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Abstract

Correlation functions of ferromagnetic spin systems satisfying a Lee-Yang
property are studied. It is shown that, for classical systems in a non-vanishing
uniform external magnetic field h, the connected correlation functions decay
exponentially in the distances between the spins, i.e., the inverse correlation

length (“mass gap”), m(h), is strictly positive. Our proof is very short and
transparent and is valid for complex values of the external magnetic field h,
provided that Reh 6= 0. It implies a mean-field lower bound on m(h), as
h ց 0, first established by Lebowitz and Penrose for the Ising model. Our
arguments also apply to some quantum spin systems.
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1 Scope of Analysis and Models to be Considered

In this note, we study a general family of classical ferromagnetic lattice spin systems
satisfying the Lee-Yang circle theorem, with the purpose to derive cluster properties of
connected correlation (Ursell) functions. The class of models encompasses, for instance,
Ising-type models, including ones with continuous one-component spins, and the classical
(and quantum) XY- and Heisenberg models. For such models, we present a new, simple
and arguably elegant proof of the claim that the connected two-point function 〈ϕi

0 ; ϕ
j
x〉

Φ
β,h

(for a precise definition see (2.1), below) decays exponentially in the distance |x|, provided
the external magnetic field h is in the “Lee-Yang region”, i.e., whenever h ∈ C satisfies
Reh 6= 0. This result is shown to hold at any inverse temperature β ≥ 0 for which the
Lee-Yang circle theorem holds. It can be generalized to yield “tree decay” of arbitrary con-
nected correlation (Ursell) functions, (i.e., exponential decay in the length of the shortest
spanning tree). The range of validity of these results depends on the specific model under
consideration and, in particular, on its spin-interaction “potential”, Φ. A survey of models
for which the Lee-Yang theorem holds, along with a fairly exhaustive list of references, can
be found in [4].

Our proof combines a certain representation, derived in [4], of the thermodynamic
limits of Ursell functions with periodic boundary conditions, for h in the Lee-Yang region
(Reh 6= 0), with estimates valid at large values of Reh and established with the help of
a cluster expansion and with a straightforward application of the maximum principle in
suitably chosen regions of the complex-h half-plane corresponding to Reh > 0 (or Reh < 0,
respectively). The Lee-Yang theorem appears only implicitly in our arguments in that we
rely on analyticity results proven in [4] that hinge on this theorem but are not presented
explicitly in the present paper, anymore. For a limited class of lattice gases, our results
were first derived in [5], using subharmonicity arguments.

The general setup underlying our discussion is as follows. We consider a random field
ϕ = (ϕx)x∈Zd on the d-dimensional simple cubic lattice Zd, with d ≥ 2. The variable

ϕx = (ϕ1
x, ..., ϕ

N
x ) ∈ Ω

def.
= RN , N ≥ 1, describes a classical “spin” at site x ∈ Zd. The

energy of a configuration, ϕΛ, of spins located in an arbitrary finite subset Λ ⊂⊂ Z
d is

given by the Hamiltonian

(1.1) HΛ(ϕ) = HΦ
Λ (ϕ)− h

∑

x∈Λ

ϕ1
x, HΦ

Λ (ϕ) =
∑

X⊂Λ: |X|≥2

Φ(X)(ϕX),

(with periodic boundary conditions imposed at the boundary of Λ, in case Λ is a rectangle),
where ϕX = (ϕx)x∈X , the magnetic field h ∈ C is arbitrary, and, for every finite subset
X ⊂ Zd, Φ(X) : ΩX → R is a real-valued, bounded, continuous function representing
the interaction energy between the spins in X . Besides assuming invariance of Φ(·) under
lattice translations, we have to impose certain conditions on the dependence of the sup-
norm of Φ(X) on X ; see, e.g., [4], and below. The specification of the model is completed
by choosing a finite a-priori measure, µ0, on the configuration space Ω of a single spin. We
require the following assumptions on µ0:

µ0 is invariant under rotations of Ω, supp µ0 ⊂ Ω is compact, and

µ̂0(h)
def.
=

∫
eht

1

dµ0(t) 6= 0, for Reh 6= 0.
(C1)

Given that we will make use of the Lee-Yang theorem, our requirement on the Laplace
transform of µ0 is eminently reasonable: it states that the Lee-Yang theorem holds for
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Φ ≡ 0. The only purpose of the compactness condition is to avoid troubles with the
convergence of certain integrals – it could be relaxed. The dependence of physical quantities
on the choice of µ0 will usually not be made explicit.

The finite-volume partition function of the system at inverse temperature β > 0, in the
presence of sources described by a bounded continuous function, f , of ϕ = ϕΛ, is given by

(1.2) ZΦ
Λ,β,h(f) =

∫

ΩΛ

f(ϕ) exp[−βHΦ
Λ (ϕ)]dνΛ,βh(ϕ),

where dνΛ,βh(ϕ)
def.
=

∏
x∈Λ dνβh(ϕx), and, for later convenience, we introduce the notation

dνβh(t) = eβht
1

dµ0(t)/
∫
Ω
eβhs

1

dµ0(s). Thermal averages are denoted by

〈f〉ΦΛ,β,h = ZΦ
Λ,β,h(1)

−1ZΦ
Λ,β,h(f),

with f as above. In order to guarantee convergence of the free energy in the thermody-
namic limit Λ ր Zd, the interaction potential Φ is assumed to be translation invariant
(as indicated above) and to satisfy

∑
X∋0 |X|−1||Φ(X)||∞ < ∞, where the norm || · ||∞ is

the sup-norm on supp µ⊗X
0 ⊂ Ω×X ; see, e.g., [10], Chapter 2. Moreover, Φ is assumed to

satisfy a suitable condition of ferromagnetism that depends on its specific form. Together
with condition (C1) on µ0, this requirement typically implies a Lee-Yang property, which
entails that ZΦ

Λ (β, h) 6= 0 whenever Reh 6= 0, for suitable values of β; (for systems with
multi-component spins, more specific hypotheses will have to be imposed).

