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Abstract

We consider the Gaussian free field ϕ on Zd, for d ≥ 3, and give sharp bounds
on the probability that the radius of a finite cluster in the excursion set {ϕ ≥ h}
exceeds a large value N , for any height h 6= h∗, where h∗ refers to the corresponding
percolation critical parameter. In dimension d = 3, we prove that this probability is
sub-exponential in N and decays as exp{−π6 (h− h∗)2 N

logN } as N →∞ to principal
exponential order. When d ≥ 4, we prove that these tails decay exponentially
in N . Our results extend to other quantities of interest, such as truncated two-point
functions and the two-arms probability for annuli crossings at scale N .
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1 Introduction

This article investigates the percolative properties of excursion sets {ϕ ≥ h} of the Gaussian free
field ϕ on Zd in dimensions d ≥ 3, for varying height parameter h ∈ R. This model, the rigorous
study of which was initiated in [2], and more recently re-instigated in [19], serves as a benchmark
example of a (non-planar) percolation model with strong, algebraically decaying correlations.
One of its appealing features is the rich interplay with potential theory for the underlying random
walk, which is beneficial to its study. A central role is thus played by electrostatic notions such
as capacity, see e.g. [1], [5], and more recently [20], [16], [15], [3], [21], [4], which will also feature
prominently in the present work.

Our main focus concerns the radii of finite clusters in the excursion sets {ϕ ≥ h}, which we
set out to introduce. Under a suitable probability P, the field ϕ is the centered Gaussian field
with covariance E[ϕxϕy] = g(x, y), for x, y ∈ Zd, where g(·, ·) denotes the Green function of the
simple random walk on Zd, see (2.1). The critical parameter for percolation of the associated
excursion sets {ϕ ≥ h} := {x ∈ Zd : ϕx ≥ h} is defined as

(1.1) h∗ = h∗(d) := inf{h ∈ R : lim
N

P[0
ϕ≥h←−→ ∂BN ] = 0},

where, with hopefully obvious notation, the event in (1.1) refers to a (nearest-neighbor) path in
{ϕ ≥ h} connecting 0 and ∂BN , where BN = BN (0), BN (x) := {y ∈ Zd : |y − x|∞ ≤ N} for all
x ∈ Zd, N ≥ 1, and ∂K refers to the inner (vertex) boundary of a set K ⊂ Zd. It is known that
0 < h∗ <∞ for all d ≥ 3, see [2], [19], [9], and that the infinite cluster, when existing, is almost
surely unique. Auxiliary parameters h̄ and h∗∗ satisfying h̄ ≤ h∗ ≤ h∗∗ were frequently used in
the past, respectively characterizing a phase of ‘well-behavedness’ for the infinite cluster and a
strongly subcritical regime, in which connectivities decay rapidly. Recently it was proved in [11]
that

(1.2) h̄ = h∗ = h∗∗.

As a consequence, one knows the following: there exists c1 = c1(d, h) > 0 and c = c(h, d) > 0
such that, for all N ≥ 1

P[0
ϕ≥h←−→ ∂BN ] ≤ e−cNc1

, if h > h∗(d) (= h∗∗(d)),(1.3)

P [LocUniq(N,h)c] ≤ e−cNc1
, if h < h∗(d) (= h̄(d)),(1.4)

where the ‘local uniqueness’ event in (1.4) is defined as

(1.5) LocUniq(N,h) = {{ϕ ≥ h} has a unique connected component crossing B2N \BN} .

Here and in the sequel, a set S ⊂ Zd is said to cross V \U , for U ⊂ V ⊂ Zd if S has a connected
component intersecting both U and ∂V . The estimate (1.4) is inherited from the bounds for the
‘existence’ and ‘uniqueness’ events usually appearing in the definition of h̄, see e.g. (1.10)–(1.11)
in [8], which assert that for all h < h̄ (= h∗) and N ≥ 1,

P
[

there exists a connected component in
{ϕ ≥ h} ∩BN with diameter at least N/5

]
≤ e−cNc1

and

P
[

any two clusters in {ϕ ≥ h} ∩BN having diameter at
least N/10 are connected to each other in {ϕ ≥ h} ∩B2N

]
≤ e−cNc1

,

(1.6)
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where the diameter of a set is with respect to the sup-norm. Indeed, (1.4) follows by straightfor-
ward gluing arguments, combining the events in (1.6) at a fixed number of scales commensurate
with N . Stretched exponential bounds such as (1.3), (1.4) and (1.6) typically arise as a by-
product of certain static renormalization methods, see e.g. [19] regarding (1.3), which exemplifies
this phenomenon. Little is otherwise known about the true order of decay for the probabilities
in (1.3) and (1.4). To date, the best available results are due to [17, 18], which solely concern
the subcritical regime and yield that (1.3) holds with c1(d, h) = 1 if d ≥ 4 and h > h∗, along

with an upper bound for P[0
ϕ≥h←−→ ∂BN ] of exponential order N/(logN)3+ε, for any ε > 0, when

d = 3 and h > h∗.
Our findings address these matters. Our main results are most easily formulated in terms of

a ‘truncated one-arm event’. We refer to the discussion following the statement of Theorem 1.2
below regarding extensions of (1.7) and (1.8) to other quantities of interest. Upper bounds in the
spirit of those obtained below for h > h∗ have also been derived in [7] for the so-called metric
graph associated to Zd. Contrary to what is suggested in Section 1.3 of [7], the logarithmic
factor in dimension three is not an artefact.

Theorem 1.1. If d = 3, then for every h 6= h∗ one has

(1.7) lim
N→∞

logN

N
logP[0

ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞] = −π

6
(h− h∗)2.

In higher dimensions, we have the following:

Theorem 1.2. For every d ≥ 4 and h 6= h∗, there exist C = C(d, h), c = c(d, h) > 0 such that

(1.8) e−CN ≤ P[0
ϕ≥h←−→ ∂BN , 0

ϕ≥h
6←→ ∞] ≤ e−cN .

Theorems 1.1 and 1.2 follow immediately by combining the results of Theorems 3.1 and 5.1
below, which separately deal with the corresponding lower and upper bounds, respectively. In
fact, as asserted in these two theorems, (1.7) and (1.8) continue to hold when h < h∗ if one
replaces the event in question by LocUniq(N,h)c, see (1.5). Together with the disconnection
upper bound from [20, Theorem 5.5], which yields that disconnecting BN from ∂B2N decays
exponentially at scale Nd−2 when h < h∗, this is easily seen to imply that

(1.9) lim
N→∞

logN

N
logP[2-arms(N,h)] = −π

6
(h− h∗)2, if h < h∗ and d = 3

along with a statement similar to (1.8) when d ≥ 4, where ‘2-arms’ refers to the existence of two
disjoint crossing clusters of {ϕ ≥ h} ∩ (B2N \BN ).

Concerning the truncated two-point function, defined as

(1.10) τ tr
h (x, y) = P[x

ϕ≥h←−→ y, x
ϕ≥h
6←→ ∞], for x, y ∈ Zd and h ∈ R,

which is symmetric in x and y and satisfies τ tr
h (x, y) = τ tr

h (0, y − x) by translation invariance
of the set {ϕ ≥ h}, our results readily imply (cf. the proof of Theorem 3.1 below) that the
asymptotics (1.7) and (1.8) also hold for τ tr

h (0, Ne1), h 6= h∗, where e1 denotes the unit vector
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in a coordinate direction of Zd. More generally, with | · | denoting the Euclidean distance, one
may also expect that for arbitrary x, y ∈ Zd,

(1.11) lim
|x−y|→∞

log |x− y|
|x− y|

log τ tr
h (x, y) = −π

6
(h− h∗)2, when d = 3.

We refer to Remarks 2.3 and 5.17, 2) below regarding the (technical) modifications to our
argument needed to prove (1.11) and compelling evidence for its truthfulness. Finally, let us
emphasize that, while (1.2) leads to a form of Theorem 1.1 indicating that h∗ is approached at
the same rate both as h ↘ h∗ and h ↗ h∗, a version of our findings could be stated in terms
of h̄ and h∗∗ only, much as in [20], [15], [3], thus yielding (1.7) and (1.8) upon applying (1.2).
This is the sole place where (1.2) is used.

We now highlight some ideas behind the proofs. One is immediately struck by the discrepancy
in the strength of the above results. This is closely related to the fact that the random walk does
not ‘see’ one-dimensional sets (such as bounded off-critical percolation clusters) when d ≥ 4.
Our proofs witness this structural difference between the cases d = 3 and d ≥ 4 very clearly. To
see this, first observe that (see Lemma 2.2 for precise statements) as N →∞,

(1.12)
cap
(
([0, . . . , N ] ∩ Z)× {0}d−1

)
∼ π

3

N

logN
, when d = 3, whereas

cap
(
([0, . . . , N ] ∩ Z)× {0}d−1

)
� N, when d ≥ 4.

Now, the coarse-graining described in more detail below (from which we eventually deduce the
upper bounds in (1.7), (1.8)), yields a sum two terms for the probability in question. One of them
corresponds to a truncated version of ϕ (a local field, independent at large scales), for which
a corresponding one-arm event decays exponentially in N , regardless of the dimension d. The
other term, which carries the long-range dependence, stems from the behavior of the harmonic
field in a collection of well-separated boxes, and will turn out to behave in a manner proportional
to cap

(
([0, . . . , N ]∩Z)×{0}d−1

)
to leading exponential order. In view of (1.12), this means that

the harmonic term clearly dominates in dimension 3, whereas the two terms live at the same
exponential scale in dimension four and higher (and in fact the local term is typically larger).

The lower bounds derived in Section 3 further reflect this disparity. For d = 3, in the
subcritical regime, we use a change of measure argument in order to draw a finite path in
{ϕ ≥ h} in a thin horizontal tube. The supercritical regime requires a more delicate treatment,
as discussed below. Intuitively, the field shifts itself by the right amount in a suitable region as
to make the event in question typical, cf. Lemma 3.2 for a general result in this direction, which
is of independent interest. The limit on the right-hand side of (1.7) thereby emerges in the
corresponding Radon-Nikodym derivative as half of the leading order pre-factor for the capacity
of the shifted region, which is close to that of a line of length N , see (2.12), times the square
of the height gap. Similar arguments have been used in the study of hard wall conditions for
ϕ, see [1], and disconnection probabilities for supercritical excursion sets, see [20]. Importantly,
the monotonicity of the events in question (common to these references) is absent for the one in
(1.7) when h < h∗, which requires that we ‘insulate’ the path, i.e. build an interface in {ϕ < h}
to shield it away from∞. This makes the implementation of our lower bound strategy relatively
involved in the supercritical regime and forces us to introduce Dirichlet boundary conditions to
decorrelate constituents of opposite monotonicity. In sharp contrast, the lower bounds in (1.8)
follow by ‘FKG-type’ arguments, which do not witness the critical parameter h∗ at all, see (3.3).
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Most of our work goes into proving the upper bounds required for Theorems 1.1 and 1.2,
summarized in Theorem 5.1 below. A stepping stone towards this is a certain coarse-graining
scheme for paths, developed in Section 4 (see in particular Proposition 4.3 below), which we
now briefly describe. Roughly speaking, for a path γ of linear size N , the coarse-graining of
γ, formalized in Definition 4.2, only retains the trace of γ in a system of ‘well-separated’ boxes
at scale L � N . Importantly, the scheme walks the fine line of operating at a preferential
entropic cost (parametrized by a function Γ(·), see (4.13), (4.14)), while retaining a sufficiently
‘large’ piece of path when measured in terms of capacity. This latter property, ensured by
Proposition 4.3, see (4.16), is crucial for the precise estimates we aim at.

In the subcritical phase h > h∗, the above scheme is used to cascade a connection event such

as {0 ϕ≥h←−→ ∂BN} from scale N down to scale L(� N). For each of the boxes at scale L in
the resulting collection, the occurrence of a crossing in that box is split into a similar event for
a localized field with good decorrelation properties as the box is varied, and the occurrence of
an atypical behavior for the corresponding harmonic average, see (5.5)-(5.8). The leading-order
contribution is thereby carried by the harmonic field in all but a small fraction of L-boxes,
which we control by means of state-of-the-art estimates developed in [20], cf. Lemma 4.1 below.
The strength of these estimates hinges on a suitable capacity lower bound for the underlying
collection of boxes, which Proposition 4.3 provides.

The resulting two-scale estimate for the one-arm event can then be applied iteratively, see
Proposition 5.2 below, to boost an a-priori bound such as (1.3) (but see Remarks 5.3 and 5.6
below to accommodate much weaker a-priori bounds) to the desired decay in a finite number
of steps, if L is carefully chosen as a function of N (as will turn out, L needs to grow poly-
logarithmically in N). In fact, two steps suffice if one starts from (1.3).

The derivation of the desired upper bounds in the supercritical regime, see (5.2) and (5.4) in
Theorem 5.1, is considerably more involved. When h < h∗, connections become typical and the
cost displayed in (1.7) and (1.8) measures the difficulty to avoid the infinite cluster. Our approach
revolves around an event GN , see (5.32), ensuring roughly speaking that any macroscopic path
at scale N will have aN ‘contact points’ in each of bN interfaces all of which are connected to
infinity in {ϕ ≥ h}. These contact points are in fact local areas at a microscopic scale L0 in
which a certain insertion tolerance property holds (which the model does not possess as such due
to the strength of the correlations), thus yielding a small i.i.d. cost to avoid connecting to the
infinite cluster. This property is conveniently defined in terms of a ‘mid-point’ extension of ϕ
that was used in [8], see (2.37) and (5.30) (incidentally, we also take advantage of this extension
to deal with competing monotonicity properties of the path and the insulating interface when
deriving the lower bounds for d ≥ 4 and h < h∗).

An upper bound on the key quantity P[GcN ] is then derived using a bootstrapping scheme,
see Proposition 5.14 below, which works roughly as follows. Starting from a certain (localized)
good event Gz at base scale L� L0, comprising a local uniqueness property at that scale and a
number aL (= 1 to begin with) of contact points to the ambient cluster for any large path, see
Definition 5.12, for which a suitable a-priori estimate is available (cf. Lemma 5.16), the scheme
does one of two things: i) in intermediate steps, it re-produces the same event Gz at larger scale
N , improving on both its likelihood and the number aN of contact points (eventually we need
aNbN to grow linearly with N when d ≥ 4 and sub-linearly but with aNbN � N/ logN when
d = 3); ii) in the final step, the scheme generates the target event GN , creating multiple interfaces
by stacking good boxes at scale L. In either case, the scheme witnesses this improvement on a
certain event, see (5.51), defined in terms of the coarse-graining from Proposition 4.3, and for
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which a dichotomy (involving local fields and harmonic averages) holds, see (5.65)-(5.67). The
proofs of the desired upper bounds then follow somewhat similarly as in the subcritical case.

We now briefly describe the organization of this article. Section 2 gathers several preliminary
results that will be used in subsequent sections. Section 3 proves the lower bounds corresponding
to Theorems 1.1 and 1.2, see Theorem 3.1. Section 4 supplies the coarse-graining scheme for
paths, see Proposition 4.3, which will be instrumental in deriving the upper bounds. The proof
differs depending on whether d = 3 or d ≥ 4, which are dealt with separately in Sections 4.1
and 4.2. The desired upper bounds are then derived in Section 5. The sub- and supercritial
phases are considered separately in Sections 5.1 and 5.2.

Our convention regarding constants is the following. Throughout, c, c′, C, C ′, . . . denote
positive constants that may change from place to place. Numbered constants are defined the
first time they appear and remain fixed thereafter. All constants may depend implicitly on the
dimension d. Their dependence on other parameters will be made explicit.

Acknowledgements. Part of this research was supported by the ERC Grant CriBLaM and
an IDEX grant from Paris-Saclay. S.G.’s research was carried out in part as a member of the
Infosys-Chandrasekharan virtual center for Random Geometry, supported by a grant from the
Infosys Foundation. F.S.’s work was partially supported by the Swiss FNS. We thank Jian Ding,
Alexis Prévost and Mateo Wirth for discussions at various stages of this project.

2 Preliminaries and capacity estimates for tubes

In this section, we gather several ingredients that will be used in the sequel. We first introduce
some more notation and state a topological condition on paths yielding the existence of blocking
interfaces, see Lemma 2.1 below. We proceed to recall certain aspects of potential theory for the
random walk on Zd and supply suitably precise capacity estimates for ‘tubular’ sets, including
‘porous’ versions thereof, see Lemmas 2.2–2.5 below. Finally, we discuss important properties
of the free field ϕ, including a certain mid-point extension of ϕ.

We consider Zd, d ≥ 3, endowed with the usual nearest-neighbor graph structure. We write
x ∼ y if x and y neighbors, i.e. if x, y ∈ Zd and |x− y| = 1. We use | · | to denote the Euclidean
and | · |∞ the `∞-norm in Zd as well as d(·, ·) and d∞(·, ·) to denote the corresponding distances
between sets. Recall that BN (x) denotes the box of radius N around x with respect to | · |∞,
and let BN (U) :=

⋃
x∈U BN (x) for U ⊂ Zd. For U ⊂ Zd, ∂U := {x ∈ U : ∃y /∈ U s.t. y ∼ x}

is the inner (vertex) boundary of U and U c = Zd \ U is the complement of U in Zd. We also
define the outer boundary of a set U ⊂ Zd as ∂outU = ∂(U c). For U, V ⊂ Zd, we write U ⊂⊂ V
to indicate that U has finitely many elements. A path γ in Zd is a map γ : {0, . . . , k} → Zd for
some integer k ≥ 0 such that |γ(i+ 1)−γ(i)| = 1 for all 0 ≤ i < k. A ∗-path is defined similarly,
with | · |∞ replacing | · |. A (∗-)connected set U ⊂ Zd is a set such that any points x, y ∈ U can
be joined by a (∗-)path whose range is contained in U . Throughout, we use the words connected
component and cluster interchangeably to refer to maximal connected sets.

We now state a useful criterion for the existence of ‘dual’ surfaces separating two sets, which
is interesting in its own right. In the sequel for any U ⊂⊂ Zd, let U c∞ denote the (unique)
connected component of U c having infinite cardinality, and define ∂extU = ∂(U c∞), the exterior
boundary of U . For any two finite sets U1, U2 ⊂ Zd, we say U1 is surrounded by U2, denoted
as U1 � U2, if U1 is contained in some finite connected component of Zd \ U2. Notice that the
relation ‘�’ is in fact a partial order.
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Lemma 2.1 (Existence of blocking interfaces). Let V ⊂ Zd be a box and U ⊂ V . Also let
Σ ⊂ V \U be such that any ∗-path between U and ∂V intersects Σ in at least k ≥ 1 points. Then
there exist ∗-connected subsets O1, . . . , Ok of Σ such that S � O1 � . . . � Ok.

Proof of Lemma 2.1. An obvious consequence of the hypothesis of the lemma is that U is not ∗-
connected to ∂V in V \Σ ⊃ U . It then follows e.g. by [6, Lemma 2.1] that the exterior boundary
of the ∗-connected component C ∗U of U in V \Σ is itself ∗-connected, which we pick as O1. Notice
that U � O1 and O1 ⊂ Σ by definition. Now observe that the hypothesis of the lemma still
holds with k − 1, C ∗U ∪O1 – which is a ∗-connected set – and Σ \ (C∗U ∪O1) substituting for k,
U and Σ respectively. Thus, by iterating the same argument k times we deduce the lemma.

We now review various aspects of potential theory on Zd which will be used in the sequel.
We denote by Px the canonical law of the discrete-time (symmetric) simple random walk on Zd
starting at x ∈ Zd. We write (Xn)n≥0 for the corresponding canonical process and (θn)n≥0 for
the canonical time shifts. For U ⊂ Zd, we introduce the following stopping times: the entrance
time HU := inf{n ≥ 0 : Xn ∈ U} in U , the exit time TU := HZd\U from U and the hitting time

H̃U := inf{n ≥ 1 : Xn ∈ U} of U . We write

(2.1) gU (x, y) :=
∑
n≥0

Px[Xn = y, n < TU ], for x, y ∈ Zd

for the Green function of the walk killed outside U . By [14], Theorem 1.5.4, with g = gZd , one
has the asymptotic formula

(2.2) g(x) := g(0, x) ∼ c2|x|2−d, as |x| → ∞,

(where ∼ means that the ratio of both sides tends to 1 in the given limit), for an explicit constant
c2 = c2(d) ∈ (0,∞) with c2(3) = 3

2π . For K ⊂⊂ U ⊂ Zd, we introduce the equilibrium measure
of K relative to U ,

(2.3) eK,U (x) := Px[H̃K > TU ]1x∈∂K

and its total mass

(2.4) capU (K) :=
∑
x

eK,U (x),

the capacity of K (relative to U). We will omit U from all notation whenever U = Zd. One has
the last-exit decomposition, see, e.g. [14, Lemma 2.1.1] for a proof, valid for all K ⊂⊂ U ⊂ Zd,

(2.5) Px[HK < TU ] =
∑
y

gU (x, y)eK,U (y), for all x ∈ Zd.

