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Abstract

Let X be a random walk on the torus of side length N in dimension d ě 3 with uniform
starting point, and tcov be the expected value of its cover time, which is the first time
that X has visited every vertex of the torus at least once. For α ą 0, the set Lα of α-late
points consists of those points not visited by X at time αtcov. We prove the existence of
a value α˚ P p 12 , 1q across which Lα trivialises as follows: for all α ą α˚ and ε ě N´c

there exists a coupling of Lα and two occupation sets Bα˘ of i.i.d. Bernoulli fields having
the same density as Lα˘ε, which is asymptotic to N´pα˘εqd, with the property that the
inclusion Bα` Ď Lα Ď Bα´ holds with high probability as N Ñ 8. On the contrary,
when α ď α˚ there is no such coupling. Corresponding results also hold for the vacant
set of random interlacements at high intensities. The transition at α˚ corresponds to the
(dis-)appearance of ‘double-points’ (i.e. neighboring pairs of points) in Lα. We further
describe the law of Lα for α ą 1

2 by adding independent patterns to Bα˘ . In dimensions
d ě 4 these are exactly all two-point sets. When d “ 3 one must also include all connected
three-point sets, but no other.
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1 Introduction

This article studies two models, the random walk on the d-dimensional torus T “ pZ{NZqd of
large side length N , for d ě 3, at time scales close to the typical time it takes the walk to cover
the whole torus, and random interlacements on Zd at corresponding intensities. Let P denote the
canonical law of the walk on the graph T started from uniform distribution, and X “ pXnqně0

be the corresponding (discrete-time) canonical process. It is well-known that the cover time CN
of X, which is the first time X has visited every vertex of T at least once, satisfies

(1.1) tcov
def.
“ ErCN s „ gp0qNd logpNdq, as N Ñ8,

where gp0q denotes the Green’s function of the simple random walk on Zd at the origin, see
Section 2 for notation, and „ means that the ratio of the two quantities tends to one in the given
limit. In view of (1.1), letting

(1.2) VuN “ T zXr0,uNds, for u ą 0,

where Xr0,ts “ tx P T : Xn “ x for some n ď tu, it is natural to introduce

(1.3) uN pαq “ αgp0q logpNdq, for α ą 0, N ě 1

(whence uN pαqNd „ αtcov) and consider the vacant set

(1.4) Lα def.
“ VuN pαqN (under P).

The elements of Lα will be referred to as α-late points. Note that Lα is decreasing in α, and the
choices (1.2)-(1.3) imply that Lα has density (see (6.5))

(1.5) Pp0 P Lαq „ N´αd as N Ñ8.

The parametrisation in (1.2)-(1.4) is a matter of convenience; our results do in fact remain true
for any choice of ‘α-late time scale’ such that (1.5) holds (for instance, u “ αN´dtcov in (1.2)),
see Remark 7.3,5) for this and more; see also Remark 7.3,8) regarding natural (on account of
(1.5)) extensions to random timescales such as the first time the vacant set of the walk contains
exactly rN p1´αqds points.

We are interested in global (i.e. macroscopic) properties of Lα as a subset of T. One difficulty
in addressing questions of this type stems from the long-range correlations inherent to Lα.

For the sake of clarity, we focus on (1.4) in this introduction. As will turn out, all results
presented below allow for either of two generalisations. First, we can deal with late points LαF in
arbitrary (large) (sub-)regions F Ď T at appropriate timescales, ensuring in essence that LαF has
asymptotic density |F |´α, cf. (1.5). Second, the conclusions of all the results presented in this
introduction continue to hold if one replaces (1.4) by Lα “ VuN pαq X pr0, Nq X Zqd (identifying
the vertices of pr0, Nq X Zqd with those of T), where Vu refers to the vacant set of random
interlacements at level u; see Remark 7.3,1) for details. The set Vu is characterised by the
property that

(1.6) PIpK Ă Vuq “ expt´ucappKqu, for finite K Ă Zd,

and corresponds to a local limit of VuN in (1.2) as N Ñ 8. We refer to Corollary 5.2 for an
explicit coupling between Vu and VuN . This coupling acts as a powerful transfer mechanism. For
instance it allows to lift the formula (1.6) from Vu to VuN , up to small error, see (6.4). We now
present our results.
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1.1. Phase transition at α˚. The transition we establish as part of our first main result
exhibits a sharp regime of parameters α in which Lα in (1.4) completely ‘trivialises,’ i.e. resembles
an i.i.d. sample of appropriate density. This question has, directly and indirectly, already received
considerable attention in the past, as we now briefly review. In view of (1.5), the case α ą 1
is readily dispensed with since Lα is empty with high probability for such values of α. In the
course of proving Gumbel fluctuations for CN , Belius obtained [5, (1.4)-(1.5) and Corollary 3.4]
that the suitably rescaled process of points ‘around’ L1 converges to a Poisson point process on
pR{Zqd. Intuitively, this means that the ‘very late’ points, i.e. the last few vertices to be covered
around α “ 1, are roughly independent and uniform. The proof relies on similar results for
interlacements [4], and a coupling of the two objects. We return to this below.

Matters become all the more delicate in the regime α ă 1, notably because |Lα| is no longer
tight in N , cf. (1.5). Let pBαqαě0 denote a family of i.i.d. Bernoulli (site) percolation processes
on T with respective density Pp0 P Lαq and coupled in a monotone fashion in α (e.g. by means
of uniform independent random variables). One is naturally led to wonder how L “ pLαqαě0

and B “ pBαqαě0 relate, if at all. This question was taken up in [22], the main contribution of
which can be paraphrased as stating that α˚˚ ă 1, where

(1.7) α˚˚
def.
“ inf

 

α ą 0 : limN dTV

`

Lβ,Bβ
˘

“ 0 for all β ě α
(

,

where dTV denotes the total variation distance; the result that dTVpL1,B1q Ñ 0 had already
been shown prior to this by Prata in [25, Part II]. Within the class of vertex transitive graphs, the
recent work [6] by Berestycki, Hermon and Teyssier actually gives an optimal characterization
in terms of the diameter for the appearance of Gumbel fluctuations and the uniformity of L1.

The method of [22] originally gave α˚˚ ď α1 for an explicit value of α1 “ α1pdq ă 1 satisfying
α1 Ñ 1 as dÑ8. This deficiency was later removed in [28], where it is shown that

(1.8) α˚˚ ď α2pă α1 ă 1q,

with α2 “
3
4pd´

2
3q{pd´1q Ñ 3

4 as dÑ8, see Remark 7.3,7). To be precise, all afore mentioned
results in [22, 25, 28] deal with a slightly different set of late points in place of Lα, operating at
time scales αt˚, where t˚ is carefully chosen, see e.g. [22, (4.3)], and satisfies t˚ “ tcovp1` op1qq.

A natural barrier for proximity of L and B arises as follows. Let

(1.9) Dα def.
“

1

2

ÿ

x„y

1tx P Lα, y P Lαu,

where x „ y denote neighbouring vertices in T, which counts ‘double-points’ in Lα, and define

(1.10) α˚ “ α˚pdq
def.
“ sup

 

α ą 0 : limN ErDαs “ 0
(

,

(with the convention sup∅ “ 0). The quantity ErDαs appearing in the limit as N Ñ 8 above
depends implicitly on N via the choice of the side length for the torus T on which Lα is defined;
this will in fact be the case for all our limits in N . One can show, see Lemma 6.3 below, that

(1.11) α˚ “
1
2

`

1` P0p rH0 ă 8q
˘ `

P
`

1
2 , 1

˘˘

,

where P0 denotes the law of simple random walk on Zd with starting point X0 “ 0 and rH0 “

inftn ě 1 : Xn “ 0u. The inequality α˚ ą
1
2 implied by (1.11) is important and signals a

different qualitative behaviour of Lα and Bα. For, the quantity corresponding to ErDαs with Bα
in place of Lα in (1.9) diverges for all α ą 1

2 . The threshold α˚ already appears in [22], where it
is shown (for slightly different Lα) that α˚˚ ě α˚pą

1
2q, which together with (1.8) implies that

the threshold α˚˚ in (1.7) is non-degenerate.
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Our first result establishes a sharp transition for the set Lα in (1.4) across the threshold α˚, for
a slightly different measure of distance between random sets than (1.7), allowing the introduction
of a small sprinkling parameter ε ą 0 (the case of dTV corresponds to setting ε “ 0). We note in
passing that such a measure of proximity has a long history in the context of problems involving
strong correlations, see [5, 8, 32, 34] for instance. In the sequel we denote by Qα,ε,N the family
of all couplings between Lα and pBα´ε,Bα`εq, for α, ε ą 0 and integer N ě 1.

Theorem 1.1 (d ě 3). With α˚ as in (1.10), for suitable ε0 “ ε0pα, dq ą 0, the following hold:

i) For all α ą α˚, ε P p0, ε0q and N ě 1, there exists a coupling Q P Qα,ε,N such that

(1.12) lim
N

Q
`

Bα`ε Ă Lα Ă Bα´ε
˘

“ 1.

ii) If α “ α˚, then for all ε P p0, ε0q, with the supremum ranging over Qα˚,ε,N below,

(1.13) lim
N

sup
Q

Q
`

Bα˚`ε Ă Lα˚ Ă Bα˚´ε
˘

“ e´d.

iii) For all α ă α˚, ε P p0, ε0q and any coupling Q P Qα,ε,N one has that

(1.14) lim
N

Q
`

Bα`ε Ă Lα Ă Bα´ε
˘

“ 0.

(a) Simulation of L0.6 for N “ 400 (b) Simulation of B0.6 for N “ 400

Figure 1: In red, the points of Lα which have a neighbor in Lα. In dimension three for α “ 0.6, there are many
such “double points” in Lα, but they disappear at α˚ « 0.67. There are no such red points in Bα, α ą 0.5.

In words, (1.12)-(1.14) indicate that Lα is close to an i.i.d. Bernoulli field, up to a sprinkling
parameter ε, if and only if α ą α˚. The constant e´d appearing in (1.13) corresponds to the
probability not to have any neighbours in Lα˚ , i.e. the probability that there does not exist
x „ y in T such that tx, yu Ă Lα˚ , see Remark 7.3,3) for details. Theorem 1.1 is proved in
Section 7 and allows for various extensions, see Remark 7.3, which among other things, include
an analogue of Theorem 1.1 for interlacements and give in either case quantitative bounds in N
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and ε for the probability of the event in (1.12), see (7.23). In fact the quantitative bounds allow
to take ε “ εN polynomially small in N in (1.12). Up to a small sprinkling, Theorem 1.1 thus
answers Question 1 in Section 7 of [22]. Moreover, all afore mentioned results of [22, 25, 28] (in
particular, (1.8)) as well as [4, 5] can all be easily recovered from Theorem 1.1, see Remark 7.3,7)
for details. We return to the challenges in proving Theorem 1.1 in §1.2 below. We further note
that the process of covering in dimension d “ 2 is very different, owing to the recurrence of the
walk, which causes late points to cluster; see [13] for more on this.

In order to support the intuition conveyed by (1.12)-(1.14) that Lα consists a.s. of asymptot-
ically independent points if and only if α ą α˚, one could instead also examine the convergence
of the rescaled point process

ř

xPLα δx{Nαd to a Poisson point process on Rd, as done for instance
in [4, Corollary 0.2], [5, (1.5)], or [10, Theorem 1.1] in the context of the high points of the
Gaussian free field. However, the resulting scaling limit is not fine enough to capture the phase
transition of Theorem 1.1: the limit is actually Poissonian for any α P p0, 1s, cf. Remark 8.4,3).

In view of Theorem 1.1, a natural question is to describe the law of pLαqαą0 as a process
in α. This was first investigated in [25, Theorem 3] for α very close to 1 – more precisely for
α “ 1 ` β

logN , β ą 0, at which |Lα| remains tight – and we will prove a similar result for
α P pα˚, 1s in §8.1. More precisely, defining

(1.15) αx “ suptα ą 0 : x P Lαu, x P T,

we show in Theorem 8.1 that

(1.16) pαx ´ α˚qxPLα˚ is ‘close’ to a family of i.i.d. exponential variables with mean d logN ,

where proximity is again measured in terms of a coupling such that both processes differ by at
most ε.

1.2. Localization. We now discuss one of the main difficulties permeating this work, which is
that of ‘localizing’ the dependence of Lα. Attending to it leads to Theorem 1.2 below (and its
more elaborate version, Theorem 5.1), which is of independent interest; see also [12] for other
localization phenomena for Brownian motion in dimensions d ě 3. To provide some context,
we now comment on the proof of Theorem 1.1, and focus on the case α ą α˚, which already
highlights the essence of the issue. Following [28], see also [10] in the context of the Gaussian free
field, one may seek to apply the Chen-Stein method, e.g. in the form presented in [2, Theorem
3], directly to Lα, which requires individual control on three terms, commonly referred to as b1,
b2 and b3, that each need to be small. The problematic term is b3, which carries the long-range
information and leads to limitations of this method, giving rise e.g. to the threshold α2 in (1.8).

To overcome this difficulty, we follow a modified scheme, see Lemma 3.1 below, which consists
of introducing an intermediate (localized) family rL “ p rLαqαě0, coupled to L in a way that the
two are close (up to sprinkling), and to which [2] applies with b3 “ 0. The latter requires a
(pointwise) short-range property: tx P rLαu needs to be independent of rLα X Qpx,Rqc, for a
suitable localization scale R. Here Qpx,Rq denotes the box around x with size length N in T,
see §2 for a precise definition. Our next result asserts that a process rL with these features can
indeed be constructed. In fact, this is not specific to the high intensity regime (1.3) at all, and
best stated in terms of local times. Thus let p`x,uqxPT denote the local times of XuNd under P,
cf. (2.2), so that VuN “ tx P T : `x,u “ 0u, cf. (1.2). The following result is proved in Section 5
(see Theorem 5.1 for a more general statement) and has an analogue for random interlacements.

Theorem 1.2 (Localization). For all N ě 1, R P r1, N10 s and u0 ą 0, there exists a family
pr`x,uqxPZd,uą0 such that the following holds. For all u P p0, u0s and ε ą 0, there exists a coupling
rP of `¨,u with r`¨,up1˘εq such that:

r`x,up1˘εq is independent from σpr`y,up1˘εq : y R Qpx,Rqq, for all x P T, and(1.17)
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rP
`

r`x,up1´εq ď `x,u ď r`x,up1`εq, @x P T
˘

ě 1´ CNdR2d exp
`

´ cε
?
uRd´2

˘

,(1.18)

for some c “ cpdq ą 0, C “ Cpdq ă 8.

The set rLα alluded to above is then obtained by applying Theorem 1.2 with u “ uN pαq upon
defining rLα “ tx P T : r`x,uN pαq “ 0u with R appropriately chosen, e.g. R « pε´2 logpNdqq

1
d´2 , to

make the error in (1.18) small. From this, (1.12) eventually follows from [2, Theorem 3].
The two localisation features (1.17) and (1.18) are difficult to engineer simultaneously. The

requirements (1.17)-(1.18) can be seen to correspond to a kind of ‘approximate spatial Markov
property’ (at one point) for the local times. Indeed for the related Gaussian free field, a version of
Theorem 1.2 can be obtained by exploiting the field’s Markov property. In a follow-up article, we
will exploit this to establish a phase transition for the high points of the field, studied previously
in [10, 28], as well as other long-range correlated models.

The ‘approximate’ spatial Markov property implied by Theorem 1.2 is however much harder
to obtain, and the proof of Theorem 1.2 is at the heart of this article. One of our main tools
is the soft local times method from [24, 1], with a twist. The method has been introduced to
compare random interlacements trajectories on fixed well-separated sets A1 and A2, to a version
of random interlacements independent on A1 and A2, whose definition depend on the choice of
A1 and A2. In order to derive Theorem 1.2 though, we need to compare random interlacements
with a version of interlacements defined on the whole set T at once, and which is independent on
any pair of well-separated sets A1 and A2, when A1 is a singleton. We achieve this by introducing
an inverse soft local times technique, see Section 4. Actually, our techniques also lead to a new,
simpler, more explicit but slightly less general proof of the coupling between the random walk
and random interlacements from [8], see the discussion below Theorem 5.1 and Corollary 5.2.

1.3. Law of the late points for α P p1
2 , α˚s. For α ď α˚, Theorem 1.1 asserts that Lα and

the i.i.d. set Bα are not close anymore, which, in view of (1.9)-(1.10), is due to the emergence of
neighboring pairs of points in Lα (but not in Bα). But could proximity for α smaller but close to
α˚, perhaps be restored by adding such pairs, and, if so, in an independent fashion? What about
other ‘clusters’ of late points, e.g. sets of two points at distance k ě 2, or even finite sets of larger
cardinality? Do such ‘clusters’ appear in Lα as α is reduced? Is their occurrence Poissonian?
The next result sheds light on these questions. For finite K Ă Zd, denote by cappKq the capacity
of K on the transient graph Zd, d ě 3. We also extend this definition to any set K Ă T with
`8-diameter δpKq, (see Section 2 for a definition) at most N ´ 1 by essentially identifying T
with the cube Qp0, Nq via an adapted bijection so that K Ă Qp0, N ´ 1q, where Qp0, Rq is the
box in Zd around the origin 0 of side length R for all R ą 0. For sets K Ă T with diameter N ,
we simply take the convention cappKq “ 8. We refer to below (2.3) for precise definitions. Now
for K either in Zd or in T with diameter at most N ´ 1, let

(1.19) α˚pKq
def.
“ pgp0qcappKqq´1

and note that α˚ptxuq “ 1 for all x P Zd or T by (2.6), while in fact α˚ptx, yuq “ α˚ as in
(1.10), for x „ y, see Lemma 6.3. As will become clear, the parameter α˚pKq corresponds to
the largest value of α at which one can find a translated version of the set K in Lα similarly as
in the definition (1.10) of α˚; cf. (6.10) or Lemma 6.4 for details.

Let pαpAq “ P
`

Lα XQpA,RTq “ A
˘

for all A Ă T and α ą 0, where RT “ logp|T|q
1
d´2 , let

pUAqAĂT be an i.i.d. family of uniform random variables on r0, 1s, and for K ĂĂ Zd, define the
family BK “ pBαKqαě0 of sets

(1.20) BαK “
ď

AĂT:α˚pAqąα˚pKq
UAďp

αpAq

A.
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Note that K Ă Zd in (1.20) (whereas A Ă T). In particular K does not depend on N , the side
length of the torus, which is important when taking limits as N Ñ8, as in (1.22) below. Notice
also that sets A Ă T with diameter N are never considered in the definition of BαK by the above
convention. Actually BαK only depends on K through cappKq. Moreover, if K “ tx, yu for x „ y,
then α˚pKq “ α˚ ě α˚pAq for all A Ă T with |A| ě 2, whence A in (1.20) only ranges over
singletons and BαK is virtually equal in law to Bα, as will later be seen in detail. This is actually
not entirely true, notably when α ď α˚, see (7.17), but one may pretend for the purposes of this
introduction that pBαKqαě0

law
“ pBαqαě0 when K “ tx, yu, x „ y. Admitting this, the following

result can then essentially be viewed as a generalization of Theorem 1.1.
To state it, we introduce one more convenient notation, which allows to capture transitions

such as (1.12)-(1.14) in a concise (albeit less explicit) way. For two decreasing families of random
subsets S “ pSαqαě0 and U “ pUαqαě0 of T, we define for all α P p0, 1q and ε P p0, αq

(1.21) dεpS,U ;αq “ inf

"

δ P r0, 1s :
D a coupling Q between Sα and pUα´ε, Uα`εq
such that Q

`

Uα`ε Ă Sα Ă Uα´ε
˘

ě 1´ δ.

*

Note that lim
εÑ0

dεpL,B;αq “ dTVpLα,Bαq by continuity.

Theorem 1.3. For Lα as in (1.4), all K ĂĂ Zd and all α P p0, 1q,

(1.22) lim
εÑ0

lim
NÑ8

dε
`

L,BK ;α
˘

#

“ 0 if α ą α˚pKq ą 1{2

“ 1 if α ă α˚pKq or α˚pKq ď 1{2

and if α˚pKq ą 1{2

(1.23) 0 ă lim
εÑ0

lim inf
NÑ8

dε
`

L,BK ;α˚pKq
˘

ď lim
εÑ0

lim sup
NÑ8

dε
`

L,BK ;α˚pKq
˘

ă 1.

By applying Theorem 1.3 with K any pair of neighbors, e.g. K “ K0 “ t0, xu, x „ 0, one
(essentially, cf. above) recovers Theorem 1.1. Now suppose that K ĂĂ Zd is another set with
α˚pKq ą 1{2, not isomorphic to K0 under lattice symmetries; for instance K “ t0, xu, |x|1 “ 2.
Then (1.22) asserts that Lα will be close (as measured by dε) to BK if and only if α ą α˚pKq.
The set BαK comprises independent samples of all allowed ‘clusters’ (namely, sets A Ă T with
α˚pAq ą α˚pKq), at the correct intensity, corresponding to their probability to be seen in Lα
and to be isolated, i.e. with no other late points present in their RT-neighbourhood. This can
be regarded as a positive answer to Question 2 in [22, Section 7]. Note the consistency of the
transitions (1.22) as K varies: for instance, if α ą α˚p“ α˚pK0qq, then, as it turns out, for every
K P Zd with α˚pKq P p1{2, 1q, the sets BαK and BαK0

are virtually indistinguishable as N Ñ 8,
and actually also indistinguishable of Bα. In fact (1.12) will be deduced from the first line of
(1.22) in precisely this way, cf. §7; see also Remark 7.3,2) for alternatives. Note also that the
critical case (1.23) is less explicit than (1.13), see Remark 7.3,3) for more on this.