In this paper, c, c′, ..., denote generic positive constants whose values may change from one
place to another. Numbered constants c0, c1, ..., are defined where they first appear within
the text and remain fixed from then on.

2 Exponential Clustering

To keep things simple, we temporarily consider models with pair interactions quadratic in
the classical spins. Generalizations to other types of potentials Φ are discussed in Section 4.
Thus, we assume that

Φ({x, y})(ϕx, ϕy) = −
∑

16i6N

J i
xyϕ

i
xϕ

i
y, Φ(X) = 0, if |X| ≥ 3, and

J1
xy ≥

∑

26k6N

|Jk
xy| (“strong” ferromagnetism),

Jk
xy = 0, ∀k, whenever |x− y| ≥ r, (finite range),

(C2)

for a given r ≥ 1, and all x, y ∈ Zd. The ferromagnetic condition is optimal for N = 2,
but not optimal for N ≥ 3; (it is incompatible with O(N)-symmetry of the model). In the
special case where N = 3 and µ0 is the uniform measure on the (two-dimensional) unit
sphere S2, one can replace it by the more natural constraint J1

xy ≥ |J2
xy| ∨ |J3

xy|. This class
of models includes the classical Heisenberg model. Under the conditions (C1) and (C2) on
(µ0,Φ), which guarantee that a Lee-Yang theorem holds (see, e.g., [8], [2] and [7]), it was
shown in [4] that the connected two-point function

(2.1) 〈ϕi
0 ; ϕ

j
x〉

Φ
β,h

def.
= lim

ΛրZd
〈ϕi

0 ; ϕ
j
x〉

Φ
Λ,β,h, for 1 ≤ i, j ≤ N , β > 0, and Reh 6= 0,
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with 〈ϕi
0 ; ϕ

j
x〉

Φ
Λ,β,h = 〈ϕi

0ϕ
j
x〉

Φ
Λ,β,h − 〈ϕi

0〉
Φ
Λ,β,h〈ϕ

j
x〉

Φ
Λ,β,h, is well defined and does not depend

on the choice of boundary conditions, so long as the latter do not invalidate the Lee-
Yang theorem. This includes in particular free and periodic boundary conditions. The
thermodynamic limit, Λ ր Z

d, in (2.1) is understood in the sense of van Hove [10]; (readers
not familiar with this notion may simply think of taking Λ to be a lattice cube centered at
0 with sides of length n, with appropriate boundary conditions imposed at ∂Λ, and letting
n → ∞).

In our proofs we require one further condition on the a-priori measure µ0, which guar-
antees that exponential decay of connected spin-spin correlation functions holds at large
values of |Reh|, assuming only that |Imh| ≤ const.× |Reh|. This will be proven with the
help of a “large-field cluster expansion”; see Section 3. Large-field cluster expansions have
been developed in [11] in the context of two-dimensional continuum euclidian field theories.
For reasons that will become apparent below, it is useful to parametrize the constant in
the above inequality as const. = tanα, for α contained in (0, π

2
). Namely, we assume that,

for all u0 > 0, there exists α̃ = α̃(u0) ∈ (0, π/2) such that

min
u>u0

(
max

z=u+iv:|v|6u·tan α̃

µ̂0(u)

|µ̂0(u+ iv)|

)
≤ κ(α̃) < ∞,

(C1’)

for a finite constant κ(α̃). We will refer to the (smallest) value of u > u0 achieving the
minimum as ũ(u0). Condition (C1’) can sometimes be strenghtened to

the bound in (C1’) holds for all

α̃ ∈ (0, π/2), and κ = sup
0<α̃<π/2

κ(α̃) < ∞.
(C1”)

Remarks. (i) The denominator in (C1’) does not vanish for any measure µ0 satisfying (C1).
(ii) One can verify condition (C1”) by inspection for some of the most common models.
For instance, (C1”) holds for µ0 = δ1 + δ−1 (Ising spins), and for µ0 given by the uniform
distribution on SN−1, for all N ≥ 2.
(iii) Our main result, Eqn. (2.3) below, continues to hold under the following weakened
version of condition (C1’): Instead of letting z vary along the vertical line segment joining
the points u(1± i tan(α̃)), with α̃ = α̃(u0), for some u > u0, it suffices that an appropriate
bound along some smooth curve joining these two endpoints and contained in the set
{z′ ∈ C : Re z′ > u0} hold.

We are now ready to state our main result. The inverse correlation length (mass gap),
m(β, h), defined as

(2.2) m(β, h) = − max
16i,j6N

lim sup
|x|→∞

1

|x|
log |〈ϕi

0 ; ϕ
j
x〉

Φ
β,h|,

is a measure for the exponential rate of decay of the two-point function, as |x| → ∞. For
pair interactions satisfying assumption (C2) (but not in general(!) – see Section 4, below),
our arguments turn out to hold at any inverse temperature β > 0. We therefore set β = 1
and omit it from our notation.
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Theorem 1. (Positivity of the mass gap).

