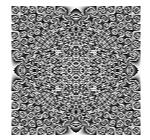
# Self Organised Criticality Its past and more recent field theoretical insights

Gunnar Pruessner

Department of Mathematics Imperial College London

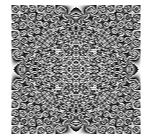

Toulouse, 7 Mar 2012

### **Outline**

- SOC: The early programme
- More models
- Tools in SOC
- Field theory for SOC
- 5 Summary: Any Answers?

Prelude: The physics of fractals
The BTW model
1/f noise — a red herring?
Why SOC?
Experiments

### Prelude: The physics of fractals

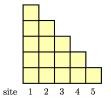



Question: Where does scale invariant behaviour in nature come from?

Answer: Due to a phase transition, self-organised to the critical point.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Prelude: The physics of fractals

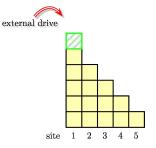



- Anderson, 1972: More is different Correlation, cooperation, emergence
- 1/f noise "everywhere" (van der Ziel, 1950; Dutta and Horn, 1981)
- Kadanoff, 1986: Fractals: Where's the Physics?
- Bak, Tang and Wiesenfeld, 1987: Self-Organized Criticality: An Imperial College Explanation of 1/f Noise

Toulouse, 03/2012

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC?

#### The BTW Model




#### The sandpile model:

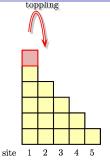
- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC?

### The BTW Model



#### The sandpile model:


- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Imperial College London

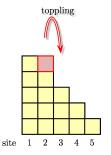
Toulouse, 03/2012

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### The BTW Model



#### The sandpile model:

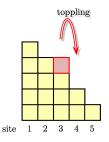

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Imperial College London

Toulouse, 03/2012

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### The BTW Model




#### The sandpile model:

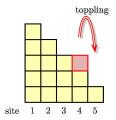
- Bak, Tang and Wiesenfeld 1987.
- ullet Simple (randomly driven) cellular automaton  $\longrightarrow$  avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC?

### The BTW Model



#### The sandpile model:


- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Imperial College London

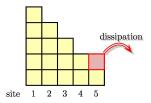
Toulouse, 03/2012

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC?

#### The BTW Model



#### The sandpile model:

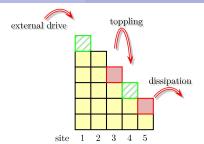

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Imperial College London

Toulouse, 03/2012

Prelude: The physics of fractals
The BTW model
1/f noise — a red herring?
Why SOC?
Experiments

#### The BTW Model




#### The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- ullet Simple (randomly driven) cellular automaton  $\longrightarrow$  avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### The BTW Model



#### The sandpile model:

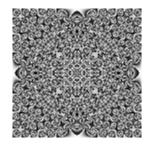
- Bak, Tang and Wiesenfeld 1987.
- ullet Simple (randomly driven) cellular automaton  $\longrightarrow$  avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)
- The physics of fractals.

Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

#### The BTW Model



#### The sandpile model:


- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics. (Exact results for correlation functions by Mahieu, Ruelle, Jeng et al.)

Imperial College London

The physics of fractals.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

#### The BTW Model



#### Key ingredients for SOC models:

- Separation of time scales.
- Interaction.
- Thresholds (non-linearity).
- Observables: Avalanche sizes and durations.

### 1/f noise — a red herring? I

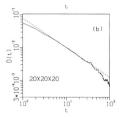



FIG. 3. Distribution of lifetimes corresponding to Fig. 2. (a) For the  $50\times50$  array, the slope  $\alpha\approx0.42$ , yielding a "1/f" noise spectrum  $f^{-1.58}$ ; (b)  $20\times20\times20$  array,  $\alpha\approx0.90$ , yielding an  $f^{-1.1}$  spectrum

From: Bak, Tang, Wiesenfeld, 1987

• Power spectrum  $P(f) \propto 1/f$ , thus correlation function (via Wiener Khinchin) decays "very slowly".

### 1/f noise — a red herring? II

Dimensional analysis:

$$\int df \, 1/f^{\alpha} e^{-2\pi i f t} = \dots \propto t^{\alpha - 1} = \text{const}$$

- 1/f noise suggests long time correlations
- Initially, SOC was intended an explanation of 1/f noise.
- Initially the BTW model was thought to display 1/f noise.
- Jensen, Christensen and Fogedby: "Not quite."
- Today: Reduced interest in 1/f.
- Today: Power laws in other observables.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC?

### Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

### **Emergence!**

- Explanation of emergent,
- ...cooperative,
- … long time and length scale
- ...phenomena,
- ... as signalled by power laws.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

## Universality!

- Understanding and classifying natural phenomena
- ... using Micky Mouse Models
- ... on a small scale (in the lab or on the computer).
- (Triggering critical points?)
- But: Where is the evidence for scale invariance in nature (dirty power laws)?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Experiments:

Granular media, superconductors, rain...



Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, *et al.* (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Experiments:

Granular media, superconductors, rain...



Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Experiments:

Granular media, superconductors, rain...



Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Experiments:

Granular media, superconductors, rain...



Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

### Experiments:

Granular media, superconductors, rain...



Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

### Outline

- SOC: The early programme
- 2 More models
  - Non-conservative: The Forest-Fire Models
  - Better Models: The Manna model
  - Collapse with Oslo
  - Exponents in 1,2,3D
- Tools in SOC
- Field theory for SOC

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

### More models

- Initial intention for more models: Expand BTW universality class.
- Later: Provide more evidence for SOC as a whole.
- More models...

Non-conservative: The Forest-Fire Models Better Models: The Manna model

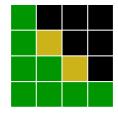
Collapse with Oslo Exponents in 1,2,3D

#### More models

#### The failure of SOC?

- Zhang Model (1989) [scaling questioned]
- Dhar-Ramaswamy Model (1989) [solved, directed]
- Forest Fire Model (1990, 1992) [no proper scaling]
- Manna Model (1991) [solid!]
- Olami-Feder-Christensen Model (1992) [scaling questioned,  $\alpha \approx 0.05$  (localisation),  $\alpha = 0.22$  (jump)]
- Bak-Sneppen Model (1993) [scaling questioned]
- Zaitsev Model (1992)
- Sneppen Model (1992)
- Oslo Model (1996) [solid!]
- Directed Models: Exactly solvable (lack of correlations)

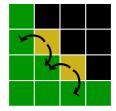
Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo


### The Bak-Chen-Tang Forest Fire Model



- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
- Grassberger and Kantz (1991):
   Deterministic pattern, scale given by 1/p.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo

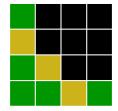

### The Bak-Chen-Tang Forest Fire Model



- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
- Grassberger and Kantz (1991):
   Deterministic pattern, scale given by 1/p.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo

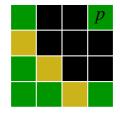
### The Bak-Chen-Tang Forest Fire Model




- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
- Grassberger and Kantz (1991):
   Deterministic pattern, scale given by 1/p.

Non-conservative: The Forest-Fire Models Better Models: The Manna model

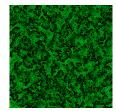
Collapse with Oslo Exponents in 1,2,3E


### The Bak-Chen-Tang Forest Fire Model



- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
- Grassberger and Kantz (1991):
   Deterministic pattern, scale given by 1/p.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo

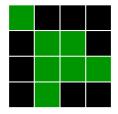

### The Bak-Chen-Tang Forest Fire Model



- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
- Grassberger and Kantz (1991):
   Deterministic pattern, scale given by 1/p.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo

### The Bak-Chen-Tang Forest Fire Model




- Originally by Bak, Chen and Tang (1990).
- Intended as a model of turbulence.
- Sites empty, occupied (by tree) or on fire.
- Slow regrowth at rate p.
- Occasional re-lighting.
- Grassberger and Kantz (1991):
   Deterministic pattern, scale given by 1/p.

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1.2.3D

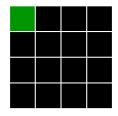
### The Drossel-Schwabl Forest Fire Model



- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with  $\theta$  trees grown between two lighntnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Toulouse, 03/2012

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo Exponents in 1.2.3D

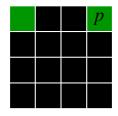

#### The Drossel-Schwabl Forest Fire Model



- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with  $\theta$  trees grown between two lighntnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo Exponents in 1.2.3D

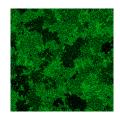
#### The Drossel-Schwabl Forest Fire Model




- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with  $\theta$  trees grown between two lighntnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo

Exponents in 1.2.3D


### The Drossel-Schwabl Forest Fire Model

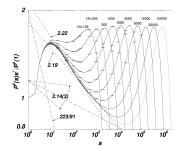


- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with  $\theta$  trees grown between two lighntnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo Exponents in 1.2.3D

### The Drossel-Schwabl Forest Fire Model




- Originally by Henley (1989) and independently by Drossel and Schwabl (1992).
- Fires instantaneous, explicit lightning mechanism with  $\theta$  trees grown between two lighntnings attempts.
- Grassberger (2002) and Pruessner and Jensen (2002): Not scale invariant.