Theorem 1.3 is mainly interesting when α˚pKq ą 1{2, as it then describes precisely the law
of Lα for α ą α˚pKq via Bα˘εK . It is easy to see that the constraint α˚pKq ą 1{2 is saturated for
K “ tx, yu in the limit when |x ´ y| Ñ 8, see (2.6) below. In particular for all α ą 1{2 there
exists K ĂĂ Zd with α ą α˚pKq ą 1{2, for which BαK is a good approximation of Lα by (1.22).
On the other hand if α˚pKq ď 1{2, then for all x, y P T we have α˚ptx, yuq ą α˚pKq and so
the probability that x P BαK , see (1.20), will typically be much larger than the probability that
x P Lα, which explains the last part of (1.22); cf. also (7.16). An important question is thus to
determine which kind of sets K are in

(1.24) AT “ tK Ă T : K ‰ ∅, α˚pKq ě 1
2u,
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for these are exactly the sets one needs to consider in Theorem 1.3 to approximate Lα for α ą 1
2 .

By (2.6) below, AT contains at least all singletons and two-point sets. But doesAT contain larger
sets, for instance containing three points, and, if so, which ones? Put differently, as N Ñ 8,
does tLαXQpx,RTq, x P Tu contain sets with three points before containing all possible 2 points
sets with diameter at most RT? Viewing Z2 as Z2 ˆ t0ud´2 Ă Zd, let

(1.25) K1 “ tp0, 0q, p0, 1q, p0, 2qu, K2 “ tp0, 0q, p0, 1q, p1, 0qu.

We denote by K1 and K2 the projections of K1 and K2 onto T (and generally bold sets will
always be the projection on T of sets on Zd), which are the only connected sets of cardinality 3,
up to torus isomorphisms. We prove in Appendix B that

(1.26) if K1,K2 R AT, then AT consists only of sets with cardinality at most 2,

and there are sets Ai Ă Zd, i P t1, . . . , 8u with cardinality at least three such that, denoting by
Ai the projection of Ai on T

(1.27)
if K1,K2 P AT and Ai R AT for all i P t1, . . . , 8u, then AT consists only of sets
with cardinality at most 2 and images of K1 and K2 by torus isomorphisms.

We then deduce in Theorem B.1 that (1.26) applies for all d ě 4 and (1.27) when d “ 3. The
proof of Theorem B.1 relies on computer-assisted methods partially inspired by [18, Appendix B],
to determine the capacities of the sets K1,K2 and Ai, i P t1, . . . , 8u (the latter only when d “ 3)
as well as gp0q, cf. (1.19), which are computed with precision 10´30, see Lemma B.4.

Together, Theorems 1.3 and B.1 readily yield the following:

Corollary 1.4. For small enough η ą 0, there exists D “ Dpη, dq ă 8 such that, if Dα Ă T,
α “ 1

2 ` η, is obtained as the union of all sets K Ă T which are either

i) singletons,
ii) pairs of points at `1-distance ď D,
iii) images of K1 or K2 by torus isomorphisms, that is connected sets of cardinality 3,

each sampled independently with probability pαpKq, then there exists Q “ Qη such that if d “ 3

(1.28) Q
`

D
1`3η

2 Ă L
1
2
`η Ă D

1`η
2

˘

Ñ 1 as N Ñ8

Moreover if d “ 3, there is no such Q if iii) is omitted, whereas if d ě 4, all conclusions remains
true upon discarding type iiiq from the construction of Dα.

We conclude by explaining the significance of the value α “ 1
2 in (1.24), Theorem 1.3 and

Corollary 1.4. The parameter α “ 1
2 has already been identified as the critical parameter for

another question in [21], and on the torus the main result from [21] can actually be deduced
from Theorem 1.3, see Remark 7.3,4). For each α ą 1

2 , one can find a constant C “ Cpαq such
that with high probability, each x, y P Lα verifies either dpx, yq ď C or dpx, yq ě plogNq1{pd´2q

(in fact even dpx, yq ě N2α´1´η for some η ą 0), see Lemma 6.8. In other words, any value of
α ą 1

2 induces a natural localization scale for Lα, which is a union of small sets (with diameter at
most C) far away from one another. This well-separatedness fails when α ď 1

2 , and one cannot
straightforwardly deduce an approximative version of the law of Lα in this regime, see Remark
8.4,4). It would of course be interesting to assess whether a result similar to Theorem 6.5, which
is a consequence of our localization statement Theorem 1.2, valid throughout the phase α ą 1

2 ,
and one of the driving force behind our main results, still holds for α ď 1

2 or not.
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1.4. Organization of this article. Section 2 introduces the setup and a minimal amount of
useful notation. Section 3 is centred around the modified Chen-Stein method, which allows for
a sprinkling. Section 4 introduces the soft local time method to couple two different Markov
chains from [24], and explains how to invert it. This method is then applied in Section 5 to the
excursions of the random walk on T and random interlacements on Zd to prove the localization
result, Theorem 1.2. Its strengthened version, Theorem 5.1, also immediately yields a state-of-
the-art coupling between random walk and random interlacements with quantitative coupling
error, stated in Corollary 5.2. Section 6 discusses the consequences of localization for late points.
In §6.1, we introduce the set of late points LαF to be studied (see (6.2)), which contains Lα
defined in (1.4) as a special case, and gather its first properties, including precise estimates on
the probability for a generic set to be late. In §6.2, we then compare LαF with a suitably localized
version rBαF defined in (6.17). The main result is Theorem 6.5.

The pieces are put together in Section 7, where we derive Theorems 1.1 and 1.3. Remark 7.3,
which appears at the end of §7, deserves highlighting. It concerns various extensions of these
results and also explains how to recover existing ones. Thereafter, §8 contains some interesting
further results which can be derived using our methods. More precisely, §8.1 deals with LαF as a
process in α (see (1.16) and Theorem 8.1), and §8.2 is an outlook to the regime α ď 1

2 containing
a description of the law of large clusters, see Theorem 8.3. Finally, Appendix A contains the
proof of two technical ingredients, Lemmas 5.5 and 5.6, relegated from Section 5, which concern
certain large deviation estimates for the excursions of random walk and random interlacements.
Appendix B revolves around the notion of admissible sets. In particular, Theorem B.1 identifies
the elements of AT in (1.24), which leads to Corollary 1.4. The elements of the proof of Theo-
rem B.1 relying on computer assistance are all summarized in Lemma B.4. We stress however
that – with the exception of Corollary 1.4 – none of our results make use of Appendix B.

We conclude with our convention regarding constants. In the rest of this article, we denote by
c, c1, . . . and C, C 1, . . . positive and finite constants changing from place to place. All constants
may depend implicitly on the dimension d, and their dependence on any other quantity will be
made explicit.

Acknowledgment: AP has been supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) grant EP/R022615/1, Isaac Newton Trust (INT) grant G101121, Eu-
ropean Research Council (ERC) starting grant 804166 (SPRS), and the Swiss NSF.

2 Notation and preliminaries

We set up some notation that will be used throughout. We use π : Zd Ñ T “ pZ{NZqd
to denote the canonical projection from the infinite d-dimensional cubic latice Zd to the d-
dimensional torus T of size length N , for d ě 3, N ě 1. In order to simplify notation, we
will often use the notation x to denote the projection πpxq of x P Zd. We denote by 0 the
origin of Zd, and thus call 0 :“ πp0q the origin of T. For each x P Zd and r ą 0, we let
Qpx, rq “ Qrpxq “ x` pr´tpr´ 1q{2u, rpr´ 1q{2ss XZqd the box of size length r around x in Zd,
and we let Qpx, rq “ π

`

Qrpxq
˘

, which only depends on x and r. Our convention for boxes is
tuned so that QN p0q “ T, and π|QN p0q is a bijection into T. Note that the definition of Qrpxq
depends on whether x P Zd or x P T. We will also introduce the notation QN (see above (6.1)),
which will only be used in Sections 6-8 (QN can correspond to either QN p0q or QN p0q, depending
on the model considered, which will allow for a uniform presentation). We also let QpA,Rq be
the union of the balls Qpx,Rq over all x P A, for any A Ă Zd or A Ă T.

For a set A Ă Zd or A Ă T we write BA for the internal vertex boundary of A, i.e. BA “
ty P A : D x R A adjacent to yu, |A| for the cardinality of A and δpAq for the (`8-)diameter of A,
that is the smallest R P N such that A Ă QpxA, Rq for some vertex xA P Zd or xA P T. We use
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the notation A ĂĂ Zd to say that A is a finite subset of Zd. Let also dpx, yq “ δptx, yuq for all
x, y P Zd or x, y P T, which on Zd corresponds to the `8-distance between x and y. For subsets
K,K 1 either of Zd or T we write dpK,K 1q “ infxPK,yPK1 dpx, x

1q.
We write Px for the canonical law of the discrete-time simple random walk on Zd starting at

x P Zd. We denote by X “ pXnqně0 the corresponding canonical process, and by θn, n ě 0, the
canonical shifts, so that X ˝θn “ pXm`nqmě0. For K Ă Zd we define HK “ inftn ě 0 : Xn P Ku
and TK “ HZdzK the respective entrance time in K and exit time from K, for K Ă Zd. We write
rHK “ inftn ě 1 : Xn P Ku for the hitting time of K. Here, we take the convention inf ∅ “ `8.
For n ě 0 we also introduce the time of last visit to K (before time n),

(2.1) LKpnq “ suptm ď n : Xm P Ku, LK “ lim
nÑ8

LKpnq

with the convention sup∅ “ ´8. For x P T and y P π´1ptxuq, we set Px “ π ˝ Py, which is
well-defined (i.e. does not depend on the choice of y). With a slight abuse of notation, we also
write pXnqně0 for the canonical process under Px, x P T, which is the simple random walk on
T, starting at x, and extend the definition of HK , TK , rHK , LKpnq and LK under Px. Let also
P

def.
“ N´d

ř

xPTPx. Under Px (or P), one defines for all t, u ą 0 the (discrete) local times

(2.2) `xptq “
ÿ

0ďnďttu

1tXn “ xu, t P r0,8q, `x,u “ `xpuN
dq.

We denote by gpx, yq, x, y P Zd the Green’s function of X under Px, which is known to be
finite and symmetric. Moreover gpx, yq “ gpx´ y, 0q ” gpx´ yq so in particular, gp0q “ gp0, 0q.
For suitable f on Zd (e.g. with finite support), we write Gfpxq “

ř

yPZd gpx, yqfpyq. For finite
K Ă Zd, we denote by eK the equilibrium measure of K,

(2.3) eKpxq “ Pxp rHK “ 8q1Kpxq, for x P Zd,

which is finite and supported on BK, and by cappKq its total mass, the capacity of K, which is
monotone in K. We write eK “ eK

cappKq for the normalized equilibrium measure. If K Ă T with
δpKq ă N, we also define the capacity ofK as follows: ifK Ă QN´1p0q andK 1 Ă QN´1p0qpĂ Zdq
is a set such that πpK 1q “ K, then we let cappKq “ cappK 1q. For other K with δpKq ă N, we
define cappKq by translation invariance. Moreover, we take cappKq “ 8 for the subsets of T
which are not topologically trivial, i.e. when δpKq “ N . One knows that

(2.4) GeK “ hK , where hKpxq “ PxpHK ă 8q, x P Zd is the equilibrium potential of K.

The following straightforward (strict) monotonicity result for g will be repeatedly used. Let | ¨ |1
denote the `1-distance (i.e. the graph distance) on Zd.

Lemma 2.1. For all integers n ě 0,

(2.5) sup
|x|1ąn

gpxq ă sup
|x|1“n

gpxq.

Proof. Set B1px, nq “ ty P Zd : |y ´ x|1 ď nu. First, one classically knows that there exists
cpnq ą 0 such that PxpHB1p0,nq “ 8q ě cpnq for all x R B1p0, nq. Hence, by the strong Markov
property and translation invariance, one obtains, for all x P Zd with |x|1 ą n,

gp0, xq

gp0q

(2.4)
“ P0pHx ă 8q “ E0

“

1tHB1px,nq ă 8uPXHB1px,nq
pHx ă 8q

‰

ď p1´ cpnqq sup
yPBB1px,nq

PypHx ă 8q
(2.4)
“ p1´ cpnqq sup

|y|1“n

gp0, yq

gp0q
,

from which (2.5) follows.
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By evaluating (2.4) for x P K and solving the resulting linear system, one can explicitly
determine eK and cappKq in terms of g. In case K is a singleton or a two-point set, this gives

capptx, yuq “
2

gp0q ` gpx´ yq
, for all x, y P Zd(2.6)

(in particular, capptxuq “ gp0q´1). ForK Ď U Ă Zd we further set eUKpxq “ Pxp rHK ą TU q1Kpxq,
so that (2.3) corresponds to choosing U “ Zd, and write capU pKq “

ř

x e
U
Kpxq for its total mass.

We now collect some further facts about capacity, which will be useful in the rest of the article.
First, as we now explain, combining (2.6) and Lemma 2.1 one obtains that

(2.7) cappKq ą capptx, yuq for any K Ă Zd with diam`1pKq ě 2 and x „ y.

Indeed by monotonicity of K ÞÑ cappKq, see [19, Prop. 2.2.1], it is enough to consider the case
|K| “ 2 with two-points at distance n ě 2, from which (2.7) follows using the formula (2.6),
translation invariance, and (2.5) for n ě 2. Next, by [15, Lemma 1.11] and [3, Proposition 1.2],
for any sets K,K 1 ĂĂ Zd, one has

(2.8) 0 ď cappKq ` cappK 1q ´ cappK YK 1q ď c|K 1||K|dpK,K 1q´pd´2q,

for some constant c depending only on d. An important application of the right-hand side of
(2.8) is that if F ĂĂ Zd and K,K 1 Ă F are such that dpK,K 1q ě logp|F |q1{pd´2q{2, then for all
α P p0, 1s

(2.9) |F |´αgp0qcappKYK1q ď C|F |´αgp0qcappKq ¨ |F |´αgp0qcappK1q,

for some constant C depending only on d, |K| and |K 1|. The following improvement of (2.9) will
also be used. If, as will commonly occur in practice, |F | Ñ 8 and dpK,K1q

logp|F |q1{pd´2q Ñ 8 whereas
|K|, |K 1| ď C 1, one can further replace the constant C appearing in (2.9) by p1 ` op1qq (as
|F | Ñ 8). Note that the reverse inequality in (2.9) is also true with C “ 1 by (2.8). Another
interesting application of (2.8) is the following: for each r ą 0,

(2.10) there exists C “ Cprq ă 8 so that each K ĂĂ Zd with |K| ě C satisfies cappKq ě r.

Indeed, in order to prove (2.10), it suffices to prove that if K contains rr{cappt0uqs` 1 points xi
so that dpxi, xjq is large enough for each i ‰ j, then cappKq ě r, which follows easily from (2.8).
Finally note that (2.7), (2.8), (2.9) and (2.10) still hold when K,K 1 Ă T as long as the capacities
in question are not infinite, which is for instance the case when δpKq, δpK 1q ă N{2.

We now briefly introduce the random interlacement process and its associated local times to
the extent we need them. We denote by ω the random interlacements process on Zd with law PI ,
as defined in [30], which is a Poisson process of bi-infinite random walk trajectories with positive
labels. We will actually never need to describe the full law of ω here, but only its push-forward
ωuB to the trajectories with label less than u which hit a ball B Ă Zd, and started after their
first hitting time of B, for some u ą 0, that we now describe. For each finite set B Ă Zd, there
exists a Poisson process NB “ pNu

Bquě0 on r0,8q with intensity cappBq and an independent
i.i.d. sequence of random walks pXiqiě1, each with law PeB , such that for all u ą 0, under PI ,

(2.11) ωuB “

Nu
B

ÿ

i“1

δXi .

This description of ωuB via Nu
B and pXiqiě1 entirely characterises its law. Note that the trajec-

tories pXiqiě1 depend on the choice of B, but this dependence does not appear in the notation
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for simplicity. We write IuB for the interlacements set in B and `y,u for the associated local time
at y P B at level u, i.e.

(2.12) `y,u “ `y,upωq “

Nu
B

ÿ

i“1

8
ÿ

k“0

1tXi
k “ yu,

and

(2.13) IuB “ Iu XB “
Nu
B

ď

i“1

Xir0,8q XB p“ ty P B : `y,u ą 0uq

where Xir0,8q “ tXi
k, k P Nu. The vacant set at level u is defined as Vu “ ZdzIu and the

formula (1.6) follows as PIpVu Ă Bq “ PIpNu
B “ 0q.

3 Modified Chen-Stein method with sprinkling

We now collect a result, of independent interest, which roughly speaking generates a coupling of
some (Bernoulli) process Y of interest –possibly highly correlated– and an independent process
W from a given coupling between Y with another process Z in such a way that pY,W q are
‘close’ whenever pY, Zq are. Here, ‘distance’ will be quantified by the functional dε introduced
below, which allows for a sprinkling with parameter ε ą 0 in the underlying density of the
processes. The main result appears in Lemma 3.1. For the applications in this article, Y will
be the occupation time field of RW/RI, Z will be a suitable finite-range approximation, in a
sense to be made precise, see (3.4), and W the target i.i.d. field. We compare the philosophy
underlying Lemma 3.1 with the traditional Chen-Stein method further in Remark 3.2.

In the sequel, given some probability space pΩ,A,Pq and a finite set S (typically a finite
collection of subsets of Zd or ZdN ), we call Bernoulli process on S any random variable Z “

pZxqxPS : Ω Ñ t0, 1uS . The process Z will be referred to as independent whenever tZx : x P Su
constitutes an independent family of random variables. Given I Ă r0,8q an interval and two
families Z “ pZαqαPI , Y “ pY αqαPI of Bernoulli processes on a countable set S (i.e. for every
α P I, Y α, Zα are Bernoulli processes on S), we define, for every α, ε ě 0 such that α˘ ε P I,

(3.1) dεpY, Z;αq “ inf

"

δ P r0, 1s :
D a coupling pP between Y α and pZα´ε, Zα`εq
s.t. pP

`

Zα`εx ď Y α
x ď Zα´εx @x P S

˘

ě 1´ δ

*

.

Note that d0pY,Z;αq “ dTVpY
α, Zαq. This is consistent with the notation from (1.21) by

setting dεpY, Z;αq “ dεpSY ,SZ ;αq, i.e. identifying Y “ pY αqαPI with the corresponding family
of occupations sets SY “ pSαY qαPI , where SαY “ tx : Y α

x “ 1u and similarly for Z. We will use dε
to measure proximity between Y and Z.

The following setup is tailored to our purposes. The process Y “ pY αqαPI is called a decreas-
ing family of Bernoulli processes on S if Y α, α P I, are defined on a joint probability space and
Y β
x ď Y α

x a.s. for all x P S and α, β P I with β ě α. We consider two families Y “ pY αqαPI and
W “ pWαqαPI with the following properties:

Y is a decreasing family of Bernoulli processes on S;(3.2)

for each α P I, Wα is an independent Bernoulli process on S,
decreasing in α, and PpWα

x “ 1q “ PpY α
x “ 1q for all α P I, x P S.(3.3)

The goal will typically be to couple Y and W in a manner keeping dεpY,W ; ¨q small. In practice,
we will first approximate Y by a family Z “ pZαqαPI of finite-range processes. Note that our
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notion of finite range processes, see (3.4), is slightly different from the usual notion of finite range,
and is adapted to our context. The following lemma then allows to ‘lift’ couplings between pY,Zq
controlling the quantity dεpY,Z; ¨q, to couplings with similar properties between pY,W q.

Lemma 3.1. Let Y,W satisfy (3.2)-(3.3). If

pZαqαPI is a family of Bernoulli processes on S such that

(Monotonicity): Z “ pZαqαPI is a decreasing family, and
(Finite range): for every x P S, there exists Nx Ă S such that for α, β P I, α ď β,

Zβx and Zαx ´ Z
β
x are each independent of tZαy , Z

β
y : y R Nxu,

(3.4)

then for all ε ą 0 and α P I such that α˘ 3ε P I one has

(3.5) d2εpY,W ;αq ď 400 sup
α1Ptα´2ε,αu

 

b1pα
1q ` b2pα

1q ` dεpY, Z;α1q ¨ |S|2
(

,

where

b1pαq
def.
“

ÿ

xPS

ÿ

yPNx

PpY α
x “ 1qPpY α

y “ 1q,(3.6)

b2pαq
def.
“

ÿ

xPS

ÿ

yPNxztxu
PpY α

x “ 1, Y α
y “ 1q.(3.7)

We comment further on the utility of (3.5) in Remark 3.2 at the end of the proof.

Proof. Let δ ą 0 and PU denote a probability measure carrying a family Ux, x P S, of i.i.d. uni-
form random variables on r0, 1s. With a slight abuse of notation, we realize W on the space PU

along with an auxiliary process ĂW by setting

(3.8) Wα
x “ 1tUx ď PpY α

x “ 1qu, ĂWα
x “ 1tUx ď PpZαx “ 1qu, x P S, α P I.

Clearly, (3.3) holds and (3.8) defines a coupling of pW,ĂW q. We will first work with ĂW , which
matches the one-point densities of Z, and return to W towards the end of the proof. Henceforth,
fix α P I and ε ą 0 such that α ˘ 3ε P I and let γpα, εq refer to the supremum on the right-
hand side of (3.5). Observe that Zα´ε ´ Zα`ε is a (well-defined) Bernoulli process on S by
monotonicity of Z and the same holds true for ĂWα´ε ´ĂWα`ε on account of (3.8). We will first
construct a coupling rQ between pZα´ε, Zα`εq and pĂWα´ε,ĂWα`εq with the property that

rQ
`

Zα´ε “ ĂWα´ε, Zα`ε “ ĂWα`ε
˘

ě1´ 384γpα, εq ´ δ.(3.9)

To this end, let S1 “ S ˆ t´,`u and consider the Bernoulli processes Z 1 and ĂW 1 on S1 defined
as

(3.10) Z 1px,σq “

#

Zα´εx ´ Zα`εx , if σ “ ´
Zα`εx , if σ “ `

, ĂW 1
px,σq “

#

ĂWα´ε
x ´ĂWα`ε

x , if σ “ ´
ĂWα`ε
x , if σ “ `

.

