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Abstract

We consider a percolation model, the vacant set Vu of random interlacements on Zd,
d ≥ 3, in the regime of parameters u > 0 in which it is strongly percolative. By definition,
such values of u pinpoint a robust subset of the super-critical phase, with strong quantitative
controls on large local clusters. In the present work, we give a new charaterization of this
regime in terms of a single property, monotone in u, involving a disconnection estimate for
Vu. A key aspect is to exhibit a gluing property for large local clusters from this information
alone, and a major challenge in this undertaking is the fact that the conditional law of Vu
exhibits degeneracies. As one of the main novelties of this work, the gluing technique we
develop to merge large clusters accounts for such effects. In particular, our methods do not
rely on the widely assumed finite-energy property, which the set Vu does not possess. The
charaterization we derive plays a decisive role in the proof of a lasting conjecture regarding
the coincidence of various critical parameters naturally associated to Vu in the companion
article [17].
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1 Introduction

The study of the super-critical phase of percolation models, i.e. the regime of parameters in
which an infinite cluster exists, typically exhibits a subset, possibly strict, in which the model is
strongly percolative. We will soon give a precise meaning to this – intuitively, strong percolation
describes a robust percolative phase with good quantitative control on large local clusters. We
consider this regime for a benchmark case of interest, the vacant set of random interlacements,
one notable difficulty being that the model lacks ‘ellipticity’ (cf. for instance (1.8) below). For
this model, a non-trivial strongly percolative regime is so far known to exist on Zd for all d ≥ 3
by already involved perturbative arguments, see [46] for d ≥ 5 and [12] for all d ≥ 3, and our
understanding of various features of vacant clusters in this regime has witnessed considerable
progress over the last decade [43, 41, 26, 7, 24, 39, 40, 31, 28, 13].

As much as being strongly percolative is an insightful notion, absence of strong percolation
yields very limited information. In the present work we address this imbalance by exhibiting an
a-priori much weaker, but as will turn out equivalent, property involving only monotone infor-
mation in the form of a suitable disconnection upper bound, uniform over scales. This is by no
means obvious, one striking reason being that any reasonable notion of strong percolation, which
comprises both ‘existence-’ and ‘uniqueness’-type characteristics (cf. (1.1) below), is usually far
from being a monotone property.

The characterization of strong percolation we obtain is of independent interest. In a sense, it
defines a ‘symmetric’ analogue to the critical parameter u∗∗ introduced and extensively studied
in [37, 38, 35, 27], which exhibits a corresponding phase in the sub-critical regime, in which
connectivity functions are well-behaved (i.e. exhibit rapid decay) as soon as a suitable uniform
connection upper bound holds. The resulting more balanced view towards criticality is in line
with the heuristic picture by which the system ought to be oblivious to the side from which
the critical point is approached. As one important application, the conjectured sharpness of
the phase transition for Vu follows by combining the characterization we obtain in the present
work with the results of the companion article [17]. Our arguments imply that a regime of
parameters in which connection and disconnection both occur with sizeable probability over all
scales cannot be an extended interval.

1.1. Main result. Let Vu denote the vacant set of random interlacements at level u > 0 on

Zd, d ≥ 3, introduced in [37]; see Section 2 for details. The random set Vu is decreasing in u.
It undergoes a percolation phase transition across a threshold u∗ = u∗(d) ∈ (0,∞), as follows:
for all u > u∗, the connected components (clusters) of Vu are finite almost surely, whereas for
u < u∗, there exists a unique infinite cluster with probability one; see [37, 34, 29, 45]. With
Br = ([−r, r] ∩ Z)d and for u, v > 0, consider the events

Exist(r, u) =

{
Vu ∩Br contains a cluster with

(`∞-)diameter at least r
5

}
,

Unique(r, u, v) =

{
any two clusters in Vu ∩Br having diameter at

least r
10 are connected to each other in Vv ∩B2r

}
.

(1.1)

Events as in (1.1) have appeared in the percolation literature, see for instance [3], and also [46, 13]
in the context of Vu. When present with high enough probability, these events lend themselves
to powerful renormalization arguments, as witnessed in the above (long) list of references, which
all crucially exploit this feature.
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We now introduce a (simpler) disconnection event. For U, V ⊂ Zd, we denote by {U Vu←→ V }
the connection event that a cluster of Vu intersects both U and V and replace ←→ by 6←→
to denote its complement, the corresponding disconnection event, by which we mean that no
cluster of Vu intersects both U and V simultaneously. For a parameter γM > 1, we define the
length scale

(1.2) M(r) = exp
{

(log r)γM
}
,

which grows super-polynomially in r and will play a central role in this article. In the sequel,
c, c′, C etc. refer to generic positive constants (i.e. in (0,∞)) that can change from place to
place. Numbered constants are fixed upon first appearance within the text. All constants may
implicitly depend on the dimension d. Their dependence on any other quantity will be made
explicit. Following is our main result.

Theorem 1.1. For all d ≥ 3, there exists α = α(d) ∈ (0, 1) such that the following holds.

For all u > 0 and γM ≥ C1, the following are equivalent:

i) for all v ∈ (0, u), with M = M(r) as in (1.2),

(1.3) lim inf
r

(M/r)d P[Br
Vv
6←→ ∂BM ] ≤ α;

ii) for all v, v′ with 0 < v < v′ < u and C = C(v, v′, γM ) ∈ (0,∞),

(1.4) P[Exist(r, v′)] ≥ 1− Ce−rc1 and P
[
Unique(r, v′, v)

]
≥ 1− Ce−rc1 , for r ≥ 1.

The fact that ii) implies i) is a straightforward matter. The gist of Theorem 1.1 is thus
the implication i) =⇒ ii). Before discussing the difficulties with this in due detail (see §1.2) let
us relate Theorem 1.1 to existing results. Employing the language from the beginning of this
introduction, we say that V = (Vu)u>0 strongly percolates at levels v′, v if (1.4) holds for some
constant C = C(v, v′) ∈ (0,∞), and define

(1.5) ū = ū(d) = sup
{
s > 0 : V strongly percolates at level v′, v for all 0 < v < v′ < s

}
.

By [12, Theorem 1.1], see also [46] for d ≥ 5, one knows that ū is non-trivial, i.e. ū > 0 for
all d ≥ 3. The (critical) value ū(≤ u∗) pins down a subset of the percolative phase that is
very robust, meaning that one has strong quantitative control on large local clusters (in the
sense of (1.1) and (1.4)). In analogy with (1.5), one naturally introduces, with α as supplied by
Theorem 1.1, the parameter

(1.6) ũ = ũ(d) = sup{v > 0 : (1.3) holds}.

The threshold ũ is of somewhat similar flavor as the definition of the critical parameter for
Bernoulli percolation in [18], which can be viewed as refining the analogue of (1.6) (incorporating
in particular a key ‘exploratory’ feature). With (1.5) and (1.6), the statement of Theorem 1.1
now has the following immediate and succinct consequence.

Corollary 1.2. For all d ≥ 3 and all γM ≥ C1,

(1.7) ū(d) = ũ(d).
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For completeness, let us mention that various reinforcements of being ‘strongly percolative’
have been in circulation. The notion we deal with here has been fruitfully exploited to give
strong answers to various problems relating to disconnection and the formation of droplet(s) in
the supercritical regime [43, 41, 26, 7, 24, 39, 40]. For other questions, see e.g. [31, 28, 13], see
also [22, 14, 20, 8] in various other contexts, it is of interest to remove the sprinkling, i.e. to
require v′ = v in (1.5), see e.g. [12, (1.3)]. This is very close in spirit to the notion of “well-
behavedness” of the supercritical phase which has appeared in the literature, see [22, 5] and
references therein. It is plausible, but presently open, that the sprinkling inherent to ū in (1.5)
can be removed. We hope to return to this elsewhere [21].

For certain applications, one may even wish to require a small ‘unfavorable’ sprinkling, i.e. to
demand that (1.5) hold for all u < s and some v ∈ (u, s), see [47, (2.16)]. Some regularity of
the constant C appearing in (1.4) in its arguments v, v′ has also been propitiously used, see [42,
(2)-(3)]. In a related fashion, as follows upon inspection of our proof, one can in fact choose the
constant c1 appearing in (1.4) uniformly in d (for instance c1 = 1

4 works for the conclusions of
Theorem 1.1 to hold). One may then naturally wonder what the optimal decay for the events
in (1.1) as well as whether ū can be substituted for any of these stronger notions; cf. [21].

1.2. Proof outline. We now discuss the proof of Theorem 1.1, and highlight some of the key
issues in proving the implication i) =⇒ ii). For v such that (1.3) holds, one has abundance of
large clusters inside BM , in that every translate of Br inside BM (with M = M(r)) is connected
to ∂BM with high probability. The key is to argue that a certain gluing property holds, by
which these large clusters all communicate after sprinkling, with probability tending to one as
r →∞. From this, (1.4) is then deduced via renormalisation.

For the purposes of this introduction, let us assume for simplicity that we only have two
disjoint clusters in Vv crossing the annulus AM = BM \ BM/2 whose r-neighborhoods cover all
of AM . This simplified setup is good enough to illustrate the main steps of the argument, as
well as the difficulties encountered along the way. The reduction to this case from the general
one, which includes many ambient (i.e. large and r-dense) clusters, is inspired by an argument of
Benjamini-Tassion [4] in the context of Bernoulli percolation in a perturbative regime. Within
the simplified setup with two clusters only, one can exhibit (cf. Lemma 2.1) many disjoint contact
zones between the two clusters, i.e. boxes Λk of side length 2r each intersecting a large chunk
(macroscopic at scale r) of the two clusters. The key point is to exhibit a not too degenerate lower
bound on the probability that the two clusters be connected locally inside Λk after sprinkling
to Vu−δ for δ > 0, and to exhibit this cost multiplicatively in k, i.e. generate some decoupling.
This will be achieved via a delicate bridging technique, which implements a surgery argument
to construct a path at an affordable cost.

To put things into perspective, let us start by recalling a line of argument from [15], where
a similar problem was faced in the context of the Gaussian free field. As it turns out, this is a
much simpler problem, and the whole surgery argument developed in [15], which was already
intricate, fails to work here, but it helps to highlight the main issues. Roughly speaking, in
[15], one could afford to ask a-priori for the boxes Λk to have a certain ‘renormalized goodness’
property, and to then condition on this goodness along with the two clusters before performing
the surgery, which employed a technical device called bridging lemma; see [15, Lemma 3.6].
In a nutshell, the goodness ensured the presence of a so-called good bridge, which facilitated
the (quenched!) construction of a path in a cost-efficient way. Importantly, all this conditional
information (i.e. goodness+clusters) still left randomness in spite of long-range correlations, a
highly non-trivial feature, which is owed to a certain amount of ‘ellipticity’ inherent to the free
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field. This left-over randomness was carefully exhibited using a decomposition of the field over
scales, and thankfully ‘enough’ randomness remained to perform the surgery. We will not further
detail the specifics of this here; it will anyways be useless for us.

This approach is completely doomed for Vu because such heavy conditioning may in fact
completely freeze the configuration, i.e. remove all randomness. This is due to the fact that Vu
exhibits strong degeneracies: for instance, for any finite set K 3 0 (e.g. K = BL for arbitrary
large L ≥ 1), one has that

(1.8) P[0 /∈ Vu |x ∈ Vu for all x ∈ ∂K] = 0,

which is an indication of ‘non-ellipticity’. In particular, (1.8) violates the commonly assumed
finite-energy property, see e.g. [23, Def. 12.1] or [25, Def. 3.2], where this property is called
insertion (and deletion) tolerance (which the free field satisfies). This feature poses severe
restrictions on any attempt to condition on part of the configuration. Moreover, as explained
in [17, 16], the set Vu does not admit a natural intrinsic decomposition over scales. The best
available conditional decoupling results [27, 2], see also Proposition 2.3 below, essentially require
a buffer zone of size at least rc when revealing the configuration in Br, and even then leave very
little control on the underlying conditional laws compared to the Gaussian free field for example,
where one can exploit very explicit decomposition and monotonicity properties of conditional
distributions. Still in the context of (smooth) Gaussian fields, we further refer to [32, 33], which
implement a certain shifting technique to deal with degeneracy issues owing to analyticity, in
the presence of short-range correlations.

C

B

B′

C′

Figure 1 – Gluing two vacant clusters C and C′ using a fractal bridge (green). Con-
nections in Vu (red) are re-constructed within each box B of the bridge at preferential
(polynomial) cost. The bottom scale is treated differently (not depicted). For each
box B = B(x, s) in the picture, the concentric larger box B′ = B(x, s+ sξ) for well-
chosen (i.e. not too small) ξ ∈ (0, 1) does not intersect the other green boxes (safety
gaps). This feature is owed to very limited information on the conditional behavior
of the occupation field of Vu.
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The features outlined above warrant a completely novel approach to performing surgery,
and the bridging technique we devise here, which is invented from scratch, needs to be mindful
of strong effects such as (1.8). The features outlined in the previous paragraph, especially
the restrictive conditional decoupling property, preclude the possibility to ask for any kind of
‘goodness property’ and to condition on a good configuration a-priori. Rather, our approach is
dynamic in that we ask for good features (which may or may not occur) along the way, as we
explore the region in which the connection is to be constructed. We explain this in more detail in
the next paragraph. Interestingly, the overall failure rate of the procedure is ultimately measured
in terms a large deviation event for a certain count of bad boxes; this is loosely reminiscent of
an exploration argument by Aizenman-Kesten-Newman [1], see also [19, 6], used in the course
of proving uniqueness of the infinite cluster for Bernoulli percolation on Zd, which is key in
addressing a related question: namely, that of bounding the probability of so-called ‘two-arm’
events involving the presence of two disjoint large nearby clusters.

The ‘exploration’ we perform starts with boxes at large scales, far away from the two clusters,
and the ‘arrow of time’ points towards smaller scales, i.e. progressively refining the resolution.
When a given box turns out to be ‘good,’ we can reconstruct a piece of path at an affordable
price. The surgery proceeds in this way and (re-)constructs ‘almost’-connections between the
two clusters (whose geometry can be wild) in a hierarchical fashion, leaving polynomial gaps at
each scale to generate decoupling; see Figure 1. Each scale thereby contributes to the ‘finite-
energy’ cost of gluing, but a separate tool is needed when reaching the bottom scale. It involves
a little device exhibiting a weak finite energy property, which essentially allows to vacate a
box at a sprinkled level with not too low conditional(!) probability on a local event having
high probability. When the entire ‘exploration’ is successful, which happens overall with not too
degenerate probability, the resulting path connecting the two clusters is a fractal curve involving
all scales at once; see Figure 1.

The methods we develop here are robust, and as such, provide a template that paves the
way towards a better understanding of the super-critical regime in other dependent models of
interest, including ‘non-elliptic’ ones, e.g. violating finite-energy property; matters relating to the
‘well-behavedness’ of the supercritical phase have so far witnessed comparatively little progress,
and results are restricted to specific models [22, 5, 14, 15, 20, 32, 8] and references therein. To
wit, the gluing technique we develop here yields a more robust proof of [15, Proposition 4.1],
which avoids the use of a very specific decomposition of the field, and relies overall on a much less
precise understanding of the conditional behavior of the occupation field. Let us also mention
that exactly the same gluing technique is employed in the companion article [17] in a more
elaborate context, involving certain (inhomogenous, finite-range) models Vuk,L approximating Vu
(see [17, Section 4]). Whereas ellipticity is not an issue for these models, conditional decoupling
in a form as needed to perform the ‘exploration’ does not come for free, and is achieved through
additional coupling arguments, see [17, Section 7] involving intermediate models in which ‘time
runs for free’ inside regions of interest, thus facilitating a comparison with Vu.

1.3. Organization. Section 2 sets up the notation and gathers a few preliminary results,
starting with a useful topological ingredient. It then collects two important inputs about random
interlacements, a connectivity estimate and a conditional decoupling property. Sections 3 and 4
each contain a self-contained ingredient for the proof. Section 3 exhibits a sprinkled finite energy
property, which is interesting in its own right. Sections 2 and 3 contain all model-specific inputs.
Section 4 comprises the deterministic bridge construction underlying our later surgery argument.
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The proof of Theorem 1.1 starts in Section 5. This short section reduces the result to the key
‘gluing property’ mentioned above, see Lemma 5.2 (cf. also Proposition 7.6 for an enhancement).
This reduction step follows closely the setup of [15] (itself adapted from [4]), to which it frequently
refers. All external inputs from [15] are isolated in that section.

Finally, Sections 6 and 7 are devoted to the proof of the (one-step) gluing lemma (Lemma 5.2).
They contain the delicate surgery argument delineated above, which brings into play the various
ingredients from Sections 2-4, and represent the core of this article. The proof of Lemma 5.2
is given in full in Section 6, but the argument is discharged from two intermediate results,
Lemmas 6.1 and 6.2, which control certain (key) counts of good and bad boxes used in the
proof. These two lemmas are proved separately in Section 7 for the sake of readability.

2 Preliminaries

In this section, we gather a few preliminary results. In §2.1, we collect a topological result, see
Lemma 2.1, which will be used in Section 5 to exhibit the boxes Λk in which connections are
attempted. Its proof uses a result from Deuschel-Pisztora [9]. In §2.2, we first introduce a small
amount of notation concerning random walks and random interlacements. We then gather two
ingredients. The first is a useful connectivity estimate for Vu, see Lemma 2.2, which will be
employed when reconstructing a path. The second, which is the content of Proposition 2.3, is
an adaptation of a conditional decoupling result of Alves-Popov [2], tailored to our needs.

2.1. Connectivity of interfaces. We consider the lattice Zd, d ≥ 3, endowed with the usual

nearest-neighbor graph structure and denote by | · |2 and | · | the `2- and `∞-norms on Zd. We
write x ∼ y to denote neighbors, i.e. when |x − y|2 = 1 for x, y ∈ Zd. For U ⊂ Zd, the set
U c = Zd \ U denotes its complement (in Zd), the set ∂U = {x ∈ U : ∃y /∈ U s.t. y ∼ x}
is the interior vertex boundary of U and ∂outU = ∂(U c) its outer vertex boundary. We let
U = U ∪ ∂outU , and U ⊂⊂ Zd means that U ⊂ Zd has finite cardinality. We use the notations
Br(x) = B(x, r) interchangeably to denote balls with radius r > 0 around x ∈ Zd with respect
to the `∞-norm and abbreviate Br = Br(0). We write d(·, ·) to refer to the `∞-distance between
subsets of Zd and abbreviate d(x, U) = d({x}, U) for x ∈ Zd and U ⊂ Zd. A ∗-path is a finite
or infinite sequence (xk) ⊂ Zd such that |xk+1 − xk| = 1. A path is defined similarly with | · |2
replacing | · |. A crossing from U to V is a path whose range intersects both U, V ⊂ Zd.

Lemma 2.1. (m > n ≥ 1). Let U, V ⊂ Zd be such that U ∪ V = Bm \Bn−1 and both U and V
contain a crossing from ∂Bn to ∂Bm. Then there exists a ∗-path π ≡ (π(i))1≤i≤|π| intersecting
both ∂Bn and ∂Bm with

(2.1) d(π(i), U) ∨ d(π(i), V ) ≤ 1 for all 1 ≤ i ≤ |π|.

Proof. Let C be any fixed connected component of U intersecting both ∂Bm and ∂Bn, which
exists by hypothesis, and let (C′)1, . . . , (C′)k denote the connected components of Bm \ C.