Summing (2.5) over x ∈ K, one immediately sees that

(2.6)
|K|

maxx∈K
∑

y∈K gU (x, y)
≤ capU (K) ≤ |K|

minx∈K
∑

y∈K gU (x, y)
.

One also has the following sweeping identity (see for instance (1.12) of [20] when U = Zd):

(2.7) eK,U (y) = PeK′,U [HK < TU , XHK = y], for every K ⊂ K ′ ⊂⊂ U and y ∈ Zd.
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Summing over y in (2.7) gives

(2.8) capU (K) = capU (K ′)PeK′,U [HK < TU ],

where eK′,U (·) = eK′,U (·)/capU (K ′) is the normalized equilibrium measure. In particular, it
follows immediately from (2.8) that capU (K) is increasing in K. Note also that capU (K) is
decreasing in U for fixed K. We will also use the following variational characterization of the
capacity: for K ⊂⊂ U ⊂ Zd,

(2.9) capU (K) =
1

infν EU (ν)
, where EU (ν) =

∑
x,y

ν(x)gU (x, y)ν(y)

and the infimum runs over all probability measures supported on K.
We now give precise bounds on the capacity of certain sets of interest. The capacity of a

ball classically satisfies

(2.10) cNd−2 ≤ cap(BN ) ≤ CNd−2, for all N ≥ 0,

see, e.g., [14, (2.16)]. We are typically going to work in certain (cylindrical) ‘tube domains’,
which we introduce now. Given L ≤ N , the tube of length N and width L, which we denote by
TN (L), is defined as the L-neighborhood of the N -line segment [0, N ]× {0}d−1. Formally,

(2.11) TN (L) := ([−L,N + L] ∩ Z)× ([−L,L] ∩ Z)d−1.

We abbreviate TN (0) = TN , which is a line of length N , and routinely omit the intersection with
Z from our notation below. We now derive certain capacity estimates for tube domains which
will be useful in the sequel. We start with the line.

Lemma 2.2 (Capacity of lines). For d = 3, one has

cap(TN ) ∼ π

3

N

logN
, as N →∞,(2.12)

whereas for d ≥ 4, there exists c3(d) ∈ (0, 1) such that for all N ≥ 1,

c3N ≤ cap(TN ) ≤ c−1
3 N.(2.13)

Proof. Using (2.2) with the precise value of c2(3), we obtain∑
y∈TN

g(x, y) ≤ 2
∑

y∈x+TN

g(x, y) ∼ 3

π
logN, for all x ∈ TN .

Substituting this into (2.6) with the choice K = TN and U = Zd yields the asserted lower bound
in (2.12). By a similar argument, using (2.6) and noting that the Green function is summable
along one-dimensional sets when d ≥ 4, one obtains both upper and lower bound in (2.13).

It remains to show the upper bound in (2.12). For δ ∈ (0, 1), letting

T−N = T−N (δ) := TN \ (([0, N1−δ] ∪ [N −N1−δ, N ])× {0}2),

one bounds the equilibrium measure by 1 to obtain

(2.14) cap(TN ) ≤ 2(1 +N1−δ) +
∑
x∈T−N

eTN (x).
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To take care of the sum over T−N on the right-hand side, one sums (2.5) for K = TN and U = Zd
over x ∈ TN and foregoes the terms with y ∈ TN \ T−N . Together with (2.14) this yields

(2.15) cap(TN ) ≤ 2(1 +N1−δ) +
N + 1

infy∈T−N

∑
x∈TN g(x, y)

.

Now by definition of T−N and using (2.2) again we obtain for any x ∈ T−N ,∑
y∈TN

g(x, y) ≥ 2
∑

y∈x+T
N1−δ

g(x, y) ∼ (1− δ) 3

π
logN.

Plugging this into (2.15), we get that lim supN→∞
cap(TN )
π
3

N
logN

≤ 1
1−δ , whereupon the upper bound

in (2.12) follows by taking δ → 0.

Remark 2.3 (Rotational invariance of asymptotic capacity for lines). Let u ∈ R3 with |u| = 1
be any unit vector. Then the asymptotic expression in (2.12) remains valid if one replaces TN
by the line segment joining 0 and Nu discretized in the following manner. For any x ∈ R3, let
[x] denote a point in Z3 achieving the minimum distance between x and Z3. Now let TN,u ⊂ Z3

consist of the points [j
√

3u] for all integers j between 0 and dN/
√

3e. Notice that it is always
possible to choose the points in such a way that they are distinct. By this construction and the
triangle inequality we have, for any x, y ∈ R3 such that [x], [y] ∈ TN,u,

|x− y| −
√

3 ≤ |[x]− [y]| ≤ |x− y|+
√

3

and consequently g(x, y) ∼ g([x], [y]) as |x − y| → ∞. The asymptotics on the right-hand side
of (2.12) now follow for cap(TN,u) by the exact same arguments as in the proof of Lemma 2.2.
Indeed, the additional 1/

√
3 factor appearing in the numerator in (2.6) owing to reduced cardi-

nality compared to TN gets canceled by the 1/
√

3 factor appearing in the denominator because
of the increased separation between successive points in TN,u. In fact, the asymptotics (2.12)
should hold for any ‘reasonable’ discretisation of the line segment between 0 and Nu.

We will need the following upper bound on the escape probability from a sufficiently dense
subset of the line in order to derive capacity estimates for thicker tube regions. We will also
use this result in Section 4 while proving Lemma 4.6, which will involve porous versions of these
sets (i.e. containing holes).

Lemma 2.4 (Visibility of (porous) lines). For all N ≥ 1, T ⊂ TN and x ∈ Z3 such that
d∞(x, T ) < N/100, the following holds. If, for some γ > 0,

(2.16) |Br(x) ∩ T | ≥ γr, for all r satisfying d∞(x, T ) ≤ r < N

then

(2.17) Px[HT =∞] ≤ C(γ)
log(1 + d∞(x, T ))

logN
.

Proof. Throughout the proof, constants may depend implicitly on γ. Let k0, k1 be two integers
with k0 smallest so that d∞(x, T ) ≤ 10k0 and k1 largest such that 10k1 ≤ N . Notice that k1 > k0
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when N ≥ C, which we may assume and that k0 = k0(x). Consider the boxes Uk := B10k(x),
for k0 ≤ k ≤ k1. By (2.16), one knows that

(2.18)
∣∣Uk ∩ T ∣∣ ≥ c(γ)10k, for all k0 ≤ k ≤ k1

Since
∑

z′∈Uk∩T g(z, z′) ≤ Ck uniformly in z ∈ Uk ∩ T by (2.2), it follows from (2.6) and (2.18)

that cap(Uk ∩ T ) ≥ c′10k/k for all k0 ≤ k ≤ k1. Therefore, fixing L ≥ 1 such that

(2.19) 2−1 ≤ c−1
2 (g(x)|x|) ≤ 2, if |x|∞ ≥ L

it follows that for all x such that d∞(x, T ) ≥ L, all k0(= k0(x)) ≤ k < k1 and y ∈ ∂outUk,

(2.20) Py
[
HUk∩T < TUk+1

] (2.5)

≥ inf
z,z′∈Uk

gUk+1
(z, z′)cap(Uk ∩ T ) ≥ c10−k

c′10k

k
≥ c

k
.

In obtaining (2.20), we also used the fact that gUk+1
(z, z′) ≥ cg(z, z′) for z, z′ ∈ Uk. Indeed, by

the Markov property we have g(z, z′) = gUk+1
(z, z′) +Ez[g(XTUk+1

, z′)], and on the other hand,

the definition of (Uk)k0≤k≤k1 readily implies that |y − z′| ≥ 5(|z − z′| ∨ L), for all y ∈ ∂Uk+1,
which together with (2.19) gives Ez[g(XTUk+1

, z′)] ≤ 4
5g(z, z′) .

Now consider the process {Zk : k ≥ 0} on N ∪ {∆} defined by Z0 = 0 and for k ≥ 1,
conditionally on Z0, . . . Zk−1,

(2.21) Zk :=

{
k, if Zk−1 6= ∆ and HUk−1∩T ◦ θTUk−1

> TUk ,

∆, otherwise.

Using the strong Markov property we get that Z· is a Markov chain under Px and (2.20) implies
that Px[Zk 6= ∆|Zk−1 6= ∆] ≤ 1 − c

k for all k0 < k ≤ k1. It follows that for all x with
d∞(x, T ) ≥ L,

(2.22) Px[HT =∞]
(2.21)

≤ Px[Zk 6= ∆, k0 ≤ k ≤ k1] ≤
∏

k0<k≤k1

(
1− c

k

)
≤ Ck0

k1
,

which yields (2.17) for such x, as k0 ≤ C log d∞(x, T ) and k1 ≥ c logN (see above (2.18)). To
handle the case d∞(x, T ) ≤ L, the strong Markov property at the time of first exit from TN (L),
see (2.11), with L given by (2.19), implies that Px[HT = ∞] ≤ supy Py[HT = ∞], with the
supremum ranging over y ∈ ∂outTN (L) and (2.18) still follows from (2.22) as d∞(y, T ) ≥ L.
This completes the proof.

We now move on to capacities of tubes whose width is a fractional power of their length. In
the sequel, let T δN,k = TN (kN δ) for δ > 0, k > 0 (cf. (2.11)), and abbreviate T δN = T δN,1.

Lemma 2.5 (Capacity of tubes). The following bounds hold for d = 3. There exists C1 ∈ (0,∞)
such that for every δ ∈ (0, 1) and N ≥ C(δ),

cap(T δN ) ≤ (1 + C1δ) cap(TN ),(2.23)

capT δN,2
(T δN ) ≤ C1δ

−1 cap(T δN ).(2.24)
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Proof. We claim that for every x ∈ ∂T δN and y ∈ ∂T δN,2, one has

Px[HTN =∞] ≤ Cδ and Py[HT δN
=∞] ≥ cδ, for all N ≥ C(δ).(2.25)

Before proving (2.25) let us deduce the lemma from it. By the sweeping identity (2.7),

cap(TN ) = Pe
Tδ
N

[HTN <∞] = cap(T δN )Pe
Tδ
N

[HTN <∞],

and (2.23) follows directly from the upper bound in (2.25). Also, by decomposing on the first
exit time of T δN,2, one finds that

Px[H̃T δN
=∞] =

∑
y

Px[H̃T δN
> H(T δN,2)c , XH

(Tδ
N,2

)c
= y]Py[HT δN

=∞],

for all x ∈ T δN , which combined with the lower bound in (2.25) implies that eT δN
(x) ≥ c δ eT δN ,T δN,2(x).

Summing over x ∈ T δN yields (2.24). We proceed to the proof of the bounds in (2.25).

The upper bound in (2.25). The bound is obviously true for δ ≥ 1/2 by letting C ≥ 2, whereas
for δ ∈ (0, 1/2) the hypotheses of Lemma 2.4 hold with T = TN and any x ∈ ∂T δN for all
N ≥ C(δ), whence the upper bound in (2.25) follows from (2.17).

The lower bound in (2.25). Below we will use B′L to denote the two-dimensional box [−L,L]2.
First of all, notice that for any y = (y1, y2, y3) ∈ ∂T δN,2, either (y2, y3) ∈ ∂B′

2Nδ or y ∈
{−b2N δc, N + b2N δc} × [−2N δ, 2N δ]2. We deal with the former case first. To this end let
us consider the projection X ′ = (X ′n)n≥0 of (Xn)n≥0 onto its last two coordinates, which has
the law of a (lazy) simple random walk in Z2. Let H ′U denote the entrance time in U for X ′ and
abbreviate H ′in = H ′B′

Nδ
and H ′out = H ′∂B′10N

. Applying Exercise 1.6.8 in [14], we get

(2.26) Py′ [H
′
out < H ′in] ≥ cδ, if |y′| ≥ 2N δ,

whenever N ≥ C(δ). Now since {(x2, x3) : x ∈ TNδ} ⊂ B′Nδ , the inclusion

{H ′out < H ′in, HT δN
◦ θH′out

=∞} ⊂ {HT δN
=∞}

holds and consequently, by the strong Markov property, we have

(2.27) Py[HT δN
=∞] ≥ Py′ [H ′out < H ′in] inf

z: d∞(z,TN )≥10N
Pz[HT δN

=∞].

However, by the last-exit decomposition (2.5) and (2.2),

Pz[HT δN
<∞] ≤ cap(T δN ) max

z′∈T δN
g(z, z′) ≤ C

cap(T δN )

N
, when d∞(z, TN ) ≥ 10N.

In view of Lemma 2.2 and (2.23) which, let us recall, requires only the upper bound in (2.25),
the right-hand side in the previous display is bounded by C

logN . Plugging this and the bound

(2.26) into (2.27), we deduce the lower bound in (2.25) in the case (y2, y3) ∈ ∂B′
2Nδ .

To deal with the case when y ∈ {−b2N δc, N +b2N δc}× [−2N δ, 2N δ]2 let us assume without
loss of generality that y1 = −b2N δc and note that, by means of the strong Markov property and
the previous case, it suffices to show that

(2.28) Py[H
′ < HT δN

] ≥ c, where H ′ := H ′∂B′
2Nδ

.
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To this end, let (X1
n)n≥0 denote the projection of (Xn)n≥0 onto its first coordinate and consider

the event
G := {H−b10Nδc(X

1) < H−bNδc(X
1)}

which has a constant positive probability under Py by the standard gambler’s ruin estimate. It
follows from the definition of T δN that HT δN

> H−b10Nδc(X
1) =: H1 on G and hence

(2.29) G ∩ {H1 ≥ H ′} ⊂ {H ′ < HT δN
}.

On the other hand, we have

G ∩ {H1 < H ′} ⊂ {X1
H1 = −b10N δc, X ′H1 ∈ B′2Nδ}.

An implication of the condition on the right hand side above is that B8Nδ(XH1) ∩ T δN = ∅,
whereas B′

2Nδ ⊂ B′8Nδ(X
′
H1). Denoting H := H ′∂B′

8Nδ
(X′0) ◦ θH1 , we therefore have

(2.30) (G ∩ {H1 < H ′}) ∩ {X ′H ⊂ ∂B′8Nδ(X
′
H1)} ⊂ {H ′ < HT δN

}.

However, since all two-dimensional axial projections of (Xn)n≥0 have the same law, we can
deduce via a union bound that Px[X ′H∂B

8Nδ
(x)
∈ ∂B′

8Nδ(x)] ≥ c uniformly for all x ∈ Zd. Hence,

in view of (2.30), we get, applying the strong Markov property at time H1,

Py[H
′ < HT δN

|G,H1 < H ′] ≥ c,

with y as in (2.28). Combined with (2.29) and the fact that Py[G] ≥ c, this yields (2.28) and
consequently the lower bound in (2.25) in this case.

We conclude this section by reviewing some important features of Gaussian free fields. For
U ⊂ Zd, we write PU for the law of the centered Gaussian process with covariance gU (·, ·), with
gU as given by (2.1) (in particular P = PZd following our above convention). Notice that under
PU , the field ϕ is almost surely 0 on Zd \ U . For U ⊂ Zd, we further introduce the Gaussian
fields (functions of ϕ)

(2.31) ξUx := Ex
[
ϕXTU

]
=
∑
y

Px[XTU = y]ϕy, ψUx := ϕx − ξUx , for x ∈ Zd.

The field ξU will be referred to as the harmonic average of ϕ in U and ψU as the local field in U .
Plainly, ξUx = ϕx (and therefore ψUx = 0) for all x ∈ Zd \U . As in [19, Lemma 1.2], one observes
that ξU is independent of ψU and that (ψUx )x∈Zd has law PU under P.

It will be convenient at times to consider a certain extension of the above setup. Let Md

denote the set of mid-points of the edges of Zd. We regard Z̃d := Zd ∪Md as the graph obtained
from Zd by splitting every edge of Zd into two (and adding the corresponding mid-point to the
vertex set). Let X̃ = (X̃n)n≥0 be the discrete-time random walk on Z̃d, which at each step jumps
with uniform probability to one of its neighboring vertices in Z̃d. Let P̃x̃ denote the canonical
law of X̃ with starting point X̃0 = x̃ ∈ Z̃d. By suitable extension of P, one defines a centered
Gaussian field ϕ̃ = (ϕ̃x̃)x̃∈Z̃d such that

(2.32) E[ϕ̃x̃ϕ̃ỹ] :=
1

2

∑
n≥0

P̃x̃[X̃n = ỹ], for x̃, ỹ ∈ Z̃d.
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Indeed, it follows from (2.32) and (2.1) that E[ϕ̃xϕ̃y] = g(x, y) whenever x, y ∈ Zd, whence

(2.33) ϕ̃|Zd = ϕ.

The decomposition (2.31) also extends and one obtains that

(2.34) ϕ̃ = ξ̃V + ψ̃V , for V ⊂ Z̃d, where ξ̃Vx̃ := Ẽx̃
[
ϕ̃X̃TV

]
;

here ξ̃V and ψ̃V are independent Gaussian fields and

(2.35) E
[
ψ̃Vx̃ ψ̃

V
ỹ

]
=

1

2

∑
n≥0

P̃x̃[X̃n = ỹ, n < TV ], for x̃, ỹ ∈ Z̃d,

where with hopefully obvious notation, TV = TV (X̃) denotes the exit time of X̃ from V . The
analogue of the restriction property (2.33) for the harmonic extension is then the following. For
U ⊂ Zd, defining Ũ := U ∪ {x̃ ∈ Z̃d : ∃x ∈ U s.t. |x − x̃| = 1

2}, noting that XTU under Px has

the same law as X̃TŨ
under P̃x for any x ∈ Zd and using (2.33), one sees that

(2.36) ξ̃Ũ |Zd = ξU .

We conclude with a particular instance of (2.34), which will prove useful on several occasions.
Let

(2.37) ϕ̃ = ξ̂ + ψ̂

be the decomposition (2.34) corresponding to the choice V := Zd(⊂ Z̃d), i.e. ξ̂x = ξ̂Z
d

x =
1
2d

∑
m∈Md:m∼x ϕ̃m if x ∈ Zd (where ∼ refers to neighbors in Z̃d), ξ̂m = ξ̂Z

d

m = ϕ̃m if m ∈ Md,
and by (2.35),

(2.38) (ψ̂x)x∈Zd is a field of i.i.d. centered Gaussian variables with variance 1/2 each.

3 Lower bounds

The main result of this section is the following

Theorem 3.1 (Lower bounds). The following holds:

i) If d = 3, then

for all h > h∗, lim inf
N→∞

logN

N
logP[0

ϕ≥h←−→ ∂BN ] ≥ −π
6

(h− h∗)2,(3.1)

for all h < h∗, lim inf
N→∞

logN

N
logP[0

ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞] ≥ −π

6
(h− h∗)2.(3.2)

ii) If d ≥ 4, then for all h ∈ R,

lim inf
N→∞

1

N
logP[0

ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞] > −∞.(3.3)

Moreover, the bounds (3.2) and (3.3) also hold for the event LocUniq(N,h)c (see (1.5)) in place

of {0 ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞}.
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3.1. General entropic lower bound. The following lemma will be used in the course of
proving Theorem 3.1, but is of independent interest. The lower bound it asserts in (3.6) will
follow by a change of measure argument, see e.g. the proof of Theorem 2.1 in [20], or Lemma 2.3
in [1], for results of a similar flavor. Given an event A ∈ B(RK), K ⊂ Zd and a height parameter
h ∈ R, we define

(3.4) Ah = Ah(ϕ) = {ϕ|K − h ∈ A},

where, with hopefully obvious notation ϕ|K − h refers to the field (restricted to K) shifted by
−h coordinatewise.