For (µ0,Φ) satisfying conditions (C1), (C1’) and (C2),

(2.3) m(h) > 0, for all real-valued h 6= 0.

If, in addition, (C1”) is satisfied, (2.3) holds for all values of h ∈ C with Reh 6= 0.

Remark. Under the assumptions of Theorem 1, our proof of exponential clustering (tree
decay) extends to connected n-point correlation functions, for arbitrary n ≥ 2, and for h
in the entire Lee-Yang region; see Section 4.

Proof. Without loss of generality we may assume that Reh > 0. We introduce two param-
eters

(2.4) δ ∈ (0, 1) and η ≥ 1,

to be fixed later. The choice of η will characterize a region of large magnetic fields. We use
the notation H+ = {z ∈ C; Re z > 0} and define an open domain Σα ⊂ H+, depending on
an angle α ∈ (0, π

2
) and the parameters in (2.4), as follows: Let Tα be the interior of the

triangle with endpoints 0 and p± = η(1 ± i tanα), and define Σα = Tα \Dδ(0), where the
latter refers to the closed disk of radius δ around the origin. The boundary of Σα is the
union of three subsets, ∂Σα = γc ∪ γr ∪ γv, consisting of a circular part, γc, which is an arc
of central angle 2α symmetric about the positive real axis, on the circle of radius δ around
0, a radial part, γr, made up of the two line segments emanating from the endpoints of this
arc and ending in p+, resp. p−, and a vertical part, γv, joining the points p+ and p−. The
dependence of various quantities on δ and η will usually be implicit.

We fix components i, j ∈ {1, . . . , N}, as in (2.2). For arbitrary x ∈ Zd and ε > 0, we
consider the function F ε,α

x : H+ → C,

(2.5) F
ε,α
x (z)

def.
= eεz

π/2α|x| · 〈ϕi
0 ; ϕ

j
x〉

Φ
z , for z ∈ H+,

where, for definiteness, we set ab = exp(b ·Log a), for a ∈ C\{0}, b ∈ C, with Log denoting
the principal branch of the natural logarithm. We further define F ε

x(z) = eε|x| · 〈ϕi
0 ; ϕ

j
x〉

Φ
z ,

z ∈ H+. By Theorem 7 in [4] (see also the discussion at the end of Section III therein), the
functions F ε,α

x (·), F ε
x(·) are analytic on H+, for all ε > 0 and α ∈ (0, π

2
). We propose to

derive certain uniform upper bounds for the family {|F ε,α
x (·)|} x∈Zd on the boundary of the

domain Σα and then apply the maximum principle in order to extend them to the interior
of Σα. These bounds form the contents of the following two lemmas.

Lemma 2. (Estimate along γr ∪ γc; α ∈ (0, π
2
), δ ∈ (0, 1), η ≥ 1).

There exists c0(α, δ, η) ∈ (0,∞) such that, for all 0 < ε ≤ 1,

(2.6) sup
x∈Zd

sup
z∈γr∪γc

|F ε,α
x (z)| ≤ c0(α, δ, η) · e

εδπ/2α|x|.

Proof. First, observe that, if z ∈ γr, then z = re±iα, for some r ∈ [δ, η], and the choice ±α
depends on which line segment z belongs to. Regardless, for all ε > 0, x ∈ Zd and z ∈ γr,
one has that eεz

π/2α|x| = e±iεrπ/2α|x|, i.e., the prefactor appearing in the definition of F ε,α
x in

4



(2.5) has modulus one. Moreover, when z ∈ γc, writing z = δeiθ for suitable |θ| ≤ α < π/2,

one obtains |eεz
π/2α|x|| ≤ eεδ

π/2α|x|. Thus, in order to prove (2.6), it suffices to show that

(2.7) sup
x∈Zd

sup
z∈γr∪γc

|〈ϕi
0 ; ϕ

j
x〉

Φ
z | < ∞.

Note that the left-hand side depends implicitly on α, δ and η through the choice of γr∪γc.
The bound (2.7) results from a slight extension of the arguments in [4], which we briefly
explain. It follows from the proof of Theorem 7 in [4] that

(2.8) 〈ϕi
0 ; ϕ

j
x〉

Φ
z =

∫

K

ddkeik·xĜz(k),

where K = [0, 2π)d and the Fourier transform Ĝz(k) (which depends implicitly on i and j)
is obtained as

(2.9) Ĝz(k) =
∂f∞(ξ, k)

∂ε1∂ε2

∣∣∣
ε1=ε2=0

, with ξ = (z, ε1, ε2) ∈ Ξ = {Re z > |ε1|+ |ε2|} ⊂ C
3

where f∞ is a generalized infinite-volume “free energy”. The precise construction of f∞ in
[4] is of no concern for the present purposes; but we note that f∞ is obtained by performing
a thermodynamic limit, f∞ = limL→∞ fTL

, of suitable finite-volume “free energies” fTL

indexed by TL, the discrete torus with sides of length L. (We recall that, for the arguments
used in [4] to be valid, we must require periodic boundary conditions.) The functions fTL

are analytic on Ξ, for every k ∈ K. Careful inspection of the proof of Theorem 7 in [4]
reveals that supL≥1 sup(ξ,k) fTL

(ξ, k) < ∞ for (ξ, k) ranging over arbitrary compact subsets
of Ξ ×K, and that the convergence to f∞ is uniform on such sets. Thus, f∞ is (jointly)
analytic in ξ ∈ Ξ, for every k ∈ K, and, moreover, sup(ξ,k) f∞(ξ, k) < ∞, on compact
subsets. Using Cauchy’s integral formula for polydiscs, this uniform bound carries over to
derivatives of f∞. In particular, in view of (2.9), and since (γc ∪ γr) × K is compact, it
follows that

sup
(z,k)∈(γc∪γr)×K

|Ĝz(k)| < ∞.

