; Schenk et al., 2000; Ho-
necker and Peschel, 1997), where n̄(s) is derived from P b(s), the philosophy of the
implementation presented in this chapter is to count all clusters efficiently by keep-
ing track of their growing and disappearance, so that n̄(s) is derived from P a(s). By
comparing the standard deviation of the estimates, and the costs (CPU time), the ef-
ficiency is found to be at least one order of magnitude higher. At the same time, the
complexity of the algorithm is essentially unchanged, namely O(θ−1 log(N)) instead
of O(θ−1), while a naïve implementation of the counting of all clusters is typically of
order O(N). In the following the algorithm is described in detail. Because of its close
relation to standard percolation, the algorithm presented below is also applicable for
this classical problem of statistical mechanics. In fact, the percolation algorithm re-
cently proposed by NEWMAN and ZIFF (Newman and Ziff, 2000, 2001) is very similar.
Based on many principles presented in this chapter, an asynchronously parallelised
version for percolation has been developed recently (Moloney and Pruessner, 2003;
Pruessner and Moloney, 2003, 2004).

4.2.3.1 Tracking clusters

Usually each site is represented by a two-state variable, which indicates whether the
site is occupied or empty. The variable does not need to indicate the state “burning”,
because the burning procedure is instantaneous compared to all other processes and
can be implemented without introducing a third state (see sec. 4.2.3.4). In order to
keep track of the cluster distribution, each site gets associated two further variables
(in an actual implementation the number of variables can be reduced to one, see
sec. 4.2.3.2), one which points (depending on the programming language either di-
rectly as an address or as an index) to its “representative” and one which contains
the mass of the cluster the given site is connected to. The representative of a site is
another site of the same cluster, but not necessarily and in fact typically not a nearest
neighbour. This is shown in Fig. 4.5. If a site is empty, the pointer to a representative
is meaningless. The pointer of representatives form a tree-like structure, because rep-
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because of the scaling function in (6.25). It remains an open question, how to relate
D and χ in an exact manner. Fortunately, the exactly solvable model discussed in
Chapter 8 (see especially Sec. 8.4, page 338) gives correctly D = 1+χ. One direct test
for the validity of this equation in the Oslo model, which still needs to be performed,
is to calculate the roughness exponent of the number of charges h(x, t) directly in the Open

taskoriginal model on the lattice.

6.1.5 Interface picture

Because of the equivalence of the Oslo model and the qEW, one can depict the Oslo
model directly as an interface advancing through a random background. Fig. 6.3
shows such an interface configuration; site x = 0 has the rôle of an external drive. It
is moved in steps of 2, so that it necessarily charges the next site, x = 1, once each
move. The advantage of this procedure over a direct charging of site x = 1 is that one
has to charge x = 1, but leave it otherwise free to receive further charges from its right
neighbour. Moreover, it never receives any further charges from its left neighbour,
which is the fixed, left boundary. For that reason, it is very convenient to simply set
site x = 0 to a specific value and let the Laplacian transport the charge to the right
neighbour,

∂2
xh(1, t) = h(0, t) − 2h(1, t) + h(2, t) → ∂2

xh(1, t) + 2 . (6.28)

Of course, the charge of the site x = 0 is not included in the avalanche size. An ex-
ample for an avalanche size is shown as the hatched area in Fig. 6.3 (see also Fig. 8.4,
page 334).

The right hand boundary condition is simply fixed at h(L + 1, t) = 0 so it never
evolves.

In Fig. 6.3 the values of η(x, h) are shown in the boxes. They are only shown
where they have actually been generated by the simulation; for example η(x = 0, h)

is never evaluated, but also η(x = 3, h = 5) shows just a blank. This is because the
site had received a double charge from the neighbours, which transported it directly
from h = 4 to h = 6.

It is not entirely straight-forward to map between h and the interface configura-
tion.4 Clearly, there is no unique mapping from zi to h(x, t), because of an (almost)
arbitrary5 offset in h(x, t = 0). But there is a unique mapping from h(x, t) and η(x, h)
to zi and zc

i , which is detailed below.

Prima facie it looks irritating that η changes at each charge (i.e. whenever a site

4We stress again that h here is the number of charges received, while it denotes the height in Chap-
ter 5.

5It is not completely arbitrary, because one probably wants to preserve the property that even zi

corresponds to odd h and vice versa.
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Even though this is not an unusual line of arguments [see for example the “Phe-
nomenological scaling theory”, (Hinrichsen, 2000, chapter 3.3)], it is not a derivation.
What is actually needed is a relation between the scaling of the width of the interface
and the scaling of the avalanche sizes, which is in principle given by (6.21); for the
second moment that means

〈
s2
〉

=

∫ L

0
dx

∫ L

0
dx′
〈
(h(x, t2) − h(x, t1))(h(x

′, t2) − h(x′, t1))
〉
. (6.23)

The RHS should be given by the two-time correlator
〈
(h(x, t1) − h(x′, t2))2

〉
. How-

ever, contrary to the suggestive form, this correlator is not only a function of t1 − t2

and x1 − x2. This is not so important for the temporal dependence, which is fully
captured by t1 − t2 in the stationary state. The spatial dependence, however, can
never be fully captured by x1 − x2 in a system, which is not translational invariant.
Moreover, since this “full correlator” is evaluated everywhere on [0, L], there is no
way to avoid finite size effects.

While one expects (Kardar, 1998)

lim
L→∞,t→∞

〈
(h(x, t1) − h(x′, t2))

2
〉

= (x− x′)2χGχ

( |t1 − t2|
|x− x′|z

)
(6.24)

with dynamical exponent z and scaling function Gχ, this is not necessarily the case,
if the roughness exponent χ is defined, for example, by the scaling behaviour of the
width. The roughness exponent in (6.24) might be different from the roughness ex-
ponent from the scaling of the width (Galluccio and Zhang, 1995), in fact, (6.24) is
not even necessarily the case for any χ, even if the width scales properly (see, for
example, sec. 9.2.1.1). Clearly, if finite size effects matter, the scaling form (6.24) does
not hold.

A naïve calculation of (6.23) gives

〈
s2
〉

=

∫ L

0
dx

∫ L

0
dx′
(
|x− x′|2χ(Gχ

( |t1 − t2|
(x− x′)z

)
− Gχ(0))

)
, (6.25)

which certainly does not suggest the scaling expected from the handwaving expla-
nation presented above, namely

〈
s2
〉
∝ LD(3−τ) = L1+D = L2+χ, (6.26)

according to Eq. (6.1), Eq. (6.2) and Eq. (6.22). But it is also not simply L2+2χ and
therefore D = 1 + 2χ, as suggested by

∫ L

0
dx

∫ L

0
dx′|x− x′|2χ , (6.27)
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resentatives might point to another representative, as shown in Fig. 4.6. A site which
points to itself and is therefore its own representative, is called a “root” site, since
it forms the root of the tree like structure. Only at a root site, the second variable,
denoting the mass of the cluster, is actually meaningful and indicates the mass of the
entire cluster. Each cluster is therefore uniquely identified by its root site: Any two
sites, which belong to the same cluster have the same root and vice versa. By con-
struction of the clusters (shown below), it takes less than O(logN) to find the root of
any site in the system.

0 1 2 3

4 5 0 0

0 9 6 7

8 0 0 08

7

3

Figure 4.5: All occupied sites (black) on the lattice point to a representative. The site
pointing to itself is the root of the cluster. The site shown in light gray is the one which
is about to become occupied, as shown in Fig. 4.7. The labels on the sites are just to
uniquely identify them in other figures.

4

1 2 5

33

Figure 4.6: The tree-like structure of the largest cluster in Fig. 4.5.

The algorithm is a dynamically updated form of the HOSHEN-KOPELMAN algo-
rithm (Hoshen and Kopelman, 1976). The same technique has recently been used to
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simulate percolation efficiently for many different occupations densities (Newman
and Ziff, 2000). The method described in the following differs from (Newman and
Ziff, 2000), by not only growing clusters, but also removing them. While one of the
main advantages of the original HOSHEN-KOPELMAN algorithm is its strong reduc-
tion of memory requirements to O(Ld−1), the algorithm described here only makes
use of the data representation proposed by HOSHEN and KOPELMAN, so that the
memory requirements are still O(Ld).

In the following the technique, how to create and to update the clusters, is de-
scribed in detail.

Starting from an empty lattice, the first site becomes occupied by setting the state
variable. Since this site cannot be member of a larger cluster, its representative is the
site itself. Therefore the mass variable must be set to one. The same pattern applies
to all other sites which get occupied, as long as they are isolated. The procedure
becomes more involved, when a site induces a merging of clusters. This is the case
whenever one or more neighbours of the newly occupied site are already occupied.
In general the procedure is then as follows:

• Find the root of all neighbouring clusters.

• Reject all roots, which appear more than once in order to avoid double count-
ing.

• Identify the largest neighbouring cluster.

• Increase the mass variable of the root of this cluster by the mass of all remain-
ing clusters (ignoring those which have been rejected above) plus one (for the
newly occupied site).

• Bend the representative pointers of the roots of all remaining clusters to point
to the root of the largest cluster (keeps the tree height small, see below).

• Bend the representative pointers of the newly occupied site to point to the root
of the largest cluster.

This procedure is depicted in Fig. 4.7, illustrating the join of the clusters shown
in Fig. 4.5. As an optimisation, one could also bend the pointer of site 6 to point to
site 3, which would effectively be a form of path compression. However, as shown
below, the trees generated have only logarithmic height, so that the path compression
possibly costs more CPU time than it saves for system sizes reachable with current
computers3. It is important to note that only the root of the largest cluster is not
redirected.

3Similarly for other forms of path compression, for example bending the pointer of the preceeding
to the adjacent site in find_root (Fig. 4.8).
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totically independent of t, as a non-vanishing limt→∞ ∂t〈z(x, t)〉 with homogenous
BC’s would require support for a divergent curvature of the interface, see Fig. 6.2.
Choosing ∆h ≡ ∆tv constant for different system sizes L then preserves the prop-
erty 〈s〉 ∝ L.

Due to the asymptotic uniqueness of the solution the system can either be driven
in jumps of ∆h separated by sufficiently long times, or driven very slowly taking
“snapshots” of the configuration in order to calculate s.

6.1.3.3 Timescales in the qEW

The model possesses two characteristic microscopic timescales: One is the diffusive
timescale t0 ≡ L2/D, the other one is the non-trivial scale due to noise and drive, tg ≡
g2/(v3L). One has to maintain a sufficiently large ∆t to prevent distinct avalanches
from merging, otherwise the central limit theorem would probably turn P(s) into a
Gaussian. The SOC limit is usually identified with v → 0, which makes sense only
in the presence of an intrinsic scale for v.3 The only combination of parameters (D, g
and L, but λ = 0) which provides a “natural velocity” is vg ≡ (g2D)1/3/L. The SOC
condition v → 0 is therefore already met by v � vg ∝ L−1, which is however, not
sufficient. According to Ref. (Paczuski and Boettcher, 1996) ∆t � Lz with z ≈ 1.42,
so that ∆h = const. entails v � L−z , which therefore seems to be the correct condition
for SOC, even though the microscopic time step in (Paczuski and Boettcher, 1996) is
defined as a parallel update, which is not exactly (6.4).

6.1.4 Relation between cutoff and roughness exponent

The relation between the cutoff exponent D and roughness exponent χ of the qEW Open

problemequation advocated as
D = 1 + χ (6.22)

in (Paczuski and Boettcher, 1996) has actually not been derived exactly. However,
at least on a handwaving level it is extremely convincing: Fig. 6.3 shows two con-
secutive configurations of h(x, t), denoted as h(x, t1) and h(x, t2). The hatched area
between these configurations is the avalanche size (see also (Paczuski et al., 1996,
Fig. 3), (Bak, 1996, Fig. 29, p. 133) and Fig. 8.4, page 334); the cutoff size of these areas
is determined by the cutoff length of the vertical fluctuations times the length. The
former is expected to scale like Lχ, leading to a cutoff scaling like L1+χ. Clearly this
applies only if the two configurations are correlated. Without correlations between
the interfaces, their vertical distance is fully characterised by ∆h only.

3The reason is that v → 0 means that v, which is dimensionful, needs to be sufficiently small —
compared to what? If no scale is given, then a trivial redefinition of the unit of velocity will make it
arbitrarily small. In fact, an expression like v → 0 is meaningless; what is really needed is v/v0 → 0.
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using the same notation as in (6.4). In the original discrete model, condition (6.18)
follows immediately from η(x, h) + h being a monotonically increasing function in h
for any x. For the continuum equation (6.9) the corresponding calculation gives

λg∂hη(x, h) ≥ −D (6.19)

assuming that d2

dx2 η = ∂2
xη + ∂xh∂x∂hη + ∂xh∂h∂xη + ∂2

xh∂hη + (∂xh)
2∂2

hη and that
the interface is smooth in x0 such that ∂xh1(x0, t) = ∂xh2(x0, t) and ∂2

xh1(x0, t) >

∂2
xh2(x0, t). For a noise with divergent width, ∆‖(x) = δ(x), Eq. (6.19) cannot hold

for any λ 6= 0, i.e. a non-vanishing λ destroys no-passing. However, no-passing
must be regarded as a crucial feature, as it ensures the asymptotic uniqueness of
the configuration and is reminiscent of the irrelevance of the order of updates in
the original model (i.e. to be Abelian, see Sec. 5.3.3.1, page 235), so that λ = 0 is a
necessary condition for the equivalence of the continuum and discrete model.

This is physically justified: Assuming a smooth η, in the continuum approxima-
tion of Eq. (6.4) λ becomes proportional to the square of the lattice spacing and there-
fore vanishes in the continuum limit.

Keeping the λ term nevertheless, a naïve scaling analysis shows that it is irrel-
evant. Moreover, its FOURIER transform in Eq. (6.14) produces only a term −gλk2

n,
because of the total derivative in ηλ. This can be absorbed into the bare propagator
of a perturbative expansion in the style of (Nattermann et al., 1992; Leschhorn et al.,
1997) in the form

2g(1 − λk2
n)

L(Dk2
n + iω)

, (6.20)

leading possibly to an ultraviolet divergence. Apart from that, the terms obtained
for an renormalisation group treatment are structurally the same as in (Leschhorn
et al., 1997) as calculations show [see sec. 6.2, but also (Narayan, 2000)]. The only
differences are due to the peculiar way of driving the interface (i.e. the term 2v(x),
which is a mean velocity in (6.11), but also drives the model by moving the quenched
noise in (6.14)) and the non-conservative nature of the interface (which makes sense
only for a finite system) leading to the homogenous BC’s and therefore to the sin(knx)

rather than exp(2iknx) terms. In turn, the standard qEW problem (Nattermann et al.,
1992) corresponds to an Oslo model with periodic BC’s and continuous, uniform
drive, see Sec. 6.3, page 273.

The definition of the avalanche size s in the continuum is the area between the
interface configurations at two times t1 and t2,

s =

∫ L

0
dx(h(x, t2) − h(x, t1)) (6.21)

so that 〈s〉 = v∆tL with ∆t ≡ t2 − t1, because 〈z(x, t)〉 is expected to be asymp-
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Figure 4.7: The configuration in Fig. 4.5 after occupying the highlighted site. Sites, the
pointer of which have been changed, are shown in dark gray (site 6, 7 and 9).

/* Find the root of the cluster identified by start_index.
* All sites are expected to have a pointer to their
* representative in the array pointer_of. The result
* is stored in index. */

index = start_index
WHILE ( index != pointer_of[index] ) {

index=pointer_of[index]; }

Figure 4.8: The find_root algorithm. All sites are expected to have a pointer to their
representative in the array pointer_of. The result of this procedure is index.

To find the root of a given site, which is necessary, whenever clusters are consid-
ered for merging, an algorithm like the one shown in Fig. 4.8 needs O(hm(M(C)))

time (worst case), where hm(M(C)) is the maximum height of a cluster containing
M(C) sites, C being the cluster under consideration.

All clusters are constructed by merging clusters, which might often involve sin-
gle sites. These clusters are represented as trees, like the one shown in Fig. 4.6. In the
following this representation is used. By construction, if at least two trees join, the
resulting tree has either the height of the tree representing the largest cluster or the
height of any of the smaller trees plus one — whatever is larger. Thus, by construc-
tion,

hm(M) ≥ hm(M ′) for any M ≥M ′ , (4.25)

so in order to find the maximum height of a tree of mass M , one has to consider the
worst case when the smaller trees have maximum height. For a given, fixed M , this
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is the case when only two cluster merge, so

hm(M) ≤ max
(

max
M ′≤bM

2
c
(hm(M −M ′)), max

M ′≤bM
2
c
(1 + hm(M ′))

)
, (4.26)

where bM
2 c denotes the integer part of M/2 ≥ 0, which is is the maximum size of the

smaller cluster. The outer max picks the maximum of the two max running over all
allowed sizes of the smaller cluster. Using (4.25),

hm(M) ≤ max(hm(M − 1), 1 + hm(bM
2
c)) (4.27)

so that

hm(M) ≤





1 + hm(bM
2 c) for 1 + hm(bM

2 c) ≥ hm(M − 1)

hm(M − 1) otherwise

(4.28)

With hm(1) = 1 one can see immediately that

hm(M) ≤ dlog2(M)e (4.29)

by induction, nothing that dlog2(M/2)e = dlog2(M)e− 1, where dae ≡ bac+1 for any
a ≥ 0. Hence

hm(M) ∈ O(log(M)) , (4.30)

which is therefore the (worst case) complexity of the algorithm. It is worthwhile
noting that all the algorithms considered are just one solution of the more general
union-find (and also insert) problem (Cormen et al., 1990).

As the tree constructed is directed, there is no simple way to find all sites which
are pointing to a given site. This means that splitting trees is extremely expensive in
terms of complexity. However, in the DS-FFM trees do not get removed individu-
ally, but always as complete clusters. Thus, no part of the tree structure needs to be
updated during the burning (see Sec. 4.2.3.4).

4.2.3.2 Reducing memory requirements

The three variables (state, pointer, size) mentioned above would require a huge
amount of memory: At least a bit for the state (but for convenience a byte), a word
for the address and a word for the mass (actually depending on the maximum size
of the clusters). However, as the pointers are only meaningful if the site is occupied,
the representative pointer can also be used to indicate the state of a site: If it is 0 (or
NULL if it is an address), the site is empty and occupied otherwise.

As mentioned above (Sec. 4.2.3.1), the mass variable is meaningful only at a root
site. Since only a certain range of pointers is meaningful, the remaining range can be
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is the same as the statistics of η(x, h + f(x)) with arbitrary function f(x),

〈
η(x, h)η(x′, h′)

〉
=
〈
η(x, h+ f(x))η(x′, h′ + f(x′))

〉
(6.16)

which for f(x) = αx corresponds to tilting the interface, which can of course neither
be seen by the Laplacian nor by ∂t in Eq. (6.9).

6.1.3.1 The noise correlator

One can make use of this invariance also in a slightly different sense: According
to Eq. (6.11), the tilt of h(x, t) in x increases in time. Assuming stationarity of the
relevant statistical properties (especially avalanches as defined below), this requires
the solution to be invariant under tilt, which is also known as Galilean invariance
(Meakin, 1998): h′ = h + αx must produce the same statistics as h, which entails
η(x, a+ αx) to be equally likely as η(x, a), so that

〈
η(x, a+ αx)η(x′, a′ + αx′

〉
=
〈
η(x, a)η(x′, a′)

〉
. (6.17)

But assuming the standard form (Nattermann et al., 1992) 〈η(x, a)η(x′, a′)〉 = ∆‖(x−
x′)∆⊥(a−a′), the correlator obeys for any x−x′ where ∆‖(x−x′) is finite, ∆⊥(a−a′) =

∆⊥(a−a′+α(x−x′)). This holds for any α, so if ∆‖(x−x′) was finite for any x−x′ 6= 0,
∆⊥ would be bound to be a constant. This is impossible, because ∆⊥ must be non-
vanishing somewhere and normalisable, so that ∆‖(x−x′) must vanish for any finite
x− x′, i.e. it must be a δ-function.

6.1.3.2 No-passing

Next it can be shown that the Oslo model obeys MIDDLETON’s no-passing (Middle-
ton, 1992). For λ 6= 0 this will lead to a constraint on the noise which is incompatible
with the δ correlation of ∆‖ in the continuum, so that λ must vanish in the contin-
uum. Defining a partial ordering � for two configurations h1(t1, x) and h2(t2, x) of
the interfaces as h1(t1, x) � h2(t2, x) ⇔ ∀x∈[0,L]h1(t1, x) ≥ h2(t2, x), one has to show
that this order is preserved under the dynamics (Sethna et al., 1993). With the “exter-
nal field” being the BC’s E1(t) and E2(t), one shows that if h1(t0, x) � h2(t0, x) for
a given t0 (which entails E1(t0) ≥ E2(t0)) the interfaces can never “overtake” each
other at t ≥ t0. By assuming the opposite, one only needs to prove that where the
two interfaces “touch” for the first time, x0, the velocity of h1 is higher or equal to the
velocity of h2. For the model on the lattice (6.4), this is equivalent to

h+
1 + η+

1 + h−1 + η−1 ≥ h+
2 + η+

2 + h−2 + η−2 (6.18)
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xz
(x

,t
)

Figure 6.2: Cartoon of an elastic band (thick line) fixed at its two ends (black circles),
while the rough background is moving with a velocity linearly increasing from right to
left like a cutting disk rotating around x = L, as indicated by the arrows.

in order to homogenise the BC’s. After the data shift z(x, t) describes an interface
fixed on its two boundaries, sliding over a surface which moves with velocity 2v(x)t.
Because v(x) is linear in x and v(x = L) = 0, the movement corresponds to that of a
rough disk rotating around x = L, see Fig. 6.2.

P3(x) in (6.11) is a third order polynomial only present to cancel the first term in
the differential equation, i.e. D∂2

xP3 = 2v(x), with roots at x = 0 and x = L. Therefore

∂tz = D∂2
xz + gηλ(x, h(x, t)) (6.12)

with homogenous BC’s. The term ηλ(x, h(x, t))) ≡ (1 +λ d2

dx2 )η(x, h(x, t)) is actually a
functional of h. The initial condition of z(x, t) is not z(x, t = 0) ≡ 0 as for h, because
of the data shift above. But due to the homogenous BC’s any initial condition decays,
so that the initial sources, accounting for z(x, t = 0) = −P3(x), can be ignored. Then
the formal solution is

z(x, t) =

∞∑

n=1

zn(t) sin(knx) (6.13)

with

zn(t) =
2g

L

∫ t

0
dt′
∫ L

0
dx′ηλ(x′, 2v(x′)t′ + z(x′, t)) sin(knx

′) exp(−k2
nD(t− t′)) (6.14)

and kn = πn
L (see also Chapter 9).

In Eq. (6.14) η should, according to (6.11), be

ηλ(x′, 2v(x′)t+ P3(x
′) + z(x′, t)) , (6.15)

but P3 can be ignored. The reason is that we assume the statistics of the interface to
be invariant under a tilt of the substrate. Even more general, the statistics of η(x, h)

4.2. METHOD AND MODEL 

bN

M

Figure 4.9: The memory layout when using addresses as pointers to representative. The
hatched area is used for valid addresses, what remains left can be used to represent
cluster masses, i.e. if the value of an address points into the white area, the value is
interpreted as a mass.

used to indicate the mass of a cluster. Assuming that indeces can only be positive,
negative numbers as the value of the pointer can be interpreted as self references and
their modulus as total mass of the cluster. The concept is restricted to system sizes
which are small enough that the space not occupied by meaningful pointers is large
enough to store the mass information. How large is the maximum representable
system size (not to be confused with memory requirements, which is N times word
size)? For a word size of b = 4 byte, i.e. M = 28b representable values in a word,
the maximum system size is N = 231 − 1, namely −1 · · · − N values for indicating
masses, 1 . . . N for indeces and 0 for the empty site, summing up to 2N + 1 ≤ M ,
which is overruled by the memory required bN ≤ M , as M is (usually) the maximal
addressable memory for a single process.

When using addresses as pointers, it is less obvious how to identify the range of
meaningless pointers which could be used to store the mass information. In order to
distinguish quickly whether a given value is an address or a mass, the most obvious
way is to use higher bits in the pointers. What is the range of meaningless addresses?
The addresses are words, occupying bN bytes. If each byte is individually address-
able (as usual), their value differs by at b, i.e. they span a range of bN different values.
As shown in Fig. 4.9, the largest remaining continuous chunk of values, not used for
references to representatives, has therefore at least size d(M − bN)/2e = (M − bN)/2,
assuming that the pointer values used, which is also the range of addresses where
they are stored, spans a continuous range. If the N + 1 different cluster masses are
to be represented as pointer values pointing into the meaningless region, one has
1+N ≤ (M − bN)/2, i.e. (b+2)N +2 ≤M . If they do not have to be continuous, the
condition is relaxed: 1 +N ≤ M − bN . Alternatively one can make use of the lower
bits: If the pointers point to words in a continuous chunk of memory or at least are
all aligned in the same way, then all pointers are identical (mod b), i.e. all pointers
p obey p = c (mod b) where 0 ≤ c < b is a constant. Since b > 1 one can use p 6= c

(mod b) to indicate that a given pointer value is to be interpreted as mass, which can
easily be calculated via a bit-shift.
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void *start_pointer, *root, *content;
/* start_pointer is the address of the site, the root
* of which is to be found. root will always point to
* the site currently under consideration, while content
* is always the address root is pointing to.
* The macro IS_SIZE verifies, whether the value given
* is a size. */

/* Initialise: Assume that start_pointer is the root and
* read its content. */
for (content=*((void **)(root=start_pointer));

/* Test whether root’s content is actually a size */
(!IS_SIZE(content));

/* Iterate: content is not a size, so the next candidate
* is what root is currently pointing to.
* content is updated accordingly*/

content=*((void **)(root=content)));

Figure 4.10: An implementation of find_root in C using pointers to void.