Lemma 3.2 (Entropic lower bound). Let KN ⊂⊂ UN ⊂ Zd be subsets with capUN (KN ) → ∞.
Let AN ∈ B(RKN ) and I ⊂ R be an interval such that, for every h′ ∈ I,

(3.5) PUN [Ah
′
N ]→ 1.

Then for every h /∈ I,

(3.6) lim inf
N→∞

1

capUN (KN )
logPUN

[
AhN
]
≥ −1

2
d(h, I)2.

Proof. Recall the following fact, which is a consequence of Jensen’s inequality, see e.g. the
discussion following (2.7) in [1] for a proof. Given two probability measures P̃ and P such that P̃
is absolutely continuous with respect to P, and an event A with positive P̃-probability, one has

(3.7) P[A] ≥ P̃[A]e−(1/P̃[A])(H(P̃|P)+1/e).

where H(P̃|P) := Ẽ
[
log dP̃

dP

]
is the relative entropy of P̃ with respect to P. Abbreviate K = KN

and U = UN in the sequel. Pick h /∈ I and h′ ∈ I. Using (2.5), it follows by an application of
the Cameron-Martin theorem, see e.g. [13, Corollary 14.1] with the choice (in the notation of
[13]) ξ := (h− h′)

〈
eK,U , ϕ

〉
∈ L2(P), that P̃U defined by

(3.8)
dP̃U
dPU

= exp
{

(h− h′)
〈
eK,U , ϕ

〉
− (h− h′)2

2
capU (K)

}
is a probability such that ϕ has the same law under P̃U as ϕ+ f under PU , where

(3.9) f(x) = (h− h′)Px[HK < TU ], x ∈ Zd.

(indeed observe to this effect that in (14.3) of [13], one obtains ρξ(ϕ·) = ϕ· + EU [ξϕ·] = ϕ· + f·
by (2.5)). In particular, f = h − h′ on K, whence P̃U [Ah(ϕ)] = PU [Ah(ϕ + f)] = PU [Ah

′
(ϕ)]

which tends to 1 as N →∞ by (3.5). Moreover, by (3.8) and (3.9), noting that ẼU
[〈
eK,U , ϕ

〉]
=〈

eK,U , f
〉
, one sees that

H
(
P̃U
∣∣PU) = (h− h′)ẼU

[〈
eK,U , ϕ

〉]
− (h− h′)2

2
capU (K) =

(h− h′)2

2
capU (K).

Applying (3.7), taking logarithms and letting N →∞ now readily yields (3.6), since h′ ∈ I was
arbitrary.

13



3.2. Lower bounds for d = 3. In this section, we show the lower bounds (3.1) and (3.2),

which will both follow from an application of Lemma 3.2, with carefully chosen events Ah in
(3.4) as to implement sufficiently cost-effective strategies for connection. The asserted bound
(3.2) bears the additional difficulty that the event in question is not monotone, which makes its
proof more involved than (3.1).

Proof of (3.1) and (3.2). We begin with the proof of (3.1). Recalling the notation from (2.11),
define the thin cylinder KN := TN (L), with

(3.10) L := 8d(logN)2/c1e

(cf. (1.3), (1.4) regarding c1) and let F−N = {0} × [−L,L]d−1, F+
N = {N} × [−L,L]d−1. Note

that F±N ⊂ KN and that 0 ∈ F−N , while F+
N ⊂ ∂BN . For h ∈ R, consider the event

(3.11) AhN := AhN,L := {F−N and F+
N are connected by a path in {ϕ ≥ h} ∩KN},

which is of the form (3.4).
Let us first check that P[Ah

′
N ] → 1 for all h′ ∈ I := (−∞, h∗). In view of (1.5), one readily

sees that ⋂
k∈{−L,−L+1,...,N+L}

(
{BL/8

ϕ≥h′←−−→ ∂BL} ∩ LocUniq(L/4, h′)
)
◦ τke1 ⊂ Ah

′
N ,

where τx, x ∈ Zd, denote the canonical space shifts for P. Now, combining the bounds of (1.6)

and in view of (3.10) one deduces that P[BL/8
ϕ≥h′←−−→ ∂BL] ≥ 1− e−c (logN)2

. Together with (1.4)

and a union bound, this is easily seen to imply limN P[Ah
′
N ] = 1, as desired. Lemma 3.2 thus

applies with UN = Zd and yields for any h > h∗,

(3.12) lim inf
N→∞

logN

N
logP

[
AhN
]
≥ −π

6
(h− h∗)2,

using that cap(KN ) ∼ π
3

N
logN as N →∞, which follows directly from (2.23), monotonicity cap(·)

and (2.12).
Next, by the FKG-inequality for ϕ, one knows that P[F−N ⊂ {ϕ ≥ h}] ≥ exp

{
−C(h)Ld−1

}
.

In particular, in view of (3.10), it follows that

(3.13) lim inf
N→∞

logN

N
logP

[
F−N ⊂ {ϕ ≥ h}

]
= 0, for all h ∈ R.

Recalling AhN from (3.11) and the fact that 0 ∈ F−N , one observes that AhN ∩ {F
−
N ⊂ {ϕ ≥ h}}

implies {0 ϕ≥h←−→ ∂BN}. Hence, (3.1) follows directly from (3.12), (3.13) and the FKG-inequality.

We now show (3.2). For arbitrary δ > 0, let DN ⊂ UN ⊂ KN be defined as DN := TN (N δ)
UN := TN (2N δ), KN := TN (3N δ) (see (2.11) for notation) and abbreviate ξN = ξUN , ψN = ψUN ,
cf. (2.31). For an additonal parameter ε > 0 and h < h∗ + ε, consider the event

(3.14) ChN :=
{
∂outUN

ϕ≥h
6←→ ∂KN

}
∩
{

infDN ξ
N ≥ −(h∗ + ε− h)

}
,
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and note that ChN is of the form (3.4) with K = KN ; observe to this effect that due to (2.31),
the condition ξN· ≥ −(h∗ + ε− h) can be recast as

∑
y∈UN P·[XHUN

= y](ϕy − h) ≥ −(h∗ + ε),
i.e. as a condition on the field ϕ· − h restricted to UN (⊂ KN ).

We now argue that ChN is typical as N → ∞ for every h ∈ (h∗, h∗ + ε). For such h, the

probability of {∂outUN
ϕ≥h←−→ ∂KN} vanishes as N → ∞ follows from (1.3) and a union bound.

Next, for x ∈ DN one has

E[(ξNx )2]
(2.31)

=
∑
y,z

Px[XTUN
= y]Px[XTUN

= z]g(y, z) =
∑
y

Px[XTUN
= y]Ex[g(XTUN

, y)]

=
∑
y

Px[XTUN
= y]g(x, y)

(2.2)

≤ C dist(x, U cN )−(d−2) ≤ CN−δ(d−2),

where the equality in the second line is obtained by applying the strong Markov property at
time TUN , noting that x ∈ UN whereas y /∈ UN . It then follows from a union bound over DN

and a standard Gaussian tail estimate that P[infDN ξ
N ≥ −(h∗ + ε− h)]→ 1 as N →∞ for all

h ∈ (h∗, h∗ + ε) (alternatively one could also use Lemma 4.1 below to deduce this). All in all,
in view of (3.14), one obtains

(3.15) P[ChN ]→ 1 as N →∞ for every h ∈ (h∗, h∗ + ε).

Using (3.16) and applying Lemma 3.2, one infers that for every h < h∗ (and all δ, ε > 0, implicit
in the definition of ChN ),

(3.16) lim inf
N→∞

1

cap(KN )
logP

[
ChN
]
≥ −1

2
(h∗ − h)2.

In the notation of (3.11), let ÃhN := Ãh
N,bNδc. In words, ÃhN is the event that the cylinder DN

contains a crossing in {ϕ ≥ h} intersecting both ‘slices’ F±N as defined below (3.10), but with
L = bN δc. Combining the occurrence of ÃhN and the insulating property of the disconnection
event in (3.14), one deduces that

ÃhN ∩ ChN ⊂
⋃

x∈F−N

{x ϕ≥h←−→ ∂BN (x), x
ϕ≥h
6←→ ∞}

for all h ∈ R, and hence by a union bound and translation invariance, that

(3.17) P[0
ϕ≥h←−→ ∂BN , 0

ϕ≥h
6←→ ∞] ≥ 1

|F−N |
P[AhN ∩ CN ].

Since the event ChN in (3.14) is FUcN = σ(ϕx;x ∈ U cN )-measurable, one has, applying the
decomposition (2.31),

(3.18) P[ÃhN ∩ ChN ] = E
[
P[ÃhN |FUcN ]1ChN

]
= E

[
PUN [ÃhN (·+ ξN )]1ChN

]
≥ PUN [Ãh∗+εN ]P[ChN ],

where in the last step, we used monotonicity of the event ÃhN (·) along with the control on ξN

supplied by (3.14). A useful lower bound on PUN [Ãh∗+εN ] is obtained as follows. First, mimicking
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the argument following (3.11) (the fact that the value of L has increased is only beneficial), one
deduces that

(3.19) lim
N

P[ÃhN ] = 1 for all h < h∗.

Then one writes, for all h < h∗, with ε0 = 1
2(h∗ − h),

PUN [ÃhN ] = P[ÃhN (ψN )] ≥ P
[
ÃhN (ψN ), sup

DN

ξN ≤ ε0

]
≥ P[Ãh+ε0

N (ϕ)]− P
[

sup
DN

ξN > ε0

]
.

By (3.19) and since h + ε0 = 1
2(h + h∗) < h∗, the first term on the right-hand side tends to 1

as N → ∞. By similar considerations as above (3.16), one sees that P
[

supDN ξ
N > ε0

]
→ 0,

yielding that PUN [ÃhN ] → 1 as N → ∞ for every h < h∗. Thus, Lemma 3.2 applies and gives,
for all δ, ε > 0

(3.20) lim inf
N

1

capUN (DN )
logPUN

[
Ãh∗+εN

]
≥ −1

2
ε2

(note also that capUN (DN ) ≥ cap(DN ) → ∞, as required for Lemma 3.2 to apply). Finally,
combining (3.17), (3.18) with the bounds (3.16), (3.20), and using (2.23), (2.24), noting that
|F−N | ≤ CN δ(d−1), one obtains, for all h < h∗ and ε, δ > 0,

(3.21) lim inf
N→∞

1

cap(TN )
logP

[
0

ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞

]
≥ −1

2

(
(h∗ − h)2(1 + C1δ) + C1δ

−1ε2
)
.

The result (3.2) now follows from (3.21) by first letting ε→ 0 and then δ → 0 (recall (2.12)).
It remains to argue that (3.2) continues to hold for the event LocUniq(N,h)c defined in (1.5).

To this end, using invariance of P under translations and rotations by multiples of π/2 along
coordinate axes, denoting by HN (x) = x + {y = (y1, . . . , yd) ∈ Zd : y1 = N}, one deduces that
for all h < h∗ and x ∈ Zd,

(3.22) lim inf
N→∞

logN

N
logP[x

ϕ≥h←−→ (∂BN (x) ∩H1
N (x)), x

ϕ≥h
6←→ ∞] ≥ −π

6
(h− h∗)2.

Now, fix a point x0 ∈ ∂BN ∩H1
N (0) (for instance x0 = (N, 0, . . . , 0) say). Then it follows that

(3.23) {BN
ϕ≥h←−→∞} ∩

{
x0

ϕ≥h←−→ (∂BN (x0) ∩H1
N (x0)), x0

ϕ≥h
6←→ ∞

}
⊂ LocUniq(N,h)c.

Indeed, the first event on the left-hand side of (3.23) implies that C , the infinite cluster in
{ϕ ≥ h} is a crossing cluster of B2N \BN , whereas the second event yields that Cx0 , the cluster
of x0 in {ϕ ≥ h}, also crosses B2N \ BN and that Cx0 ∩ C = ∅, whence (3.23). From (5.74) in
Section 5.2, one knows that for all h < h∗,

(3.24) lim
N→∞

logN

N
logP[BN

ϕ≥h
6←→ ∞] = −∞

Note that (5.74) makes use of the upper bounds derived in Theorem 5.1 below. However, the
proof of Theorem 5.1 does not rely the lower bound (3.2) which is being presently derived (nor
on any of the bounds stated in Theorem 3.1 for that matter). Combining (3.24) with (3.23) and
(3.22), the claim readily follows.

16



3.3. Lower bound for d ≥ 4. We now supply the proof of (3.3). A straightforward strategy
consists of opening all the vertices in the line segment TN = TN (0) (recall (2.11) for notation)
and closing all vertices in its outer boundary ∂outTN . However, the Gaussian free field does not
satisfy a uniform finite-energy property, which would make this easy to implement. Moreover,
unlike in the subcritical case, one cannot immediately apply the FKG-inequality as the event in
question is not monotonic. In order to deal with these issues, we make usage of the midpoint
extension ϕ̃ introduced at the end of Section 2, see in particular (2.32) and (2.33).

Proof of (3.3). Recall the decomposition (2.37) of ϕ̃. Now let TN := TN ∪ ∂outTN (where TN is
viewed as a subset of Zd, whence TN ⊂ Zd) and let MN := {m ∈ Md : m ∼ x, for some x ∈
TN}. Using the fact that the absolute value of the Gaussian free field on any transient graph
(and thus in particular of ϕ̃ on Z̃d) satisfies the FKG-inequality, see e.g. (1.3) and Corollary 1.3
in [12], one obtains that

(3.25) P[|ξ̂x| ≤ 1, ∀x ∈ TN ] ≥ P[|ϕ̃m| ≤ 1, ∀m ∈MN ] ≥ P[|ϕ̃m0 | ≤ 1]|MN | ≥ e−CN ,

where the first inequality follows because ξ̂x is the mean of ϕ̃ evaluated at its neighbors and m0

refers to an arbitrary reference point in Md. As a consequence, one has, for all h ∈ R,

P[0
ϕ≥h←−→ ∂BN , 0

ϕ≥h
6←→ ∞] ≥ P[ϕx ≥ h, ∀x ∈ TN , ϕy < h, ∀∂outTN ]

(2.37)

≥ P[|ξ̂x| ≤ 1, ∀x ∈ TN , ψ̂x ≥ h+ 1, ∀x ∈ TN , ψ̂y < h− 1, ∀y ∈ ∂outTN ]

(2.38)
= P[|ξ̂x| ≤ 1, ∀x ∈ TN ]P [X ≥ h+ 1]|TN | P [X < h− 1]|∂outTN |

(3.25)

≥ e−C(h)N ,

where in the penultimate step, we also used independence of ψ̂ and ξ̂ and X is a N(0, 1/2)-
distributed random variable. One easily adapts the above argument in order to create two
“insulated” paths in {ϕ ≥ h} joining BN to ∂B2N at an exponential cost in N , thus obtaining
the lower bound (3.3) for the event LocUniq(N,h)c instead. This completes the proof of (3.3)
and with it that of Theorem 3.1.

4 Coarse-graining

We now prepare the ground for the upper bounds that will be derived in the next section. The
main result of this section is a certain coarse-graining scheme for paths, see Proposition 4.3
below. Its proof is split over Sections 4.1 and 4.2, which deal with the case d = 3 and d ≥ 4,
respectively. The key effect of the scheme is to keep the capacity of the ‘coarse-grained path’
above a certain threshold, see (4.15), (4.16), while maintaining good control on the entropy
factor for its possible choices. The notion of ‘coarse-grained path’ is formalized in Definition 4.2.
It depends on a function Γ(·) parametrizing this entropy, see (4.13) and (4.14).

We now describe the precise setup. We consider positive integers L ≥ 1 and K ≥ 100 and
introduce the lattice

(4.1) L = L(L) := LZd

along with the boxes

(4.2) Cz := z + [0, L)d, Dz := z + [−3L, 4L)d, Uz := z + [−KL+ 1, L+KL− 1)d
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as well as

(4.3) C̃z := z + [−L, 2L)d, D̃z := z + [−2L, 3L)d

attached to z ∈ L. Notice that Cz ⊂ C̃z ⊂ D̃z ⊂ Dz ⊂ Uz. When considering more than one
scale in a given context, we will sometimes explicitly refer to the associated length scale L by
writing Cz,L = Cz, C̃z,L = C̃z etc. Using the notation of [20, Section 4], for any z ∈ L, we
introduce the decomposition

(4.4) ϕ = ξz + ψz

where ξzx := ξUzx = Ex[ϕXTUz
] for all x ∈ Zd, cf. (2.31), and ψz = ψUz , with Uz as in (4.2). Recall

that ψz has law PUz . Letting Ũz := (Uz ∩ Zd) ∪ {x̃ ∈ Z̃d : ∃x ∈ (Uz ∩ Zd) s.t. |x − x̃| = 1
2}, we

further define for z ∈ L the extended harmonic average

(4.5) ξ̃z := ξ̃Ũz
( (2.34)

= Ẽ·
[
ϕ̃X̃T

Ũz

])
, ψ̃z := ϕ̃− ξ̃z,

where ϕ̃ refers to the extension of ϕ to the graph Z̃d, see the discussion leading to (2.32). On
account of (2.33) and (2.36), one thus has ξ̃z|Zd = ξz and ψ̃z|Zd = ψz. Moreover, if

(4.6) C ⊂ L is a non-empty collection of sites with mutual | · |∞-distance at least 2KL+ L,

then denoting by ψ̃z = (ψ̃zx̃)x̃∈Z̃d , for z ∈ C, one has that

the Gaussian fields {ξ̃, ψ̃z, z ∈ C}, where ξ̃ = (ξ̃zx̃)z∈C, x̃∈Ũz , are independent.(4.7)

Given C as in (4.6), we write

(4.8) Σ := Σ(C) :=
⋃
z∈C

Cz.

The following precise result will be useful.

Lemma 4.1 (Control of harmonic average). For all K ≥ 100, there exists α(K) > 1 with
limK→∞ α(K) = 1 such that, for every a > 0, one has

(4.9) lim sup
L

sup
C

{
logP

[ ⋂
z∈C
{sup
Dz

ξ̃z ≥ a}
]

+
1

2

(
a− c4

K

√
|C|

cap(Σ)

)2

+

cap(Σ)

α(K)

}
≤ 0,

where the supremum over C runs over the sets satisfying (4.6), supDz refers to the supremum

over all points in Dz ∩ Z̃d and r+ = r ∨ 0 for any r ∈ R.

Proof. With ξz in place of ξ̃z, (4.9) is proved in [20, Corollary 4.4]. To extend the result to ξ̃z,
observe that, for any mid-point x̃ ∈ (Dz ∩ Z̃d) \ Zd, the neighbors x1 and x2 of x̃ (in Z̃d) both
belong to Dz ∩ Zd. Furthermore, by harmonicity of ξ̃z· in Dz ∩ Z̃d, cf. (4.2) and (4.5), one has
ξ̃zx̃ = 1

2(ξ̃zx1
+ ξ̃zx2

) = 1
2(ξzx1

+ ξzx2
), whence ξ̃zx̃ ≤ a whenever ξzxi ≤ a for i = 1, 2. Together, these

observations yield that
{supDz∩Z̃d ξ̃

z ≥ a} ⊂ {supDz∩Zd ξ
z ≥ a},

and the claim follows.
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We will be interested in families of collections C satisfying (4.6) with certain finer properties.
In what follows, let ΛN be any of the elements in

(4.10) SN := {BN , B2N \BN , D̃0,N \ C̃0,N}, for N ≥ 1 (see below (4.3) for notation).

In line with the wording below (1.5), for U ⊂ V ⊂⊂ Zd, we say that a ∗-path γ in Zd (see
Section 2 for its definition) crosses V \ U if γ intersects both U and ∂V . If U = {0} we omit
the reference to U ; e.g. when γ crosses BN we mean that γ intersects both 0 and ∂BN .