Together with (2.8) this immediately yields (2.7), and completes the proof of Lemma 2.

Remark: A finer analysis shows that the function Ĝz(k) is continuous in (z, k) ∈ H+ ×K,
and that the continuity is uniform on compact subsets.

The estimate (2.6) is complemented by a uniform bound valid for magnetic fields with
a sufficiently large real part (as parametrized by η and α). Recall the definition of γv =
γv(α, η) above (2.5).

Lemma 3. (Large-field estimate).

There exists c1 ∈ [1,∞) with the following properties:
i) Under assumption (C1’), for all u0 ≥ c1, with α̃ = α̃(u0) ∈ (0, π

2
), ũ = ũ(u0) > u0 (cf.

(C1’), and below, for the definition of α̃(·), ũ(·)) and γv = γv(α̃, ũ), one has that

(2.10) sup
x∈Zd

sup
z∈γv

|Fm0

x (z)| < c2,

for some m0 > 0 and a possibly large, but finite constant c2.
ii) Under the (stronger) assumption (C1”), the bound in (2.10) holds uniformly for all z
satisfying Re z ≥ c1.

5



The proof of (2.10) is based on a large-field cluster expansion and is postponed to
Section 3. For now, we complete the proof of positivity of the mass gap, see (2.3), using
Lemmas 2 and 3. We assume that, along with conditions (C1) and (C2), (C1’) holds. We
then pick an arbitrary h > 0 that will be kept fixed in the following argument. We must
then specify the parameters α, δ and η defining the domain Σα (cf. (2.4) and below), as
well as the constant ε in (2.5). We set

δ =
1

10
∧
h

2
, η = ũ(h ∨ c1) and α = α̃(h ∨ c1)

(with ũ(·), α̃(·) and c1 as appearing in Lemma 3, i)).
(2.11)

This completely specifies the domain Σα. We note that the point h belongs to its interior.
Setting

ε = m0 · [supz∈γv |Re (z
π/2α)|]−1 ∧ 1 (> 0),(2.12)

one finds that

sup
z∈γv

|F ε,α
x (z)|

(2.5),(2.12)

≤ sup
z∈γv

|Fm0

x (z)|
(2.10)
< c2, for all x ∈ Z

d.

By Lemma 2, a bound of the form c(h) exp(εδπ/2α|x|) holds along γr ∪ γc; (note that ε, δ
and α are all functions of h). With Lemma 3, this implies that all members of the family
{F ε,α

x (·)}x satisfy a bound on all of ∂Σα of the same form. But since each function F ε,α
x (·),

x ∈ Zd, is analytic in H+ ⊃⊃ Σα, the maximum principle implies that this bound also
holds in the interior of Σα, i.e., that supx∈Zd supz∈Σα

exp(−εδπ/2α|x|) · |F ε,α
x (z)| ≤ c(h). In

particular, one may choose z = h ∈ Σα to conclude that exp(−εδπ/2α|x|) · |F ε,α
x (h)| ≤ c(h),

for all x ∈ Zd. Taking the logarithms of both sides of this inequality, then dividing by |x|
and taking |x| → ∞, one deduces that

(2.13) − lim sup
|x|→∞

1

|x|
log |〈ϕi

0 ; ϕ
j
x〉

Φ
h | ≥ ε · (hπ/2α − δπ/2α)

(2.11)

≥ cεhπ/2α,

which is strictly positive. Since i and j have only finitely many possible values, cf. (2.2),
one concludes that (2.3) holds for all h > 0.

Next, we consider an arbitrary h ∈ H+ and assume that (C1”) holds. We propose
to explain how to adapt the above arguments to this situation. We first suppose that
0 < Reh < c1, with c1 as in Lemma 3. We then choose

(2.14) δ =
1

10
∧ Re(hπ/2α) and η = c1,

for some α ∈ (0, π/2) to be specified shortly. Clearly, there exists an α0(h) ∈ (0, π
2
) such

that h ∈ Σα, for all α ≥ α0(h). We pick an arbitrary such α. The α-dependence of all
quantities will henceforth be displayed explicitly. With these choices of parameters, the
boundary γv = γv(α, η) can be parametrized as c1

cos θ
eiθ, with |θ| ≤ α. The definition of ε

in (2.12) can be recast as

(2.15) ε = 1 ∧m0 ·
{
c
π/2α
1 sup

θ: |θ|6α

∣∣∣
cos( θπ

2α
)

[cos(θ)]π/2α

∣∣∣
}−1

(= ε(α)).
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Note that ε depends on h only through α, via the constraint α ≥ α0(h). Repeating previous
arguments, one then shows that

sup
x∈Zd

sup
z∈Σα

exp(−εδπ/2α|x|) · |F ε,α
x (z)| ≤ c3(α, h).