In C it is reasonable to represent the sites as void * and interprete these as point-
ers to other sites, i.e. void **, so that the loop to search for a root just becomes the
code shown in Fig. 4.10.

Representing each site by a word instead of a byte or even a bit (Honecker, 1997),
still leads to reasonably small memory requirements for typical system sizes (for in-
stance a system of size N = 4096 × 4096 would require 64MB). Since the algorithm
has an almost random memory access pattern, it is not reasonable to implement it
out of core (Dowd and Severance, 1998). In order to simulate even larger sizes, the
following representation has been implemented: At the beginning of the simulation
the entire lattice is splitted in cells so that whatever site in such a cell is occupied, it
must belong to the same cluster as any other occupied site in the same cell, i.e. each
site in the cell is nearest neighbour of all other sites. On an hyper-cubic lattice these
cells have size 2, as depicted in Fig. 4.11: Each site within such a cell must belong
to the same cluster if it is occupied. Therefore only one pointer is necessary to refer
to its representative. On a triangular lattice these cells would have size 3. Since a
pointer can be non-null, although not all sites in the cell are occupied, a new variable
must represent the state of the sites in each cell, if not lower or higher order bits of
the pointers can be used (see above). On the hyper-cubic lattice the memory require-
ment is therefore for each pair of sites 2 bit for the state and 1 word for the address
or index of the representative. Storing the 2 bits in a byte (and keeping the remaining
6 bits unused), the memory requirements are therefore reduced to (b + 1)N/2 bytes.
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or the generalised form

∂th(x, t) = D∂2
xh(x, t) + g

(
1 + λ

d2

dx2

)
η(x, h(x, t)) , (6.9)

where the correlator of η is now normalised, i.e.
∫
dx
∫
dh〈ηη〉 = 1, describes the

movement of an elastic band over a rough surface (Dong et al., 1993) pulled by a
transverse force acting at one end point only. Below it is shown that the λ-term disap-
pears in the continuum, establishing the first rigorous identification of the Oslo model
and the qEW equation. The same equation with different properties of the noise term
and/or different BC’s applies to other models, such as the BTW model [Sec. 1.3.1,
page 40, (Bak et al., 1987)], Fixed Energy Sandpiles [for example (Vespignani et al.,
2000)] or the tilted sandpile [Sec. 5.2.2.2, page 222, (Malthe-Sørenssen, 1999)]. Hav-
ing identified the relevant dynamical variable h, the effect of modifications of the
dynamical rules of the Oslo model, such as (Zhang, 1997; Bengrine et al., 1999a,b),
can be understood.

The equation above exemplifies a general “trick”2 to get rid of θ-functions in equa-
tions of motion — they often appear in descriptions of sandpile-like systems [for
example (Díaz-Guilera, 1992)]: One simply replaces θ(h − hc) by h + η(h) with an
appropriately chosen sawtooth-like η. This does not necessarily simplify the prob-
lem, unless there is already a quenched noise present in the system. In this case the θ
turns into a correlation in η. This is highly remarkable from the point of view of SOC,
because the presence of “thresholds” is usually expected to be a crucial ingredient
of SOC (Bak et al., 1987; Cafiero et al., 1995; Jensen, 1998). Moreover, the correlations
in η, which are of fundamental significance in interface models (Nattermann et al.,
1992; Leschhorn et al., 1997) and have been neglected in former mappings, now arise
naturally from the dynamical description of the model.

6.1.3 Continuum theory

In order to construct the proper continuum theory, it is worthwhile to consider the
formal solution of Eq. (6.9). It will turn out later that E(t) = vt is sufficiently general,
so that it makes sense to define

v(x) ≡ v
L− x

L
(6.10)

and
h(x, t) = 2v(x)t+ P3(x) + z(x, t) (6.11)

2The substitution was already used earlier (see (Alava, 2002) and references therein).
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to 2 with probability q (see Fig. 6.1). It is immediately clear that any even number of
charges, say m = 2n, starting from zi = 1 leads to state 1 again with n topplings. An
odd number of charges, say m = 2n + 1, leads either to n topplings and state 2 or
n + 1 topplings and state 0. This is illustrated in Fig. 6.1: The m charges lead to m
steps along the arrows. Whenever one moves left, the site topples.

In order to write a functional relation between h(x, t) andH(x, t), the randomness
in the decision of moving to the left or to the right from state 1 must be quenched in
h(x, t), i.e. it is not allowed to change unless h(x, t) changes. This can be summarised
as

H(x, t+ 1) =
1

2
(h(x, t) + η(x, h(x, t))) , (6.3)

where η is 0 whenever h(x, t) is even, corresponding to state 1. If h(x, t) is odd, η is
either 1 (with probability p, state zi = 0) or −1 (zi = 2). Every sequence of η(x, h)
values maps uniquely to a sequence of zc

i and vice versa, see Sec. 6.1.5. The equation
above can easily be transformed to comply to any initial configuration, especially to
zi(t = 0) ≡ 0. Essentially, it is (6.3), which makes the exact identification of the Oslo
model and qEW possible.

The final equation is derived by noting that obviously h(x, t) = H(x−1, t)+H(x+

1, t) with appropriately chosen boundary conditions (BC’s) (see below), so that using
the short hand notation h± = h(x±1, t) and η± = η(x±1, h±) the equation of motion
is

h(x, t+ 1) − h(x, t) =
1

2

(
h−− 2h(x, t) + h+ + η++ η−

)
, (6.4)

which is the exact representation of the Oslo model as defined above, captured in a
single equation. Its differential form is accordingly

∂th(x, t) =
1

2
∂2

xh(x, t) +

(
1 +

1

2

d2

dx2

)
η(x, h(x, t)) . (6.5)

The right hand BC is
h(x = L+ 1, t) ≡ 0 (6.6)

(and h(x = L, t) ≡ 0 in the continuum), while the left hand BC provides the driving
via

h(x = 0, t) = 2E(t) , (6.7)

E(t) being the total number of initial seeds (step 1 above) at time t. These seeds arrive
at site x = 1 via the Laplacian (see Sec. 6.1.5). In the continuum, the simplest drive is

E(t) = vt (6.8)

with v a driving velocity and t the microscopic time. Together with the BC’s, Eq. (6.5)
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Figure 4.11: If occupied, each site within a dashed box belongs to the same cluster. On
a triangular lattice the dashed patches would be triangular, each one containing three
sites. The thick dashed line shows the orientation of the boundary between two consec-
utive slices in the parallelised code, see Sec. 4.2.5.

Using indices the maximum representable system size is given by 3/2N + 1 ≤ M

and using pointers with a size identification as shown in Fig. 4.9 the constraint is
1 +N ≤ (M − bN

2 )/2 in worst case.

4.2.3.3 Efficient histogram superposition

So far, only the maintenance of the cluster structure has been described. Since the
masses of all clusters involved are known, it is simple to maintain a histogram of the
cluster mass distribution: If a cluster of size s is burnt, the corresponding entry in
Pa

t (s) is decreased by one. If a cluster changes size, P a
t (s) is updated accordingly.

For example, when two clusters of size s1 and s2 merge as a particular site is newly
occupied during the growing procedure, P a

t (s1) and Pa
t (s2) are decreased by one and

Pa
t (s1 + s2 + 1) is increased by one.

Naïvely, the average cluster size distribution is the average of P a
t (s), i.e.

1

T

t∑

t′=1

Pa
t′(s) (4.31)

with T as the number of iterations. Depending on the resolution of the histogram,
it would be very time consuming to calculate this sum for each s. Using exponen-
tial binning (which is in fact a form of hashing) in order to reduce the size of the
histogram solves the problem only partly.

Ignoring any hashing, a naïve superposition, where each slot in the histogram
needs to be read, has complexity O(TH), where H is the largest cluster mass in the
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histogram.
This problem is solved by noting that early changes in the histogram propagate

though the entire sequence of histograms. Denoting the initial histogram as P a
0(s)

and ∆Pa
t (s) = Pa

t−1(s) −Pa
t (s) then

Pa
t (s) = Pa

0 (s) +
t∑

t′=1

∆Pa
t′(s) (4.32)

and therefore
T∑

t=1

Pa
t (s) = TPa

0(s) +
T∑

t′=1

(T − t′ + 1)∆Pa
t′(s) . (4.33)

By using this identity only the right hand side of (4.33) is maintained by increasing it
by T − t+ 1 when a new cluster is created at time t and by decreasing it by the same
amount when it is destroyed. In this way, the complexity is only of order O(T (θ−1 +

1)), according to the number of clusters created and destroyed, i.e. the number of
changes in the distribution. This concept becomes only problematic, if floating point
numbers are used to store the histogram and the accuracy is so small that changes in
the sum by 1 do not change the result anymore.4 The maximum value in Pa

t (s), where
this does not happen, is given by the largest m with m+1 6= m where m is a variable
of the same type as Pa

t (s). For floating point number, the value of m is related to the
constant DBL_EPSILON (or FLT_EPSILON for single precision), which essentially
characterises the length of the mantissa. The concrete value ofm is actually platform,
precision and type dependent. For an unsigned integer of size 4, this value would be
(232 − 1) − 1, corresponding to ULONG_MAX− 1, for double precision IEEE75 floating
point numbers this value is FLT_RADIX**DBL_MANT_DIG− 1, i.e. 253 − 1.

Provided that the right hand side of (4.33) is below the threshold m discussed
above for all s, this means that only a single histogram needs to be maintained. It is
initialised with TPa

0(s) and updated with ±(T − t+ 1) at time step t, when a cluster
of size s appears or disappears. It is worth mentioning that this concept obviously
even works in conjunction with binning (or any other hashing).

4.2.3.4 Implementation of the burning procedure

The burning procedure was implemented in the obvious way, without making use
of the tree structure, as shown in Fig. 4.12. Although the burning procedure could
also be implemented explicitly recursively, it is of course significantly faster when
implemented iteratively. The usage of a stack in the procedure might be thought of
as reminiscent of the underlying recursive structure.

4For integers the precision is not a problem, but the maximum representable number easily becomes
a problem.

6.1. TOWARDS A FIELD THEORY 

zi = 0 zi = 1 zi = 2
1 q

1 (topples)p (topples)

Figure 6.1: Each site can be in one of three states and changes stepwise between them,
whenever it receives a charge. The labels indicate the probability of the move and
whether it entails a toppling.

effects, twice the number of times the second rule is applied between two consecu-
tive application of the first rule. For convenience the model is dissipative on both
boundaries, where one of the two “units” lost by the boundary site during toppling
leaves the system.

6.1.2 Equation of motion for the proper dynamical variable

A few years ago PACZUSKI and BOETTCHER translated the Oslo model into the lan-
guage of interfaces in random media (Paczuski and Boettcher, 1996). However, the
evolution of the dynamical variable H(x, t), which is the total number of topplings
of site x, was given by ∂tH = θ(∂2

xH − η(x,H)), where ∂t is defined in discrete time,
i.e. ∂tH ≡ H(x, t + 1) − H(x, t) and ∂2

x is the lattice Laplacian, so that x is actu-
ally an index. The last term, η(x,H), represents a quenched noise. The HEAVISIDE

θ-function makes this equation of motion highly nonlinear and analytically almost in-
tractable (Díaz-Guilera, 1992). PACZUSKI and BOETTCHER have already conjectured
that the Oslo model is in the same universality class as qEW (Nattermann et al., 1992).
More recently, MIKKO ALAVA has suggested that certain other sandpile models are
described by the qEW (Alava, 2002). It is, however, important to realize that no rig-
orous and exact link has so far been established between SOC models and the qEW
equation.

The crucial step to make this correspondence exact is to identify the proper dy-
namical variable. It is found in form of the number of times a site has been charged
(i.e. received a unit from a neighbour during a toppling or by external drive, see be-
low) h(x, t), where x and t are discrete for the time being. There is a simple functional
relation between h(x, t) and H(x, t), which can be obtained as follows: Each site can
be in one of three stable configurations, zi ∈ 0, 1, 2. When a site receives a unit from a
neighbour, it changes state as shown in Fig. 6.1. Charging a site in state 0 necessarily
leads to state 1 without toppling and the specific value of zc

i is completely irrelevant
at this stage. Similar for state 2: If a site receives a charge in this state, its z c

i must be 2

and it must topple. The only point where the value of zc
i actually matters, is in state

1, therefore it can be effectively chosen at random when necessary, so that the site
topples with probability p (according to the probability of having zc

i = 1) or increases
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right. The model as defined below supposedly develops into a scale free state with-
out the explicit tuning of external parameters, and is therefore regarded as an exam-
ple of Self-Organised Criticality (SOC) (Jensen, 1998). In fact, contrary to many other
“standard” models of SOC (Datta et al., 2000; Dorn et al., 2001; Lise and Paczuski,
2001a; Pruessner and Jensen, 2002a), it shows a reliable and consistent (simple) scal-
ing behaviour and is robust against certain changes in the details of the dynamics
(Zhang, 1997; Bengrine et al., 1999a,b). The most prominent observable in the model,
the avalanche size s, is governed by a probability distribution P(s) which obeys sim-
ple scaling (Sec. 2.3, page 78),

P(s) = s−τG(s/s0) and s0 = LD, (6.1)

where L denotes the system size and τ and D are critical exponents, consistently
reported to be τ = 1.55(10) and D = 2.25(10) (Christensen et al., 1996; Paczuski
and Boettcher, 1996; Zhang, 1997; Bengrine et al., 1999a; Corral and Paczuski, 1999;
Bengrine et al., 1999b). These two exponents are related by (Christensen et al., 1996;
Paczuski and Boettcher, 1996)

D(2 − τ) = 1 , (6.2)

which can be proven easily given that the first moment of P(s), 〈s〉, scales like L.

In the following the model is defined again explicitly, the relevant dynamical vari-
able extracted and its equation of motion derived, which turns out to be a discretised
quenched EDWARDS-WILKINSON (qEW)1 equation. By analysing the essential char-
acteristics of the model on the lattice, such as uniqueness of the solution and symme-
tries, it is then possible to construct the continuum theory, which can subsequently
be examined using standard methods.

The model (Christensen et al., 1996) is defined on a one-dimensional grid of size
L, where each site i = 1 · · ·L has slope zi and critical slope zc

i ∈ {1, 2}. Starting from
an initial configuration with zi = 0 and zc

i random everywhere, the model evolves
according to the following update rules: 1) (Driving) Increase z1 by one. 2) (Toppling)
If there is an i with zi > zc

i decrease zi by 2 and increase its nearest neighbours by
one, zi±1 → zi±1 + 1, provided that 1 ≤ i ± 1 ≤ L. A new zc

i is chosen at random,
1 with probability p and 2 with probability q ≡ 1 − p. 3) Repeat the second step
until zi ≤ zc

i everywhere. Then proceed with the first step. The order of updates is
irrelevant in this model and the original definition does not fix it explicitly. Therefore
the microscopic (fast) timescale is a priori undefined.

The avalanche size s is defined as the number of charges, i.e. apart from boundary

1Sometimes the quenched EDWARDS-WILKINSON equation is called the “BRUINSMA-AEPPLI-
KOPLIK-LEVINE” equation, after the four authors who first considered it (Bruinsma and Aeppli, 1984;
Koplik and Levine, 1985).

4.2. METHOD AND MODEL 

/* Initialise current_stack. */
CLEAR current_stack;
/* Put initial site on current_stack. */
PUT rn ON current_stack;
/* Sites are cleared right after they have entered the cur-
rent_stack. */
rn = empty;
/* The first loop runs until there is nothing left to
* burn, i.e. next_stack was not filled during the inner loop. */

DO {
/* Clear next_stack so that it can get filled in the next loop. */
CLEAR next_stack;
/* The next loop runs as long as there are sites left to burn
* in the current generation of the fire. */
WHILE current_stack not empty {

/* GET: remove the upmost element from current_stack and
* put it in x */

GET x FROM current_stack;
/* Visit all neighbours */
FOR all neighbours n of x {

if (n occupied) {
/* Put occupied sites on the current_stack of the
* next generation of the fire */

PUT n ON next_stack;
n = empty

}
}

}
/* The next current_stack to be considered is next_stack. */

current_stack = next_stack;

} WHILE current_stack is not empty

Figure 4.12: The burning procedure starting at rn. In an actual implementation the
copying of next_stack to current_stack can easily be omitted by repeating the
code above with current_stack and next_stack interchanged, similar to a red-
black approach (Dowd and Severance, 1998).

The number of times the outer loop in Fig. 4.12 runs, defines the generation of
the fire front and gives TM; other properties of the burnt cluster can be extracted
accordingly. The most important resource required by this procedure are the stacks:
One for the currently burning sites and one for the sites to be burnt in the next step.
There is no upper limit known for the number of simultaneously burning sites, apart
from the naïve N/2 on a hyper-cubic lattice, which comes from the observation that
sites, which belong to the same generation of the fire, must reside on the same sub-
lattice (even or odd).

On the other hand it is also trivial to find the maximal number of sites which
burn at the same time, if the fire starts in a completely dense forest, i.e. in a lattice
with ρ = 1. Obviously the size of the tth generation is then given by 4(t − 1) for
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1 2 3 4 5 6

2 3 4 5 6 7

3 4 11 10 9 8

4 5 10 9 8 9

5 6 9 8 9 10

6 7 8 9 10 11

Figure 4.13: The burning order for a 6 × 6 patch of sites, where seven sites are not
occupied and form a barrier, such that some sites behind it burn later, together with
the fire front propagating away from the starting point of the fire at the lower left hand
corner. The sites belonging to the largest set of trees burning at the same time are shown
in light gray, unoccupied sites are shown in white, occupied sites in black. The numbers
indicate the generation of the fire, which is one plus the Manhattan distance from the
starting point of the fire along occupied sites.

t > 1 and 1 at the beginning, t = 1. Since the sum of these numbers is the number
of sites which is reachable within a certain time t, the sum is also an upper limit for
the number of simultaneously burning sites. Indeed, the actual number can easily be
larger than 4(t− 1), caused by arrangements of wholes in the lattice, which delay the
fire spreading at certain sites, so that they burn together with a larger fire front. Such
a construction is shown in Fig. 4.13.

Of course it is neither reasonable, nor practically possible to provide enough
memory for the theoretical worst case, i.e. two stacks each of size N/2. Indeed the
typical memory requirements seem to be of order O(

√
θ−1), as shown in Tab. 4.1,

where fmax denotes the largest fire front observed during the simulation. Providing
stacks only of size 4L turned out to be a failsafe, yet pragmatic solution. Formally one
could implement a slow out-of-core algorithm in the rare yet possible case the mem-
ory for the stack is insufficient, i.e. use hard-disk space to maintain it. In fact, this is
what de facto happens if one uses a stack of size N/2 on a virtual memory system.

4.2.3.5 Complexity of the algorithm

The overall complexity of the algorithm has two contributions: The “growing” part,
where new clusters are generated from existing ones and the “burning” part. The

Chapter 6

The Oslo Model and the Quenched
EDWARDS-WILKINSON Equation

Having identified the Oslo model as a “true model of SOC” in the previous chapter,
it is highly desirable to find an analytical framework which puts the model on a firm
theoretical footing. In this chapter the Oslo model is identified as a discrete reali-
sation of the quenched EDWARDS-WILKINSON equation (Nattermann et al., 1992).
This is made possible by choosing the correct dynamical variable and identifying
its equation of motion. It establishes for the first time an exact link between SOC
models and the field of interface growth with quenched disorder. This connection
is obviously very encouraging as it suggests that established theoretical techniques
can be brought to bear with full strength on some of the hitherto elusive problems of
SOC.

6.1 Towards a Field Theory

In this section it will be shown which dynamical variable in the Oslo model obeys
the quenched EDWARDS-WILKINSON (qEW) equation and how to derive it. Remark-
ably, the equation of motion will operate on the microscopic timescale, i.e. the qEW
equation is just one possible realisation of the Oslo model. Other dynamics are permit-
ted as well. This stresses once more the ambiguity of the dynamical exponent, see
Sec. 6.1.3.3.

6.1.1 Introduction

The Oslo rice pile model (Oslo model hereafter) as discussed in Chapter 5 was origi-
nally intended to model the relaxation processes in real rice piles (Frette et al., 1996).
Meanwhile, it has been subject to many investigations and publications in its own


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while fermionic operators should anti-commute. However, fermionisation of spin
operators is a standard problem (Mahan, 1990, pp. 46–53); most prominently, in the
ISING model the JORDAN-WIGNER transform has been used for this purpose (Wan-
nier, 1987, pp. 356–365).

5.4 Outlook and Summary

Having discussed the Oslo model and its various variants, this model seems to be
the most promising route towards an analytical understanding of SOC. The Oslo
model shows all universal features expected from equilibrium statistical mechanics,
especially a universal finite-size scaling function, which only depends on boundary
conditions, but not on local properties such as next nearest neighbour interaction.

5.4.1 Summary

Here is a summary of the sections in this chapter;

• The model is defined in Sec. 5.1, first in its original form and then with sim-
plified boundaries. Various properties can be derived exactly in the stationary
state.

• It is most encouraging that the Oslo model can be changed quite dramatically
in its microscopic rules without changing the critical, presumably universal fea-
tures. The variants are described in Sec. 5.2. Numerical results are listed and
briefly discussed in Sec. 5.2.3.

• As shown in Sec. 5.3, an operator approach can be developed for the Oslo
model. This seems to be a promising, but not yet complete path to an exact
solution. As shown in Chapter 6, an exact solution of the Oslo model amounts
to an exact solution of the quenched EDWARDS-WILKINSON equation.

• In particular, standard techniques from one-dimensional stochastic processes,
such as a matrix product ansatz (Derrida and Evans, 1997) might be suitable for
the Oslo model. The MANNA model can be treated similarly, see Sec. 5.3.4.1. An
operator algebra similar to the one discussed above will be used in Chapter 8
to solve the “totally asymmetric Oslo model”.

In the next chapter, a field theoretic approach is introduced (essentially by iden-
tifying the correct dynamical variable) so that an exact equation of motion can be
written down. This equation can be explored in various ways, especially by studying
the periodic Oslo model (which is an AS model), Sec. 6.3, page 273, and models with
anisotropy, which will be discussed in Chapter 7.

4.2. METHOD AND MODEL 

System L θ−1 ζ fmax

ap3000,2 8000 4000 1.51
ap3000,2 8000 8000 1.52

ap3000,4 16000 4000 1.34
ap3000,4 16000 8000 1.48
ap3000,4 16000 16000 1.37
ap3000,4 16000 32000 1.41

cluster,10 32000 4000 2.71
cluster,10 32000 64000 3.81

cluster,100 32000 32000 1.76

single1 1000 500 1.41 216
single1 2000 1000 1.41 326
single1 4000 125 1.42 106
single1 4000 250 1.47 172
single1 4000 500 1.48 255
single1 4000 1000 1.53 317
single1 4000 2000 1.50 518
single1 4000 4000 1.57 646
single1 4000 8000 1.48 907
single1 4000 16000 1.45 1327

single2 8000 4000 2.11 687
single2 8000 8000 2.11 912
single2 8000 16000 2.09 1415

Table 4.1: Performance data for different parameters and setups. “ap3000,2” denotes a
parallel run on two nodes on an AP3000, accordingly “ap3000,4”. “cluster,10” denotes a
cluster of 25 Intel machines, connected via an old 10 MBit network, “cluster,100” denotes
the same cluster on a 100 MBit network. “single1” and “single2” denote two different
types of single nodes. The largest fire front, fmax, was only measured on these systems.
The quantity ζ is the ratio of the average time (real time on the parallel systems in or-
der to include communication overhead, user time on single nodes) for one successful
update during statistics, i.e. when all data structures need to be maintained, and equili-
bration (transient) i.e. when the standard representation is used.

time needed for the burning part is proportional to the number of sites burnt and
therefore expected as O(〈s〉) [see (4.1) and (4.7)] and O(N) in the worst case. Since
ρ̃ in (4.7) is bound, the complexity of “burning” is O(θ−1) (expected). The complex-
ity of “growing” is estimated by the average number of sites newly occupied, θ−1,
times the worst-case complexity (4.30) to find the root of any given site, because up
to four roots need to be found at each tree growing. According to (4.30) the worst
case complexity to find the root of any given site is O(log(N)), leading to an over-
all complexity for “growing” of O(log(N)θ−1) ⊃ O(θ−1). In practice the logarithmic
correction is negligible, especially since log(N) is an extreme overestimate of the av-
erage case and therefore essentially the same runtime-behaviour is expected for both
procedures (Newman and Ziff, 2001).

Implementations like the one in (Honecker, 1997) avoid this logarithmic factor
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by counting only the burnt cluster and therefore arrive at an overall complexity of
O(θ−1).

The algorithm presented has therefore only a negligibly higher computational
complexity compared to implementations which measure only P b. This is corrobo-
rated by the comparison of the CPU time per burnt cluster during equilibration, i.e.
the transient, when the cluster structure do not need to be maintained and the algo-
rithm used is the standard implementation, to the CPU time per burnt cluster during
statistics, i.e. when observables are actually measured and especially P a is produced.
This ratio is shown as ζ in Tab. 4.1 and Tab. 4.2. It varies only slightly with L or θ−1.