Definition 4.2. (K ≥ 100, L ≥ 1, N ≥ 10KL). Let Γ : [1,∞) 7→ [0,∞). A family A =
AKN,L(ΛN ) of collections C ⊂ L is called Γ-admissible if

all C ∈ A have equal cardinality n := |C| satisfying n ∈ [ c5N
u(KL) ,

N
u(KL) ], where

u(x) = x if d = 3 and u(x) = x(log x)2 if d ≥ 4, (4.6) holds for all C ∈ A
and D̃z = D̃z,L ⊂ ΛN for all z ∈ C,

(4.11)

for any ∗-path γ crossing ΛN , there exists C ∈ A such that γ

crosses D̃z \ Cz (with Cz = Cz,L, D̃z = D̃z,L as in (4.2), (4.3)) for all z ∈ C,(4.12)

log |A| ≤ Γ(N/L).(4.13)

The main result of this section is the following:

Proposition 4.3 (Coarsening of crossing paths). For all K ≥ 100, L ≥ 1, N ≥ 10KL and
ΛN ∈ SN , there exists a Γ-admissible collection A = AKN,L(ΛN ) with the following properties.

i) If d = 3,

Γ(r) = C2K
−1r log(r ∨ 2),(4.14)

and there exist positive numbers λ(K) ∈ (0, 1] satisfying

(4.15) limK→∞ λ(K) = 1,

such that, for all ρ ∈ (0, 1),

lim inf
N→∞

inf
L0(N)≤L≤L1(N)

inf
C∈A

inf
C̃⊂C

|C̃|≥(1−ρ)|C|

cap(Σ̃)

cap(TN )
≥ λ(K) (1− ρ)(4.16)

with Σ̃ = Σ(C̃) (see (4.8) for Σ(·)) and (L0(N), L1(N)) any sequence with limN L0(N) =∞
and L1(N) ≤ N/10K satisfying limN

logL1(N)
logN = 0.

ii) If d ≥ 4,

(4.14’) Γ(r) = C2r

and (4.16) remains valid with L0(N) = 1, L1(N) = N/10K and for some λ(K) ∈ (0, 1].

Moreover, the above conclusions continue to hold with ΛN = BN \BεN , for any ε ∈ (0, 1
3), upon

replacing TN by T(1−ε)N in (4.16).
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Remark 4.4. 1) The statement of Proposition 4.3 could even be generalized to the case ΛN =
BN \ BεN , for any ε ∈ (0, 1), with suitable modifications. Specifically, the condition in
(4.16) relating L and N would involve K and ε, and c5 in (4.11) would depend on ε. We
refrain from such extensions since we will only be interested in the limit ε ↓ 0 in the sequel.

2) The differing complexities Γ(r) in (4.14), (4.14’), reflect different procedures in implement-
ing the coarse-graining depending on whether d = 3 or d ≥ 4. An interesting question
this brings about is the following: can one devise a coarsening scheme in dimension 3 (for
instance the strategy employed for d ≥ 4, or a variation thereof), which would be more
cost-effective, i.e. reduce Γ(r), ideally getting rid of the logarithmic factor in (4.14), while
retaining the controls (4.15), (4.16) on the capacity?

3) The coarse-graining scheme used in case d = 3 can also be employed in dimensions d ≥ 4
in such a way that (4.16) continues to hold. The resulting higher combinatorial complex-
ity, see (4.14), already yields near-optimal asymptotic upper bounds for the quantities of
interest. We refer to Remarks 4.7 and 5.10 below for further details.

The proof of Proposition 4.3 is split over Sections 4.1 and 4.2, which deal separately with
the cases d = 3 and d ≥ 4.

4.1. Proof of Proposition 4.3 for d = 3. Let L ≥ 1 and N ≥ 10KL be integers. We
consider the case ΛN = BN . The small adaptations needed to account for the remaining cases
in SN , see (4.10), as well as for ΛN = BN \BεN , are indicated at the end of the proof. For each
i = 1, . . . , n with n := bN/3KLc−1 (note that n ≥ 1), define the concentric shells Si := ∂B3KLi.

By paving Si with boxes of the form Cz = z+[0, L)d for z ∈ L, and considering the successive
first exits of the path γ from each of the sets enclosed by Si, one finds for each i = 1, . . . , n a
point zi ∈ L such that

(4.17) Czi ∩ Si 6= ∅ and γ crosses D̃zi \ Czi .

Note that D̃zi ⊂ BN for all i = 1, . . . , n. We then define A = AKN,L(BN ) as the family consisting
of all collections C := {zi : 1 ≤ i ≤ n} that can be obtained in this way.

We proceed to verify the conditions of Definition 4.2 for Γ(·) as in (4.14) (with d = 3).
Properties (4.11) and (4.12) are immediate by construction. Regarding the cardinality of A, one
notes that the number of choices for zi is bounded by (CN

L )d−1, whence |A| ≤ (CN
L )n(d−1), from

which (4.13) follows with Γ(·) given by (4.14), for suitable choice of C2.
It remains to argue that (4.16) holds, with λ(K) satisfying (4.15). This will be done in two

steps, corresponding to Lemmas 4.5 and 4.6 below. We begin with a reduction step (Lemma 4.5),
consisting of replacing the set Σ̃ appearing in (4.16) (recall (4.8)) by the ‘porous line’

(4.18) T̃N :=

d(1−ρ)ne⋃
i=1

(
z̃i + [0, L)× {0}2

)
, with z̃i := Si ∩ ([0,∞)× {0}2)

(
= (3LKi, 0, 0)

)
.

Lemma 4.6 then compares the capacity of porous and non-porous lines.

Lemma 4.5. For all ρ ∈ (0, 1),

(4.19) lim inf
N→∞

inf
L0(N)≤L≤N/10K

inf
C∈A

inf
C̃⊂C

|C̃|≥(1−ρ)|C|

cap(Σ̃)

cap(T̃N )
≥ λ(K),

for suitable λ(K) > 0 satisfying (4.15) and any L0(N) with limN L0(N) =∞.

20



We prove (4.19) using a projection argument, first by rigidly displacing the boxes in Σ̃ onto
R×{0}2, then by “packing them together” along this axis to obtain the “homogenous porosity”
of T̃N . Since these operations essentially reduce the (`2-)distances between pairs of points in Σ̃,
the capacity expectedly decreases. This intuition is formalized below.

Proof of Lemma 4.5. In view of (2.2), for any ε ∈ (0, 1) we can choose L̃0(ε) ≥ 100 such that

(4.20) c−1
2 |x|g(0, x) ∈

[
1− ε, 1/(1− ε)

]
, whenever |x|∞ ≥ L̃0.

Let L ≥ L̃0(ε). Notice that z̃i in (4.18) is such that Cz̃i , cf. (4.2), is the (unique) box among
those paving Si intersecting the positive half-line Z+ × {0}2. Now for C ∈ A and zi ∈ C as in
(4.17), let τ(zi) := z̃i. Importantly, τ is an (`2-)projection, in that

(4.21) |τ(z)− τ(z′)| ≤ |z − z′|, for all z, z′ ∈ C and C ∈ A.

Indeed, by construction, (4.21) holds with | · |∞ in place of | · | and (4.21) follows because
|τ(z) − τ(z′)| = |τ(z) − τ(z′)|∞ and | · |∞ ≤ | · |. The map τ extends naturally to a bijection
defined on the set Σ (cf. (4.8)) by setting τ(y) = τ(z) + y − z, if y ∈ Cz for some z ∈ C. In
words, τ sends any point in Cz to the corresponding point in Cτ(z).

Recalling the notation from (2.9), for any probability measure µ supported on Σ̃, with
µ′ = τ ◦ µ and Σ̃τ := {τ(z) : z ∈ Σ̃}, it follows that

(4.22) E(µ) =
∑

x,y∈Σ̃τ

µ′(x)g
(
τ−1(x), τ−1(y)

)
µ′(y) ≤ κ · E(τ ◦ µ)

with

(4.23) κ := sup
x,y∈Σ̃τ

g
(
τ−1(x), τ−1(y)

)
g(x, y)

.

The quantity κ is suitably bounded as follows. By translation invariance of the Green’s function,
if x, y belong to the same box Cτ(z) for some z ∈ C̃, then g(τ−1(x), τ−1(y)) = g(x−y). Otherwise,
i.e. if x ∈ Cτ(z) and y ∈ Cτ(z′) for z, z′ ∈ C with z 6= z′, using the triangle inequality and (4.21),

one readily infers that |x−y| ≤ |τ−1(x)−τ−1(y)|+4
√

3L, for all x, y ∈ Σ̃τ . With this observation,
returning to (4.23) and using (4.20), which is in force as |x− y| ∧ |τ−1(x)− τ−1(y)| ≥ KL ≥ L̃0

whenever x and y belong to different boxes, one finds that

κ ≤ 1 ∨
(

1

(1− ε)2
sup

x∈Cτ(z),y∈Cτ(z′)
z,z′∈C, z 6=z′

|x− y|
|τ−1(x)− τ−1(y)|

)
≤ 1 + C/K

(1− ε)2
,

using in the last step that |τ−1(x)− τ−1(y)| ≥ KL. Substituting this bound into (4.22), taking
an infimum over µ, noting that µ 7→ τ ◦ µ is a bijection between probability measures with
support on Σ̃ and Σ̃τ , and applying the variational formula (2.9), one obtains the lower bound

(4.24) cap(Σ̃) ≥ (1− C/K)(1− ε)2cap(Σ̃τ ).

In view of (4.19), in order to produce the set T̃N , cf. (4.18), one trims Σ̃τ as follows. First,

let T̃ ′N :=
⋃d(1−ρ)ne
i=1 Cz̃i and note that T̃N ⊂ T̃ ′N , whence cap(T̃N ) ≤ cap(T̃ ′N ). Observe that the

elements of C, and hence of C̃, are naturally ordered according to increasing index i, cf. below
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(4.17). Now one only retains the boxes in Σ̃τ corresponding to the first d(1− ρ)ne elements of C̃
in this ordering (recall that C̃ has at least this many elements), and only keeps the intersection
of the resulting set of boxes with the line Z×{0}2, thus obtaining overall a smaller set Σ̃′τ ⊂ Σ̃τ ,
whence cap(Σ̃′τ ) ≤ cap(Σ̃τ ). The resulting set Σ̃′τ is in natural bijection with T̃ ′N , essentially
by removing the gaps, one by one by rigidly shifting all the intervals to the (say) right of the
gap by a suitable constant amount to the left. This operation either leaves the relative position
between two points x, y ∈ Σ̃′τ unchanged or reduces their Euclidean norm, but in the latter case
never as to fall below KL ≥ L̃0 (a lower bound on the gap size in T̃N ). With this observation,
a similar argument as above, using (2.9) and (4.20) yields that

(4.25) cap(Σ̃τ ) ≥ cap(Σ̃′τ ) ≥ (1− ε)2cap(T̃ ′N ) ≥ (1− ε)2cap(T̃N ).

By letting ε → 0 (and therefore L ≥ L̃0 → ∞ as well as N ≥ 10KL → ∞), (4.24) and (4.25)
imply (4.19) with λ(K) = 1− C/K.

We proceed with

Lemma 4.6. For all K ≥ 100, ρ ∈ (0, 1),

(4.26) lim inf
logN
logL

→∞

cap(T̃N )

cap
(
TN
) ≥ 1− ρ,

where the lim inf regards any sequence (Nk, Lk)k≥0 satisfying logNk/ logLk →∞ as k →∞.

Proof. Let T̂N := Td(1−ρ)ne3KL+L (recall that n = bN/3LKc − 1 and (2.11) for notation). On

account of (2.12), it suffices to show that lim infN/L→∞
cap(T̃N )

cap(T̂N )
≥ 1 and (4.26) directly follows.

By definition, see (4.18), T̃N ⊂ T̂N and

(4.27) for all x ∈ T̂N , d(x, T̃N ) ≤ 3KL.

Hence, by (2.8), (4.26) follows at once if we argue that

(4.28) lim inf
N/L→∞

inf
x∈T̂N

Px[H
T̃N

<∞] = 1.

In view of (4.27), Lemma 2.4 applied to T = T̂N ⊂ T̃N and x ∈ T̂N yields that

Px[H
T̂N

=∞] ≤ C(K)
logL

logN
→ 0 as logN/ logL→∞.

Thus, (4.28) follows, which completes the proof.

With Lemmas 4.5 and 4.6 at hand, we can conclude the proof of (4.16) (and (4.15)) for
ΛN = BN . The remaining cases in SN , see (4.10), i.e. ΛN = B2N \BN , resp. ΛN = D̃0,N \ C̃0,N

are dealt with by considering instead Si = ∂BN+3KLi, resp. Si = ∂([−3KLi−N, 2N + 3KLi)d)
(cf. (4.3)), for 1 ≤ i ≤ n, and adapting the subsequent arguments accordingly. In particular,
the bound for |A| remains valid for these choices. The set T̃N in (4.18) changes accordingly
whence z̃i = (N + 3LKi, 0, 0), resp. z̃i = (2N + 3LKi − 1, 0, 0). The statements and proofs of
Lemmas 4.5 and 4.6 then remain valid.
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In the case ΛN = BN \BεN for a given ε ∈ (0, 1
3), one considers the shells Si := ∂BdεNe+3KLi,

for 1 ≤ i ≤ n := b(1− ε)N/3KLc − 1 (note that n ≥ 1 when N ≥ 10KL). Then, defining T̃N as
in (4.18) (whence z̃i = (dεNe + 3LKi, 0, 0)), Lemma 4.5 remains valid and Lemma 4.6 as well
upon replacing TN by T(1−ε)N in (4.26). The lower bound (4.16) with T(1−ε)N instead of TN
then follows as above. This concludes the proof of Proposition 4.3 in the case d = 3. �

Remark 4.7. The above coarse-graining scheme also applies when d ≥ 4. As a result, one
obtains a Γ-admissible collection A′ = AKN,L(ΛN )′, with Γ(·) as defined in (4.14) for d = 3,

i.e. Γ(r) = C2
K r log r, and with u(x) = x in (4.11), so that the statement (4.16) for d ≥ 4 holds

with A′ in place of A. Only (4.16) requires an explanation. Repeating the steps leading up to
(4.18), one shows an analogue of Lemma 4.5 without the condition (4.15). The proof essentially
remains the same except that one simply uses c ≤ |x|d−2g(0, x) ≤ C for all x ∈ Zd instead of
(4.20), which is sufficient since one only aims at a λ(K) > 0 in (4.19). Then Lemma 4.6 gets

replaced by the statement that cap(T̃N )
cap(TN ) ≥ cK−1(1 − ρ) for all L ≥ 1 and N ≥ 10KL, which

follows by covering TN with at most CK shifted copies of the set T̃N and using monotonicity and
subadditivity of cap(·) (see e.g. Proposition 2.2.1(b) in [14] regarding the latter). The slightly
higher combinatorial complexity of the collection A′, reflected by the logarithmic factor in Γ(·),
cf. (4.14), only yields near-optimal upper bounds for d ≥ 4, see Remark 5.10 below. The presence
of the additional logarithm is remedied by the approach of Section 4.2.

4.2. Proof of Proposition 4.3 for d ≥ 4. We introduce the length scales

(4.29) L0 := 1, Lm+1 := d2(1 + εm)Lme, with εm := (m+ 1)−2, m ≥ 0.

Note that 2m ≤ Lm ≤ C2m for all m ≥ 0, which will be used frequently below. Throughout
the proof we use Cz,k, C̃z,k, Dz,k and Uz,k to denote the boxes Cz, C̃z, Dz and Uz, see (4.2),

corresponding to the length L = Lk for any z ∈ Zd. Also let Ĉz,k := z+[−Lk+Lk−1, 2Lk−Lk−1)d

and observe that Cz,k ⊂ Ĉz,k ⊂ C̃z,k.
We first define a certain coarse graining of paths crossing generic shapes, see Lemma 4.8

below, which will later be applied inductively to define an admissible collection with the desired
properties. Roughly speaking, the idea is to implement a cascading scheme on the path γ of
diameter N , thus only retaining its trace in a system of well-separated boxes at scale L (naturally
indexed by the leaves of a binary tree of depth ≈ log2(N/L)), see for instance [10], Section 8.1
for a gentle introduction to this circle of ideas in a related model. The precise recursive scheme
underlying the proof of Lemma 4.8 refines ideas from [19, 18], thereby improving the amount of
information kept when iterating the construction from a scale Ln0 ≈ N to Lk0 ≈ L for suitable
0 ≤ k0 ≤ n0. In particular, retaining merely the information that full annuli are crossed at
smaller scales (as done in [18]) makes it difficult to derive the lower bound (4.16). This leads to
the notion of shapes which we introduce now.

A shape at level k anchored at z ∈ Zd is any ∗-connected subset S of C̃z,k \ C−z,k, where

C−z,k = Cz,k \ ∂Cz,k, intersecting both ∂Cz,k and ∂C̃z,k. The collection of all shapes at level k
anchored at z will be denoted by Sz,k and Sk :=

⋃
z∈Zd Sz,k is the set of all shapes at level k.

Any face F of Cz,k (i.e. any set of the form F = (∂Cz,k) ∩ {xi = a} for some 1 ≤ i ≤ d, a ∈ Z)
intersecting S will be called an exposed face (with respect to S).

In what follows, let Tn, n ≥ 0, denote the (rooted) complete binary tree of depth n (with
|Tn| = 2n) and let L(Tn) = {0, 1}n (with L(T0) = {∅}, the root) be its set of leaves. The leaves
of Tn provide a natural indexing set due to the recursive dyadic manner in which the coarsening
scheme operates, cf. (4.32).
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Lemma 4.8 (Coarse-graining of shapes). For any integers n ≥ k > 0, z ∈ Zd and all shapes
S ∈ Sz,n, there exists a family AS = AS,k with

(4.30) log |AS | ≤ CLn−k
of collections D = {(z(`), S(`)) : ` ∈ L(Tn−k)} ⊂ Zd×Sk satisfying the following three properties:

S(`) ⊂ S and S(`) ∈ Sz(`),k for all ` ∈ L(Tn−k),(4.31)

if n > k, the sub-collections Di := {(z(`), S(`)) : ` ∈ L(Tn−k,i)}, i = 1, 2, of D, where
Tn−k,i, i = 1, 2, denote the two binary sub-trees of Tn−k with depth n− k − 1, belong
to AS1 and AS2 for some shapes S1, S2 ∈ Sn−1 such that d∞(S1, S2) ≥ 2εn−1Ln−1,

(4.32)

for any ∗-path γ ⊂ S crossing C̃z,n \ Cz,n, there exists D ∈ AS such that

for all ` ∈ L(Tn−k), γ induces a ∗-path γ′ ⊂ S(`) crossing C̃z(`),k \ Cz(`),k.
(4.33)

Proof. Fix k > 0. We proceed by induction over n ≥ k. When n = k, we simply choose AS to
be the singleton set consisting of D := {(z, S)} whence (4.30), (4.31) and (4.33) hold.

Suppose now that for some n ≥ 0 and each S ∈ Sn, there exists a family AS satisfying
(4.31)-(4.33), and such that, for some bn−k ∈ (0,∞),

(4.34) sup
S∈Sn

log |AS | ≤ bn−kLn−k

(note that (4.34) holds for n = k with b0 = 0). Consider a shape S ∈ Sz,n+1 for some z ∈ Zd.
Choose a fixed set of vertices T1 ⊂ Cz,n+1 of cardinality |T1| ≤ C3 such that Cw,n ⊂ Cz,n+1 for
all w ∈ T1 and the faces of the boxes {Cw,n;w ∈ T1} form a cover of the exposed faces of Cz,n+1.
Now, since Cw,n ⊂ Cz,n+1 for all w ∈ T1, given any ∗-path γ crossing C̃z,n+1 \ Cz,n+1, one finds
z1 ∈ T1 such that γ induces a path γ1 crossing C̃z1,n \ Cz1,n. Furthermore if γ ⊂ S, it follows
that γ1 ⊂ Sz1 where Sz1 ⊂ S is the ∗-connected component of S ∩ (C̃z1,n \ C−z1,n) containing γ1.
It is clear from this definition that Sz1 ∈ Sz1,n.

By a similar reasoning, one finds a set T2 ⊂ Ĉz,n+1, see below (4.29) for notation, with
|T2| ≤ C4 such that for some z2 ∈ T2, γ exits Ĉz,n+1 for the last time through Cz2,n ⊂ Ĉz,n+1.
Since z2 ∈ Ĉz,n+1 and consequently C̃z2,n ⊂ C̃z,n+1, we deduce from these definitions that γ
induces a path γ2 crossing C̃z2,n \ Cz2,n. Now, let Sz2 ∈ Sz2,n be defined as the ∗-connected
component of S ∩ (C̃z2,n \C−z2,n) containing γ2. Note that γ2 ⊂ Sz2 ⊂ S \ Ĉz,n+1. Now recalling

that Sz1 ⊂ C̃z1,n ⊂ z + [−Ln, Ln+1 + Ln)d, it follows that

(4.35) d∞(Sz1 , Sz2) ≥ d∞([−Ln, Ln+1 + Ln)d, ∂outĈ0,n+1) ≥ Ln+1 − 2Ln
(4.29)

≥ 2εnLn.