Due to (3.8), Z 1 and ĂW 1 have the same one-dimensional marginals, i.e. Z 1
px,σq

law
“ ĂW 1

px,σq for all
px, σq P S1. For any point x1 “ px, σq P S1, define its neighborhood Nx1 “ Nx ˆ t˘u, with Nx as
given by (3.4). We want to bound the total variation distance between Z 1 and ĂW 1. Because ĂW 1

is not an independent Bernoulli process, we letW 2 be an independent Bernoulli process with the
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same one dimensional marginals as Z 1. Using the triangle inequality for total variation distance
and as we explain below, applying [2, Theorem 3] (see also [9, 29]), one obtains that

(3.11) dTVpZ
1,ĂW 1q ď dTVpZ

1,W 2q ` dTVpW
2,ĂW 1q ď 24pb11 ` b

1
2q,

where

(3.12) b11 “
ÿ

x1PS1

ÿ

y1PNx1
PpZ 1x1 “ 1qPpZ 1y1 “ 1q, b12 “

ÿ

x1PS1

ÿ

y1PNx1ztx1u
PpZ 1x1 “ 1, Z 1y1 “ 1q.

Indeed, the right-hand side of (3.11) a priori includes a third term

(3.13) b13 “
ÿ

x1PS1

E
”ˇ

ˇ

ˇ
E
“

Z 1x1 ´PpZ 1x1 “ 1q
ˇ

ˇZ 1y1 , y
1 R Nx1

‰

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
E
“

ĂW 1
x1 ´PpĂW 1

x1 “ 1q
ˇ

ˇ ĂW 1
y1 , y

1 R Nx1
‰

ˇ

ˇ

ˇ

ı

,

but the finite-range property in (3.4) and the definitions of Z 1x1 , ĂW
1
x1 and Nx1 imply that b13 “ 0

(note to this effect that the σ-algebra generated by tZ 1y1 : y1 R Nx1u is the same as that generated
by tZα´εy , Zα`εy : y R Nxu). Note also that the b1 and b2 terms we obtain for dTVpW

2,ĂW 1q are
both smaller than b11, and hence this justifies the constant 24 appearing in (3.11). The reason we
consider the process ĂW 1 instead of only working with the independent process W 2 here is that
we want the Bernoulli process W we obtain at the end to be decreasing in α, see (3.3) (note
that we would avoid this problem if we used Poisson processes throughout as in [2, Theorem 2],
instead of Bernoulli processes).

We now proceed to bound the right-hand side of (3.11) in terms of γpα, εq. By means of the
defining properties of dε, one sees that for any δ1 ą 0 and x P S,

PpZ 1px,`q “ 1q “ PpZα`εx “ 1q ď PpY α
x “ 1q ` dεpY,Z;αq ` δ1

PpZ 1px,´q “ 1q ď PpZα´εx “ 1q ď PpY α´2ε
x “ 1q ` dεpY,Z;α´ 2εq ` δ1,

(3.14)

Thus, letting δ1 Ñ 0, abbreviating dε “ dεpY,Z;αq _ dεpY,Z;α´ 2εq, observing that |S1| “ 2|S|
and using monotonicity of Y to have PpY α

x “ 1q ď PpY α´2ε
x “ 1q for all x P S, it follows from

(3.14), in view of (3.12) and (3.6), that

(3.15) b11 ď 4pb1pα´ 2εq ` 3dε|S|
2q.

Similarly, using that Z 1
px,σq ď Zα´εx for all x P S and σ P t˘u by monotonicity in (3.4), one

obtains that whenever x1 “ px, σq and y1 “ py, ρq with y ‰ x,

PpZ 1px,σq “ 1, Z 1py,ρq “ 1q ď PpZα´εx “ 1, Zα´εy “ 1q ď dε ` PpY α´2ε
x “ 1, Y α´2ε

y “ 1q.

Observing that PpZ 1
px,σq “ 1, Z 1

px,´σq “ 1q “ 0 for all x P S by monotonicity, this yields that

(3.16) b12 ď 4pb2pα´ 2εq ` dε|S|
2q.

Substituting (3.15) and (3.16) into (3.11) readily implies that dTVpZ
1,ĂW 1q ď 384γpα, εq. The

existence of a coupling rQ having the property (3.9) immediately follows from this (in fact, one
could even choose δ “ 0 by using a maximal coupling but this won’t be necessary).

With (3.9) at hand, we now prove (3.5), which entails finding a coupling of pWα´2ε,Wα`2εq

and Y α with suitable properties. To this end, let pQ denote a coupling of Y α and pZα´ε, Zα`εq
satisfying

(3.17) pQ
`

Zα`εx ď Y α
x ď Zα´εx @x P S

˘

ě 1´ dεpY, Z;αq ´ δ,
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which exists by definition of dε. We proceed to define a measure pP on pt0, 1uSq3, with canonical
coordinates pxW´, pY ,xW`q as follows: for all w˘, y P t0, 1uS ,

pP
`

xW´ “ w´, pY “ y, xW` “ w`
˘ def.
“

ÿ

rw`, rw´

PU
`

Wα˘2ε “ w˘
ˇ

ˇĂWα˘ε “ rw˘
˘

ÿ

z`,z´

rQ
`

ĂWα˘ε “ rw˘
ˇ

ˇZα˘ε “ z˘
˘

pQ
`

Zα˘ε “ z˘, Y α “ y
˘

,

where tWα˘2ε “ w˘u is short for tWα´ε “ w´,Wα`ε “ w`u and similarly for other events,
and rw`, rw´, z` and z´ range over all points in t0, 1uS such that the corresponding events
appearing in each conditioning have non-zero probability. One readily checks using (3.8) and the
definition of the couplings rQ and pQ that pP is a probability measure with marginals pxW´,xW`q

law
“

pWα´2ε,Wα`2εq and pY
law
“ Y α, with Y α and Wα˘2ε as prescribed by (3.2) and (3.3). Finally it

follows from (3.8) combined with the bounds appearing in (3.14) thatWα´2ε
x ă ĂWα´ε

x if and only
if PpY α´2ε

x “ 1q ă Ux ď PpZα´εx “ 1q, which has probability at most dε (similar considerations
apply to the event ĂWα`ε

x ăWα`2ε
x ), whence

PU
`

Wα`2ε
x ď ĂWα`ε

x ď ĂWα´ε
x ďWα´2ε

x ,@x P S
˘

ě 1´ 2|S|dε,

which, together with (3.9) and (3.17), implies that

pP
`

xW`
x ď

pYx ď xW´
x @x P S

˘

ě 1´ dεpY, Z;αq ´ δ ´ 384γpα, εq ´ δ ´ 2|S|dε.

Since dεpY,Z;αq ď dε ď γpα, εq and δ ą 0 was arbitrary, (3.5) follows.

Remark 3.2. Of course, the utility of (3.5) as a means to compare Y and W around level α
rests in particular on having a good bound on supα1Ptα´2ε,αu dεpY,Z;α1q to begin with, for a
process Z satisfying (3.4), which in the case of the random walk on the torus will be provided by
Theorem 5.1 below. The presence of dεpY,Z;α1q acts as a surrogate for a certain quantity “b3”
(much like b13 above, cf. [2]), which would arise when attempting to compare Y and W directly
using the Chen-Stein method, as done for instance in [28] in the present context. The issue with
this is that b3 typically turns out to be too large when Y has long-range. In fact, limitations
of the method in the presence of long-range correlations are well-known, see for instance the
discussion in [2], Sec. 2 “Open problem,” pp.12-13.

4 Soft local times and inverse soft local times

In this section we give a brief exposition of the method of soft local times introduced by Popov
and Teixeira in [24]. An ‘inversion’ of this technique, introduced below, see (4.10)-(4.11), leading
to Proposition 4.4, will be used to manufacture couplings in the next section. We defer to
Remark 4.5 for a discussion of the benefits of this construction and its interplay with the technique
of [24].

Consider the measure space pΣ, µq, where Σ is a locally compact Polish metric space endowed
with its Borel σ-algebra, carrying a (Radon) measure µ. At its root, the method of [24] is a
particular way to sample sequences Z “ pZiqiě0 of Σ-valued random variables from a Poisson
process on ΣˆR`. Although in principle, any sequence Z such that all Zi’s have a density with
respect to µ can be accomodated, cf. [1, Section 3], the following Markovian setup will be enough
for our purposes. Note however that all results presented in this section continue to hold at this
greater level of generality.
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Let Z “ pZiqiě0 be a time-inhomogeneous Markov chain on Σ. That is, there exist transition
densities gi : Σ ˆ Σ Ñ R`, i ě 1, with respect to µ (i.e. the functions gi are measurable and
ş

gipx, yqµpdyq “ 1 for all x P Σ) such that under a probability measure P ,

(4.1) P pZi`1 P dx |Ziq “ gi`1pZi, xqµpdxq for all i ě 0.

Under an auxiliary probability Q, let η be a Poisson point process on Σ ˆ R` with intensity
measure µb dv, where dv denotes Lebesgue measure on R`. Our assumptions on pΣ, µq ensure
that the construction of η falls within the realm of standard theory. We assume that Q carries
a random variable having the same law as Z0 under P , independent of η, which we continue to
denote by Z0.

Letting z0 “ Z0, v0 “ 0 and η0 “ η, one defines recursively, for i ě 0,

(4.2) ξi`1 “ inf
pz,vqPηi

v

gi`1pzi, zq
,

where, in writing e.g. pz, vq P η we tacitly identify the point measure η with its support. Com-
bining Propositions 4.1 and 4.10 of [24], it follows that the infimum in (4.2) is attained Q-a.s. at
a unique pair pzi`1, vi`1q, and defining

ηi`1 “
ÿ

pz,vqPηiztpzi`1,vi`1qu

δpz,v´ξi`1gi`1pzi,zqq,(4.3)

the following holds:

ξ “ pξiqiě1 are i.i.d. exponential random variables with parameter 1;(4.4)

for all i ě 1, pz0, . . . , ziq
law
“ pZ0, . . . , Ziq and is independent of pξ1, . . . ξiq;(4.5)

for all i ě 1, ηi is a Poisson process of intensity µb dv independent of pξj , zj , vjq0ďjďi(4.6)

(with ξ0 “ 0). We refer to the sequence z “ pziqiě0 thereby constructed as obtained from
pη, Z0, pgiqiě1q via soft local times. The associated soft local time process is defined as

(4.7) G0pzq “ 0, Gi`1pzq “ Gipzq ` ξi`1gi`1pzi, zq, i ě 0.

As the next proposition illustrates, one benefit of this construction is to supply a natural coupling
in terms of η of two (or more) chains having densities with respect to µ. The coupling allows
for a comparison between the ranges of these chains, which is controlled in terms of the scalar
fields Gip¨q. To wit, let rZ be another Markov chain on Σ having transition densities prgiqiě1 with
respect to the same measure µ, cf. (4.1). With hopefully obvious notation, we write rzi (along
with rξi, rηi), i ě 0, under Q (which is tacitly understood to carry a copy of rZ0 independent of
η, Z0) when referring to the chain obtained from pη, rZ0, prgiqiě1q by soft local times. We denote
by rGi, i ě 0 the corresponding soft local times, defined analogously to (4.7).

Proposition 4.1. The processes pziqiě0, resp. prziqiě0, have the same law under Q as pZiqiě0,
resp. p rZiqiě0, and for each m,n ě 1, on the event

(4.8) Gmpzq ď rGnpzq for all z P Σ,

one has

(4.9) tz1, . . . , zmu Ď trz1, . . . , rznu.
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Proof. The first part is immediate on account of (4.5). To see that (4.8) implies (4.9), observe
that, by construction, cf. (4.2)-(4.3) and by definition of Gi, see (4.7), one has for all, m,n ě 1,

tz1, . . . , zmu “ tz P Σ : there exists pz, vq P η s.t. Gmpzq ě vu

trz1, . . . , rznu “ tz P Σ : there exists pz, vq P η s.t. rGnpzq ě vu.

From this, (4.8) plainly yields the inclusion (4.9).

Proposition 4.1 is not entirely adapted to our purpose. In Section 5, see in particular the
proof of Proposition 5.4, we will actually need to couple the process rz with the initial chain Z on
a suitable extension of P . This is conveniently achieved using an inverse soft local time method,
that we now explain.

With P referring to the original measure under which the Markov chain Z “ pZiqiě0 is
defined, cf. above (4.1), let

pP :
extension of P carrying an independent random variable χ “

`

ppξkqkě1, pη0

˘

,
where pη0 is a Poisson point process on Σˆ R` with intensity µb dv, and
ppξkqkě1 are i.i.d. exponential variables with mean 1, independent of pη0.

(4.10)

Given a realisation of the time inhomogeneous Markov chain pZiq0ďiďT up to some deterministic
integer time T ă 8, we set inductively for k “ 0, . . . , T ´ 1 (under pP )

(4.11) pηk`1 “ δ
pZT´k, pξT´kgT´kpZT´k´1,ZT´kqq

`
ÿ

pz,vqPpηk

δ
pz, v`pξT´kgT´kpZT´k´1,zqq

and write η “ pηT . Note that, albeit implicit in our notation, all processes pηk, 1 ď k ď T ,
implicitly depend on the choice of T .

Lemma 4.2. Under pP , for all integers T ě 1, the process η is a Poisson process of inten-
sity µ b dv, independent of Z0. Moreover, the sequence obtained by applying soft local times to
pη, Z0, pgiqiě1q up to time T is pZiq0ďiďT , with corresponding exponential variables ppξiq1ďiďT .

Before proving Lemma 4.2, we isolate the case T “ 1.

Lemma 4.3. Let pη, ξ, Z be independent random variables, with pη a Poisson process of intensity
µbdv, ξ exponentially distributed of parameter 1 and Z having density g with respect to µ. Then

η “ δpZ,ξgpZqq `
ÿ

pz,vqPpη

δpz,v`ξgpzqq

is also a Poisson point process with intensity µb dv.

Proof. For t P R, consider the (measurable) function ft : Σˆ RÑ Σˆ R with

(4.12) ftpz, vq “ pz, v ` tgpzqq

and note that f´t “ f´1
t . Given a point measure η̄ “

ř

λ δpzλ,vλq on Σ ˆ R, let ftpη̄q “
ř

λ δftpzλ,vλq. Note that pt, η̄q ÞÑ ftpη̄q is measurable, and thus η “ fξppηq is also measurable.
Consider the Poisson process η0 on ΣˆR` under the (auxiliary) probability Q, cf. above (4.2),
which has intensity µ b dv. In order to be consistent with the previous setup, fix an arbitrary
point z0 P Σ and define g1 by declaring that g1pz0, zq “ gpzq. Applying (4.2)-(4.3) for i “ 0,
one finds ξ1 and a point pzλ1 , vλ1q, corresponding to the unique minimizer in (4.2), i.e. with
ξ1gpzλ1q “ vλ1 . In view of (4.3) and (4.12), one has, for η0 “

ř

λ δpzλ,vλq,

η1 “
ÿ

λ‰λ1

δf´1
ξ1
pzλ,vλq
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which, in particular, yields that

(4.13) η0 “ fξ1pη1q ` δpzλ1 ,vλ1 q “ fξ1pη1q ` δpzλ1 ,ξ1gpzλ1 qq.

Now, by (4.4) one knows that ξ1
law
“ ξ, by (4.5) one has that zλ1

law
“ Z is independent of ξ1 and

by (4.6), η1 is a Poisson process of intensity µ b dv independent from ξ1 and zλ1 . Therefore in
view of (4.13) the point processes η0 and η have the same law, and so η is also a Poisson process
of intensity µb dv.

One now easily deduces Lemma 4.2 inductively from Lemma 4.3.

Proof of Lemma 4.2. For k P t0, . . . , T ´ 1u, assume that pηk as defined in (4.11) (see also (4.10)
regarding pη0) is a Poisson point process under pP independent of Ak :“ σpZi, pξi, 0 ď i ď T ´ kq,
with the convention pξ0 “ 0. Note in particular that this is automatically satisfied in case
k “ 0 on account of (4.10). Then by Lemma 4.3, applied with pη “ pηk, Z “ ZT´k, ξ “ pξT´k and
gpzq “ gT´kpZT´k´1, zq, one deduces that, conditionally on Ak`1, pηk`1 is a Poisson point process
with intensity µbdv. In particular, pηk`1 is independent of Ak`1. By induction, we conclude that
η “ pηT is a Poisson point process with intensity µb dv independent of AT “ σpZ0q.

Referring to (4.2)-(4.3), let ξi, ηi, vi and zi, 0 ď i ď k, be the variables obtained by applying
soft local times to pη, Z0, pgiqq up to time k (so in particular ξ0 “ v0 “ 0, z0 “ Z0 and η0 “ ηp“
pηT q). Assume that for some k P t0, . . . , T ´ 1u we have ξi “ pξi, ηi “ pηT´i, vi “ pξigipZi´1, Ziq
and zi “ Zi for all 0 ď i ď k (with v0 “ 0). Then

ξk`1
(4.2)
“ inf

pz,vqPηk

v

gk`1pzk, zq

ηk“pηT´k
zk“Zk
“ inf

pz,vqPpηT´k

v

gk`1pZk, zq
“ pξk`1

and the infimum is a.s. uniquely attained at pZk`1, pξk`1gk`1pZk, Zk`1qq by definition of pηT´k in
(4.11). Moreover one easily checks that ηk`1 “ pηT´k´1, and it follows with a simple induction
argument that zi “ Zi for all i ď T.

Combining Proposition 4.1 and Lemma 4.2, one can couple Z “ pZiqiě0 under the extended
measure pP defined in (4.10) to any other (inhomogenous) Markov chain having transition den-
sities relative to µ, with good control on the ranges in terms of appropriately defined (inverse)
soft local times, see Remark 4.5 below regarding the terminology.

Proposition 4.4. For all T ě 1, rz P Σ and any family prgiqiě1 of transition densities with respect
to µ, one can define under pP two sequences rZ “ p rZiqiě0, rξ “ prξiqiě1 such that, letting

(4.14) Gipzq “
ÿ

1ďkďi

pξkgkpZk, zq, rGipzq “
ÿ

1ďkďi

rξkrgkp rZk, zq for i ě 1, z P Σ

(see (4.10) regarding pξk), the following hold:

i) rZ is a Markov chain with rZ0 “ rz and transition densities prgiqiě1;

ii) rξ are i.i.d. exponential variables with mean one, independent of rZ;

iii) For each p,m, n P t1, . . . , T u,

(4.15)
 

rGppzq ď Gmpzq ď rGnpzq, for all z P Σ
(

Ă
 

t rZ1, . . . , rZpu Ă tZ1, . . . , Zmu Ă t rZ1, . . . , rZnu
(

.
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Proof. Recall η “ pηT from below (4.11) and let pziqi and prziqi be the Markov chains obtained
by applying soft local times respectively to pη, Z0, pgiqq and pη, rz, prgiqq. Define rZi “ rzi, i ě 0,
and rξ the corresponding sequence of exponential random variables produced by applying soft
local times, cf. (4.2) and (4.4). In particular, this implies that p rGip¨qqiě0 defined in (4.14) is the
corresponding soft local time process.

With these choices for rZ and rξ, i) and ii) follow immediately from the first part of Propo-
sition 4.1 and by Lemma 4.2, which guarantees that η has the correct law. Finally, one notices
that, due to Lemma 4.2, zi “ Zi for all 0 ď i ď T and pGip¨qq0ďiďT as defined in (4.14) is
the corresponding soft local time process (up to time T ). From this, iii) follows upon applying
Proposition 4.1 twice, swapping the roles of pgiq and prgiq, to deduce (4.15) from (4.8)-(4.9).

Remark 4.5.

1) It is natural to refer to Gi defined in (4.14) as an inverse (or backwards) soft local time.
Unlike its ‘forward’ counterpart (4.7), in which the random variables ξ “ pξkqkě1 emerge
as minimizers in (4.2), the random variables pξ “ ppξkqkě1 involved in (4.14) are given by
fiat, see (4.10). Loosely speaking, this corresponds to the fact that, instead of constructing
the chain Z (and the variables ξ) from η, one reconstructs η from a given realization of Z
(with the help of additional independent randomness, comprising pξ). The benefit of doing
this (and the gist of Proposition 4.4) is that, with η at hand, one can now apply (forward)
soft local times to couple any other chain rZ having transition densities relative to µ to the
original chain Z via η.

2) In Proposition 4.4, the random variables rZ and rξ depend only on the Markov chain Z and
on the variable χ from (4.10) (as well as the choice of T, of the probability P and of the
densities g and rg). This will be important in Section 5, where we will apply Proposition 4.4
several times simultaneously for varying choices of Z and χ. These varying choices are
coupled together on a common probability space, thus the corresponding varying processes
rZ and rξ are also naturally defined on the same probability space, see around (5.25).

5 Localization

In this section we prove our main localization result, Theorem 1.2, which will follow from a more
general result, Theorem 5.1 below. This result is of independent interest and is not specific to
the “late” or “high-intensity” regime, to which it will later be applied. Such applications are
discussed separately in Section 6. The proof of Theorem 5.1 is split over §5.1-5.3, and involves
inverse soft local times, cf. Proposition 4.4. An overview of the proof appears atop of §5.1.

For the purposes of Theorem 5.1, which couples processes with range in both Tp“ pZ{NZqdq
and Zd, it will be important to distinguish clearly between the two. Recall from §2 that π : Zd Ñ
T denotes the canonical projection, that for x P Zd we often abbreviate x “ πpxq, that 0 is the
origin of Zd whereas 0 is the origin of T, and that Qpx, rq “ Qrpxq are boxes around x of side
length r either in Zd or in T, depending on whether x P Zd or T.