Apparently the algorithm presented offers more statistics, however it suffers from
one limitation: It requires about (b+1)N/2 bytes memory (see Sec. 4.2.3.2), compared
to N/8 bytes in bitwise implementations like (Honecker, 1997), i.e. typically a factor
20 more. In order to ascertain whether this disadvantage is acceptable with respect
to the statistical gain, one has to determine the standard deviations of the calculated
quantities for both implementations.

4.2.4 Calculating the standard deviation

In order to compare the two algorithm rigorously, it is necessary to estimate the stan-
dard deviation of the estimators for n̄(s) produced by them (Müller-Krumbhaar and
Binder, 1973; Landau and Binder, 2000):

σ2
Pb(s) =

2τPb +1

T−1

(〈
Pb

t (s)2
〉
−
〈
Pb

t (s)
〉2)

σ2
Pa(s) = 2τPa +1

T−1

(〈
Pa

t (s)2
〉
−
〈
Pa

t (s)
〉2)

(4.34)

Here τPb and τPa are the correlation times of the two quantities. Calculating the
correlation time in the standard fashion by recording the history P a

t (s) and Pb
t (s)

for each s would mean to store millions of floating point numbers. Therefore it was
decided to restrict these calculations to just a small yet representative set of s values.
The result shows that the standard deviation does not fluctuate strongly in s.

Because of the special form of Pb
t (s) ∈ 0, 1, its variance is particularly simple,

〈
Pb

t (s)2
〉

=
〈
Pb

t (s)
〉

(4.35)

so that
σ2
Pb(s) =

2τPb + 1

T − 1

〈
Pb

t (s)
〉(

1 −
〈
Pb

t (s)
〉)

. (4.36)

The correlation time of Pb
t (s) is expected to be extremely small, not only on physi-

cal grounds — an cluster can only burn down once — but also because of the extreme
dilution of Pb

t (s), as it was described in Sec. 4.2.2.1. For fixed s, most of the P b
t (s) are

5.3. OPERATOR APPROACH 

charged24,

O
2
L,i = W = pO2

L,i−1 + (1 − p− q)OL,i−1OL,i+1 + qO2
L,i+1 . (5.66)

For p+ q = 1 this simplifies to a process, where any site, if charged, is charged twice.
If (5.66) is expanded25 for p + q = 1, it will produce infinitely many terms finally
terminating in either OL,0 or OL,L+1 and each one carrying a certain probability. All
these probabilities will necessarily add up to 1, i.e.

O
2
L,i = 1

⊗L for p+ q = 1 . (5.67)

Getting back to the general case of p + q 6= 1 or just (5.55), what makes the ana-
lytical treatment of the MANNA model a bit inconvenient is the fact that, in contrast
to the Oslo model, its recursive definition in general produces infinitely many terms.
This is because there are ballistic terms (O2

L,i) in (5.57) which do not necessarily trans-
port anything closer to the boundary and therefore make the expansion necessarily
terminate after a finite number of terms. To illustrate that, one can “follow the dou-
ble charges” discussed above, i.e. when doing the expansion of (5.57) one follows
only the “branch” which produces double charges in an appropriate direction. For
example, expanding initially OL,1 = qO2

L,2CL,1 and further charges as

O
2
L,2 → pO2

L,1 (5.68a)

O
2
L,1 → qO2

L,2 (5.68b)

does not lead to a finite expansion. Instead one obtains

OL,1 → qpqpq . . .O2
L,2 . (5.69)

Therefore, even the exact stationary state of a system of size L = 2 is not as simple to
calculate as for the Oslo model.

One interesting way to explore the MANNA model is to make the spin-operators Open

issueC†
L,i and CL,i fermionic. In the current form, (5.58c) is the correct fermionic anti-

commutation relation for a single site. However, on different sites the operators com-
mute, see Eq. (5.58b). Moreover,

[
CL,i, CL,j

]
− = 0 (5.70a)

[
C†

L,i, C
†
L,j

]
− = 0 , (5.70b)

24Of course, if the neighbours topple, they might change the state of the site initially charged twice,
but the change is not directly due to the initial charging.

25“Expansion” here refers to the same procedure as discussed in sec. 5.3.2.1.
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boundary condition is the original one of the Oslo model, “jamming”22 is expected
on the right hand side and avalanches run “forever”. 23

The effect of double charging can be directly derived from (5.57) using the com-
mutators

[
OL,i,OL,j

]
− = 0 (5.58a)

[
C†

L,i, CL,j

]
− = δi,j1

⊗i−1 ⊗Q⊗ 1
⊗L−i (5.58b)

[
C†

L,i, CL,i

]
+

= 1
⊗L . (5.58c)

with

Q =

(
1 0

0 −1

)
. (5.59)

Moreover, similar to Eq. (5.50)

(
C†

L,i

)2
= 0 (5.60a)

(
CL,i

)2
= 0 (5.60b)

and
CL,iC

†
L,iCL,i = CL,i . (5.61)

Then one has
O

2
L,i = C†

L,iWCL,i +WCL,iC
†
L,i +WCL,iWCL,i (5.62)

where
W = pO2

L,i−1 + (1 − p− q)OL,i−1OL,i+1 + qO2
L,i+1 , (5.63)

so that O
2
L,iCL,i = WCL,i using (5.61). Moreover OL,iC

†
L,i = WCL,iC

†
L,i and therefore

O
2
L,iC

†
L,i = WOL,iCL,iC

†
L,i = WC†

L,iCL,iC
†
L,i (5.64)

noting that
[
OL,i,W

]
− = 0 because of (5.58a). Thus

O
2
L,i(C

†
L,iCL,i + CL,iC

†
L,i) = WC†

L,iCL,i +WCL,iC
†
L,i , (5.65)

which gives with (5.58c) and (5.63) the desired result, namely that charging site i
twice is like charging the neighbours appropriately but leaving site i externally un-

22Thanks to KIM CHRISTENSEN and MATTHEW STAPLETON for pointing that out. One might ask, in
what sense this is still SOC, if any net-drift leads to non-critical behaviour.

23All exponents cited in this paragraph are preliminary and require additional analytical and numer-
ical backup. Especially the calculation of higher moments of the lifetime of a random walker between
two absorbing walls should be accessible by rigorous methods, at least in the continuum.

4.2. METHOD AND MODEL 

0. In contrast, the Pa
t (s) are expected to have a large correlation time, because “only”

θ−1 + 1 entries are changed between two subsequent histograms.

The correlation function is calculated in the symmetric way as proposed in (An-
derson, 1964), here for an arbritrary quantity At:

φAA
t′ =

〈AtAt+t′〉T−t′ − 〈At〉T−t′〈At+t′〉T−t′

〈A2
t 〉T − 〈At〉2T

(4.37)

where 〈〉T−t′ denotes the average taken over time t from t = 1 to t = T − t′. The
quantity φAA

t′ was fitted to exp(−t/τA) in order to find the correlation time τA. The
results are given in Tab. 4.2.

As described in (4.6) and (4.8), the two estimators for n̄(s) differ slightly. How-
ever, except for n̄(s) only constant values appear on the RHS of (4.6) and (4.8), so
that the relative errors of 〈Pb

t (s)〉T and 〈Pa
t (s)〉T are also the relative errors of the es-

timators for n̄(s) derived from them. These relative errors are shown in Tab. 4.2 as
well. Their ratio is given as α and is an indicator for the advantage of the algorithm
proposed. If the relative error is to be improved by a factor q, one needs to invest q2

CPU-time, i.e. if the algorithm proposed in this chapter costs a factor ζ more CPU-
time, and the gain in the relative error α, the total gain is α2/ζ . The values for this
quantity are also given in Tab. 4.2.

According to the table, for fixed θ relative errors and the correlation times are
only weakly affected by an increase in system size. At first sight, this is counter-
intuitive, as the number of passes (Henley, 1993; Honecker and Peschel, 1997), the
mean number of times a site has been visited between two lightnings, decreases in-
versely proportional to the total number of sites in the system: 1/(θρ̄L2), see Sec. 4.3.4.
Assuming that this number is essentially responsible for the error, suggests to keep
the number of passes constant among different L. However, this is apparently not
the case, possibly because of self-averaging (Ferrenberg et al., 1991) effects.

The table also shows various tendencies, which are worth mentioning. First of
all, the total gain becomes smaller for larger avalanche size s. The B in front of some
of the values indicates that a bin around the s value was investigated, i.e. the time
series of ∑

s′∈B
Pa,b(s′) (4.38)

was considered, where B is a set of (consecutive) s values, representing the bin. For
larger values of s, these sets get exponentially larger, which is necessary for a reason-
ably large number of events as basis for the estimators. The general tendency that
the proposed algorithm is even more efficient at small s is not surprising: P b sam-
ples from sn̄(s), while Pa samples only from n̄(s), i.e. Pb “sees” larger cluster more
often. Nevertheless P a still is advantageous by roughly a factor 5. The empty entries in
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L θ−1 ζ s τb(s) τa(s)� σ2
Pb(s)

〈Pb
t (s)〉

√
σ2
Pa(s)

〈Pa
t (s)〉 α α2/ζ

4000 4000 1.57 10 − − 0.0138∗ − − −
100 0.170 23.6 0.0637 0.00099 64.3 2633.4

B 103 0.028 14.2 0.0450 0.00191 23.6 354.8
B 104 0.006 10.0 0.0412 0.00470 8.8 49.3
B 105 − 7.2 0.0662∗ 0.02104 3.1 6.1

4000 16000 1.45 10 0.013 39.9 0.0141 0.00056 25.4 444.9
100 0.126 28.8 0.0608 0.00127 48.0 1589.0

B 103 0.006 4.7 0.0457 0.00175 26.1 469.0
B 104 0.013 2.9 0.0512 0.00332 15.4 163.6
B 105 − 2.2 0.0433 0.00795 5.4 20.1

8000 1000 − 10 0.131 − 0.0154 − − −
100 0.122 284.6 0.0602 0.00158 38.1 −

B 103 0.028 236.5 0.0399 0.00337 11.8 −
B 104 0.016 163.5 0.0397 0.00878 4.5 −

8000 4000 2.11 10 0.122 78.2 0.0154 0.00052 29.8 420.9
100 0.132 16.4 0.0634 0.00087 72.9 2518.7

B 103 0.022 8.2 0.0438 0.00147 29.7 418.1
B 104 0.005 5.5 0.0442 0.00241 18.3 158.7
B 105 − 4.2 0.0409∗ 0.01006 4.1 8.0

B 2 · 105 − 3.8† 0.0635∗ 0.02055 3.1 4.6

8000 16000 2.09 10 − 262.5 0.0139∗ 0.00068 20.5 201.1
100 0.131 56.1 0.0629 0.00087 72.0 2480.4

B 103 0.014 19.0 0.0467 0.00115 40.6 788.7
B 104 0.009 11.1 0.0503 0.00296 17.0 138.3
B 105 0.006 8.3 0.0411 0.00689 6.0 17.2

B 2 · 105 − 7.5 0.0423∗ 0.00947 4.5 9.7
B 5 · 105 − 7.0† 1.1106∗ 0.33331 3.3 5.2

Table 4.2: Correlation times τb and τa of the corresponding observables Pb and Pa as
a function of s and for different parameters L, θ−1. Values of s marked by “B” are
results for bins around the s value indicated. For each set of parameters, the quantity ζ
is given. It denotes the ratio between the average CPU-time for one successful update
during equilibration (transient) and during statistics, see also Tab. 4.1. The two fractions

� σ2

Pb(s)

〈Pb
t (s)〉 ,

√
σ2
Pa (s)

〈Pa
t(s)〉 , their ratio α and α2/ζ are derived. ∗ marks cases, wheres τb(s) = 0

has been assumed. † marks values of τa(s), which have been extrapolated from τa(s) for
smaller s.

Tab. 4.2 are due to numerical inaccuracies or simply missing simulations for certain
parameters. Some entries are estimated and marked as such.

There is an additional correlation not mentioned so far: The individual points
in the estimator of the distribution P a are not independent. There are “horizontal
correlations”, i.e. Pa(s) is correlated for different values of s. These are additional
correlations due to clusters of small sizes, which are likely to grow and propagate
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p = q) is in the same universality class as the Oslo model, the expected phase diagram
is shown in Fig. 5.14. Obviously, for p = q = 1/4 Eq. (5.55) is recovered.

1
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1
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1

p

1
4

1
2 1q

convection/diffusionOslo

M

BTW

TAOM

Figure 5.14: Conjectured phase diagram of the MANNA model with simplified boundary
conditions — what is shown needs additional numerical and analytical backup, but is
very reasonable. The crosshatched area is not expected to be scale-invariant. The BTW
model (open circle) is recovered for p = q = 0, the Abelian form of the original MANNA
model if recovered at p = q = 1/4 (black square). The whole (dotted) line p = q should
belong to the Oslo universality class, unless for p = q = 1/2 (black circle) which is
purely diffusive. For p+ q = 1 (dashed line) but p 6= q the slope units propagate in pairs
with a net drift (convection), so that for q > p trivial exponents should be obtained (see
text). For p+ q = 1 and q < p, i.e. where the dashed line touches the crosshatched area,
no scaling behaviour is expected. The TAOM (see Chapter 7, page 281)is recovered for
all q > p and p+ q < 1.

Any even number of charges and especially a double charge leaves the state of
the site unchanged. In fact, if p + q = 1 in (5.57), then there is only one double-
charge propagating through the system (see below) and the configuration does not
change between two non-vanishing avalanches. The distribution of avalanche sizes
then corresponds to the distribution of live-times of a random walker between two
absorbing walls. For p 6= q there is a net drift, which represents a cutoff, that is either Open

issuesa constant (drift pointing towards left boundary) or proportional to L (drift pointing
to right boundary). In the former case, the scaling is characterised by the position
of the initial kick, which is a constant. The latter case produces avalanche moments
〈sn〉 ∝ Ln and therefore D = 1 and τ = 1. Only for p = q = 1/2 there is no “simple
cutoff” and one recovers the return-time distribution of a random walker (Redner,
2001), i.e. τ = 3/2 and D = 2, the latter from the time it takes a random walker to
span the system. The universality class of the TAOM (see Chapter 7) with τ = 4/3

and D = 3/2 is expected for the whole region q > p, unless p + q = 1. If the right



 CHAPTER 5. THE OSLO MODEL AND ITS VARIANTS

5.3.4.1 MANNA algebra

The Abelian MANNA model20 provides an alternative path to understand sandpile-
like models algebraically. However, the more attractive algebraic properties come
together with infinitely many terms, as the MANNA model has a finite probabil-
ity to continue to topple at each update. The model has already been introduced
in Sec. 5.2.2.3, page 223, and its expression in terms of operators is straight for-
ward; most of the results derived for the Oslo model above extend quite easily to the
MANNA model. Since there are only two possible stable states per site the matrices
can be understood as flipping a spin. Denoting creation and annihilation operators21

by

C =

(
0 1

0 0

)
(5.54a)

C† =

(
0 0

1 0

)
, (5.54b)

one can express the MANNA model operator by

OL,i = C†
L,i +

1

4
(OL,i−1 + OL,i+1)

2CL,i (5.55)

with appropriate boundary conditions

OL,0 = OL,L+1 = 1
⊗L (5.56)

and C(†)
L,i = 1

⊗i−1C(†)
1
⊗L−i. Of course, 1 is now a 2×2 matrix. The Abelian nature of

the MANNA model follows from the same proof as in sec. 5.3.3.1, just that there are
four different nodes now: One leaf node C †

L,i and three different internal, branching
nodes, depending on which two operators branch off, see Eq. (5.57).

In Eq. (5.55) it has been assumed that there is equal probability for each toppling
particle to get redistributed to either side; while this simplifies the expression com-
pared to

OL,i = C†
L,i+(pO2

L,i−1+(1−p−q)OL,i−1OL,i+1+qO2
L,i+1)CL,i where 0 ≤ p+q ≤ 1

(5.57)
the latter is much more flexible and could also incorporate the one-dimensional BTW
model by choosing p = q = 0 and appropriate driving. In fact, with the simplified
boundary conditions (5.56) and accepting the conjecture that the MANNA model (for

20Thanks to MATTHEW STAPLETON for pointing out that his model, which turned out to be a “gener-
alised MANNA model”, has critical properties very similar to those found in the Oslo model.

21Thanks to ALVIN CHUA for pointing out this elegant analogy.
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through s in Pa
t (s) for consecutive time steps, i.e.

〈
Pa

t (s)Pa
t′(s

′)
〉
− 〈Pa

t (s)〉
〈
Pa

t′(s
′)
〉

. (4.39)

This correlation is at least partly captured by the correlations measured for the binned
data. It is to be distinguished from the correlations of independent realisations, where
correlations are expected in the cluster size distribution also, i.e.

〈
Pa

t (s)Pa
t (s′)

〉
− 〈Pa

t (s)〉
〈
Pa

t (s′)
〉

. (4.40)

This must be taken into account as soon as estimates of n̄(s) for different s are
compared, as it is done when an exponent is calculated by fitting. This effect is also
present for Pb, which is, however, diluted so enormously that it influences the out-
come only in an insignificant way.

The horizontal correlations could be estimated using a Jackknife scheme (Efron,
1982), similar to that used to calculate the error bar of the exponent from the time
evolution of a quenched ISING model (Pruessner et al., 2001). While it is certainly
essential for the careful estimation of the error bar of an exponent, it is irrelevant for
the discussion in this chapter, as it is quantitatively based only on local comparisons
of error bars (overlaps), while its global properties, i.e. shape and collapse with other
histograms estimated, is not concerned with errors bars. Some authors even seem to
dismiss the relevance of these correlations completely (Newman and Ziff, 2001).

4.2.5 Parallelising the code

Constructing clusters and keeping track of clusters rather than of single sites seems
to be in contradiction to any attempt to run the algorithm distributed, that is splitting
the lattice into S slices (one-dimensional decomposition — as periodic boundaries
apply, the slices may better be called cylinders). Moreover, there is a general prob-
lem of parallelisation which becomes apparent in this context: The usual bottleneck
of parallel systems is the communication layer. In order to keep the communica-
tion between sub-lattices as low as possible, fast parallel code on a lattice requires
as few interaction between slices as possible, while the whole point of doing physics
on large lattices is the assumption of significant interaction between their parts. It
is this fundamental competition of requirement and basic assumption which makes
successful parallel code so rare and which seems to indicate that problems must have
very specific characteristics in order to be parallelisable in a reasonable way.

However, it is indeed possible to run the algorithm described above on parallel
machines successfully in the sense that it does not only make use of the larger amount
of (distributed) memory available, but also of the larger amount of computing capa-
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bilities. In fact, the code was successfully rewritten using MPI (Gropp et al., 1999) and
has been run on two systems with distributed memory: The massively parallel ma-
chine AP3000 at the Department of Computing at Imperial College and on a cluster
of workstations (25 nodes).

In the following the most important design characteristics are described which
proved important in order to make the code running reasonably fast. This concerns
mainly the statistics part, but the equilibration also needs some tricks.

MPI assures that packets sent from one node to another in a certain order are
received in exactly the same order — in the language of MPI this means that the
message ordering is preserved in each particular communicator. But, how different
communicators relate to each other, i.e. how one stream of packets relates to another
one is not specified. If, for instance, node A sends a packet to node B, and then to
node C, which then sends a packet to node B, this packet might arrive earlier at B
then the packet first send by A, see Fig. 4.14.

A B

C

1

2 3

Figure 4.14: Nodes A, B and C send messages in the order indicated. However, it
might well happen that the message sent last by node C to node B, namely message
3, arrives at that node before message 1, sent before message 2 was sent, which arrived
before message 3 was sent.

However, it is one of the main goals of parallelisation, to avoid any kind of syn-
chronisation, which is extremely expensive. Even in a master-slave design, as it was
chosen here, one encourages communication between the slaves, whenever they can
anticipate what to do next or can indicate each other what to do next.

As explained above (sec. 4.2.1) an update consists essentially of two steps: Grow-
ing and burning. Both processes now are distributed among the slices. The growing
procedure is realized by trying to grow θ−1/S trees in each slice. This is not an ex-
act representation of a growing procedure taking place on the entire lattice at once,
because the latter has a non-vanishing probability to grow all trees at one particu-
lar spot, while the parallelised version distributes them evenly among the different
slices. Provided that θ−1 is large compared to S, this effect can certainly be neglected.
The advantage of the procedure is that the growing procedure at each slice does not
need to be conducted by the master. The burning procedure is more complex, as the
fire starts at one particular site of the entire lattice, so that it must be selected by the
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possible outcomes are taken into account with appropriate probabilities. The result-
ing matrix can be diagonalised. DHAR has recently proven (Dhar, 2003) that, using
the original boundary conditions introduced in Sec. 5.1.1, page 205, a single kick of
the initial condition zi = 2∀i produces the stationary state. Knowing the stationary
state exactly would imply the knowledge of the roughness exponent in the interface
picture (Sec. 6.1.5, page 255).

It is therefore indeed more than an exercise in algebra to pursue this approach a Open

issuebit further. However, so far results have been very limited. For example, the attempt
to generalise the observation that

O2,1 = S2,1 + S2,2T2,1 + O2,1T2,2T2,1 (5.51)

entails
O2,1 = (S2,1 + S2,2T2,1) (1 − T2,2T2,1)

−1 (5.52)

to larger L failed. Moreover, it is numerically extremely convincing, yet remains un-
proven that the stationary state of OL,i is the same as the stationary state of OL,L+1−i Open

problem— it is not even clear yet which property of OL,i is exactly causing this. However, it
seems that it cannot be observed using the original boundary conditions.

One of the biggest problems lies in the fact that certain configurations are obvi-
ously not accessible by the (quasi-) dynamics (Chua and Christensen, 2002); even
though this is numerically a very convincing fact, which can be proven for L small
enough such that the operator OL,i can be calculated exactly, it could not yet be
proven for general L.

Probably the most promising paths are those using Density Matrix Renormali-
sation Group-style techniques (Peschel et al., 1999), which have been used already
successfully for one-dimensional stochastic models (Kaulke, 1999). The key idea is
to iteratively extend the operator OL,1 to larger system sizes, by devising a method
to extend OL,1 to OL+1,1. One way would be to write OL,1 in an expansion over the
number of grains spilled by the leftmost site,

OL,1 =

∞∑

j=0

ΩL,j (5.53)

which starts an iteration, if the dissipative identity at i = 0, OL,0 = 1
⊗L is replaced

by a site. However, it is not even clear yet how to formally expand OL,1, let alone,
how to derive the iteration prescription for {ΩL,j} → {ΩL+1,j}.

One way out might be to actually write down a time-evolution operator, which
operates on the microscopic timescale, rather than the operator OL,i which trig-
gers and relaxes the system completely and therefore operates on the macroscopic
timescale.
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number of charges at a given instant or so. Such an interdependence might
not be preserved under rearrangements of the trees. Note however, that this
condition is implicit in the first one.19

The last point is the reason, why the MANNA model is not Abelian in its original
definition; since an active (zi > zc) site i discharges down to zi = 0 whenever it is
updated, it is crucially important whether it is charged by another slope unit before
or after the relaxation.

5.3.4 Oslo algebra

After clearing up the issue that the operations in the Oslo model can be written in
any order, one can accept the expansion Eq. (5.42), which is repeated here together
with the commutators:

OL,i = SL,i + OL,i−1OL,i+1TL,i for 1 ≤ i ≤ L (5.49a)

where OL,0 = OL,L+1 = 1
⊗L

[
SL,i,SL,j

]
− = 0 (5.49b)

[
TL,i,TL,j

]
− = 0 (5.49c)

[
TL,i,SL,j

]
− = δi,jQL,i (5.49d)

From what has been shown in the preceeding section (sec. 5.3.3), this alone is enough
to show the irrelevance of ordering in the expansion of the operator and the Abelian
property.

However, the Oslo matrices have some other features as well. First of all

S
n
L,i = 0 for n > 2 (5.50a)

T
n
L,i = 0 for n > 2 (5.50b)

which means that a site cannot absorb more than two slope units and cannot topple
more then twice in a row.

For sufficiently small systems (L ≤ 7, possibly L ≤ 8), it is fairly straight for-
ward to derive OL,i directly and exactly, using a simple algorithm to expand it in the
form of Eq. (5.49). The idea is to start the procedure of kicking and toppling once
for each initial configuration and to calculate the (cumulated) probability to arrive
at a certain final configuration. Whenever a random number would be drawn in
a Monte-Carlo implementation, the current configuration goes on a stack and both

19It seems that all conditions can be summarised as: If a set of Markovian operators OL,i can be
written as a sum of products of non-locally commuting operators SL,i,TL,i, . . . , then the OL,i commute
themselves and the ordering scheme in the expansion is irrelevant.
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master. The exact procedure of the possibly following burning process depends on
the stage of the algorithm.

In the following the procedures are explained in terms of “sites” rather than
“cells”, as introduced in Sec. 4.2.3.2. Using cells instead of sites makes the code
slightly more complicated, but the changes are obvious. If the cells are oriented par-
allel to the borders of slices (see Fig. 4.11), so that its width is a multiple of 2 in case of
a hyper-cubic lattice, the algorithm runs considerably faster, as the communication
between the nodes is reduced by the same factor.

4.2.5.1 Equilibration

During the equilibration phase it is not necessary to keep track of all clusters. Nev-
ertheless there is some statistics, which is very cheap to gather: The distribution of
burnt clusters and the density of trees. The latter is very simple, as this number
changes in time only by the number of grown trees minus the number of burnt trees.
This is also a crosscheck for the overall statistics, as the tree density is equivalent to
the probability of a site to belong to any cluster (4.4).