Now let πV ⊂ V be a (finite, nearest-neighbor) path connecting ∂Bn and ∂Bm, which also
exists by the hypothesis of the lemma. To fix ideas, we assume πV has a starting point in ∂Bn,
terminates when first visiting ∂Bm and does not intersect ∂Bn∪∂Bm in between. By considering
its successive entrance points in C and exit points from C, the path πV is decomposed into disjoint,
non-empty sub-paths π1

V , . . . , π
`
V lying alternately in C and some (C′)j with j ∈ {1, . . . , k}. For

concreteness, we assume henceforth that the starting point πV (0) of πV lies in C; the other case is
treated in a likewise manner. Hence, π2i

V ⊂ (C′)j2i for all 1 ≤ i ≤ b`/2c and some j2i ∈ {1, . . . , k}.
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In the sequel we write ∂BmS = {x ∈ Bm \ S : ∃y ∈ S : y ∼ x} to denote the relative
boundary of a set S ⊂ Bm in Bm. By [9, Lemma 2.1 – (ii)], one knows that the ∂Bm(C′)j ’s are
all ∗-connected and hence the union π′ of the sets π1

V , ∂Bm(C′)j2 , π3
V , ∂Bm(C′)j4 , . . . is ∗-connected

as well. Furthermore, as we now explain,

(2.2) π′ intersects both ∂Bn and ∂Bm.

The case of ∂Bn is clear since π′ contains π1
V and hence πV (0). The ‘last’ set entering the union

forming π′ is either i) π`V or ii) the relative boundary of a component (C′)j containing π`V . But
since πV is a crossing, π`V intersects ∂Bm. This immediately yields (2.2) in case i). In case ii)
one has that (C′)j intersects ∂Bm (since it contains π`V , which does). We claim that this implies
that ∂Bm(C′)j then necessarily intersects ∂Bm. For, if (C′)j ∩∂Bm 6= ∅ but ∂Bm(C′)j ∩∂Bm = ∅,
then since ∂Bm is a connected subset of Bm, we get that ∂Bm ⊂ (C′)j . However, this is not
possible because C ⊂ (Bm \ (C′)j) intersects ∂Bm. The same argument applies to ∂Bn as well,
which is relevant in case πV (0) /∈ C.

Since π′ is ∗-connected and on account of (2.2), we can therefore extract a ∗-connected
crossing π of Bm \ Bn−1 from π′. We claim that the crossing π satisfies (2.1). This is owed to
the following two facts:

i) π2i−1
V ⊂ (C ∩ V ) ⊂ U ∩ V , for all i,

ii) ∂Bm(C′)j ⊂ ∂outC, for all j

(recall for item ii) that (C′)j are the connected components of Bm \ C). Now ii) implies that
d(∂Bm(C′)j , U) ≤ d(∂Bm(C′)j , C) = 1. Together with i), this immediately yields (2.1).

2.2. Random walks and random interlacements. We write Px for the canonical law of

the symmetric simple random walk on Zd with starting point x ∈ Zd and X = (Xn)n≥0 the
corresponding discrete-time canonical process, whence X0 = x under Px. The measure Px is
defined on the space W+ endowed with its canonical σ-algebra W+ generated by the evaluation
maps Xn, where W+ refers the set of nearest-neighbor transient Zd-valued trajectories w =
(wi)i∈N (transience means that w−1({x}), x ∈ Zd, has finite cardinality). For K ⊂ Zd, we
introduce the entrance time HK = inf{n ≥ 0 : Xn ∈ K} in K, the exit time TK = HZd\K from

K and the hitting time of K, defined as H̃K = inf{n ≥ 1 : Xn ∈ K}. We further introduce

(2.3) eK(x) = Px[H̃K =∞]1{x ∈ K},

the equilibrium measure of K ⊂⊂ Zd, which is supported on ∂K. Its total mass cap(K) =∑
x eK(x) is the capacity of K.
The interlacement point process is defined on its canonical space (Ω,A,P), under which P is

the probability measure governing a Poisson point process on the space W ∗×R+ with intensity
measure ν(dw∗)du, where du denotes the Lebesgue measure on R+ and (W ∗, ν) is a σ-finite
measure space defined as follows. Let W denote the set of doubly-infinite, nearest-neighbor
transient trajectories in Zd, defined in a similar fashion as W+, endowed with its canonical
σ-algebra W. The corresponding canonical shifts are denoted by θn : W → W , n ∈ Z, with
θn(w)(·) = w(n + ·) and the canonical coordinates by (Xn)n∈Z. The shifts θn, n ≥ 0, also act
on W+. The space W ∗ is the set of trajectories in W modulo time shift, i.e. W ∗ = W/ ∼,
where w ∼ w′ if w = θn(w′) for some n ∈ Z. Let π∗ : W → W ∗ denote the corresponding
canonical projection. The σ-algebra W projects to W∗, the canonical σ-algebra on W ∗. We
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write W ∗K ⊂ W ∗ for the trajectories visiting K ⊂ Zd. The space (W ∗,W∗) carries a natural
measure ν(dw∗), where

1W ∗Kν∞ = π∗ ◦QK , for all K ⊂⊂ Zd,(2.4)

and QK refers to the finite measure on W with

(2.5) QK [(X−n)n≥0 ∈ A, X0 = x, (Xn)n≥0 ∈ A′] = Px[A | H̃K =∞]eK(x)Px[A′],

for all x ∈ Zd and A,A′ ∈ W+, with eK as in (2.3). The fact that ν given by (2.4)-(2.5) gives
rise to a (unique) well-defined measure follows from [37, Theorem 1.1].

Given a sample ω ∈ Ω under P, one defines the interlacement set

(2.6) Iu = Iu(ω) =
⋃

(w∗,v)∈ω, v≤u

range(w∗),

where, with a slight abuse of notation, in writing (w∗, v) ∈ ω we tacitly identify the point
measure ω with its support, a collection of points in W ∗ × R+. The corresponding vacant set
is given by Vu = Zd \ Iu. The set Vu is thus decreasing in u, and the parameter u governs the
number of trajectories entering the picture. We denote by `u = (`ux)x∈Zd the field of (discrete)
occupation times under P, defined as

(2.7) `ux(ω) =
∑

(w,v)∈ω

∑
n∈Z

1{w(n) = x, v ≤ u},

for x ∈ Zd, so that, in view of (2.6) and (2.7), one has that Iu = {x ∈ Zd : `ux > 0}. Moreover,
in view of (2.4), (2.5) and (2.6), and recalling cap(·) from below (2.3), one has that

(2.8) P[Vu ⊃ K] = exp{−ucap(K)},

which characterizes the law of Vu.
Next, we derive some a-priori connectivity lower bound for the vacant set Vu under suitable

assumptions on u.

Lemma 2.2. If u > 0 and κ > 0 are such that

(2.9) inf
r
P
[
Br

Vu←→ ∂B2r

]
≥ κ (> 0),

then for every r ≥ 1 and x, y ∈ Br,

P
[
x
Vu∩B2r←−−−→ y

]
≥ c(κ)r−C ,(2.10)

P
[
x
Vu∩Br←−−−→ y

]
≥ e−C2(κ)(log r)2

.(2.11)

Proof. The proof of (2.10) proceeds exactly as that of [15, Lemma 3.4]: the argument only
relies on the FKG-inequality, which holds in the present context, see [44, Theorem 3.1], and
the invariance of the law of Vu under lattice symmetries. The assumption (2.9) replaces the
condition on h appearing in [15].

We now show (2.11). By the FKG-inequality, we may assume that y = 0 and that r ≥ 10. Let

Lk
def.
= 2k, for k ≥ 0. Still by the FKG-inequality, we may suppose that B(x, 4) = B(x, 4L0) ⊂

Br. Let k0 = max{k : B(x, 4Lk) ⊂ Br} and k1 ≥ k0 be such that Lk1+2 ≤ r < Lk1+3.
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We define a sequence of vertices yk for k ∈ [[k0, k1]]
def.
= [k0, k1] ∩ Z inductively as follows.

Let yk0 = x and note that B(yk0 , 4Lk0) ⊂ Br by choice of k0. Assuming yk0 , . . . , y` have
been defined for some k0 ≤ ` < k1 and that B(y`, 4L`) ⊂ Br, we define y`+1 in the following
way: first we choose an intermediate point y`+1/2 deterministically on ∂B(y`, L`+1) such that
B(y`+1/2, 4L` + L`+1) ⊂ Br (for instance, the point on ∂B(y`, L`+1) minimizing the `1-distance
to the origin will work). Then we repeat this and pick y`+1 on ∂B(y`+1/2, L`+1) such that
B(y`+1, 4L` + 2L`+1) = B(y`+1, 4L`+1) ⊂ Br.

The sequence of points thereby constructed has the following property: for all ` ∈ [[k0, k1]]
and k ∈ {`, `+ 1/2},

(2.12) yk+ 1
2
∈ B(yk, Lbkc+1) and Bk

def.
= B(yk, 2Lbkc+1) ⊂ Br.

Thus, we obtain that

P
[
x
Vu∩Br←−−−→ yk1

]
(2.12)

≥
∏

k0≤`<k1

∏
k∈{`,`+ 1

2
}

P
[
yk

Vu∩Bk←−−−→ yk+ 1
2

] (2.10)

≥ c(κ)
∏

0≤k≤k1

L−Ck ≥ c(κ)e−c
′(κ)(log r)2

,

noting in the last step that k1 ≤ C log r by definition. Since B(yk1 , cr) ⊂ Br, it easily follows
by suitably covering Br with a constant number of boxes of radius, say, cr/10, using (2.10) and

the FKG-inequality that P
[
0
Vu∩Br←−−−→ yk1

]
≥ c(κ)r−c, and (2.11) follows.

We conclude this section with a certain decoupling estimate, see Proposition 2.3 below.
To this effect, we start by setting up a decomposition of trajectories into excursions. This
framework will also be useful in the next section. We assume henceforth that for any realization
ω =

∑
i≥0 δ(w∗i ,ui)

∈ Ω, the labels ui, i ≥ 0, are pairwise distinct, that ω(W ∗A × [0, u]) < ∞ for
all u ≥ 0 and that ω(W ∗A × R+) = ∞, which is no loss of generality since these sets have full
P-measure.

We will use the following excursion decomposition. Let A,U be finite subsets of Zd with
∅ 6= A ⊂ U . The (doubly) infinite transient trajectories, i.e. elements of W or W+, see around
(2.3) for notation, are split into excursions between A and ∂outU by introducing the successive
return and departure times between these sets: D0 = 0 and

Rk = Dk−1 +HA ◦ θDk−1
, Dk = Rk + TU ◦ θRk ,

for k ≥ 1, where all of Dk, Rj , Dj , j > k are understood to be = ∞ whenever Rk = ∞ for
some k ≥ 0. We denote by W+

A,∂outU
the set of all excursions between A and ∂outU , i.e. all

finite nearest neighbor trajectories starting in A, ending in ∂outU and not exiting U in between.
Given ω =

∑
i≥0 δ(w∗i ,ui)

, we order all the excursions from A to ∂outU , first by increasing value
of {ui : w∗i ∈W ∗A}, then by order of appearance within a given trajectory w∗i ∈W ∗A. This yields
a sequence of W+

A,∂outU
-valued random variables under P, encoding the successive excursions:

(2.13)
(
ZA,Un (ω)

)
n≥1

def.
=
(
w0[R1, D1], . . . , w0[RNA,U , DNA,U ], w1[R1, D1], . . .

)
,

whereNA,U = NA,U (w∗0) is the total number of excursions fromA to ∂outU in w∗0, i.e. NA,U (w∗0) =
sup{j : Dj(w0) <∞} and w0 is any point in the equivalence class w∗0. We will omit the super-
scripts A,U whenever no risk of confusion arises.
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We now associate to ω a finite multiset Cu = CA,Uu (ω), for u ≥ 0, obtained by collecting the
pairs of start- and endpoints of any excursion between A and ∂outU in the support of ω with label
at most u, and forgetting their labels. That is, Cu comprises all pairs (x, y) ∈ ∂A× ∂outU such
that x = w∗(Rk), y = w∗(Dk) for some 1 ≤ k ≤ N(w∗) and w∗ ∈W ∗ such that (w∗, v) ∈ supp(ω)
for some v ≤ u (note that this gives rise to a multiset since pairs can appear repeatedly). The
random variable Cu takes values in the measure space (ΩC ,AC) (depending implicitly on A and
U). One can simply take AC = 2ΩC since ΩC is countable.

Let B ⊂ A. The following decoupling result will apply conditionally on the endpoints of the
successive excursions appearing in (2.13) (thereby typically decoupling a set B well inside A,
for A ⊂ U ⊂⊂ Zd). For any pair of points (x, y) ∈ Cu associated to a labeled trajectory in the
support of ω visiting B, one considers the induced sub-trajectory, starting from the time it first
visits B, until the last time the trajectory is in A prior to TU . Let Du denote the collection of
all such sub-trajectories and (ΩD, 2

ΩD) denote the measure space underlying it (ΩD is countable
just like ΩC). We assume that ΩD carries a cemetery state ∆ ∈ ΩD corresponding to pairs
(x, y) ∈ Cu whose associated trajectory doesn’t visit B. Hence, one has that

(2.14) Iu ∩B = I(Du)
def.
=

⋃
w∈Du

range(w) ∩B,

(with the convention range(∆) = ∅), i.e. the interlacement set inside B is a function of Du.

Proposition 2.3. There exist c2 ∈ (0, 1
2) and C3 > 0 with the following properties:

i) For all r ≥ C there exist sets A,U with B = Br ⊂ A ⊂ U ⊂ Br+r1−c2 such that, for every
0 < u and δ ∈ (0, 1), one can find A = A(B) ∈ AC with

(2.15) P
[
Cu ∈ A

]
≥ 1− e−c2uδ2rc2

and for all fixed ζ ∈ A, there is a coupling Q̂ = Q̂ζ of three ΩD-valued random variables

(D̂u(1−δ), D̂, D̂u(1+δ)) such that (D̂v : v ∈ {u(1±δ)}) law
= (Dv : v ∈ {u(1±δ)}) and D̂ having

the law of Du under P[ · |Cu = ζ], and

(2.16) Q̂
[
D̂u(1−δ) ⊂ D̂ ⊂ D̂u(1+δ)

]
≥ 1− C3e

−c2uδ2rc2 .

ii) With B(= Br), A and U as in item i), letting VuB = Vu ∩B and defining

(2.17) Ξu,δB =

{
ζ ∈ ΩC :

E
[
f(VuB)

∣∣ Cu = ζ
]
≥ E

[
f(Vu(1+δ)

B )
]
− C3e

−c2uδ2rc2

for all increasing functions f : {0, 1}B 7→ [0, 1]

}
,

one has for every r ≥ C, u, δ > 0, letting Gu,δB = {Cu ∈ Ξu,δB }, that

(2.18) P[Gu,δB ] ≥ 1− e−c2uδ2rc2 .

Proof. As we now explain, i) essentially follows from [2, Propositions 4.2] with some modi-

fications. We first define the relevant sets A and U . For r ≥ 1, we let s = r
1
b with (say)

b = 1
2(1 + 4d−4

3d−2). The choice of b corresponds to a valid choice of the quantity b� in [2, (1.7)].
Note that b > 1 for all d ≥ 3. Now, for a given set B = Br, introduce the rounded boxes
A =

⋃
x∈Br+s B

2(x, s), where B2(x, s) refers to the `2-ball in Zd of radius s around x. The
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set U is defined similarly as A, with the union ranging over all x ∈ Br+2s instead. This gives
A ⊂ U ⊂ Br+r1−c2 upon choosing c2 > 0 small enough. The ref. [2] involves sets A1-A3 and V ,
and one sets A2 = A3 = U c and V = ∂A. The set A1 corresponds to the region in which the
coupling operates (one considers excursions upon hitting A1 until their last visit to V prior to
hitting ∂A2, see [2, (3.7-8)]) and one sets A1 =

⋃
x∈Br B

2(x, s), so that A1 ⊃ B.
With these choices one applies [2, Propositions 4.2], which yields a coupling P such that (in

the notation of [2], see in particular (4.2) therein),

(2.19) E
[
P
[
GΣ
u(1−δ) ≤ G

ζ ≤ GΣ
u(1+δ)

]∣∣
ζ̄=C̄u

]
≥ 1− C3e

−c3uδ2rc2 ;

here, the outer expectation is with respect to P and acts on C̄u alone, (GΣ
u )u≥0 refers to the soft

local time of the process (Du)u≥0 and Gζ̄ to that of the process Du at level u whose clothesline
process C̄u is conditioned to equal ζ̄. As opposed to Cu, the process C̄u keeps track of the order of
occurrence of points similarly as in (2.13). The event in (2.19) in turn readily implies the chain
of inclusions appearing in (2.16), with the correct marginal laws for the i), one defines Q̂ as the
induced joint law of the three sets in question under P. Observe that the law Q̂ = Q̂ζ is indeed
a function of ζ alone (with hopefully obvious notation, ζ denotes the multi-set associated to ζ̄):
for, reconstructing VuB under P[·|C̄u = ζ̄] does not require knowing the order of appearance of
elements in ζ̄. One then sets

(2.20) A =
{
ζ : Q̂ζ

[
D̂u(1−δ) ⊂ D̂ ⊂ D̂u(1+δ)

]
≥ 1− C3e

− c4
2
uδ2rc2

}
.

With (2.20), (2.16) is immediate, and (2.15) follows by (2.19), upon noticing that the left-hand
side of (2.19) is bounded from above by

E
[
Q̂ζ

[
D̂u(1−δ) ⊂ D̂ ⊂ D̂u(1+δ)

]∣∣
ζ=Cu

]
by monotonicity. Distinguishing in the previous display whether A or Ac occur, and using the
upper bound implied by (2.20) in the latter case then readily gives the inequality x + (1 −
C3e

−α
2 )(1 − x) ≥ 1 − C3e

−α, with x = P[(Cu, Cu′) ∈ A] and α = c4uδ
2rc2 , from which (2.15)

follows. Item ii) is a straightforward consequence of i) and (2.14).

For later reference, we conclude with the following observations.

Remark 2.4. 1) (Monotonicity in (2.17)). By inclusion, the multisets ζ carry a natural partial

order and Ξu,δB is decreasing with respect to this partial order. Indeed if ζ ′ ⊃ ζ contains
more (pairs of) points, then E[f(VuB) | Cu = ζ ′] ≤ E[f(VuB) | Cu = ζ], for ζ ′ requires con-
structing additional (independent) random walk bridges (having the correct marginal law)
to connect the additional points present in ζ ′, which decreases VuB.

2) (Monotonicity with respect to Du). For any B′ = B(x′, r′) such that B(x′, r′+r′1−c2) ⊂ B,
with A′ and U ′ referring to the sets A and U for the box B′, cf. Proposition 2.3,i),

(2.21) CA′,U ′u is a monotonically increasing function of Du with respect to inclusion.

3) (Multiple u’s in (2.16)). Let u1, . . . , uk > 0; δ1, . . . , δk ∈ (0, 1), and A,U and r be as in
item i) of Proposition 2.3. Then there exists an event A ∈ A⊗kC with

(2.22) P
[
(Cu1 , . . . , Cuk) ∈ A

]
≥ 1− e−c2uδ2rc2 ,
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where u
def.
= min{u1, . . . , uk} and δ

def.
= min{δ1, . . . , δk}, and for all fixed (ζ1, . . . , ζk) ∈ A,

there is a coupling Q̂ = Q̂ζ1,...,ζk between the family of {0, 1}Zd-valued random variables

(D̂v : v ∈ {ui(1± δi) : 1 ≤ i ≤ k}) law
= (Dv : v ∈ {ui(1± δi) : 1 ≤ i ≤ k}) and (D̂1, . . . , D̂k)

having the law of (Du1 , . . . ,Duk) under P[ · |(Cu1 , . . . , Cuk) = (ζ1, . . . , ζk)], and

(2.23) Q̂
[
D̂ui(1−δi) ⊂ D̂i ⊂ D̂ui(1+δi) for all 1 ≤ i ≤ k

]
≥ 1− k C3e

−c2uδ2rc2 .