Setting z = h (∈ Σα), one obtains the following lower bound, recorded here for later
purposes: For all h with 0 < Reh < c1, and for all α ≥ α0(h),

(2.16) − lim sup
|x|→∞

1

|x|
log |〈ϕi

0 ; ϕ
j
x〉

Φ
h |

(2.14)

≥ c · ε(α) · ρ(1− ρ
π
2α

−1), where ρ = Re(h
π
2α ),

with ε = ε(α) as in (2.15). Note that the constant c3 does not appear in this lower bound,
which will be important below. Moreover, if Reh ≥ c1, Lemma 3, ii) immediately implies
that the quantity on the left-hand side of (2.16) is bounded from below by m0. Strict
positivity of the mass gap in the entire region H+ then follows. This completes the proof
of Theorem 1, given Lemma 3.

The astute reader will have remarked that α is an essentially free parameter in the
previous argument. This yields the following

Corollary 4. (Bound on a critical exponent).

Under assumptions (C1), (C1”) and (C2),

(2.17) inf
Reh 6=0

m(h)

|Reh|
> 0.

Proof. Let h ∈ H+. The case h ∈ C \ H+ is handled similarly. Let φα(θ) =
cos( θπ

2α
)

cos(θ)π/2α =

φα(−θ), with θ ∈ [−α, α] for some α < π
2
. One readily verifies that φα(0) = 1, φα(α) = 0

and φα(·) is decreasing on [0, α]. Therefore, limαրπ
2
supθ∈[0,α] |φα(θ)| < ∞. It is then plain

from (2.15) that infα∈(0,π
2
) ε(α) > 0. Substituting this into (2.16), then letting α ր π

2
, the

claim (2.17) follows.

3 Cluster Expansion

In this section we sketch a proof of Lemma 3. We remind the reader that the limit in
(2.1) exists for all boundary conditions not invalidating the Lee-Yang theorem. This class
includes, in particular, free boundary conditions, which we will impose throughout this
section. (But periodic boundary conditions can be used, too.)

Proof of Lemma 3. For convenience, we will use the notation 〈·〉0,h to denote an average
with respect to dνh(ϕ) =

∏
x∈Zd dνh(ϕx), (cf. after (1.2)). We begin by setting up a

formalism well-suited to describe the cluster expansion. We first note that, for arbitrary
Λ ⊂⊂ Zd with Λ ⊃ {0, x} and h ∈ H+,

(3.1) 〈ϕi
0 ; ϕ

j
x〉

Φ
Λ,h =

∂2

∂s ∂t
logZτ

Λ,h((1 + sϕi
0)(1 + tϕj

x))
∣∣∣
s,t=0

where, for a parameter τ > 0 to be chosen later,

(3.2) Zτ
Λ,h(A) =

〈
A

∏

{x,y}∈BΛ

exp
[ ∑

16k6N

Jk
xy(ϕ

k
xϕ

k
y − τ 2δk,1)

]〉
0,h

.
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In (3.2), A is an arbitrary bounded function of the spins in a finite subset of the lattice,
δk,1 denotes the Kronecker delta, and BΛ is the set of two-element subsets (bonds), {x, y},
of Λ. Eq. (3.1) holds regardless of the value of τ , because Zτ

Λ,h can be obtained from
ZΛ,h = Z0

Λ,h, defined in (1.2), by multiplication with a constant independent of s and t.
We will expand Zτ

Λ,h(A), for A = (1 + sϕi
0)(1 + tϕj

x), in terms of the “small” quantities,

(3.3) µτ
X(ϕ)

def.
=





sϕi
0, X = {0},

tϕj
x, X = {x},

eΦτ (X)(ϕ) − 1, |X| = 2,

where Φτ (X) =
∑

16k6N Φk
τ (X), with Φk

τ (ϕ{x,y})(ϕ) := Jk
xy(ϕ

k
xϕ

k
y − τ 2δk,1). Note that µX

implicitly depends on s and t. Introducing the enhanced set of bonds B̃Λ = BΛ ∪{0}∪{x}
– the reader may want to think of the latter as loop edges attached to 0 and x – one shows
that

Zτ
Λ,h((1 + sϕi

0)(1 + tϕj
x)) = 〈

∏

X∈B̃Λ

[1 + µτ
X(ϕ)]〉0,h.

We introduce a family of polymers Γ := {ζ ⊂ Zd; 2 ≤ |ζ | < ∞} ∪ {0} ∪ {x}, ΓΛ = {ζ ∈
Γ : ζ ⊂ Λ}, where the “length” |ζ | of a polymer ζ is given by its cardinality. For ζ ∈ ΓΛ,

let G̃ζ be the set of all connected graphs with vertex set ζ and edges belonging to B̃Λ;

(loop edges at 0 and/or x are allowed if 0 and/or x belong to ζ). Each graph g ∈ G̃ζ is
required to contain at least one edge; this is always true if |ζ | ≥ 2, and it ensures that
the corresponding loop edge is included, in case ζ = {0} or {x}. Expanding the product

over X ∈ B̃Λ in the formula above and factorizing each resulting term into contributions
indexed by some polymer ζi, with i = 1, ..., n, with the property that ζi ∩ ζj = ∅, for
i 6= j, i, j = 1, ..., n, we obtain that

(3.4) Zτ
Λ,h(A) = 1 +

∑

n>1

1

n!