The burning is implemented as follows: The master chooses a site from the entire
lattice and sends the corresponding slice (slave) the coordinate and (implicitly) an
identifier which uniquely identifies this request within this update step. The slice’s
response consists of the number of sites burnt (possibly 0), the identifier referring to
the initial request and possibly up to two further, new, unique identifiers. These iden-
tifiers refer to the two possible sub-requests to the right and left neighbouring slice
due to a spreading of the fire. If a slice contacts another slice, it does so by sending the
coordinates of sites, which are on fire in the sending patch, together with a unique
identifier. The slice contacted sends it result to the master, again together with the
identifier and possibly two new ones, corresponding to the possibly two contacted
neighbouring slices. In this way the master keeps track of “open (sub)requests”, i.e.
requests the master has been told about by receiving an answer containing informa-
tion about sub-requests, which have not been matched by receiving a corresponding
answer. The structure of requests forms a tree-like structure and if there are no open
requests, the master must have received all answers of the currently burning fire. It
is very important to make it impossible that by a delay of messages some answers
are not counted, as it would be, if the master would just count open requests, with-
out identifying them individually. It can easily happen that the master receives an
answers for a request, without having received the information about the very exis-
tence of the request. It is worth to mention that in this scheme the order of burnings
is irrelevant, if the burn-time is not measured, as it was done here.

Adding up the number of burnt sites gives the total size of the burnt cluster. This
number is finally sent to all slices. If it is nonzero, the step is considered as successful.
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After equilibration the cluster structure of pointers and roots as described above
(see Sec. 4.2.3.1), needs to be constructed. This is done in a naïve manner: Keeping
track of sites, which have already been visited, every site is visited once. The first site
visited in each cluster becomes root of all sites connected to it, which become marked
as visited. The procedure corresponds to the burning procedure described above (see
sec. 4.2.3.4).

Each slice maintains a local histogram P a, which contain all clusters, which do
not have a site on the border to another slice. Otherwise, they are maintained at
the master’s histogram, as discussed below. In this case the (local) root site of these
clusters are moved to the border. As periodic boundary conditions apply, the only
boundaries are those with other slices.

4.2.5.2 Collecting statistics

After finishing the equilibration phase another concept needs to be applied in order
to count the total cluster size distribution P a

t (s). At every update of the lattice each
slice must keep track of the clusters in the same way as it was described in section
sec. 4.2.3.1. Clusters, which do not contain a site at a border to another slice are
maintained locally, i.e. at each node as a local histogram. However, if a cluster contains
a site at a border, it might span several slices. As soon as a cluster acquires a site at
the border, it is removed from the local histogram and the site under consideration
becomes the root of the cluster. The algorithm ensures that a cluster with at least one
site on the border has its root at the border.

During all processes (growing or burning), the size of all clusters is updated as
usual, independent from the location of the root. If the status of a border site changes,
its new value or its change is put on a stack together with its coordinate. During the
growing procedure the following changes of the status are possible:

• New occupation: Change in occupation information for a site (cell); If this is the
only change, then it must have been already occupied (this is only possible, in
an implementation using cells). If this is not the case, the reference information
pointing to the root site of the given cluster, must be updated also, see next
point.

• Merging border clusters: Change of the reference information for a site (cell); This
can only happen if the site (cell) was (completely) unoccupied at the time of the
change or did contain a size information, i.e. it was itself a root.

• General merging of clusters: Change in size information for a site (cell); Only an
increase is possible, so that any change can be represented by a single number
indicating the size difference.
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the trees in OL,i are labelled after OL,j has been labelled. Picking now the root in
the tree of OL,i (formerly the second operation) and use it as a starting point for rear-
rangements based on the time order prescribed by the ΠL,k from OL,iOL,j , one can
reshape the two trees until the first one terminates. After that, one continues with the
root of the first tree (from OL,j).

The procedure applied to two trees within the same time ordering is very sim-
ilar to the procedure discussed above to identify corresponding terms in different
time orderings. Again, the procedure terminates after all nodes have been visited
exactly once and in the right order. Since both trees remain valid and both trees will
keep having root nodes at position i and j, even though the root nodes will possibly
be exchanged with subtrees during the course of the rearrangement, one arrives at
two valid trees, which must necessarily be contained in the set of terms produced by
OL,jOL,i. Thus

OL,iOL,j = OL,jOL,i (5.48)

which proves the Abelian property.

The reason why the procedure described in Sec. 5.3.3 works on any number of
trees is because it does not make use of the fact that the trees under consideration
are actually connected. The procedure rearranges the trees according to a prescribed
time ordering, while the roots remain operations on the same position i (swapping
subtrees cannot change the position label).

In fact, the above procedure can be used for many other models as well. The only
properties used in showing the Abelian property of the OL,i and the irrelevance of
the ordering scheme are

Operator representation: The updates of the model (OL,i) must be expressible as
products of operators (SL,i,TL,i,OL,i), so that one can actually represent them
as trees.

Commutator: Non-local operators commute (SL,i,TL,j for i 6= j), while local op-
erators acting on each other might not, see Eq. (5.40), so that the Πi,L can be
constructed.18

Sequential local updates: Multiple local charges must be equivalent to powers of
those operators (OL,i). This is needed to make sure that the charging of a site
can actually be written as a product of independent single charges, as has been
done above. No special operators are needed for multiple charges. Otherwise,
within a single term in the expansion of an operator, the subtrees might depend
on each other in order to act with the correct operator depending on the total

18Clearly, the commutator of OL,i is exactly to be found, so this operator is not relevant for this rule.
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(a) The dashed nodes get exchanged in the
next step

(b) The nodes are exchanged, rest of the la-
beling starts.

(c) Relabeling finished.

Figure 5.13: Starting from the original tree wearing original labels (Fig. 5.12(a)), a new
labelling is done by the procedure described in the text. From Fig. 5.13(a) to Fig. 5.13(b)
the tree actually changes. In the last step, labels are assigned to all remaining nodes
without making necessary any further rearrangement.
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For each border site changing at each slice, the corresponding information are
sent to the master. Typically the number of messages is not very large, because the
total number of sites updated during a single growing phase is limited by θ−1/S. The
expected number of these message is not given by the fraction of border sites in each
slice, because changes in all border clusters (i.e. clusters with at least one site in the
border) affect the border sites, as the root of each border cluster is a border site.

However, the data regarding the updates in the border do not need to be send
from the slaves to the master, if the burning attempt following the growing fails, i.e.
if an empty site has been selected for lightning. Of course it is much more efficient
not to send any data if not necessary. As there is only a finite number of sites in
each slice, the theoretical limit of updates of border sites is bound by this number.
However, it is sufficient to allocate a reasonable amount of memory (2L turned out
to be enough) for the stack of messages to be sent and check its limits, similar to the
stack used in the burning procedure described in Sec. 4.2.3.4. Henceforth the sending
of the update information of the border is called “sending the border”.

The master maintains a copy of the state of the border sites and updates a global
histogram of border clusters. By sending the changes on the border to the master as
described above, the master can update its copy of the configuration of the borders
as well as the global histogram. At the end of the simulation all histograms (S slaves
histograms plus the global histogram maintained by the master node) are summed
to produce the total Pa.

slice 0 slice 1 slice 2

B

A

D

C

L

Figure 4.15: The slices, three of which are shown here, maintain the references for all
clusters within each slice (illustrated by arrows), even for border clusters. The references
between slices, however, are maintained by the master. The variables A = 0, B=L-1,
C = I and D = I + L− 1 are the indices used for references within each slice.

As suggested in Fig. 4.15, the slices maintain the pointers within each slice and
these references are not changed by the master, which only connects between slices.
If a reference at the border changes at a slice, the master receives a message to apply
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the corresponding changes (joining two clusters), if the size of a cluster changes, the
master updates the corresponding unique root etc. These changes are indicated by
the slaves and the master only realises them in the copy of the border sites. Only
if a change in occupation occurs, the master must actually perform some non-trivial
operations, because a newly occupied site might introduce a new connection between
borders of different slices. From the point of view of the master, only borders belong-
ing to two different, neighbouring slices are directly connected and therefore to be
maintained by the master, while the connectivity of the borders within each slice is
indicated and maintained by the corresponding slave. Apart from that, the master
maintains the slice spanning structures in exactly the same way as the slaves, e.g. a
cluster having multiple roots among the various slices has a unique root at the master
etc.

The question arises how the master best keeps track of the changes of the borders.
Ideally, a change of reference of a site at the boundary is communicated to the master
simply by sending the new pointer value (index). By choosing a reasonable indexing
scheme, this is indeed possible. If the value of the reference is within 0 and L − 1,
where L is the width in terms of number of sites (or cells) (see Fig. 4.15), the reference
denotes a site in the left border within the same slice. Similarly, if the value of a ref-
erence is within I and I + L− 1, where I denotes the first index in the last column, a
reference with such a value is bound to point to the right border of the same slice. If
the master uses indexes of the range [L, I − 1] for denoting cross-references between
slices the references are therefore unambiguous and no translation is necessary be-
tween indeces used by the slices and indeces used by the master.

During the burning procedure the master can make use of its knowledge about
the borders. The site selected for starting the fire is most likely a bulk size, so that
the corresponding slave needs to be contacted for the occupation information. Three
outcomes are possible:

• The site is unoccupied. Nothing happens, all slices get signalled to continue
with growing.

• The site is occupied, but does not contain a border site. In this case the slice
contacted can send back the size of the burnt cluster (an information it knows
even without actually doing the burning as the size is stored in the root, which
needs to be found anyway in order to find out whether the cluster is a border
cluster) and the master can signal all other slices to send the border and to
continue. After receiving the borders it can update the histogram.5

5One might be inclined to postpone the sending of the borders to a time, when it is really
needed. However, after a successful burning the time t is increased and this enters the histogram (see
Sec. 4.2.3.3). Ignoring this change for a large number of steps would introduce uncontrollable deviations
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belling exists. Also, the tree changes only where not labelled yet by new labels. The
procedure terminates because there is only a finite number of nodes to be labelled.

Fig. 5.13 shows the procedure for rearranging Fig. 5.12(a) such that it produces
the same term as Fig. 5.12(b). In this example the ΠL,i are

ΠL,i−2 = S
(t=9)
L,i−2

ΠL,i−1 = T
(t=7)
L,i−1S

(t=6)
L,i−1

ΠL,i = S
(t=8)
L,i T

(t=4)
L,i T

(t=1)
L,i

ΠL,i+1 = S
(t=5)
L,i+1T

(t=2)
L,i+1

ΠL,i+2 = S
(t=3)
L,i+2

The time labels are now represented in the form [told, tnew].

Looking at Fig. 5.13(c), the resulting terms are correctly

ΠL,i−2 = S
[9,8]
L,i−2

ΠL,i−1 = T
[7,6]
L,i−1S

[6,2]
L,i−1

ΠL,i = S
[8,9]
L,i T

[4,4]
L,i T

[1,1]
L,i

ΠL,i+1 = S
[5,7]
L,i+1T

[2,3]
L,i+1

ΠL,i+2 = S
[3,5]
L,i+2

now ordered using the new ordering.

It is worth noting that the rearrangement of trees maintains causality, provided
that the new time labelling does so. This can be ensured by labelling the nodes se-
quentially, each at the time of its expansion.

Conclusively, each term obtained in one time-ordering can be obtained in any
other time ordering by explicitly rearranging the corresponding trees.

5.3.3.1 Abelian nature II

The procedure described above can also be used to produce the correct sequence of
operations from any two trees considered at the same time. The ΠL,i are constructed
from multiplying the resulting terms of both trees and contain terms from both in the
ordering prescribed by the time order.

The aim of the following is to prove the commutator OL,iOL,j = OL,jOL,i within
the same time ordering. We assume that the product OL,iOL,j is given and want to
show that every term in OL,iOL,j is also contained in OL,jOL,i.

The idea is that two trees are given, one representing a term from OL,i, the other
one representing a term from OL,j . When labelling the trees in the product OL,iOL,j ,
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To restate the problem again: If a particular order of updates leads to an expansion
of the operator which includes, for example, a term like Fig. 5.12(a), and another
order leads to an expansion including a term like Fig. 5.12(b), then these different
time ordering might lead to a different operator altogether. However, the claim is:
There is a one-to-one mapping between each term contained in an expansion of OL,i

obtained with different orderings.

The idea to prove that is to take the time-ordered tree produced by one ordering
scheme and rearrange it to obtain the time-ordered tree of another ordering, corre-
sponding to the same operation. The expansion of OL,i produces all possible binary
trees, independent of the ordering; i.e., since every tree is generated in every order-
ing16, this proves that every ordering contains the same set of terms.

So, now we show that every time-ordering produces the same set of terms as
every other time ordering, by taking the tree representing a certain term in one time-
ordering and rearrange it such that produces the same term in another time-ordering.
By keeping the tree complete (i.e. not splitting it) and by showing that all nodes are
visited, one then establishes that the new time-ordering can produce the same term
by a valid tree17.

The procedure to rearrange the tree works as follows: Starting from the root,
which is certainly the first occurrence of TL,i (or SL,i in a trivial case), nodes of a
given tree in a given, say “original”, time-order are visited and labelled in the new
time-order, one after the other. The procedure stops, as soon as the tree is completely
labelled by new time-labels. During the entire procedure the tree remains valid but
gets rearranged. This rearrangements takes place in regions only, where no new time
labels have been assigned yet.

To facilitate the procedure, the term resulting from the original time ordering is
represented in from of those ΠL,i mentioned above, with the original time labels still
attached. The idea is that all nodes from position i are visited by the new time-ordering in
the order prescribed by ΠL,i.

If a node XL,i gets visited in the new time ordering, which does not correspond to
the prescription, in original time-label or value, then the subtree currently dangling
on that node is swapped with the entire subtree dangling on the node which is ac-
tually supposed to be visited. Since it has not been visited before, neither of these
subtrees can wear new labels. Repeating this procedure, one rearranges the tree until
it is entirely covered by new labels. It cannot happen that some nodes do not get
visited , because the tree remains valid and for every valid tree a complete new la-

16But of course, the same tree has different time-labels for different time-ordering schemes, as seen in
Fig. 5.12.

17In the following a tree is called “valid” if all leaves are of type SL,i and all internal nodes are of type
TL,i, each having two children (direct descendants) XL,i−1 and XL,i+1 where X can be either S or T.
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• The site is occupied and contains a border site. In this case the slice sends the
reference of the border site back to the master, which then contacts all slices to
send the most recent border update. It updates the border and the histogram,
deletes the cluster which is going to burn and sends the “burning borders”, i.e.
a list of all border sites which will be affected by the burning procedure to the
slices in form of a stack as described in Sec. 4.2.3.4. The slaves use this stack
as the initial stack of the burning procedure and delete the corresponding sites.
No communication between the slices is necessary.

The global histogram contains much larger clusters than the local histograms. In
order to keep memory requirements low, even for histograms of resolution unity, it
is reasonable to introduce a threshold, above which slaves use the global histogram
to maintain Pa even for local clusters (i.e. non border cluster). For that purpose a
histogram “appendix” has been introduced. This is a finite stack, which stores the
size of the cluster s together with the value of t′ = ±(T − t + 1) as described in
Sec. 4.2.3.3. During the growing phase when such large clusters grow quickly, one
would obtain a sequence of stack entries of the form (s, t′), (s,−t′), (s + 1, t′), (s +

1,−t′), (s + 2, t′), . . . , corresponding to entering the appendix, (s, t′), increasing in
size by 1, which gives (s,−t′), (s + 1, t′) etc. As soon as a cluster is larger then the
upper cutoff each update causes two entries, of the form (s,−t′), (s+1, t′), the first for
the deletion from the histogram, the second from the increase in the next slot. These
entries possibly cancel, for example the sequence above is equivalent to the single
entry (s + 2, t′). It turned out to be highly efficient to perform this cancellation, i.e.
to check the last entry in the appendix for being the negative entry of the one to be
done.

As the maximum size of the appendix is finite, it must be emptied from time to
time. The information about the size of the appendix of each slave is sent to the mas-
ter together with the information about the borders. If a possible overflow is detected
(2/3 of the maximum size in the implementation presented) the master requests all
slices to send the content of the appendices and applies it to the global histogram.
The slices then empty their appendices.

4.2.5.3 The random number generator

The random number generator (RNG) acquires a crucial role when used in a parallel
environment. With M the number of iterations, the expected number of calls of the
RNG isMθ−1/ρ (forM ≈ 107, θ−1 ≈ 5×104 this is more than 5×1011), so that an RNG
as ran1 in (Press et al., 1992) with a period of only ≈ 2× 109 is insufficient. Therefore
ran2 in (Press et al., 1992) was used for all simulations, both parallel and non-parallel,

of the estimator of the histogram from its true value.
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which has a period of > 2 × 1018. If the number of RNG calls is small enough, one
can compare results obtained by means of ran1 and ran2. No significant deviation
was found.

In the parallel implementation, each slave requires an independent sequence of
random numbers. This is a classical problem in parallel computing (Aluru et al., 1992;
Coddington, 1996). The simplest solution is to divide a single sequence r1, r2, . . .

into distinct subsequences. This can be done either by a leapfrog scheme (Cod-
dington, 1996; Entacher, 1999), where each subsequence consists of random num-
bers which are S calls away, i.e. S subsequences of the form ru, rS+u, r2S+u, . . . with
u = 1, 2, . . . , S unique at each slave, or by splitting the sequence (Coddington, 1996),
so that each subsequence consists of consecutive RNG calls, i.e. r1+uX , r2+uX , r3+uX

again with u = 1, 2, . . . , S and offset X large enough to avoid any overlap. The latter
scheme has the advantage that the sequence consists of consecutive RNG calls and
therefore has been used in the following. The implementation of the offset X at each
slave is easily realised by restoring all state variables of the RNG, which have been
produced once and for all in a single run producing all XS random numbers and
saving the state variables on a regular basis. However, such a technique is advisable
only if the RNG calls do not dominate the overall CPU time, in which case it would
take almost as long as the simulation itself to produce the random numbers required
for it.

4.3 Results

The sections above were only concerned with the technical issues of the model and
its implementation. Some of the actual results from the simulation carried out us-
ing the new algorithm have been published already (Pruessner and Jensen, 2002a).
This article was focused on n̄(s). The main outcome was that the standard scaling
assumption (4.12) is not supported by numerics, so the main conclusion was that the
model is not scale-invariant.

In the following these results are shortly restated and discussed. Other observ-
ables are connected with this observation to see, whether it is only n̄(s) which lacks
scale-invariance. All results presented are based on the same simulations, the param-
eters of which are given in Tab. 4.3 (page 185).

4.3.1 Cluster size distribution

Before the actual findings are discussed, it is important to consider how to avoid
finite size effects, which otherwise might damage the results. Usually, finite size
effects are avoided by keeping the correlation length ξ small compared to the system
size. However, it requires a significant amount of CPU-time to actually determine the
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(a) SL,i−2SL,iTL,i−1SL,i−1SL,i+1TL,iSL,i+2TL,i+1TL,i (b) SL,i+1SL,i−1SL,i+2TL,iSL,iSL,i−2TL,i+1TL,i−1TL,i

Figure 5.12: Two ways of labelling the same tree, leading to different terms. Fig. 5.12(a)
shows the labelling corresponding to (5.42), which is in fact a depth-first-search (Cormen
et al., 1990). Fig. 5.12(b) shows a parallel update.

ordering schemes for a very simple sequence of topplings, leading to the same oper-
ations performed at each site, but in different orders.

5.3.3 Rearranging trees

The crucial observation is that (5.40) indicates that a resulting term from every time-
ordered tree can be brought into the form

ΠL,0ΠL,1 . . .ΠL,LΠL,L+1 (5.47)

where each ΠL,i is a product of matrices SL,i and TL,i. For example Fig. 5.12(a) gives

SL,i−2︸ ︷︷ ︸
ΠL,i−2

TL,i−1SL,i−1︸ ︷︷ ︸
ΠL,i−1

SL,iTL,iTL,i︸ ︷︷ ︸
ΠL,i

SL,i+1TL,i+1︸ ︷︷ ︸
ΠL,i+1

SL,i+2︸ ︷︷ ︸
ΠL,i+2

while Fig. 5.12(b) gives

SL,i−2︸ ︷︷ ︸
ΠL,i−2

SL,i−1TL,i−1︸ ︷︷ ︸
ΠL,i−1

TL,iSL,iTL,i︸ ︷︷ ︸
ΠL,i

SL,i+1TL,i+1︸ ︷︷ ︸
ΠL,i−1

SL,i+2︸ ︷︷ ︸
ΠL,i+2

which is incompatible in the term ΠL,i. The latter is SL,iTL,iTL,i in Fig. 5.12(a) and
TL,iSL,iTL,i in Fig. 5.12(b).
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Figure 5.11: The first four terms in the expansion of OL,i following the prescription
(5.42). The equation below each figure shows the term corresponding to the figure.

(5.42) leading to

OL,i = S
(t=1)
L,i

+ S
(t=3)
L,i−1S

(t=2)
L,i+1T

(t=1)
L,i

+ S
(t=5)
L,i−1S

(t=4)
L,i S

(t=3)
L,i+2T

(t=2)
L,i+1T

(t=1)
L,i

+ S
(t=5)
L,i+2S

(t=4)
L,i T

(t=3)
L,i+1S

(t=2)
L,i−1T

(t=1)
L,i

+ . . .

(5.46)

For simplicity one defines SL,0 = SL,L+1 = 1
⊗L

. Clearly, the time labels must follow
causality: The sequence of time labels obtained while passing from the root to any
node is strictly monotonically increasing.

To illustrate the problem a bit further, Fig. 5.12 shows two examples of possible
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Figure 4.16: The rescaled and binned histogram Pa(s)
Pa(1) s

τ∗

, where τ∗ = 2.10 for θ−1 =

125, 250, 500, . . . , 32000, 64000 (as indicated) in a double logarithmic plot. The linear
size L is chosen according to the bold printed entries in Tab. 4.3 (page 185) and large
enough to ensure absence of finite size effects. The error bars are estimated from shorter
runs. The rightmost histogram (dotted, θ−1 = 64000) could not be cross-checked by
another run, see text. The dashed lines belong to different exponents, whose value is
specified as the sum of the slope in the diagram and τ ∗, i.e. a horizontal line would
correspond to an exponent 2.1. The shortly dashed lines represent estimated exponents
for different regions of the histogram (2.22 for s within approx. [20, 200] and 2.19 for s
within [200, 2000]), the other exponents are from literature, namely 2.14(3) in (Clar et al.,
1994, 1996) and 223/91 ≈ 2.45 in (Schenk et al., 2002). Since it was impossible to relate
these exponents to any property of the data, the exact position of the lines associated
with them was chosen arbitrarily.

correlation length. Moreover, a priori it would not be clear, which ratio ξ/L to choose
in order to avoid finite size effects.

4.3.2 Avoiding finite size effects

Throughout this chapter we initially performed 5 · 106 successful updates (as defined
in Sec. 4.2.2.1) as transient (and therefore rejected them) and the same number for
producing statistics, apart from runs for calculating error bars, where only 106 up-
dates has been used for statistics, see below. It is known that the transient can be
very long (Honecker and Peschel, 1997) (note that the time unit in (Honecker and
Peschel, 1997) is expressed in our units by multiplying it with θ−1/(ρL2)), but in all
cases presented the number of initial steps seemed to be more than sufficient. Nu-
merical checks indicate that the cluster size distribution is very stable against the size
of the transient, i.e. even a transient, which is presumably too short, still produces
reasonable results for n(s).
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Figure 4.17: Ratio r(s; θ, L1, L2) = n̄(s; θ, L1)/n̄(s; θ, L2) with θ−1 = 2000 for two pairs
L1, L2 with error bars (one standard deviation; the error bars as well as the data shown
are exponentially binned). The data are from short runs (106 updates for statistics).
Finite size effects have been considered negligible under the condition that (almost all)
error bars for this ratio have covered 1 (marked by a dashed line) in the relevant range.
a) L1 = 4000 and L2 = 8000: Almost no finite size effects, the deviation from 1 is
probably due to noise. Note the fine scale of the ordinate. b) L1 = 1000 and L2 = 8000:
Systematic, strong finite size effects for s

�

104 . The scale of the ordinate is five times
larger than in a). Data of this quality have been dismissed.

All systems have been initialised by a random independent distribution of trees
with density 0.41.

The standard deviation of the binned histogram is not completely trivial to cal-
culate. In particular, its computation requires a significant amount of CPU time, and
was therefore only calculated for the smaller system sizes (up to L = 8000) and in
shorter runs (only 106 updates for statistics, but 5 · 106 for transient). We resorted
to visual examination for the larger systems when comparing n̄(s; θ, L) for different
system sizes. Fig. 4.17a and b show the ratio of n̄(s; θ, L) for two different system
sizes. A deviation of this ratio from 1 indicates a difference in the statistics and there-
fore the presence of finite size effects. Fig. 4.17a shows a typical case we accepted
as reasonable agreement. Here L1 = 4000 and L2 = 8000 do not seem to differ for
θ−1 = 2000. Fig. 4.17b shows a case of finite size corrections we have dismissed (note
the different scales in the two graphs). It differs from Fig. 4.17a only by L1 = 1000.