This follows from a minor modification to the argument used in the proof of Proposition 2.3.
Indeed, (a slight extension of) [2, Propositions 4.2] also gives, for all 1 ≤ i ≤ k (cf. (2.19)),

(2.24) E
[
P
[
GΣ
ui(1−δi) ≤ G

ζ̄i ≤ GΣ
ui(1+δi)

]∣∣
ζ̄1=C̄u1 ,...,ζ̄k=C̄uk

]
≥ 1− C3e

−c4uδ2rc2 ,

where E now acts on (C̄u1 , . . . , C̄uk). The remainder then follows in the same manner as
before, applying a union bound over k to deduce (2.23) from (2.24).

3 Sprinkled finite energy property

We now derive a separate ingredient for our proof of Theorem 1.1, which we call sprinkled finite
energy. Roughly speaking, the event F̃B introduced in Proposition 3.1 below is designed with
the following property in mind: F̃B enables us to open up the box B in Vu−δ with not too
degenerate probability conditionally on carefully chosen information, including Iu as well as all
starting and endpoints of excursions within a larger box B̂, starting from its boundary. Note
in particular that this entails a ‘buffer’ zone B̂ \B, which is non-negotiable. We will eventually
use this tool at the bottom scale in the upcoming bridge construction, in order to ‘plug’ its
remaining holes (see the beginning of Section 4, where holes will be precisely defined).

Stating the sprinkled finite energy property precisely requires a minimal amount of prepara-
tion. For B a box and u ≥ 0, let C̃Bu = C̃Bu (ω) denote the (finite) sequence containing the pairs of
start- and endpoints of the successive excursions between B and ∂outB in the support of ω with
label at most u, in order of appearance and with their associated labels; recall the allied notion
CB,Bu introduced below (2.13), where in contrast both the labels and the order of appearance
were forgotten. For any w∗ ∈W ∗, we denote by φ−B(w∗) the sequence of segments (sub-paths) of
w∗ obtained when removing the interiors of all excursions in w∗ between B and ∂outB, i.e. with
the exception of their start- and endpoints. The segments are arranged according to order of
appearance within w∗. Now let

(3.1) ω−B =
∑

(w∗,v)∈ω

δ(φ−B(w∗),v).

In particular, C̃Bu is measurable relative to ω−B .

Proposition 3.1 (Sprinkled finite energy). For any u ≥ δ > 0, x ∈ Zd, r0, r ≥ 1, B = B(x, r)

and B̂ = B(x, r + 7r0), there exists an event F̃B = F̃ u,δ,r0B having the following properties:

F̃B is measurable relative to (C̃B̂u , Iu ∩ B̂),(3.2)

P
[
B ⊂ Vu−δ

∣∣σ(ω−
B̂
, Iu ∩ B̂)

]
1
F̃B
≥ e−C(r∨r0)2d

,(3.3)

P[F̃ cB] ≤ C(r ∨ r0)de−c(u∧δ)r
c
0 .(3.4)
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The proof of Proposition 3.1 is given below. A box B = B(x, r) will later be called finite-
energy good (with parameters (u, δ, r0)) if an event F̃B with the properties postulated by Propo-
sition 3.1 occurs; for concreteness, one can take the explicit event (3.5) constructed in the proof.
In practice (see for instance Section 7.1), it can at times be useful to know that F̃B is implied by
another event, still satisfying (3.4) but with ‘worse’ measurability properties than (3.2), how-
ever with advantageous monotonicity features in terms of u, lending themselves to arguments
involving sprinkling; see Remark 3.2 for more on this.

Proof of Proposition 3.1. We start by defining the event F̃B. Recall the sequence C̃Bu of labeled
start- and endpoints of the successive excursions between B and ∂outB by trajectories in the
support of the interlacement process ω with label at most u. For r, r0 ≥ 1 and x ∈ Zd, let
B = B(x, r) and B̂ = B(x, r + 7r0) as in the statement of Proposition 3.1. Now consider the
event

F̃B = F̃ u,δ,r0B
def.
= F̃ ′B ∩ F̃ ′′B(Iu ∩ B̂)(3.5)

where u ≥ δ > 0 ,

F̃ ′B =
{
|C̃B̂u | ≤ r0 |∂outB̂|

}
and for I ⊂ B̂,

F̃ ′′B(I)
def.
=


C̃B̂u = C̃ for some C̃ such that, for any ξ = (x, y, v) ∈ C̃, there is an excursion
w = w(ξ) starting in x and ending in y, with |w| ≤ (20(r ∨ r0))d, such that⋃

ξ∈C̃ range(w(ξ)) = I and
⋃
ξ=(x,y,v)∈C̃, v≤u−δ range(w(ξ)) ∩B = ∅

 ;

here with hopefully obvious notation, w refers to an excursion between B̂ and ∂outB̂ and |w|
denotes its (time-)length. We note that (w(ξ))

ξ∈C̃B̂u
naturally constitutes a sequence whose order

is inherited from C̃B̂u (which is arranged according to increasing label and order of appearance
within a trajectory, cf. (2.13) for a similar procedure).

Plainly, (3.5) implies (3.2). We now show (3.3). As noted below (3.1), C̃Bu is measurable
with respect to the truncated process ω−B , obtained from ω by removing these excursions except

for their start- and endpoints (which correspond to elements in C̃Bu whenever the underlying
trajectory has label at most u). In particular, this implies that both F̃ ′B and F̃ ′′B(I) for fixed I

are σ(ω−B)-measurable. Let Z̃Bu = Z̃Bu (ω) denote the (finite) sequence of successive excursions

between B and ∂outB along with their associated labels. One now observes that for any I ⊂ B̂
such that P[Iu ∩ B̂ = I, F̃ ′B ∩ F̃ ′′B(I)] > 0, as we now explain,

(3.6) P
[
B ⊂ Vu−δ, Iu ∩ B̂ = I, F̃B

∣∣σ(ω−
B̂

)
]

= P
[
range

(
Z̃B̂u−δ ∩B

)
= ∅, range

(
Z̃B̂u
)

= I
∣∣σ(ω−

B̂
)
]
1{F̃ ′B ,F̃

′′
B(I)}

(∗)
≥ P

[
Z̃B̂u = (w(ξ))

ξ∈C̃B̂u

∣∣σ(ω−
B̂

)
]
1{F̃ ′B ,F̃

′′
B(I)}

(∗∗)
≥ e−C(r∨r0)2d

1{F̃B , Iu∩B̂=I},

from which (3.2) readily follows upon integrating on any σ(ω
B̂−)-measurable event. The inequal-

ity (∗) is an inclusion of events, which follows by the defining properties of the event F̃ ′′B(I); in

plain words, if the excursions Z̃B̂u match precisely the sequence (w(ξ))
ξ∈C̃B̂u

, which is determin-

istic upon conditioning on ω−
B̂

and whose existence is guaranteed on the event F̃ ′′B(I), then both
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B ⊂ Vu−δ and Iu ∩ B̂ = I occur. To obtain (∗∗), one simply notes that under P[ · |σ(ω−
B̂

)], the

excursions constituting Z̃B̂u are independent and each distributed as lazy random walk bridge
conditioned to stay inside B̂ until reaching its endpoint. The probability that such a bridge
follows a fixed path w is bounded from below by (4d)−|w|. The event F̃ ′B ensures that there are
at most Cr0(r0 + r)d−1 different bridges to consider, each of which follows a path of length at
most C(r ∨ r0)d due to F̃ ′′B(I), and (3.6) follows.

It remains to show (3.4). We seize the opportunity to show slightly more, namely that F̃B
in (3.5) is implied by another event F̂B satisfying (3.4) with explicit monotonicity properties;
see also Remark 3.2 below. For B = B(x, r) as above and integer r0 ≥ 1, we let

A(B, r0) = B(x, r + 5r0) \B(x, r + 3r0),

Ã(B, r0) = B(x, r + 6r0) \B(x, r + 2r0).
(3.7)

We now introduce for u1 ≥ u2 ≥ u3 > δ2 > δ1 positive numbers, the event F̂B(u1, u2, u3, δ1, δ2, r0)
under P as the intersection of the following three events (keeping the dependence on the under-
lying parameters implicit):

F̂ 1
B

def.
=

⋂
x,y∈Iu2−δ1 ∩A(B,r0)

{
x
Iu2 ∩ Ã(B,r0)←−−−−−−−→ y

}
,

F̂ 2
B

def.
=
{

(Iu3−δ1 \ Iu3−δ2) ∩Br0 6= ∅
}
, and

F̂ 3
B

def.
=

⋂
x∈B8r0

{`u1
x ≤ r0},

(3.8)

where Bs = {x ∈ Zd : d(z,B) ≤ s} and (`ux : x ∈ Zd, u > 0) denote the occupation times of the
interlacement, see (2.7). We now claim that one has the inclusion

(3.9) F̂B
def.
= F̂B(u, u, u, δ/2, δ, r0) ⊂ F̃B

with F̃B as defined in (3.5). Once (3.9) is shown, (3.4) follows using [11, Theorem 5.1] to bound
P[(F̂ 1

B)c], combining the formula (2.8), the fact that Iu \ Iv has the same law as Iu−v for u > v

and the bound cap(Br0) ≥ c(r ∨ r0)d−2 to deal with P[(F̂ 2
B)c], and applying a union bound

together with a straightforward large-deviation estimate to bound P[(F̂ 3
B)c], observing that `u0

follows a compound Poisson distribution.
We now turn to the proof of (3.9). Recalling that B̂ = B(x, r + 7r0), first notice that

F̂B ⊂ F̂ 3
B ⊂

{
|C̃B̂u | ≤ r0 |∂outB̂|

}
= F̃ ′B

and thus we only need to show the inclusion

(3.10) F̂B ⊂ F̃ ′′B(Iu ∩ B̂),

which rests on a purely combinatorial argument. To this end for any given ξ ∈ C̃B̂u on the event
F̂B, we propose a way to choose an excursion w = w(ξ) between B̂ and ∂outB̂ by considering
three mutually exclusive and exhaustive cases. We then proceed to check that the excursions
w(ξ) have the properties required for F̃ ′′B(Iu ∩ B̂) to occur. Let W (ξ) denote the excursion in

Z̃B̂u corresponding to ξ = (x, y, v)(∈ C̃B̂u ).
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Case 1. range(W (ξ))∩Br0 = ∅ or v ∈ (u− δ
2 , u]. In this case, we choose w to be the concatenation

of x, w̃ and y where w̃ is a minimum length traversal of some spanning tree of the connected
set range(W (ξ)). Clearly,

|w| ≤ 2 (number of edges in B̂) + 2 ≤ (20(r ∨ r0))d.

Case 2. range(W (ξ)) ∩ Br0 6= ∅ and v ≤ u − δ. In this case there is a path γ ⊂ Iu ∩ (B̂ \ B)
connecting x and y. For, otherwise, any path connecting x and y must intersect B. In
particular, this is true of the excursion W (ξ), which is in Z̃Bu−δ. However, since F̂B ⊂ F̂ 1

B

occurs, it follows from the local connectivity implied by the latter, see (3.8), that there is
a path γ ⊂ Iu∩ (B̂ \B) connecting x and y, a contradiction. We now define w in a similar
way as in the previous case with W (ξ) replaced by a path γ ⊂ Iu ∩ (B̂ \B) joining x and
y (which we just showed exists). In particular, |w| ≤ (20(r ∨ r0))d as above.

Case 3. range(W (ξ)) ∩ Br0 6= ∅ and v ∈ (u − δ, u − δ
2 ]. As in Case 2, using the local connectivity

ensured by F̂ 1
B, we can find a connected set C(ξ) ⊂ Iu ∩ B̂ such that

range(W (ξ)) ∪
⋃

ξ′=(v′,x′,y′): v′≤u−δ,
W (ξ′)∩Br0 6=∅

range(W (ξ′)) ⊂ C(ξ).

Now define w = w(ξ) similarly as in Case 2 (or Case 1) with C(ξ) substituting for
range(W (ξ)). The required bound on |w| still holds.

By our treatment of Case 2, it immediately follows that⋃
ξ=(x,y,v): v≤u−δ

range(w(ξ)) ∩B = ∅.

On the other hand, as F̂B ⊂ F̂ 2
B, see (3.8), there is at least one ξ ∈ C̃B̂u falling under Case 3.

Since the only excursions for which range(W (ξ)) 6⊂ range(w(ξ)) are those falling under Case 2,
we deduce from our treatment of Case 3 that⋃

ξ

range(w(ξ)) =
⋃
ξ

range(W (ξ)) = Iu ∩ B̂.

In view of the definition of F̃ ′′B(Iu ∩ B̂), the last two displays together with the bound on |w|
implied in all three cases yield (3.10).

Remark 3.2. We record for later reference that the event F̃B = F̃ u,δ,r0B entering Proposition 3.1
(and later our bridging construction in defining a finite-energy good box, see e.g. (6.8) and
(6.10) below), satisfies F̃B ⊃ F̂B, see (3.9), with F̂B defined as the intersection of the three
events appearing in (3.8) (with u1 = u2 = u3 = u, δ1 = δ

2 , δ2 = δ) and

(3.11) P[F̂ cB] ≤ C(r ∨ r0)de−c(u∧δ)r
c
0 .

Whereas the event F̃B is advantageous (notably due to (3.2)) to perform the surgery argu-
ments presented below, the event F̂B is cut out for renormalization-type arguments, for which
monotonicity in terms of the various parameters involved is crucial.
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4 Hierarchical bridges

In this section, we construct a geometric object which we call a bridge. It is a fractal set
comprising boxes at all scales with several desirable features, expressed as conditions (B.1)-(B.4)
below. Bridges will be used in Section 5 as an efficient highway to build connections between
clusters. Here, ‘efficiency’ refers to the cost of building a connection between two given clusters,
which are arbitrary, and possibly very irregular. This cost will later need to be optimized under
polynomial lower bounds on connectivity such as those appearing in Lemma 2.2. The multiple
scales involved in the construction of the bridge (rather than just using one scale) reflect this
feature, which is characteristic of critical geometry. We note in passing that the same bridge
construction is also crucially at play in the companion article [17], see Remark 4.6 at the end of
this section for more on this.

The existence of bridges with the desired properties (B.1)-(B.4) is the content of Propo-
sition 4.1 below, which is the main result of this section. Its proof follows a deterministic
construction and applies to any given pair of clusters, which the bridge connects (see condition
(B.2)). Part of the construction is somewhat reminiscent of Whitney-type covering lemmas;
see e.g. [36, Chap. I, §3.2, p. 15]. The inherently hierarchical nature of a bridge, which will
become apparent in the proof, see also Figure 1, is ultimately owed to a delicate and limited
decoupling, cf. Proposition 2.3 or Proposition 3.1, which warrant polynomial safety gaps.

The bridge construction will occur inside tube regions (including boxes as a special case),
defined as follows. Let z ∈ Zd, 1 ≤ j ≤ d a coordinate direction and N,L ≥ 0 be integers. The
(`∞-)tube of length N + 2L and (cross-sectional) radius L in the j-th coordinate direction is the
set

(4.1) T jL,N (z) =
⋃

0≤n≤N
B(z + nej , L).

Let C and D be two disjoint subsets of Zd (d ≥ 1) that both intersect the tube T = T jL,N (z)
in (4.1). A bridge associated to the septuple (C,D, s, s′,m, ξ, T ), where s, s′,m ∈ (0,∞) and
ξ ∈ (0, 1), is a collection of boxes B =

⋃
1≤j≤J Bj , for some integer J ≥ 1 (the index j should

be thought of increasing the resolution, i.e. boxes in Bj get smaller as j grows), each contained
in B(T, s) and having the following properties. Letting H = BJ (the ‘holes’), each box in
B−J = B \ H =

⋃
1≤j<J Bj is a subset of T containing two marked points on its boundary.

Moreover, the following hold.

(Separation). For 1 ≤ j < J and B = B(x, r) ∈ Bj , the box B̃
def.
= B(x, r + drξe)

is disjoint from all boxes B′ (recall K denotes the closure of K ⊂ Zd, see §2.1 for
notation), where B′ ∈ (

⋃
j′≤j Bj′) \ {B}, as well as from C ∪D. Moreover, if B(x, r)

and B(x′, r′) are two distinct boxes in H, then B(x, r + s′) ∩B(x′, r′ + s′) = ∅.

(B.1)

(Connectivity). For 1 ≤ j < J and B ∈ Bj , if πB is any path connecting the two
marked vertices of B, then the union of all such paths along with the boxes in H
connects C and D, i.e.

C ∪
( ⋃
B∈B\H

πB

)
∪
( ⋃
B∈H

B
)
∪ D

is a connected set (here and routinely below we identify a path πB with its range).

(B.2)
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(Size). If B = B(x, r) satisfies B ∈ B \H then r ≥ s′ whereas if B ∈ H then r ≤ s.(B.3)

(Complexity). |B| ≤ (N/L+ 8d log eL)(log eL)m and J ≤ m log log e2L.(B.4)

The following proposition is the main result of this section. We implicitly assume that C, D
and T are related as stated above, i.e. C, D ⊂ Zd, C ∩ D = ∅ and C ∩ T 6= ∅, D ∩ T 6= ∅.

Proposition 4.1. For all ξ ∈ (1
2 , 1), there exists m = m(ξ) > 1 such that for all L ≥ 2s ≥ C(ξ)

and with s′ = s1/4/200, there is a bridge B associated to (C,D, s, s′,m, ξ, T ).

Proof. By invariance under translations and lattice rotations, we may assume that T = T 1
L,N (0).

As we first explain, it is sufficient to work in the continuum, which is a matter of convenience.
We thus consider T as well as the boxes appearing in (B.1)-(B.4) as (closed) subsets of Rd.
With regards to giving sense to (B.2), we identify πB and C,D with the connected subsets
of Rd obtained by adding line segments between all neighboring pairs of points. With these
conventions, (B.1)-(B.4) are naturally declared in Rd. We will construct a bridge B satisfying

the conclusions of Proposition 4.1 in this continuous setup, but with s′ = s1/4

100 instead (note that
the conditions (B.1) and (B.3) become more stringent as s′ increases) and 2drξe in place of drξe
as well as C ∪ D in place of C ∪ D in (B.1). The discrete case then follows by taking lattice
approximations of the corresponding boxes, thereby only increasing the radius of the boxes in
B, in order for (B.2) to continue to hold. Property (B.4) is unaffected by this. The slightly
stronger continuous result (with larger value of s′ and radius for B̃) ensures that the lattice
effects resulting from this approximation, which may cause the radii of any box to increase
additively by a bounded amount, are duly accounted for, i.e. the requirements (B.1), (B.3) for
the resulting discrete bridge hold whenever s ≥ C(ξ) (possibly replacing s by s + C ′ in the
process of passing to the discrete framework).