In what follows, a family of (point) processes pωpxqqxPQN p0q is said to have range R in Zd,
resp. in T, if ωpxq and tωpx1q : x1 P QN p0qzQRpxqu, resp. tωpx

1q : x1 R Qpx, Rqu, are independent
for each x P QN p0q. Intuitively, if one identifies QN p0q with T, then pωpxqqxPT has range R in T
if for all x P T, ωpxq is independent of ωpx1q for all x1 R Qpx,Rq. We refrain from doing such an
identification, since it could cause confusion in the next statement, in which the random walk
and random interlacements appear jointly. Following is our main localisation result, from which
Theorem 1.2 will follow as a special case.
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Theorem 5.1 (Localization). For all δ P p0, 1q, there exist c “ cpδq ą 0 and C “ Cpδq ă 8
such that the following holds. For every N P N, R P r1, N

1`δ s and u0 ą 0, there exists a probability
measure rP0 extending P0, resp. rPI , extending PI , carrying a family of processes pωpxqqxPQN p0q
such that

ωpxq has law PI for each x P QN p0q,(5.1)

pωpxqqxPQN p0q has range 2p1` δqR in T, resp. Zd,(5.2)

and, writing p`pxqy,uqyPZd,uě0 for the field of local times associated to ωpxq, cf. (2.12), for all F Ď

QN p0q, 0 ă v ă u ď u0, and ε P p0, 1q with up1´ εq ą vp1` εq one has

(5.3) rP0

´

`
pxq
y,up1´εq ´ `

pxq
y,vp1`εq ď `y,u ´ `y,v ď `

pxq
y,up1`εq ´ `

pxq
y,vp1´εq, @x P F, y P Qpx,Rq

¯

ě 1´ C|F |R2druRd´2s exp
`

´ c ¨ ε ¨
?
v ¨Rd´2

˘

,

resp. for all u ď u0 and ε P p0, 1q,

(5.3’) rPI
´

`
pxq
y,up1´εq ď `y,u ď `

pxq
y,up1`εq, @x P F, y P Qpx,Rq

¯

ě 1´C|F |R2d exp
`

´cε2uRd´2
˘

.

We refer to Remark 5.7 at the end of this section for various extensions of the above result,
reflecting in particular a certain flexibility for the requirement (5.1), and alternatives to (5.3) (see
(5.37)-(5.38)), which do not involve increments; these matters are best explained after giving
the proof. Applications of Theorem 5.1 specific to our purposes are postponed to Section 6.

Before proceeding any further, let us give the short:

Proof of Theorem 1.2 (assuming Theorem 5.1). Define rP “ N´d
ř

xPT
rPx where rPx is obtained

from rP0 through translation by x P T. One then applies Theorem 5.1 for the choices δ “ 1, with
2u in place of u, v “ u, F “ QN p0q and R

4 in place of R. Property (5.2) is still verified under
rP since the law of ωpyq under rPx does not depend on x P T for each y P QN p0q by (5.1). Upon
defining r`x,up1˘εq “ `

pxq
x,2p1˘εqu´ `

pxq
x,p1¯εqu for all x P QN p0q, and observing that `¨,2u´ `¨,u has the

same law under rP as `¨,u under P due to stationarity, the desired properties (1.17) resp. (1.18)
follow readily from (5.2) resp. (5.3).

As explained at length in §1.2, the main upshot of Theorem 5.1 is the combined effect of
(5.2) and (5.3)/(5.3’), which yields a “close + local approximation” to the field of interest, the
(increments of) local times. By virtue of the additional requirement (5.1), Theorem 5.1 also
entails a coupling between random interlacements and random walk, which will prove useful as
well; cf. Lemma 6.1. Similar couplings at a mesoscopic scale were first obtained in [34], and then
improved in [32, 5]. At a macroscopic scale, that is, outside of an annulus of size δN for some
small δ ą 0, a similar coupling was proved in [8, Theorem 4.1]. In fact, Theorem 5.1 directly
implies the coupling from [8, Theorem 4.1] for fixed δ ą 0, as we now explain.

Corollary 5.2. For all δ ą 0, there exist c, C P p0,8q depending only on δ and d such that
the following holds. For every u ą 0, ε P p0, 1q and N P N there exists a coupling rP between
p`x,uqxPT under P and p`x,up1˘εq : x P QN p0qq under PI so that

rP
`

`x,up1´εq ď `x,u ď `x,up1`εq, @x P QNp1´δqp0q
˘

ě 1´ CN2druNd´2s exp
`

´ cε
?
uNd´2

˘

.
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Proof. The desired coupling rP of p`x,uqxPT, p`x,up1´εqqxPQN p0q and p`x,up1`εqqxPQN p0q is ob-
tained as the joint law of p`x,2u ´ `x,uqxPT, p`

p0q
x,2up1´ε{3q ´ `

p0q
x,up1`ε{3qqxPQN p0q and p`

p0q
x,2up1`ε{3q ´

`
p0q
x,up1´ε{3qqxPQN p0q under N

´d
ř

xPT
rPx. Using (5.3) (replacing v by u and u by 2u) with u0 “ 2u,

F “ t0u and R “ rNp1´ δqs, the claim immediately follows from the independence and station-
arity of the increments of random interlacements.

Note that rP appearing in Corollary 5.2 is in fact the same measure as in Theorem 1.2, hence
the identical notation. As opposed to [8, Theorem 4.1], the coupling error obtained here is more
explicit in u, ε and N. We believe moreover that our proof is more elementary since it does not
involve the coupling appearing in [8, Theorems 3.1-2] of general Markov chains via soft local
times. As in [8], one could probably also take δ “ δpNq Ñ 0 slowly enough as N Ñ 8 in
Theorem 5.1. Actually, Corollary 5.2 is the only reason we chose to prove Theorem 5.1 for all
δ ą 0, instead of for all δ large enough, which would be sufficient for our purposes. The proof
of Theorem 5.1 would be slightly simpler for δ large, for instance one would not have to use
Lemma 5.5 below by proceeding similarly as in [11, Lemma 2.1] (upon adapting the results from
Appendix A.1 to obtain Harnack bounds with constants close to 1 as δ Ñ 8), and the proof
of Lemma A.1 would also have been simpler. But Lemma 5.5 is actually easy to prove given
the tools developed in Appendix A.2, which are anyway required to prove Lemma 5.6 below. In
other words, proving Theorem 5.1 for all δ ą 0 does not require a lot of additional work, and
provides a more elementary proof of a version of [8, Theorem 4.1].

In the remainder of this section, we prove Theorem 5.1. We shortly explain the general
strategy for the random walk; the case of random interlacements is similar. First, in Section 5.1,
for each B1 Ă B2 Ă B3pĂ Zdq, we approximate the excursions pZiqiě0 of the random walk from
(the projection of) BB1 to BB2 before hitting BB3, see (5.6), by a process p rZiqiě0 of excursions
which is independent of the walk outside of B3, see Lemma 5.3, using the inverse soft local
times method from Proposition 4.4. Then in Section 5.2 for r1 ă r2 ă r3, we put together
the excursions p rZpxqi qiě0, x P QN p0q, each corresponding to the choice Bi “ Qpx, riq for each
i P t1, 2, 3u, and show that they satisfy a short range property, see Proposition 5.4. Moreover
for each fixed m P N, we estimate the probability that p rZpxqi qiďm is close to the initial excursions
pZ
pxq
i qiďm in Lemma 5.5, and show that the number of excursions performed by the random

walk or random interlacements at a given time is well concentrated around some deterministic
m in Lemma 5.6. The proof of these two lemmas is given in Appendix A. Finally, the different
pieces of the proof are put together in Section 5.3 by defining ωpxq for each x P QN p0q as an
interlacement process whose excursions are given by the short-range excursions p rZpxqi qiě0 for
r1 “ R, r2 “ R

?
1` δ and r3 “ Rp1` δq.

5.1. Construction of short-range excursions in a fixed set. We start with a realization
X of the random walk on T under P0, and for B1 Ď B2 Ď B3 Ă Q2N p0q with diameter smaller
than N , we first define a process of excursions pZjq in B3 from B1 to BB2, and a corresponding
clothesline process pζjq in BB2ˆBB3, such that for each j, up to projection onto T, X first visits
the first coordinate of ζj , then after hitting B1 follows the excursion Zj until the last hitting
time in B2 before reaching BB3, and reaches BB3 in the second coordinate of ζj , similarly as
in [1, Section 3] and [8, Section 4]. Then, coupling via the inverse soft local time method of
Section 4, conditionally on pζjq, we define excursions p rZjq close to pZjq and independent of the
walk X outside of B3, see Lemma 5.3, which will form the basis of the finite-range process ωpxq

from Theorem 5.1 in the random walk case. Finally, we extend this construction to the case of
random interlacements.

Let B1 Ď B2 Ď B3 Ă Q2N p0q be three concentric boxes with diameter at most N ´ 1. For
a sequence x “ pxnqně0 in Zd, we introduce two sequences of successive return and departure
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times as R0px,B2, B3q “ 0, D0px,B2, B3q “ HBBc3 , where BB
c
3 “ BpB

c
3q is the exterior boundary

of B3, and inductively for integers k ě 0

Rk`1px,B2, B3q “ inftn ě Dkpx,B2, B3q : xn P BB2u,

Dk`1px,B2, B3q “ inftn ě Rk`1px,B2, B3q : xn P BB
c
3u,

(5.4)

Thus, Dk ď Rk`1 ď Dk`1 for all k ě 0. We further define, for k ě 1,

Hkpx,B1, B2, B3q “ inftn P rRkpx,B2, B3q, Dkpx,B2, B3qs : xn P BB1u

(we use the convention inf ∅ “ `8). Attached to these stopping times are the process
pζipx,B2, B3qqiě1, where

ζipx,B2, B3q “ pxRipx,B2,B3q, xDipx,B2,B3qq P BB2 ˆ BB
c
3 for i ě 1,(5.5)

and the excursions pZipx,B1, B2, B3qqiě1 as

Zipx,B1, B2, B3q “

#

xrHipx,B1,B2,B3q,LB2
pDipx,B2,B3qqs

if Hipx,B1, B2, B3q ă 8,

Θ otherwise,
(5.6)

where xrs,ts “ txk : k P rs, ts X Nu, the time LB2pDipx,B2, B3qq is defined similarly as in (2.1)
but relative to x and Θ is a cemetery state corresponding to excursions that do not hit BB1. In
words, Zipx,B1, B2, B3q is the part of the i-th excursion from B2 to B3 from the first time it
hits BB1 until the last time it is in B2 before hitting BBc

3. The attentive reader will have noticed
that the system of excursions defined by (5.6), though designed to keep track of x inside B1,
actually neglects its first part until first exiting B3 (which may well intersect B1).

We now introduce B4, a box of side length N satisfying B4 Ą B3, which is otherwise arbitrary.
With X the random walk in T under P0, the restriction π|B4

: B4 Ñ T is a bijection, and we
let pX “ p pXnqně0 with

(5.7) pXn “ pπ|B4
q´1pXnq, for all integers n ě 0.

Even though pX in (5.7) depends on the choice of B4, the subsequent construction (in particular
the definition of the processes Z, ζ and λ below) do not (so long as B4 Ą B3). We will be
interested in the system Z “ pZiqiě1 of excursions (on Zd)

(5.8) Zi
def.
“ Zip pX,B1, B2, B3q, i ě 1,

with corresponding clothesline process ζ “ pζiqiě1, where ζi “ ζip pX,B2, B3q. For u ą 0, we
denote by NRWpX,B2, B3, uq the total number of excursions X performs across πpB3zB2q before
time uNd and after time D0p pX,B2, B3q; that is,

(5.9) NRWpX,B2, B3, uq “ suptk ě 0 : Rkp pX,B2, B3q ă uNdu.

We now adapt this setup to random interlacements. Let ωQ2N p0q “ pω
u
Q2N p0q

quą0 be the restriction
of a random interlacements process ω under PI to trajectories hitting Q2N p0q. Recalling (2.11),
ωQ2N p0q is defined in terms of the Poisson counting process u ÞÑ Nu “ Nu

Q2N p0q
of intensity

cappQ2N p0qq and a family Xj , j ě 1, of independent simple random walks having law PēQ2N p0q

each. Let

(5.10) T j “ T pXj , B2, B3q “ suptk ě 0 : RkpX
j , B2, B3q ă 8u.
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Note that T j “ 0 with positive probability, and that actually T j “ 0 if and only if Xj does not
visit B2 in view of (5.4) and since we assumed B3 Ă Q2N p0q. Let us now define the clothesline
process λ “ pλjpω,B2, B3qqjě1 and the excursions process pWjpω,B1, B2, B3qqjě1 of random
interlacements by taking for all j ě 1 and 1 ď i ď T j (cf. (5.5) and (5.6) for notation)

(5.11)
λ
i`

řj´1
k“1 T

kpω,B2, B3q “ ζipX
j , B2, B3q and

W
i`

řj´1
k“1 T

kpω,B1, B2, B3q “ ZipX
j , B1, B2, B3q.

In analogy with (5.9), we write NRIpω,B2, B3, uq for the total number of excursions across B3zB2

performed by the interlacement at level u, i.e.

(5.12) NRIpω,B2, B3, uq “
Nu
ÿ

j“1

T j ,

with T j as in (5.10) and where Nu is a Poisson random variable of parameter ucappQ2N p0qq,
see above (5.10). We will frequently omit various arguments, e.g. the sets B1, B2, B3, from the
above notation whenever those are clear from the context.

We now aim to couple the process Z “ pZiqiě1 from (5.8) via inverse soft local times, i.e. using
Proposition 4.4, with a process rZ independent from X outside B3, corresponding to excursions
of random interlacements. We start by defining the appropriate state space Σ, measure µ and
transition densities g, cf. (4.1). Let K denote the set of finite nearest-neighbor paths in B3 from
BB1 to BB2, i.e.

(5.13) K “ tz “ pz0, . . . , z`q : z0 P BB1, zj P B3 @ j ď `, z` P BB2u .

Recalling Θ from (5.6), which represents a cemetery state corresponding to the excursions from
BB2 to BBc

3 that do not hit B1, we set Σ “ K Y tΘu and define for S Ď Σ

(5.14) µpSq “
ÿ

xPBB1,yPBB2

Px

`

pXr0,LB2
pTB3

qs P S
ˇ

ˇ pXLB2
pTB3

q “ y
˘

` 1tΘ P Su,

with the convention Pxp¨ |Aq “ 0 for any event A with PxpAq “ 0, and where LB2 and TB3

(“ HBBc3 when starting from B3) are defined as in Section 2, but for pX instead of X (since
Bi Ă Zd). For every py, wq P BB2 ˆ BB

c
3 and z “ pz0, . . . , z`q P K, abbreviating HKp pXq “ HK

we let

(5.15) gpy,wqpzq “ Py

`

TB3 ě HB1 ,
pXHB1

“ z0, pXLB2
pTB3

q “ z`
ˇ

ˇ pXTB3
“ w

˘

and also

(5.16) gpy,wqpΘq “ Py

`

TB3 ă HB1

ˇ

ˇ pXTB3
“ w

˘

.

It then follows that for all z ‰ Θ,

Py

`

Z1 “ z | pXTB3
“ w

˘

“ gpy,wqpzqPy

`

Z1 “ z
ˇ

ˇTB3 ě HB1 ,
pXHB1

“ z0, pXLB2
pTB3

q “ z`, pXTB3
“ w

˘

“ gpy,wqpzqµptzuq,

where the last equality follows by writing the relevant conditional probability as a ratio and
applying the simple(!) Markov property separately to numerator and denominator by summing
over all possible values of LB2pTB3q. One readily finds that the equality PypZ1 “ z | pXTB3

“

wq “ gpy,wqpzqµptzuq continues to hold for z “ Θ. That is, gpy,wq is the density with respect to
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µ of the image on B4 of the random walk path from the first time it hits B1 until the last time
it visits B2 during one excursion which starts from y and ends at w, cf. (4.1).

By the Markov property of X, conditionally on ζ “ pζiqiě1 where ζi “ ζip pX,B2, B3qq, pZiqiě1

is a Markov process with transition densities pgζiqiě1 with respect to µ. Here and in the rest of
the section, we identify z ÞÑ gζipzq with the function pz1, zq P ΣˆΣ ÞÑ gζipzq, since the transition
densities of Z only depend on the second variable. This is owed to the fact that, conditionally
on ζ, the random variables pZiqiě1 are independent. With regards to fitting the setup of (4.1),
the latter property also makes specifying Z0 obsolete (for definiteness, the reader may wish to
choose some z P Σ and set Z0 “ z).

For py, wq P BB2 ˆ BB
c
3, the measure µ and the function gpy,wq stay the same when replacing

in their definition the image pX of the random walk under P¨ by the random walk X on Zd under
the probability PēB2

. In particular, conditionally on λ “ pλiqiě1, pWiqiě1 is a Markov process
with transition densities pgλiqiě1 with respect to µ. We refer to [1, Section 3] for a detailed
account, with illustrative figures, of clothesline process, excursions and the resulting density in
the case of random interlacements.

With this setup, which fits the framework of Section 4, cf. around (4.1), we proceed to explain
how to use Proposition 4.4 to approximate the random walk excursions pZiqiě1 in (5.8) by some
random interlacements excursions independent of the walk outside of B3. To this end, assume
P0 to be suitably extended as to carry, independently of X, a family χ as appearing in (4.10)
and an independent clothesline process rλ “ prλiqiě1 having the same law as λ in (5.11). Now
consider for each sequence x “ pxnqně0 in Zd the map

(5.17) Yipx,B2, B3q “

#

xr0,R1px,B2,B3qs if i “ 0,

xrDipx,B2,B3q,Ri`1px,B2,B3qs, if i ě 1,

assuming Ri`1px,B2, B3q ă 8; in case Ri`1px,B2, B3q “ 8 for some i ě 0 the right end-
point is excluded in the corresponding formula for Yi in (5.17), and by convention Yi “ ∅ if
Dipx,B2, B3q “ 8. Thus, Yipx,B2, B3q represents the part of x occurring before the clothes-
line ζ1px,B2, B3q or between the clotheslines ζipx,B2, B3q and ζi`1px,B2, B3q. We abbreviate
Yi “ Yip pX,B2, B3q. Importantly, conditionally on ζ, the processes pZiqiě1 and pYiqiě0 are inde-
pendent. Thus, conditionally on ζ, rλ and pYiqiě0, pZiqiě1 is still a Markov chain with transition
densities pgζiq with respect to µ. Therefore, applying Proposition 4.4 conditionally on pζiqiě1,

prλiqiě1, and pYiqiě0, we can construct under the extended measure P0 for every integer T ě 1
and initial state rZ0 “ rz a Markov chain

(5.18)
`

rZi
˘

iě0
“

`

rZipX,χ, rλ, T,B1, B2, B3q
˘

iě0

with transition densities rgi “ g
rλi
, i ě 1 and satisfying (4.15). Note that since the transition

densities pz1, zq ÞÑ g
rλi
pzq do not depend on the first variable, and since both pZiqiě1 and pYiqiě0

do not depend on B4 (as long as it contains B3), p rZiqiě1 does not depend on the choice of the
initial excursion rz, which we will henceforth omit, nor on the choice of B4. For later reference,
we denote by GRW (corresponding to G in (4.14)) the soft local times associated to Z, that is

(5.19) GRW
m pzq “

m
ÿ

k“1

pξkgζkpzq for all z P Σ and m ě 1;

cf. (4.10) regarding pξk (part of χ), which are independent of Z. In view of (5.15), GRW
m pzq

actually only depends on its argument through the start- and endpoint of z. The clothesline
process ζ corresponding to Z below (5.8) is a Markov chain, as follows readily from the strong
Markov property. One can show, see Lemma A.5 and (A.12), that the stationary distribution
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of ζ is given by ē3
2pxqPxpXTB3

“ yq for px, yq P pBB2 ˆ BB
c
3q, where ē3

2 “ ēB3
B2

denotes the
normalized equilibrium measure of B2 relative to B3 (see below (2.6) for notation). Abbreviating
Pµ “

ř

µpxqPx and similarly Pµ, writing e3
2 for the projection of ē3

2 onto T (i.e. the measure
such that e3

2 ˝ πpxq “ eB3
B2
pxq for all x P B4), and letting

(5.20) ḡpzq “ Eē32
rgζ1pzqs p“ Eē32

rgζ0pzqsq,

(where ζ0 is declared as in (5.5) but with i “ 0), which amounts to the average of the random
variable ξ ÞÑ gξpzq of interest under the stationary distribution for the process ζ, it then readily
follows that mḡpzq is the expectation of GRW

m pzq starting from stationarity.
The process rZ introduced in (5.18) by means of Proposition 4.4 will be the basis of the

construction of the short range process ωpxq (and `pxq) from Theorem 5.1, with x denoting the
common centre of B1-B3. As one of its central features, which will eventually give rise to the
finite-range property (5.2), the process rZ is independent of X outside of B3, as argued next.

Lemma 5.3. For all boxes B1 Ď B2 Ď B3 Ă Q2N p0q with diameter at most N ´ 1 and each
T ě 1, the process rZ “

`

rZipX,χ, rλ, T,B1, B2, B3q
˘

iě1
is independent of ζ “ pζip pX,B2, B3qqiě1

and Y “ pYip pX,B2, B3qqiě0.

Proof. By Proposition 4.4, conditionally on rλ, ζ and Y, rZ is a Markov chain with transition
densities pg

rλi
qiě1 with respect to µ, and so its conditional law depends only on rλ. Since rλ is

independent of ζ and Y, it thus follows that rZ is independent of ζ and Y.

Thus, up to controlling their respective soft local times, p rZiqiě1 are excursions close to pZiqiě1

by Proposition 4.4, but with an extra independence property, similarly as the processes Iuk from
[24, Proposition 5.3]. There are however two main differences in our construction: first the soft
local times method is used conditionally on the clothesline process ζ instead of unconditionally as
in [24], following ideas from [1], and second, using Proposition 4.4, the process pZiqiě1 is defined
directly in terms of the Markov chain X under P0 (and additional independent randomness)
instead of a process on some other probability space having the same law as pZiqiě1, as in [24, 1].
These two changes in the method serve the same purpose: we can construct simultaneously the
processes p rZiqiě1 for different choices of sets B1 Ď B2 Ď B3 that are not necessarily disjoint and
all have the desired independence properties. Moreover, for each three sets B1 Ď B2 Ď B3, they
are close to the excursion process pZiqiě1 associated to the same initial chain X. We refer to
Proposition 5.4 for the exact statement.