∑

ζ1,...,ζn∈ΓΛ

pairwise disjoint

∏

1≤k≤n

zτh(ζk),

with

(3.5) zτh(ζ) =
〈 ∑

g∈G̃ζ

∏

X∈E(g)

µτ
X(ϕ)

〉
0,h
.

In these formulas, A = (1 + sϕi
0)(1 + tϕj

x) and E(g) denotes the set of edges of the graph

g, which is a subset of B̃Λ. We mention that the sum in (3.4) is finite, so there are no
issues with convergence. It follows that Zτ

Λ,h(A) can be regarded as the (grand) partition
function of a gas of polymers with hard-core exclusion and activities given by zτh(·). The
crucial ingredient in this analysis is the following estimate. Recall the definition of the
functions α̃ : (0,∞) → (0, π

2
) and ũ : (0,∞) → (0,∞), with ũ(t) > t, for t > 0; see (C1’).

Lemma 5. (Smallness of activities).

For all ε ∈ (0, 1), there exist constants τ(ε) > 0, η(ε) > 0 and c(ε) with the following
properties:
i) Under assumptions (C1), (C1’) and (C2), and for all u0 ≥ η(ε), with α̃ = α̃(u0) and
ũ = ũ(u0),

(3.6) sup
y∈Zd

∑

ζ∈Γ:
y∈ζ,|ζ|=n

|z
τ(ε)
h (ζ)| ≤ εn,
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for all n ≥ 1, h ∈ γv(α̃, ũ), and |s|, |t| < c(ε).

ii) If, in addition, (C1”) holds then the bound in (3.6) is valid for all h ∈ C satisfying
Reh ≥ η(ε).

Proof of Lemma 5. We prove i) and then indicate the changes necessary to prove ii).
Without loss of generality, we may assume that the function κ(·) appearing in (C1’) is
increasing and continuous on [0, α̃(u0)], for given u0 > 0, with κ(0) = 1. Thus, after
possibly redefining α̃, we may assume that

(3.7) κ(α̃(u0)) ≤ 10, for all u0 > 0.

Next, we note that, for the measure dνh on Ω = RN introduced after (1.2), one has that

(3.8) d|ν|h(t) = Mh ·
e(Re h)t1dµ0(t)∫
e(Reh)u1dµ0(u)

≡ Mh · dPh(t),

for all h ∈ H+. In this equation, Ph is a probability measure on R
N with compact support;

see (C1). Moreover, by conditions (C1) and (C1’), the factors Mh = µ̂0(Reh)/|µ̂0(h)|
are well-defined and satisfy M∞ ≡ supu0>0 suph∈γv(α̃,ũ)Mh ≤ 10 , using (3.7); (recall that

µ̂0(z) =
∫
exp(zu1)dµ0(u)).

Let ε ∈ (0, 1) and u0 > 0 be fixed, and consider the left-hand side of (3.6). Suppose first
that n = 1, i.e., ζ = {0} or {x}. In this case, the activity does not depend on τ , and

|zh(ζ)|
(3.5),(3.3)

≤ (|s| ∨ |t|)

∫
d|ν|1,h(u)|u|

(3.8)

≤ (|s| ∨ |t|)M∞ · ||µ0||∞, for h ∈ γv(α̃, ũ),

with ||µ0||∞ = sup{|u|; u ∈ supp(µ0)}. From this, (3.6) follows if n = 1, provided |s|, |t| <
cε, with c small enough.

Next, suppose that n ≥ 2, and let ζ ∈ Γ, with |ζ | = n. We write d|ν|(ϕ) :=∏
x∈Zd d|νh|(ϕx), which is a product measure on ΩZd

. We first dispense with possible loop

edges appearing in the summation over G̃ζ in (3.5). Let Gζ denote the set of connected
graphs with vertex set ζ and edges belonging to Bζ , i.e., without loops edges. With each

g ∈ G̃ζ one may associate at most four graphs in G̃ζ obtained by adding all possible sets of
loop edges; adding any such set to g merely introduces an extra factor in

∏
X∈E(g) µ

τ
X(ϕ)

bounded by (1 ∨ ||µ0||∞)2, d|ν|-a.e, for |s|, |t| < 1. Thus, for arbitrary y ∈ Zd, τ > 0,
|s|, |t| < 1 and h ∈ H+,

∑

ζ∈Γ:
y∈ζ,|ζ|=n

|zτh(ζ)| ≤ 4(1 ∨ ||µ0||∞)2
∑

ζ∈Γ:
y∈ζ,|ζ|=n

∑

g∈Gζ

∫ [ ∏

X∈E(g)

|µτ
X(ϕ)|

]
d|ν|(ϕ).

(3.9)

For all g ∈ Gζ and τ < ||µ0||∞, one has the stability estimate

−
∑

X∈E(g)

Φτ (X)(ϕ) ≤ c
∑

x∈ζ

∑

y∈Zd

∑

1≤k≤N

Jk
xy ≤ c′|ζ |, d|ν|-a.e.