We now work within the above continuous setup and start with a reduction step ((4.2)
below). We denote by ∂LT , resp. ∂RT the left, resp. right face of T , i.e. if T is the (closed)
continuous tube corresponding to T 1

L,N (0) in (4.1), then ∂LT = {−L} × [−L,L]d−1 and ∂RT =

{N + L} × [−L,L]d−1. The case of generic T jL,N (z) is analogous. For any S ⊂ Rd, we use S̊

and S for the topological interior and closure of S, respectively. We claim it is enough to show

for L ≥ s ≥ C(ξ) that there exists a bridge associated to (C,D, s, s′,m(ξ), ξ, T ) with s′ = s1/2

100
under the additional assumption that

(4.2) (C ∪ D) ∩ T̊ = ∅, C ∩ ∂LT 6= ∅ and D ∩ ∂RT 6= ∅.

We first explain how to derive the general case from (4.2).

Claim 4.2 (L ≥ 2s, s ≥ C(ξ)). There exists a tube T ′ = T j
′

L′,N ′(z
′) ⊂ T such that (4.2) holds

with T ′ in place of T and in addition,

(4.3) L′ ≥ s (≥ C(ξ)) or N ′ + 2L′ < 2s.

Once such at T ′ is at our disposal, we conclude as follows. In case L′ ≥ s we simply define B
as the bridge associated to (C,D, s, s′,m, ξ, T ′), which exists by assumption as T ′ satisfies (4.2).
One then simply notes that B thus satisfies (B.1)-(B.4) for (C,D, s, s′,m, ξ, T ) and the claim of
Proposition 4.1 follows. On the other hand if L′ < s, then by (4.3) we have that N ′ + 2L′ ≤ 2s,
hence we can simply set J = 1 and B = H = {B(x, s)} where x is the center of the tube T ′.
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Proof of Claim 4.2. Let yC ∈ C ∩ T and yD ∈ D ∩ T be such that

|yC − yD| = d
(
C ∩ T,D ∩ T

) def.
= D

(recall that d(·, ·) denotes the `∞-distance between sets). Thus, we have that yj
′

D = yj
′

C +D for
some 1 ≤ j′ ≤ d (this defines j′ entering the definition of T ′). We now distinguish two cases.
If j′ = j (the direction j refers to T = T jL,N (z)) and D ≥ 2L, we define T ′ as the tube with
L′ = L whose boundaries ∂LT

′ and ∂RT
′ contain yC and yD, respectively. Note that this can

always be accomodated (i.e. N ′ ≥ 0) since D ≥ 2L. Clearly, T ′ ⊂ T and (4.2) holds for T = T ′

by construction, and the first condition in (4.3) is in force (in fact L′ = L ≥ 2s).
The remaining case is that either i) j′ 6= j or ii) j′ = j and D < 2L. Since the cross-section

of T (orthogonal to ej , thus corresponding to directions j′ 6= j) is 2L, one has D ≤ 2L regardless
of whether i) or ii) occurs. One thus finds a box B of radius D

2 contained in T having yC and yD
on opposite faces: for instance, B can be obtained by considering the rectangular cuboid having
yC and yD at opposite corners, extending its short directions (all except j′) to obtain a box of
desired radius (but not necessarily in T ) and rigidly shifting it one by one in all but the j’th
direction to obtain B ⊂ T (using that D ≤ 2L). We set T ′ = B, whence L′ = D

2 and N ′ = 0.
Again, (4.2) is plain and in case L′ < s, we have that N ′ + 2L′ = 2L′ < 2s, whence (4.3).

In the remainder of the proof, we confine ourselves to the special case where T (= T 1
L,N (0))

satisfies (4.2). Thus, let yC ∈ C∩∂LT and yD ∈ D∩∂RT . For n ∈ Z, consider the coarse-grained
lattice Λn = Ln Zd with

(4.4) Ln = 2−nL, n ≥ 0,

and let Bn,x = x+ [0, Ln)d for any x ∈ Zd (not to be confused with B(x, r)). Observe that the
families of (semi-closed) boxes Bn = {Bn,x : x ∈ Λn} are naturally nested and each forms a
tiling of Rd. We will refer to a box in Bn as an n-box. We denote by B =

⋃
n≥0 Bn the collection

of all n-boxes as n varies. Two boxes in B,B′ ∈ B are called adjacent if B ∩ B′ /∈ {B,B′} and

they are ‘next’ to each other, i.e. B ∩ B′ is a face of one of B and B
′
. It readily follows that

,given any two boxes in B, either one of them contains the other, or they are adjacent, or they
are disjoint but non-adjacent. A sequence γ : {1, . . . , `} → B will be called coarse path if the
boxes γ(i) and γ(i+ 1) are adjacent for all i and ` = `(γ) is called the length of γ. The coarse
path γ is simple if all its boxes are disjoint. We will use the following result.

Lemma 4.3. For L ≥ s ≥ C, there exists a simple coarse path γ such that, with ` = `(γ),

i) The box γ(1) (resp. γ(`)) is adjacent to a box of same length containing yC (resp. yD).

ii) For all 1 ≤ i ≤ `, γ(i) ⊂ T , γ(i) ∈ Bn for some 0 ≤ n ≤ dlog2(16L/s)e and if |i− i′| ≤ 1,
then γ(i′) ∈ Bm for some m ∈ {n− 1, n, n+ 1}.

iii) γ(1) and γ(`) are dlog2(16L/s)e-boxes (so their side lengths are at most s
16 , see (4.4)).

iv) 2 ≤ ` = `(γ) ≤ N
L + 5d log2

64L
s .

The proof reminiscent of the bridge construction of [15, Lemma 2.5], but simpler.

Proof of Lemma 4.3. We will construct γ in a hierearchical manner through progressive refine-
ments (recall that increasing n corresponds to an increasing resolution in (4.4)). The starting

18



point is the ‘very’ coarse path γ0, defined as a shortest-length path with values in B0 connecting
the unique 0-boxes containing yC and yD. Since T = T 1

L,N (0) and on account of (4.1), we can
choose γ0 in such a way so that all the boxes in γ0 except, possibly, the initial and terminal ones
γ(1) and γ(`(γ0)), lie inside T . It is clear from this construction that 3 ≤ `(γ0) ≤ N

L + 4d.
Now suppose that at the end of stage k ≥ 0, we have obtained a simple coarse path γk :

{0, . . . , `k} →
⋃

0≤n≤kBn, so `k = `(γk), having the following properties:

γk(1) 3 yC , γk(`k) 3 yD and γk(i) ∈ Bk for i ∈ {1, 2, 3, `k − 2, `k − 1, `k}.(4.5)

γk(i) ⊂ T for 1 < i < `k, and with γk(i) ∈ Bni one has ni+1

ni
∈ {1

2 , 1, 2} for 1 ≤ i < `k.(4.6)

3 ≤ `k ≤ N
L + 4(k + 1)d and 4 ≤ `k, k ≥ 1.(4.7)

It is plain that γ0 satisfies (4.5)-(4.7) for k = 0. We will momentarily construct γk+1 inductively
from γk to deduce the existence of a γk with the above features for all k ≥ 0. Once the existence
of γk for all k ≥ 0 is established, we simply define γ to be the coarse path inside T obtained
from γdlog2(16L/s)e (recall that L ≥ s) after removing the first and final boxes (containing yC and
yD, respectively, due to (4.5)), should they lie outside T . It is clear from this construction and
on account of (4.6) that the resulting path γ satisfies i). Item ii) also follows from (4.6) and
the choice of depth k = dlog2(16L/s)e, by which (4.7) immediately yields the upper bound in
iv). The lower bound ` ≥ 2 follows from the fact that T has diameter at least 2L ≥ 2s whereas
γk(1) and γk(`) have side length at most s

16 , whence `(γk) ≥ 4 and thus `(γ) ≥ 2. Finally iii)
follows directly from (4.5).

We now prove the induction step. We construct γk+1 from γk by retaining most of it while
refining the boxes at its both ends. Since Lk divides L, see (4.4), it follows from the definition
of the coarse-grained lattice Λk and the tube T that if a k-box Bk,x intersects ∂RT and has
a neighboring k-box inside T , then this neighbor is unique and in fact equals Bk,x−Lke1 . The
previous observation applies to Bk,x = γk(`k) by (4.5) and since yD ∈ D ∩ ∂RT . Now two cases
might occur based on the value of x1, the first coordinate of the base point x for the box γk(`k).

Firstly, we may have x1 < N + L − Lk+1, in which case the left half of Bk,x, i.e. the set
x+ [0, Lk+1)× [0, Lk)

d−1 is contained in T . We then construct a simple coarse path consisting
of three (k+ 1)-boxes BR,−2, BR,−1 and BR, each contained inside Bk,x, that connects ∂LBk,x =
∂R(γk(`k − 1)) to BR ⊂ Bk,x, the unique (k + 1)-box containing yC . This actually only requires
two boxes BR,−1 and BR but we add a third box BR,−2 neighboring both BR,−1 and γk(`k − 1)
with a view towards (4.5).

On the other hand, if x1 ≥ N + L − Lk+1, BR defined as above is adjacent to ∂LBk,x =
∂R(γk(`k−1)) and hence we can choose a coarse path consisting of two (k+ 1)-boxes BR,−2 and
BR,−1 inside γk(`k−1) joining the face of γk(`k−1) adjacent to γk(`k−2) and BR. By the same
reasoning, we find three (k+ 1)-boxes BL, BL,1 and BL,2 all contained in γk(1), where BL is the
unique (k + 1)-box containing yC . We now define the path γk+1 by considering several cases.

Case (a): BR,−2, BR,−1 ⊂ γk(`k). In this case we set γk+1(1) = BL, γk+1(2) = BL,1 and
γk+1(3) = BL,2; γk+1(`k + 4) = BR, γk+1(`k + 3) = BR,−1 and γk+1(`k + 2) = BR,−2; and
γk+1(i) = γk(i− 2) for all 4 ≤ i ≤ `k + 1.

Case (b): BR,−2, BR,−1 ⊂ γk(`k−1), `k > 3. In this case we set γk+1(1) = BL, γk+1(2) = BL,1

and γk+1(3) = BL,2; γk+1(`k + 1) = BR, γk+1(`k) = BR,−1 and γk+1(`k − 1) = BR,−2; and
γk+1(i) = γk(i− 2) for all 4 ≤ i ≤ `k.

Case (c): BR,−2, BR,−1 ⊂ γk(`k − 1), `k = 3. In this case, BR,−2 ⊂ γk(1) and hence we
can connect ∂BL,2 with BR,−2 using a coarse path in γk(1) of size at most d + 1. We then set
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γk+1 to be a simple coarse path in Bk+1 formed by these (k+ 1)-boxes along with BL, BL,1, BL,2

and BR,−2, BR,−1, BR. We stress that this includes the possibility of having overlaps among
BL,1, BL,2 and BR,−2, BR,−1, in which case the additional piece of path in γk(1) is simply absent.

It follows readily from the above construction that the path γk+1 hereby defined satisfies
properties (4.5) and (4.6) with k+1 in place of k. As to (4.7), one sees plainly that `k+1 = `k+4
in Case (a), `k+1 = `k+1 in Case (b) and `k+1 ≤ d+1+6 in Case (c). The lower bound `k+1 ≥ 4
follows from `k ≥ 3 (which holds for all k ≥ 0) in Cases (a) and (b). For Case (c) one observes
that the ‘worst-case’ scenario is BL,1 = BR,−2, BL,2 = BR,−1, in which case γk+1 is composed of
the four boxes BL, BL,1, BL,1, whence `k+1 ≥ 4.

We are just one step away from proving Proposition 4.1. This step involves the proof of the
proposition in a very special case.

Lemma 4.4 (ξ ∈ (1
2 , 1)). Let C = ∂LT and D = ∂RT . For some m = m(ξ) and all L ≥ s ≥

C(ξ), there is a bridge associated to (C,D, s, s′,m, ξ, T ) with s′ =
√
s

100 . Furthermore, all the boxes
in the bridge can be chosen to lie inside T .

Assuming Lemma 4.4, we first finish the proof of Proposition 4.1. Let γ be the coarse path
supplied by Lemma 4.3. In the sequel, BL and BR refer to the boxes adjacent to γ(1) and γ(`)
containing yC and yD, respectively; cf. item i) above. In order to ensure the separation property
(B.1), we now slightly reduce the size of boxes comprising γ to obtain a path γ′, as follows. Let
ni be such that γ(i) ∈ Bni , by which γ(i) has side length Lni . For any 1 < j < ` = `(γ) we
simply let γ′(j) = B(x, r − 4rξ), where B(x, r) = γ(j) (so x refers to the center of γ(j) and
r = Lnj/2).

For γ′(1), resp. γ′(`), in addition to ensuring a small gap to other boxes in γ′, we also aim

to preserve adjacency to BL, resp. BR. To this end we proceed as follows. Let r =
Ln1

2 denote
the radius of γ(1). If d(γ(1), ∂LT ) ≥ r, we let γ′(1) ⊂ γ(1) denote the (unique) box with radius
r − 4rξ that is at Euclidean distance 4rξ from each face of γ(1) except for two, one which is
shared with (i.e. a subset of) BL and the other which is at distance 8rξ. Otherwise, we let
γ′(1) = B(x, r − 4rξ) where B(x, r) = γ(1) and, with a slight abuse of notation, reset BL to be
any box of radius r obtained by shifting BL in such a way that it still contains yC as well as one
face of γ′(1). This is possible because r + 4rξ < 2r for all r ≥ C(ξ). We proceed analogously
with γ(`), yD and BR.

Overall, it follows by construction of γ′, using the properties i) and ii) of γ, that

(4.8) d
(
γ′(j),

⋃
1≤ j′ 6=j≤ `

γ′(j′)
)
∧ d(γ′(j), C ∪ D) ≥ 4 rad(γ′(j))ξ,

and γ′(1) (resp. γ′(`)) is adjacent to BL (resp. BR), which contains yC (resp. yD). We then set

(4.9) B1 = {γ′(j) : 1 ≤ j ≤ `}.

We will describe the marked points for the boxes in B1 shortly (following (4.12)). As item ii)
in Lemma 4.3 ensures that the length of any box in γ is at least s

32 and the ratio of the side
lengths of γ(j) and γ(j + 1) lies in {1/2, 1, 2}, we can fit for each 1 ≤ j < ` a tube Tj of the
form (4.1) (with L = rad(γ(j))ξ) connecting the two faces of γ′(j) and γ′(j + 1) facing one
another. For definiteness, we pick Tj aligned around the axis emanating from the center of the
smaller of the two faces. With a view towards applying Lemma 4.4, the length of Tj is chosen

20



so that the opposite faces exactly contain ∂LTj and ∂RTj as subsets. It follows that the length
(corresponding to N + 2L in (4.1)) of Tj is at most 8 rad(γ(j))ξ provided s ≥ C(ξ). Moreover,
it can be ensured that
(4.10)

B(Tj , 8 rad(γ(j))ξ), 1 ≤ j < `, are disjoint and do not intersect B(BL ∪BR,
1

100( s
64)ξ/2).

(for the latter one uses that {BL, BR} each neighbor a box in B1). Applying Lemma 4.4 to each
Tj yields a bridge Bj =

⋃
1≤i≤Jj B

j
i associated to

(4.11) (∂LTj , ∂RTj , (
s
64)ξ, 1

100( s
64)ξ/2,m, ξ, Tj)

for each 1 ≤ j < `, provided s ≥ C(ξ) and with m = m(ξ) as supplied by Lemma 4.4. For each

1 ≤ i < maxj Jj
def.
= J − 1, we then set

(4.12) Bi+1 =
⋃

j: Jj>i

Bji , BJ = {BL, BR} ∪
⋃
j

BjJj .

Boxes in Bi+1 inherit the marked points on their faces from the Bji ’s. The centers of ∂LTj , ∂RTj ,
1 ≤ j ≤ `, along with two arbitrary points at the boundary of γ′(1) and γ′(`) on the face shared
with BL and BR, respectively, define the marked points for all boxes comprised in B1; indeed,
cf. (4.9), exactly two such points lie on the boundary of each box γ′(j), 1 ≤ j ≤ `.

We now verify that B =
⋃

1≤j≤J Bj defined by (4.9) and (4.12) satisfies the properties (B.1)-

(B.4) for (C,D, s, s′,m, ξ, T ) with s′ = s1/4

100 . We proceed in reverse order and start with (B.4).
By construction, |B| ≤ |B1|+

∑
1≤j<` |Bj |+2 and the desired bound on |B| follows by combining

item iv) in Lemma 4.3 (recall that ` = `(γ)), with the fact that each Bj satisfies (B.4) with
aspect ratio N

L ≤ C and L = rad(γ(j))ξ. From this (B.4) for B readily follows upon possibly
increasing the value of m = m(ξ), henceforth fixed. The required bound on J , defined above
(4.12), is inherited from the uniform bound on the Jj ’s.

We turn to (B.3). First note that J ≥ 2 so the boxes in B1 never form part of H. The
required box sizes in (B.3) thus follow on the one hand from item ii) in Lemma 4.3, which takes
care of boxes in B1. For boxes in Bj the required size follows from the corresponding property
(B.3) in force for Bj by the choice of parameters in (4.11) and the obvious monotonicity of
condition (B.3) in s and s′ (note in particular that s′ = s1/4/100 ≤ (s/64)ξ/2/100 holds for
s ≥ C(ξ) since ξ ∈ (1/2, 1), whence boxes in H are indeed large enough). Finally items i) and
iii) in Lemma 4.3 imply together that BL and BR have radius at least s′.

The connectivity requirement (B.2) follows immediately from item i) in Lemma 4.3, the fact
that γ is a coarse path, and the observation that the gaps created when passing from γ to γ′ are
bridged with the help of the tubes Tj , 1 ≤ j < ` introduced above (4.10). From this, the above
definition of the marked points and the connectivity property (B.2) satisfied by each individual
bridge Bj , the property (B.2) for B readily follows.

We finally come to (B.1). For boxes in B1, the required separation property, which only
concerns other boxes in B1 along with C and D, follows directly from (4.8). For a box B ∈ Bi,
1 < i < J with B ∈ Bji , the required separation of B̃ from other boxes B′ ∈ Bj follows from
the property (B.1) for the bridge Bj . If on the other hand B′ /∈ Bj , then either i) B′ ∈ B1,
in which case d(B,B′) ≥ d(B, ∂LTj ∪ ∂RTj) and separation follows again from (B.1) for Bj ; or
ii) B′ ∈ Bj′ for some j′ 6= j in which case one uses the first property in (4.10), recalling from
Lemma 4.4 that all boxes in Bj′ belong to Tj′ . This is more than enough to conclude since
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rad(B) ≤ rad(γ(j))ξ. For the separation requirement on the holes, one proceeds similarly, using
the first item in (4.10) when the two holes belong to different bridges Bj′ , applying (B.1) when
the two boxes belong to the same tube T j (the same observation with regards to monotonicity
in s′ as in (B.3) applies). Finally if either of the boxes (but not both) in H belong to {BL, BR}
one uses the second item in (4.10). Lastly to ensure that the s′-neighborhoods of BL and BR

are disjoint one uses that ` ≥ 2, see item iv) in Lemma 4.3, which together with item i) therein
yields that d(BL, BR) ≥ cs.

We now return to the

Proof of Lemma 4.4. The proof is essentially one-dimensional. More precisely, it suffices to

produce a partition of T 0 def.
= [−L,N +L]×{0}d−1 into contiguous segments, each having length

at most 2L, grouped into disjoint families I1, . . . , IJ that satisfy the (continuous analogues of)
properties (B.1)-(B.4) of a bridge associated to (C,D, s, s′,m, ξ, T 0) where C = {−L} × {0}d−1

and D = {N+L}×{0}d−1, and with the ambient space Rd replaced by R×{0}d−1 (note that all
of (B.1)-(B.4) are naturally defined under this one-dimensional projection). For then, one simply
defines B as the union of the d-dimensional boxes having the same centers and side-lengths as
the line segments constituting I =

⋃
1≤j≤J Ij , identifying those in H with boxes associated to

line segments in IJ , and define the marked points being the endpoints of the segment I ∈ I
corresponding to a box B ∈ B. One readily sees that B thereby inherits properties (B.1)-(B.4).