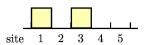
Non-conservative: The Forest-Fire Models Better Models: The Manna model Collapse with Oslo

Collapse with Oslo Exponents in 1,2,3D

### The Drossel-Schwabl Forest Fire Model

Lack of scaling




- Finite size not the only scale.
- Scale invariance possible only in the limit of  $\theta \to \infty$ .
- Lower cutoff moves as well.

Non-conservative: The Forest-Fire Models

Better Models: The Manna model

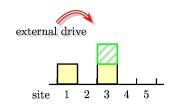
Collapse with Oslo Exponents in 1,2,3D

## Manna Model



#### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.


Imperial College London

Defines a universality class.
 g.pruessner@imperial.ac.uk (Imperial)
 SOC: Past

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

### Manna Model

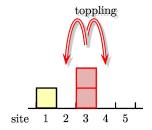


### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.

Defines a universality class.

a.pruessner@imperial.ac.uk (Imperial)


SOC: Past and recent field theory

Imperial College

Non-conservative: The Forest-Fire Models Better Models: The Manna model

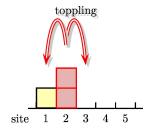
Collapse with Oslo Exponents in 1,2,3D

### Manna Model



### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.


Imperial College London

Defines a universality class.

Non-conservative: The Forest-Fire Models Better Models: The Manna model

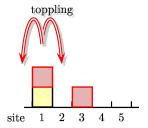
Collapse with Oslo Exponents in 1,2,3D

### Manna Model



### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.


Imperial College London

Defines a universality class.
 g.pruessner@imperial.ac.uk (Imperial)
 SOC: Past

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

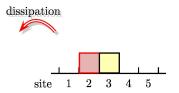
## Manna Model



### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.

Imperial College London


Defines a universality class.

Non-conservative: The Forest-Fire Models

Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

### Manna Model



### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.

Defines a universality class.

Non-conservative: The Forest-Fire Models

Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

## Manna Model



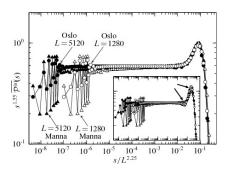
### Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.
- Robust, solid, universal, reproducible.
- Defines a universality class.

SOC: The early programme

More models

Tools in SOC


Field theory for SOC

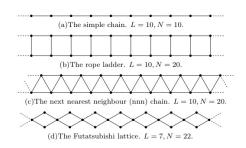
Summary: Any Answers?

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

## Collapse with Oslo




The Manna Model is in the same universality class as the Oslo model.

Non-conservative: The Forest-Fire Models Better Models: The Manna model

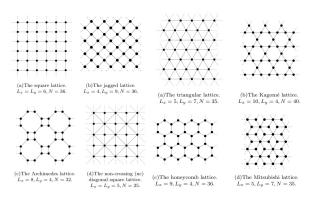
Collapse with Oslo Exponents in 1,2,3D

### Manna on different lattices

One and two dimensions



From: Huynh, G P, Chew, 2011


The Manna Model has been investigated numerically in great detail.