Fig. 4.18 illustrates the strong agreement of n̄(s; θ) at the same value of θ for the
same two different sizes L as in Fig. 4.17a. The two sets of data are virtually indis-
tinguishable, but in this kind of plot it is also almost impossible to see a difference
between the data of L1 = 1000 and L2 = 8000, as shown in the inset of Fig. 4.18.
This is also the case with the rescaled data below, and the use of very large systems
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This, however, needs to be proven first.

5.3.2.1 Operators as trees

It is clear that the matrix OL,i must somehow be representable as the sum of products
of the “atomic” matrices SL,j and TL,j . One only needs to follow the original defini-
tion in sec. 5.1.1 to construct it. First, OL,i can either lead to no toppling, SL,i, or to a
toppling, charging the two neighbouring sites:

OL,i = SL,i + (. . . )TL,i (5.45)

where the brackets, (. . . ), include all terms of the subsequent charging of the neigh-
bouring site. It is important that (. . . ) is applied after TL,i has been applied (to the
state distribution), as (. . . ) happens only if TL,i gives a non-zero result. The opera-
tion of TL,i on some pure states leads to (0, 0, . . . , 0)T, if site i is in state 0, so that a
single charge cannot lead to a toppling.

The next step is to perform the “expansion” of (. . . ). This requires a decision
about the order of updates. The original definition leaves this choice open and one
aim of this section is to show, that the ordering scheme does not change the resulting
operator. It is important to distinguish that from the proof that OL,i is Abelian (5.25):
For the time being the aim is to show that the representation of OL,i does not change
if the ordering scheme of the updates is changed.

The problem is more than just the question whether to write the operator OL,i in
the form (5.42) or as (5.43). The central question is whether a specific choice for the
ordering of the operations changes the resulting operator. If that is true, then a choice
like (5.42) fixes the ordering in an important way. The Oslo model in its original form
would then be under-defined.

For further investigation, a tree representation of the expansion is introduced, see
Fig. 5.11. There are two types of nodes, internal (branching) nodes, which correspond
to TL,i and leaves, which correspond to SL,i. Each node has a label indicating the
operator and the time order in the form (t = 1, 2, . . . ). This time label indicates
the order of updates in the system and therefore the order in the expansion of the
operator. Fig. 5.11 shows the first four terms in the expansion of OL,i in the form
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the commutators

[
SL,i,SL,j

]
− = 0 (5.40a)

[
TL,i,TL,j

]
− = 0 (5.40b)

[
TL,i,SL,j

]
− = δi,jQL,i (5.40c)

with an additional matrix QL,i, which can easily be calculated explicitly, to beQL,i =

1
⊗i−1 ⊗Q⊗ 1

⊗L−i−1, where

Q =



p 0 0

0 q − p 0

0 0 −q


 (5.41)

If a site topples, it charges its neighbours, so that

OL,i = SL,i + OL,i−1OL,i+1TL,i (5.42)

where OL,0 = OL,L+1 = 1
⊗L implements the simplified boundary conditions. Re-

cently, DHAR has shown (Dhar, 2003) some very interesting properties of these ma-
trices using original boundary conditions, but in the following these differences are
insignificant.

Eq. (5.42) is the central definition of the operator. However, there is a fundamental
problem associated with this definition, which is often overlooked: The claim is that
it leads to a correct representation of the Oslo model. The problem is that Eq. (5.42)
prescribes a specific order of updates, namely that the charges resulting from a top-
pling are to be evaluated sequentially but non-local; if site i topples, the resulting
charge on site i + 1, which might lead to an entire avalanche, is first completed, be-
fore the charge on site i − 1 is even considered. In fact, the operation OL,i+1TL,i

removes even a particle from the system, because the charge arriving at i leads to a
reduction of slope by 1 unit (TL,i) and an additional charge at i+1, i.e. no net change
instead of a net change by +1. Thus, contrary to the tacit assumption that (5.42) is
a proper starting point for subsequent calculations, especially to show the Abelian
property, it actually makes already use of it. For example, by symmetry it would
follow immediately that

OL,i = SL,i + OL,i+1OL,i−1TL,i (5.43)

is an equally proper representation of the Oslo model as well, which means that

OL,i+1OL,i−1TL,i = OL,i−1OL,i+1TL,i . (5.44)
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Figure 4.18: The binned histogram n̄(s; θ, L) for two different values of L and fixed θ as
in Fig. 4.17a. In this plot the two histograms are virtually indistinguishable. However,
note that the deviations shown on Fig. 4.17b would also hardly be visible in this type of
plot, as shown in the inset.

throughout this chapter might therefore be “overcautious” in avoiding finite size ef-
fects, although such large sizes are obviously required for an accurate quantitative
analysis of this model. However, when it comes only to qualitative analysis, such a
judgement seems to be justified. On the other hand, an increase in system size hardly
increases the computing time and affects “only” the memory requirements, which
forced us to implement the algorithm for parallel machines. The side effect of using
multiple CPUs at the same time is a significant reduction of the simulation time espe-
cially for large values of θ−1, a fact which compensates the complications of parallel
coding.

Another indicator for the absence of finite size effects is the scaling of the standard
deviation of ρ: If the lattice can be split into independent parts, i.e. if subsets of the
lattice can be considered as independent, the standard deviation of ρ should scale like
1/L for different values of L at given θ−1. Such a behaviour can be seen in Tab. 4.3,
although the standard deviation of ρ could be calculated only roughly. This might
explain the slight mismatch for θ−1 = 32000, L = 16000, 32000.

For the highest values of θ−1 we could not yet do the comparison to another
system, so the curve for the largest value of θ−1 in Fig. 4.16 is dotted, as their quality
is not known. However, it is reasonable to assume that it is not affected by finite size
scaling.

Comparing the different histograms n̄(s; θ) for different values of θ−1 in a plot
enables us not only to find the exponent τ , but also to find the universal function
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Figure 4.19: The rescaled and binned histogram n̄(s; θ)sτ∗

, versus s/smax(θ), where τ∗ =
2.10 for θ−1 = 125, 250, 500, · · · , 32000, 64000 in a double logarithmic plot. The scales
smax(θ) by which the histograms have been shifted are the maxima marked in Fig. 4.16,
so that a data collapse would be possible. The arrow indicates the order of the data in
increasing θ−1.

G as defined in Eq. (4.12). A rough, naïve estimate of τ is given by n̄(s; θ) fitted
against s−τ , which gives a value of τ ∗ ≈ 2.1 in our case. Plotting now n̄(s; θ)sτ∗

double logarithmically should allow us to find the “true” value of τ by performing
a data collapse, i.e. choosing τ ∗ in such a way that horizontal shifts (corresponding
to the choice of the scale s0(θ) in the scaling function) make all curves collapse. This
is shown in Fig. 4.16, where τ ∗ = 2.1 was chosen so that the maxima for the second
bumps are almost equally high: denoting their position on the abscissa for each value
of θ by smax(θ), we have chosen τ ∗ such that

n̄(smax(θ); θ) s
τ∗
max(θ) ≈ const. . (4.41)

According to (4.12) the constant is simply the maximum value of G, namely
G(smax(θ)/s0(θ)), where the value of the argument is therefore the same for all θ.

The value of τ ∗ is close to (but not within the error of) the exponent found in the
literature, τ = 2.14(3) (Clar et al., 1994, 1996) [(τ = 2.15(2) in (Grassberger, 1993),
τ = 2.159(6) in (Honecker and Peschel, 1997)], which is shown in the same figure
for comparison. However, it is impossible to force the minima (see the down point-
ing marks in Fig. 4.16) to the same height while maintaining the constraint that the
maxima remain aligned, i.e. these minima cannot be a feature of the same universal
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does not mix charges produced at different (microscopic15) time steps, this does not
make use of the Abelian property. It follows solely from the fact that the results of a
sequential and an instantaneous update are indistinguishable, if the same sequence
of zc

i is drawn.

The fact that updates can be locally serialised is the crucial property that allows to
write an operator putting n charges on a site as the nth power of the operator which
puts a single charge on this site. For the time being, this does not mean that the
resulting topplings can be performed in any order, for example, if n charges arrive at
a site to perform all updates resulting from the first charge first, then do all updates
from the second and so on. It only means that the local update does not require a
special operator for every number of charges arriving.

As will be used in Chapter 6 (see Fig. 6.1), if zi = 0 is charged once, it must
change to zi = 1. Depending on the value of zc

i it can go over into zi = 2 if charged
once at zi = 1 or go down to zi = 0 by toppling. The latter happens with the same
probability as zc

i = 1 has been drawn at the last toppling, i.e. with probability p.
Finally, if charged at zi = 2 it necessarily topples and goes down to zi = 1. Thus, for
a system of size L = 1 there are two matrices

S =




0 0 0

1 0 0

0 q 0


 T =




0 p 0

0 0 1

0 0 0


 , (5.37)

where the first one, S, is the partition of the complete MARKOV matrix

OL=1,1 = S + T (5.38)

which describes transitions in the single site system without toppling, and T de-
scribes transitions with toppling. The correct order of rows and columns can easily be
checked by explictly calculating the resulting distribution of states for OL=1,1(0, 0, 1)

T

etc.

Starting from a single site, one can easily build up the operators for larger sys-
tems. Similar to the methods used in Chapter 8, one defines the single site operators

SL,i = 1
⊗i−1 ⊗ S ⊗ 1

⊗L−i−1 (5.39a)

TL,i = 1
⊗i−1 ⊗ T ⊗ 1

⊗L−i−1 (5.39b)

which charge site i in a system of size L. The identity 1 has rank 3, so that the
resulting matrices have the correct rank 3L. One can immediately prove explicitly

15Of course, the notion of a microscopic time makes sense only if it is fixed somehow. Thus, for the
time being, one can imagine it is given by parallel updates.
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


1

−1

0


 with λ = 0 (5.33b)

which of course do not span the entire R3.
This spoils the naïve ansatz to prove convergence of the form (5.28), even if there

is only one right hand eigenvector with eigenvalue that is a root of 1; in that case on
might want to write

|P0〉L =

3L∑

j=1

aj |ej〉L (5.34)

where |ei〉L are the eigenvectors of Oi. From (5.31), operating with 〈0|L on the LHS
immediately gives aj0 = 1 if |ej0〉L is the eigenvector with eigenvalue 1. If (5.34)
holds, one has

(Oi)
n |P0〉L =

3L∑

j=1

λn
L,jaj |ej〉L (5.35)

where λL,j are the eigenvalues of eigenvector j. For n→ ∞ one would recover (5.28).
The vectors obtained in Eq. (5.33) seem to suggest that (0, 0, 1)T might not con-

verge, i.e. that

lim
n→∞




1 1 0

0 0 1

0 0 0




n


0

0

1


 (5.36)

does not exist. However, one can easily prove explicitly that it does. The same can
be shown for the entire Euclidean basis. Clearly, if an entire set of basis vectors con-
verges, so does every vector of the space spanned by them. Thus, even though a
MARKOV matrix might not have enough eigenvectors to span the entire vector space,
every vector in this space taken as initial distribution might still converge to a unique
stationary state.

These are just some caveats of discrete time MARKOV chain. The oscillations
mentioned above dissappear immediately for continuous time chains (van Kampen,
1992). Nevertheless, one should keep these remarks in mind when dealing with lat-
tice models like the Oslo model.

5.3.2 The Oslo model

The first step to analyse the Oslo model in terms of operators, is to construct them
explicitly. The fundamental observation is that an individual site charged n times in-
stantaneously can be updated sequentially. This follows directly from the definition of
the model; it simply does not make any difference, whether zi is first increased by n
and then relaxed according to the rules, or to update it sequentially. Provided one
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scaling function. Otherwise (4.12) would hold and the quantity

n̄(smin(θ); θ) s
τ∗
min(θ) , (4.42)

where smin(θ) denote the position of the minima, would assume the same value for
all θ, because they are local minima of G, which is supposed to be the same for all θ.

Since these minima cannot be included in the simple scaling defined in (4.12),
they must be explicitly excluded by introducing a lower cutoff, so that simple scaling
supposedly sets in only above these cutoffs, excluding especially the minima. How-
ever, such a lower cutoff would apparently have to diverge for θ−1 → ∞ – something
that is certainly beyond any established concept of scaling. Even when accepting
this peculiar scaling behaviour, a data collapse for the second bump still seems to be
unsatisfactory, as shown in Fig. 4.19.

If one accepts a divergent lower cutoff of the scaling function, one has to face the
fact that this would describe the behaviour of n̄ in a region, which becomes physically
less and less interesting in the limit θ−1 → ∞, because the vast majority of events are
situated at small s and as the second bump moves out to infinity, the scaling function
hence covers a smaller and smaller part of n̄. However, only a region of n̄ which
covers a non-vanishing fraction of events can be physically relevant.

Concentrating now on the behaviour of n̄ up to the minimum (see arrows point-
ing downwards in Fig. 4.16), one finds that this region is also badly described by a
function like (4.12). First of all, the question of which region is supposedly described
by the function needs to be answered. A unique lower cutoff and a θ dependent up-
per cutoff needs to be found. At first view it looks appealing to choose these two
marks such that they cover the set of data, where the curves fall on top of each other.
In this case the lower cutoff would be 1 and the upper cutoff, snaïve, would have a
value smaller than the minima marked by downwards pointing arrows in Fig. 4.16.
However, this would be described by a function like

n̄(s; θ) = f(s)G(s/snaïve) (4.43)

rather than (4.12). Note the parameter independent function f(s) describing the shape
of the curve, while G(s/snaïve) is a sharp cutoff function. Eq. (4.43) does not allow
for an exponent, f(s) is an arbitrary function. Writing it as

f(s) = s−τ (a0 + higher order corrections) (4.44)

defines τ to be the steepest descent of this part of the curve and gives a value between
τstp. = 2.22 and τstp. = 2.19 (see Fig. 4.16).

This concept appears to be rather naïve – on the other hand, it is hard to assume
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Figure 4.20: The rescaled and binned histogram n̄(s; θ)sτstp. , versus s/smin(θ), where
τstp. = 2.19 for θ−1 = 4000, 8000, 16000, 32000, 64000 in a double logarithmic plot. The
scales smin(θ) by which the histograms have been shifted are slightly different from the
minima marked in Fig. 4.16, to make the collapse as good as possible. The squares and
the filled circles mark s = 10 and s = 200, respectively, for orientation and relation to
other figures. The arrows indicate the order of the data in increasing θ−1.

that (4.12) can still hold: it would correspond to (4.43) with f(s) replaced by sτ , which
is a straight line in a double logarithmic plot. Therefore (4.12) can apply only to
a region in Fig. 4.16 where the data that fall on top of each other form a straight
line. Those features not already collapsing would then collapse when properly tilted
(choosing the right τ ) and shifted (choosing the right s0). Introducing a lower cutoff
at s = 10 and discarding the data for θ−1 ≤ 2000 then leads to a data collapse in a
narrow range as shown in Fig. 4.20. It is worthwhile mentioning that even for some
10 < s < 200, namely for values of s between the squares and the filled circles, none
of the data collapse. The exponent used in this “collapse” is τstp. = 2.19, as mentioned
above.

By considering the function f(s) it becomes apparent that n̄, and therefore the
model, cannot be scale free: it depends on the fixed, microscopic scale s = 1. This
entails that it is always possible to tell θ−1 by looking only at the shape of n̄; a diagram
showing only this shape, without any scales on the axes, reveals θ−1, since a scale is
intrinsically given by the features of f(s). One would only need to rescale and tilt it
until it fits the plot Fig. 4.16 and one could identify θ−1. Only if f(s) were scale free,
i.e. a straight line in a double logarithmic plot, would this not be possible.
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Of course, in the context of the Oslo model, one is particularly interested in a
stationary distribution |P ∗〉L of the form

lim
n→∞

O
n
L,1 |P0〉L = |P ∗〉L , (5.28)

i.e. a final distribution |P ∗〉L to which every initial state (distribution) |P0〉L con-
verges, charging the very first site i = 1 again and again.14 However, such a state
does not necessarily exist, because O

n
L,1 might have eigenvalues λ which are any root

of 1. For example, the MARKOV matrix

(
0 1

1 0

)
(5.29)

has eigenvectors

(
1/2

1/2

)
λ = 1 (5.30a)

(
1

−1

)
λ = −1 (5.30b)

and therefore any pure initial state, i.e. any initial |P0〉L with a single 1, oscillates for-
ever. It is worth noting that the normalisation of every eigenvector |P 〉L of a MARKOV

matrix, which has not eigenvalue λ = 1 is necessarily 0, since

〈0|L |P 〉L = 〈0|L Oi |P 〉L = 〈0|L λ |P 〉L . (5.31)

Moreover, there is no guarantee that a Markovian matrix has enough eigenvectors
to span the entire space. For example, the MARKOV matrix




1 1 0

0 0 1

0 0 0


 (5.32)

has only eigenvectors




1

0

0


 with λ = 1 (5.33a)

14The repeated charging is denoted by the power n in (5.28).
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5.3.1 Notation and remarks

For a system of size L, the Oslo model has 3L stable states, corresponding to zi ∈
{0, 1, 2}. The probability distribution of these states can be represented in form of a
vector with 3L entries, each one representing the probability that the system is found
in a particular state. A single site system would be represented by a vector



p0

p1

p2


 (5.23)

with p0 + p1 + p2 = 1. In order to use a tensor product formalism (see chapter 8 for
more details), the distribution vector |Pt〉L for a system13 of size L is arranged such
that the probability for the system to be in state (z1, z2, · · · , zL) is found in row

r =
L∑

i=1

3L−izi . (5.24)

It is very important to keep in mind that the vector |Pt〉 contains all possible states of
the system to avoid its confusion with a vector like (z1, z2, · · · , zL).

The MARKOV matrix corresponding to adding a single slope unit to site i and
relaxing the entire system of size L is denoted OL,i. The Abelian property of the Oslo
model then reads [

OL,i,OL,j

]
− = 0 (5.25)

This property is investigated in detail in sec. 5.3.3.1.

Using the new notation, a stationary state is then any state |P 〉L with

OL,i |P 〉L = |P 〉L . (5.26)

Such a state exists, because 〈0|L with

〈0|L = (1, 1, . . . , 1︸ ︷︷ ︸
3L times

) (5.27)

is a left-hand eigenvector of OL,i with eigenvalue 1, since OL,i is Markovian. This
means that the normalisation 〈0|P 〉L is invariant under the operation of the Marko-
vian operator. It follows that every MARKOV matrix has at least one right hand
eigenvector with eigenvalue 1. For details on decomposable, reducible and splitting
MARKOV matrices see (van Kampen, 1992).

13The fancy bra-ket notation is very useful and therefore very popular in the field of stochastic pro-
cesses in one dimension (Hinrichsen, 2000; Derrida and Evans, 1997).
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Figure 4.21: The position of the minimum in the binned and rescaled histogram for
different values of τ ∗ = 2.04, 2.08, 2.10, 2.12, 2.16. The exponents shown in the plot are
for comparison only.

4.3.3 Two length scales

That n̄ contains features to define at least two scales, which apparently diverge in θ−1

with different exponents, becomes clear when analysing the scaling of the minima
and maxima as marked in Fig. 4.16, using the definitions

smin(θ) ∝ θ−xmin (4.45)

smax(θ) ∝ θ−xmax . (4.46)

Of course, the concrete position of the extrema of n̄(s; θ)sτ∗
depends on its tilt, i.e.

on the choice of τ ∗. However, their scaling in θ−1 does not depend strongly on this
choice. In particular xmin and xmax are different for all choices of τ ∗. A plot of smin(θ)

versus θ−1 for different values of τ ∗ is shown in Fig. 4.21. For small values of θ−1

the minimum is not pronounced enough to survive for large values of τ ∗, so these
curves do not give a data point. Using a linear fit of log smin(θ) versus log θ−1 of the
minimum as found in the rescaled (τ ∗) and binned histogram, gives an “exponent”
between xmin = 0.93 and xmin = 0.98. The same procedure applied to the maxima
gives an “exponent” in the range xmax = 1.18 and xmax = 1.22, shown in Fig. 4.22.
One may expect that xmin tends towards xmax for decreasing τ ∗, as smin increases and
might enter the scaling region of smax, but neither “exponent” exhibits a systematic
variation, and the quality of the fit certainly suffers from the rough procedure that
searches for the extrema in the binned histogram. This is unfortunately necessary
because of statistical fluctuations, in conjunction with the absence of error bars for all
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Figure 4.22: The position of the maximum in the binned and rescaled histogram for
different values of τ ∗ = 2.04, 2.08, 2.10, 2.12, 2.16. The exponents shown in the plot are
for orientation only.

data points.

The scale of the clusters, smin/max is related to the correlation length ξ by the fractal
dimension µ, i.e. [see (Clar et al., 1994)]

smin/max ∝ ξµmin/max . (4.47)

Since ξ ∝ θ−ν , one should expect ν = xmin/max/µmin/max. The minima are supposed to
be dominated by smaller, fractal events [see (Schenk et al., 2002)], so µmin = 1.96(1)

(Clar et al., 1994) and therefore νmin ∈ [0.47, 0.50]. The maxima are more likely to be
dominated by compact fires, so νmax ∈ [0.59, 0.61]. It is unclear how the two exponents
νmin/max are related exactly to the exponents of the two correlation lengths found by
HONECKER and PESCHEL (Honecker and Peschel, 1997) for the connected correlation
function ν = 0.576(3) and for the tree-tree correlation function ν = 0.541(4).

4.3.3.1 Finite size scaling

The failure of the DS-FFM to obey proper finite size scaling has been observed in
(Schenk et al., 2000) already. In the following some finite size scaling principles have
been applied in a straight forward manner and subsequently ruled out.

Ignoring changes in G (see Sec. 2.3, page 78, especially page 80), one can incorpo-
rate finite size scaling and scaling in θ into a generalised form of the scaling behaviour
of s0

s0(θ, L) = θ−λm (θLσ) (4.48)
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on a Jackknife scheme (Sec. 2.4.5, page 102), but with correlation time T0 set to 0. The
resulting set of data has been fitted against

gn + g′n/L
γ′
. (5.21)

The omission of the correlation time leads to a reduced goodness-of-fit (Press et al.,
1992), yet the resulting values are perfectly reasonable.

Similarly, the exponents have been determined by a moment analysis (Sec. 2.4.4),
by fitting the moments against

〈sn〉 = a0L
γn + a1L

γn−1 . (5.22)

Since γ1 is usually known12, the resulting set of exponents was fitted against

γ1 +D(n− 1) .

Again, the goodness-of-fit is significantly reduced and one finds results with al-
most ridiculously small error bars: DOOM = 2.24984(31) and therefore τOOM =

1.555525(61). Thus, all error bars given in Tab. 5.1 are very unreliable and should
not be taken too serious. However, an alternative numerical approach is yet to be Open

questionfound.

For some of the exponents and amplitude ratios, the numerical results are much
poorer than one could have hoped. For example, the cutoff exponent for the next
nearest neighbour model seem to match the exponent of the OOM only qualitatively,
see Tab. 5.1. In case of the nearest neighbour version, only system sizes from L = 640

on could be included in the fits for D. The central question is how to determine the
error properly — what is a “good fitting range”, a proper set of confluent singularities
to include, a proper error of the raw data etc.

5.3 Operator Approach

One of the most promising approaches to solve the Oslo model in its original form
directly on the lattice, i.e. without continuum approximation, is using an operator
approach. The idea is to write the Oslo model as a MARKOV process, with a MARKOV

matrix representing an “initial kick” and the subsequent relaxation of the entire lat-
tice. In the following, the formalism [see for example (Dhar, 1999c)] is shortly out-
lined and used to convince ourselves about the Abelian property.

12ForD(2 − τ ) = γ1 one has P(s) = aLγ1s−2G′(s/(bLD)) from (5.2).
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Model g3 g4 g5 D γ1

original BC a 1.685(3) 3.55(2) 8.74(9) 2.2509(6) 1

simplified BC b 1.813(2) 4.142(12) 11.08(7) 2.2498(3) 1
next nearest NB c 1.812(4) 4.16(3) 11.26(17) 2.21(2) 1

continuous d 1.8129(11) 4.148(7) 11.11(4) 2.2476(2) 1
random drive e 1.49(2) 2.71(8) 5.7(3) 2.233(2) 2

aoriginal Oslo model with original boundaries, Sec. 5.1.1 on page 205.
boriginal Oslo model with simplified boundaries, Sec. 5.1.3 on page 209.
cOslo model with next nearest neighbour interactions, Sec. 5.2.1.1 on page 218.
dcontinuous version of the Oslo model, Sec. 5.2.1.2 on page 219.
erandomly, bulk driven Oslo model, Sec. 5.2.2.1 on page 220.

Table 5.1: All numerical results are based on system sizes in a range of typically
40, 80, . . . , 2560 and 109 avalanches. The numerical errors are highly unreliable, see text.
The three models expected to be in the same universality class are printed in bold. For a
discussion of the amplitude ratios see Sec. 2.3.3.1.

5.2.3 Overview of numerical results

The correlation time is not completely straightforward to define, because the se-
quence of avalanche sizes is not a MARKOV process, so that actually there is no reason
to assume11 that the autocorrelation function behaves like

〈stst+t′〉 − 〈s〉2

〈s2〉 − 〈s〉2
= exp(−t′/T )(1 + corrections) . (5.19)

Indeed, as one might expect, the avalanche sizes are anticorrelated, captured by a
correlation function of the form

{
1 for t = 0

c0 exp(−t/T0) + c1 exp(−t/T1) otherwise
(5.20)

It turns out that both constants are very small, for example, forL = 640 one finds c0 =

−0.00105, so that one might regard the process as uncorrelated. On the other hand,
the correlation times found by this procedure behave consistently and systematically:
for the OOM with simplified boundary conditions T0 is almost perfectly linear (pre-
factor 0.65) in L and for the AOM in the totally asymmetric limit (see Sec. 7.1) T0 is
proportional to

√
L. For example, at L = 640 the correlation time in the original Oslo

model was found to be T0 = 395 and T1 = 38.