We now produce the desired partition of T 0 in a recursive fashion. The driving force is the
following very simple

Claim 4.5 (ξ ∈ (1
2 , 1)). For all R ≥ 4 and C(ξ) ≤ r ≤ R

4 , there exists an (ordered) sequence of
disjoint sub-intervals (I1, I2, . . . , Ik) of [0, R] such that, with |I| = b− a when I = [a, b], a < b,

k ≤ 1 + R
r ,(4.13)

d(I1, {0}), d(Ik, {R}) ∈ [2rξ, 7rξ], d(Ii, Ii+1) = 2rξ, 1 ≤ i < k(4.14)

|Ii| ∈ [rξ, r], for all 1 ≤ i ≤ k.(4.15)

Proof of Claim 4.5. Let k̃ = b R
r+2rξ

c ≥ 1 so that k̃(r + 2rξ) ≤ R < (k̃ + 1)(r + 2rξ) and let

Ji = [(i− 1)r + 2irξ, i(r + 2rξ)], for i ≥ 1.

If R− k̃(r+ 2rξ) ≤ 5rξ, we set k = k̃, Ii = Ji for 1 ≤ i < k and Ik = Ik̃ = [(k̃− 1)r+ 2k̃rξ, k̃(r+

2rξ) − 2rξ]. Otherwise R − k̃(r + 2rξ) ∈ (5rξ, r + 2rξ) and we set k = k̃ + 1 with Ii = Ji for
1 ≤ i ≤ k and Ik̃+1 = [k̃r + 2(k̃ + 1)rξ, R− 2rξ]. In either case, (4.13) plainly holds and so does

the second item in (4.14). Moreover, d(I1, {0}) = 2rξ in either case, and 2rξ ≤ d(Ik, {R}) ≤ 5rξ

in the former whereas d(Ik+1, {R}) = 2rξ in the latter case, yielding (4.14). Moreover, |Ii| = r
except possibly when i = k, and |Ik| ∈ [(r − 2rξ) ∧ (5rξ − 4rξ), r] = [rξ, r], whence (4.15).

We now conclude the proof of the lemma. We start by setting I1 = {I1,1, . . . , I1,k} obtained
by applying Claim 4.5 to the interval [−L,N+L] for r = L/2 (after a suitable translation) when
L ≥ C(ξ). Now suppose that after a round J ′ ≥ 1, we have obtained the collections I1, . . . , IJ ′
of (closed) sub-intervals of [−L,N + L] satisfying

d
(
I,
⋃
j≤J ′

⋃
I′∈Ij

I ′ \ I
)
, d(I, {−L,N + L}) ≥ 2|I|ξ ∨ s

ξ

2
, |I| ≥

√
s

100
,(4.16)
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for all I ∈ Ij′ , j′ ≤ J ′. Also suppose that |Ij+1| ≤ 8|Ij | for all j′ < J ′. Note that condition (4.16)
is satisfied by I1 due to the (4.14), (4.15) and since L ≥ s and ξ ∈ (1

2 , 1) by hypothesis. Now let I′J ′
denote the collection consisting of the closures of the components of [−L,N +L]\

⋃
j≤J ′

⋃
I∈Ij I,

which are closed sub-intervals of [−L,N + L]. If no interval in I′J ′ has length larger than s,
we stop, assign J = J ′ + 1 and IJ = I′J ′ . Otherwise we let IJ ′+1 consist of the sub-intervals
obtained by applying Claim 4.5 individually to each interval I in I′J ′ with R = |I| ≥ s(≥ C(ξ))

and r = |I|
4 . By similar arguments as used for I1, it follows that IJ ′+1 satisfies (4.16). On the

other hand, by (4.13) we deduce tha |IJ ′+1| ≤ 8|IJ ′ |.
Overall, this defines I1, . . . , IJ . Properties (B.1)-(B.3) for I =

⋃
1≤j≤J Ij are direct conse-

quences of the above construction and (4.16). As to (B.4), it is a consequence of the definition
of J as well as second and the third item in the Claim that J ≤ (log ξ−1)−1 log log 10L for all C ′

large enough depending only on ξ. Also, from our induction hypothesis we have |Ij+1| ≤ 8|Ij |
for all j < J − 1 and |IJ | ≤ 2|I1|

∑
j<J 8j . These observations together imply (B.4).

Remark 4.6. The bridge exhibited in Proposition 4.1 is also employed in our companion article
[16] within a different framework, but to a similar effect. Namely, it enables us there to recon-
struct a connection within a ‘coarse pivotal’ configuration at a not too high energetic cost. In the
specific context of [16, Section 8.2] where it is used, the bridge is actually constructed within a
tube T having ‘thin width’ and to a more elaborate model VT rather than Vu, for which we first
need to prove a conditional decoupling property akin to Proposition 2.3 above; see [16, Lemma
7.1]. Once this is done, the actual surgery performed in the course of proving [16, Lemma 8.8]
unfolds in a similar way as in Section 6 below.

5 Strong percolation from gluing property

In this short section, which can be read independently of the rest of this article we reduce the
proof Theorem 1.1, to that of proving a single ‘gluing property,’ stated in Lemma 5.2, which
roughly asserts that any (partial) sprinkling will merge a significant proportion of ambient large
clusters. Most of the difficulty hides in the proof of this lemma, which is postponed to later
sections. In particular, this is where the delicate surgery argument to perform the gluing is
carried out, which draws on the tools derived in the previous two sections.

The present section, which is independent of Sections 3 and 4, contains the derivation of
Theorem 1.1 from Lemma 5.2, which is divided into two parts. First, we show using Lemma 5.2
as an input that the disconnection assumption (1.3) implies a weak form of (1.4), which yields
the existence and uniqueness (up to sprinkling) of large local clusters with probability tending
to one at large scales. This is the content of Proposition 5.1. This result is a loose analogue
of [15, Prop. 4.1], and it draws inspiration from a result of [4]. While the proofs of these two
propositions are superficially similar (in fact the layout is borrowed from [4]), the crucial gluing
device used as an input is a different matter entirely; this is because, as discussed at length in
§1.2 (see above (1.8)), the arguments of [15] do not apply at all. We note that the route we take
provides a more robust way of proving ‘gluing results’ of this type (such as [15, Prop. 4.1] in
particular).

In a second step, the result of Proposition 5.1, which is not quantitative, is then bootstrapped
to a stretched-exponential bound in order to produce the desired controls in (1.4), thus conclud-
ing the proof of Theorem 1.1. Since this second step follows a by now relatively standard
renormalization procedure, we present it first immediately after stating Proposition 5.1, which
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plays the role of a ‘seed’ estimate for the renormalization scheme. The remainder of this section
is then devoted to the proof of Proposition 5.1.

We will work with the following ‘unique crossing’ event. For any u > v > 0 and M ≥ 1, let

UC(M,u, v)
def.
= {BM

Vu←→ ∂B6M}

∩
{ all clusters in Vu ∩B4M crossing B4M \B2M

are connected to each other in Vv ∩B4M

}
.

(5.1)

Recall the definition of M(·) from (1.2), which depends on the parameter γM .

Proposition 5.1. For all γM ≥ C1, if v > 0 is such that (1.3) holds for some α > 0, then for
all δ > 0,

(5.2) lim sup
N→∞

inf
u∈[2δ,v−2δ]

P [UC(M(N), u, u− δ)] ≥ 1− Cα.

We first explain how to deduce Theorem 1.1 from Proposition 5.1.

Proof of Theorem 1.1 (assuming Proposition 5.1). We first argue that ii) implies i). Let u > 0
and v ∈ (0, u) be given. Choose any v′ ∈ (v, u), for concreteness say v′ = v+u

2 . By requiring
Exist(r, v′) and Unique(r, v′, v) to occur simultaneously for all scales r = r02k for r0 ≥ 1 and
k ≥ 0, one readily infers from (1.4), using a union bound and a straightforward gluing argument
involving (1.1) that the disconnection event in (1.3) has stretched exponential decay in r, i.e.

lim
r
er
c
P[Br

Vv
6←→ BM(r)] = 0.

From this (1.3) immediately follows for any γM > 1 in view of (1.2).
We now show that i) implies ii), which is the heart of the matter, and brings into play

Proposition 5.1. To this end we assume from here onwards that γM ≥ C1. Let u > 0 and v, v′

with 0 < v < v′ < u be given. As we now explain, it is enough to prove a stretched exponential
upper bound of the form

(5.3) P
[
UC(r, v′, v)c

]
≤ Ce−rc1 ,

valid for all r ≥ 1, with constant C possibly depending on v and v′. Indeed, in view of (5.1) and
(1.1), the event UC(r/2, v′, v) implies Exist(r, v′), which inherits the bound (5.3), as required by
(1.4). To obtain the analogue estimate for P[Unique(r, v′, v)], one observes that the latter event
is implied by the intersection of all translates of UC( r

100 , v
′, v) mapping the origin to a point in

Br; for, any connected component of Vv′ ∩Br having diameter at least r
5 will cross the annulus

with inner radius r
50 and outer radius r

25 around at least one such box, and the joint occurrence
of all unique crossing events implies that these components are all connected in Vv ∩ B2r, as
required for Unique(r, v′, v) to occur. The required upper bound for P[Unique(r, v′, v)c] thus
follows from (5.3) and a union bound.

The proof of (5.3) under the hypothesis that (5.2) holds for all v < u, as implied by Propo-
sition 5.1 and item i) in Theorem 1.1 (our standing assumption), follows a by now relatively

standard renormalization scheme, so we only sketch the argument. Let ε
def.
= v′−v

3 ∧ u−v′
3 . We

will apply the results of [10] to the graph Zd (with unit weights); see also the proof of [20,

24



Lemma 5.16] for a similar argument in the context of the Gaussian free field. Let L0 = M(N0)
for a large positive integer parameter N0 to be determined. For any x ∈ Zd, let UCx(L0, u, v)
denote the event in (5.1) ‘shifted by x’ (now the center of all the boxes involved).

Choosing λ sufficiently large (to be specific, one can pick λ = 20 ≥ 20c18C10 in the context
of [10, (8.3)] where C10 = 1 and c18 < 1 is determined by the isoperimetric constant on Zd), one
sets for x ∈ Zd, with λ̄ = 1.1λ, `0 = 3d ∨ 12λ̄ and Ln = `n0L0,

ÛCx,0 =
⋂

y∈L0Zd∩BλL0
(x)

UCy(L0, v
′ − ε, v + ε),

ÛCx,n =
⋂

y,z∈(Ln−1Zd∩Bλ̄Ln (x)): d(y,z)≥Ln

(
ÛC

k

y,n−1 ∪ ÛC
k

z,n−1

)
, for n ≥ 1.

(5.4)

By choice of ε, one obtains from Proposition 5.1 applied with δ = ε
2 (Proposition 5.1 is in force

under assumption i) in Theorem 1.1 whenever v′ − v ≤ c), followed by a union bound over

L0Zd ∩ BλL0(x) that lim supL0
P[ÛCx,0] ≥ 1 − Cα. Note that the condition v′ − v ≤ c (which

ensures that the requirement ‘u ≥ 2δ’ in (5.2) holds) is harmless; indeed if v is decreased in (5.3)
then the bound continues to hold by monotonicity. In particular, by choosing first α = α(d)
small enough and then L0 = L0(v, v′, γM ) sufficiently large, one can ensure that the conditions
(7.5) and (7.6) in [10] are satisfied, whence Proposition 7.1 therein applies and yields that

(5.5) P[(ÛC
ε

0,n)c] ≤ 2−2n , for all n ≥ 0,

where the events ÛC
ε

x,n refers to those defined in (5.4), but with parameters (v′, v) in place of
(v′−ε, v+ε). The presence of two opposite directions of monotonicity requires a small extension
over the decoupling inequality stated in [10, Theorem 2.4]; alternatively one can resort to the
stronger result (2.23) (extending Proposition 2.3) applied with k = 2. It is worth emphasizing
however that the decoupling only needs to operate between boxes of a given size, Ln, separated
by a large multiple c`0Ln of their diameter, as originally in [38].

In order to conclude, one applies [10, Lemma 8.6], which implies that whenever ÛC
ε

0,n occurs,
any two connected sets in BλLn , each of diameter at least (λ/20)Ln, are connected by a path

γ ⊂ B2λLn such that ÛC
ε

x,0 occurs for all x ∈ γ. This is readily seen to imply UC(r, v′, v) for
r = rn = b(λ/10)Lnc, hence (5.5) yields (5.3) for such r. The remaining values of r are taken
care of using a union bound involving translates of the event UC(rn, v

′, v) at scale rn ≥ cr.

We now turn to Proposition 5.1. Below we give the proof in full assuming the validity of
Lemma 5.2, our gluing device. This initial reduction step is similar to the start of the proof of
[15, Proposition 4.1], to which we will frequently refer throughout the rest of this section. The
proof of Lemma 5.2 will occupy the remaining sections.

Proof of Proposition 5.1. Let v, δ > 0 and consider any u with 2δ ≤ u ≤ v − 2δ. In the sequel
we often abbreviate M = M(N), for arbitrary N ≥ 1. Define the collection

(5.6) C = {C ⊂ B4M : C is a cluster in Vu ∩B4M intersecting ∂B4M} ,

and let η ∈ {0, 1}Zd be any percolation configuration such that η(x) = 1 whenever x ∈ Vu for
some x ∈ Zd, i.e. all vertices in Vu are open in η. We abbreviate this by {η = 1} ⊃ Vu in the
sequel. For such η, we write

(5.7) C ∼η C ′ if C
η←→ C ′, for C,C ′ ∈ C.

25



For any sub-collection C̃ ⊂ C, ∼η defines an equivalence relation on C̃ and hence, in particular,
the elements of C̃/ ∼η form a partition of C̃. For every 0 ≤ i ≤ b2

√
Mc, let Vi = B4M−i

√
M and

consider the sets

(5.8) Ui(η)
def.
=
{
C ∈ C : C ∩ V2i 6= ∅

}/
∼η

for 0 ≤ i ≤ b
√
Mc and {η = 1} ⊃ Vu. Denoting |Ui(η)| = Ui(η), notice that Ui(η) is decreasing

in both η and i in view of (5.6) and (5.8). This fact will be used repeatedly in the sequel. Now,
consider the percolation configurations η0 ≤ η1 ≤ · · · ≤ ηb√Mc under P, whereby

(5.9) ηi
def.
=

{
1{x∈Vu}, x ∈ V2i,

1{x∈Vu−δ}, x /∈ V2i.

In plain words, ηi corresponds to a partial sprinkling outside of V2i. For 0 ≤ i ≤ b
√
Mc, set

(5.10) Ui
def.
= Ui(ηi) and Ui

def.
= |Ui|.

Clearly ηi is increasing in i so by the previous observation, Ui is decreasing in i. Let

A
def.
= {B10N (x)

Vu←→ ∂B6M for all x ∈ NZd s.t. B10N (x) ⊂ B4M}.(5.11)

In view of (5.1), (5.11) and (5.8)–(5.10), for all N ≥ C the event UC
(
M,u, u − δ

)
occurs as

soon as A does and Ub
√
Mc = 1. Consequently, for all N ≥ C, with M = M(N), we obtain that

P[UC(M,u, u− δ)c] ≤ P[Ac] + P
[
A ∩ {Ub√Mc > 1}

]
≤ C(M/N)d P

[
B10N

Vu
6←→ ∂BM(10N)

]
+ P

[
A ∩ {Ub√Mc > 1}],

(5.12)

where, in deducing the second line, we applied a union bound over all x ∈ B4M , used that for
all such x, one has the inclusions B6M = B6M(N) ⊂ B10M(N)(x) ⊂ BM(10N) since M(10N) ≥
10M(N) by (1.2) (recall that γM > 1), and translation invariance.

Since v > 0 is such that (1.3) holds and by monotonocity of the disconnection event with
respect to u in (5.12), there is a subsequence Nk → ∞ depending on v along which the first
term on the right-hand side of (5.12) is bounded by Cα uniformly in u ≤ v. Thus, (5.2) follows
once we show that the second term converges to 0 uniformly in u ∈ [2δ, v − 2δ] as N →∞.

We start the proof of the latter by borrowing the set-up of the proof of [15, Lemma 4.2],
which we now adapt to the present framework. Matters will however soon diverge. Recall that
Ui(η) in (5.8) is a set comprising equivalence classes of clusters in C, which we view as elements
of 2C . The following notation will be convenient. We write C for a generic element of 2C (which
could for instance belong to Ui(η)) and abbreviate

⋃
C∈C C (⊂ Zd) as supp(C ). For a percolation

configuration η ∈ {0, 1}Zd such that {η = 1} ⊃ Vu, 0 ≤ i < b
√
Mc and k ∈ {0, 1

2}, set

(5.13) Ui+k,i+1(η)
def.
= {C ∈ Ui(η) : supp(C ) ∩ V2(i+k) 6= ∅, supp(C ) ∩ V2(i+1) = ∅},

and Ui,i+1(η)
def.
= |Ui,i+1(η)|. Clearly, Ui,i+1(η) is decreasing in η and Ui(η) = Ui+1(η)+Ui,i+1(η).

We explain the benefit of introducing Ui,i+1(η) at the end of this section. Recall from (5.10)
that Ui = |Ui(ηi)|. The key input is the following result.
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Lemma 5.2 (Gluing). For all γM ≥ C1, there exist C = C(γM ) and c′ = c′(γM ) such that the
following holds. Letting

(5.14) E = A ∩
{
Uj+1 > 1 ∨ (Uj/4 + Uj,j+1(ηj))

}
,

one has, for all v > 0 as in the statement of Proposition 5.1, all δ > 0, u ∈ [2δ, v − 2δ], N ≥ 1,
0 ≤ j < b

√
Mc (with M = M(N)), for some c = c(δ, v) > 0,

P[E] ≤ C exp
{
− c ec(logM)c

′}
.(5.15)

We admit Lemma 5.2 for now. Its proof will span Sections 6-7. With Lemma 5.2 at hand,
we now conclude the proof of Proposition 5.1, which follows in a straightforward manner. First,
we claim that for γM ≥ C1, v, δ, u as above (5.15), N ≥ 1 and 0 ≤ i ≤ b

√
Mc − 4, one has

(5.16) P[A ∩ {Ui+4 > 1 ∨ Ui/2}] ≤ C exp
{
− c ec(logM)c

′}
,

with identical dependence of constants on parameters as in the statement of Lemma 5.2. To see
this, observe that, using the formula Ui(η) = Ui+1(η) + Ui,i+1(η) noted below (5.13), choosing
η = ηi as in (5.9) and iterating the last identity, it follows that Ui+4(ηi)+

∑
j: i≤j<i+4 Uj,j+1(ηi) =

Ui(ηi) = Ui, which implies that Uj,j+1(ηi) ≤ Ui/4 for some j with i ≤ j < i+4 since all quantities
are non-negative. From this, (5.16) follows by a union bound over j. Indeed just notice that
for fixed i and all j with i ≤ j < i + 4, one has Ui+4 = Ui+4(ηi+4) ≤ Uj+1(ηj+1) = Uj+1 by
monotonicity since i+ 4 ≥ j + 1, and that Ui ≥ Uj and Uj,j+1(ηi) ≥ Uj,j+1(ηj), for all i ≤ j.