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

## Manna on different lattices

#### One and two dimensions



From: Huynh, G P, Chew, 2011

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1.2.3D

### Manna on different lattices

#### One and two dimensions

| lattice            | d | D         | $\tau$    | z         | $\alpha$ | $D_a$     | $\tau_a$  | $\mu_1^{(s)}$ | $-\Sigma_s$ | $-\Sigma_t$ | $-\Sigma_a$ |
|--------------------|---|-----------|-----------|-----------|----------|-----------|-----------|---------------|-------------|-------------|-------------|
| simple chain       | 1 | 2.27(2)   | 1.117(8)  | 1.450(12) | 1.19(2)  | 0.998(4)  | 1.260(13) | 2.000(4)      | 0.27(2)     | 0.27(3)     | 0.259(14)   |
| rope ladder        | 1 | 2.24(2)   | 1.108(9)  | 1.44(2)   | 1.18(3)  | 0.998(7)  | 1.26(2)   | 1.989(5)      | 0.24(2)     | 0.26(5)     | 0.26(2)     |
| nnn chain          | 1 | 2.33(11)  | 1.14(4)   | 1.48(11)  | 1.22(14) | 0.997(15) | 1.27(5)   | 1.991(11)     | 0.33(11)    | 0.3(2)      | 0.27(5)     |
| Futatsubishi       | 1 | 2.24(3)   | 1.105(14) | 1.43(3)   | 1.16(6)  | 0.999(15) | 1.24(5)   | 2.008(11)     | 0.24(3)     | 0.23(9)     | 0.24(5)     |
| square             | 2 | 2.748(13) | 1.272(3)  | 1.52(2)   | 1.48(2)  | 1.992(8)  | 1.380(8)  | 1.9975(11)    | 0.748(13)   | 0.73(4)     | 0.76(2)     |
| jagged             | 2 | 2.764(15) | 1.276(4)  | 1.54(2)   | 1.49(3)  | 1.995(7)  | 1.384(8)  | 2.0007(12)    | 0.764(15)   | 0.76(5)     | 0.77(2)     |
| Archimedes         | 2 | 2.76(2)   | 1.275(6)  | 1.54(3)   | 1.50(3)  | 1.997(10) | 1.382(11) | 2.001(2)      | 0.76(2)     | 0.78(6)     | 0.76(3)     |
| nc diagonal square | 2 | 2.750(14) | 1.273(4)  | 1.53(2)   | 1.49(2)  | 1.992(7)  | 1.381(8)  | 2.0005(12)    | 0.750(14)   | 0.75(4)     | 0.76(2)     |
| triangular         | 2 | 2.76(2)   | 1.275(5)  | 1.51(2)   | 1.47(3)  | 2.003(11) | 1.388(12) | 1.997(2)      | 0.76(2)     | 0.71(6)     | 0.78(3)     |
| Kagomé             | 2 | 2.741(13) | 1.270(4)  | 1.53(2)   | 1.49(2)  | 1.993(8)  | 1.381(9)  | 1.9994(12)    | 0.741(13)   | 0.75(5)     | 0.76(2)     |
| honeycomb          | 2 | 2.73(2)   | 1.268(6)  | 1.55(4)   | 1.51(4)  | 1.990(13) | 1.376(14) | 2.000(2)      | 0.73(2)     | 0.79(8)     | 0.75(3)     |
| Mitsubishi         | 2 | 2.75(2)   | 1.273(6)  | 1.54(3)   | 1.50(4)  | 1.999(12) | 1.387(12) | 1.998(2)      | 0.75(2)     | 0.77(7)     | 0.77(3)     |

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail

Non-conservative: The Forest-Fire Models Better Models: The Manna model

Collapse with Oslo Exponents in 1,2,3D

### Manna on different lattices

#### Three dimensions

| Lattice | $\overline{q}$ | $\overline{q^{(v)}}$ | $\langle z \rangle$ | D         | τ        | z         | $\alpha$  | $D_a$     | $\tau_a$  | $\mu_1^{(s)}$ | $-\Sigma_s$ | $-\Sigma_t$ | $-\Sigma_a$ |
|---------|----------------|----------------------|---------------------|-----------|----------|-----------|-----------|-----------|-----------|---------------|-------------|-------------|-------------|
| SC      | 6              | 1                    | [0.622325(1)]       | 3.38(2)   | 1.408(3) | 1.779(7)  | 1.784(9)  | 3.04(5)   | 1.45(4)   | 2.0057(5)     | 1.38(2)     | 1.395(16)   | 1.36(13)    |
| BCC     | 8              | 4                    | [0.600620(2)]       | 3.36(2)   | 1.404(4) | 1.777(8)  | 1.78(1)   | 2.99(2)   | 1.444(18) | 2.0030(5)     | 1.36(2)     | 1.390(19)   | 1.33(6)     |
| BCCN    | 14             | 5                    | [0.581502(1)]       | 3.38(3)   | 1.408(4) | 1.776(9)  | 1.783(11) | 3.01(3)   | 1.44(3)   | 2.0041(6)     | 1.38(3)     | 1.39(2)     | 1.32(7)     |
| FCC     | 12             | 4                    | [0.589187(3)]       | 3.35(4)   | 1.402(8) | 1.765(16) | 1.78(2)   | 3.1(2)    | 1.48(14)  | 2.0035(11)    | 1.35(4)     | 1.37(4)     | 1.5(5)      |
| FCCN    | 18             | 5                    | [0.566307(3)]       | 3.38(4)   | 1.408(7) | 1.781(14) | 1.787(18) | 3.00(4)   | 1.44(3)   | 2.0051(8)     | 1.38(4)     | 1.40(3)     | 1.32(9)     |
| Overall |                |                      |                     | 3.370(11) | 1.407(2) | 1.777(4)  | 1.783(5)  | 3.003(14) | 1.442(12) | 2.0042(3)     |             | 1.380(13)   |             |

From: Huynh, G P, 2012

The Manna Model has been investigated numerically in great detail.