We now adapt the previous construction to the case of random interlacements. Suppose
that PI is extended with the same independent processes prλ, χq as in the case of P0, cf. above
(5.17) regarding their respective laws. Conditionally on λ (see (5.11)) and YipXj , B2, B3q for all
0 ď i ď T j and j ě 1, see (5.17), the process pWiqiě1 introduced in (5.11) is a Markov chain
with transition densities pgλiq with respect to µ. Thus, applying Proposition 4.4 with any choice
of ĂW0, one obtains for every T ě 1 a Markov chain

(5.21) ĂW “
`

ĂWi

˘

iě1
“

`

ĂWipω, χ, rλ, T,B1, B2, B3q
˘

iě1

with transition densities pg
rλi
q with respect to µ, (independent of ĂW0). The soft local time

associated to W “ pWiqiě1 is given by

(5.22) GRI
m pzq “

m
ÿ

k“1

pξkgλkpzq for all z P Σ and m ě 1,

(and similarly for ĂW with rξ, rλ in place of pξ, λ). By [8, Lemma 6.1], starting from the invariant
distribution of λ, see (5.11), the expectation of GRI

m is equal to mḡpzq, see (5.20), i.e. it is equal
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to the expectation of GRW
m starting from the invariant distribution of pζiqiě0; to see this recall ζ

from (5.5) (which can also be defined for i “ 0) and note that the expectation in (5.20) equals
Eē32rgζ0pX,B2,B3qpzqs. Moreover one proves similarly as in Lemma 5.3 above that ĂW is independent
of the clothesline process λ and the excursions tYipXj , B2, B3q : 0 ď i ď T j , j ě 1u.

5.2. Simultaneous approximation by short range excursions. Towards proving Theo-
rem 5.1, we now apply the construction of §5.1 jointly to the sets

(5.23) Bk “ Qpx, rkq, k “ 1, . . . , 4, where 0 ă r1 ă r2 ă r3 ă r4 “ N

(with Qpx, rq “ Qrpxq referring to the boxes introduced at the beginning of Section 2) as x P
QN p0q varies. In particular, B3 Ă Q2N p0q and has diameter at most N ´ 1 as assumed in §5.1.
The resulting sequences rZpxq “ p rZ

pxq
j qjě1, see (5.18) and (5.25) below, will provide the excursions

in terms of which the processes ωpxq, x P QN p0q will later be defined. For each x P QN p0q and
j ě 1, recalling (5.6) for notation, let

(5.24) Z
pxq
j pr1, r2, r3q

def.
“ Zjp pX,Qpx, r1q, Qpx, r2q, Qpx, r3qq,

where pX is as in (5.7) with B4 “ Qpx,Nq, and write ζpxq “ pζpxqj qjě1 for the associated clothes-

line process, i.e. ζpxqj “ ζjp pX,Qpx, r2q, Qpx, r3qq, cf. (5.5), and g
pxq

ζpxq
, the transition densities of

pZ
pxq
j qjPN, cf. (5.15) and (5.16). Let rP0 be an extension of P0 carrying the additional indepen-

dent processes rωpxq, χpxq, x P QN p0q, having the following distributions. For each x, rωpxq is an
interlacement process, i.e. it has the same law as ω above (2.11). Its induced clothesline process
for the choice (5.23) will be denoted by prλpxqj qjě1. The process χpxq is specified by (4.10) with
underlying measure space pΣ, µq ” pΣpxq, µpxqq in (5.14) corresponding to (5.23).

Now, applying Proposition 4.4 in the same manner as above (5.18) but simultaneously for
each x P QN p0q yields, for each such x and integers j, T ě 1, the random variables

(5.25) rZ
pxq
j pT, r1, r2, r3q

def.
“ rZjpX,χ

pxq, rλpxq, T,Qpx, r1q, Qpx, r2q, Qpx, r3qq.

As in (5.19), the soft local times associated to Zpxq “ pZ
pxq
j qjě1 will be denoted by GRW

m,xpzq,

for m ě 1 and z P Σpxq, with inherent i.i.d. exponential random variables pξ
pxq
j , j ě 1, carried

by χpxq, cf. (4.10). The expectation under the stationary distribution of gpxq
ζ
pxq
1

pzq is written as

ḡpxqpzq, z P Σpxq, similarly as in (5.20).
Finally, for each x P QN p0q, replacing every occurrence of Zj , ζj , rZj and GRW

m above by Wj ,

λj , ĂWj and GRI
m , one similarly defines under the extended measure rPI (with the same extension

prωpxq, χpxqqxPQN p0q as rP0) the processes W pxq
j , λ

pxq
j , ĂW

pxq
j and GRI

m,x for random interlacements,
which correspond to the processes introduced in (5.11), (5.21) and (5.22) for the choices of boxes
Bk in (5.23). As a result, by Proposition 4.4, for every x P QN p0q,

(5.26) p rZ
pxq
j qjě1 has the same law conditionally on rλ as pW pxq

j qjě1 conditionally on λ.

In the sequel, mimicking the notion introduced above Theorem 5.1, a collection Π “

pΠ
pxq
j qxPQN p0q,jě1 of Zd-valued random paths is said to have range R in Zd (resp. in Tq if pΠpxqj qjě1

is independent of pΠpyqj qjě1, yPQN p0qzQpx,Rq (resp. of pΠ
pyq
j qjě1,yRQpx,Rq) for each x P QN p0q. Here

following the convention from the beginning of §2, we used the symbol y “ πpyq, and y R Qpx, Rq
means that y is such that y R Qpx, Rq.
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Proposition 5.4 (N,T ě 1, 1 ď r1 ă r2 ă r3 ă N).

i) The excursion process
`

rZ
pxq
j pT, r1, r2, r3q

˘

xPQN p0q,jě1
, resp.

`

ĂW
pxq
j pT, r1, r2, r3q

˘

xPQN p0q,jě1
,

have range at most 2r3 in T, resp. in Zd.

ii) For all F Ă QN p0q, integer m ě 1 and ε P p0, 1q such that mε ě 3 and m` ď T where
m˘ “ rmp1˘ εqs, one has with sup ranging over x P F , z P Σpxq and n P rm´,m`s below,

rP0

`

t rZ
pxq
j : j ď m´u Ď tZ

pxq
j : j ď mu Ď t rZ

pxq
j : j ď m`u, @ x P F

˘

ě 1´ |F |r2d
3 sup

x,z,n

!

rP0

`

|GRW
n,x pzq ´ nḡ

pxqpzq| ě ε
4nḡ

pxqpzq
˘

`2rPI
`

|GRI
n,xpzq ´ nḡ

pxqpzq| ě ε
4nḡ

pxqpzq
˘

)

,

rPI
`

tĂW
pxq
j : j ď m´u Ď tW

pxq
j : j ď mu Ď tĂW

pxq
j : j ď m`u, @ x P F

˘

ě 1´ 3|F |r2d
3 sup

x,z,n

rPI
`

|GRI
n,xpzq ´ nḡ

pxqpzq| ě ε
4nḡ

pxqpzq
˘

.

(5.27)

Proof. We first give the proof for the random walk. We start with item iq. For every x P QN p0q,
the family pZpyqj , ζ

pyq
j qjě1,yRQpx,2r3q only depends on the excursions of X from Qpy, r2q to Qpy, r3q

for y R Qpx, 2r3q, and is thus measurable with respect to
`

Yjp pX,Qpx, r2q, Qpx, r3qq
˘

jě0
defined in

(5.17), with pX as in (5.7) for B4 “ Bpx,Nq. Hence, it is independent of p rZpxqj qjě1 by Lemma 5.3.
On account of (5.18) and Remark 4.5,2) (the latter implies that rZj depends on X only through
pZjqjě1 as well pζjqjě1 via the densities pgζj qjě1, the process p rZpyqj qjě1 depends by construction

only on pZpyqj , ζ
pyq
j qjě1, χ

pyq and rλpyq, for all y P QN p0q. Using independence of pχpyq, rλpyqq as y

varies, it follows overall that p rZpxqj qjě1 is independent of p rZpyqj qjě1,yRQpx,2r3q, as claimed.
We now show iiq. For each x P QN p0q, let p rGRI

j,xqjě1 denote the soft local times corresponding

to p rGjqjě1 in (4.14) when constructing p rZpxqj qjě1 in (5.18) by means of Proposition 4.4. In view
of the choice above (5.17) pλ, pξq and prλ, rξq have the same law, and thus rGRI

n,xpzq has the same
law as GRI

n pzq in (5.22). Proposition 4.4 (see (4.15)) now gives that for all m P N and ε P p0, 1q,
the event appearing in the first line of (5.27) is implied by

č

xPF

č

zPΣpxq

!

rGRI
m´,xpzq ď GRW

m,xpzq ď
rGRI
m`,xpzq

)

.

Moreover, for each m P N, ε P p0, 1q such that mε ě 3, recalling that m˘ “ rmp1˘εqs, the latter
event (for fixed x P F and z P Σpxq) is implied by

!

|GRW
m,xpzq ´mḡ

pxqpzq| ď
ε

4
mḡpxqpzq

)

X

!

| rGRI
m`,xpzq ´m`ḡ

pxqpzq| ď
ε

4
m`ḡ

pxqpzq
)

X

!

| rGRI
m´,xpzq ´m´ḡ

pxqpzq| ď
ε

4
m´ḡ

pxqpzq
)

.

The assertion (5.27) now follows by a union bound over x and z, upon noting that gpxq
ζpxq
pzq as

defined in (5.15) with Bk as in (5.23) only depends on the first and last point of the excursion
z. The same is thus true of GRW

m,xpzq,
rGRI
m˘,xpzq and ḡ

pxqpzq, leading to the factor r2d
3 in (5.27).

The proof for random interlacements is similar, using this time in item iq that the family
pW

pyq
j , λ

pyq
j qjě1,yPQp0,NqzQpx,2r3q depends only on the excursions of the trajectories of random

interlacements from Qpy, r2q to Qpy, r3qpĂ Q2N p0qq for y P Qp0, NqzQpx, 2r3q (if a trajectory
does not hit Qpy, r2q its excursions are just the full trajectory), and is thus measurable with
respect to tYipXj , B2, B3q : 0 ď i ď T j , j ě 1u, see above (5.10) and (5.17).
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The interlacement processes ωpxq appearing in Theorem 5.1 will be constructed using the
short range excursions p rZpxqj q (in case of rP0) or pĂW pxq

j q (in case of rPI) from Proposition 5.4.
Items i) and ii) above thereby roughly correspond to (5.2) and (5.3)/(5.3’). The latter requires
good control on the proximity between the short-range excursion processes p rZpxqj q/pĂW pxq

j q and

the initial excursion processes pZpxqj q/pW pxq
j q, which is the object of the next two lemmas.

In view of (5.27), one central aspect is showing that the relevant soft local times concentrate
around their mean. For unconditional soft local times, i.e. without conditioning on the clothesline
process as in the construction of rZ in (5.18), this was first achieved for random interlacements in
[24, Section 6], and then for random walk if δ is large enough in [11, Lemma 2.1]. For conditional
soft local times as in (5.22), concentration around the mean was proved for interlacements in
[1, Proposition 4.1]. In the following lemma, the proof of which is relegated to Appendix A,
we extend this concentration of conditional soft local times to the random walk case, cf. (5.19).
In doing so we also give a shorter proof of [1, Proposition 4.1] when the sets BB2 and BB3 are
well-separated, as implied by the parameter δ ą 0 below.

In view of (5.23) and with a slight abuse of notation, Gξmp¨q, ξ P tRW,RIu, refers in the sequel
to the quantities introduced in (5.19) and (5.22) but with the choice Bk “ Qpx, rkq for arbitrary
x P QN p0q (implicit below; note however that translation invariance is spoiled under P0 so one
cannot simply set x “ 0). In particular, Gξmp¨q depends on the parameters rk, 1 ď k ď 3. Recall
the function ḡ from (5.20).

Lemma 5.5. For all δ P p0, 1q, there exist c “ cpδq, C “ Cpδq, such that for all N ě 1, all
0 ă r1 ă r2 ă r3 ă N with rk`1 ě p1` δqrk, k “ 1, 2, and all ε P p0, 1q, m ě 1, z P Σ,

P0

`

|GRW
m pzq ´mḡpzq| ě εmḡpzq

˘

ď Cm exp
`

´ c
?
ε2m

˘

,

PI
`

|GRI
m pzq ´mḡpzq| ě εmḡpzq

˘

ď C expp´cε2mq.

Proposition 5.4 and Lemma 5.5 deal with a fixed number of excursions (parametrized by m).
For this to be successfully deployed, one needs to show that the actual number of excursions,
which is random and given by NRW/NRI see (5.9)/(5.12), suitably concentrates. Recalling the
relevant notation from §2, see below (2.6), let

(5.28) M “MpB2, B3q
def.
“ capB3

pB2q;

the quantity uM represents an ‘asymptotic mean’ number of excursions until the terminal time
uNd for the walk; see also (A.32) for an alternative formula for M conveying this intuition.

Lemma 5.6. For all δ P p0, 1q, there exist c, C P p0,8q depending on δ so that for all N ě 1,
u ą 0, ε P p0, 1q, 1 ď r2 ă r3 ă N with r3 ě p1` δqr2, and B2, B3 as in (5.23),

P0

`

|NRWpB2, B3, uq ´ uM | ě εuM
˘

ď CruM s exp
`

´ c
?
ε2uM

˘

,

PI
`

|NRIpB2, B3, uq ´ uM | ě εuM
˘

ď C exp
`

´ cε2uM
˘

.

Lemma 5.6 is essentially proved in [8, Proposition 9.1] for the random walk and in [8, Propo-
sition 9.3] for random interlacements, but the bounds obtained therein are not explicit. We
prove Lemma 5.6 in App. A using general large deviation results for random walk excursions
and random interlacements trajectories, see Propositions A.7 and A.9, from which Lemma 5.5
follows as well.

5.3. Proof of Theorem 5.1. With Proposition 5.4 and Lemmas 5.5 and 5.6 at hand, we are
now ready to proceed to the:
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Proof of Theorem 5.1. We focus on the case of the random walk X under P0 and discuss the
necessary modifications to accommodate random interlacements at the end of the proof. With
R as appearing in the statement of Theorem 5.1, let r1 “ R, r2 “ r1p1` δ

1q and r3 “ r2p1` δ
1q,

where δ1 ą 0 is such that p1` δ1q2 “ 1` δ. In particular, r3 ď N by assumption on R and this
fixes the value of M “ MpQpx, r2q, Qpx, r3qq in (5.28), which by a standard capacity estimate
satisfies

(5.29) M ě cappQpx, r2qq ě crd´2
2 ě c1Rd´2.

Throughout the proof we write ε1 “ ε
3 for a given ε P p0, 1q. We first introduce an approximation

for (the increments of) the local times of X, which count a fixed number of excursions. With
Z
pxq
j as introduced below (5.23) (a (finite) excursion in Zd), writing lpxqj for its total length, so

that Zpxqj “ tZ
pxq
j pnq : 0 ď n ď l

pxq
j u, we set

(5.30) p`
pxq
y,rv,us “

ruMs
ÿ

j“rvMs

l
pxq
j
ÿ

n“0

1tZ
pxq
j pnq “ yu, for all x P QN p0q, y P QRpxq and 0 ă v ă u,

which counts the total number of visits to y by all excursions with index j between rvM s and
ruM s. Similarly, let `y,rv,us “ `y,u ´ `y,v, for y P T, which is the relevant quantity appearing
in (5.3). By (2.2) and (5.9), `y,rv,us admits a similar representation as (5.30), but counting
excursions with label j P rNRWpB2, B3, vq,NRWpB2, B3, uqs instead, where Bi “ Qpx, riq as in
(5.23). We now claim that for all x P QN p0q, y P Qpx,Rq and 0 ă v ă u,

(5.31)
` 

NRWpB2, B3, vq ě rvp1´ ε1qM s
(

X
 

NRWpB2, B3, uq ď rup1` ε1qM s
(˘

Ă
 

`y,rv,us ď p`
pxq
y,rvp1´ε1q,up1`ε1qs

(

(with y “ πpyq). Indeed, first notice that a possibly non-vanishing contribution to the local
time increment can arise from X¨^R1 , but only in case where R1 ě tvNdu which is equivalent
to NRWpB2, B3, vq “ 0 on account of (5.9). This additional contribution to ` compared to p`
is owed to the fact, noted below (5.6), that the process Zpxq defined in (5.6) neglects the very
first excursion of the random walk in B1 before time R1. To obtain (5.31) one then uses the
definition of `, p` and NRW together with the fact that the event in the first line of (5.31) implies
NRWpB2, B3, vq ą 0, which prevents `y,rv,us from counting the very first excursion before time R1.

Combining (5.31), a similar inclusion yielding a reverse inequality (for which over-counting
the first excursion is not an issue), applying a union bound over x P F pĂ QN p0qq and using
Lemma 5.6, one thus infers that for all 0 ă v ă u and ε P p0, 1q with up1´ ε1q ą vp1` ε1q,

(5.32) P0

´

p`
pxq
y,rvp1`ε1q,up1´ε1qs ď `y,rv,us ď p`

pxq
y,rvp1´ε1q,up1`ε1qs, for all x P F, y P Qpx,Rq

¯

ě 1´ CruM s|F | exp
`

´ cε
?
vM

˘

,

for positive constants c, C depending only on δ.
To proceed further, we now work under the extended measure rP0 introduced at the beginning

of §5.2, which will form the basis of the desired coupling. Recall the process p rZpxqj q introduced
in (5.25) which has range at most 2r3 in T by Proposition 5.4,i), and choose T “ r4u0M s, for a
(fixed) u0 ą 0 as appearing in the statement of Theorem 5.1. Mimicking (5.30), set

(5.33) r`
pxq
y,rv,us “

ruMs
ÿ

j“rvMs

rl
pxq
j
ÿ

n“0

1t rZ
pxq
j pnq “ yu, for all x P QN p0q, y P QxpRq and 0 ď v ă u ď 4u0,
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with rl
pxq
j denoting the length of rZ

pxq
j . Combining Proposition 5.4,ii), applied for the choices

m “ ruM s, rvM s, with Lemma 5.5 and a union bound, it follows that for all 0 ă v ă u ď u0 and
ε P p0, 1q such that up1´ 2ε1q ą vp1` 2ε1q,

(5.34) rP0

¨

˚

˚

˝

r`
pxq
y,rvp1`2ε1q,up1´2ε1qs ď

p`
pxq
y,rvp1`ε1q,up1´ε1qs,

p`
pxq
y,rvp1´ε1q,up1`ε1qs ď

r`
pxq
y,rvp1´2ε1q,up1`2ε1qs,

for all x P F and y P Qpx,Rq

˛

‹

‹

‚

ě 1 ´ Cr2d
3 ruM s|F | exp

`

´ cε
?
vM

˘

.

To complete the proof, we now define a random interlacements process ωpxq (i.e., satisfying
(5.1)), which will inherit the finite-range property of p rZpxqj q (so as to satisfy (5.2)) and whose

local times in Qpx,Rq are close to r`
pxq
y,r0,¨s, y P Qpx,Rq, up to sprinkling (thus leading to (5.3)).

We first construct a family pXpxq, iqiě1,xPQN p0q of independent random walks, where Xpxq, i

has law PēB2
, B2 “ Qpx, r2q, for every i ě 1. Importantly, for each x P QN p0q the excursions by

any of the walks pXpxq, iqiě1 between BQpx, r1q and the last exit time of Qpx, r2q before exiting
Qpx, r3q will be given precisely by p rZpxqj qjě1, and the remaining parts of the random walks will
be conditionally independent as x P QN p0q varies.

Recall from above (5.25) that prωpxqqxPZd is a family of independent random interlace-
ments processes, each with corresponding clothesline process rλpxq associated to the choice
Bk “ Qpx, rkq, k “ 1, . . . 3, cf. (5.23). For B Ď Zd we denote by rω

pxq
B the restriction of rωpxq

to forward (unlabeled) trajectories hitting B, and started at their entrance time in B. We
call p rXpxq, iqiě1, the trajectories thereby obtained from rω

pxq
B2

, corresponding to the trajectories
in (2.11) when B “ B2 and ω “ rωpxq. Note that by definition, see (5.11), each clothesline
rλ
pxq
j , j ě 1, arises from a certain trajectory rXpxq,k. As part of the ranges of p rXpxq, iqiě1, we

now define the sequence prY pxqj qjě1 as follows. Whenever rλpxqj and rλ
pxq
j`1 correspond to the same

trajectory rXpxq, k, we let rY
pxq
j be the excursion starting from BBc

3 until first hitting B2 between

the last time the clothesline rλ
pxq
j is visited and the first time the clothesline rλ

pxq
j`1 is visited.

If the clotheslines rλ
pxq
j and rλ

pxq
j`1 correspond to two different trajectories rXpxq, k and rXpxq, k`1

of rω
pxq
B2

, then rY
pxq
j is defined to be equal to the part of rXpxq, k after last visiting BBc

3. Now

define recursively rV
pxq

0 “ 0 and rV
pxq
i “ inftk ą rV

pxq
i´1 : rangeprY pxqk q is unboundedu. Intuitively,

rV
pxq
i equals the number of excursions from B2 to BBc

3 before the pi ` 1q-st walk from rω
pxq
B2

starts, and rV
pxq
i`1 ´

rV
pxq
i ´ 1 is precisely the number of excursions performed by this walk.

Recall from above (5.14) that Θ is the cemetery point of Σ, and intuitively corresponds to
excursions which do not hit B1. Lastly, by suitable extension, assume that rP0 carries for each
x P QN p0q and i ě 1 independent families Bpxq,i “ tBpxq,iy,z;k : y P BB2, z P BB1 Y tΘu, k ě 1u and
pBpxq,i “ t pB

pxq,i
v,w;k : v P BB2, w P BBc

3, k ě 1u of independent random variables, whereby Bpxq,iy,z;k

has the same law as pXtqtďHB1
under Pyp ¨ |HB1 ă TB3 , XHB1

“ zq if z P BB1 and the same law

as pXtqtďLB2
pTB3

q under Pyp ¨ |HB1 ą TB3q if z “ Θ, and pB
pxq,i
v,w;k has the same law as pXtqtďTB3

under Pvp ¨ | rHB2 ą TB3 , XTB3
“ wq.