Because of these complications, it was decided not to take the correlation into
account at all. The errors of the amplitude ratios have therefore been calculated based

10In fact, MATTHEW STAPLETON recovered the MANNA model while trying to simplify the Oslo
model.

11For observables which can be written as a matrix acting on the state distribution of the MARKOV

process, this can be shown to hold in general.

4.3. RESULTS 

10
0 101 102 103

s

1

n
(s

)/
n

(1
) 

sτ*

2

3

4

5

1/θ=1000

1/θ=2000
4000

Figure 4.23: The rescaled and binned histogram n̄(s; θ)sτ∗

(again τ∗ = 2.10), for a
modified model, where the largest cluster in the system is removed after each driving
step, for θ−1 = 1000, 2000, 4000 (as indicated) with linear sizes L = 2000, 2000, 4000.
The inset shows the same data on the scale of Fig. 4.16 for comparison. The data for
θ−1 = 1000, 2000, 4000 of the original model as shown in Fig. 4.16 are dotted. The pecu-
liar behaviour of the different height-scaling of the minimum and the maximum is again
visible.

where m(x) is a crossover function describing the dependence of s0 on the two pa-
rameters θ and L. For sufficiently large argument x, the crossover function is ex-
pected to approach a constant, such that (4.20) is recovered. For small arguments,
however, the dependence of the cutoff is expected to be strongly dominated by L,
just like in equilibrium critical phenomena, where L takes over the rôle of ξ for suffi-
ciently small systems. Thus, for small arguments m(x) ∝ xλ, so that for sufficiently
small L, s0 becomes independent of θ.

Generic models of SOC do not have any tuning parameters other than the system
size, so that the cutoff s0 is only a function of L. In this sense, finite size scaling is
the only scaling behaviour in SOC, and a failure of the model to comply to finite size
scaling is identical to the failure to comply to simple scaling altogether. Therefore,
one might be surprised to see a simple scaling analysis and a finite size scaling anal-
ysis of an SOC model. However, the Forest Fire Model is different in this respect,
as it has the additional parameter θ, which is, supposedly, finite only because of the
finiteness of the system size. In the thermodynamic limit it supposedly disappears as
a free parameter.

As seen above (see Fig. 4.16), the θ-dependence of n̄(s; θ) can not be captured by
s0 in the scaling function alone. However, the scaling form (4.12) would remain valid
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Figure 4.24: The rescaled and binned histogram n̄(s; ρ)sτ∗

(again τ∗ = 2.10), for a modi-
fied model, where the largest cluster in the system is removed in each relaxation step and
the corresponding number of trees is filled back into the system afterwards. The three
small values of ρ chosen, ρ = 0.3975, 0.4005, 0.4025 correspond (up to the last digit)
to the values of the tree density for θ−1 = 1000, 2000, 4000 respectively, see Tab. 4.3.
The linear size was L = 1000, 2000, 4000. The corresponding data of the original model
are shown dotted. The peculiar behaviour of the different height-scaling of the mini-
mum and the maximum is again visible (a correct tilt τ ∗ would make it even more pro-
nounced), but disappears obviously for ρ = ρperc – for these data it is relevant to mention
that n̄(s) was measured after the relaxation. The filled circles show the exact results for
the lattice animals (Stauffer and Aharony, 1994; Sykes and Glen, 1976; Mertens, 1990) at
ρ = ρperc.

in some sense, if in the finite size scaling regime the L dependence of n̄(s; θ) enters s0

only. Therefore the original form (4.12) is generalised to

n̄(s; θ, L) = s−τG(s/s0(θ, L)) (4.49)

ignoring that it has been shown above already that it does not hold in the limit where
n̄(s; θ, L) becomes independent of L. In this section the dependence of n̄(s; θ, L) on
L is investigated, in the limit of large θ−1 and small L. A similar study has been
performed by SCHENK et al. (Schenk et al., 2000), however on much smaller scales
and using Pb.

If the form (4.49) holds, it should be possible to collapse n̄(s; θ, L) for different L
by choosing the correct τ and s0, just like for the cluster size distribution of standard
percolation. This turns out not to be the case, as can be seen in Fig. 4.25: As smaller
L, as stronger the changes of shape of n̄(s) for any θ tested. Consequently, (4.49) does
not hold, and as s0 is only defined via its rôle as cutoff in (4.49), s0 is undefined and
(4.48) remains meaningless.

5.2. VARIANTS 

5.2.2.3 MANNA model

Remarkably, even the Abelian version of the MANNA model (Manna, 1991; Dhar,
1999a,b) in one dimension seems to belong to the Oslo universality class10. Well
supported by numerics, this applies to the randomly driven model as well as to the
point-driven version. In fact, the exponent τ = 1.10(2) presented above is found
in the literature (Paczuski et al., 1996; Dickman et al., 2000) for the randomly driven
MANNA model.

In the MANNA model, all zc
i are set to zc

i = 1. This would lead to the BTW model,
if there was not an additional randomness in the update: When toppling, each slope
unit moves independently and with equal probability to the left or to the right. It
is important that contrary to the original MANNA model (Manna, 1991), slope units
topple only pairwise; originally, if a site relaxes, it would redistribute all particles,
which makes it very important whether a particle arrives before or after a relaxation,
and therefore renders the model non-Abelian.

Other Models similar to the Abelian MANNA model will be discussed in Sec. 7.1.

If the MANNA model is in the same universality class as the Oslo model, this is
very interesting for two main reasons:

i) The MANNA model is sometimes seen as the standard representative of an en-
tire universality class (Alava, 2003; Vespignani et al., 2000). The models in this
universality class are supposedly described by a REGGEON Field Theory, which
is the usual field theoretic approach to directed percolation (Sec. 1.4.1) and other
absorbing state phenomena. The Oslo model, on the other hand, is described by
a quenched EDWARDS- WILKINSON equation. Thus, the MANNA model might
provide a path to join these two field theoretic approaches.

ii) The MANNA model does not contain randomly chosen critical slope. The
only randomness lies in the random choice of the direction the particles are
spilled. This makes it numerically as well as analytically very interesting, see
Sec. 7.3.3.1, page 294.

Especially the continuous Oslo model discussed above (sec. 5.2.1.2) should also
be translatable into a MANNA model, i.e. it should be possible to fix the random
threshold zc

i to a specific value zi
c = zc without changing the critical behaviour, at

least not the exponents. If this is numerically confirmed, it is certainly one of the most
attractive directions to pursue the field theoretical approach discussed in chapter 6.
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Figure 5.10: Attempt of an data collapse of the binned and rescaled data for the bulk
driven variant of the Oslo model with simplified boundaries. System sizes are L =
640, 1280, 2560, exponents used are τ = 1.111 . . . and D = 2.25. The thick, dashed line
shows the original Oslo model (simplified boundary conditions), plotted in the rescaled
form (0.68)s1.555...P(s) versus (0.9)s/LD . The collapse of the bulk driven data is not
satisfying; they certainly do not collapse with the scaling function of the original model.

5.2.2.2 The tilted sandpile

There is another model known in the literature (Malthe-Sørenssen, 1999), which is
designed along the lines of the Oslo model, but has a different driving mechanism
and slightly different dynamics. The slopes zi as well as the critical slopes zc

i are
continuous variables. The former are updated as in the original model, the latter are
chosen randomly from a uniform distribution. During the driving phase all zi are
increased gradually by the same amount until a toppling takes place. Just like in
the OFC model (see Sec. 1.3.2 and Sec. 1.3.2), the driving stops while an avalanche
is running, so that the avalanches are instantaneous compared to all other processes.
It is worth noting that a homogeneous drive can in fact be replaced by a random
drive by an amount ε, so that the homogeneous drive is recovered in the limit ε →
0; the local fluctuations in the drive are only of order

√
ε and vanish therefore as

well. Moreover, in this particular model, these fluctuations can be “absorbed” into
the fluctuations of zc

i ; there is no way to determine whether a delayed or premature
occurrence of a toppling is due to a fluctuation of the inflow or a fluctuation in the
local threshold.

4.3. RESULTS 
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Figure 4.25: Plot of the rescaled PDF Pa(s; θ, L)sτ∗

/Pa(1; θ, L) for fixed θ−1 = 1000 and
different system sizes, L = 125, 250, 500, 1000. The different shapes make it impossible
to collapse the data, as would be expected from a finite size scaling ansatz (4.49) and
(4.48).

One might argue that the average density of trees, ρ̄ (see (4.4)), is the relevant
parameter of n̄(s), so that n̄(s) has the same shape for different, sufficiently small L
and constant ρ̄. However, as shown in Fig. 4.26, for any value of θ, there is a value
of L, such that ρ̄ varies considerably with decreasing L. Especially, there seems to
be a maximum tree density for every system size, so that for large values of ρ̄, there
is a smallest system size L, below which this density cannot be reached. This maxi-
mum increases monotonically with system size, so that the maximum for every finite
system size is smaller than the expected average tree density in the thermodynamic
limit, which is according to Tab. 4.3 (page 185) larger than 0.40777 and was recently
conjectured to be as large as 0.5927 . . . (Grassberger, 2002), namely the critical den-
sity of site percolation (Newman and Ziff, 2000). Accepting this limitation, Fig. 4.27
shows an example for three n̄(s) with roughly the same ρ̄ and different L and θ. Most
surprisingly two of the histograms collapse already without rescaling, while the third
(L = 500) reveals the same problems as visible in Fig. 4.16. Hence, finite size scaling
does also not work for fixed ρ̄.

That large densities of trees cannot be reached by small system sizes is related
to the specific way the histograms are generated and the density measured: Is it
before or after each (successful) burning? For sufficiently large systems, it becomes
irrelevant when to do it, because two histograms, one measured before, the other
one right after the burning, differ only by one cluster. Also the question, whether to
average only over successful burnings is irrelevant, because the difference between a
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Figure 4.26: The average density of trees, ρ̄, as a function of θ and for various L. For
sufficiently small systems, the maximum in ρ̄ is much smaller than the expected density
at the “critical point”, which is larger than 0.40777 found as in Tab. 4.3 (page 185). The
straight line marks ρ = 0.396827, the density chosen in Fig. 4.27. The inset is a magni-
fication of the crossing of the straight line with the simulation data, and shows all three
values of θ, L used in Fig. 4.27.

histogram before and after the burning is only one cluster.

Clearly, for small systems, the difference between the histogram before and after
the burning, is just the one enormous cluster of size O(θ−1). Fig. 4.28 shows the dif-
ference. Even though in principle every density is reachable for every system size if
the histogram is measured before burning, the newly defined histograms do not have
a considerably different shape, so that a collapse remains impossible. For example,
the problems shown in Fig. 4.25 become even more pronounced, if the histogram is
taken before burning.

Surprisingly and actually in contradiction to what has been said in Eq. (4.6), there
is a discrepancy between the cluster size distribution of burnt clusters, P b, and the
overall cluster size distribution Pa, even if the latter is measured before the burning
takes place. This sounds paradoxical, because the random picking of a cluster to be
burnt is just a sampling of Pa. This cannot be caused by the correlation between
those samples, due to the fact that nt+1(s) is actually a function of the cluster chosen
at t — a correlation like this would be equally picked up by P a. The reason for this
discrepancy is the fact that a site picked randomly as the starting point of the next fire
is necessarily occupied. Therefore nt(s) with a low occupation density enter Pb over-
weightedly. As low density states contain much more small clusters then large ones,
Pb overestimates the probability of small clusters. A sample of P b at a low density
is indistinguishable from a sample at high density, while a sample for P a trivially

5.2. VARIANTS 

1 2 3 4 5 6 7i =

Figure 5.9: A slope grain is added on site i = 4, adding effectively an entire layer of of
height grains left from it.

Therefore, the scaling law (5.5) changes to

D(2 − τ) = 2 (5.18)

A not completely satisfying data collapse for this model is shown in Fig. 5.10. How-
ever, it is immediately clear that it does not collapse at all with the OOM.

Most remarkably, the scaling function seems to drop to 0 for small arguments.
The resulting exponents are τ = 1.1043(8) and D = 2.233(2) [see Tab. 5.1, but also
(Paczuski et al., 1996; Malthe-Sørenssen, 1999; Dickman et al., 2000)] . The crucial
outcome is that the exponentD might well be the same as in the original Oslo model.
This is consistent with the field theoretic approach (see Chapter 6), which is directly
related only to the exponentD, not to τ . It would be very interesting to compare the Open

questionresult to the bulk-driven MANNA model, which should suffer from similar problems.

Furthermore, ZHANG (Zhang, 1997) has also studied the case of randomly added
height grains and finds D = 1.25(10) and τ = 1.20(6), consistent with D(2 − τ) = 1

as expected from 〈s〉 = L/2 in this model. One should stress however, that a random
addition of height grains is not easily dealt with by a field theory. A comprehensive Open

problemfield theoretic study of random drive is still to be done.

The current interpretation is that D is the “characteristic exponent” of the Oslo
model, while τ can only be derived with respect to model-specific features. Those are
imposed, for example, by conservation, which allows the derivation of 〈s〉 ∝ Lµ, see
(5.5). Moreover, the scaling function depends additionally on boundary conditions
and possibly other properties.
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Figure 5.8: Data collapse of binned and rescaled data for the continuous variant of the
Oslo model with simplified boundaries. System sizes are L = 320, 640, 1280, exponents
used are τ = 1.555 . . . and D = 2.25. The thick, dashed line shows the original Oslo
model (simplified boundary conditions), plotted in the rescaled form (0.69)sτP(s) ver-
sus (2.25)s/LD . The continuous data collapse nicely with the original model.

site, see Fig. 5.9, similar to Fig. 5.2. One must therefore abandom any physical corre-
spondence when considering slope driving in the bulk.

5.2.2.1 Random drive

The first example is the Oslo model with simplified BC and random drive, i.e. an
avalanche is initiated by chosing a site i0 randomly from i0 ∈ {1, . . . , L} and driving
according to zi0 → zi0 + 1. The resulting average avalanche size is easily estimated:

〈s〉 =
1

L

L∑

i0=1

i0∑

k=1

(L− k + 1)

=
1

3
L2 +

1

2
L+

1

6
(5.16)

where the first line sums firstly over all initial positions i0 (each appearing with prob-
ability 1/L) and then over all “spurious grains” introduced (see Fig. 5.9) at position
k = 1 . . . i0. Such a spurious grain needs L− k + 1 topplings to leave the system via
the right hand open boundary. The leading term is of course identical to

1

L

∫ L

0
dx0

∫ x0

0
dy(L− y) =

1

3
L2 (5.17)
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θ−1 L n(1) s̃ ρ̄ 1−ρ̄
θρ̄

125 1000 0.04553 204.07 0.37973 204.18
125 1000 0.04552 203.81 0.37977 204.15
125 4000 0.04553 203.88 0.37983 204.10
125 4000 0.04552 203.77 0.37983 204.10

250 1000 0.04451 395.03 0.38756 395.06
250 1000 0.04452 394.08 0.38750 395.15
250 4000 0.04454 394.97 0.38766 394.89
250 4000 0.04454 395.29 0.38765 394.91

500 1000 0.04380 764.73 0.39316 771.75
500 1000 0.04380 764.81 0.39315 771.77
500 4000 0.04382 771.12 0.39343 770.88
500 4000 0.04382 771.90 0.39343 770.87

1000 1000 0.04328 1495.36 0.39716 1517.91
1000 1000 0.04328 1490.05 0.39714 1518.00
1000 4000 0.04331 1510.85 0.39761 1515.00
1000 4000 0.04331 1513.13 0.39764 1514.81
1000 8000 0.04332 1510.10 0.39763 1514.91

2000 4000 0.04296 2976.34 0.40053 2993.35
2000 4000 0.04297 2990.50 0.40054 2993.15
2000 8000 0.04297 2995.67 0.40060 2992.56

4000 4000 0.04273 5929.24 0.40258 5935.91
4000 4000 0.04273 5930.97 0.40249 5938.03
4000 8000 0.04274 5931.32 0.40261 5935.15
4000 8000 0.04273 5935.36 0.40256 5936.47

8000 4000 0.04255 11786.97 0.40405 11799.72
8000 4000 0.04255 11788.90 0.40406 11799.07
8000 8000 0.04257 11801.31 0.40412 11795.98
8000 8000 0.04257 11792.82 0.40413 11795.38

16000 4000 0.04244 23430.01 0.40525 23481.82
16000 8000 0.04243 23466.93 0.40540 23467.22
16000 8000 0.04243 23446.10 0.40542 23465.64
16000 16000 0.04245 23449.31 0.40541 23466.57

32000 16000 0.04232 46443.83 0.40660 46701.82
32000 32000 0.04233 46731.44 0.40662 46698.51

64000 32000 0.04220 91148.64 0.40777 92952.40

Table 4.3: Parameters and results for different choices of L and θ−1. The average cluster
size is denoted by

�

s, for definition see (4.1), but due to a truncation in the histogram for
some of the simulations in the range 2000 ≤ θ−1 ≤ 16000, the number presented is
actually the average size of the burnt cluster. In the stationary state it is — apart from
small corrections — also given by (1 − ρ̄)/(θρ̄), see (4.7). Values of θ−1 and L printed
in bold indicate results shown in Fig. 4.16, the other results are only for comparison.
All data are based on 5 · 106 (successful) updates (see Sec. 4.2.2.1) for the transient and
statistics, apart from those printed in italics which are based on short runs (5·106 updates
for the transient and 1 · 106 updates for statistics).
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Figure 4.27: Plot of the rescaled PDF Pa(s; θ, L)sτ∗

/Pa(1; θ, L) for fixed ρ̄ ≈ 0.397: L =
500 with 1/θ = 2000 (ρ̄ = 0.396827), L = 1000 with 1/θ = 940 (ρ̄ = 0.396825) and
L = 4000 with 1/θ = 870 (ρ̄ = 0.396883). Again, a data collapse is impossible.

contains the information about the density. To illustrate that, one might imagine a
sequence of configurations, which consists of one state, with exactly one cluster of
size 1, and a second state, with exactly one cluster of size L2. The two configurations
appear with a frequency such that a cluster of size 1 is burnt down as often as a
cluster of size L2. The resulting Pa reports that a randomly chosen site belongs to a
cluster of size L2 with probability 1

2 and to a cluster of size 1 with probability 1/(2L2),
while Pb incorrectly reports the same probability for both cluster sizes. The problem
can actually already be spotted in (4.6), which contains a ρ on the RHS, which should
rather be ρ(t). The problem disappears in the limit where ρ(t) hardly changes in time,
i.e. in the limit of θ−1 � L2.

It is also clear, why (4.7) breaks down for small systems and large θ−1: The av-
erage size of the burnt cluster tends to L2, while the density tends to 0. Apparently
(4.7) must be incorrect for ρ < (L2θ + 1)−1.

4.3.3.2 Scaling of the moments of Pa

According to (4.12), (4.20) and (4.8) the nth moment of P a should scale like (this anal-
ysis has apparently been introduced to SOC by DE MENECH et al. (Pastor-Satorras
and Vespignani, 2000a; De Menech et al., 1998; Tebaldi et al., 1999), see also Sec. 2.4,
page 92)

s̃n =

∑
s s

nsn̄(s; θ)∑
s sn̄(s; θ)

= qnθ
−λ(2+n−τ) + corrections , (4.50)

5.2. VARIANTS 

for the exponent D. In fact, based on this data alone, it is very reasonable to assume
that these two models belong to the same universality class.9.

Generalisations of this model are obvious: One could widen the range of reach-
able neighbours, study the transition to long range interaction, weighten the prob-
ability to reach a site by the distance etc. Especially one could make the process
anisotropic, by toppling in a favorite direction. Such a model is investigated in detail
in Sec. 7.1.

5.2.1.2 Continuous Oslo model

Another, probably more important variant of the Oslo model is a continuous ver-
sion. What makes it so important is the fact that a field theory will be formulated
in terms of continuous variables, i.e. apart from being continuous in space and time,
continuous in the state.

The most natural way to change the OOM into a model continuous in the state
variable is to pick the slope threshold randomly from a uniform distribution, zc ∈
[0, 2], as well as the amount distributed among the nearest neighbours, ∆zr ∈ [0, tr]

and ∆zl ∈ [0, tl]. Again, to maintain conservation, the toppling site is reduced by the
sum of these two amounts, i.e. zi → zi−(∆zr +∆zl). Anisotropy could be introduced
by a non-vanishing difference v = tr− tl, or by changing the probability disrtibutions
of ∆zr and ∆zl.

Fig. 5.8 shows the scaling function for this model. Again the data collapse looks
very convincing, as well as the numerical results listed in Tab. 5.1.

Of course, the particular choice of threshold range, interaction range and con-
crete mechanism is pretty arbitrary. But exactly this fact strengthens the claim of
strong universality in the Oslo model: It is extremely robust against changes of the
microscopic dynamics.

5.2.2 Changes in the drive

This section focusses on changes in the way of driving the model, rather than chang-
ing the microscopic dynamics. Originally the model is “point-driven” at the first site,
i.e. h1 → h1 + 1 and therefore z1 → z1 + 1. If the driving mechanism (defined in
terms of height) is moved away from i0 = 1, i.e. hi0 → hi0 + 1 it has been shown
in Fig. 5.3 that the relaxation becomes unphysical. However, switching to the slope
picture and driving with slope units resolves the problem of the spurious anisotropy.
Instead, it introduces another unphysical process, as increasing the slope somewhere
in the bulk corresponds to introducing a layer of (height) grains left from the driven

9In this context it is interesting to remember that next nearest and higher order neighbour interac-
tions can in princple be used to tune leading corrections to scaling to 0 (Hasenbusch, 2001).
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Figure 5.7: Data collapse of binned and rescaled data for the Oslo model with sim-
plified boundaries and next nearest neighbour interaction. System sizes are L =
640, 1280, 2560, exponents used (for the collapse) are τ = 1.555 . . . and D = 2.25.
The thick, dashed line shows the original Oslo model (simplified boundary conditions),
plotted in the rescaled form (0.8)sτP(s) versus (0.625)s/LD . While the next nearest
neighbour version collapses nicely, the collapse with the original model is good, but not
perfect.

5.2.1 Changes of the microdynamics

In the following some variants of the Oslo model (slope picture, avalanches are me-
assured as number of topplings, boundaries simplified) are discussed. Firstly, some
models with new updating rules are presented, in the next section models with new
driving. In the field-theoretical description the changed driving is a change of the
boundary condition.

5.2.1.1 Next nearest neighbour interaction

In classical critical phenomena, such as the ISING model, it is well known that the
introduction of next nearest neighbour interaction, or any kind of short-ranged in-
teraction does not change the universality class (Fisher et al., 1972) (but see (Barber,
1978), for example). A similar behaviour is expected for the sandpile models defined
above.

The idea is that if a site i topples, it randomly distributes the two slope units
among, say, four surrounding sites i− 2, i − 1, i+ 1 and i+ 2 with equal probability.
If slope units hit a target site outside the range {1, . . . , L} they disappear from the
system. Fig. 5.7 shows a data collapse with the original Oslo model (again, both
models use simplified boundary conditions). While such a data collapse gives only
a qualitative impression, Tab. 5.1 shows the resulting amplitude ratios and estimates
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Figure 4.28: Comparison between the rescaled and binned histograms measured before
and after the burning for small L = 125 and large θ−1 = 1000. As expected, only the
statistics for large s is affected. The dashed line shows the data for Pb(s).

where qn is a non-universal amplitude (see Sec. 4.3.3.3) and λ is also known as a gap
exponent (Pfeuty and Toulouse, 1977). The corrections are due to the lower cutoff and
the asymptotic character of the scaling, which is expected only for “sufficiently small
θ” (Wegner, 1972). In turn, one can infer a scaling form like (4.12) if the moments
scale in the form of (4.50).

Contrary to what is observed in an attempt of a data collapse, it turns out that the
moments follow beautifully this scaling behaviour. Fig. 4.29 shows the scaling of the
moments for n = 2, 3, 5, 10. By simply fitting the double logarithmic data to a straight
line, i.e.

log(s̃n) = a′n − σn log(θ) (4.51)

one can derive an estimate of the exponents σn and in turn compare them to the
expected linear behaviour:

σn = λ(2 + n− τ) . (4.52)

The resulting estimates, using n = 2, . . . , 8 and σ1 = 1 from (4.1), are λ = 1.0808 . . .

and τ = 2.0506 . . . , where no statistical error is given because the systematic error,
due to neglecting of the lower cutoff as well as the corrections (4.50), is expected to
be much more important. By using the assumption σ1 = 1, this result is consistent
with (4.21). The results are shown in Fig. 4.30.

The exponent found for τ is remarkably close to the accepted value of standard
2D percolation, 187/91 = 2.054945 . . . . However, if one leaves out the results for
θ−1 = 64000, which seem to be a bit off the lines shown in Fig. 4.29, one finds a
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Figure 4.29: Scaling of the nth moments of Pa in double logarithmic plots. The straight
lines show the results of a fit as exp(a′n)θ−σn , see (4.50).

slightly larger value for the exponent, namely τ = 2.0864 and λ = 1.0998 . . . . This
is much closer to the τ ∗ = 2.10 used above. For comparison to values found in the
literature, see Tab. 4.4.