Next, observe that, if the event
⋂

0≤k<K{U4(k+1) ≤ 1 ∨ U4k
2 } occurs for some K ≥ 1 such

that 4K ≤ b
√
Mc, then either

(5.17) Ub
√
Mc ≤ U4K ≤ 2−1U4(K−1) ≤ · · · ≤ 2−KU0 = 2−K |C|

(5.6)

≤ C2−KMd−1,

or
U4(k+1) ≤ 1 for some 0 ≤ k < K.

In the latter case Ub
√
Mc ≤ U4(k+1) ≤ 1 by monotonicity. Hence, letting K = b(C ′ logM/ log 4)c

with C ′ large enough in a manner depending on d only so the right-hand side of (5.17) is bounded
by 1, it follows that the occurrence of A∩{Ub√Mc > 1} implies the event

⋃
0≤k<K A∩{U4(k+1) ≥

1 ∨ U4k/2}. Thus, applying a union bound over k and using (5.16) yields that

(5.18) P
[
A ∩

{
Ub
√
Mc > 1

}]
≤ CK exp

{
− c ec(logM)c

′
}.

By choice of K, the right-hand side of (5.18) tends to 0 as N → ∞. Feeding this into (5.12)
and recalling the discussion above Lemma 5.2, the claim (5.1) immediately follows.

The reader may wonder with good reason why the conclusion (5.15) of Lemma 5.2 concerns
the more verbose event E in (5.14) (which includes the random variable Uj,j+1) rather than
just (5.16) for instance. The benefit of introducing Uj,j+1 is to facilitate the presence of ‘large
interfaces’, as we now explain.

For 0 ≤ j < b
√
Mc, let (recall (5.10), (5.13) for notation)

(5.19) Ũ(ηj)
def.
=

{
(Uj(ηj) \ Uj,j+1(ηj)) ∪ {C̃ }, if Uj+ 1

2
,j+1(ηj) 6= ∅,

Uj(ηj) \ Uj,j+1(ηj), otherwise,
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where C̃
def.
= {C : C ∈ C for some C ∈ Uj,j+1(ηj)}. We will no longer carry the argument ηj in

our subsequent discussion. By the same reasoning that was used to verify [15, (4.19)–(4.20)],
the following properties of Ũ hold on the event E in (5.14):

for Aj ∈ {V2j \ V2j+1, V2j+1 \ V2j+2}, with Aj a deterministic

function of Ũ , each of the sets supp(C ) for C ∈ Ũ crosses Aj
and their union intersects all the boxes of radius 10N contained in Aj ;

(5.20)

there exists a non-trivial partition Ũ = Ũ1 t Ũ2 such that

{S1

ηj+1

6←→ S2} and |{C : C ∈ Ũ1}| ≤ 4, where Si =
⋃

C∈Ũi supp(C ).
(5.21)

These last two facts will be used at the start of the next section, in order to exhibit many
different ‘contact areas,’ which are well-separated boxes in which the gluing will be attempted.

6 Gluing clusters

The remainder of this article, i.e. the present section and the next, is devoted to proving
Lemma 5.2. The proof will bring into play the various ingredients derived in Sections 3 and 4.
The structure of the argument is best explained after a straightforward initial step; see below
(6.4). The current section contains the full proof of Lemma 5.2, save for two results, Lemmas 6.1
and 6.2, which control the number of certain counts of good (Kg) and bad (K̃b) boxes. These
two lemmas are proved separately in Section 6.

Proof of Lemma 5.2. We start by decomposing the event E in (5.14) by conditioning on all
possible realizations {C } of Ũ defined in (5.19). Applying a union bound over the partition
{C } = {C }1 t {C }2 where {C }i corresponds to the realization of Ũi from (5.21) on the event
{Ũ = {C }}, we get, for Si =

⋃
C∈{C }i supp(C ) the induced realization of Si, writing PC [·] =

P[ · | Ũ = {C }] whenever P[ Ũ = {C }] > 0,

P[E] ≤
∑
{C }

P
[
Ũ = {C }

]
×

∑
{C }={C }1t{C }2
|{C }1|≤4

PC

[
S1

Vu−δ
6←→
Aj

S2

]
;

(6.1)

here the first sum is over realizations {C } such that {Ũ = {C }} ∩ E 6= ∅.
We will eventually control the connection probabilities appearing on the right-hand side of

(6.1) individually, but this will take a while; cf. (6.20) for the final bound obtained. Accord-
ingly we implicitly assume from here on that the event {Ũ = {C }} occurs, with Ũ satisfying

(5.20)-(5.21), and we consider a given non-trivial partition {C }1,2
def.
= ({C }1, {C }2) of {C }

corresponding to the realization of (Ũ1, Ũ2) in (5.21).
Towards bounding the relevant connection probability in (6.1), we first apply Lemma 2.1 to

extract for each 0 ≤ j < b
√
Mc a coarse-grained ∗-crossing of Aj that lies close to both S1 and

S2 (with Si =
⋃

C∈{C }i supp(C )), as follows. Consider the (rescaled) coarse-grainings of S1 and
S2 given by

U
def.
=

1

10N
{x ∈ 10N Zd : B10N (x) ∩ S1 6= ∅} and

V
def.
=

1

10N
{x ∈ 10N Zd : B10N (x) ∩ S2 6= ∅}.
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Owing to (5.20), Lemma 2.1 applies and yields a ∗-path π satisfying (2.1) and connecting

Vout,2j+2
def.
=

1

10N
{x ∈ 10NZd : B10N (x) ∩B4M−(2j+2)

√
M+100N 6= ∅} and

Vin,2j+1
def.
=

1

10N
{x ∈ 10NZd : B10N (x) ∩B4M−(2j+1)

√
M−100N = ∅}

if Aj = V2j+1 \ V2j+2, and connecting Vout,2j+1 and Vin,2j otherwise. Together, (2.1) and the
∗-connectivity imply that one can extract from π a family of boxes Λ = {Λk : 1 ≤ k ≤ K},
where K = d

√
M

400N e and Λk = B20N (xk) with xk ∈ 10NZd, for all 1 ≤ k ≤ K, satisfying the
following properties whenever N ≥ C and γM ≥ 2:

Λk intersects both S1 and S2 and Λ̃k
def.
= B25N (xk) ⊂ Aj for each k, and(6.2)

|xk − xk+1|∞ ≤ 200N whereas |xk − xk′ |∞ ≥ 100N for all 1 ≤ k 6= k′ ≤ K.(6.3)

Then clearly, by (6.2) and monotonicity,

(6.4) PC

[
S1

Vu−δ
6←→
Aj

S2

]
≤ PC

[ K⋂
k=1

{S1

Vu−δ
6←→
Λ̃k

S2}
]
.

We stress that the collection Λ = Λ({C }1,2) is a deterministic function of {C }1,2, realization of

a partition (Ũ1, Ũ2) of Ũ satisfying (5.21). The remainder of the proof applies uniformly in j
over 0 ≤ j < b

√
Mc, which will be assumed implicitly to keep notations reasonable.

Let us briefly pause to describe how the argument unfolds. In order to bound the right-hand
side of (6.4), we will first use the deterministic construction from Section 4 to build a bridge
between S1 and S2 inside each box Λ̃k. Each bridge consists of a chain of boxes at different
scales, organized in a hierarchical fashion and satisfying suitable separation properties; see (B.1)-
(B.4). These bridges should be thought of as ‘efficient’ pathways linking S1 and S2 inside each
Λ̃k. Their existence is guaranteed by Proposition 4.1. Clearly, the right hand side in (6.4) is
bounded from above by requiring that none of the bridges contains a connection between S1

and S2 in Vu−δ.
The method for bounding (from below) the probability that the bridge inside some Λ̃k

connects S1 and S2 in Vu−δ ∩ Λ̃k will make great use of so-called good boxes (in the bridge),
which come in two types. They either ensure a small but reasonable probability for the existence
of crossings inside them either via a conditional decoupling property (cf. Proposition 2.3) or via
the ‘sprinkled finite-energy’ property exhibited in Section 3.

We now introduce the relevant notions of ‘decoupling-goodness’ and ‘finite-energy goodness’
that will play a central role here. Recall the event G·,·B from the statement of Proposition 2.3,
see above (2.18) A box B = B(x, r) is said to be decoupling-good (with parameters (u, δ)) if

(6.5) GB = Gu,δu
−1

B

occurs. The relevant notion of finite-energy goodness is provided by Proposition 3.1. The box
B = B(x, r) is called finite-energy good (with parameters (u, δ, r0)) if an event F̃B with the
properties postulated by Proposition 3.1 occurs (for instance, (3.5) to be concrete).
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We are now ready to introduce the bridge Bk corresponding to Λk and the associated notion
of good box. Let ξ = 1 − c2 (see Proposition 2.3), C4 = m(ξ) as in Proposition 4.1 and for a
parameter γ > 10 to be fixed later, set

(6.6) r0 = b(logN)γc.

The parameter r0 is henceforth fixed to have the value chosen in (6.6). Applying Proposition 4.1
with (N,L) in (4.1) chosen as (0, 20N), for each 1 ≤ k ≤ K we define Bk =

⋃
1≤j≤Jk B

k
j to be a

bridge associated to the septuple (Λk ∩S1,Λk ∩S2, (6400)4(logN)4γ , 32(logN)γ , C4, ξ,Λk); for
definiteness, if several bridges exist we choose the smallest one according to some deterministic
ordering. We then introduce

(6.7) {Λk is good} ={
the boxes in Bk−

def.
=
⋃

1≤j<Jk B
k
j are decoupling-good with parameters (u, δ)

}
,

as well as

(6.8) F̃k =
{

the boxes in BkJk are finite-energy good with parameters u, δ and r0

}
,

(with r0 as in (6.6)), and with bad referring to the complement of good in (6.7), define the
random sets

Kb = Kb({C }1,2) =
{
k ∈ [K]

def.
= {1, . . . ,K} : Λk is bad

}
,(6.9)

K̃b = K̃b({C }1,2) =
{
k ∈ [K] : Λk is bad or F̃ ck occurs

}
.(6.10)

We reiterate at this point, as the notation in (6.9)-(6.10) suggests, that the collection of boxes
Λ = Λ({C }1,2), cf. below (6.4), and with it the bridges {Bk : 1 ≤ k ≤ K} as well as the

sets Kb, K̃b, are all implicitly functions of {C }1,2 = ({C }1, {C }2), realization of a partition of Ũ
satisfying (5.21) on the event that {Ũ = {C }} with {C } such that {Ũ = {C }} ∩ E 6= ∅, cf. below
(6.1). Thus, with a slight abuse of notation, Kb (and similarly, K̃b) is declared under both PC

and P[· ∩ E] and Kb is in the latter case a measurable function of a (non-trivial) partition of
Ũ satisfying (5.21), which counts the number of bad boxes associated to that partition. The
following result controls |K̃b|. For a real number b ≥ 1, it will be convenient to abbreviate

β = 2−b(logN)bc in the sequel.

Lemma 6.1 (|K̃b| is small). There exists C5 ≥ 10 such that for any b ≥ 1 and γ ≥ C5b, the
following holds. For all γM ≥ 200b, v, δ > 0, u ∈ [2δ, v − 2δ] and N ≥ 1,

(6.11) P
[{
|K̃b| ≥ 4Kβ for a (non-trivial) partition of Ũ

}
∩ E

]
≤ C exp

{
− cec(logN)8b}

,

for some c = c(v, δ) and C = C(γM ).

Observe that |Kb| ≤ |K̃b|, which is thus also controlled by (6.11). The proof of Lemma 6.1
would take us too far on a tangent and is postponed to §7.1. It is worth pointing out that a
naive union bound will not produce any useful estimate, see Remark 7.3 for more on this.

The next lemma supplies a complementary result to (6.11) for a certain count of good indices,
subset of [K] \ Kb in (6.9), which we now introduce. We return to the ‘quenched’ framework
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under PC , with a given partition {C }1,2 of C and the latter such that {Ũ = {C }} ∩E 6= ∅. For
any k ∈ [K], 1 ≤ j < Jk, and B ∈ Bk− (see (6.7) for notation), consider the connection events

EB =
{
z1,B

Vu∩B←−−→ z2,B

}
,

Ej,k =
⋂
B∈Bkj

EB, Ek =
⋂

1≤j<Jk

Ej,k,(6.12)

where z1,B and z2,B in the definition of EB are the two marked vertices of B declared by
property (B.2) of the bridge Bk. We write Kg = Kg({C }1,2) ⊂ [K] \ Kb for the subset of indices
corresponding to good boxes Λk, i.e. satisfying (6.7), and such that in addition, the event Ek
occurs. That is,

(6.13) Kg = Kg({C }1,2) = {k ∈ [K] : Λk is good and Ek occurs};

cf. (6.9). In plain words, and on account of (B.2), indices in Kg correspond to boxes Λk where
the sets S1 ∩ Λk and S2 ∩ Λk are connected to each other through Λk ∩ Vu except for the boxes
in BkJk (referred to as holes in Section 4, see below (4.1)).

Lemma 6.2 (Kg is large). For all γ > 10, b ≥ 2C6, v > 0 as in the statement of Proposition 5.1,
δ > 0, u ∈ [2δ, v − 2δ] and N ≥ C(δ, v),

PC

[
|Kg| ≤ 8Kβ

]
≤ 2−cKβ + 8K PC

[
|Kb| ≥ 4Kβ

]
.(6.14)

Lemma 6.2 is proved in §7.2. With Lemmas 6.1 and 6.2 at our disposal, we are in a position
to conclude the proof of Lemma 5.2. We first choose b = 2(C6 ∨ 10), γ = C5b and assume that
γM ≥ 200b so that the conclusions of Lemmas 6.1 and 6.2 hold for all v > 0 as in the statement
of Proposition 5.1, δ > 0, u ∈ [2δ, v−2δ] and N ≥ C = C(δ, v); the dependence of constants on δ
and v will be kept implicit for the remainder of the proof. The previous choices also completely
fix the parameters of the bridge, see above (6.7) (only γ remained to be chosen).

With Ek as in (6.12) and F̃k as in (6.8), let K̃g denote the subset of indices k ∈ [K] corre-

sponding to the boxes Λk such that the event Ek ∩ F̃k occurs. As will soon become clear, the
indices in K̃g correspond to boxes in which, by virtue of Proposition 3.1, a full path in Vu−δ
joining S1 and S2 can be re-constructed at a not-too-degenerate cost. Lemmas 6.1 and 6.2 will
then jointly be used to establish that typically, the set K̃g has large cardinality.

From the definition of the events Ek and (3.2), it follows that for any K̃g ⊂ [K],

(6.15) the event {Ũ = {C }, K̃g = K̃g} is

measurable relative to
(
Iu ∩B4M , Iu−δ ∩ (B4M \ V2j), {C̃B̂u : B ∈ BkJk , k ∈ K̃g}

)
.

The important observation is that, if Ek occurs and S1 and S2 are not connected in Vu−δ ∩ Λ̃k
(cf. (6.2) regarding Λ̃k), then for N ≥ C not all of the boxes in BkJk can be completely vacant in

Vu−δ. For, otherwise, by definition of the events EB in (6.12) and on account of property (B.2),
the set Bk ∩ Vu−δ comprises a connection between S1 and S2. Moreover, by construction, see
Section 4, any of the boxes in Bk is a subset of Λk +Bs with s = (6400)4(logN)4γ by our choice
of parameters above (6.7), hence this connection is indeed contained in Λ̃k whenever N ≥ C. By
this observation, if K̃g = {k1 < . . . < k˜̀} ⊂ [K] such that ˜̀ = |K̃g| ≥ 1, 1 ≤ ` ≤ ˜̀ and N ≥ C,
abbreviating

Disc` =
{
S1

Vu−δ
6←→

Λ̃ki

S2, for all 1 ≤ i < `
}

31



and Hk` = Bk`Jk` (H stands for ‘holes’), one obtains that

(6.16) PC

[
K̃g = K̃g, Disc`+1

]
≤ PC

[
K̃g = K̃g, Disc`,

( ⋂
B∈Hk`

{B ⊂ Vu−δ}
)c]

.

We now prepare the ground to decouple the events indexed by B ∈ Hk` in (6.16), for which
Proposition 3.1 will come into play. First, let us recollect some facts about the separation
between boxes. Recall from (6.6) that r0 = b(logN)γc. By property (B.1) for the bridge Bk` , for
any two distinct boxes B,B′ ∈ Hk` , their s′-thickenings Bs′ and (B′)s

′
, where s′ = 32(logN)γ ≥

32r0 by our choices, are disjoint sets. Furthermore, any box in B ∈ Hk` is a subset of Λk` +Bs
with s = (6400)4(logN)4γ by definition of a bridge. Moreover, Λ̃k ⊂ Aj by (6.2) and the `∞-
distance between Λk and Λk′ is at least 50N1{k 6= k′} by (6.3). Hence, the box B ∈ Hk` is a
subset of Aj and is disjoint from Λ̃k for any k 6= k` as soon as N ≥ C.

For a box B = B(x, r), let B̂ = B(x, r + 7r0) (cf. the statement of Proposition 3.1). It will
also be convenient to assume an arbitrary ordering of the boxes Hk` , and B′ < B refers to the
boxes B′ ∈ Hk` appearing before B ∈ Hk` in this ordering. Combining the above observations

on the location of the holes, (6.15) and recalling that C̃B̂u is measurable relative to ω−
B̂

(see below

(3.1)), it follows that for any 1 ≤ ` ≤ ˜̀ and B ∈ Hk` , whenever N ≥ C,

(6.17)
{
Ũ = {C }, K̃g = K̃g,Disc`,

⋂
B′<B

{B′ ⊂ Vu−δ}
}

is measurable relative to (ω−
B̂
, Iu ∩ B̂).

Let us now re-write, for any 1 ≤ ` ≤ ˜̀ (with k` ∈ K̃g)

PC

[
K̃g = K̃g, Disc`,

⋂
B∈Hk`

{B ⊂ Vu−δ}
]

= PC

[
K̃g = K̃g, Disc`

] ∏
B∈Hk`

PC

[
B ⊂ Vu−δ

∣∣∣ K̃g = K̃g, Disc`,
⋂
B′<B

{B′ ⊂ Vu−δ}
]
.

Since k` ∈ K̃g on the event {K̃g = K̃g}, we obtain the following lower bound by applying (3.3),

thus using (6.17) and keeping in mind that the event F̃B occurs for any box B ∈ Hk` by definition
of Kg and on account of (6.8): for all N ≥ C,

PC

[
K̃g = K̃g, Disc`,

⋂
B∈Hk`

{B ⊂ Vu−δ}
]
≥ PC

[
K̃g = K̃g, Disc`

]
× exp

{
− (logN)C |Hk` |

}
;

in applying (3.3) to obtain the right-hand side, we also used that r0 = b(logN)γc and the fact
that any box in B ∈ Hk` has radius r ≤ s = (6400)4(logN)4γ by (B.3) and our choice of
parameters. Moreover, by property (B.4) applied to Hk`(= Bk`Jk` ), we have that |Hk` | ≤ (logN)C

and hence we deduce by combining the previous display and (6.16) that for K̃g = {k1 < . . . <

k˜̀} ⊂ [K] such that ˜̀= |K̃g| ≥ 1, all 1 ≤ ` ≤ ˜̀ and N ≥ C,

PC

[
K̃g = K̃g, Disc`+1

]
≤
(
1− e−(logN)C

′)
PC

[
K̃g = K̃g, Disc`

]
.