We can now define the walk Xpxq, i for any x P QN p0q and i ě 1, as follows. We introduce
four sequences pykq, pzkq, pvkq, pwkq (all implicitly depending on x and i), each with k ranging
from 1 ď k ď rV

pxq
i ´ rV

pxq
i´1. One sets y1 “ rX

pxq, i
0 and for each 1 ď k ă rV

pxq
i ´ rV

pxq
i´1, the vertex yk`1

(in BB2) is defined as the endpoint of rY pxq
rV
pxq
i´1`k

. The points zk and vk are the start- and endpoints

of the excursion rZ
pxq

rV
pxq
i´1`k

when it is not equal to Θ, and we take zk “ Θ and vk “ yk when
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rZ
pxq

rV
pxq
i´1`k

“ Θ, and wk is the starting point of rY
pxq

rV
pxq
i´1`k

. Now Xpxq, i starts in y1. Then, for every

k, the process Xpxq, i first follows Bpxq,iyk,zk;k, then rZ
pxq

rV
pxq
i´1`k

if rZ
pxq

rV
pxq
i´1`k

‰ Θ (and otherwise stays in

place), then pB
pxq,i
vk,wk;k and finally rY

pxq

rV
pxq
i´1`k

and the pieces thereby obtained are concatenated as

k P
 

1, . . . , rV
pxq
i ´ rV

pxq
i´1

(

increases to form the sample path of Xpxq, i (note in particular that the
last piece is indeed unbounded).

The starting point of Xpxq,i is the same as rXpxq,i, and thus has law ēQpx,r2q by the repre-
sentation (2.11) of random interlacements. Using (5.26) and a similar calculation as following
(5.16) (in order to witness the correct conditional distributions of the bridges Bpxq,i and pBpxq,i),
one concludes that pXpxq, iqiě1 are i.i.d. random walks with starting distribution ēQpx,r2q each, as
desired. Moreover, by construction,

(5.35) pXpxq, iqiě1 is independent of tpXpyq,iqiě1 : y R Qpx, 2p1` δqRqu,

since rZpxq has range 2r3 “ 2Rp1` δq in T and Xpxq, i only involves additional randomness which
is independent as x varies: namely, Bpxq,i, pBpxq,i and prY pxqj qjě1 (function of rωpxq).

To complete the construction of ωpxq, let pN pxq,uquě0, x P QN p0q, be an i.i.d. family of Poisson
processes with intensity cappB2q and define

ω
pxq,u
B2

“
ÿ

1ďiďNpxq,u

δXpxq, i for all u ą 0.

Then
`

ω
pxq,u
B2

˘

uą0
has the same law as the restriction of pωuquą0 to forward trajectories hitting

B2 after entering B2 and one completes it independently to obtain an interlacements process
ωpxq “ pωpxq,uquą0 at all levels on Zd, which has the desired law, see (5.1), and satisfies (5.2) by
means of (5.35).

It remains to show (5.3). Denoting by p`pxqy,uquě0,yPZd the field of local times associated to
ωpxq, recalling (5.33) and noting that the trace of ωpxq inside B1 “ Qpx,Rq coincides with that
of the excursions p rZpxqj qjě1 which enter it, it then follows by Lemma 5.6 and a union bound that
for all 0 ă v ă u ď u0 and ε P p0, 1q with up1´ 3ε1q ą vp1` 3ε1q,

rP0

¨

˚

˚

˝

`
pxq
y,rvp1`3ε1q,up1´3ε1qs ď

r`
pxq
y,rvp1`2ε1q,up1´2ε1qs,

r`
pxq
y,rvp1´2ε1q,up1`2ε1qs ď `

pxq
y,rvp1´3ε1q,up1`3ε1qs,

for all x P F and y P Qpx,Rq

˛

‹

‹

‚

ě 1´ C|F | exp
`

´c ¨ ε2vM
˘

.(5.36)

Thus, (5.3) follows by combining (5.32), (5.34) and (5.36) with the lower bound (5.29) on M .
The proof in the case of random interlacements follows a similar three-step pattern: first one

shows using Lemma 5.6 for random interlacements that `y,u under PI is well-approximated by
a process p`pxqy,up1˘ε1q, for y P Qpx,Rq and x P F , having a fixed excursion count, thus yielding an
analogue of (5.32). This step is somewhat streamlined since there is no subtlety regarding the
first excursion, as opposed to X. In the second step, one uses the interlacement parts of Proposi-
tion 5.4 and Lemma 5.5 to approximate p`pxqy,up1˘ε1q by a short-range process r`pxqy,up1˘2ε1q, similarly as
in (5.34). Finally one reconstructs a short-range family of interlacement processes pωpxqqxPQN p0q
such that their associated local times `pxqy,up1˘3ε1q are good approximations of r`pxqy,up1˘2ε1q. The second
and third of these steps are virtually identical as above upon setting v “ 0.

Remark 5.7 (Extensions of Theorem 5.1).
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1) (Flexibility with (5.1)-(5.2)). One could relax (5.1)-(5.2) by requiring instead that `pxq “
p`
pxq
y,uqyPQpx,Rq,uě0 be some field having a finite-range property, satisfying (5.3)/(5.3’) and

whose law is translation invariant (that is p`pxqy,¨ qyPQpx,Rq has the same law as p`p0qy´x,¨qyPQpx,Rq),
see the proof of Theorem 1.2 as to why this is necessary. Under these less stringent condi-
tions, one can afford to simply choose `pxqy,u “ r`

pxq
y,r0,us as in (5.33) and finish the proof with

(5.34) in two steps instead of three; note that the law of `pxq is translation invariant by
(5.26). This weaker result is in fact sufficient to deduce Proposition 6.6 below, which will
be the driving force behind the proof of Theorems 1.1 and 1.3 in §7 (see also Theorem 6.5).
Various parts of the coupling also simplify in the process. Indeed, one can define the
reference values M in (5.28) and ḡpzq in (5.20) without identifying the relevant stationary
distribution of the clothesline process, see (A.32) for M and the proof of Lemma 5.5 for
ḡpzq, thus bypassing the use of exact identities such as (A.12) and (A.13), see also [8,
Lemma 6.1 and eq. (9.4)] which, albeit instructive, are not trivial.

Apart from giving a concrete idea as to what `pxq is, the conditions (5.1)–(5.2) present the
additional benefit of producing an independent proof of the coupling from [8] between the
random walk and random interlacements, cf. Corollary 5.2, for which `pxq crucially needs
to have the correct law. Moreover, knowing that `pxq are interlacement local times is also
essential in the proof of Lemma 6.1 below.

In a similar vein, one may require as part of Theorem 5.1 that `pxq be the local times
associated to a short range family of random walks on T (instead of interlacements). This
is essentially a matter of replacing the interlacement clothesline rλpxq in the construction of
rZpxq in (5.25) by a random walk clothesline rζpxq. The proof suffers very minor modifications
(mostly trading one of the estimates in either of Lemmas 5.5 or 5.6 for the other). In
particular, in the context of (5.36), the increments of `pxq (now associated to a random
walk) will not overcount the first excursion for similar reasons as in (5.31). Moreover, the
law of `pxq is still translation invariant when starting the corresponding random walks from
the uniform measure on T.

2) (Increments in (5.3)). The choice of observable `y,rv,us “ `y,u ´ `y,v, for y P T is a means
to avoid potential issues with the very first excursion of X, see the discussion leading to
(5.31): the excursion process Zpxq does not count the first excursion of the random walk in
Qpx, r1q before time D0pX,Qpx, r2q, Qpx, r3qq “ HBQpx,r3qcpXq, cf. (5.4), (5.6) and (5.24),
hence this excursion does not appear in (5.30) either. Note that this issue does not arise
for interlacements since trajectories arrive “from infinity,” whence (5.3’) rather than (5.3).
As we now explain, instead of the increment `y,rv,us one could consider the field

¯̀pxq
y,u

def.
“

ÿ

ně0

1tXn “ y, n ě HBQpx,R1qcu, for y P Qpx, Rq, x P Qp0, Nq,

with R1 “ r3 “ p1` δqR, and replace (5.3) by

(5.37) rP0

´

`
pxq
y,up1´εq ď

¯̀pxq
y,u ď `

pxq
y,up1`εq @x P F, y P Qpx,Rq

¯

ě 1´ C|F |R2druRd´2s exp
`

´ cε
?
uRd´2

˘

.

Observe in particular that ¯̀pxq
y,u “ `y,u for all y P Qpx,Rq under P0 whenever x R QR1p0q,

for then Xn P Qpx, Rq implies n ě HBQpx,R1qc . Thus (5.37) yields a true analogue of (5.3’)
if one restricts to x P F zQR1p0q. The proof of (5.37) does not require any amendments to
the above argument: the restriction on n inherent to ¯̀pxq

y,u allows to carry out the proof of
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Theorem 5.1 with v “ 0 (and ¯̀pxq
y,u in place of `y,r0,us), which in particular does not create

issues in (5.31). Alternatively, one replaces X by Xpxq “ X ˝ θHBQpx,R1qc in the definition

(5.24) of Zpxqj , which leaves the associated clothesline ζpxq unchanged. The field ¯̀pxq
y,u is

measurable in terms of this modified Zpxq. The issue with the first excursion disappears in
this context in essence because D0pX

pxq, Qpx, r2q, Qpx, r3qq “ 0, cf. (5.4).

In fact (5.37) also implies directly an approximation of `y,u by `pxqy,up1˘εq ` `y,u ´ ¯̀pxq
y,u for

all x P F and y P Qpx,Rq, which is also a short-range field under rP0 since it is equal to
`
pxq
y,up1˘εq outside of QR1p0q. However its law is not translation invariant, and thus does not

necessarily have range 2p1` δqR under the probability measure rP from Theorem 1.2.

3) (Coupling in u). The following extension of (5.37) is tailored to later purposes (see the
proof of Theorem 8.1), but noteworthy in its own right. Let 0 ă u1 ă u0. Then, applying
(5.37) (for ε

3 instead of ε) at levels u “ u1`ku1ε{3 for each k P t0, 1, . . . , r3pu0´u1q
εu1

su, using
a union bound and monotonicity of all the relevant fields in u, one deduces (as alternative
to (5.3) in the statement of Theorem 5.1) that

(5.38) rP0

´

`
pxq
y,up1´εq ď `y,u ď `

pxq
y,up1`εq, for all x P F zQR1p0q, y P Qpx,Rq, u P ru1, u0s

¯

ě 1´ C|F |R2d u0
εu1

ru0R
d´2s exp

`

´ cε
a

u1Rd´2
˘

(with R1 “ p1 ` δqR). Note here that we used that the field `pxq from (5.37) does not
depend on the choice of u P p0, u0s, similarly as in Theorem 5.1. An obvious analogue
of (5.38) holds for random interlacements, with `y,u in place of `y,u and without further
restriction on x P F . In closer analogy to (5.3), one could also formulate a version of (5.38)
for increments.

6 Consequences of localization

Our main localization result, Theorem 5.1, derived in the previous section, has two main ap-
plications in the context of late points. First, as asserted in Proposition 6.6 below, it allows
to introduce a (localized) family rL “ p rLαqαě0, coupled to L (recall (1.4)) in a way that i) the
two are close up to sprinkling (see (6.20) below) and ii) rL is amenable to Chen-Stein (due to its
finite-range property). Second, as alluded to below (1.6), it allows us by means of Corollary 5.2
to compute various key quantities of interest related to the random walk with sufficient precision
using interlacements, see Lemmas 6.1 and 6.3. Combining these two ingredients with Lemma 3.1
(the modified Chen-Stein scheme) then leads to Theorem 6.5, which is the main result of this
section, and will be one of the driving forces behind our main results, proved in §7. By exploiting
rL as an intermediate link, Theorem 6.5 gives quantitative control on the difference between the
true set of late points L and its ‘Poissonized’ version rB, comprising a suitable class of indepen-
dently sampled shapes, see (6.16). Our arguments hint at a generic phenomenon, which ought
to be valid for a variety of models of interest, see Remark 8.4,5).

6.1. The set LαF and first properties. We start by introducing a setup that fits all needs.
As announced in the introduction, see above (1.6), this includes treating both late-point/high-
intensity regimes for random walk/random interlacements, each in a subset F of (but not neces-
sarily equal to) the full torus/box (of side length N), at appropriate timescales. Recall from §2
that 0 denotes the origin of Zd and 0 “ πp0q where π : Zd Ñ T is the canonical projection, and
that QRpxq is the cube of side length R centred at x, either in Zd if x P Zd or in T if x P T.
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In order to allow for a unified presentation, we introduce the following notation, valid from
here on and throughout Sections 6-8. In writing P in the sequel, we tacitly allow for either choice
P P tPI ,Pu, i.e. all statements made under the measure P hold for either model (recall that PI
denotes the canonical law of random interlacements on Zd and P the law of the random walk on
T with uniform starting point). We further define the set QR for any R ď N (where N denotes
the side length of T) as QR “ QRp0qpĂ Zdq when P “ PI and QR “ QRp0qpĂ Tq when P “ P.

With the above notation, we introduce for finite F Ă QN and α ą 0,

(6.1) uF pαq “ αgp0q logp|F |q,

whence uN pαq “ uF pαq|F“QN in view of (1.3) (when P “ P). The scaling (6.1) is explained in
Remark 6.2,1) below. With V ¨N as in (1.2) and V ¨ as below (2.13), we now define under P the
random set LF “ pLαF qαě0 for arbitrary finite F Ă QN to be

(6.2) LαF “

#

VuF pαqN X F, if P “ P

VuF pαq X F, if P “ PI .

We simply write Lα when F “ QN , which is consistent with (1.4); the results of the introduction
thus deal with the case P “ P in (6.2) for the specific choice F “ QN p“ QN p0qq. As will become
clear, all of these results can be generalized (with suitable amendments) to the more general
framework of (6.2). We start by gathering a few key properties of LαF .

Lemma 6.1.

i) For all K Ă F ĂĂ Zd and α ą 0,

(6.3) PIpK Ă LαF q “ |F |´αgp0qcappKq.

ii) For all N ě 1, K Ă F Ă T, and all β0 ą 0, the bound

(6.4)
ˇ

ˇ

ˇ

ˇ

PpK Ă LαF q
|F |´αgp0qcappKq

´ 1

ˇ

ˇ

ˇ

ˇ

ď Cpβ0q
logpNq3{2

N pd´2q{2

holds whenever α P p0, 2s and cappKq ď β0.

Proof. The equality (6.3) follows directly from (1.6), (6.1) and (6.2). To deduce (6.4) first
note that the condition cappKq ď β0 implies |K| ď Cpβ0q by virtue of (2.10). Since δpKq ď
Np1 ´ 1

|K|q for any K Ă T, using translation invariance we may therefore assume that K Ă

QNp1´δqp0q for some δ “ δpβ0q ą 0. We then apply Corollary 5.2 for this δ with the choice
ε “ λN´pd´2q{2 logN?

α logp|F |q
for λ ą 0 to find that

PpK Ă LαF q ď PI
`

K 1 Ă Lαp1´εqF

˘

` Cα logp|F |qN3d exp
`

´ cpδqλ logN
˘

,

where K 1 Ă QNp1´δqp0q is such that πpK 1q “ K, similarly as in the definition of cappKq below
(2.3). From this, one of the two bounds implied by (6.4) readily follows using (6.3) upon taking
λ large enough in a manner depending on β0. The other bound is obtained similarly.

Remark 6.2.

1) (Asymptotic density of LαF ). Applying Lemma 6.1 for K “ t0u and using (2.6) yields for
any F “ FN Ă QN with |F | Ñ 8 as N Ñ8 that

(6.5) Pp0 P LαF q „ |F |´α as N Ñ8,

which accounts for the scaling in (1.3) and (6.1).
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2) Throughout §6.2, the following consequence of (6.3) and (6.4) will be sufficient, cf. Re-
mark 8.4,5): for all β0 ą 0, all N ě 1, F Ă QN , K Ă F with cappKq ď β0, and α P p0, 2s,

(6.6) PpK Ă LαF q ď Cpβ0q|F |
´ α
α˚pKq

(recall the definition of α˚pKq from (1.19)). In Lemmas 6.3 and 6.4 as well as in §7 and §8
below, we will also use the following lower bound implied by Lemma 6.1: under the same
assumptions as those of (6.6),

(6.7) PpK Ă LαF q ě cpβ0q|F |
´ α
α˚pKq .

Actually the constants Cpβ0q from (6.6) and cpβ0q from (6.7) could be replaced by 1` op1q
as |F | Ñ 8, but we will not need this fact except in the proof of (1.13) to obtain the exact
constant 1´e´d. In the proof of Lemma 6.4 below, we will also need the following decoupling
formula, which is easily implied by Lemma 6.1 together with (2.9) in the improved form
discussed immediately below it (along with its analogue on the torus): for all β0 ą 0 and
α ą 0, if K,K 1 Ă F are such that dpK,K1q

logp|F |q1{pd´2q Ñ8,

(6.8) PppK YK 1q Ă LαF q “ p1` op1qqPpK Ă LαF qPpK 1 Ă LαF q as |F | Ñ 8,

where op1q is uniform in K,K 1 verifying |K|, |K 1| ď β0.

Before constructing our coupling between L and Bernoulli random variables, let us collect
some interesting consequences of (6.6), (6.7) and (6.8), which further elucidate the role of the
parameters α˚ from (1.10) and α˚pKq from (1.19). In view of (6.2), the quantity Dα introduced
in (1.9) is naturally declared under P upon summing over all x „ y with x, y P QN . For any set
S Ă QN and K Ă QN p0q, we introduce similarly

(6.9) DKpSq “

#

ř

xPQN
1tx`K Ă Su, if P “ PI

ř

xPQN
1tx` πpKq Ă Su, if P “ P

the number of times a translate of K (or its projection on the torus) by x P QN lies in S. We
will often abbreviate Dα

K “ DKpLαq. Note that Dα, see (1.9), is half the sum of Dα
K over all

K “ t0, xu with x „ 0. The following result shows that Dα
K is small on average if and only if

α ą α˚pKq.

Lemma 6.3 (Representations of α˚). For each ∅ ‰ K ĂĂ Zd, with α˚pKq as in (1.19),

(6.10) α˚pKq “ sup
 

α ą 0 : limN ErDα
Ks “ 0

(

.

In particular for all x „ y,

α˚ “ α˚ptx, yuq “ 1´
1

2gp0q
“

1

2

`

1` P0p rH0 ă 8q
˘

.(6.11)

Proof. First, observe that (6.6) and (6.7) applied with F “ QN immediately yields, for all α ą 0,

(6.12) cN
dp1´ α

α˚pKq
q
ď ErDα

Ks ď CN
dp1´ α

α˚pKq
q
,

from which (6.10) follows. The first equality in (6.11) then follows by rotational invariance of
the capacity. Applying the simple Markov property, one obtains, for all x „ 0,

(6.13) P0p rH0 ă 8q “
1

2d

ÿ

y„0

PypH0 ă 8q
(2.4)
“

1

2d

ÿ

y„0

gpyq

gp0q
“
gpxq

gp0q
“ 1´

1

gp0q
,

where the two last steps follow by invariance of Px under lattice rotations and translations. On
account of (1.11), (1.19) and (2.6), this gives the two last equalities in (6.11).
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We now collect a lower bound on Dα
K , resp. D

α, in the ‘supercritical’ phase α ă α˚pKq, resp.
α ă α˚, which will be useful in due course. For Dα, a similar but weaker estimate was derived in
[22, p. 1040], for a very specific choice of timescale asymptotic to αtcov, see also Remark 7.3,5)
below. In addition to yielding a stronger bound valid for any set K, the proof we present below
is considerably simpler, which highlights the strength of Lemma 6.1.

Lemma 6.4. For all K ĂĂ Zd, α P p0, α˚pKqs and εN ą 0 with limN εN “ 0, one has

(6.14) lim inf
N

P
`

Dα
K ě εNN

dp1´ α
α˚pKq

q˘

#

“ 1 if α ă α˚pKq,

ą 0 if α “ α˚pKq,

and the same holds true with α˚ in place of α˚pKq and Dα in place of Dα
K .

Proof. It follows from (1.19) and (2.8) that there exists C “ CpKq ă 8 such that α˚ppK ` xq Y
pK ` x1qq ď 2α˚pKq{3 for all x, x1 P QN with dpx, x1q ě C. Applying (6.6) (when dpx, x1q ď C

or C ď dpx, x1q ď logpNq
2
d´2 ) and (6.8) (when dpx, x1q ě logpNq

2
d´2 ), one has for all α ą 0

E
“

pDα
Kq

2
‰

“
ÿ

x,x1PQN

P
`

K ` x,K ` x1 Ă Lα
˘

ď CN
d´ αd

α˚pKq ` C logpNdq
2d
d´2N

d´ 3αd
2α˚pKq `

`

1` op1q
˘

ErDα
Ks

2

(6.15)

as N Ñ 8. If α ă α˚pKq, then in view of (6.12) the second moment on the right-hand side of
(6.15) dominates. Combining (6.12), (6.15) and a standard second-moment argument, it follows
that

P
`

Dα
K ě εNN

dp1´ α
α˚pKq

q˘

ě P
`

Dα
K ě cεNErDα

Ks
˘

ě
p1´ cεN q

2

1` op1q
,

for all α ă α˚pKq, from which the claim follows since εN Ñ 0. If α “ α˚pKq the proof is similar,
except (6.15) is now only smaller than CErDα

Ks
2. The statement for Dα then follows readily

from (6.11) and (6.14) for K “ t0, xu, x „ 0.