It is very remarkable that the resulting estimates for the exponents are so impres-
sively consistent, even though in Sec. 4.3.1 it turned out, that the scaling assumption
(4.12) does not actually hold; one would much rather expect a failure of the moments
to comply with (4.50), or a failure of the exponents to comply with (4.52). Apparently
the moments are hiding the breakdown of simple scaling. Therefore it is interesting
to analyse the behaviour of the presumably universal amplitude ratios, which are
solely a property of the (presumed) scaling function.

Another explanation for the moments being well behaved is the following: Ac-
cording to (Pruessner and Jensen, 2002a) one might expect the moments to behave
like ∫ θ−xmin

1
dsf(s)sn +

∫ ∞

θ−xmin
dssn−τG(s/θ−xmax) (4.53)

where the first integral describes the behaviour up to the minimum, which scales
like θ−xmin (xmin ≈ 0.95) and the second integral the behaviour from the mini-
mum on. Because Fig. 4.16 indicates already that the scaling function G does not
collapse using a scale θ−xmax this scaling does not work and can therefore be only
an approximation. While the first integral is bound by O(θ−xmin(n+1)) the second
integral gives O(θ−xmax(1+n−τ)) asymptotically, which dominates the moments for
xmin(n + 1) < xmax(1 + n − τ), which leads to n > 9.08 using xmax ≈ 1.2 and τ ≈ 2.1.
Fig. 4.29 shows clearly a deviation from the straight line behaviour for θ−1 = 64000

and n = 10 and even for n = 5. It remains unclear whether this is due to the effect
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Figure 5.6: Data collapse of binned and rescaled data for the Oslo model with original
boundary conditions and with simplified boundaries, focussing on the “bump” of the
scaling function. System sizes are L = 640, 1280, 2560, exponents are τ = 1.555 . . . and
D = 2.25. There are indeed differences between the two boundary conditions: the most
significant is an additional dip in front of the bump in case of the original BC.8

5.2 Variants

Even though the effects of the boundary conditions detailed above might look sur-
prising in the light of universality, there is strong support for universality in the Oslo
model. In fact, all of the following models seem to have the same scaling function
and exponents, see Tab. 5.1 (also for more details). They have all been simulated with
simplified boundary conditions and with avalanches defined as the number of top-
plings. From now on “original Oslo model” will refer to the definition in sec. 5.1.1;
in addition the boundary conditions will be specified either as “simplified bound-
aries” (sec. 5.1.3) or as “original boundaries”. In later chapters the term “original Oslo
model” (OOM) will in fact refer to the original definition with simplified boundaries.

Some variants of the Oslo have already been discussed in the literature. SHU-
DONG ZHANG (Zhang, 1997) found that a variation of the Oslo model where the
critical slope zc

i is randomly (and uniformly) chosen from {1, 2, 3, 4} has the same
critical behaviour than the original model. Bengrine et al. (Bengrine et al., 1999a,b)
studied the change in behaviour if the probability p is changes, which fixes the rate
with which zi

c = 1 is chosen. Again, no changes in the exponents are found.

8Thanks to MATTHEW STAPLETON for pointing that out to me.
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Figure 5.5: Data collapses of binned and rescaled data, according to (5.2), for the Oslo
model with original boundary conditions. System sizes are L = 640, 1280, 2560, expo-
nents are τ = 1.555 . . . andD = 2.25. The data for the avalanches meassured in number
of charges have been rescaled to collapse with the data for the avalanches meassured in
number of toppling. The former has been plotted as (1/2)τ−1sτP(s) versus (1/2)s/LD .

measured in slope units, where each toppling distributes two slope charges.

In case of the original Oslo model, the avalanche size measured in terms of slope
charges and the avalanche size measured in terms of slope topplings are directly
related by a factor 2, apart from boundary effects, i.e. charges “falling off” the system.
Therefore, there is no reason to expect any significant difference between these two
observables7. This is substantiated by the example shown in Fig. 5.5. Henceforth,
avalanches sizes will be measured as number of topplings if not stated otherwise.

Remarkably, and in fact in contrast to most other SOC models, the Oslo model is
very insensitive to changes in the updating rules (see sec. 5.2). Prima facie, it seems
indeed that numerically there is no difference between the two different boundary con-
ditions introduced above. Only for longer runs and especially when investigating the
amplitude ratios, it becomes clear that only the exponents are apparently the same,
while the amplitudes ratios are not. Fig. 5.6 compares the avalanche size distribution
for three different linear sizes of the model, L = 640, 1280, 2560. The resulting expo-
nents and amplitude ratios (see Sec. 2.3.3.1) are shown in Tab. 5.1 (Sec. 5.2.3 contains
more details on the parameters of the simulations).

7Maybe the only surprise when investigating the avalanche size distribution when measured in
terms of number of charges is the entry at size s = 3 — it is not possible to obtain this number of
charges within a single avalanche: The first site is hit, so s = 1. In order to make s > 1, this site must
relax, so s = 2. Again, this site must relax, because there is no other site possibly active. If now L > 2,
two charges are received by the first and third site, so s ≥ 4.
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Figure 4.30: Exponents σn of the scaling of

�

sn in θ vs. n. The slope of this curve gives
λ and τ can be derived from the offset. The straight, full line shows the results λ =
1.0808 . . . and τ = 2.0506 . . . , the dashed line shows λ = 1.0998 . . . and τ = 2.0864 . . .
from a fit excluding θ−1 = 64000.

discussed or simply a finite size problem. According to the findings presented in
Sec. 4.3.3.3 the latter might well be the case.

It is worthwhile pointing out, that the analysis in this section arrives at estimates
for the critical exponents very close to those obtained by PASTOR-SATORRAS and
VESPIGNANI (Pastor-Satorras and Vespignani, 2000a), who, however, allow for the
corrections in (4.50) which were omitted above.

reference method τ λ

(Christensen et al., 1993) P (s) 2.16(5) −
(Henley, 1993) P (s) 2.150(5) 1.167(15)
(Grassberger, 1993) P (s) 2.15(2) 1.08(2)
(Clar et al., 1994) P (s) 2.14(3) 1.15(3)
(Honecker and Peschel, 1997) P (s) 2.159(6) 1.17(2)
(Pastor-Satorras and Vespignani, 2000a) moments 2.08(1) 1.09(1)
(Schenk et al., 2002) theoretical and P (s) 2.45 . . . 1.1
(Grassberger, 2002) P (s) 2.11 1.08

Table 4.4: Exponents of the Forest Fire model found in the literature. The first column
indicates the source, the second column the method. P (s) denotes a direct analysis of
n̄(s; θ), which sometimes may have been just an estimate of the slope of n̄(s; θ) rather
than a data collapse. For details the original sources should be consulted. The entry
“moments” refers to an analysis of the moments of P (s), the entry “theoretical” to theo-
retical considerations regarding the relation of the Forest Fire model to percolation.
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4.3.3.3 Universal amplitude ratios

In general simple scaling involves two additional non-universal parameters a and b,

n̄(s; θ) = as−τG
(
s

bs0

)
. (4.54)

For 1 < τ < 2 the lower cutoff becomes asymptotically irrelevant compared to the
upper cutoff for all moments n ≥ 1 — indeed the effective τ of sn̄(s; θ) fulfils this
condition as 2 < τ < 3 (Clar et al., 1996). Neglecting the lower cutoff then gives for
the nth moment of sn̄(s; θ)

s̃n = a(bs0)
1+n−τ gn (4.55)

with
gn ≡

∫ ∞

0
dxx1+n−τG(x) (4.56)

In order to construct universal amplitude ratios, one needs to get rid of all exponents
and parameters. This can be achieved by considering

s̃n

s̃2
n/2

=

(
a
(
bθ−λ

)(1−τ)
)1−n/2 gn

g
n/2
2

(4.57)

and (4.57) with n = 1)

s̃

s̃2
1/2

=

(
a
(
bθ−λ

)(1−τ)
)1/2 g1

g
1/2
2

. (4.58)

If one now multiples (4.57) with the n− 2th power of (4.58), everything cancels apart
from the gn:

s̃n

s̃2
n/2

s̃n−2

s̃2
(n−2)/2

=
gng

n−2
1

gn−1
2

(4.59)

It is worth noting that for a trivial case, where s̃n ∝ s̃n, the effective exponent τ is
necessarily unity and (4.57) as well as (4.58) are already independent of θ.

A further simplification is to impose g1 = 1 and g2 = 1, which fixes the two free
parameters a and b in (4.54), so that

gn =
s̃ns̃n−2

(
s̃2
)(n−1)

(4.60)

for n ≥ 1. In Fig. 4.31 this quantity is shown for n = 3, 4, 5, 6. Now, for θ−1 = 64000

a deviation is clearly visible — in turn that means that θ−1 = 64000 requires at least
systems of the size L = 64000, which might explain the large value of ρ̄ obtained in
(Grassberger, 2002). Apart from that, this analysis agrees with the result found in
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Figure 5.4: A data collapse according to (5.15) for three different system sizes as indi-
cated of the temporal behaviour of the density of susceptible sites (zi = zc

i ) ρc(t) in the
Oslo model. The time is measured on the macroscopic scale, i.e. it is the number of initial
kicks. The dashed line shows

√
x.

L is proportional to L2, see Fig. 5.1. The time it takes to fill in n grains in an empty
system is exactly n. As long as the right boundary is not reached by the heap, the
density of susceptible sites is just proportional to the distance covered so far, which
is, in turn, proportional to

√
n, so that the density is simply

√
n/L. Thus, one expects

ρc(t) =

√
t

L
f

(
t

L2

)
, (5.15)

where f(x) is constant for x ≤ x0 and proportional to 1/
√
x for x > x0 in order to

keep ρc(t) on a constant level in the stationary state. The constant x0 is apparently
related to the average slope in the stationary state z by z/2 = x0. An example of this
behaviour is shown in Fig. 5.4.

5.1.5 Definition of avalanche and boundary conditions

Before the numerical differences between the Oslo model with original or with sim-
plified boundary conditions are studied, one should first agree on the observable.
The literature is not consistent on how to define an avalanche: Is it the total number
of topplings in the system between to initial kicks or is it the total number of charges?
And are these quantities measured for slope units or for height units? In case of the
latter, in the original model with original boundary conditions the only difference be-
tween toppling and charging occurs at the right boundary, because if the rightmost
site topples, it does not charge any other site. In the following, all events will be
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represents just a discretised LAPLACE equation, ∂2
i s = 0. Thus, the solution is linear

in i, i.e. si = ai + b with a and b to be determined. In order to fulfil the boundary
condition which read s0 = 2E and sL+1 = 0, one sets b = 2E and a = −b/(L+ 1), so
that

〈si〉 = 2Ė
L+ 1 − i

L+ 1
= 2〈ŝi〉 (5.11)

or
〈si〉 =

L+ 1 − i

L
〈s1〉 (5.12)

using 2E = L+1
L 〈s1〉. The case i = L is fully consistent with (5.9), 〈sL〉 = 2Ė/(L + 1)

and therefore 〈ŝL〉 = Ė/(L+ 1).

For the integrated charging frequency one finds

L∑

i=1

〈si〉 = ĖL =
1

2
(L+ 1)〈s1〉 . (5.13)

All charges, apart from the external drive, are caused by topplings, i.e. the integrated
toppling frequency is (ĖL− Ė+ 〈sL〉/2+ 〈s1〉/2)/2, where extra contributions for the
topplings at i = 1 and i = L have been added, which lead only to charges of the fixed
boundary which is not received by any site in the system. Therefore the expected
total toppling frequency is

E

2

(L− 1)(L+ 1) + 1 + L

L+ 1
= Ė

L

2
(5.14)

which corresponds of course to the average avalanche size (5.7).

An extremely interesting constant is the charging frequency of the first site for
non-zero avalanches, i.e. the number of times the first site is hit between two
avalanches of finite size. It would contain some non-trivial information about the
state of the first site, as it involves the probability of the first site to be susceptible,
about, however, nothing can be said, because the formalism above has no notion of a
collective event such as an avalanche.

It is important to note that all the averages taken above where based on the ex-
ternal driving rate, i.e. each “kick” was an external perturbation. It was not imposed
that the system actually relaxes at all, therefore avalanches of size 0 have been in-
cluded.

5.1.4.1 Remark: density of susceptible sites

It might be interesting to measure then fraction of susceptible sites with zi = zc
i on the

macroscopic timescale, i.e. from avalanche to avalanche. However, this quantity, say
ρc(t), behaves trivial: the total number of height grains needed to fill a system of size
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Figure 4.31: The supposedly universal amplitude ratio gn (4.60) for n = 3, 4, 5, 6. The
error bars are based on a Jackknife scheme (Efron, 1982; Pruessner et al., 2001) using a
roughly estimated correlation time of 50, see Tab. 4.2.

Sec. 4.3.1: The supposedly universal amplitude ratios keep changing with θ and an
asymptote cannot be estimated, i.e. the scaling (4.12) is broken.

4.3.3.4 Burning time distribution

Another distribution of interest is the distribution of burning times, PTM(TM; θ). The
statistics are comparatively small for this quantity, as the burning time is defined only
for the cluster removed. However, they still seem to be good enough to allow us to
make a statement about their scaling behaviour. The rescaled data, PTM(TM; θ)TM

b∗

with a trial exponent b∗ = 1.24 can be seen in Fig. 4.32. The intermediate part of the
distribution between TM = 4 and the maximum seems to bend down as θ−1 increases,
but the developing dip is much less pronounced than in Fig. 4.16. Nevertheless,
the region where a data collapse seems possible moves out towards larger values of
TM, which again prohibits simple scaling. Assuming that the bending might become
weaker for sufficiently large TM leads to a data collapse shown in Fig. 4.33, using an
exponent ν ′ = 0.6 as defined in Eq. (4.22). However, only for values of TM ≈ TM0 the
data possibly collapse. Again, this violates the assumption of simple scaling, namely
that there is a constant lower cutoff above which the behaviour is universal.

The only remaining exponent of those defined in sec. 4.2.2.4, µ′, relates the statis-
tics of s and TM. It requires the bivariate distribution P(s, TM; θ), as the exponent is
derived from E(TM|s) ∝ s1/µ′

, which is essentially equivalent to Eq. (4.17). The distri-
bution P(s, TM; θ) is shown in Fig. 4.34. At first glance the assumption of a power law
dependence of s and TM seems to be confirmed. Also the width of the distribution
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Figure 4.32: The rescaled probability distribution of the burning time, PTM (TM; θ). Simi-
lar to Fig. 4.16 a dip seems to form between the low TM region and the maximum, which
again renders a data collapse impossible.

seems to be very small, with almost no change over 5 orders of magnitude in s. How-
ever, the plot is double logarithmic, so that the width roughly scales like the slope,
which is about 0.6, as shown by straight lines. This matches perfectly the exponent
chosen to rescale P (see caption of Fig. 4.34).

By inspecting E(TM|s; θ) and E(s|TM; θ) for various θ, one can determine µ′ as
slope in a double logarithmic plot. Fig. 4.35 shows that µ′ remains ambiguous and
deviations from the expected behaviour do not vanish as θ−1 is increased. Asymp-
totically one might expect 1/µ′ ≈ 0.62, while (τ ∗ − 2)/(b∗ − 1) suggests 1/µ′ ≈ 0.417.
The value of 0.62 is consistent with the rough estimate 0.6 made in Fig. 4.34. Fig. 4.35
also shows two other exponents, 0.53 and 0.7, the former being in line with the value
found in literature of 0.529(8) (Clar et al., 1994).

Conclusively it is noted that the other observable available in this study, TM, does
not seem to provide an alternative way to ascribe the DS-FFM critical behaviour in
the sense of the scaling behaviour as proposed in the literature.

4.3.4 Tree density as a function of time

As mentioned above (see Sec. 4.3.3.1), the density of trees, ρ̄, is actually a function
of time. Initially, it is periodic around the average value, with an amplitude that
depends mainly θ. This amplitude decays in time and after sufficiently long times
ρ(t) looks like a random walk around ρ̄.

Fig. 4.36 illustrates how the period and the amplitude depends on θ and L: The
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1 2 3 4 5 6 7i = 1 2 3 4 5 6 7

Figure 5.3: Left: A rice pile as one would expect it if it was driven at site i = 4, i.e. new
grains enter only at this site. Right: What really happens in the Oslo model in terms of
height is unphysical. For similar considerations in terms of slope, see sec. 5.2.2.

the toppling frequency. The argument above suggests that the expected toppling
frequency of the rightmost site is given by

〈ŝL〉 =
1

L+ 1
(5.9)

in the stationary state. What about the other toppling frequencies?

First one notes that the toppling frequency at a site is the same as the charging
frequency, i.e. the number of times a site is charged (in height units) per initial “kick”
of the system. However, the following derivation is better done in terms of slope
units, where a single toppling removes two units of slope. Denoting the charging
frequency in terms of slope of site i as si one has 〈si〉 = 2〈ŝi〉 in the stationary state.
Thus, one arrives at a set of equations by imposing that the hits a site received are
either caused by external drive or neighbours:

〈sL〉 = 〈ŝL−1〉 = 〈sL−1/2〉
〈sL−1〉 = 〈sL/2〉 + 〈sL−2/2〉
〈sL−2〉 = 〈sL−1/2〉 + 〈sL−3/2〉 (5.10)

...
...

〈s1〉 = 〈s2/2〉 + Ė

The last line contains the driving frequency Ė explicitly, which was set to Ė = 1

previously.

Eq. (5.10) can be solved easily by noting that each line (apart from boundaries)
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1 2 3 4 5 6 7i =

Figure 5.2: If the rightmost site topples once, L + 1 height grains dissappear from the
system (hatched).

neighbour. Thus, it appears natural to integrate the slope from right to left in order
to restore the height picture,

hi =
i∑

j=L

zj (5.8)

where hL+1 = 0 has been used.

That this anisotropy is completely unphysical can be seen by the fact that grains
can only topple to the right. There is no mechanism for toppling to the left. If the
model was driven in the centre at i = L/2 from scratch (i.e. initially empty substrate),
there would not develop a heap, but an asymmetric pile as shown in Fig. 5.3.

Conclusively, the Oslo model is a critical height model, i.e. a model with a certain
height threshold on the sites, if formulated in terms of slope. It is a critical slope
model (i.e. there is a threshold slope), if formulated in terms of heights. The threshold
zc
i in slope zi of height hi is identical to the threshold in amount or “height” of slope.6

5.1.4 Toppling frequency

The toppling frequency, i.e. the number of times each site receives a height grain per
grain introduced into the system is exactly 1 in the original model, since the only way
for a grain to leave the system is the right boundary and it takes exactly L topplings
for a grain to leave the system starting from the leftmost site.

For the system with simplified boundaries, it is a bit more difficult to determine

6In one dimension slope models directly translate to height models and vice versa. In higher di-
mensions this mapping breaks down because of the ambiguity of a scalar slope to be mapped onto a
vector-valued gradient.
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Figure 4.33: Attempt of a data collapse for PTM (TM; θ). Only at the far end of the scaling
function at the descent from the maximum, the data seem actually to collapse. This,
however, is not sufficient for a data collapse. The big arrow points in the direction of
increasing θ−1.

period is proportional to θL2, while the amplitude mainly depends on θ, i.e. the
strength of the influx ∝ θ−1. The reason for the former is easy to understand: θ−1/L2

is proportional to the fraction of newly grown trees (Honecker and Peschel, 1997);
the change of the tree density is roughly

d

dt
ρ =

1 − ρ

ρ

1

θL2
− η(ρ(t), t) (4.61)

assuming that it hardly changes during the growing. Otherwise, one would have to
introduce a microscopic timescales, which make it possible to measure of tree density
on the timescale on which the trees are grown. The pre-factor (1 − ρ)/ρ takes into
account that only empty sites can be re-occupied and that an occupied site is required
for the burning to start. The second term on the right hand side, η(ρ(t), t), is a noise,
which represents the burning of the trees. From this equation one can already expect
that the period is roughly linear in θL2ρ̄/(1 − ρ̄). This has already been measured
in detail by HONECKER and PESCHEL (Honecker and Peschel, 1997); the numerical
results presented here (Fig. 4.36) are fully consistent with their results.

Apart from the relevance of the periodic behaviour for the equilibration time,
the periodic behaviour of ρ(t) is physically of great significance: What distinguishes
the state of the system for a given ρ at the ascending and the descending branches?
Trivially, the sequence of configurations of the system is Markovian, while the tree
density alone as a time series is certainly not. The configuration somehow manages
to “remember” whether the tree density was increasing or decreasing during the last
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Figure 4.34: Binned density plots of P(s, TM; θ) for different values of θ on a double
logarithmic scale. High densities are presented as dark areas. For better presentation,
P(s, TM; θ) has been multiplied by a factor s1.7, tilting the distribution similar to those
shown in Fig. 4.16, so that the second maxima in the distribution, those at large s and
TM, are roughly as high as the first maxima, i.e. they show in the plot as dark as around
s = 5. Since P(s, TM; θ) is a histogram only of burnt clusters, it contains a factor s
compared to n̄(s) (see discussion around (4.4)). Therefore, the exponent 2.7 needs to
be compared to τ∗ = 2.10, indicating that the width of P(s, TM; θ) roughly scales like
s0.6, so that the reduced height of P(s, TM; θ) is caused by an increase in width. This
coincides well with the slope of the distribution, as shown by a straight line. Thus, the
relative width remains roughly constant.

update, in order to keep ρ(t) periodic.

One explanation for this behaviour might be a “growing-and-harvesting” con-
cept: From the initially completely random tree distribution larger and larger patches
are formed, so that larger and larger patches are harvested by lightning. When the
density reaches the maximum, for a while the patches harvested remain large com-
pared to the amount grown. This is because the growing process does not actually
produce those large patches itself, but makes them available to the harvesting by con-
tinuously connecting smaller patches in areas, where the lightning has not yet struck.
This process goes on, until almost all the trees are newly grown, i.e. the trees are dis-
tributed almost randomly, apart from the spatial correlation in density. The period
of this process would be proportional to the time it takes to renew the entire system,
which is L2θρ̄/(1 − ρ̄), namely L2 divided by s̃, see (4.7).

The time-dependent tree density gives only a hint of what actually happens in the
system. It would be very instructive to study the two-point correlation function as
a function of time to answer the question, whether the explanation above is actually
valid.

4.3.5 Discussion

Prima facie the DS-FFM looks like a percolation process, and one might naïvely think
that it is indeed a percolation process which organises itself to the critical den-
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The same initial configuration now updated with a simplified left boundary leads
to
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The average avalanche size for these boundary conditions can be derived easily
in the height picture: Depending on how often the rightmost site topples per grain
fed into the system, in the following denoted by ŝL, its dissipation rate is ŝL(1 + L),
removing 2 grains which have toppled until i = L, 1 grain which has toppled until
i = L− 1, and 1 grain everywhere else, see Fig. 5.2. One of the two grains dissipated
from i = L does so by leaving the system properly, all other grains “magically dis-
sappear” due to the relaxation rule at the boundary; a grain at i = L just removed
by the toppling of the rightmost site has toppled already L − 1 times and so on up
to i = 1 where the grain had toppled 0 times, in total L(L + 1)/2. This is the only
mechanism for height units to dissipate, so for 1 + L units coming in, this must lead
on average to a single dissipation event at i = L. Thus, the average number a site has
toppled before leaving the system is [L(L+ 1)/2]/(L + 1), i.e.

〈s〉 = L/2 (simplified boundaries) (5.7)

5.1.3.1 Directedness

What makes the slope picture so much more appealing than the height picture of the
Oslo model is the fact that the height picture contains an anisotropy, which is not
only mathematically completely spurious, but also physically unjustified.

Above, it has been discussed that the slope units relax completely isotropic. With
or without simplified boundaries, the model is perfectly well-defined in the slope
picture, especially the height picture can be derived from it. So how is it possible
that the model is isotropic in one “language” and anisotropic in another, completely
equivalent “language”? The reason is the definition of slope and height, see Eq. (5.1).
The anisotropy enters simply when the slope is calculated only towards the right
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obeys zi ≤ zc
i for i = 1, · · · , L again, it follows

〈s〉 = L (original boundaries) (5.3)

in the stationary state, where 〈〉 is an ensemble average over realisations of the ran-
dom zc

i . For many variations the exact 〈s〉 can be calculated quite easily by assuming
random walker like behaviour for individual slope units (see sec. 7.4).5

In the slope picture the anisotropy mentioned above is different. During toppling
he slope is distributed isotropically among the neighbours with an open boundary
only on the left hand side in the original definition and two open boundaries in the
simplified version. So, it seems that dissipation and conservation at the boundary
change meaning when moving from a height picture to a slope picture. However,
this correspondence is imperfect, since a nonconservative right end in the slope for-
mulation does not correspond to a conservative right end in the height formulation.
The conservation in the bulk (of slope units or height units) is unaffected by these
changes.

In the simplified version the simple equation above (5.3) cannot hold any longer.
At first glance it might seem that the two dissipative boundaries in the slope picture
must translate back into two conservative boundaries in the height picture. This is
not true because of the anisotropy of the dynamics in terms of height units; a right
hand boundary which is dissipative in terms of slope is even more so in terms of
height, see Fig. 5.2. Again, grains (height units) can leave the system only via the
right hand boundary, but since a toppling of the rightmost site leads to a loss of one
more slope unit (zL → zL − 2 instead of zL → zL − 1), each such toppling removes
not only one grain, but in addition L other grains, as the rightmost slope, where we
would start integrating, is reduced by one.