Hence, using a tree-graph inequality that can be found, e.g., in [1], Corollary 3.2(a), one
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obtains the bound
∑

ζ∈Γ:
y∈ζ,|ζ|=n

|zτh(ζ)| ≤ ecn
∑

ζ∈Γ:
y∈ζ,|ζ|=n

∑

t∈Tζ

∫ [ ∏

X∈E(t)

|µτ
X(ϕ)|

]∏

x∈ζ

d|ν|1,h(ϕx)

≤ ec
′nMn

∞

∑

ζ∈Γ:
y∈ζ,|ζ|=n

∑

t∈Tζ

∫ [ ∏

X∈E(t)

|Φτ (X)(ϕ)|
]∏

x∈ζ

dPh(ϕx),

(3.10)

for all h ∈ γv(α̃, ũ), where Tζ denotes the set of all trees with vertex set ζ and edges
belonging to Bζ . The second line in (3.10) follows from (3.8) and the elementary inequality
|ea − 1| ≤ |a|e|a|, for a ∈ R, using that |E(t)| = n − 1, since t is a tree on n vertices.
Note that, because Φτ has finite range (cf. (C2)), any tree t ∈ Tζ yielding a non-zero
contribution to the right-hand side of (3.10) has the property that diam(X) ≤ r, for all
X ∈ E(t). Hence the degree of any vertex in t is bounded by crd < ∞. It is then easy to
see that, given t ∈ Tζ , one can extract a subset of edges Ê(t) ⊂ E(t), |Ê(t)| ≥ cn, with the

property that all edges in Ê(t) are “vertex-disjoint”; (i.e., given any two edges e 6= e′ in
Ê(t), one has that e ∩ e′ = ∅). Foregoing factors in (3.10) indexed by X ∈ E(t) \ Ê(t) (at
the cost of gaining a factor ecn), the fact that all edges in Ê(t) are vertex-disjoint implies
that the resulting integral factorizes, and one obtains the bound

∑

ζ∈Γ:
y∈ζ,|ζ|=n

|zτh(ζ)| ≤ ecn
∑

ζ∈Γ:
y∈ζ,|ζ|=n

[∑

t∈T̂ζ

∏

X∈E(t)

∑

1≤k≤N

Jk
X

]
sup
t∈T̂ζ ,

{x,y}∈Ê(t)

sup
1≤k≤N

Eh[|ϕ
k
xϕ

k
y − τ 2δk,1|]

cn.

(3.11)

To estimate the last factor (expectation) on the right side of this expression, one ob-
serves that it follows from the definition of Ph (see (3.8)) by using rotational invariance
of µ0 (cf. (C1)) that Ph

w
→ δp, as Reh → ∞, where δp stands for the Dirac mass at

p = (||µ0||∞, 0, . . . , 0) ∈ RN . In particular, given δ > 0 and setting τ(δ) = ||µ0||∞ − δ, one
can find a large, but finite constant c4(δ) > 0 such that Ph(ϕ0 ∈ Bδ(p)) ≥ 1 − δ, for all
Reh > c4(δ), (with Bδ(p) the ball of radius δ around p). Let Ωx = {ϕx /∈ Bδ(p)}, x ∈ Z

d.
One then finds that

Eh[|ϕ
k
xϕ

k
y − τ(δ)2δk,1|] ≤ 2||µ0||∞Ph[Ωx ∪ Ωy] + Eh[|ϕ

k
xϕ

k
y − τ(δ)2δk,1| · 1{ϕx, ϕy ∈ Bδ(p)}],

for all δ > 0 and all h with Reh > c4(δ). The first term on the right-hand side is
of order δ, by a union bound, and so is the second term, for any k ∈ {1, . . . , N}. To
see this, one uses that |ϕk

xϕ
k
y| ≤ δ2, for all k ≥ 2, on the “event of interest”, and that

|ϕ1
xϕ

1
y − τ(δ)2| = |(ϕ1

x− τ(δ))(ϕ1
y + τ(δ)) + τ(δ)(ϕ1

y −ϕ1
x)| ≤ c(|ϕ1

x − τ(δ)|+ |ϕ1
y −ϕ1

x|) ≤ cδ
whenever ϕx, ϕy ∈ Bδ(p). Putting things together, one arrives at

(3.12) sup
1≤k≤N

Eh[|ϕ
k
xϕ

k
y − τ(δ)2δk,1|] ≤ cδ,

for all δ > 0, Reh > c4(δ) and x, y ∈ Zd. In view of (3.11), it remains to show that the
term T :=

∑
ζ∈Γ:

y∈ζ,|ζ|=n

∑
t∈Tζ

∏
X∈E(t) JX (with JX =

∑
k J

k
X) grows at most exponentially

in n. Indeed, since |Tζ| = nn−2 when |ζ | = n, one has that

T ≤
1

(n− 1)!

∑

y2,...yn

∑

t∈T{y1,...,yn}

∏

X∈E(t)

JX ≤
nn−2

(n− 1)!
sup
t∈Tn

∑

y2,...yn

∏

{i,j}∈E(t)

Jyiyj ,
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where T{y1,...,yn} is the set of trees on {y1, . . . , yn}, and y1 = y. By Stirling’s formula, the
factor nn−2/(n− 1)! grows exponentially in n. By induction one shows, with J =

∑
x J0,x,

that
∑

y2,...yn

∏
{i,j}∈E(t) Jyiyj ≤ Jn−1, for all n ≥ 2. This is obvious when n = 2, and, in

carrying out the induction step, one may assume without loss of generality that yn is an
end point of the tree, i.e., only one edge is incident upon it. All in all, this yields the bound
T ≤ ecn. Finally, substituting this bound and the one in (3.12) into (3.11), one obtains
that ∑