6.2. Main approximation result for LαF . We now combine the modified Chen-Stein result
(with sprinkling), Lemma 3.1, with our main localization result, Theorem 5.1 and the asymptotic
bounds (6.6) (a consequence of Lemma 6.1) to derive our main approximation result for LαF , see
Theorem 6.5 below. In a nutshell, we first apply Theorem 5.1 to replace (up to sprinkling) the
family LF by an approximation rLF with a certain finite-range property (see Proposition 6.6
below), to which we then apply Lemma 3.1. The above estimate (6.6) will serve to bound
quantities such as b1 and b2 in (3.6)-(3.7).

Theorem 6.5, stated below, is of independent interest. In the next section, it will serve as a
driving force to derive our main results from §1. The approximation result it entails supplies a
coupling between LF and a suitably defined process rB of i.i.d. ‘patterns,’ which we now introduce.
Let pUKqKĂQN be an i.i.d. family of uniform random variables on r0, 1s and for F Ă Zd or T
(depending on whether P equals PI or P) define the set of admissible patterns by

(6.16) rAF “
 

K Ă F : K ‰ ∅, cappKq ď 2
gp0q , δpKq ď RF

(

, where RF “ logp|F |q
1
d´2

(note that compared to (1.24) we additionally ask for δpKq ď RF ). We return to the choice of
rAF in Remark 6.9 below. We also define pαF pKq “ PpLαF XQpK,RF q “ Kq for each K P rAF and
α ą 0, and note in passing that pαpKq introduced above (1.20) corresponds exactly to pαF pKq
for the choice F “ QN when P “ P. We then define the family rBF “ p rBαF qαě0 as

(6.17) rBαF “
ď

KP rAF :UKďp
α
F pKq

K.
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The following result gives quantitative control on the proximity of LF and rBF above level 1
2 , as

measured in terms of dε, cf. (1.21).

Theorem 6.5 (LF as in (6.2)). There exist C,C 1 ă 8 such that, for all α P p1
2 , 1s, N ě 1,

F Ă QN and ε P p0, αq, one can couple LαF with pUKqKP rAF so that with probability one minus

(6.18) 1^ C logp|F |qC
1

|F |1´2pα´εqε´
2d
d´2 ,

one has the inclusions

(6.19)
 

UK ď pα`εF pKq
(

Ă
 

LαF XQpK,RF q “ Ku Ă
 

UK ď pα´εF pKq
(

, for all K P rAF .

Moreover, dε
`

LF , rBF ;α
˘

is bounded from above by (6.18).

The proof of Theorem 6.5 occupies the remainder of this section. We begin with two prelim-
inary results. The first of these is a consequence of our main localization result, Theorem 5.1,
applied to LF in (6.2). In what follows, a family of sets p rLα,pxqF qαPp0,2s,xPQN is said to be decreasing
if rLα,pxqF Ă rLβ,pxqF for all α ě β and x P QN .

Proposition 6.6 (Short-range approximation for LF ). There exist c, C,C 1 P p0,8q such that
the following holds. For all N ě 1, F Ă QN , ε P p0, 1q, R “

`

λ
ε

˘
2
d´2RF with λ ě C, there exists

a decreasing family rLF “ p rLα,pxqF qαPp0,2s,xPQN such that

i) rLα,pxqF Ă
`

Qpx,Rq X F
˘

for each x P QN and α P p0, 2s,

ii) p rLα,pxqF qαPp0,2s and p rL
α,pyq
F qαPp0,2s,yPQpx,3Rqc are independent for each x P QN , and

iii) for each α P p0, 2s, there exists a coupling rQ “ rQα of LαF and rLF such that for all ε P p0, αq,

(6.20) rQ
`

rLα`ε,pxqF Ă
`

LαF XQpx,Rq
˘

Ă rLα´ε,pxqF for all x P F
˘

ě 1´ C 1ε´C
1

|F |´cλ.

Proof. We first consider the case P “ P of the walk. Consider the processes `pxq under rP “
ř

xPT
rPx, where rPx is the translation by x of the probability rP0 from Theorem 5.1 for δ “ 1

2 , R
as above and u0 “ 3uF , where uF “ uF pα “ 1q “ gp0q logp|F |q, cf. (6.1). One then defines for
each α P p0, 4s and x P QN p0q,

rLα,pxqF “ π
` 

y P Qpx,Rq : `
pxq
y,p2`α

2
quF

´ `
pxq
y,p2´α

2
quF

“ 0
(˘

X F.

From this, iq plainly follows and iiq is a consequence of (5.2) since `pxq and hence rLα,pxqF is a
function of ωpxq alone, whose law does not depend on x in view of (5.1). Moreover, by (5.3)
(applied with ε

6 instead of ε) one obtains, for all α P p0, 2s ε P p0, αq, x P QN and y P Qpx,Rq

`
pxq

y,p2`α´ε
2
quF

´ `
pxq

y,p2´α´ε
2
quF

ď `y,p2`α
2
quF ´ `y,p2´α

2
quF ď `

pxq

y,p2`α`ε
2
quF

´ `
pxq

y,p2´α`ε
2
quF

,

with probability at least 1 ´ C|F |´cλε´C by choice of R, upon taking λ large enough. By
definition of L and rL, this yields, for all α P p0, 2s and ε P p0, αq, that

(6.21) rLα`ε,pxqF Ă
`

pL2`α
2

F zL2´α
2

F q XQpx,Rq
˘

Ă rLα´ε,pxqF for all x P F

with probability at least 1´C|F |´cλε´C , and iiiq follows since L2`α
2

F zL2´α
2

F has the same law as
LαF for each α ą 0. The proof for P “ PI is similar, except that, in view of (5.3’) (applied with
ε
α instead of ε) one simply defines rLα,pxqF “ ty P Qpx,Rq : `

pxq
y,uF pαq

“ 0u under rQ “ rP.
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Remark 6.7.

1) It follows from Theorem 5.1 and the independence and stationarity of the increments
of random interlacements that for each F Ă QN and x P F, the process p rLα,pxqF qαPp0,2s

introduced in Proposition 6.6 has the same law as
`

LαFXQpx,Rq
˘

αPp0,2s
under PI when P “ PI ,

and the same law as
`

πpLαQN p0qq X F X Qpx,Rq
˘

αPp0,2s
under PI when P “ P. While

noteworthy, we will not need this fact in the sequel.

2) For the case P “ PI , one can afford to take R “
`

λ
ε

˘
2
d´2 in Proposition 6.6. This can be

traced back to the additional square root present in the bound (5.3) compared to (5.3’).
Moreover as can be seen plainly in the above proof, one actually has a coupling rQ uniform in
all α P p0, 2s in that case, rather than one depending on α as in the random walk case. The
reason the coupling rQα depends on α when P “ P is that the sets pL2`α

2
F zL2´α

2
F qαPp0,2q does

not have the same law (as a process in α) as pLαF qαPp0,2q under P (only its one-dimensional
α-marginals do) since the corresponding random walks have different starting points for
different values of α. We refer to Remark 5.7,2) for a variant of the approximation supplied
by Theorem 5.1 by which this increment problem can be partially circumvented.

Next, returning to rAF in (6.16), we prove a separation property for LαF . Namely, for suitably
large R, the set LαF XQp0, Rq either belongs to rAF or is empty with high probability.

Lemma 6.8. For all N ě 1, F Ă QN , α P p
1
2 , 2s and R P rRF ,

N
4 q,

P
`

Dx P F :
`

LαF XQpx,Rq
˘

R p rAF Y t∅uq
˘

ď CRd logp|F |qC |F |1´2α.

Proof. By (6.6) one has, for all r ě 1,

E
“ˇ

ˇ

 

x, y P LαF : dpx, yq P rr,Rs
(ˇ

ˇ

‰

ď |F |p2R` 1qd sup
dpx,yqěr

|F |´αgp0qcapptx,yuq.

In particular, by (2.9) and since capptxuq “ gp0q´1 for all x P F (see (2.6)), one obtains with
the choice r “ RF by Markov’s inequality that

(6.22) P
`

Dx, y P LαF : R ě dpx, yq ě RF
˘

ď CRd|F |1´2α.

The bound (6.22) takes care of the contribution to the relevant event appearing in Lemma 6.8
when violating the diameter constraint inherent to rAF . It remains to address the possibility to
violate the capacity constraint in (6.16). To this effect, observe that by (2.10), (6.6) and a union
bound we have

P
`

cap
`

LαF XQR
˘

ě 2
gp0q , δ

`

LαF XQR
˘

ď RF
˘

ď P
`

DK Ă pLαF XQRq : |K| ď C,α˚pKq ď
1
2 , δpKq ď RF

˘

ď CRdlogp|F |qC
1

|F |´2α.

Combining this with a union bound over x P F and (6.22), the claim follows.

Remark 6.9. We now briefly comment on the choice of rAF in (6.16). In view of Lemma 6.8, it
was selected so that LαF XQpx,Rq belongs to rAF or is empty, with high probability for all x P F
when R ě RF – of course, the bound obtained in Lemma 6.8 also implicitly entails an upper
bound R ď |F |p2α´1q{d logp|F |q´C , above which the estimate is useless. Moreover, as implicitly
used in the proof, the definition of rAF also ensures that for all x P F and R P rRF , N4 q,

(6.23)
ˇ

ˇ

ˇ

!

K Ă Qpx,Rq : K P rAF

)ˇ

ˇ

ˇ
ď C|Qpx,Rq X F | logp|F |qC

1

,

which is an easy consequence of (2.10) and the bounds on both capacity and diameter in (6.16).
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Combining Proposition 6.6 and Lemma 6.8, we are now ready to give the

Proof of Theorem 6.5. All subsequent considerations implicitly hold for all N ě 1 and F Ă QN .
We may assume that ε ą |F |´C for suitably large C, for otherwise (6.18) is larger than 1, and
also that ε is small enough so that ε´

2
d´2 ą 2 and p1

2 , 1s ˘ 3ε P p1
4 , 2s, which can be arranged

without loss of generality by monotonicity of ε ÞÑ dε, cf. (1.21).
We now apply Proposition 6.6 (for N,F, ε as appearing in Theorem 6.5) with R “

`

λ
ε

˘
2
d´2RF

and a choice of λ ě 1 large enough such that the right-hand side of (6.20) is at least 1´C|F |´3

uniformly in α P p0, 2s. In view of the above lower bound on ε, λ can be chosen uniformly in
N,F and ε. Thus, defining for K P rAF and arbitrary (fixed) xK P K the random fields

Y α
K “ 1tLαF XQpK,RF q “ Ku

ZαK “ 1t rLα,pxKqF XQpK,RF q “ Ku,

with rL as supplied by Proposition 6.6, (6.20) implies that

dεpY,Z;αq ď C|F |´3 for all α P I def.
“ p1

4 , 2s,(6.24)

and all N,F and ε as above.
We now aim to apply Lemma 3.1 for S “ rAF and I as above. First observe that Y “ pY αqαPI

is indeed a family of decreasing Bernoulli processes, as required by (3.2). Thus (3.3) defines a
processW “ pWαqαPI withWα “ pWα

KqKP rAF , which has the same law as p1tUKďpαF pKquqKP rAF ,αPI .
In particular, recalling (6.17), this means that

(6.25) rBαF
law
“

ď

KP rAF :Wα
K“1

K.

Our aim is to control d2εpY,W ;αq for α P p1
2 , 1s by means of (3.5). With regards to the relevant

condition (3.4), Proposition 6.6 implies that Z “ pZαqαPI has the requested monotonicity and
the finite-range property follows from item iiq of the same proposition upon choosing the neigh-
borhood NK of K P rAF as NK “ tK

1 P rAF : K 1 XQpK, 3Rq ‰ ∅u. Indeed, for all K 1 R NK we
have that xK1 R QpxK , 3Rq, and hence p rLα,pxK1 qF qαPp0,2s,K1RNK is independent of p rLα,pxKqF qαPp0,2s,
and Z inherits this property. Thus, Lemma 3.1 is in force and the desired bound hinges on
suitably estimating b1 and b2 in (3.6)–(3.7). Combining (6.6) and (6.23) gives

(6.26) b1pα
1q ď

C|S|

|F |2α1
sup
KP rAF

|NK | ď
C logp|F |qC

1

|F |2pα´2εq´1ε
2d
d´2

, for all α P p1
2 , 1s and α

1 ě α´ 2ε.

Moreover for all K,K 1 P rAF with K ‰ K 1 and such that Y α1

K “ Y α1

K1 “ 1 occurs with positive
probability, we must have dpK 1,Kq ě RF {2 by definition of Y¨, and thus using (2.9) and (6.6),
one readily shows that b2pα1q verifies the same bound as b1pα1q in (6.26) over the given range of
parameters α1. Therefore combining (3.5) with (6.23), (6.24) and (6.26), one obtains that

d2εpY,W ;αq ď
C logp|F |qC

1

|F |2pα´2εq´1ε
2d
d´2

`
C|F |2 logp|F |qC

1

|F |3
ď

C2 logp|F |qC
1

|F |2pα´2εq´1ε
2d
d´2

,

for all α P p1
2 , 1s. It readily follows from the definition of dε, see (3.1) (and substituting 2ε by

ε), that a coupling exists such that (6.19) occurs except on an event with probability bounded
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by the expression in (6.18). Moreover by Lemma 6.8, since all sets in rAF have diameter at most
RF , one has

(6.27) P
´

LαF ‰
ď

KP rAF :Y αK“1

K
¯

ď P
`

Dx P F : LαF XQpx, 2RF q R rAF Y t∅u
˘

ď
C logp|F |qC

1

|F |2α´1
.

To conclude, one simply notes comparing (6.25) and (6.27) that dε
`

LF , rBF ;α
˘

is bounded by
the sum of dεpY,W ;αq and the probability on the left-hand side of (6.27), which is smaller than
(6.18) up to increasing the constants C,C 1.

7 Denouement

Using the findings of §3 and §6, with the latter drawing heavily from Theorem 5.1, we now prove
our main results for the set of late points, Theorems 1.1 and 1.3. Recall α˚pKq from (1.19), the
measure P introduced atop §6.1, and abbreviate rAN “ rAQN , see (6.16), as well as rBα “ rBαQN ,
see (6.17). For any set S Ă QN and K ĂĂ Zd we introduce, with RN “ RQN “ logpNdq

1
d´2 (see

(6.16)), the event

(7.1) EKpSq “
 

DK 1 Ă S : K 1 P AN and α˚pK 1q ď α˚pKq
(

corresponding to the existence of ‘admissible’ sets K 1 in S with capacity larger than the capacity
of K. Note that EKpSq depends implicitly on N via the choice of S Ă QN . The constant α˚pKq
is chosen so that the following result holds.

Lemma 7.1. For all η P p0, 1q, all sequences pαN q with αN P p1
2 ` η, 2s for all N ě 1, all

K ĂĂ Zd with α˚pKq ą 1
2 , abbreviating E

α
K “ EKp rBαq one has

(7.2) lim
NÑ8

P
`

EαNK
˘

“

#

“ 0 if limN

`

1´ αN
α˚pKq

˘

logN “ ´8,

“ 1 if limN

`

1´ αN
α˚pKq

˘

logN “ 8,

and

(7.3) 0 ă lim inf
NÑ8

P
`

EαNK
˘

ď lim sup
NÑ8

P
`

EαNK
˘

ă 1, if limN

“`

1´ αN
α˚pKq

˘

logN
‰

P p´8,8q.

We refer to Remark 7.2 below for a refinement of (7.3).

Proof. Recall that the set rBα is defined entirely in terms of the family pUK1qK1ĂQN of i.i.d. uni-
form random variables from above (6.16). The set K 1 with the properties postulated by EαK may
arise in rBα for two reasons: either because the uniform variable UK1 was triggered, i.e. it is at
most pαQN pK

1q, or because the uniform random variables corresponding to at least two disjoint
subsets whose union is included in K 1 were triggered. Accordingly, let UαK1 “ tUK1 ď pαQN pK

1qu

and consider the events

Fα “
 

DK1,K2 P rAN : K1 ‰ K2, δpK1 YK2q ď RN and UαK1
X UαK2

occurs
(

,(7.4)

GαK “
 

DK 1 P rAN : K 1 Ă QN , α˚pK
1q ď α˚pKq and UαK1 occurs

(

.

With these definitions, one has

PpGαKq ď PpEαKq ď PpFαq ` PpGαKq,(7.5)
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for all α ą 0, N ě 1. By a union bound and using (6.6) for singletons and (6.23), one gets

PpFαN q ď CNd logpNdqC ¨N´2αNd Ñ 0 as N Ñ8,(7.6)

since αN ą 1{2` η for all N. In view of (7.5) and (7.6), it is enough to find the limit of PpGαNK q

as N Ñ 8. To this end, first note that capptx, yuq Õ 2cappt0uq “ 2{gp0q as dpx, yq Ñ 8

by (2.6), and so for each α1 P p1
2 ` η, α˚pKqs and x P QN , the number of sets K 1 Ă QN

containing x such that α˚pK 1q ě α1 is bounded uniformly in N and α1. In particular, it follows
that |tK 1 Ă QN : α˚pK

1q “ α˚pKqu| ď CNd and that there exists δ “ δpKq ą 0 such that
α˚pK

1q ď α˚pKq´δ for each K 1 Ă QN with α˚pK 1q ă α˚pKq. By (6.6) and (6.23) it thus follows
that

P
`

pGαKq
c
˘

“
ź

K1ĂQN :K1P rAN
α˚pK1qďα˚pKq

`

1´ PpLα XQpK 1, RN q “ K 1q
˘

ě
`

1´ CN
´ dα
α˚pKq

˘CNd`

1´ CN
´ dα
α˚pKq´δ

˘CNd logpNqC
.

(7.7)

We now derive an upper bound on PppGαKqcq. To this end, we first introduce a set K Ě K,
or K Ą πpKq if QN “ QN p0q, as follows. First, applying (2.8) one finds r “ rpKq ă 8 such
that, whenever x R QpK, rq, one has cappK Y txuq ą cappKq. Then, considering all sets of the
form K Y U for U Ă QpK, rq one finds for N large enough a set K Ă QN having this form
(or a projection on the torus of a set having this form when QN “ QN p0q) and such that both
cappKq “ cappKq and cappK 1q ą cappKq for all K 1 Ă QN with K Ĺ K 1. It follows from this
construction that

(7.8) inf
xPK

c
cappK Y txuq ě cappKq ` δ1,

for some δ1 “ δ1pKq ą 0. The desired upper bound on P
`

pGαKq
c
˘

will follow from a lower bound
on the probability of the event tLα X QpK,RN q “ Ku. Combining the upper bound (6.6) and
(7.8), one obtains that for all α P p0, 2s,

P
`

K Ă Lα
˘

´ P
`

Lα XQpK,RN q “ K
˘

ď P
`

Dx P QpK,RN qzK : K Y txu Ă Lα
˘

ď C logpNqC
1

N´αdgp0qpcappKq`δ1q.

If N is large enough, one deduces from this and the lower bound (6.7) that there exists c “ cpKq
such that for all α P p0, 2s,

(7.9) P
`

Lα XQpK,RN q “ K
˘

ě cN
´ αd
α˚pKq .

Now observe that the set K 1 “ K`x satisfies α˚pK 1q “ α˚pKq by construction, see above (7.8).
Thus, by (7.9) and translation invariance we have that for all α P p0, 2s,

P
`

pGαKq
c
˘

ď
ź

xPQN :K`xĂQN

`

1´ PpLα XQpK ` x,RN q “ K ` xq
˘

ď
`

1´ cN
´ dα
α˚pKq

˘cNd

.

(7.10)

Combining (7.7) and (7.10) with (7.6) and (7.5) for α “ αN readily yields (7.2)–(7.3).

Remark 7.2. We now explain how to refine (7.3), which is of interest for the purposes of obtaining
the exact constant e´d in (1.13). For simplicity, we focus on the case K “ K0 “ tx, yu for some
x „ y, whence α˚pK0q “ α˚ in view of (6.11). The key is to observe that

(7.11)
 

K 1 Ă QN : α˚pK
1q “ α˚

(

“
 

tz, z1u Ă QN : z1 „ z
(

;
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indeed, recalling α˚p¨q from (1.19), it follows immediately with the help of (2.6) that α˚ptzuq “ 1,
which is larger than α˚ on account of Lemma 6.3, so the set in question in (6.3) does not contain
singletons. If K 1 is not a pair of neighbors then K 1 contains at least two points at `1-distance
ě 2 and it follows that α˚pK 1q ă α˚ using (2.7). From (7.11), one deduces in turn that

(7.12)
ˇ

ˇ

 

K 1 Ă QN : α˚pK
1q “ α˚

(ˇ

ˇ „ d|QN |, as N Ñ8.

Note also that as explained in Remark 6.2,2), the constants Cpβ0q and cpβ0q in (6.6) and (6.7)
for F “ QN and β0 “ 2 can be respectively replaced by 1 ` op1q and 1 ´ op1q as N Ñ 8, and
thus the constant c in (7.9) can also be replaced by 1 ´ op1q. Now, inspecting the above proof,
substituting a suitable upper bound implied by (7.12) into (7.7) and a corresponding lower bound
into (7.10), noting that K0 “ K0 for the same reasons as those yielding (7.11), one obtains

(7.13) lim
NÑ8

P
`

EαNK0

˘

“ 1´ e´γd,

if d ¨ limN

“`

1´ αN
α˚

˘

logN
‰

“ log γ for some γ ą 0.

We now turn to the proof of our main results. These are formulated entirely within the
framework of (6.2), which subsumes the setup of the introduction (corresponding to F “ QN for
the choice P “ P), thus lending themselves to immediate generalizations, notably to the case of
random interlacements, i.e. the choice P “ PI , see Remark 7.3,1). With this in mind, we extend
the definitions of the sets B and BK from above (1.7) and (1.20) to being subsets of QN , rather
than just subsets of T “ QN p0q as in §1 in accordance with the notation introduced above (6.1),
this amounts to simply replacing T by QN in their definition. Combining Theorem 6.5 and
Lemma 7.1, one now readily obtains the following.

Proof of Theorem 1.3. Let εN “ εN pαq “ N´
1
4
pd´2qp2α´1q for all N ě 1. It follows from Theo-

rem 6.5 applied with F “ QN that for each α P p1
2 , 1s and N ě 1, with rB “ rBQN and L “ LQN ,

(7.14) dεN
`

L, rB;α
˘

ď C logpNqC
1

N´dp2α´1q{2`2εNd ÝÑ
NÑ8

0.