Therefore, upon defining AS to be the collection of all D such that the restriction of D to the
leaves of the left and right sub-trees of Tn+1−k of depth n − k correspond to some D1 ∈ ASz1
and D2 ∈ ASz2 , for some z1 ∈ T1 and z2 ∈ T2 respectively, then the properties (4.31)-(4.33)
follow as an immediate consequence of the above construction and the induction hypothesis. In
particular, the distance constraint in (4.32) (at level n+ 1) is exactly (4.35).

Finally, observe that

(4.36) |AS | ≤ |T1| · |T2| sup
S′∈Sn

|AS′ |2 ≤ C3C4 sup
S′∈Sn

|AS′ |2.

Together, (4.34), (4.36) and (4.29) readily imply that a bound similar to (4.34) holds with

n + 1 in place of n and bn+1−k := bn−k + log(C3C4)
Ln−k

, from which (4.30) follows with the choice
C = limn→∞ bn(<∞).
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The next result entails a capacity estimate which will be key in deducing (4.16). For a given
shape S ∈ Sn and a collection D = {(z(`), S(`)) : ` ∈ L(Tn−k)} ∈ AS,k (with AS,k as given
by Lemma 4.8), consider a collection B = {B(`) : ` ∈ L(Tn−k)} of boxes such that, for all
` ∈ L(Tn−k),

(4.37) B(`) = z + [0, r)d, for some z ∈ Zd s.t. B(`) ∩ S(`) 6= ∅ and 1 ≤ r ≤ 1

2
εkLk.

Now, define the set

(4.38) SB(D̃) :=
⋃

`∈L(Tn−k):

(z(`),S(`))∈D̃

B(`), for D̃ ⊂ D

and

(4.39) κn,k := inf
ρ∈(0,1]

inf
S∈Sn

inf
D∈AS,k

inf
B

inf
D̃⊂D:
|D̃|≥ρ|D|

ρ−1cap (SB(D̃)),

with the infimum over B ranging over all collections of boxes satisfying (4.37). The following
lemma supplies suitable lower bounds on the quantity κn,k.

Lemma 4.9. (d ≥ 4) For any n ≥ k > 0, one has

(4.40) κn+1,k ≥ 2n+1 ∧
2κn,k

1 + C 2n+1

(εnLn)d−2

.

As a consequence, for all for all n ≥ k > 0, one has

(4.41) κn,k ≥ 2n ∧ c62n−kκk,k.

Proof. Consider S ∈ Sn+1, D ∈ AS = AS,k, a collection B satisfying (4.37) and D̃ ⊂ D with
|D̃| ≥ ρD for some ρ ∈ (0, 1]. Consider the sub-collections D1 and D2 of D given by (4.32),
define D̃i := D̃ ∩ Di as well as the sets SB(D̃i) for i = 1, 2 in similar fashion as (4.38), so that
SB(D̃) = SB(D̃1) ∪ SB(D̃2). By (4.32) and (4.37) and since n ≥ k, one has

(4.42) d2(SB(D̃1), SB(D̃2)) ≥ εnLn.

Now, since SB(D̃) ⊃ SB(D̃i) for i = 1, 2, using the sweeping identity (2.7), one bounds

cap(SB(D̃i)) ≤
∑

z∈SB(D̃i)

eSB(D̃)(z) + max
z∈SB(D̃3−i)

Pz[HSB(D̃i) <∞]
∑

z∈SB(D̃3−i)

eSB(D̃)(z).(4.43)

Using (2.5), one finds, for i = 1, 2,

max
z∈SB(D̃3−i)

Pz[HSB(D̃i) <∞] ≤ cap(SB(D̃i)) max
z∈SB(D̃3−i),y∈SB(D̃i)

g(z, y),

The maximum of Green’s functions on the right-hand side is bounded by C(εnLn)2−d in view of
(4.42) and (2.2). Now substituting these bounds into (4.43) and adding the resulting estimates
for i = 1, 2, one deduces in view of (4.39) that

(4.44) cap(SB(D̃)) ≥ cap(SB(D̃1)) + cap(SB(D̃2))

1 + C cap(SB(D̃1))∨cap(SB(D̃2))
(εnLn)d−2

≥ |D̃|
|D|

2κn,k

1 + C cap(SB(D̃1))∨cap(SB(D̃2))
(εnLn)d−2

.
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However, since cap(SB(D̃)) ≥ cap(SB(D̃1))∨cap(SB(D̃2)) =: Ξ due to the monotonicity of cap(·),
see (2.8), distinguishing whether Ξ ≥ 2n+1, in which case cap(SB(D̃)) inherits this lower bound,
or Ξ < 2n+1, in which case one applies (4.44), it follows that

cap(SB(D̃)) ≥ |D̃|
|D|

(
2n+1 ∧

2κn,k

1 + C 2n+1

(εnLn)d−2

)
,

yielding (4.40). The lower bound (4.41) follows from (4.40) and a straightforward induction

argument, with c6 =
∏∞
n=0(1 + C 2n+1

(2εnLn)d−2 )−1 > 0 (see (4.29)).

We now complete the proof of Proposition 4.3 for d ≥ 4. Let L ≥ 1 K ≥ 100 and N ≥ 10KL.
We first introduce the collection A = AKN,L(ΛN ) for any ΛN ∈ SN and verify that it is Γ-
admissible. Let n0 be maximal such that Ln0 ≤ N/10, which by (4.29) implies that

(4.45) N/30 ≤ Ln0 ≤ N/10, and let Lk0−1 ≤ 5L ≤ Lk0 .

Note that k0 ≤ n0. The set A will be defined in terms of the coarse grainings AS,k0 of a
fixed number of shapes S ∈ Sn0 , which we now introduce. Let V 0 ⊂ Zd consist of 0 and
any point z ∈ Ln0Zd such that bz,n0 = z + [0, Ln0)d intersects ∂B3N/2 or ∂[−N

2 ,
3N
2 )d. Define

S0 = {C̃z,n0 \ bz,n0 : z ∈ V 0} ⊂ Sn0 . In view of (4.10), observe that any ∗-path γ crossing ΛN
induces a ∗-path crossing S for some S ∈ S0.

Now, let k ∈ [k0, n0] be such that

(4.46) 2εk−2Lk−2 ≤ 2KL+ 3L ≤ 2εk−1Lk−1

and consider the subset of leaves `′ ∈ L(Tn0−k0) of the form `′ = ` × (0, . . . , 0) =: `0, where
` ∈ L(Tn0−k) is arbitrary and (0, . . . , 0) ∈ L(Tk−k0) is fixed. For a given shape S ∈ S0 and
a collection D0 ∈ AS,k0 , “prune” D0 = {(z(`′), S(`′)) : `′ ∈ L(Tn0−k0)} (and forget the anchor
point z(`′)) to obtain the collection D = {S(`0) : ` ∈ L(Tn0−k)}. Let A′ denote the collections
D thereby obtained as D ranges over AS,k0 and S ∈ S0. The collection A = AKN,L(ΛN ) is then
defined as (recall L from (4.1))

A =
{
C = (y(`))`∈L(Tn0−k) : y(`) ∈ L, ∃D = {S(`0) : ` ∈ L(Tn0−k)} ∈ A′

s.t. Cy(`),L ∩ S(`0) 6= ∅ for all ` ∈ L(Tn0−k)
}
.

(4.47)

We now verify that A defined in (4.47) is Γ-admissible. The fact that |A| satisfies (4.13) with
Γ(·) as in (4.14) follows from (4.30), the fact that |S0| ≤ C, whence log |A′| ≤ CLn0−k0 , and
since the choice of points in C for a given D ∈ A′ is bounded by C |Tn0−k|. Overall, this gives
log |A| ≤ CLn0−k0 , as desired (note that Ln0−k0 ≤ CN/L by (4.45)).

The crossing property (4.12) can be seen as follows. Let γ be a ∗-path crossing ΛN . As
noted above, γ induces a crossing for one of the annuli shapes S ∈ S0. By (4.33) there exists
D ∈ AS,k0 such that the following holds for every ` ∈ L(Tn0−k). The ∗-path γ induces a ∗-path
γ′ crossing C̃z(`),k0

\Cz(`),k0
with γ′ ⊂ S(`0). In particular, by paving the part of ∂S(`0) adjacent

to Cz(`),k0
by boxes Cy,L, for y ∈ L and by choice of Lk0 in (4.45), one finds a point y(`) such

that D̃y(`),L \Cy(`),L is crossed by γ′. The resulting collection C belongs to A and (4.12) follows.
Regarding (4.11), observe that n = |C| = |L(Tn0−k)|, whose logarithm is comparable to

Ln0/Lk, hence to N/(KL(logKL)2) using (4.45), (4.46) and the fact that c(logKL)−2 ≤ εk ≤
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C(logKL)−2. The required separation property (4.6) then follows from (4.31) and (4.32). In-
deed, the latter (applied inductively) implies that any two shapes S(`0), S(`′0) with ` 6= `′ ∈
L(Tn0−k) are each subsets of two shapes S(`), S(`′) ∈ Sk separated by 2εk−1Lk−1 ≥ 2KL+ 3L,
see (4.46). Hence S(`0), S(`′0) inherit this separation. On account of (4.47), the resulting points
y(`), y(`′) are then at `∞-distance at least 2KL+ L.

Thus A is Γ-admissible. To see that the capacity lower bound (4.16) holds, first observe that
L ≥ c7

K εkLk by (4.46) upon choosing c7 small enough and choose r(≥ 1) satisfying

(4.48)
c7

2K
≤ r

εkLk
≤
(1

2
∧ c7

K

)
.

In particular r ≤ L. Now consider an arbitrary collection C ∈ A and note that

(4.49) each box Cy(`),L, y(`) ∈ C, contains a box B(`) satisfying (4.37) (with n = n0);

indeed this follows immediately by construction of Cy(`),L, which intersects S(`) by definition,
see (4.47), and the fact that r ≤ L.

Together, (4.49), (4.8) and (4.38) imply that for any C ∈ A and any sub-collection C̃ ⊂ C
with |C̃| ≥ (1− ρ)|C| for some ρ ∈ (0, 1), cap(Σ(C̃)) ≥ cap(SB(D̃)), for some family B satisfying
(4.37), where D refers to the collection generating C, see (4.47), and D̃ ⊂ D is the sub-collection
of D corresponding to the indices ` ∈ L(Tn0−k) appearing in C̃ ⊂ C. It follows that

(4.50) (1− ρ)−1cap(Σ(C̃))
(4.39)

≥ κn0,k

(4.41)

≥ cK−(d−2)N,

where the last inequality is obtained by combining the fact that 2n0 ≥ cN due to (4.45) (see
also the note following (4.29)) and observing that

2−kκk,k
(4.39)

≥ cL−1
k cap(Br)

(4.48)

≥ cK−(d−2) inf
m≥0

L−1
m cap(BεmLm)

(2.10)

≥ cK−(d−2) inf
m≥0

Ld−3
m εd−2

m

(4.29)

≥ c′K−(d−2).

(4.51)

The bound (4.16) follows immediately from (4.50). If ΛN = BN \ BεN for some ε ∈ (0, 1
3), one

simply sets AKN,L(ΛN ) := AKN,L(BN \ BN/2), which has the desired properties. This completes
the proof of Proposition 4.3 for d ≥ 4. �

5 Upper bounds

Using the coarse-graining scheme developed in the last section, see in particular Proposition 4.3,
we now derive companion upper bounds to the lower bounds obtained in Theorem 3.1. The
main result of this section is:

Theorem 5.1 (Upper bounds).

i) If d = 3, then

for all h > h∗, lim sup
N→∞

logN

N
logP[0

ϕ≥h←−→ ∂BN ] ≤ −π
6

(h− h∗)2,(5.1)

for all h < h∗, lim sup
N→∞

logN

N
logP[0

ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞] ≤ −π

6
(h∗ − h)2.(5.2)
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ii) If d ≥ 4, then

for all h > h∗, lim sup
N→∞

1

N
logP[0

ϕ≥h←−→ ∂BN ] < 0,(5.3)

for all h < h∗, lim sup
N→∞

1

N
logP[0

ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞] < 0.(5.4)

Moreover, the bounds (5.2) and (5.4) also hold for the event LocUniq(N,h)c (see (1.5)) in place

of {0 ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞}.

In spite of a common thread, the treatment of the subcritical (h > h∗) and supercritical
(h < h∗) regimes involve significantly different ideas. The supercritical case is more involved,
mostly due to the additional disconnection constraint present in the events. Correspondingly, the
upper bounds of Theorem 5.1 are furnished separately in two subsections. Section 5.1 contains
the proof of (5.1) and (5.3), Section 5.2 that of (5.2) and (5.4).

5.1. Upper bounds for the subcritical phase. We start by giving an overview of the proof
strategy leading to (5.1) and (5.3). To any path connecting 0 to ∂BN in {ϕ ≥ h}, one associates,
in view of Proposition 4.3, a collection of well-separated boxes of carefully chosen size L � N ,
each containing a box-to-box crossing at scale L. By the decomposition (4.4) of ϕ into the sum of
ψ and ξ within each such box, it follows that when h > h∗, either ξ is atypical for all but a small
proportion of the boxes, or the localized version of the event, involving crossings in {ψ ≥ h∗+ε},
behaves atypically for the remaining boxes. The corresponding events EN,L and FN,L (for ψ and
ξ, respectively), are defined in (5.7) below. Together, they yield the central estimate (5.8), which
drives the subsequent upper bounds. The key control on the event FN,L involving the harmonic
average, derived in Lemma 5.5 for d = 3 and Lemma 5.9 for d ≥ 4, is obtained by combining
Lemma 4.1 and the capacity estimates of (4.16). The resulting bound ends up carrying the
leading order in (5.1). The localized event EN,L is dealt with in Lemmas 5.4 and 5.7, and
essentially inherits a given a-priori estimate (for instance (1.3)). Pitting the resulting bounds
against the entropy factor (4.14) coming from the choice of coarse-grainings in Proposition 4.3
leads to an improved bound on the one-arm probability, for suitably chosen box sizes L. This
scheme can be applied as a bootstrapping mechanism, see Proposition 5.2 below, thus yielding
the desired bound (5.1) starting from (1.3) in several steps (in contrast, a single step suffices
when d ≥ 4).

We now render the above precise. Let h > h′ and ε ∈ (0, h− h′). Referring to the notations
from (4.1)–(4.4), given L ≥ 1, K ≥ 100 and a vertex z ∈ L = L(L), we introduce the events

{z is ψ-bad} := {Cz
ψz≥h′+ ε

4←−−−−→ ∂C̃z}, and(5.5)

{z is ξ-bad} :=
{

sup
Dz

ξz ≥ h− h′ − ε
4

}
.(5.6)

We also refer to the box Cz as ψ/ξ-bad whenever z is ψ/ξ-bad. Next, for any N ≥ 4KL and
and ρ ∈ (0, 1), consider the events

EN,L = EKN,L(ρ, h, h′, ε) :=

{
∃ C ∈ AN,L and C̃ ⊂ C with |C̃| = dρ|C|e
such that all the sites z ∈ C̃ are ψ-bad

}
,

FN,L = FKN,L(ρ, h, h′, ε) :=

{
∃ C ∈ AN,L and C̃ ⊂ C with |C̃| = |C| − dρ|C|e

such that all the sites z ∈ C̃ are ξ-bad,

}(5.7)
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where AN,L = AKN,L(BN ) is the admissible collection given by Proposition 4.3. Since ϕ = ξz+ψz

on Uz ⊃ C̃z and Dz ⊃ C̃z, it is then a consequence of the property (4.12) of AN,L and (5.5),
(5.6), (5.7) that

(5.8) P[0
ϕ≥h←−→ ∂BN ] ≤ P[EN,L] + P[FN,L].

The following (a-priori) bound will be useful in dealing with (5.5) and the event EN,L in
(5.7). It will also apply to a different notion of ψ-badness in the next subsection, hence the

general formulation. Consider an arbitrary increasing set A ∈ B(RC̃z). Then, in the notation of
(3.4), if for some h′ ∈ R, ε > 0 and L ≥ 1,

(5.9) P[Ah
′
(ϕ)] ≤ e−2f(L) with log 2 ≤ f(L) ≤ c8(ε)L,

then

(5.10) P
[
Ah
′+ ε

4 (ψz)
]
≤ e−f(L).

Indeed, (5.10) follows immediately from the decomposition ϕ = ξz + ψz valid on Uz, whence

P
[
Ah
′+ ε

4 (ψz)
]
≤ P[Ah

′
(ϕ)] + P

[
inf
Dz
ξz ≤ −ε/4

]
≤ P[Ah

′
(ϕ)] + e−2c8(ε)L

(5.9)

≤ e−f(L),

where in the penultimate step we used Lemma 4.1 for the singleton C := {z} along with the
lower bound cap(Cz) ≥ cL from (2.10) (valid for all d ≥ 3).

At this point we consider the cases d = 3 and d ≥ 4 separately.

Upper bound for d = 3. Recall from (1.3) that the quantity P[0
ϕ≥h←−→ ∂BN ] decays stretched

exponentially in N for every h > h∗ with some exponent β = c1(h) ∈ (0, 1). In what follows, we
will bootstrap this decay to the one asserted by (5.1) in – as will soon turn out to be necessary –
two steps. This is encapsulated in the following proposition, from which the upper bound (5.1)
will quickly follow.

Proposition 5.2 (Bootstrap). Let h′ ∈ R and β′ ∈ (0, 1) be such that

(5.11) lim sup
N→∞

1

Nβ′
logP[0

ϕ≥h′←−−→ ∂BN ] < 0.

Then for all h > h′, the following improved bounds hold, depending on the value of β′. If
β′ ≤ 1/2, then

(5.12) lim sup
N→∞

1

Nβ
logP[0

ϕ≥h←−→ ∂BN ] < 0 for every β < 1,

whereas if β′ > 1/2, then

(5.13) lim sup
N→∞

logN

N
logP[0

ϕ≥h←−→ ∂BN ] ≤ π

6
(h− h′)2.

Assuming Proposition 5.2 to hold, we first give the short:
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Proof of (5.1). Let h > h∗. By (1.3) we have (5.11) at any height h′ > h∗ with exponent
β′ = c1(h′) > 0. Therefore, by (5.12), we obtain that (5.11) holds for every h′ > h∗ and β′ < 1 –
in particular for β′ = 3/4 (say). Consequently, we obtain the bound in (5.13) for any h′ ∈ (h∗, h).
The result now follows by sending h′ → h∗.

Remark 5.3. Proposition 5.2 highlights in a transparent form the paradigm underlying our
strategy to obtain sharp upper bounds. Indeed, a similar (but considerably more involved)
bootstrapping mechanism is at work in the supercritical regime; see Section 5.2. The choice
(5.11) as a starting point for the bootstrap reflects the fact that stretched exponential estimates
naturally come out of the static renormalization arguments leading to the existence of a non-
trivial subcritical regime, see [19]. One could forego one step in deducing (5.1) as (5.12) is implied
by the strongest available results [17, 18], but our findings do not rely on these. Moreover, we
will face similar issues in the supercritical regime, where such results are not available a-priori.
In fact one could even deduce the desired bound (5.13) from a much weaker a-priori estimate
than a stretched-exponential bound by bootstrapping a few more times, see Remark 5.6 below.

We now aim at showing Proposition 5.2. Its proof combines individual estimates for P[EN,L]
and P[FN,L], cf. (5.7) and (5.8), which are supplied in the following two lemmas.

Lemma 5.4. (ρ ∈ (0, 1), K ≥ 100, h > h′, ε ∈ (0, h − h′)). If (5.9) holds with Ah
′
(ϕ) =

{C0
ϕ≥h′←−−→ ∂C̃0} for some L ≥ 1, then with EN,L = EKN,L(ρ, h, h′, ε), for all N ≥ 10KL one has

(5.14) logP[EN,L] ≤ n(C log(nK)− ρf(L)),

where n = |C| for any C ∈ A (cf. (4.11) in Definition 4.2).