ζ∈Γ:
y∈ζ,|ζ|=n

|zτh(ζ)| ≤ ecnδc
′n,

for all n ≥ 2, δ > 0, y ∈ Zd and h ∈ γv(α̃, ũ) satisfying Reh > c4(δ). The bound in (3.6)
follows from this estimate and the computation below (3.8) (for n = 1), upon choosing
δ = δ(ε) sufficiently small, for a given ε > 0, and choosing η(ε) = c4(δ(ε)).
This completes the proof of the first part, i), of Lemma 5.
To prove part ii), one notices that, by virtue of (C1”), a uniform upper bound on the
quantity Mh appearing in (3.8) is obtained, for all h ∈ H+ with Reh > ũ(u0 = 1) ≡ c5.
Thus, adapting the constant η(ε) = c4(δ(ε))∨ c5, this completes the proof of Lemma 5. �

On the basis of the bounds on polymer activities proven in Lemma 5 and using that Φ
has finite range (cf. (C2), a condition that can actually be relaxed), the proof of Lemma
3 is by now standard; (one sets c1 = η(ε = 1

6
), with η(·) as in Lemma 5; see for instance

[10], Theorem V.7.12, and [3], Chapter 2.) �

4 Epilogue

We conclude this paper by discussing some extensions of our results. The first one pertains
to Theorem 1. Assume that (C1), (C1’) and (C2) hold. Then, as already briefly mentioned,
one can prove the following generalization of Theorem 1: Given n points x1, . . . , xn ∈ Zd,
n ≥ 2, let

ℓ(x1, . . . , xn) = min
T∈Tn

∑

{i,j}∈E(T )

|xi − xj |,

denote the length of the “shortest” tree connecting these n points, (| · | denoting, e.g., the
Manhattan distance on the lattice Zd), where Tn is the set of trees on {1, . . . , n} and E(T )
denotes the set of edges of T ∈ Tn. The (connected) n-point function is defined as

〈ϕi1
x1
; ... ;ϕin

xn
〉Φβ,h = lim

ΛրZd

( ∂n

∂ε1 · · ·∂εn
log

〈 ∏

16k6n

(1 + εkϕ
ik
xk
)
〉Φ

Λ,β,h

)∣∣∣
εi=0, all i

,

for given components ik ∈ {1, ..., N}, 1 ≤ k ≤ n. It is shown in [4] that the limit exists,
regardless of boundary conditions, so long as they do not invalidate the Lee-Yang theorem,
and that, for all β > 0, the function 〈ϕx1

; ... ;ϕxn〉
Φ
β,h is analytic in h, for Reh 6= 0. Setting

β = 1 and omitting it from our notation, as above, one has the following generalization of
Theorem 1.

Theorem 1bis. If (µ0,Φ) satisfy conditions (C1), (C1’) and (C2) then there exists a
function m̃(h) > 0 of h such that, for all n ≥ 2, xk ∈ Zd and ik ∈ {1, ..., N}, 1 ≤ k ≤ n,

(4.1) 〈ϕi1
x1
; ... ;ϕin

xn
〉Φh ≤ c(h)e−m̃(h)·ℓ(x1,...,xn),
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for all real-valued h 6= 0. If, in addition, (C1”) is satisfied, (4.1) holds for all values of
h ∈ C with Reh 6= 0, and (2.17) holds with m̃(·) in place of m(·).

In essence, the proof of Theorem 1bis is very similar to that of Theorem 1 and Corol-
lary 4. Only the uniformity of m̃(·) in n asserted in Theorem 1bis requires some explanation:
One first defines a function similar to the one in (2.5), but with 〈ϕi1

x1
; ... ;ϕin

xn
〉Φh replacing

the two-point function. The results in [4] guarantee that this function is analytic in h
on H+. Using a slight generalization of Lemma 5 and a standard cluster expansion, one
shows that Lemma 3 continues to hold for all n-point functions, with a constant c2 that
might depend on n (to which m̃(·) is not sensitive), but with a constant m0 that is uniform
in n; see, e.g., [10], Theorem V.7.13. With regard to the radial estimate of Lemma 2, a
dependence of our bounds in (2.6) on n may only occur through the constant c0, which is,
however, inconsequential; cf. (2.13) and (2.16). Theorem 1bis then follows by arguments
very similar to those in Sect. 2.

In order to keep the exposition clear, we have considered the specific (class of) inter-
actions (C2), but our methods are in fact quite robust, and apply to all models (µ0,Φ)
discussed in [4]. For instance, in the scalar case N = 1 and for the spin-1

2
reference mea-

sure, a Lee-Yang theorem is known to be true at sufficiently small temperatures if one
adds a suitably small quartic interaction, see [6], [9]. Theorem 1, Corollary 4 and Theo-
rem 1bis still hold in this case, and only require adapting the arguments of Lemma 5 in
the expansion at large magnetic fields.

Moreover, our results can be extended to certain quantum spin systems satisfying a
Lee-Yang theorem, in particular to the quantum XY- and Heisenberg models. For these
models, a large-field cluster expansion can be set up and shown to converge. Finally, our
ideas could be applied to the analysis of N-component Euclidean λ|φ|4d -field theories for
N = 1, 2, 3, with φ = (φ1, . . . , φN), in d = 2, 3 space-time dimensions and in the presence
of a “magnetic field” term. For this purpose, one has to combine results sketched in [4]
with an expansion akin to the one in [11], due to T. Spencer. A more detailed discussion
of these matters goes beyond the scope of the present note.
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