Iterating this inequality over all 1 ≤ ` ≤ ˜̀, we thus obtain, for all K̃g ⊂ [K] and N ≥ C,

PC

[
K̃g = K̃g,

⋂
k∈K̃g

{S1

Vu−δ
6←→
Λ̃k

S2}
]
≤ exp

{
− |K̃g|e−(logN)C

}
PC

[
K̃g = K̃g

]
.(6.18)
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We now return to bounding the disconnection probability on the right-hand side of (6.4)
from above (which will later feed into (6.1) and yield the desired upper bound on P[E]). We
will only take advantage of the cost occasioned by the absence of connections between S1 and
S2 in boxes Λk with indices k ∈ K̃g, which is quantified by (6.18). Its utility relies on |K̃g| being
sufficiently large. Lemmas 6.1 and 6.2 now come into effect. We thus write

(6.19) PC

[ ⋂
k∈[K]

S1

Vu−δ
6←→
Λ̃k

S2

]
≤ a1 + a2 + a3,

where we set, with Kg as introduced in (6.13) and b as chosen at the start of the proof,

a1 = PC

[ ⋂
k∈K̃g

{S1

Vu−δ
6←→
Λ̃k

S2}, |K̃g| ≥ 4Kβ
]
,

a2 = PC

[
|K̃g| < 4Kβ, |Kg| > 8Kβ

]
, a3 = PC

[
|Kg| ≤ 8Kβ

]
.

We proceed to bound each term individually. Since K > M
1
2 /400N , see above (6.2), where

M = M(N) is given by (1.2), it immediately follows by decomposing a1 over realizations of
K̃g and using (6.18) that for all γM ≥ C and N ≥ C ′(γM ), one has a1 ≤ exp{− e(logM)c

}
with

c = c(γM ). By virtue of Lemma 6.2, which is in force, a3 is bounded by the sum of a similar term
and CK PC [|K̃b| ≥ 4Kβ] whenever N ≥ C(δ, v). Note that for the latter, which corresponds to
the second term on the right-hand side of (6.14), we have replaced |Kb| by |K̃b| ≥ |Kb|, cf. (6.9)-
(6.10). Finally, the event defining a2 implies that |Kg \ K̃g| ≥ 4Kβ. But on account of (6.13)

and since k ∈ K̃g requires both Ek and F̃k to occur, for any k ∈ (Kg \ K̃g) one knows that F̃ ck
occurs. In view of (6.10), this means that (Kg \ K̃g) ⊂ K̃b, hence a2 ≤ PC [|K̃b| ≥ 4Kβ].

Inserting the resulting bounds for ai, 1 ≤ i ≤ 3, into (6.19), and substituting back into
(6.4) and subsequently into (6.1), observing while doing so that C is a partition of a subset of
C where |C| ≤ CMd−1 by (5.6), whence the second sum in (6.1) over the number of partitions
{C } = {C }1 t {C }2 with |{C }1| ≤ 4 is over at most C ′M4(d−1) terms, it follows that

(6.20) P[E] ≤MC exp
{
− e(logM)c(γM )}

+ CK
∑
{C }

P
[
Ũ = {C }

]
×

∑
{C }={C }1t{C }2
|{C }1|≤4

PC

[
|K̃b| ≥ 4Kβ

]
,

for all γM ≥ C and N ≥ C ′(γM , δ, v). Recalling that the sum over {C } is over realizations of Ũ
such that {Ũ = {C }} ∩ E 6= ∅, the two summations in the second line of (6.20) re-combine to
give left-hand side of (6.11), and (5.15) follows directly from (6.20) and Lemma 6.1.

7 Controlling |Kg| and |K̃b|
In this section, we supply the outstanding proofs of Lemmas 6.1 and 6.2, in this order, which
where admitted in the course of proving Lemma 5.2 in Section 6. We then reflect on the
arguments of Sections 6-7 by making a few concluding observations, see Remark 7.5.
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7.1. Proof of Lemma 6.1. In this section we supply the missing proof of Lemma 6.1. We start

with a combinatorial result. Recall that N, b ≥ 1 and K = d
√
M

400N e with M = M(N), cf. above

(6.2), which depends implicitly on the choice of γM , see (1.2). Recall that β = 2−b(logN)bc and
that [K] = {1, . . . ,K}.

Claim 7.1 (b ≥ 1). Let Γ = 2b(logN)10bc. For all N ≥ C and γM ≥ 30b and K ⊂ [K] with
|K| ≥ βK, there exists K′ ⊂ K with |K′| = βΓ such that, with K′ = {k′1, . . . , k′βΓ}, one has
(0 <)k′i+1 − k′i ≤ Γ for all 1 ≤ i < βΓ.

Proof. Let k1 < . . . < k|K| denote the (ordered) elements in K ⊂ [K]. Let I ⊂ [ |K| ] denote

the subset of indices i such that ki+1 − ki > Γ. Notice |I| is at most K
Γ for otherwise we would

have k|K| > K. Consequently, the number of maximal subintervals of [ |K| ] \ I is at most 1 + K
Γ ,

whereas the sum of their lengths is at least |K| − K
Γ . Let I ′ denote a subinterval with maximum

length among these. It follows that

|I ′| ≥
|K| − K

Γ

1 + K
Γ

≥ 1.5βΓ− 1 ≥ βΓ

for all N ≥ C and γM ≥ 30b, where we used that |K| ≥ βK (recall that K ≥
√
M

40N =
1

40N e
(logN)γM/2

and β = 2−b(logN)bc). Writing the elements of I ′ as j, . . . , j + |I ′| − 1, it is a
consequence of the definition of I ′ that kn+1 − kn ≤ Γ for all 1 ≤ n < j + |I ′ − 1|. Since
|I ′| ≥ βΓ, we can simply take K′ = {kj , . . . , kj+βΓ−1}.

Claim 7.1 will soon be applied to extract from a given large collection of boxes (indexed by
[K], cf. above (6.2)) a large sub-collection of not too distant boxes, cf. (6.2).

We now proceed with the proof Lemma 6.1, which occupies the remainder of this paragraph.

Proof of Lemma 6.1. We start by replacing K̃b by a larger set K̂b, which is more convenient to
work with. Consider the event (cf. (6.8))

(7.1) F̂k
def.
=

⋂
B∈BkJk

F̂B,

where F̂B = F̂B(u, u, u, δ/2, δ, r0) refers to the event introduced in (3.9), and r0 = b(logN)γc
as per our choice in (6.6), which will remain implicit in all subsequent notation. Define the
corresponding random set K̂b (cf. the definition of K̃b in (6.10))

(7.2) K̂b = K̂b({C }1,2) =
{
k ∈ [K] : Λk is bad or F̂ ck occurs

}
.

As noted in Remark 3.2 above, F̃ cB ⊂ F̂ cB and hence K̃b ⊂ K̂b. Thus (6.11) follows from the
stronger statement

(7.3) P
[{
|K̂b| ≥ 4βK for a (non-trivial) partition of Ũ

}
∩ E

]
≤ C exp

{
− ec(logN)8b}

,

which we proceed to show. To start with, we extract from K̂b a large sub-family K̂′b of not-too-
distant boxes using Claim 7.1, as follows. Let LN = 10NZd. Recall that the centers xk of all
boxes in the collection Λ = {Λk : 1 ≤ k ≤ K}, part of which have an index k that belongs to
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K̂b, all lie on the lattice LN ; see above (6.2). In the sequel, for z ∈ LN and integer ` ≥ 0, we
write Dz,` = z+ 10N · [0, 2`)d ⊂ LN . Now suppose the event in (7.3) occurs. Then by Claim 7.1

applied to K = K̂b, there exists K̂′b ⊂ K̂b and a corresponding family of boxes (Λk)k∈K̂′b
satisfying

the defining condition in (7.2), such that |K̂′b| ≥ βΓ and any two consecutive indices in K̂′b are
at most Γ apart. Consequently, it follows from property (6.3) of the family Λ that

(7.4) {xk : k ∈ K̂′b} ⊂ Dz,`0 with `0 = log2 2Γ2 and z ∈ V2j .

For all values of (u ≥)u1 ≥ u2 ≥ u3 > δ2 > δ1 > 0 and to each box Λ = B(x, 20N), x ∈ LN ,
with Λ̃ = B(x, 25N), cf. (6.2), we now attach the (likely) events ĤΛ with

(7.5) Ĥc
Λ = Ĥc

Λ(u1, u2, u3, δ1, δ2)
def.
=

⋂
B⊂Λ̃,

rad(B)≥16r0

ĜB(u1, δ2) ∩
⋂
B⊂Λ̃

F̂B(u1, u2, u3, δ1, δ2),

with F̂B as above (3.8) and where ĜB(u1, δ2) = {Cu1 ∈ Ξu,δ2u
−1

B }, see (2.17) for notation, and

r0 = b(logN)γc as before. The threshold u implicit in ĜB will also remain fixed throughout and
not appear in our notation; it refers to the the same value u entering the definition of K̃b (whose
cardinality we are trying to bound) through (6.7)-(6.8).

The event ĤΛ in (7.5) is designed as follows. The ‘decoupling-good’ event GB introduced
in (6.5), which enters the definition of a good box Λk in (6.7), satisfies GB = ĜB(u, δ). Thus,
recalling the specifics of our bridge above (6.7), which entail among other things that any box
constituting a bridge in Λk has radius exceeding 16r0 and is contained in Λ̃k, it follows in view
of (6.7) and (7.1) that Ĥc

Λk
(u, u, u, δ2 , δ) ⊂ {Λk is good and F̂k occurs}. Thus, if k ∈ K̂b as in

(7.2), then the event ĤΛk(u, u, u, δ2 , δ) occurs.
Now, for any ` ∈ N, q ∈ Z, Q = 2q and Λx = B(x, 20N), let nz,` =

∑
x∈Dz,` 1

ĤΛx
, which

depends on ξ = (u1, u2, u3, δ1, δ2), and define

H`,q;z = H`,q;z(ξ)
def.
= {nz,`(ξ) ≥ Q},

h`,q = h`,q(ξ)
def.
= P [H`,q;0]

(
= P [H`,q;z]

)
,

(7.6)

where the last equality is due to translation invariance). It then follows by the previous ob-
servation regarding the implications of the event Ĥc

Λ and (7.4), recalling that K̂′b ⊂ K̂b has
cardinality exceeding βΓ = 2q0 with q0 = b(logN)10bc − b(logN)bc, that the left-hand side of
(7.3) is bounded by Mdh`0,q0(u, u, u, δ/2, δ) with `0 as in (7.4). Hence, to obtain (7.3), it is
sufficient to prove that

(7.7) h`0,q0(u, u, u, δ/2, δ) ≤ C exp
{
− cec(logN)8b}

(with q0 = b(logN)10bc − b(logN)bc),

for c = c(v, δ) and suitable values of γ and γM , as in the statement of Lemma 6.1.
In order to bound h`0,q0 , we set up a recursive inequality for the functions h`,q in (7.6). To this

end fix an integer λ ∈ [0, `]. As we now explain, for any choice of u1 ≥ u2 ≥ u3 > δ2 > δ1 > 0,
implicit in the sequel, and z ∈ LN , the inclusion

(7.8) H`,q;z ⊂
( ⋃

x,y∈Dz,` ∩ (z+2`−λLN ),

2−(`−λ)(10N)−1|x−y|∞≥ 2

(
H`−λ,q−dλ−1;x ∩H`−λ,q−dλ−1;y

))

∪
( ⋃
x∈Dz,` ∩ (z+2`−λLN )

H`−λ,q−2d−1;x

)
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holds. Indeed, recall that Dz,` = z + 10N · [0, 2`)d (viewed as a subset of LN = 10NZd), and let
Dλ
z,` = Dz,` ∩ (z+ 2`−λLN ). Since the boxes in {Dx,`−λ : x ∈ Dλ

z,`} form a partition of Dz,`, we
have on the event H`,q;z that

nz,` =
∑

x∈Dλz,`

nx,`−λ ≥ Q.

Clearly then, for some x ∈ Dλ
z,`, the bound nx,`−λ ≥ Q2−dλ = 2q−dλ holds. In particular, in

view of (7.6) this means that H`−λ,q−dλ−1;x occurs (the seemingly unnecessary −1 will become
clear momentarily). Now suppose that the first event on the right hand side of the inclusion in
(7.8) does not happen. Then by definition of Hc

`−λ,q−dλ−1;· in (7.6) it must be the case that for

x as above and any y ∈ Dλ
z,` such that 2−(`−λ)(10N)−1|x− y|∞ ≥ 2, one has ny,`−λ < Q2−dλ−1.

However, this yields that ∑
y∈Dλz,`: 2−(`−λ)(10N)−1|x−y|∞≤1

ny,`−λ ≥ Q−Q2−dλ−12dλ = Q/2.

Since the number of y satisfying the constraint in the first summation is at most 4d = 22d, it
follows that for one such y we must have ny,`−λ ≥ Q2−2d−1, i.e. H`−λ,q−2d−1;y occurs. Overall
this yields (7.8).

We now study the implication of (7.8) in terms of the corresponding probabilities h·,· in
(7.6), with the aim of showing (7.7). By a union bound, one immediately writes

h`,q ≤ 4dλ sup
x∈D̃λ0,`

P [H`−λ,q−dλ−1;0 ∩H`−λ,q−dλ−1;x] + 2dλ h`−λ,q−2d−1,(7.9)

where D̃λ
0,` = {x ∈ Dλ

0,` : 2−(`−λ)(10N)−1|x|∞ ≥ 2}. We now decouple the two events
H`−λ,q−dλ−1;0 and H`−λ,q−dλ−1;x in (7.9) by means of Proposition 2.3, as follows. In the no-
tation of §2.2, we pick r = 30N and choose sets A and U with Br ⊂ A ⊂ U ⊂ B2r such that
the conclusions of Proposition 2.3 hold. Recall that these choices induce a corresponding pro-
cess (Du)u>0 of excursions from A to ∂U between pairs of points in the clothesline Cu, cf. the
discussion leading to (2.14).

By inspection of (7.5), referring to (3.8) regarding the events F̂B =
⋂

1≤i≤3 F̂
i
B and to (2.17)

regarding ĜB(u1, δ2) = {Cu1 ∈ Ξu,δ2u
−1

B }, one infers that the event H`−λ,q−dλ−1;0 is measurable
relative to (Du3−δ2 ,Du3−δ1 ,Du2−δ1 ,Du2 ,Du1). Note that the parameters involved are listed in
increasing order. Moreover, the event Hc

`−λ,q−dλ−1;0 is monotone in each of the five configurations
involved. We illustrate this in the case of Du1 and leave the others for the reader to check. The
dependence on Du1 comes through F̂ 3

B′ in (3.8), where B′ ⊂ Λ, which is clearly decreasing in

Du1 , and through ĜB′(u1, δ2). The latter only depends on Cu1 and is decreasing in Cu1 (and thus
also in Du1) on account of Remark 2.4, items 1) and 2).

Returning to (7.9), assume now that `− λ ≥ 4, which implies by definition of D̃λ
0,` that the

supremum ranges over x satisfying |x|∞ > 200N . It then follows by the afore measurability prop-
erties ofH`−λ,q−dλ−1;0 and translation invariance that the eventsH`−λ,q−dλ−1;0 andH`−λ,q−dλ−1;x

are conditionally independent under P[ · | C ], where C = (Cu3−δ2 , Cu3−δ1 , Cu2−δ1 , Cu2 , Cu1).
The sprinkling inherent to the decoupling will be parametrized by δ′ > 0, soon to be chosen

proportional to δ, and we assume that δ2 − δ1 > 2δ′, δ1 > 2δ′ and u3 > 3δ′. Let A refer to the
event in (2.22) with k = 5 and parameters (u1, . . . u5) appearing there chosen as (u3 − δ2, u3 −
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δ1, u2 − δ1, u2, u1), and (δ1, . . . , δ5) as
(

δ′

u3−δ2 ,
δ′

u3−δ1 ,
δ′

u2−δ1 ,
δ′

u2
, δ
′

u1

)
. Conditioning on C, it follows

that for all `− λ ≥ 4 and x ∈ D̃λ
0,`, with H· = H`−λ,q−dλ−1;· and ξ = (u1, u2, u3, δ1, δ2),

P
[
H0(ξ) ∩Hx(ξ) ∩ {C ∈ A}

]
= E

[
P[H0(ξ) | C ]P[Hx(ξ) | C ] 1C∈A

]
(2.23)

≤ 5C3e
−cu0(δ′)2(2`−λN)c2 + P[H0(u1 + δ′, u2 − δ′, u3 − 3δ′, δ1 − 2δ′, δ2 − 4δ′)] · P[Hx(ξ)],

where u0 = min{u3 − δ2, u3 − δ1, u2 − δ1, u2, u1} and the inequality follows upon recalling the
monotonicity features of H0. To assist the careful reader in demystifying the parameters for the
event H0 in the second line, notice for instance that H0(ξ) is function of Du3−δ1 through (F̂ 2

B)c

alone, cf. (3.8), which is decreasing in Du3−δ1 , and this gets replaced by the smaller configuration
Du3−3δ′−(δ1−2δ′) = Du3−δ1−δ′(≤ Du3−δ1), thus leading to an upper bound; a similar observation

with opposite monotonicity applies to Du3−δ2 . Using (2.22) to bound P[C /∈ A] and feeding the
resulting estimate into (7.9), it follows that for all ` − λ ≥ 4, any u1 ≥ u2 ≥ u3 > δ2 > δ1 > 0
and δ′ > 0 such that δ2 − δ1 > 2δ′, δ1 > 2δ′ and u3 > 3δ′, abbreviating ξ = (u1, u2, u3, δ1, δ2)
and ξ′ = (u1 + δ′, u2 − δ′, u3 − 3δ′, δ1 − 2δ′, δ2 − 4δ′),

h`,q(ξ) ≤ 4dλ
(
h2
`−λ,q−dλ−1(ξ′) + 6C3e

−cu0(δ′)2(2`−λN)c2
)

+ 2dλ h`−λ,q−2d−1(ξ).(7.10)

We will now iterate (7.10), starting from u1 = u2 = u3 = u, (`, q) = (`0, q0) and (δ1, δ2) =
( δ2 , δ), as needed for the purpose of estimating the left-hand side of (7.7). We set ξn =
(u1,n, u2,n, u3,n, δ1,n, δ2,n) for n ≥ 0 with ui,0 = ui, δi,0 = δi, and ξn = (ξn−1)′ as above (7.10)
with increment parameter δ′ = δ′n = δ

64n2 for all n ≥ 1. With these choices, the parameter values
ξn after round n are given by

ξn = (u+ ∆n, u−∆n, u− 3∆n,
δ
2 − 2∆n, δ − 4∆n),

with ∆n = δ
64

∑
1≤i≤n

1
i2
. In particular, recalling that u ≥ 2δ (see above (6.11)), it is always the

case that u1,n ≥ u2,n ≥ u3,n > 3δ′1 > 3δ′n+1, δ1,n = δ
2−2∆n > 2δ′n and δ2,n−δ1,n = δ

2−2∆n > 2δ′n.
Observe that the quantity we wish to bound in (7.7) now simply reads h`0,q0(ξ0). Moreover,

setting `n = `0 − nλ and assuming that `0 − nλ ≥ 4, (7.10) yields a bound for h`n−1,q(ξn−1)
in terms of h`n,q−dλ−1(ξn) and h`n,q−2d−1(ξn). We can naturally map each term involving h`n,·
appearing at the outcome of the n-th round to an n-tuple m = (m1, . . . ,mn) ∈ {0, 1}n encoding
whether it was obtained from the quadratic term (encoded as 1) or the linear term (encoded
as 0) at each round 1 ≤ k ≤ n. Thus, denoting m =

∑
1≤k≤nmk for any m ∈ {0, 1}n, setting

qm,n = q0 − dm(λ− 2)− (2d+ 1)n, one obtains from (7.10) and an induction argument that, as
long as `n = `0 − nλ ≥ 4,

(7.11) h`0,q0(ξ0) ≤
∑

m∈{0,1}n
4n(dλ+C)2mh2m

`n, qm,n(ξn)

+
∑

0≤k<n

∑
m∈{0,1}k

4(k+1)(dλ+C)2m exp
{
− cu(k + 1)−4(2`k−λN)c22m

}
,

where one also uses the simple fact that (a + b + c)k ≤ 3k(ak + bk + ck) for all a, b, c ≥ 0 and
positive integers k(= 2m) while expanding the powers arising from the squares in (7.10).