Proof. On account of (5.7) and by a union bound, one obtains

P[EN,L] ≤ |AN,L|
(

n

dρne

)
sup
C∈AN,L

sup
C̃⊂C
|C̃|=dρne

P[z is ψ-bad, ∀z ∈ C̃]

≤ eCn log(nK) sup
C∈AN,L

sup
C̃⊂C
|C̃|=dρne

P[z is ψ-bad, ∀z ∈ C̃]
(5.15)

where the second line follows using (4.13), (4.14) and the lower bound on n from (4.11) in order
to bound |AN,L|. Now, due to the independence property (4.7) and by translation invariance,
one has, for any C̃ ⊂ C ∈ A with |C̃| = dρne, since (5.9) holds,

P[z is ψ-bad, ∀z ∈ C̃] = P[0 is ψ-bad]dρne
(5.5),(5.10)

≤ e−ρnf(L),

which together with (5.15) gives (5.14).

Next we present the relevant bound for P[FN,L]. Fix any function L1(N) such that L1(N) ≥
(logN)γ for any γ > 0 and N ≥ C(γ) and such that (logL1(N)/ logN) → 0 (cf. below (4.16)
in Proposition 4.3).

Lemma 5.5. (ρ ∈ (0, 1), K ≥ 100, h > h′, ε ∈ (0, h− h′)). For any θ > 0, one has

(5.16) lim sup
N→∞

sup
L∈[(logN)2+θ,L1(N)]

logN

N
logP[FN,L] ≤ −π

6

λ(K)(1− ρ)

α(K)
(h− h′ − ε/4)2,

with α(K) and λ(K) as appearing in Lemma 4.1 and Proposition 4.3, respectively.

30



Proof. Recalling (5.6) and (5.7), and proceeding as in (5.15), one finds that

logP[FN,L] ≤ Cn log(nK) + sup
C∈AN,L

sup
C̃⊂C

|C̃|=n−dρne

logP
[ ⋂
z∈C̃

{
sup
x∈Dz

ξzx ≥ h− h′ − ε/4
}]
.

Denoting the event on the right hand side above by F (C̃), we get, combining Lemma 4.1, the
capacity lower bound (4.16) from Proposition 4.3 and the fact that n ≤ N/LK by (4.11),

sup
L∈[(logN)2+θ,L1(N)]

sup
C∈AN,L

sup
C̃⊂C

|C̃|=n−dρne

logP[F (C̃)]

≤ −1

2
(h− h′ − ε/4− δ)2

+

λ(K)(1− ρ)

α(K)
cap(TN )(1 + oN (1)),

where

δ = δ(N,K, ρ, θ) := C

√
N

λ(K)(1− ρ)K3(logN)2+θcap(TN )
−→ 0, as N →∞,

using the asymptotics for cap(TN ) from (2.12) in the last step. Finally notice that

n log(nK) ≤ N

K(logN)1+θ
for L ≥ (logN)2+θ.

The lemma follows by combining the previous displays along with the asymptotic of cap(TN ).

With Lemmas 5.4 and 5.5 at hand, we proceed to the

Proof of Proposition 5.2. Let h′ ∈ R be such that (5.11) holds and consider h > h′ and ε ∈
(0, h− h′). First choose K ≥ 100 large enough and ρ ∈ (0, 1) close enough to 0, both depending
on h, h′ and ε, such that, applying Lemma 5.5, one obtains, for all θ > 0, N ≥ C(ε, h, h′, θ) and
L ∈ [(logN)2+θ, L1(N)],

(5.17) logP[FN,L] ≤ −π
6

(h− h′ − ε/2)2 N

logN

(recall to that effect that both α(K) and λ(K)(1 − ρ) converge to 1 in the limit ρ → 0 and
K →∞ by Lemma 4.1 and (4.15) in Proposition 4.3, respectively). Now for any N ≥ 103, let

(5.18) L = L(N, θ) := (logN)2+θ,

for some θ > 0 to be chosen. Notice that with (5.18) and by (5.11), the condition (5.9) holds

with Ah
′
(ϕ) = {C0

ϕ≥h′←−−→ ∂C̃0} and f(L) = c(h′, β′)Lβ
′

whenever N ≥ C(ε, h, h′, θ, β′). With
this choice of f(·) and since nK ≤ N/L by (4.11), it follows that

C log(nK)− ρf(L) ≤ −ρf(L)/2, for all N ≥ C(ε, h, h′, θ, β′)

as soon as

(5.19) (2 + θ)β′ > 1.
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Hence applying Lemma 5.4 and using the lower bound on n from (4.11), one gets (with L as in
(5.18))

(5.20) logP[EN,L] ≤ − c(h′, β′)ρN

K(logN)(2+θ)(1−β′) ,

provided (5.19) is satisfied and N is sufficiently large. Plugging the bounds from (5.17) and
(5.20) into (5.8) we immediately deduce, letting N →∞ and then ε→ 0, that

(5.21) lim
N→∞

(logN)β

N
logP[0

ϕ≥h←−→ ∂BN ] ≤ −π
6

(h− h′)2

for any value of β satisfying

(5.22)
β > (2 + θ)(1− β′), if (2 + θ)(1− β′) ≥ 1
β = 1, otherwise

and any choice of θ > 0 such that (5.19) is satisfied. If β′ ≤ 1/2, the conditions θ > 0 and
(2 + θ)(1 − β′) < 1 cannot simultaneously hold. Hence, in this case, choosing for example
θ = θ(β′) so that (2 + θ)β′ = 2, whence (5.19) is satisfied, (5.21) yields the bound (5.12). On
the other hand when β′ > 1/2, the conditions (5.19) and (2 + θ)(1− β′) < 1 can be recast as

(0 <)
1

β′
− 2 < θ <

1

1− β′
− 2

(note that the interval of admissible values for θ is non-degenerate because β′ > 1/2). So
choosing for instance θ = 1

2β′(1−β′) − 2, we obtain (5.21) with β = 1 (since (2 + θ)(1 − β′) < 1

holds), which is (5.13).

Remark 5.6. A careful examination of the proof of Proposition 5.2 reveals that a stretched
exponential a-priori bound such as (5.11) is not required to arrive at (5.1). Indeed one could for
instance obtain the same result by means of a few additional bootstrapping steps starting from a

much weaker estimate of the type lim supL
P[C0,L

ϕ≥h←−→∂C̃0,L]

(logL)β
′(h) < 0 for some β′(h) > 0 and all h > h∗

(or even a k-fold composition of log, for some fixed integer k ≥ 1). Combining with other existing

methods, see e.g. [17], one would further obtain that (5.1) holds as soon as P[C0,L
ϕ≥h←−→ ∂C̃0,L]

is bounded from above by a suitable c(d) ∈ (0, 1) uniformly along a diverging subsequence of
scales L. Similar conclusions could be drawn in the supercritical regime, cf. Remark 5.17,1).

Upper bound for d ≥ 4. We now supply the proof of (5.3). Throughout the remainder of
Section 5.1, for an arbitrary level h > h∗ (as appearing in (5.3)), we simply fix h′ = (h∗+h)/2, ε =
(h−h′)/8, ρ = 1/2 and K = 100 in (5.5)–(5.7). The events EN,L and FN,L thus effectively depend
on the sole parameter h. The following two results replace Lemmas 5.4 and 5.5, respectively.

Lemma 5.7. (d ≥ 4, h > h∗) For all L ≥ C(h) and N ≥ 103L one has

(5.23) P[EN,L] ≤ e−c(h)N/L.

32



Proof. The proof mimics that of Lemma 5.4, with small modifications. Proceeding as in (5.15),
using (4.13), (4.14) and the bound cN

L(logL)2 ≤ n from (4.11) to bound |A100
N,L|, one finds,

P[EN,L] ≤ eCn(logL)2
P[0 is ψ-bad]dn/2e ≤ en(C(logL)2−c(h)Lc1 ),(5.24)

for all L ≥ 1, N ≥ 103L, where the first inequality also relies on the independence property (4.7)
and the second one on the fact that (1.3) and (5.9)–(5.10) combine to give a suitable bound on
P[0 is ψ-bad]. Using the lower bound on n yet again, (5.23) readily follows from (5.24).

Remark 5.8. The conclusions of Lemma 5.7 would remain unaltered if one replaced (1.3) by

the (weaker) assumption that P[C0,L
ϕ≥h←−→ ∂C̃0,L] ≤ e−c(h)(logL)2+ε

, for some ε = ε(h) > 0 and
all L ≥ 1, h > h∗. This is related to the power in the definition of εm in (4.29), and could be
relaxed to a “1+ε”-condition by suitable modification of (4.29) and the subsequent arguments of
Section 4.2, which would lead to a corresponding improvement of the lower bound on n in (4.11).

The analogue of Lemma 5.5 is

Lemma 5.9. (d ≥ 4, h > h∗) For some C(h) > 0,

(5.25) lim sup
N→∞

sup
L∈[C(h),N/10K]

1

N
logP[FN,L] < 0.

Proof. For arbitrary L ≥ 1, N ≥ 103L and any given collection C ∈ A = A100
N,L and C̃ ⊂ C with

|C̃| = n − dn/2e, one obtains by virtue of (4.16) and (2.13) that cap(Σ̃) ≥ cN . Together with
Lemma 4.1, this is seen to imply that,

(5.26) P
[ ⋂
z∈C̃

{
sup
x∈Dz

ξzx ≥ h− h′ − ε
4

}]
≤ e−c(h)N

(with h′, ε as defined above Lemma 5.7) whenever L ≥ C(h) and N ≥ 103L, noting that
|C̃|

cap(Σ̃)
≤ cL−1 becomes suitably small for such L, cf. (4.9). In view of (5.7), applying a union

bound over the choices of C ∈ AN,L and C̃ ⊂ C, (5.25) is easily seen to follow since log |A| ≤
Cn(logL)2 ≤ CN

L , see (5.24) and the upper bound on n from (4.11). Thus, the resulting
combinatorial complexity doesn’t spoil the upper bound in (5.26) whenever L ≥ C ′(h).

Proof of (5.3). The upper bound (5.3) follows immediately by combining (5.8), (5.23) and (5.25)
upon choosing L = C(h) large enough to ensure both Lemmas 5.7 and 5.9 are in force.

Remark 5.10. Following up on Remark 4.7, we describe which upper bounds can be derived for
d ≥ 4 using the collection A′ (obtained by following the coarse-graining scheme used for d = 3).
For h > h∗, fix h′, ε, K and ρ as above (5.7) and define E′N,L = EKN,L(ρ, h, h′, ε)′, F ′N,L as in
(5.7), but with A′ in place of A. Similarly as in (5.8), by admissibility of A′, one sees that

P[0
ϕ≥h←−→ ∂BN ] ≤ P[E′N,L] + P[F ′N,L]. Using (4.16), (5.26) and recalling the larger combinatorial

complexity of |A′| (as in (5.15) for instance), one finds that

(5.27) P[F ′N,L] ≤ eCn log(nK)e−c(h)N
(4.11)

≤ eCN
logN
L
−cN ≤ e−c

′(h)N , if C(h) logN ≤ L ≤ cN .
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Regarding P[E′N,L], observe that the bound (5.14) from Lemma 5.4 holds with E′N,L instead of
EN,L. This crucially uses the fact that n = |C| for C ∈ A′ satisfies the lower bound (4.11) with
u(x) = x, which is used in the proof of Lemma 5.4. As a consequence, one obtains

(5.28) P[E′N,L] ≤ e−c
f(L)N
L , if f(L) ≥ C logN , L ≤ cN ,

assuming (5.9) holds with Ah
′
(ϕ) = {C0

ϕ≥h′←−−→ ∂C̃0}.
As we now explain, one can deduce from (5.27) and (5.28) that for any integer k ≥ 1

(5.29) P[0
ϕ≥h←−→ ∂BN ] ≤ e−c(h)N/(log(k)N)C5

, for all N ≥ 1, h > h∗,

where log(k)(·) denotes the k-fold composition of log(·). To obtain (5.29) one proceeds as fol-
lows: in a separate (first) step, starting from (1.3), one chooses f(L) = c(h)Lc1 and L =

C(h)(logN)1+c−1
1 , whence (5.27) and (5.28) apply and yield (5.29) for k = 1 with C5 = c−1

1 − c1.
Now, assuming (5.29) to hold for some k ≥ 1, one chooses f(L) = c(h)L/(log(k)L)C5 and
L = C(h) logN(log(k+1)N)C5 , whence (5.27) and (5.28) apply (in particular (5.9) holds with
this choice of f(·) due to (5.29), and the conditions on L and f(L) in (5.27), (5.28) are met)
and readily yield (5.29) with k + 1 instead of k.

Note that (5.29) is nearly (5.3) and that the obstruction to obtaining the desired result
comes from competition between the entropy of A′ and the local fields leading to (5.28), not the
contribution (5.27) from the harmonic average, which exhibits the desired exponential decay.

5.2. Supercritical phase. We now proceed to the proofs of (5.2) and (5.4) in Theorem 5.1,
along with the corresponding statements for LocUniq(N,h)c, h < h∗, which we will actually
prove first. In all cases, our argument revolves around a notion of good event GN , see (5.32),
which will allow us to construct ambient clusters with certain desirable properties. The bottom
line is that it will be costly for any large connected set to avoid connecting to any such ambient
cluster. This is quantified in Lemma 5.11. The desired estimate for P[GN ] is then arrived to by
means of a renormalization scheme, starting from a certain localized good event Gz, see Defini-
tion 5.43, which satisfies a suitable a-priori estimate, see Lemma 5.16. Importantly, the scheme,
whose essential features are captured by Proposition 5.14, improves not only probabilistic esti-
mates but also the number a of contact points inherent to the definition of Gz, see (5.44), in each
step of the iteration. The proofs of (5.2) and (5.4) for all events of interest follow by combining
Lemma 5.11, Proposition 5.14 and Lemma 5.16 and are presented at the end of this section.

For f̃ : Z̃d → R (cf. above (2.32) regarding Z̃d ⊃ Zd), we define the local average (Af̃)x =
(2d)−1

∑
m∈Md:m∼x f̃m, for x ∈ Zd. For integers L0 ≥ 1 and M > 1, we then introduce the set

(5.30) M(f̃) :=
{
x ∈ Zd : (Af̃)y ≥ −M for all y ∈ B2L0(x)

}
, M :=M(ϕ̃)

(note that B2L0(x) ⊂ Zd by definition and recall the extension ϕ̃ from (2.33)). Due to the
decomposition ϕ̃ = ξ̂ + ψ̂ from (2.37), this means that M = {x ∈ Zd : ξ̂y ≥ −M, y ∈ B2L0(x)}.
The condition used in the definition (5.30) provides us with a uniform insertion tolerance bound
on the set M which will be used in the proof of Lemma 5.11 below (see around the display
(5.37)) and which — as already noted in the beginning of Section 3.3 — is not otherwise true.

We now introduce a key (good) event, involving various parameters, which roughly ensures
the existence of ambient clusters with desirable properties. Throughout this section, let

N,L,L0 be integers with N ≥ L > 2L0 ≥ 1, M > 1 and a, b ∈ N>0,(5.31)
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and assume that ΛN ∈ {B2N \BN , BN \BσN , σ ∈ (0, 1
3)} is arbitrary, unless specified otherwise.

To avoid clumsy notation, we will keep dependence on the quantities appearing in (5.31) and
ΛN implicit in the sequel, except for the ones that are subject to change in any given context.
The intermediate scale L will first appear in Definition 5.12 below. For h′ ∈ R, the event
GN = GN (L0, a, b, h

′,M) is defined as

(5.32) GN =


∃ disjoint connected sets Ci ⊂ (ΛN ∩ {ϕ ≥ h′}), for 1 ≤ i ≤ b, such

that any ∗-path γ crossing ΛN contains points xi,j = xi,j(γ) satisfying
BL0(xi,j) ∩ Ci ∩M 6= ∅, for all 1 ≤ i ≤ b and 1 ≤ j ≤ a.

 .

Notice that the sets Ci in (5.32) may very well be connected in ΛN ∩ {ϕ ≥ h′}. For h′ ∈ R,
consider the sigma-algebra Fh′ := σ(ϕ̃ỹ, 1{ϕx ≥ h′}; x ∈ Zd, ỹ ∈ Md) and notice for later
reference that M, the event GN as well as the sets C1, . . . ,Cb are all Fh′-measurable. Our
interest in GN stems from the following

Lemma 5.11. (h < h′, (5.31)). There exists c = c(h, h′, L0,M) > 0 such that, with GN =
GN (L0, a, b, h

′) as defined in (5.32), the following holds if a ≥ C(L0, h, h
′,M) and b ≥ C(L0).

For ΛN = BN \BσN , P[0
ϕ≥h←−→ ∂BN , 0

ϕ≥h
6←→ ∞] ≤ P[GcN ] + P[BσN

ϕ≥h′
6←→ ∞] + e−cba.(5.33)

For ΛN = B2N \BN , P[LocUniq(N,h)c] ≤ P[GcN ] + P[BN
ϕ≥h′
6←→ ∂B2N ] + e−cba.(5.34)

Proof. We only give the proof of (5.33). The proof of (5.34) follows by straightforward mod-
ifications of the argument. We begin by introducing an auxiliary event G′N as follows. With
h′′ := (h+ h′)/2 and for λ > 0, the event G′N (λ) occurs if all of the following hold:

i) the set {ϕ ≥ h′′} contains an infinite cluster C which intersects BσN .

ii) Letting S = BN ∩ C ∩M, there exists — for any ∗-path γ crossing BN \ BσN — a set
S ⊂ γ with |S| ≥ λba such that BL0(x) ∩S 6= ∅ for every x ∈ S.

The parameter λ, chosen below in (5.38), will ensure a certain well-separatedness property.
Clearly the event G′N (λ) is measurable relative to Fh′′ (cf. below (5.32)). We will argue that for
suitable c, λ > 0 each depending on h, h′, L0 only,

P
[

0
ϕ≥h←−→ ∂BN , 0

ϕ≥h
6←→ ∞

∣∣Fh′′]1G′N (λ) ≤ e−cba, and(5.35)

P
[
G′N (λ)c ∩GN ∩ {BσN

ϕ≥h′←−−→∞}
]
≤ e−cba,(5.36)

from which (5.33) readily follows.
The proofs of (5.35) and (5.36) both hinge on the following representation of the conditional

distribution of {ϕ ≥ h} under P[ · |Fh′′ ]. In what follows, given p = (px)x∈Zd with px ∈ [0, 1],

let Pp denote the corresponding product measure on {0, 1}Zd , with canonical coordinates Y =
(Yx)x∈Zd , so that Pp[Yx = 1] = px for all x ∈ Zd. By means of (2.37) and (2.38), one infers that
for all h̃ > h,

the law of (1{ϕx ≥ h})x∈Zd under P[ · |Fh̃] is Pp with px = P[ϕx ≥ h|Fh̃], x ∈ Zd,
px = 1 if x ∈ {ϕ ≥ h̃} and px ≥ c9 = c9(h, h̃,M) if x ∈ BL0(M).

(5.37)
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Indeed, regarding the last part, on the event {ϕx < h̃}, one has by (2.37) and (2.38) that

P[ϕx ≥ h|Fh̃] = 1 − Φ(
√

2(h−ξ̂x))

Φ(
√

2(h̃−ξ̂x))
, where Φ(·) denotes the distribution function of a standard

Gaussian random variable. In case x ∈ BL0(M), one obtains the desired lower bound using that

ξ̂x ≥ −M by (5.30) and h̃ > h whilst noting that limξ→∞
Φ(s−ξ)
Φ(t−ξ) = 0 for any s, t ∈ R with s < t.

With (5.37) at hand, we proceed to show (5.35), (5.36), starting with (5.35) and choosing

(5.38) λ := 1/(3|B3L0 |)2 (so that d2
√
λbe ≤ b/|B3L0 | when b ≥ C(L0)).