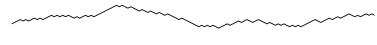
Tools in SOC Link to growth phenomena Field theories for Manna and Oslo The Absorbing State Mechanism

## Outline

- SOC: The early programme
- 2 More models
- Tools in SOC
  - Tools in SOC
  - Link to growth phenomena
  - Field theories for Manna and Oslo
  - The Absorbing State Mechanism
- Field theory for SOC

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo The Absorbing State Mechanism

### Tools in SOC


- (Extensive) numerics (BTW, FFM, BS, Manna, Oslo).
- Analytical tools:
  - Exact solutions (so far: directed models only).
  - Mappings to known (understood?) phenomena.
  - Growth processes and field theories.

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo The Absorbing State Mechanism

## Link to growth phenomena

Generic scale invariance

Stochastic evolution of sandpile surface.



$$\partial_t \phi(\mathbf{r}, t) = (\mathbf{v}_{\parallel} \partial_{\parallel}^2 + \mathbf{v}_{\perp} \partial_{\perp}^2) \phi + \eta(\mathbf{r}, t)$$

- Generic scale invariance (Hwa and Kardar, 1989, and Grinstein, Lee and Sachdev 1990)
- No mass term  $-\epsilon \phi$  on the right  $\longrightarrow$  conservative dynamics (finiteness generates  $\epsilon$ ).
- Anisotropy (boundaries?) required in the presence of conserved noise.
- Non-trivial exponents in the presence of non-linearities and non-conserved noise.

### Effect of a mass term

Mass term

$$\partial_t \phi = \nu \nabla^2 \phi - \epsilon \phi + \ldots + \eta$$

represents disspation

$$\partial_t \int_V \mathrm{d}^d x \, \phi = \text{surface terms} - \epsilon \int_V \mathrm{d}^d x \, \phi$$

and correlation length

$$\Phi = \dots e^{-|x|\sqrt{\epsilon/\nu}}$$

But: How can a renormalised  $\epsilon=0$  be maintained without trivialising the phenomenon?

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo The Absorbing State Mechanism

## Field theories for Manna and Oslo

Number of charges interpreted as an interface.

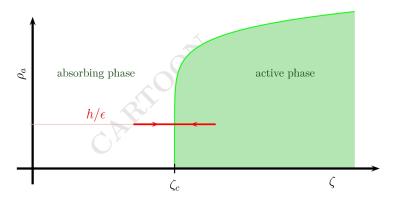


- Manna model has a (weird!) Langevin equation.
- Oslo model implements quenched Edwards Wilkinson equation → interfaces!
- Field theories for both still unclear.
- Mechanism of self-organisation still unclear.
- Link to known universality classes.
- Link to directed percolation?

## The Absorbing State Mechanism

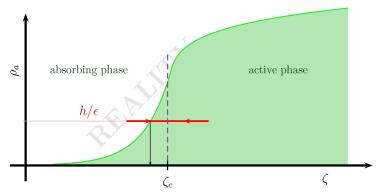
Dickman, Vespignani, Zapperi 1998

- SOC model: activity  $\rho_a$  leads to dissipation
- dissipation reduces particle density ζ
- density is reduced until system is inactive
  - → absorbing phase
- external drive increases particle density
  - → back to active phase


An SOC model can be seen as an AS model that drives itself into the inactive phase by dissipation  $\epsilon$  and is pushed back into the active phase by external drive h.

$$\dot{\zeta} = h - \varepsilon \rho_a \xrightarrow{\text{stationarity}} \rho_a = h/\varepsilon$$

Imperial College London


Toulouse, 03/2012

# The Absorbing State Mechanism



Idea: SOC drives 
$$h/\epsilon=\rho_a$$
 to  $0$  as  $L\to\infty$   
Leading orders:  $h(L)=h_0L^{-\omega}$  and  $\epsilon(L)=\epsilon_0L^{-\kappa}$ 

## The Absorbing State Mechanism



Problem: SOC exponents would be affected by the way how driving and dissipation are implemented  $\longrightarrow$  no universality.

Fey, Levine and Wilson suggest that critical point is not reached.

The Manna Model Vertices tree level The SOC mechanism

## Outline

- Field theory for SOC
  - The Manna Model
  - Simplifications, bare propagators
  - Vertices, tree level
  - The SOC mechanism

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably:
   Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

#### Thanks!