We now derive a meaningful lower bound on m for any non-vanishing term contributing to
the first sum on the right-hand side of (7.11), for suitable choice of λ. First notice that h`,q = 0
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whenever q > d · ` by definition, see (7.6) (indeed, nz,` ≤ 2d`) and hence the only terms that
contribute to the first sum in (7.11) are precisely those m for which

(7.12) qm,n − d · `n = (q0 − d`0) + d(n−m)(λ− 2)− n ≤ 0.

Owing to the definition of `0 in (7.4) (recalling that Γ = 2b(logN)10bc) and q0 in (7.7), it follows
that n ≤ `0

λ implies that n ≤ q0
2 whenever N ≥ C and λ ≥ 8. Therefore any m satisfying (7.12)

must also satisfy, for any λ ≥ 50d, N ≥ C and n ≤ `0
λ ,

n−m ≤ `0
λ

1− q0−n
d`0

1− 2
λ

(λ≥4)

≤ `0
λ

(
1− q0

2d`0
+

4

λ

) (7.4),(7.7)

≤ `0
λ

(
1− 1

6d
+

4

λ

) (λ≥50d)

≤ `0
λ

(
1− 1

12d

)
where in the third step we also used the fact that N is large and that limN

q0
`0

= 1
2 . Fix

(7.13) n =
⌈
`0
λ

(
1− 1

12d

) 1
2
⌉
, λ = 50d

so that in view of our previous discussions there exists c5 > 0 such that, when N ≥ C, one has
for all nonzero summands in the first sum on the right-hand side of (7.11) that

(7.14) m ≥ c5n.

Moreover, (7.13) implies that

(7.15) `n = `0 − nλ ≥ c5`0.

In particular, (7.15) implies that `n ≥ 4 when N ≥ C since `0 →∞ as N →∞. Thus (7.11) is
in force for the choices (7.13).

Claim 7.2. For any b ≥ 1, γ ≥ Cb, v, δ > 0, u ∈ [2δ, v − 2δ], N ≥ 1 and 0 ≤ m ≤ n with n as
in (7.13), one has

(7.16) h`n, qm,n(ξn) ≤ Ce−c(δ,v)(logN)12b
.

Let us first conclude the proof of (7.7) assuming Claim 7.2 to hold. Plugging the estimate
for h`n, qm,n into (7.11) and subsequently using the fact that `0 = 1 + 2b(logN)10bc, (7.13) and
(7.14) to deal with the first sum on the right-hand side of (7.11), as well as (7.15) and (7.13) to
deal with second one, one obtains that, for suitable c = c(δ, v),

h`0,q0(ξ0) ≤ 2n exp
{
− (logN)12b(c− C(logN)−2b)2c`0

}
+ 4n exp

{
− cun−42c`nN c + C(n+ 1)

}
≤ C exp

{
− ec(logN)8b}

,

whence (7.7). We now return to the

Proof of Claim 7.2. Recalling that ξn = (u1,n, u2,n, u3,n, δ1,n, δ2,n), it follows in view of (7.6),
(7.5) and (3.8), since 2qm,n > 0 (note that qm,n could be negative), that

h`n, qm,n(ξn) ≤ CNd+1

(
sup
B⊂Λ̃,

rad(B)≥16r0

P
[(
ĜB(u1,n, δ2,n)

)c]
+ sup
B⊂Λ̃

P
[(
F̂ 1
B(u2,n, δ1,n)

)c]

+ sup
B⊂Λ̃

P
[(
F̂ 2
B(u3,n, δ1,n, δ2,n)

)c]
+ sup
B⊂Λ̃

P
[(
F̂ 3
B(u1,n)

)c])
.
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Hence, it suffices to bound each of the four probabilities probabilities individually by the right-
hand side of (7.16). Recall F̂ 3

B(u1,n) from (3.8). Since u1,n = u + ∆n, 2δ ≤ u ≤ v − 2δ by
assumption and one has the bound ∆n ≤ δ

32 valid for all n (see below (7.10)), it follows that
δ
2 ≤ u1,n ≤ v. Thus, using standard bounds on the tail probabilities for Poisson and geometric

random variables and recalling that r0 = b(logN)γc it follows that the probability of F̂ 3
B(u1,n)c

is bounded by Ce−c(δ,v)(logN)12b
whenever γ ≥ Cb.

A similar bound can be derived for P
[
(F̂ 2

B(u3,n, δ1,n, δ2,n))c
]

by means of (2.8) since Iu3,n−δ1,n\
Iu3,n−δ2,n has the same as Iδ2,n−δ1,n , upon observing that δ2,n − δ1,n = δ

2 − 6∆n ≥ 7
16δ. As for

the event
(
F̂ 1
B(u2,n, δ1,n)

)c
(see (3.7) and (3.8)), one notices that⋂

x,y∈Iu−δ ∩D,
D⊂A(B,r0), rad(D)=r0

{
x
Iu ∩Dr0←−−−−→ y

}
∩

⋂
D′⊂A(B,r0),

rad(D′)=b r02 c

{
Iu ∩D′ 6= ∅

}
⊂ F̂ 1

B(u, δ).

(with D,D′ ranging over `∞-boxes with the prescribed features). The desired bound on the prob-
ability of F̂ 1

B(u2,n, δ1,n) now follows by combining a union bound, (2.8) and [30, Proposition 1]
(see also [11, (5.4) and (5.20)] for more precise estimates).

Lastly, with regards to ĜB(u1,n, δ2,n)c, one has due to (2.17), writing δ̄2,n = (δ2,n−∆n)u−1
1,n(≥

cδ),

ĜB(u1,n, δ2,n) =
{
Cu1,n ∈ Ξ

u,δ2,nu−1

B

}
⊃
{
Cu1,n ∈ Ξ

u1,n,δ̄2,n
B

}
= Gu1,n,δ̄2,n

B ,

and the desired bound for P[(ĜB(u1,n, δ2,n)c] follows by applying (2.18) with r = r0(= b(logN)γc).

With Claim 7.2 proved, the proof of Lemma 6.1 is complete.

Remark 7.3 (γ vs. γM ). We now briefly take a look back at the proof of Lemma 6.1. The
probability for just one (fixed) box Λk to have index k in the bad set K̃b, see (6.9), is already
quite costly. Indeed this roughly amounts to the bound obtained in the proof of Claim 7.2, and
can be seen to be of order exp{−c(δ)(logN)cγ} with γ the exponent defining r0, cf. (6.6). On the
other hand, finding one such point inside K̃b by means of a union bound yields a combinatorial
complexity M(N)C , so for this to produce a meaningful upper bound for the left-hand side of
(6.11), one would need γ to be large compared with γM . Unfortunately, the opposite is really
underlying our finite energy mechanism: indeed, the constant C in the exponent on the right-
hand side of (6.18) can be traced back to be proportional to γ (which has been fixed at the
beginning of that proof), and it is crucial for the number of ‘good’ indices |K̃g| to compensate

for the resulting cost e−(logN)C in (6.18). However this number is at most K, see above (6.2),
which is never going to be larger than linear in the size M(N), thus forcing γM ≥ Cγ.

7.2. Proof of Lemma 6.2. Recall that [K] = {1, . . . ,K} and K = d
√
M

400N e, see above (6.2),
and that the sets Kb, Kg, see (6.9), (6.13), implicitly depend on γ (through r0 and the bridge,
see around (6.6)), u and δ. Lemma 6.2 will follow readily from the following result

Lemma 7.4. For all γ > 10, b ≥ 1, v > 0 as in the statement of Proposition 5.1, δ > 0,
u ∈ [2δ, v− 2δ] and N ≥ C(δ, v), Kg,Kb ⊂ [K] and k ∈ [K] with Kg ∩Kb = ∅ and k /∈ Kg ∪Kb,

(7.17) PC [Kg = Kg ∪ {k}, Kb = Kb]

≥ (D0)−1 PC [Kg = Kg, Kb = Kb]−D1 PC [Kg = Kg, Kb = Kb ∪ {k}],
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where D0 = exp{C(δ, v)(log eN)C6} and D1 = C6 log log e2N .

We first suppose that Lemma 7.4 holds and give the short

Proof of Lemma 6.2. Throughout we assume that γ > 10 and that δ, u, v fulfill the assumptions
of Lemma 6.2, or, equivalently, Lemma 7.4. Fix non-negative integers m and n such that
n + m ≤ K. Summing (7.17) over all disjoint subsets Kg and Kb of [K] with cardinalities m
and at most n, respectively, and letting k ∈ [K] \ (Kg ∪Kb) which is a set with cardinality at
least K − n−m, one obtains that for all N ≥ C(δ, v) and b ≥ 1,

(7.18) (m+ 1)PC [|Kg| = m+ 1, |Kb| ≤ n]

≥ D0
−1(K − n−m)PC [|Kg| = m, |Kb| ≤ n]−D1(n+ 1)PC [|Kg| = m, |Kb| ≤ n+ 1],

where the factor m+ 1 (and similarly n+ 1) arises due to the number of ways of decomposing
Kg with |Kg| = m+ 1 into a set of cardinality m and a singleton. In view of (6.14), let

(7.19) n = b4Kβc and m ≤ 2n.

Since K ≥
√
M/400N , see above (6.2), and by definition of M = M(N), see (1.2), it follows

that for all n and m as in (7.19) and all b ≥ 1, one has K − n−m ≥ K
2 whenever N ≥ C. If in

addition, b ≥ 2C6, this implies that

(7.20)
D0D1(n+ 1)

(K − n−m)
≤ 1

2
and

D0 (m+ 1)

(K − n−m)
≤ 1

4
for N ≥ C(δ, v).

Thus under (7.19) and for all N ≥ C(δ, v), b ≥ 2C6, (7.18) and (7.20) yield that

PC [|Kg| = m] ≤ PC [|Kg| = m, |Kb| ≤ n] + PC [|Kb| > n]

≤ 1

4
PC [|Kg| = m+ 1] +

1

2
PC [|Kg| = m] + PC [|Kb| > n]

and consequently,

(7.21) PC [|Kg| = m] ≤ 2−1PC [|Kg| = m+ 1] + 2PC [|Kb| ≥ n].

Now iterating (7.21) n times for each choice of m with 0 ≤ m < 2n and then summing the
resulting inequalities over m in the range 0 ≤ m < 2n readily implies the bound (6.14).

We now give the

Proof of Lemma 7.4. For Kg,Kb ⊂ [K] and k ∈ [K] with Kg ∩Kb = ∅, k /∈ Kg ∪Kb, let

H
def.
=
{
Kg ∩ ([K] \ {k}) = Kg, Kb ∩ ([K] \ {k}) = Kb

}
.

It then follows from the definitions of Kb and Kg in (6.9) and (6.13), that

(7.22) PC [Kg = Kg ∪ {k}, Kb = Kb]

= PC [Ek,Λk is good, H] = PC [Ek, H]− PC [Ek,Λk is bad, H]

≥ PC

[
Ej,k, 1 ≤ j < Jk, H

]
− PC [Kg = Kg, Kb = Kb ∪ {k}] ,
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where the last line follows upon recalling Ek from (6.12) and observing that the last probability
is equal to PC [Λk is bad, H]. We are going to show that under the assumptions on γ, b, v, δ, u of
Lemma 7.4 (henceforth tacitly assumed), for each 1 ≤ J < Jk and N ≥ C(δ, v), one has

(7.23) PC

[
Ej,k, 1 ≤ j ≤ J, H

]
≥ e−C(δ,v)(logN)2C4 PC

[
Ej,k, 1 ≤ j < J, H

]
− C ′ PC [Kg = Kg, Kb = Kb ∪ {k}]

(see the paragraph preceding (6.6) regarding C4). Indeed, (7.17) follows from (7.22) and (7.23)
after the latter is iterated over all 1 ≤ J < Jk as {Kg = Kg, Kb = Kb} ⊂ H and Jk ≤ C log logN
by property (B.4) and our choice of parameters for the bridge (see above (6.7)).

It thus remains to deduce (7.23). Recall from (6.12) that EJ,k is an intersection over various
connection events EB for B ranging over boxes in BkJ . We aim to decouple the events EB’s
successively by conditioning on ‘all but the immediate vicinity of B’. We proceed to make this
precise. We assume to this effect that n = |BkJ | and fix an arbitrary ordering B1, B2, . . . , Bn of
the elements of BJ . Consider an arbitrary m with 1 ≤ m ≤ n and assume that Bm = B(x, r)
for some x ∈ Zd and r ≥ 1. With ξ = 1− c2 as defined above (6.7), let Fm = FB4M\B(x,r+drξe),
where FK = σ(ηj(x), η0(x), x ∈ K) with η· as in (5.9) and the index j referring to the (partially

sprinkled) configuration used to define Ũ , see (5.19). We first claim that

(7.24) {Ũ = {C }} ∈ Fm.

This is because, due to (5.8), (5.10), (5.13) and (5.19), Ũ is obtained by grouping (i.e. forming
equivalence classes of) clusters in C, see (5.6), which are clusters of the boundary ∂B4M for the
configuration (η0(x) : x ∈ B4M ), according to a grouping rule that depends on ηj , which in view
of (5.9), is only affecting η0 outside V2j = B4M−2j

√
M . But since Λk is well inside V2j by (5.20)

and (6.2), so is the box B(x, r + drξe) by construction of Bk, and (7.24) follows using (B.1).

Now, recall from above (3.7) that GB = Gu,δu
−1

B and abbreviate

E−Bm =
{
Ej,k, 1 ≤ j < J, EBl , 1 ≤ l < m

}
.

We are now going to argue that whenever N ≥ C(δ, v),

PC

[
E−Bm , EBm , GBm , H

∣∣σ(Fm, 1GBm , 1H)
]
≥ e−C(δ,v)(logN)2

1{E−Bm , GBm , H}
.(7.25)

To see this, first note that due to (7.24), one can replace PC by P on the left-hand side of (7.25).
Next, one observes that the event {E−Bm , GBm , H} is measurable relative to σ(Fm, 1GBm , 1H) in
view of (6.12), (B.1) and property (6.3) for the family Λ of boxes. Then, (7.25) simply follows
from Proposition 2.3, item ii), which, as we now explain, yields that

P
[
EBm |σ(Fm, 1GBm , 1H)]1GBm

(2.17),(2.11)

≥ e−C(δ,v)(logN)2
1GBm .

Here, in applying (2.17), we used that GB = Gu,δu
−1

B , see (6.5), and that the additional con-
ditioning on (Fm, 1H) does not affect the conditional probability as Iu ∩ Bm is independent
of σ(Fm, 1H) conditionally on Cu (see also the discussion preceding [17, (7.40)] for a similar
argument). As for (2.11), we used the fact that u(1 + δu−1) = u+ δ ≤ v − δ by assumption on
u and picked

(7.26) κ = κ(v, δ) = inf
r
P
[
Br

Vv−δ←−−→ ∂B2r

]
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in the context of Lemma 2.2. With theses choices, the lower bound e−C(δ,v)(logN)2
uniform in

u ≤ v − 2δ follows immediately by application of (2.11) since Bm has radius at most CN ,
provided we argue that the hypothesis κ > 0 in (2.9) holds. This follows in turn from our
assumption on v, by which (1.3) holds for some α > 0: indeed if κ in (7.26) vanishes then by

[35] one knows that P[0
Vv←→ ∂Br] ≤ C(v) exp{−rc}, which precludes (1.3) via a straightforward

union bound (the relevant disconnection probability tends to 1, rather than 0, let alone with
some speed, as required in (1.3)). Overall, (7.25) thus follows.

Using (7.25), we now complete the proof of (7.23). To this end, we first notice that

(7.27) PC

[
E−Bm , GBm , H

]
≥ PC

[
Ej , 1 ≤ j < J, EBl , 1 ≤ l < m, H

]
− PC [GcBm , H]

(6.7),(6.9)

≥ PC

[
Ej , 1 ≤ j < J, EBl , 1 ≤ l < m, H

]
− PC [Kg = Kg, Kb = Kb ∪ {k}] .

Now, we integrate (7.25), combine it with (7.27) and then iterate the resulting inequality over all
m ≤ n = |BkJ | to deduce (7.23). Using the bound |BkJ | ≤ C(logN)C4+1 implied by property (B.4)
and our choice of parameters (see the paragraph above (6.7)), the bound (7.23) follows.

Remark 7.5 (Enhanced gluing property). We conclude by collecting the following result, which,
as explained below, follows by inspecting our arguments in Sections 6-7 and is interesting in its
own right. For r ≥ 1, u, v > 0 and with M = M(r), let

(7.28) Ẽ = Ẽ(r, u, v) = Ẽ1(r, u) ∩ Ẽ2(r, u, v)

where

Ẽ1 =

{
each translate B of Br such that B ⊂ B4M

intersects a cluster C ⊂ Vu with diam(C) ≥ 20M

}
Ẽ2 =

{
there exist two clusters in Vu ∩B4M crossing B4M \B2M

that are not connected to each other in Vv ∩B4M

}
.

The event Ẽ thus expresses an ‘existence without (weak) uniqueness’ property, cf. (1.1).

Proposition 7.6. For all γM ≥ C1, if v > 0 is such that

(7.29) inf
r
P
[
Br

Vv←→ ∂B2r

]
> 0,

then for all r ≥ 1, δ > 0, and u with 2δ ≤ u ≤ v − 2δ,

P[Ẽ(r, u, u− δ)] ≤ C exp
{
− c ec(logM(r))c

′}
.(7.30)

with constants C, c possibly depending on γM , v and δ.

In particular, the condition (7.29) on v relaxes the assumption on v inherent to Sections 5
onwards, which is tailored to the needs of Theorem 1.1. Proposition 7.6 can be obtained by
following essentially the line of argument in the proof of Proposition 5.1 upon making the
following observations. The event Ẽ in (7.28) is roughly equivalent (in fact it implies) the event
A ∩ {Ub√Mc > 1} appearing in (5.12). The latter is then bounded by (5.18) in the course
of proving Proposition 5.1 with the help of Lemma 5.2, the key gluing lemma. Crucially, the
latter continues to hold under the modified assumption (7.29) on v. Indeed, upon inspecting
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Sections 6-7, one sees that the only place where this is used is in the proof of Lemma 7.4 to
exhibit the cost (7.25) of re-constructing a piece of path inside a box of the bridge at a not too
degenerate cost, uniform in u(≤ v − 2δ). As explained around (7.26), this follows by combining
conditional decoupling (which always holds) and a connectivity lower bound from Lemma 2.2,
which only requires (7.29).
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