The choice of λ in (5.38) will soon become clear. Let C(0) denotes the cluster of 0 inBL∩{ϕ ≥ h},
under the measure P[ · |Fh′ ]

law
= Pp. We explore C(0) vertex by vertex starting from 0 in a

canonical way, i.e. checking at each step the state of the smallest (in a fixed deterministic
ordering of the points in Zd) unexplored vertex in the exterior neighborhood of the currently
explored piece of C(0). We do so until the first time we discover a vertex x1 ∈ C(0) (there may
not be any) which is in the exterior neighborhood of some BL0(y1) with y1 ∈ S (note that S
as defined in ii) above is Fh′′-measurable). At this point, we explore the state of every vertex in
BL0(y1). By definition, S ⊂ C so C intersects BL0(y1). We stop the exploration if some vertex
of C ∩ BL0(y1) lies in C(0), which occurs for instance if all the vertices of BL0(y1) belong to
C(0). Otherwise we continue exploring C(0) until we discover a vertex x2 ∈ C(0) in the exterior
neighborhood of BL0(y2) for some y2 ∈ S \ {y1} which was not visited by the exploration yet.
As before, we then explore the state of every vertex in BL0(y2), stopping the exploration if C(0)
intersects C in that box and continuing otherwise. We proceed like this until either stopping or
discovering the whole cluster C(0). By construction, if the algorithm stops prior to discovering

C(0), the event {0 ϕ≥h←−→∞} occurs.
Using the above algorithm, one deduces the following. Let τ := |{y1, y2, . . . , }| denote the

number of points yi discovered until the algorithm stops (possibly τ = 0). Then in view of
property ii) above, with λ′ = λ/|BL0+1|,

(5.39) G′N (λ) ∩ {0 ϕ≥h←−→ ∂BN , 0
ϕ≥h
6←→ ∞} ⊂ {τ ≥ λ′ba}

(in particular, the right-hand side implies {τ ≥ 1} whenever a ≥ C(h, h′, L0), as stipulated
above (5.33)). Moreover, by means of (5.37) and (5.38), one sees that under P[ · |Fh′ ] and on
the event G′N (λ), conditionally on {τ > n} for some 0 ≤ n < λ′ba, the event {τ = n + 1}
occurs with probability at least c′9, where c′9(h, h′′, L0,M) = c9(h, h′′,M)|BL0+1| (with c9 as in
(5.37)). Together with (5.39), this readily implies that the left-hand side of (5.35) is bounded
by (1− c′9)λ

′ba, as claimed.

We now turn to the proof of (5.36). Recall that GN ∩ {BσN
ϕ≥h′←−−→ ∞} is Fh′-measurable.

We will in fact show that

(5.40) P
[
G′N (λ)c

∣∣Fh′]1{GN , BσN ϕ≥h′←−−→∞} ≤ e−cba,

which implies (5.36). Under P[ · |Fh′ ] and on the event GN ∩ {BσN
ϕ≥h′←−−→ ∞}, fix a path γ0 in

the infinite cluster of {ϕ ≥ h′} crossing ΛN . Notice in particular that γ0 ⊂ C , cf. i) above. By
definition ofGN , see (5.32), and by suitable labeling (using for instance the above ordering of Zd),
one finds disjoint connected sets Ci ⊂ (ΛN ∩{ϕ ≥ h′}), for 1 ≤ i ≤ d2

√
λbe (with λ as in (5.38))

and corresponding points xi,j(γ0), 1 ≤ j ≤ d
√
λae, satisfying BL0(xi,j(γ0)) ∩ Ci ∩M 6= ∅ and
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|xi,j(γ0)−xi′,j′(γ0)|∞ > 2L0 for any (i, j) 6= (i′, j′) and all 1 ≤ i, i′ ≤ d2
√
λbe, 1 ≤ j, j′ ≤ d

√
λae.

Thus, letting

(5.41) I :=
{
i : xi,j(γ0)

ϕ≥h′′←−−→ Ci for some 1 ≤ j ≤ d
√
λae
}

it follows that under P[ · |Fh′ ] and on the event {BσN
ϕ≥h′←−−→∞, GN},

(5.42) G′N (λ)c ⊂
{
|I| <

√
λb
}

;

indeed for an arbitrary ∗-path γ crossing ΛN , the occurrence of GN guarantees the existence of
vertices xi,j(γ) such that BL0(xi,j(γ))∩Ci∩M 6= ∅, for every 1 ≤ i ≤ d2

√
λbe and 1 ≤ j ≤ d

√
λae.

Moreover, if i ∈ I, then in fact Ci ⊂ C on account of (5.41). Hence, if |I| ≥
√
λb, the set

S := {xi,j(γ) : i ∈ I, 1 ≤ j ≤ d
√
λae} satisfies the properties listed in ii) above and (5.42)

follows (the occurrence of i) is ensured by that of {BσN
ϕ≥h′←−−→∞}, which is conditioned on).

Finally, using (5.37), (5.38), (5.41) and the separation of the points xi,j(γ0), 1 ≤ i ≤ d2
√
λbe,

1 ≤ j ≤ d
√
λae, one infers that |I| stochastically dominates (under P[ · |Fh′ ] and on GN ) a

binomial random variable with d2
√
λbe trials and success probability 1 − (1 − c10)d

√
λae, where

c10 := c′9(h, h′, L0,M). Thus,

P
[
|I| <

√
λb
∣∣Fh′]1GN ≤ 2d2

√
λbe(1− c10)d

√
λae
√
λb ≤ e−cba

for suitable c = c(L0, h, h
′,M), as soon as

√
λa ≥ C(L0, h, h

′,M), whence (5.40) readily follows
from (5.42). This completes the proof of (5.36) and with it that of Lemma 5.11.

The upper bounds (5.2) and (5.4), as well as the corresponding bounds for LocUniq(h,N)c,
will eventually follow from Lemma 5.11. As will turn out, all estimates will ultimately be
carried by the upper bound for P[GcN ]. Our next step is thus to derive suitable upper bounds
on P[GcN ], which we achieve by a renormalization scheme operating as follows. In a single step,
the scheme goes from a base scale L to a larger scale N , cf. (5.31). Whereas b as appearing in
(5.32) remains effectively fixed through the iteration (as will turn out b will grow roughly like
N/u(KL), cf. (4.11)), the scheme is designed to simultaneously improve on both the growth of
a := aL in (5.32) and the strength of the estimate on P[GcN ] in each step. Roughly speaking, this
will boost aL from being of order 1 to growing faster than L/(logL)C when d = 3 and linearly
in L when d ≥ 4, whence the error terms in (5.33), (5.34) become sufficiently small.

The starting point of the argument is a certain good event Gz, which we now introduce,
and for which we will later supply a suitable a-priori estimate, see Lemma 5.16. In the sequel,
χ̃ = (χ̃z)z∈L, where χ̃z refers to either ϕ̃ or ψ̃z, see (4.5). We write χz for the restriction of χ̃z

to Zd. Recall (4.1)-(4.4), (5.30) and (5.31) regarding notation.

Definition 5.12. (Good event). For h1 ≤ h2 ≤ h3 ∈ R and z ∈ L, the event Gz(χ̃) =
Gz(χ̃, L0, L, a, h1, h2, h3,M) occurs if all of the following hold:

Cz is connected to ∂Dz in {χz ≥ h3} and for every z′ ∈ L such that |z − z′|∞ ≤ L,

all clusters of {χz′ ≥ h2} crossing D̃z \ C̃z are connected inside Dz ∩ {χz ≥ h1}.
(5.43)

letting Sz = D̃z ∩ Cz ∩M(χ̃z) where Cz denotes the cluster of Cz in {χz ≥ h1},
there exists – for any ∗-path γ crossing D̃z \ C̃z – a set S ⊂ γ with |S| ≥ a
such that BL0(x) ∩Sz 6= ∅ for every x ∈ S.

(5.44)
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Henceforth we routinely suppress the dependence of Gz on parameters which stay fixed. Note
that Gz indeed depends on ϕ̃, the extension of ϕ to Z̃d, throughM(χ̃z) in (5.44), see (5.30). We
now introduce, abbreviating ψ̃ = (ψ̃z)z∈L and for ε > 0,

H1
z := Gz(ψ̃) ∩

{
sup
Dz

|ξ̃z| ≤ ε
}
,(5.45)

H2
z := Gz(ψ̃) ∩

{
inf
Dz
ξ̃z ≥ −ε

}
,(5.46)

each inheriting the dependence on parameters from Gz and where, as in (4.9), supDz/infDz refer

to the suprema/infima over all points in Dz ∩ Z̃d. Let ε0 := 1
3(1 ∧ (h2 − h1) ∧ (h3 − h2)). The

key features of (5.43)-(5.46) are summarized in the following

Lemma 5.13 (Gluing; h1 < h2 < h3, ε ∈ (0, ε0), (5.31)).

For z ∈ L, with (χ̃1, χ̃2) ∈ {(ϕ̃, ψ̃), (ψ̃, ϕ̃)} and G1 := Gz(χ̃1, h1, h2, h3,M), G2 := Gz(χ̃2, h1 −
ε, h2 + ε, h3 − ε,M + ε), one has

(5.47) G1 ∩ {sup
z′

sup
Dz′
|ξ̃z′· | ≤ ε} ⊂ G2,

with z′ ranging over all points in L with |z′ − z|∞ ≤ L. In particular,

(5.48) P[G2] ≥ 1− e−f(L) whenever P[G1] ≥ 1− e−2f(L) with 4 log(d) ≤ 4f(L) ≤ c8(4ε)L.

Moreover, for z, z′ ∈ L with |z′ − z|∞ = L, if Hiz ∩Hiz′ occurs for some i ∈ {1, 2},

all clusters of {Ξyi ≥ h2 + εi} crossing D̃y \ C̃y, for y ∈ {z, z′}, belong to a single conn.

subsets Cz,z′ of {ϕ ≥ h1 − ε} ∩ (Dz ∪Dz′), which crosses both Dz \ Cz and Dz′ \ Cz′,
(5.49)

where Ξy1 = ϕ, ε1 = ε and Ξy2 = ψy, ε2 = 0, and

for any ∗-path γ crossing D̃y \ C̃y, for y ∈ {z, z′}, there exists a set S ⊂ γ
with |S| ≥ a such that BL0(x) ∩ D̃y ∩ Cz,z′ ∩MM+ε(ϕ̃) 6= ∅, for all x ∈ S.

(5.50)

Proof. We write M = MM throughout the proof to make the dependence on M explicit,
cf. (5.30). The two-sided control on the harmonic average in (5.47) and (4.4) imply that for
all h ∈ R and i ∈ {1, 2}, any connected subset of {χi ≥ h} ∩ Dz′ is contained in a connected
subset of {χ3−i ≥ h− ε} ∩Dz′ , for any z′ ∈ L with |z′ − z|∞ ≤ L. Applying this repeatedly in
the context of (5.43) readily yields the corresponding property for the event on the right-hand
side of (5.47). Regarding (5.44), recalling the local averaging operator A from above (5.30), on
B2L0(D̃z)(⊂ Zd) one has that Aχ̃2 = A(χ̃1± ξ̃z) ≥ Aχ̃1−|Aξ̃z| ≥ Aχ̃1− ε by linearity and using
that |Aξ̃z| ≤ A|ξ̃z| ≤ ε on B2L0(D̃z), whence MM (χ̃z1) ∩ D̃z is contained in MM+ε(χ̃

z
2) ∩ D̃z.

The implication (5.48) follows readily from (5.47) upon applying e.g. (4.9) for a single box
(along with the bound on the capacity of a box as given by (2.10)) to control the tails of the
harmonic average.

To obtain (5.49), first observe that regardless of the choice of i ∈ {1, 2}, by (5.43), (5.45),
(5.46) and the fact that any path crossing Dz′ \ Cz′ also crosses D̃z \ C̃z (see (4.2) and (4.3)),
the following holds: all clusters of {ψy ≥ h2} crossing D̃y \ C̃y, for y ∈ {z, z′}, belong to a single
connected component Cz,z′ of ({ψz ≥ h1}∩Dz)∪ ({ψz′ ≥ h1}∩Dz′), which crosses both Dz \Cz
and Dz′ \ Cz′ (the last part is due to the first item in (5.43), which guarantees the existence of
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such a crossing for ψy above level h3 > h2). The control on the lower tail of ξz, ξz
′

present in
(5.46) (and (5.45)) implies that Cz,z′ belongs to a connected component of {ϕ ≥ h1 − ε}, thus
yielding (5.49) in case i = 2. The upper bound on ξy, y ∈ {z, z′}, in (5.45) further implies that
any cluster in {ϕ ≥ h2 + ε} crossing D̃y \ C̃y is part of a crossing cluster of {ψy ≥ h2}, whence
(5.49) follows for i = 1.

Finally, the property (5.50) is inherited from (5.44) when Hiz ∩ Hiz′ occurs, regardless of
i ∈ {1, 2}. For, by construction, the cluster of Cy in Cz,z′ contains the cluster of Cy in {ψy ≥ h1}
for y ∈ {z, z′}, and (MM (ψ̃y) ∩ D̃y) ⊂ (MM+ε(ϕ̃) ∩ D̃y), since Aϕ̃ = A(ψ̃y + ξ̃y) ≥ Aψ̃y − ε in
B2L0(D̃y) if the event Hiy occurs (this only uses the lower bound on ξ̃y).

We now set up the bootstrapping scheme that will lead to a suitable control of P[GcN ]. The
index i ∈ {1, 2} in (5.45), (5.46) and below reflects the fact that intermediate steps (correspond-
ing to i = 1) and the final step (corresponding to i = 2) of the argument need to be dealt with
in distinct ways. The coarse-graining scheme developed in Section 4 now enters the picture.
Referring to Proposition 4.3, for integers K ≥ 100, N ≥ 10KL, we let A1 = AKN,L(D̃0,N \ C̃0,N )

and A2 = AKN,L(ΛN ) (with ΛN ∈ {BN \ BσN , B2N \ BN}, σ ∈ (0, 1/3), as below (5.31)), and
define, for ρ ∈ (0, 1),

(5.51) H i
N,L :=

⋂
C∈Ai

⋃
C̃⊂C
|C̃|≥ρ|C|

⋂
z∈C̃

Hiz.

We elaborate a bit more on the central role of the event H i
N,L in Remark 5.15,2) below. The

next result is at the heart of our argument. It shows that H i
N,L typically reproduces the event

from Definition 5.12 (implicit in Hiz) at a higher scale N and with an improved choice of a (for
i = 1), as well as the target event GN from (5.32) (for i = 2).

Proposition 5.14 (Bootstrap; h1 < h2 < h3, (5.31), ρ ∈ (0, 1),K ≥ 100, i = 1, 2). With
H i
N,L = H i

N,L(a, h1, h2, h3, ε,M, ρ), whenever ρN
u(KL) ≥ C, one has the inclusion

(5.52)
(
H i
N,L ∩ Ωi

N

)
⊂

{
G0(ϕ̃, N, a′, h1 − ε, h2 + ε, h3 − ε,M + ε), if i = 1, for ε ∈ (0, ε0),

GN (a, b, h1 − ε,M + ε), if i = 2, for all ε > 0,

where Ω1
N = {C0,N

ϕ≥h3−ε←−−−−→ ∂D0,N}, Ω2
N = RZ̃d and

(5.53) b := b c510
ρN

u(KL)c, a′ := ba.

Remark 5.15. 1) In (5.52), one also has the inclusion H 1
N,L ⊂ GN (a, b, h1 − ε) since H 1

N,L ⊂
H 2
N,L. The weaker condition on the harmonic field entering the definition of H2

z, cf. (5.45)
and (5.46), will play a role in obtaining the sharp bound (5.2) for d = 3. The asserted
result (5.4) for d ≥ 4 could be obtained by means of H1

z (and H 1
N,L) alone.

2) (The role of ρ). In view of (5.33), (5.34) and (5.52), our goal in bounding P[GcN ] becomes
to control the probability of (H i

N,L)c, which by definition, see (5.51), entails the existence

of at least one collection C ∈ Ai containing a large fraction (1 − ρ) of (bad) points z for
which Hiz does not occur. The sacrifice of a small fraction ρ > 0 of (good) points inherent
in (5.51) is utilized in the proof below in order to create b interfaces (growing linearly with
ρ) with certain good properties, implied locally by the occurrence of Hiz. This eventually
leads to the desired improvement (5.53) over a.
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Proof. The proof uses Lemma 2.1 as a crucial ingredient, applied to the renormalized lattice
L = L(L) rather than Zd. For any A ⊂ Zd, we use LA to denote the set of all z ∈ L = L(L)
such that A∩Cz,L 6= ∅ (see (4.1) and (4.2) for notation). In what follows, let U = LC̃0,N

if i = 1

and U = LBσN (resp. U = LBN ) if i = 2 and ΛN = BN \ BσN (resp. ΛN = B2N \ BN ). In a
similar vein, let V = LD̃0,N

if i = 1 and V = LBN or LB2N
if i = 2.

Now let Σ ⊂ L denote the collection of all points z ∈ L \ U such that Hiz occurs and
D̃z,L ⊂ D̃0,N if i = 1, resp. D̃z,L ⊂ BN or B2N if i = 2. As we now explain, on H i

N,L,

(5.54) Σ ⊂ L satisfies the hypotheses of Lemma 2.1 with U, V as above and k = b c5ρNu(KL)c − 1.

To see (5.54), consider any ∗-path γL in L crossing V \ U . By suitably interpolating between
successive vertices of γL, one creates a ∗-path γ in Zd such that γ|L = γL. Let C ∈ Ai be the
admissible collection corresponding to γ, i.e. such that (4.12) holds. Then by definition, see
(5.51), if H i

N,L occurs, there exists C̃ ⊂ C such that Hiz occurs for all z ∈ C̃, hence C̃ ⊂ Σ, and

(5.54) follows since |C̃| ≥ k on account of (5.51) and (4.11).
With (5.54) in force, applying Lemma 2.1 we deduce the existence of disjoint ∗-connected

subsets O1 � . . . � Ok (each part of L) of Σ all of which surround U . By definition of �, it
follows that (Oi +D0,L) ∩ (Oj +D0,L) = ∅ as soon as |i− j| ≥ 7. Consequently we can extract
from {Oi : 1 ≤ i ≤ k} a subcollection {O′i : 1 ≤ i ≤ k′} with k′ ≥ k/8 such that (O′i +D0,L) are
pairwise disjoint subsets of A with V = LA. Now for each j ∈ {1, . . . , k′}, by ∗-connectedness
of O′j , the fact that Hiz occurs for every z ∈ O′j(⊂ Σ) and using property (5.49), one finds that
the connected sets Cz,z′ , for z, z′ ∈ O′j with |z − z′|∞ = L, are contained in a single connected
subset Cj of {ϕ ≥ h1 − ε} ∩ (O′j +D0,L). The sets Cj , 1 ≤ j ≤ k′, are disjoint by construction.
Moreover by (5.50),

for any ∗-path γ crossing D̃z,L \ C̃z,L, for some z ∈ O′j , there exists a set S ⊂ γ
with |S| ≥ a such that BL0(x) ∩ D̃z,L ∩ Cj ∩MM+ε 6= ∅, for all x ∈ S.

(5.55)

In addition, if i = 1, (5.49) yields that

all conn. subsets of {ϕ ≥ h2 + ε} crossing D̃z,L \ C̃z,L for some z ∈ O′j intersect Cj .(5.56)

We now explain how the inclusions (5.52) follow from this, and first consider the case i = 1.
In view of Definition 5.12, this amounts to verifying (5.43) for χz, χz

′
= ϕ, with N in place of L

and at the heights given by (5.52), as well as (5.44) with a′ in place of a. First, the connection
required in (5.43) is ensured by Ω1

N .
To proceed further, we need the following observation. For a ∗-path γ on Zd, define the trace

γL of γ on L as follows: γL(0) is the unique point in L such that γ(0) ∈ CγL(0),L (recall that these

boxes partition Zd, see (4.2)). Set n0 = 0. Given γL(0), . . . , γL(k − 1) and n0, . . . nk−1 for some
k ≥ 1, set nk = inf{n > nk−1 : γ(n) /∈ CγL(k−1),L} and γL(k) ∈ L is such that γ(nk) ∈ CγL(k),L.

By construction γL is a ∗-path on L. Moreover, if γ crosses D̃0,N \C̃0,N , then γL crosses V \U . As
the sets Cj , 1 ≤ j ≤ k′, each surround U , it follows that for each ∗-path γ crossing D̃0,N \ C̃0,N ,

(5.57) there exists {zj : 1 ≤ j ≤ k′} ⊂ γL such that dist`∞(L)(zj , O
′
j) ≤ 1.