To illustrate that, one considers an example of a lattice of size L = 2. The evo-
lution with original boundaries in height units (superscripts denote the value of z c

i ,
subscripts the value of zi) goes like

5From Eq. (5.2), one has
〈sn〉 = a(bLD)1+n−τ (5.4)

as shown in Sec. 2.3, page 78. Thus, for 〈s〉 ∝ L, as typically found for the kind of driving introduced
in sec. 5.1.1, one has (Paczuski and Boettcher, 1996)

D(2 − τ ) = 1 (5.5)

or in general
D(2 − τ ) = µ for 〈s〉 ∝ Lµ . (5.6)

4.3. RESULTS 

100 102 104

s

100

101

102

103

T
M

E(TM|s)

E(s|TM)

102 104 106

s

100

101

102

103

104

E(TM|s)

E(s|TM)

L=4000   θ−1
=125 L=8000   θ−1

=8000

Figure 4.35: E(TM|s; θ) and E(TM|s; θ), based on the binned histogram P(s, TM; θ) for
different values of θ−1. The straight lines in the plots are 1.4s0.615 for θ−1 = 125 (left
hand plot) and 1.6s0.57 for θ−1 = 8000. The two dashed lines in the right hand plot
show alternative exponents 1/µ′ = 0.7 and 1/µ′ = 0.53, which are consistent with data
either for small values of s or for large values.

sity: sites are occupied randomly and independently and (at least in the thermo-
dynamic limit) there is only one cluster which is removed with non-vanishing prob-
ability, namely the largest. In this way the density of occupied sites is automati-
cally reduced below the percolation threshold whenever the threshold is reached.
It is puzzling how remarkably close the tree density in the DS-FFM is to the den-
sity of empty sites in critical site percolation on a square lattice (ρFFM ≈ 0.4078 and
1 − ρperc = 0.40725379(13) (Newman and Ziff, 2000) respectively). However, the re-
moval process involved in the DS-FFM introduces spatial correlations which are not
present in standard percolation. These correlations are expressed, for example, in the
form of a patchy tree density distribution (Schenk et al., 2002).

The purpose of this section is not to add yet another model to the enormous zoo of
SOC models. However, in order to investigate certain features of the given model and
identify underlying mechanisms, it makes sense to modify it slightly. The outcome
for the histogram of the DS-FFM modified such that the largest cluster is removed
after each driving step is shown for a few values of θ−1 in Fig. 4.23. The distinctive
feature of a minimum which scales differently from the maximum is again present,
as the peaks of the maxima have approximately the same height, while the height of
the local minima varies among different values of θ. The inset of this figure shows
the histogram on the same scale as Fig. 4.16 together with the data of the original
model (dotted) with the corresponding values of θ. One can understand that they do
not fall on top of each other, because the relaxation rule in the modified model erases
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Figure 4.36: The density of trees as a function of time, plotted versus the rescaled time
(1 − ρ̄)t/(θρ̄L2). Upper panel: Plot for θ−1 = 125 and L = 1000, 2000, 4000 with an
additional plot for θ−1 = 500 and L = 4000 shown as dashed line, for comparison of
period and amplitude. Lower panel: Same plot for θ−1 = 500 and L = 1000, 2000, 4000.

much larger clusters than in the original model.

Fig. 4.24 shows a second modification of the model, where again the largest cluster
is removed during relaxation and in addition the driving is changed such that the
density of trees, ρ, is the same before each relaxation; the trees removed during the
relaxation are just filled in randomly afterwards. This model differs from standard
percolation only by its updating scheme 6. In order to compare the outcome with
the original model, the values of ρ have been chosen close to the values given in
Tab. 4.3. Indeed, the feature of different scaling of the extrema is still present, but
it disappears completely if the density is increased to ρperc = 0.592746 (Newman
and Ziff, 2000), which is shown in the same figure as the large bump. This curve
does not vary much if a much smaller system size is simulated at this density, so we
expect it essentially to be free of finite size corrections. Since it represents a correlated
percolation process, it is just consistent that this bump does not cover the exact results
for the lattice animals of standard percolation (Stauffer and Aharony, 1994; Sykes and
Glen, 1976; Mertens, 1990) at ρ = ρperc shown as filled circles in Fig. 4.24. The dotted
graphs in the figure show the corresponding data of the original model. Again they
do not match apart from the region of very small s. Unfortunately the simulations
of the so-modified model are very expensive in CPU time, because the mass of the

6Actually, it also differs from standard percolation because it fixes the number of occupied sites
rather than simply the probability of being occupied. However, this difference becomes irrelevant for
sufficiently large systems.
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mean that there is a way to construct an inverse: It is always possible to construct
an inverse, provided that enough information is supplied. A stronger definition of
“Abelian” in this context would be: The expectation value of all observables are in-
dependent under a change of the specific microscopic dynamics.

If a model is Abelian, it does not make much sense to discuss properties of its
microscopic dynamics, because the latter is (within a wide range) arbitrary. So, as-
signing a dynamical critical exponent to the Oslo model (Hughes and Paczuski, 2002)
is similar to assigning a dynamical exponent to the ISING model; it makes sense only
if the dynamics is actually specified.

5.1.3 Simplification of the boundary and the slope picture

The model described above in terms of height hi can be simplified by removing the
notion of heights, so that the configuration is entirely given by the values of the
slopes, from which one can easily derive the heights by integrating, if needed. The
“slope picture” of the model describes the model in terms of slope units toppling
from one site to another.

While the behaviour at the boundary was completely naturally in the light of the
height description, it seems a bit unfortunate that in the slope description the right
hand boundary only evolves like zL → z′L = zL − 1 at toppling, while all other sites
do zi → z′i = zi − 2. What does it physically mean to replace the evolution rule on
the right hand side by zL → z′L = zL − 2? It behaves as if there would be a site at
L+ 1 which receives the grain falling off the site at i = L but never topples back, i.e.
having a neighbouring site which obeys hL+1 − hL+2 ≤ 1 always.

This little change in the dynamics smoothens the definition of the model in the
slope picture. It evolves now according to

• Driving: z1 → z′1 = z1 + 1

• Relaxation: For all zi > zc
i , i = 1, · · · , L, do zi → z′i = zi − 2 and zi±1 → z′i±1 =

zi±1 + 1 and choose a new random zc
i , ignoring updates outside the domain

i = 1, · · · , L.

In the following this version of the model will be called “Oslo model with simplified
boundary conditions”, while the original version will be called “Oslo model with
original boundary conditions”.

It is worth noting that in the height picture the relaxation is anisotropic (grains
are falling only towards larger i) and the dynamics of the model is dissipative only
on the right hand boundary: All grains must propagate through the entire system,
causing a toppling at each site the pass, until they leave the system. Defining the size
of an avalanche s as the number of applications of the relaxation rule until the system
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leads to the same final state. Additionally, by stopping the updating procedure and
considering the newly charged sites in the current configuration, one arrives at the
statement, that any permutation of updates within any given set of charged sites,
leads to the same result.

The irrelevance of the order of updates goes even further: As long as the final
value of zc

i is known and provided that it is known how often each site is supposed
to topple, the final state is fixed too. Of course, this fact is not of such a big practical
value, since the topplings are genuinely caused by other topplings and this process of
triggering depends on the current value of zc

i ; there is no way of finding the number
of topplings without actually performing it.

The independence of the order allows one to define the model without fixing the
order. It is worth noting that it is possible to maintain an updating scheme, where
the set of sites which are currently active, are either from the odd or from the even
sub-lattice. This is because topplings on the odd sub-lattice charge only sites on the
even sub-lattice and vice versa.4

Noting that the order of updates is irrelevant resembles a feature of the BTW
model (Bak et al., 1987), which allowed DHAR (Dhar, 1990) to develop the paradigm
of the Abelian Sandpile. However, the situation here is different from the BTW
model: In the BTW model, it is sufficient to know which site has toppled in order
to reconstruct the initial state, i.e. each time evolution operator has an inverse. This
is not the case for the Oslo model, because by knowing which site has been hit last
by a grain plus its current state (where the state might include zc

i ), it is not possible
to reconstruct the former state: More than one state can cause the current state by
increasing the height at one site; for example zi = 1 can be caused by zi = 0 → zi = 1

or by zi = 2 → zi = 1 with former zc
i = 2. This ambiguity means that there is no

way to construct an inverse operator and therefore the Oslo model does not posses
an inverse operator.

It is important to stress that “Abelian” in the literature refers to the fact that a
model’s observables do not change if the order of updates is changed. It does not

4There is a surprising, yet very instructive misconception of the proof above (Paczuski and Bassler,
2000), which is due to a confusion of the configuration of the system with its entire state including
the (auxiliary) state of the history of the zc

i : Fixing the sequence of zc
i it seems that one arrives at a

deterministic model. In fact, having the entire sequence of zc
i and the current configuration of the model

given as the number of charges on each site, plus the initial condition, it is possible to reconstruct its
entire history, simply by redoing all updates starting with the initial state, until one arrives at the current
state. Thus, conditional to the complete knowledge of those zc

i , there is an inversion operation for
updates. This seems to indicate (Dhar, 1999c) that all states are equally likely, because there is exactly
one preceeding state and one succeeding state, so that each one is visited with the same frequency.
This however is wrong: The description above gives a deterministic path through phase space only
using a particular set of zc

i . But some configurations might be visited much more often leading to one
succeeding configuration at one time and to another at another time, depending on the current values of
zc

i . Only if one would include the future and the past zc
i into the configuration, all these configurations

would be visited equally, namely each one exactly once or never.
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largest cluster needs to be refilled after each relaxation, so that only 50.000 updates
for transient and statistics could be done.

Since the feature of different scaling survives the modifications described above,
it seems reasonable to assume that any relaxation rule that favours the largest cluster
leads to the peculiar behaviour. Its disappearance at high densities can be explained
by the extremely small cutoff in the distribution, which leads to a domination of
the statistics by very small clusters, while a single, enormously large one dominates
the burning (the average size of the burnt cluster for ρ = ρperc was 355811). How-
ever, much more careful and detailed investigations of models like the modification
described above are required to gain a full understanding of the underlying mech-
anisms. In particular, this should include a modification of the rules such that the
feature disappears.

HONECKER and PESCHEL (Honecker and Peschel, 1997) have calculated the cor-
relation length not only for the probability that two sites belong to the same cluster,
but also for the probability that two sites are occupied at all. The correlation function
for the latter is of course a δ peak in ordinary percolation, as there are no spatial cor-
relations for the distribution of occupied sites by construction. However, in the DS-
FFM the correlation length for this quantity, ξ, is finite and seems to diverges when
approaching the critical point. It is highly remarkable that HONECKER and PESCHEL

conclude from their simulations that this correlation length diverges slightly slower
than the correlation length of the probability for two sites to belong to the same clus-
ter, ξs. This seems to indicate that for sufficiently large scales the spatial correlation
of the occupation probability becomes arbitrarily small, so that on sufficiently large
scales the DS-FFM occupation is uncorrelated and therefore tends to standard perco-
lation. In other words, it seems to be possible to rescale or “renormalise” the DS-FFM
to make the occupation correlation arbitrarily small. This would introduce higher
order interactions, as known from standard real space renormalisation group and
would explain the difference in critical density between the rescaled DS-FFM and
standard percolation. However, if this “mapping” is valid, one should find the expo-
nent for the divergence of ξs/ξ to be the same as in standard percolation, but this is
precluded by numerics.

It has been suggested at least twice (Honecker and Peschel, 1997; Schenk et al.,
2002), that the DS-FFM is a superposition of cluster distributions nperc(s,p) of standard
percolation for a whole range of concentrations p, weighted by a certain distribution
function w(p), i.e.

∫ 1
0 dpw(p)n(s, p). Obviously such an assumption neglects spatial

correlations. We recall the following result from standard percolation theory (Stauffer
and Aharony, 1994),

n(s, p) ∝ s−τC(−s/(p− pc)
−1/σ) , (4.62)
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where C denotes the cutoff function and the exponents σ and τperc have their standard
definitions. Assuming that the weighting function w(p) is analytic around the critical
concentration in standard percolation, pc, (4.62) leads to

∫ 1

0
dpw(p)n(s, p) ∝ s−(τperc+σ) . (4.63)

This gives rise to an exponent τ = 223/91 ≈ 2.45, however, this is definitely not
supported by numerics (see Fig. 4.16).

It remains completely unclear how to characterise the scaling of the DS-FFM in
two dimensions. Apparently it is not a mere superposition of two simple scalings,Open

problem as recently speculated (Schenk et al., 2002). Moreover the model does not seem to be
scale free as described above and it does not seem to be possible to identify a unique
power law behaviour of the cluster size distribution. Nevertheless effective power law
behaviour over restricted regions has clearly been produced by the model, making it
potentially relevant to observation.

All we can conclude is that the DS-FFM is not critical in the sense of simple scaling.
It reminds us that a divergent moment (here 〈s〉, the second moment) can be regarded
as a unique sign of emergent scale invariance only if we are certain that one single
scale is sufficient to characterise the system. If there is more than one relevant scale,
different properties of the system might depend on different scales which may or
may not diverge.

4.3.5.1 Alternative scaling approaches

From the results presented above it becomes clear that the Forest Fire model does
not show the scaling behaviour expected for a system, which becomes critical in the
appropriate limit (namely L → ∞ and θ−1 → ∞). One might argue that another
scaling ansatz could lead to a distribution which is asymptotically scalefree in this
limit, for example a multi-fractal ansatz (Tebaldi et al., 1999) or the one proposed in
(Schenk et al., 2002), where more than one scale is assumed to govern the model. For
an asymptotically scalefree distribution, the scales have to diverge or to vanish in the
appropriate limit. It has been suggested already very early (Honecker and Peschel,
1997) that more than one characteristic length scale can be found in the Forest Fire
model.

However, changing the scaling assumption would entail a new definition of the
exponents τ , D etc., which would therefore prohibit comparison with other results
which are based on the assumption of simple scaling (4.12). Moreover, introducing
multiple scales would stretch the notion of universality, especially the universality of
the scaling function, to its limits. As can be seen in Fig. 4.16, the shape of the distribu-
tion function is not universal, i.e. the shape of this function is unique for every single
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Figure 5.1: A toppling (marked by the arrow) in the Oslo model at site i = 4 transports
one grain to the right and changes the slopes according to z4 → z4 − 2, z3 → z3 + 1 and
z5 → z5 + 1. The toppling grains are shown as dashed and hatched boxes. The process
is the same as in the BTW model, see Fig. 1.1, page 42.

step) is also fixed. To see that, one assumes that at a given instance more than one
site is active. As long as this is not the case, the order of updates would be fixed by
causality.3 Obviously the order of updates cannot matter, if none of the active sites
share a site, whose value will change during the update. So, one assumes that this
is the case, i.e. there are two sites separated by a common neighbour or right next to
each other.

The question which needs to be answered is whether it is possible that the final
state changes if the order of topplings is changed, i.e. whether it is possible that any
site has a different value for hi (or zi) or zc

i after all relaxations have been applied
depending on the order of updates. The height hi depends only on the number of
grains a site has received during the updating procedure and the number of times
it has toppled. The order of charges and topplings is irrelevant for the height. Moreover,
the number of toppling depends only on the total number of grains received, if the sequence
of zc

i is fixed. In turn, the value of zc
i depends only on the number of times a site

has toppled. Thus, the final state of a site cannot change, if the two neighbouring or
consecutive sites topple in a different order.

Thus, swapping the order of updates of two active sites does not change the re-
sulting state. Therefore any permutation of updates within a given set of active sites

3It is important to bear in mind that the assertion that a model is Abelian or non-Abelian makes
sense only if there are alternative updating schemes allowed by the rules of the model. If the rules fix,
for example by causality, the order of all updates and the external drive is localised, then one simply
cannot say anything about an equivalence of an alternative updating order in this model, see (Hughes
and Paczuski, 2002).
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For each site there is in addition a critical slope zc
i ∈ 1, 2. The heights evolve as

follows (Christensen et al., 1996):

• Driving: h1 → h′1 = h1 + 1, thus z′1 = z1 + 1

• Relaxation (or toppling): As long as there is a any i with zi > zc
i remove a grain

from hi (hi → h′i = hi−1 ) and, provided that i < L, increase or “charge” hi+1 by
1 grain (hi+1 → h′i+1 = hi+1−1). Thus zi → z′i = zi−2 and zi±1 → z′i±1 = zi±1+1

for i < L; for i = L the rule is zL → z′L = zL − 1 and zL−1 → z′L−1 = zL−1 + 1.
After each relaxation, choose a new zc

i randomly from 1, 2 with probabilities p
and q = 1 − p. Repeat the relaxation until all sites obey zi ≤ zc

i .

The Oslo model is very similar to the BTW model, with two important differences:
i) The Oslo model is driven only on site 1, at least in its original definition. ii) The
BTW has fixed zi

c — in fact they could vary in space, but the BTW produces the same
statistics provided that the zc

i remain constant in time. A toppling process is shown
in Fig. 5.1.

The central observable in the Oslo model is the avalanche size s, measured as
the number of topplings, i.e. the number of times the second rule have been applied
until the pile is fully relaxed again. Alternatively, one can investigate the number of
charges, see sec. 5.1.5. The main claim, which is strongly supported by numerics and
analytical approaches, is that the PDF of the avalanche sizes follows simple scaling
(see Chapter 2), i.e.

P(s) = as−τG(s/(bLD)) (5.2)

with exponents τ (sometimes called “avalanche exponent”) and D (cutoff exponent)
and two unknown system dependent, non-universal parameters a and b.

To simplify the following discussion, we introduce the terms “stable” for sites
with zi ≤ zc

i , “susceptible” for sites with zi = zc
i and “active” for sites with zi > zc

i .
To avoid confusion, the term “grain” refers to height hi and “slope units” refers to
slope zi.

5.1.2 Abelian nature I

It is important to realise that the order of relaxations within the set of active sites
does not matter. This can be shown in a straight-forward manner based on a operator
approach (Sec. 5.3.3.1), or handwavingly as follows [see also (Dhar, 1999c)2]:

It will be shown in the following that if the sequence of zc
i assigned after each

toppling is fixed at each site, then the outcome of a “kick” (application of a driving

2Below, Sec. 5.3, page 225, an operator approach is introduced, which is, however, unrelated to
DHAR’s operators in (Dhar, 1999c). The latter operate on individual states, while the operators below
act on the distribution of states.
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θ−1, even for L → ∞. This is in direct contradiction to the concept of universality,
scaling and scale invariance.

However, it might be possible to reestablish simple scaling by introducing an-
other mechanism in the model, as was done for example in the “autoignition Forest
Fire model” (Sinha-Ray and Jensen, 2000). If there were, for example a mechanism
parameterised by u, such that

n̄(s; θ, u) = sτG(s/s0(θ, u)) (4.64)

then simple scaling might be reestablished possibly by choosing an appropriate
u = u(θ); even the cutoff, s0, which were assumed to diverge with θ−1, would then
effectively depend only on θ. Currently, there is no hint, what this new parameter u
could be.

STEFANO LISE and MAYA PACZUSKI (Lise and Paczuski, 2001b) suggested for a
similar problem in the OFC model (Olami et al., 1992) to define an exponent τ by the
slope of the distribution Pa(s), imposing the remaining background, F(s, L, θ−1), to
be as straight as possible:

ln (Pa(s)) = −τ ln(s) + F(s, L, θ−1) (4.65)

This ansatz, in fact based on a multiscaling ansatz, would indeed allow the measure-
ment of an exponent, however, with some degree of ambiguity. The crucial problem
with this approach is that, firstly, it again does not allow any direct comparison to
other models, where the exponents are defined via (4.12) and that, secondly, the no-
tion of a presumably universal exponent hides the fact of broken scaling.

From Sec. 4.3.1 one might conclude that there does not even exists a limiting dis-
tribution for n̄(s; θ). However, even if it exists, that does not mean that simple scaling
is obeyed and if it does, it is still open whether the exponents are non-trivial or not
and whether the model posses any spatio-temporal correlation which do not vanish
on sufficiently large scales.

4.3.6 Summary

Using a new method for simulating the Forest Fire model on large scales, it is possible
to make clear statements about the validity of the scaling assumption of this model.
The two observables investigated in this chapter suggest the model does not develop
into a scale-invariant state.

The method is based on the HOSHEN-KOPELMAN algorithm (Hoshen and Kopel-
man, 1976) and uses a master/slave parallelisation scheme to simulate the model on
very large scales and very large sample sizes. The key to the parallelisation is to
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decompose the lattice in strips and to encode the connectivity of these strips in the
border sites. Clusters crossing these strips are then maintained by the master node,
while clusters within a strip are maintained on the local nodes. There is almost no
data exchange apart from the border configuration, which lowers the impact on the
network linking the nodes.

The resulting distribution Pa(s) is, different from other simulations found in the
literature, the distribution of all clusters in the system, rather than just the burnt clus-
ters. The resulting statistics then allows to draw clear conclusions as to what extend
the model does actually obey the scaling assumption. This turns out not to be case.
The violation of scaling is also observed in the distribution of the burning time. Con-
clusively we find that there is no reason to assume that the DROSSEL-SCHWABL Forest
Fire model develops into a critical state. This is in line with the conclusion by GRASS-
BERGER (Grassberger, 2002), who however, still finds some signs that the Forest Fire
model will finally show some characteristics of standard percolation.

4.4 Supplement: Relation to Real Forest Fires

The name of the Forest Fire model is unfortunate, as it might suggest relevance to
real forest fires, as they are observed on a regular basis for example in the US. Clearly
the FFM in the DROSSEL and SCHWABL version and to some extend even in the BAK,
CHEN and TANG version resemble some features of a real forest fire. However, these
dynamical models are by no means meant to model the processes of real forest fires,
because the latter contain many more parameters than those captured by the models:
Winds, landscape, political borders, type of wood and so on.

Assuming that the FFM captures all relevant features of real forest fires, one can
compare universal properties of the model and real fires. These universal features
are asymptotics, so that the FFM must be studied in the limit of L → ∞. However,
it remains unclear, whether this asymptotic region can be reached by real forest fire,
because there is no obvious way to relate the system size of the model to the system
size in reality. This is not only a technical problem, but a matter of principle: While
the scaling behaviour of two models in the same universality class is not affected
by presumably irrelevant features, such as next nearest neighbour interaction, lattice
topology and so on, this is certainly not the case for non-universal properties. This is
the reason why Tc is different for different (real) ferromagnets. So, while 107 trees is
fairly large in the FFM, it might not be so in real forests.

So, only assuming that a real forest fire has reached its asymptotic behaviour, one
can possibly (see notes in Sec. 2.4.1.1) compare universal features. Moreover, while
universal features help to identify interactions which are relevant on the large scale,
non-universal features might be much more important. This includes the critical tree

Chapter 5

The Oslo Model and Its Variants

After presenting so many problems with SOC models, it is time to show that there
are models which indeed display “proper” SOC behaviour. In fact, there is hardly
any other model in SOC, which is so robust and shows all features expected from
equilibrium critical phenomena. In the following sections the original Oslo model is
defined then some variants are presented which are apparently in the same univer-
sality class. An operator approach is introduced which casts the Oslo model into an
operator algebra, which might open the door for an exact solution.

5.1 The Model

The Oslo model is motivated by the famous ricepile experiments by FRETTE et al.
(Frette et al., 1996)1 , as a somewhat more formal way to analyse the dynamics of a
relaxing ricepile (Christensen et al., 1996). It is originally defined in terms of integer-
valued heights (“height model”) of rice columns over a — usually one-dimensional
— grid. Generalisations to higher dimension are plagued by ambiguities, so that
the remainder of this section focuses on the one-dimensional case. The microscopic
dynamics of the model is analysed in great detail, in order to determine the physical
meaning of different boundary conditions.

5.1.1 Definition in the height picture

The Oslo model is defined in one dimension (d = 1 is therefore the dimension of the
interface describe in later chapters) as follows: On each vertex of a one-dimensional
lattice a height hi is defined, i = 1, · · · , L. Defining hL+1 = 0, the slope zi of site i is
defined as

zi = hi+1 − hi . (5.1)

1Recently a similar experiment in two dimensions was performed (Aegerter et al., 2000).
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density, fire velocity etc.
It has been suggested [for example (Malamud et al., 1998)] that by allowing small

fires to burn, one might prevent large fires. This trivial sounding argument is highly
misleading: It might well be that many desirable properties of a forest are — con-
trary to the suggestion — optimised by extinguishing as many fires as possible. For
example, the average tree density might be higher, even though large fires destroy
sometimes large patches. Also, the number of fatalities might possibly be lower.

Transferring the principle of “sacrificing small patches for the sake of large ones”
to epidemics leads to the tasteless result that pruning populations is an efficient way
to prevent large epidemics. But that apparently cannot be the aim of disease control.

The real power of the FFM is as a model of non-conservative SOC; its sole purpose
is to help to understand the fundamental principles which allow certain systems to
develop into a scale-invariant state without explicit tuning of parameters, even if the
underlying dynamics is highly dissipative.

4.5 Summary

In this chapter the DROSSEL-Schwabl Forest Fire model has been studied in detail.
The chapter is split up in the following sections

• After a short introduction, in Sec. 4.2 the model is defined and the method
(which allows a study of the model on very large statistical and spatial scales)
discussed in detail. In particular, this discussion comprises a elaborate dis-
cussion of the problems encountered by a parallelised implementation of the
algorithm.

• The results are presented in Sec. 4.3. Former claims about the scale invariance
of the model can be rejected. The key message is: There is no reason to assume
that the DS-FFM is scale invariant.

• In a short supplemental section, Sec. 4.4, the relation to real forest fires is criti-
cally assessed.
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The Oslo Model
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