Indeed, (5.57) follows for instance by extending γL to a nearest-neighbor path γ̄L on L, which
only requires adding vertices at unit `∞(L)-distance from γL. The path γ̄L crossing V \ U in
turn intersects O′j for all 1 ≤ j ≤ k′ by [6, Lemma 2.1] and the surrounding property of each O′j .
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Now, returning to the verification of (5.43), consider a cluster of {ϕ ≥ h2 + ε} crossing
D̃0,N \ C̃0,N . Extracting a crossing path γ from this cluster, it follows by definition of γL that
γ induces a crossing in Dz1,L \ Cz1,L, with z1 as in (5.57) (recall that O′1 + D0,L ⊂ D̃0,N ).
Hence, γ induces a crossing in D̃y1,L \ C̃y1,L for some y1 ∈ O′1 with |z1 − y1|`∞(L) ≤ 1. Thus, γ

intersects C1 by (5.56). All in all, each cluster of {ϕ ≥ h2 + ε} crossing D̃0,N \ C̃0,N intersects
C1 ⊂ {ϕ ≥ h1 − ε}. Since C1 is connected, the second part of (5.43) follows.

To deduce (5.44) relative to the event G0(ϕ̃, N, a′, h1 − ε, h2 + ε, h3 − ε,M + ε) in (5.52),
one proceeds as follows. Repeating the above argument for all j ∈ {1, . . . , k′} using (5.56) and
(5.57), one first observes that the cluster of {ϕ ≥ h3− ε} crossing D0,N \C0,N stipulated by Ω1

N

intersects each Cj , and therefore

(5.58) C0, the cluster of C0,N in {ϕ ≥ h1 − ε}, contains Cj for all 1 ≤ j ≤ k′.

Now, still by the same argument, every ∗-path γ crossing D̃0,N \ C̃0,N induces a crossing in
D̃yj ,L \ C̃yj ,L for some yj ∈ O′j and all 1 ≤ j ≤ k′ (in fact γ is also connected to every Cj but
we won’t use this). By (5.55), there exist sets Sj ⊂ γ for all 1 ≤ j ≤ k′, each of cardinality at
least a, such that BL0(x) ∩ D̃yj ∩ Cj ∩MM+ε 6= ∅ for all x ∈ Sj and one can replace Cj by C0

in the previous intersection due to (5.58). By construction the sets Sj are disjoint, Thus letting
S :=

⋃
j Sj , one obtains by (5.55) that |S| ≥ k′a ≥ (k/8)a, whence |S| ≥ a′ on account of (5.54)

and (5.53) whenever ρN
u(KL) ≥ C. All in all, S has all the properties required by (5.44).

We now verify (5.52) in case i = 2. Consider a ∗-path γ crossing ΛN . By (5.57), γ induces
crossings in D̃yj ,L \ C̃yj ,L for suitable yj = yj(γ) ∈ O′j and all 1 ≤ j ≤ k′. Applying (5.55),
we obtain for every j ∈ {1, . . . , k′} a set of points {xj,k = xj,k(γ) : 1 ≤ k ≤ a} such that
BL0(xj,k)∩ D̃yj ∩Cj ∩MM+ε 6= ∅. In view of (5.32), the inclusion (5.52) for i = 2 follows since
the sets Cj are connected subsets of ΛN ∩ {ϕ ≥ h1 − ε} and k′ ≥ b.

Our last missing ingredient needed prior to proceeding to the proofs of (5.2) and (5.4) is an
a-priori estimate for the event Gz from Definition 5.12 at levels below h∗, which is available by
current methods and which we supply next. This a-priori bound will play a role akin to (5.11)
in the subcritical case and enable us to initiate the bootstrap argument in Proposition 5.14.

Lemma 5.16 (A-priori estimate). h1 < h2 < h3 < h∗, ε ∈ (0, ε0 ∧ 1
3(h∗ − h3)). There exist

L0 ≥ 1, M > 1 and c11 > 0, each depending on h = (h1, h2, h3) and ε only, such that for
G0 = G0(χ̃, L0, Ln, a = 1, h,M) with χ̃ ∈ {ϕ̃, ψ̃} and Ln

Ln+1
= c(d), one has

(5.59) lim
n→∞

1

Lc11
n

logP[Gc0] < 0.

Proof. It suffices to consider the case χ̃ = ϕ̃. The case χ̃ = ψ̃ then follows by applying (5.48).
The bound (5.59) (with χ̃ = ϕ̃) will follow by applying results of [8] to the graph Z̃d (with unit
weights). For x ∈ Zd, we consider the events (at scale L0, see (4.2) for notation)

A1
x := {Cx,L0

ϕ≥h3+ε←−−−−→ ∂Dx,L0}(5.60)

A2
x :=

{
all clusters of {ϕ ≥ h2 − ε} crossing D̃x,L0 \ C̃x,L0

are connected inside Dx,L0 ∩ {ϕ ≥ h1 + ε}

}
(5.61)

A3
x := {M ⊃ Dx,L0}(5.62)
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with M = M(ϕ̃) as defined in (5.30) and M := (logL0)2. For λ = λ(d) (≥ 100) sufficiently
large –the choice of λ corresponds to the constant 20c18C10 appearing e.g. in (8.3) of [8], and in
the present case C10 = 1 and c18 is determined by the isoperimetric constant on Zd) – one then
sets, for x ∈ Zd, with λ̄ = 1.1λ, `0 = 3d ∨ 12λ̄ and Ln = `n0L0, for 1 ≤ k ≤ 3,

Ãkx,0 =
⋂

y∈BλL0
(x)

Aky

Ãkx,n =
⋂

y,z∈(Ln−1Zd∩Bλ̄Ln (x)): d(y,z)≥Ln

(
Ãky,n−1 ∪ Ãkz,n−1

)
, for n ≥ 1.

(5.63)

Since h3 +ε < h∗, combining the bounds in (1.6) and applying a second union bound over BλL0 ,
one infers that that limL0 P[Ãkx,0] = 1 for k = 1, 2. Similarly, one shows that limL0 P[Ã3

x,0] = 1
using a standard Gaussian tail estimate (note that var((Aϕ̃)0) ≥ c) and applying a union bound
over Dx,L0 and BλL0 . All in all, one obtains that limL0 P[Ãkx,0] = 1 for all 1 ≤ k ≤ 3. In
particular, by choosing L0 = L0(h, ε) sufficiently large, one can ensure that the conditions (7.5)
and (7.6) in [8] are satisfied, whence Proposition 7.1 therein applies and yields that

(5.64) P[(Ãk′x,n)c] ≤ 2−2n , for all 1 ≤ k ≤ 3 and n ≥ 0,

where the primed events Ãk′x,n refer to those defined in (5.63), but with sprinkled parameters
(h1, h2, h3) in place of (h1 + ε, h2 − ε, h3 + ε) in (5.60)-(5.62). Note to this effect that the
event Ãkx,0 is measurable with respect to the restriction of ϕ̃ to Z̃d ∩ Bλ̄L0

(x), as required
for Proposition 7.1 in [8] to apply, and that a slight extension (of the underlying decoupling
inequality (2.20)) is required when k = 2, cf. (5.61), in order to take care of the two opposite
directions of monotonicity. To conclude, one applies Lemma 8.6 in [8], which implies that
whenever

⋂
k Ã

k′
x,n occurs, any two connected sets in BλLn of diameter at least (λ/20)Ln each,

are connected by a path γ ⊂ B2λLn such that
⋂
k Ã

k′
x,0 occurs for all x ∈ γ. Due to the (primed

versions of the) choices (5.60)-(5.62), this event is readily seen to imply G0 with L = b(λ/10)Lnc.
The bound (5.59) then follows from (5.64).

We are now ready to assemble the pieces and prove (5.2) and (5.4). In view of (5.52), this
entails probing into the complements of the events H i

N,L, i = 1, 2, from (5.51). In the spirit of
(5.5), (5.6), for z ∈ L = L(L) we say that

{z is ψ-bad} := Gcz(ψ̃), and(5.65)

{z is (ξ, i)-bad} :=

{
{supDz |ξ̃z| > ε}, if i = 1

{infDz ξ̃z < −ε}, if i = 2,
(5.66)

whence z is either ψ-bad or (ξ, i)-bad whenever Hiz occurs, cf. (5.45), (5.46). By (5.51), it then
follows that for any ρ′ ∈ (0, 1− ρ) and i ∈ {1, 2},

(5.67)
(
H i
N,L

)c ⊂ EiN,L ∪ F iN,L,
where

EiN,L :=

{
∃ C ∈ Ai and C̃ ⊂ C with |C̃| = dρ′|C|e
such that all the sites in C̃ are ψ-bad

}
,

F iN,L :=

{
∃ C ∈ Ai and C̃ ⊂ C with |C̃| = |C| − dρ|C|e − dρ′|C|e

such that all the sites in C̃ are (ξ, i)-bad

}
.
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At this point we consider the cases d = 3 and d ≥ 4 separately.

Upper bound for d = 3. Combining Proposition 5.14, Lemmas 5.16 and 5.11 with a bootstrap
argument (similar in spirit to the one leading to the corresponding subcritical upper bound), we
proceed to give the

Proof of (5.2). Let h < h∗. We assume in the sequel that ε ∈ (0, h∗−h16 ) and set h1 = h∗ − 12ε,
h2 = h∗ − 8ε and h3 = h∗ − 4ε, whence ε ∈ (0, ε0 ∧ 1

3(h∗ − h3)) (cf. below (5.46) regarding ε0).
In the first step, we take the bound given by Lemma 5.16 as our input and improve it (along

with the parameter a) via Proposition 5.14 applied with i = 1. To this end, we first choose
L0 and M , both depending on h, ε only, such that Lemma 5.16 is in force. Then, applying
Proposition 5.14 with these choices for L0 and M , as well as K = 100, ρ = 1/2 (see (5.51)) and
a = 1, the inclusion (5.52) and (5.53) yield that

P[(G0,N )c] ≤ P[(H 1
N,L)c] + P[C0,N

ϕ≥h3−ε
6←→ ∂D0,N ].

for all L > 2L0 and N ≥ CL, where G0,N = G0(ϕ̃, L0, N, a = b cNL c, h1 − ε, h2 + ε, h3 − ε,M + ε)
and H 1

N,L = H 1
N,L(L0, a = 1, h1, h2, h3, ε,M, ρ = 1

2). Incorporating (5.67) with the choice ρ′ = 1
2

and the upper bound on disconnection probability given by Theorem 5.5 in [20], we obtain from
the previous display, under the same assumptions on L and N that

P[(G0,N )c] ≤ P[E1
N,L] + P[F 1

N,L] + e−c(h,ε)N .(5.68)

In view of (5.66), adapting the argument used in the proof of Lemma 5.5 to the present case
where A1 = A100

N,L(D̃0,N \ C̃0,N ), using symmetry and applying a union bound (costing an

inconsequential factor
(

n
dn/2e

)
where n = |C|, C ∈ A1) to get rid of absolute values in (5.66) and

F 1
N,L, we deduce that

P[F 1
N,L] ≤ e

−c(h,ε) N
logN , for all N ≥ C(h, ε) and (logN)3 ≤ L ≤ L1(N)

(with L1(N) as fixed above Lemma 5.5). On the other hand, in view of (5.65), retracing the
steps that led to the proof of Lemma 5.4 and (5.20), replacing the input bound (5.9) by (5.59)
for χ̃ = ψ̃ (whence f(L) = c(h, ε)Lc11), one finds that for all L = Ln as appearing in Lemma 5.16
satisfying L ∈ [C(h, ε)(logN)2/c11 , cN ] and N ≥ C(h, ε),

P[E1
N,L] ≤ e

−c(h,ε) N

L1−c11 .

Substituting the estimates for P[F 1
N,L] and P[E1

N,L] into (5.68) and choosing L = Ln0 with

n0 = n0(N,h, ε) := inf{n ≥ 0 : Ln ≥ C(h, ε)(logN)max(3, 2/c11)}, we obtain for all N ≥ C(h, ε),

(5.69) P[G0(ϕ̃, L0, N, aN , h1 − ε, h2 + ε, h3 − ε,M + ε)c] ≤ e−f
′(N),

where aN := b N
(logN)c12

c and f ′(N) := c(h,ε)N

(logN)C(h,ε) . This yields the desired improvement, both in

terms of a and the probabilistic bound, over the a-priori estimate from Lemma 5.16.

In the second step, we start with the improved bound (5.69) and feed it to Proposition 5.14
(in case i = 2) to derive an estimate for the event GN in (5.32), for a suitable choice of the
parameters. Thus applying (5.52) with the height parameters from (5.69) in place of (h1, h2, h3),
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ε′ := h1 − h− 2ε(> 0) in place of ε and L0 = L0(h, ε) as in the previous step, we obtain, for all
L ≥ C(h, ε), K ≥ 100, ρ ∈ (0, 1) and N such that ρN

u(KL) ≥ C, using the decomposition (5.67),

P[GN (aL, b, h+ ε,M ′)c] ≤ P[E2
N,L] + P[F 2

N,L],(5.70)

with b as given by (5.53), M ′ = M + h1 − h − ε and where the events E2
N,L, F 2

N,L inherit the

parameters from H 2
N,L = H 2

N,L(aL, h1−ε, h2+ε, h3−ε, ε′,M+ε, ρ), and depend on an additional
ρ′ ∈ (0, 1 − ρ). Now, mimicking the arguments of the previous step to bound the probabilities
on the right-hand side in (5.70), but this time using f ′ instead f (as implied by (5.69)) when
estimating P[E2

N,L], and with a view to (5.66) (compare with the definition of FN,L in (5.7) and

the proof of (5.16)) when dealing with P[F 2
N,L], one obtains the following for the choice L := Ln1

where n1(N,h, ε) := inf{n ≥ 0 : Ln ≥ (logN)3}, whence (logN)3 ≤ Ln1 ≤ C(h, ε)(logN)3: For
K large enough, σ (in the case ΛN = BN \ BσN ) and ρ close enough to 0, all depending on h
and ε and ρ′ = 1− 2ρ,

(5.71) P[GN (a′N , b
′
N , h+ ε,M ′)c] ≤ e

−π
6

(h1−h−2ε)2 N
logN , for all N ≥ C(h, ε),

where a′N = aLn1
and b′N = b c(h,ε)NLn1

c.

With (5.71) at hand, we now deduce (5.2) and first consider the finite-volume event LocUniq(N,h).
Plugging (5.71) (with ΛN = BN \BσN ) into (5.34) with h′ = h+ ε, we obtain for N ≥ C(h, ε),

P[LocUniq(N,h)c] ≤ e
−π

6
(h∗−h−Cε)2 N

logN + P[BN
ϕ≥h′
6←→ ∂B2N ] + e−cb

′
Na
′
N

≤ 2e
−π

6
(h∗−h−Cε)2 N

logN + e−c(h
′)N ,

(5.72)

where the second line follows by Theorem 5.5 in [20] and since b′Na
′
N ≥ c(h, ε) N

(log logN)C(h,ε) .

The claim readily follows from (5.72) by taking logarithms, multiplying by logN
N on both sides,

letting N →∞ and then ε ↓ 0.
The upper bound in (5.2) for the truncated one-arm event will follow similarly from (5.33)

and (5.71) upon supplying a suitable upper bound for the probability of disconnecting Bσn from
infinity above level h′ = h + ε (here σ = σ(h, ε) > 0 refers to the choice that leads to (5.71)),
which is not readily available for us to use. To circumvent this issue, we combine the upper
bound (5.2) for the local uniqueness event derived above and the disconnection upper bound
from [20] as follows: consider the sequence of events, for some integer M > 1,

E1 := {BN
ϕ≥h′←−−→ ∂B4MN},

E2k := LocUniq(h′, 2kMN) and E2k+1 := {B2kMN

ϕ≥h′←−−→ ∂B6·2kMN}, for k ≥ 1.

It readily follows from the definition of LocUniq, see (1.5), that {BN
ϕ≥h′←−−→ ∞} ⊂

⋂
k≥1 Ek.

Therefore, applying a union bound and subsequently using the bounds from [20] and (5.72) for
the respective probabilities, we get for any M > 1 and N ≥ C(h, ε,M),

P[BN
ϕ≥h′
6←→ ∞]

≤
∑
k≥1

P[Eck] ≤
∑
k≥0

e−c(h
′)2kMN +

∑
k≥1

e
−c(h∗−h′)2 2kMN

log(2kMN) ≤ e
−c(h∗−h′)2 MN

log(N) .
(5.73)
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Since M is arbitrary, (5.73) implies that

(5.74) lim
N→∞

logN

N
logP[BN

ϕ≥h
6←→ ∞] = −∞.

for all h < h∗. Similarly as with (5.72), (5.2) readily follows from (5.74), (5.71) and (5.33).

Upper bound for d ≥ 4. Similarly to the subcritical phase, the proof of upper bounds simplifies
in higher dimensions.

Proof of (5.4). Let h < h∗. We choose h1, h2, h3 as in the beginning of the proof of (5.2) and
simply fix ε := (h∗ − h)/20. Following the same line of reasoning that led to the bound (5.69),
except for applying Proposition 5.14 with i = 2 directly (instead of i = 1) with σ = 1

4 in case
ΛN = BN \ BσN , and using analogues of Lemmas 5.7 and 5.9 in place of Lemmas 5.4 and 5.5,
respectively, to bound P[E1

N,L] and P[F 1
N,L], thereby choosing L = C(h) large enough, one finds

that for all N ≥ C(h),

(5.75) P[GN (a = 1, b = bc(h)Nc, h1 − ε,M + ε) ≤ e−c
′(h)N .

Here M = M(h) and L0 = L0(h), implicit in the definition GN , cf. (5.30) and (5.32), are
chosen as in the proof of (5.2) when applying Lemma 5.16. Plugging (5.75) for the choice
ΛN = B2N \ BN into (5.34) with h′ = h1 = ε(> h) and using Theorem 5.5 in [20] in order to
bound the disconnection probability, we get

(5.76) lim sup
N→∞

1

N
logP[LocUniq(N,h)c] < 0.

Regarding (5.4) for the truncated one-arm event, proceeding similarly as in the case d = 3, we

first derive from (5.76) and the disconnection upper bound from [20] that 1
N logP[BN

ϕ≥h
6←→ ∞]

tends to −∞ as N → ∞, from which (5.4) follows upon applying (5.33) and using (5.75) with
ΛN = BN \BN/4.

We conclude with a few comments.

Remark 5.17. 1) Analogues of Remarks 5.6 and 5.10 also hold in the supercritical regime.
Namely, at the expense of iterating a few more times, initializing the above scheme
does not require the full strength of the stretched exponential a-priori bound provided
by Lemma 5.16. Moreover, when d ≥ 4, replacing the admissible collection Ai inherent
to the definition of H i

N,L in (5.51) by the corresponding collection (A′)i (cf. Remark 4.7),
which employs the coarse-graining strategy used for d = 3, one can derive analogues of
(5.29) for LocUniq(N,h)c or the event in (5.4) when h < h∗. The proof essentially follows
the line of argument of Remark 5.10, applying Proposition 5.14 with i = 1 for all but the
k-th step (where k ≥ 1 refers to any target number of iterated logarithms, cf. (5.29)). The
important thing to notice is that the number a of contact points, albeit always growing
sublinearly in the macroscopic scale due to the choice of L, improves suitably along with
the bound on G0 through intermediate steps of the iteration.
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2) (Two-point functions). We now briefly discuss the amendments to our methods that
would be required to obtain the asymptotics (1.11) for the truncated two-point function.
Regarding lower bounds, in the arguments leading to (3.1) and (3.2), one would need
to ‘tilt’ the construction, thus following the `2-geodesic between x and y) rather than a
horizontal line, in order to force a connection between x and y. An asymptotic capacity
estimate for such a discretized `2-geodesic similar to (2.12) (when b|x− y|c = N) is given
by Remark 2.3. Corresponding analogues of (2.23) and (2.24) would also be required. The
former relies on the visibility Lemma 2.4, which is robust with respect to ‘tilting’ of the
above kind. To adapt the proof of (2.24), one could compare to a random walk on Rd with
Gaussian increments, whose law inherits the symmetries of Rd and to which the arguments
leading to the lower bound in (2.25) can be extended, and then rely on the results of [22]
for comparison with X. The relevant upper bound for (1.11) would naturally follow by
adapting our coarse-graining and bootstrapping scheme to a framework with Euclidean
balls replacing `∞-ones (although, since L � N in practice, one may in fact get away by
coarse-graining using `∞-boxes at scale L).
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