Fix a set K Ă QN with α˚pKq ą 1
2 . Theorem 1.3 deals with BK introduced in (1.20) rather than

rB as defined below (6.17). We proceed to compare the two sets using Lemmas 6.8 and 7.1. Indeed
recalling the event EαK “ EKp rBαq from (7.1), one has for N large enough that t rBα ‰ BαKu Ă EαK .
We used here that the inclusion BαK Ă rBα is always satisfied for N ě NpKq large enough, since
the condition δpAq ď RN in (6.16) holds for all A Ă T with α˚pAq ą α˚pKqpą 1{2q when N is
large enough by (1.19), (2.6) and (2.7).

Now, first assume that α P pα˚pKq, 1s. By (7.2) applied to the sequence αN “ α˘ εN , which
satisfies limN

`

1 ´ αN
α˚pKq

˘

logN “ ´8, one deduces that limN Pp rBα˘εN ‰ Bα˘εNK q “ 0. This
implies in turn with (7.14) that dεN

`

L,BK ;α
˘

Ñ 0 as N Ñ8, from which the first line in (1.22)
directly follows, using that ε ÞÑ dε is decreasing. A similar reasoning using the last bound in
(7.3) instead, with the choice αN “ α˚pKq ˘ εN , yields the last bound in (1.23).

Let us now assume that α ď α˚pKq. To obtain the second line in (1.22) as well as the first
bound in (1.23), it suffices to show that for ε ă αp1 ´ 1

2α˚pKq
q and for any coupling Q between

Lα and Bα´εK one has

lim inf
NÑ8

QpLα Ę Bα´εK q

#

“ 1 if α ă α˚pKq,

ą 0 if α “ α˚pKq.
(7.15)

Recall Dα
K ” DKpLαq and DKpBαKq from (6.9); that is, Dα

KpBαKq counts the number of times
a translated version of K (or its projection on the torus) appears in BαK . Now fix ρ such that
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1´ 2pα´ εq ă ρ ă 1´ α
α˚pKq

(the midpoint for instance), which exists by our assumption on ε.
Then clearly since BK is an independent field one has by a similar reasoning as in (7.6) the bound
EQ

“

DKpBα´εK q
‰

ď C logpNqC
1

Ndp1´2pα´εqq. Hence by Markov’s inequality one immediately infers
that Q

`

DKpBα´εK q ě Ndρ
˘

Ñ 0 as N Ñ 8. On the other hand, applying Lemma 6.4 with
εN “ N

dpρ´1` α
α˚pKq

q, one finds that lim infN Q
`

DKpLαq ě Ndρ
˘

is equal to 1 if α ă α˚pKq, and
is positive if α “ α˚pKq. Together, these imply (7.15).

Let us finally assume that α˚pKq ď 1{2. For each x, y P QN , it follows from (2.6) that
α˚ptx, yuq ą 1{2 ě α˚pKq and so by (1.20) BαK stochastically dominates tx P QN : D y P
QN , Utx,yu ď pαptx, yuqu. Let us define independent Bernoulli random variables Xx,y, x, y P QN ,
with parameter pαptx, yuq{2 so that Xx,y “ Xy,x “ 0 if Utx,yu ą pαptx, yuq. If Yx “ 1tD y P
QN : Xx,y “ 1u, then pYxqxPZd are i.i.d. Bernoulli random variables and Yx “ 1 implies x P BαK .
Moreover by (7.9)

(7.16) Ppx P BαKq ě PpYx “ 1q ě 1´
ź

yPQN

PpXx,y “ 0q ě 1´p1´ cN´2αdqN
d
ě c1pNd´2αd^ 1q.

where in the last inequality we used 1 ´ cN´2αd ď e´cN
´2αd and e´x ď 1 ´ e´1px ^ 1q for all

x ě 0. Therefore |BαK | stochastically dominates a binomial random variable with parameters
pNd, c1pNd´2αd ^ 1qq, and is thus larger than c2pN2dp1´αq ^Ndq with probability going to 1 as
N Ñ8 by Chebyshev’s inequality. Moreover Er|Lα|s ď CNdp1´αq by (6.6), and so by Markov’s
inequality we have |Lα| ď Nd´αd logN with probability going to 1 as N goes to infinity, and we
can conclude since α ă 1.

We postpone further comments for a few lines and first give the:

Proof of Theorem 1.1. Fix two neighbors x „ y, x, y P Zd, and let K0 “ tx, yu. As we now
explain, iq is in essence an application of Theorem 1.3 for this choice of K “ K0. First recall
that α˚ “ α˚pK0q by Lemma 6.11, and that the only setsK 1 with α˚pK 1q ą α˚pK0q are singletons
on account of (1.19) and (2.7). Therefore, the set BαK0

in (1.20) only has contributions from sets
A which are singletons, and recalling Bα from the beginning of §1.1 which we can define via
the same uniform random variables pUtxuqxPQN as BαK0

in (1.20) (that we also define under the
probability measure P), it follows that for all α ą α˚,

(7.17) P
`

BαK0
‰ Bα

˘

ď
ÿ

zPQN

P
`

z P Lα, Qpz,RQN q X Lα ‰ tzu
˘

ď CN
dp1´ α

α˚
q
,

where the last inequality relies on (6.6). Combining this with the first line of (1.22) immediately
yields item iq of Theorem 1.1 for all α P pα˚, 1q and ε P p0, ε0q, for ε0 small enough. When α “ 1,
the first line of (1.22) is still valid, as should be clear from the proof of Theorem 1.3, and so
item iq of Theorem 1.1 is also fulfilled when α “ 1, as well as when α ą 1 as both Bα and Lα
are then empty with high probability by (6.5). Note that we can actually take ε0pαq “ α for all
α ą α˚ by monotonicity of ε ÞÑ dε.

We now turn to the proof of iiq. Let rEpLα˚q refer to the event appearing in the statement
of Lemma 6.8 for the choices F “ QN , R “ RN p“ RQN q and α “ α˚. Thus, if rEpLα˚q does not
occur, for any x P QN one has that Lα˚ XQpx,RN q is either empty or an element of rAN . If in
addition EK0pLα˚q does not occur, then assuming that Lα˚ X Qpx,RN q “ K for some x P QN
and K ‰ ∅, one has that α˚pKq ą α˚pK0q by (7.1), and so |K| “ 1. In particular, applying
this to x P Lα˚ , one obtains that on the complement of rEpLα˚q Y EK0pLα˚q, the set Lα˚ is
the union of all the x P QN such that Lα˚ XQpx,RN q “ txu. Therefore if rEpLα˚q Y EK0pLα˚q
does not occur and (6.19) at α “ α˚ is verified for all K Ă QN with |K| “ 1, it follows that
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Bα˚`εK0
Ă Lα˚ Ă Bα˚´εK0

. Combining now Theorem 6.5 with the trivial inclusion Bα˚´εK0
Ă Bα˚´ε

and (7.17) at α “ α˚ ` ε, and using Lemma 6.8 to bound Pp rEpLα˚qq, one obtains that

(7.18) dεpL,B;α˚q ď P
`

EK0pLα˚q
˘

` CN
´ dε
α˚ ` C logpNqC

1

Nd´2pα˚´εqd.

for some constant C,C 1 ă 8 depending only on ε and d. An asymptotically matching lower
bound is

(7.19) dεpL,B;α˚q ě P
`

EK0pLα˚q
˘

´ P
`

EK0pBα˚´εq
˘

,

which simply follows from the fact that Lα˚ Ă Bα˚´ε cannot occur when Lα˚ contains sets
K P rAN and α˚pKq ď α˚pK0q but not Bα˚´ε. Moreover the event EK0pBα˚´εq is included
in the event Fα˚´ε from (7.4) by definition, and so by (7.6) we have for all ε P p0, ε0q, with
ε0pα˚q “ α˚ ´

1
2 ,

P
`

EK0pBα˚´εq
˘

ď C logpNqC
1

Nd´2pα˚´εqd ÝÑ
NÑ8

0.(7.20)

Combining this with (7.18) and (7.19), we deduce that for each ε P p0, ε0q, dεpL,B;α˚q is asymp-
totically equivalent to P

`

EK0pLα˚q
˘

as N Ñ 8. Using (7.13), and combining with (7.14) for
α “ α˚ (recall that εN “ N´

1
4
pd´2qp2α˚´1q therein and so εN logpNq Ñ 0), we can conclude since

lim
NÑ8

P
`

EK0pLα˚q
˘

“ lim
NÑ8

P
`

EK0p
rBα˚˘εN q

˘

“ 1´ e´d.(7.21)

Finally, iiiq can be shown in exactly the same way as the case α ă α˚pKq in the proof of
Theorem 1.3, replacing throughout the proof α˚pKq by α˚, BK by B, DK by D, see (1.9), and
K by K0, upon taking ε0pαq “ αp1´ 1

2α˚
q for α ă α˚ in Theorem 1.1.

Remark 7.3 (Extensions of Theorems 1.1 and 1.3).

1) Although stated in §1 for Lα as defined in (1.4), the conclusions of Theorems 1.1 and 1.3
hold for either of the choices for P “ PI or P “ P above (6.1), i.e. by (6.2) they have an
analogue for random interlacements in QN p0q. Indeed, the proofs of these theorems are
actually written so that they are also valid for random interlacements.

2) The proof of Theorem 1.1,iq given above uses Theorem 1.3 to first compare Lα to BK with
K a set of neighbors (which in turn follows via comparison of Lα and rB using Theorem 6.5
and Lemma 7.1 to relate rB and BK) and then BK to B. If α ą α˚, for the sole purpose
of deducing the relevant conclusions iq in Theorem 1.1, one can actually bypass the in-
termediate use of BK (and rB) completely. Indeed, item iq can be deduced directly using
Lemma 3.1, combined with Theorem 6.6 and (6.6), similarly as in the proof of Theorem 6.5
itself, thus yielding that dε

`

L,B;α
˘

Ñ 0 if α ą α˚. Note that the proof of Theorem 1.1,iiiq
above also does not require Theorems 1.3 and 6.5, and that if one only wants to prove that
the the supremum in Theorem 1.1,iiq is bounded away from 0 and 1 uniformly in N, one
could bypass the use of rB by proceeding similarly as in the proof of (1.23). It seems how-
ever difficult to obtain the exact constant e´d at criticality in (1.13) without using the
more general Theorem 6.5 (or Theorem 1.3). In a nutshell, this is because rB provides us
with more precise information about Lα˚ , see (7.21), than direct moment methods, see
Lemma 6.4. More generally, proceeding similarly as in (7.19), (7.20) and the first equality
in (7.21), one could see Theorems 1.1 and 1.3 when α ą 1{2 as direct consequences of
Theorem 6.5 and Lemma 7.1, without using the moment methods of Lemma 6.4 (which is
still required for α ď 1{2). Lastly we note that if α˚pKq ą 1{2 there is some flexibility
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in defining BαK in (1.20) without spoiling the conclusions of Theorem 1.3, e.g. by adding a
constraint on the diameter of A in (1.20) of the form δpAq ď RN , similarly as in (6.16)-
(6.17). However if α˚pKq ď 1{2, it is not clear if (1.22) is still verified when adding such a
diameter constraint, see (7.16), and it is thus an interesting question if a change in (1.20)
might be relevant when studying Lα in the phase α ă 1

2 .

3) As explained in the proof of Theorem 1.1,ii), the constant e´d in (1.13) corresponds to
P
`

EK0pLα˚qc
˘

, which is essentially the probability that there do not exist two neighbors
in Lα˚ ; we refer to (7.13) and (7.21) for how to compute this probability. On the other
hand, the limit in the critical case (1.23) of Theorem 1.3 is not explicit (nor is it clear
whether this limit actually exists). This is due to the fact that we only proved (7.13) for
K “ tx, yu, x „ y, and in fact for this choice of K the limit in (1.13) is also e´d by a
similar reasoning. To obtain the limit in (1.13) for other choices of K with α˚pKq ą 1

2 , one
would need to extend (7.12) when replacing α˚ by α˚pKq. The limit in (1.23) would then
be 1 ´ e´β, where β “ βpKq would be the constant multiplying |QN | on the right-hand
side of this new version of (7.12).

4) Theorem 1.3 focuses on sets K with α˚pKq ą
1
2 , and we refer to (6.26) for the main

reason why this condition appears. The pertinence of the first line in (1.22) at values
α P pα˚pKq,

1
2 s for any K with α˚pKq ď 1

2 is another matter entirely. We refer to §8.2 for
some results in this direction. The parameter 1

2 is also the critical parameter from [21]. For
the random walk on T, they prove that if B Ă T is an independent set chosen uniformly at
random, then the total variation distance between pLαqc X B and B goes to 0 as N Ñ 8

if α ą 1{2, and to 1 if α ă 1{2. Actually, this can be directly deduced from Theorem 1.3
for the case α ą 1{2 (which is the more difficult case), and also when considering random
interlacements instead of the random walk on the torus. Indeed, by [21, Lemma 3.1 and
Proposition 3.2] (applied to Pp¨ |Aq), it is enough to find an event A so that

(7.22) E
”

2|L
αX pLα|1A

ı

ÝÑ
NÑ8

1 and PpAq ÝÑ
NÑ8

1,

where pLα is an independent copy of Lα. Let α ą 1{2 and x P Zd be such that α˚pKq P
p1{2, αq, with K “ t0, xu, which exists since α˚pt0, xuq Ñ 1{2 as xÑ8 by (2.6). Let A be
the event that tLα Ă Bα´εK u, with ε ă α ´ 1

2 , intersected with t pLα Ă pBα´εK u, where pBα´εK

are independent copy of Bα´εK . Then by Theorem 1.3 we have PpAq Ñ 1 (up to changing
the probability space), and one can easily verify that the left-hand side of (7.22) is satisfied
since Bα´εK X pBα´εK consists of CNd independent Bernoulli variables each with parameter
smaller than CN´2dpα´εq, and 2pα´ εq ą 1.

5) One could also modify the relevant timescale in the definition (6.2) of Lα, and the results
of Theorems 1.1 and 1.3 remain true as long as (6.6)-(6.7) hold. For instance one could
take Lα in (6.2) as the vacant set at time αtcov, where tcov is the expected cover time of
QN for either random walk or random interlacements, or in fact replace α by any sequence
pαN q with αN logpNq „ α logpNq as N Ñ 8. Indeed if γ “ limN p1 ´

αN
α˚
q logN exists in

r´8,`8s, using (7.2), as long as αN ą 1
2`η, for any η ą 0, one can use Theorem 6.5, (7.2),

(7.13) and (7.17) for αN instead of α, to show that for ε small enough limN dε
`

L,B;αN
˘

is equal to 0 if γ “ ´8, is equal to 1 ´ e´d if γ P p´8,8q, and is equal to 1 if γ “ `8,
similarly as in the proof of Theorem 1.1. Thus, proceeding similarly for Theorem 1.3, our
results are robust with respect to small changes of time- reparametrization, contrary to
those of [22] or [28] where one had to consider the walk at timescales αt˚ for a specific
choice of t˚ „ tcov.
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6) As we now explain, inspection of the proof of (1.12) and of the first line of (1.22) (used in
the proof of (1.12)) reveals that item iq of Theorem 1.1 can be quantified as follows; for all
α P pα˚, 1s, N ě 1, F Ă QN , ε P p0, αq, and LαF as in (6.2), one has

(7.23) dε
`

LF ,UF ;α
˘

ď C|F |
´

|F |´2pα´εq logp|F |qC
1

ε
´ 2d
pd´2q ` |F |

´ α
α˚

¯

,

where UαF Ă F and tx P UαF u
def.
“ tUx ď Ppx P LαF qu for all x P F, so that in particular,

UQN “ B. The first term on the right-hand side of (7.23) can be traced back to (6.18),
which appears in the course of proving (1.22), and the second term to (7.17). Note also
that this second term is also a bound on the first line of (7.2) when K “ tx, yu, x „ y,
by (7.5), (7.6) and (7.7). Similarly, for all α ą α˚pKq one could prove a bound on the
first line of (1.22) similar to (7.23) when replacing α˚ by α˚pKq. The extension to general
F Ă QN in (7.23) comes for free since all the results of §6 utilized in the proof (namely,
Theorem 6.5 and the bound (6.6)) hold at this level of generality.

7) In particular, the quantitative bound (7.23) (applied to F “ QN ) allows one to choose
ε “ N´c for suitable c “ cpαq and α ą α˚, for which

(7.24) dεN pL,B;αq Ñ 0 as N Ñ8.

As we now argue, this yields a non-trivial regime of parameters α ď 1, for which εN is so
small that (7.24) can be boosted to dTV “ d0 in place of dεN . Let η P p0, 2α´ 1q. Then
in fact (7.23) implies that (7.24) holds for εN “ N´cpαq with cpαq “ 1

2pd´ 2qp2α´ 1´ ηq.
Moreover, by virtue of Lemma 6.1 one has that if α P p0, 1q

(7.25) PpBα´εN ‰ Bα`εN q ď NdPp0 P Lα´εN zLα`εN q

ď
Nd

Ndpα´εN q

´

1´
1

N2dεN
` CN´

d´2
2 logpNq3{2

¯

ď CεNN
d´αd logN,

where in the last inequality we used that N2dεN Ñ 1 and the inequality N´
d´2
2 logpNq3{2 ď

CεN valid by our choice of εN and α. Therefore, if d ´ αd ´ 1
2pd ´ 2qp2α ´ 1q ă 0,

that is if α ą 3
4pd ´

2
3q{pd ´ 1q, upon choosing η ą 0 small enough one deduces that

PpBα´εN “ Bα`εN q Ñ 1 as N Ñ 8, which together with (7.24) and when α ą α˚ yields
that dTVpLα,Bαq Ñ 0. Interestingly the parameter α2 “ α˚ _

3
4pd ´

2
3q{pd ´ 1q thereby

emanating coincides with the parameter from [28], as one can see by carefully inspecting
[28] (see in particular the term b2 p.10 therein). In view of 4) and 5) above, our findings
thus recover the results for the random walk on the torus of [21, 22, 25, 28] in full (and also
extend results such as (1.8) to an arguably more natural choice of time-parametrization). It
is an intriguing question to determine whether α2 and α˚˚, see (1.7), coincide, or whether
the (multiple) occurrences of α2 are an artefact of the methods and in reality α˚˚ “ α˚.
Note that 3

4pd ´
2
3q{pd ´ 1q ą 3

4 and α˚, which is decreasing in d by (6.11) and [18,
Lemma C.1], verifies α˚ ă 0.68 by computer-assisted methods, see (6.11) and Lemma B.4.
Overall this yields α2 “

3
4pd´

2
3q{pd´ 1q ą α˚.

8) Let us define the α-cover time CαpLq “ inf
 

β ą 0 : |Lβ| ď N p1´αqd
(

for α P p0, 1s.
Recalling B and BK from above (1.7) and (1.20), define CαpBq and CαpBKq similarly but
replacing L by B and BK , respectively. With Cα “ CαpLq, one could also show results
akin to Theorems 1.1 when α ‰ α˚ and to Theorem 1.3 when α ‰ α˚pKq, when replacing
the set Lα by LCα , which is the set of late points which contains exactly Ndp1´αq points (or
rNdp1´αqs in case Ndp1´αq is not an integer), and the sets BαK and Bα by the sets BC

αpBKq
K

and BCαpBq. We refer to [22, Theorem 1.2] for a similar result without sprinkling when α
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is close enough to one. The proof relies on Theorem 1.1, which in particular implies for all
α P pα˚, 1s and ε P p0, αq the inequality

P
`

α´ ε
3 ď Cα ď α` ε

3

˘

ě P
`

|Lα`ε{3| ă Ndp1´αq ă |Lα´ε{3|
˘

ěP
`

|Bα`ε| ă Ndp1´αq ă |Bα´ε|
˘

` op1q Ñ 1

as N Ñ 8, where the last bound is an easy consequence of concentration bounds for
binomial variables and (6.5), along with similar concentration estimates for CαpBq (and
analogues in the context of Theorem 1.3 when α ą α˚pKq ą 1{2, replacing B by BK
throughout).

8 Extensions

We now discuss two extensions of our main results, one concerning the set LαF from (6.2) viewed
as a process in α ą 0, the other regarding a partial description of the behaviour of LαF valid in
the regime α ď 1

2 ; see Theorems 8.1 and 8.3, respectively, along with the subsequent remarks.

8.1. The process α ÞÑ LαF . Recall the process pαxqxPQN from (1.15) (see also our convention
in (6.2), by which pαxqxPQN implicitly refers to either of two choices). Note also that αx ě α˚
for any x P Lα˚ .

Theorem 8.1. For all N ě 1, there exists a coupling of pαxqxPQN with a family ppαxqxPQN of
i.i.d. exponential random variables of mean d logpNq each, such that for all ε ą 0,

(8.1) lim
NÑ8

P ppαx ´ ε ď αx ´ α˚ ď pαx ` ε for all x P Lα˚q “ 1.

The intuition behind Theorem 8.1 is roughly the following. By similar considerations as in
the proof of Lemma 7.1, one argues that, for each α ą α˚, all the vertices in Lα are at distance at
least RN “ logpNq

1
d´2 from each other with high probability. Applying our localization results of

Section 5 at this scale then implies that the hitting time of each late point is roughly independent
and distributed as exponential random variable with the above mean.

Proof. We first consider the case P “ P. Let t˚ “ uN pα˚qN
d with uN pαq “ αgp0q logpNdq as in

(1.3) and define F˚ “ σpXn : 0 ď n ď t˚q. Remark 5.7,3) can be applied for the random walk
pXt`t˚ ´Xt˚q under P0p¨ |F˚q instead of X under P0 since it has law P0 by Markov’s property,
and we denote by p`pxqy,uqyPZd,xPQN ,uPru1,u0s the associated short-range field of local times when

F “ QN , R “ logpNq
2
d´2 , δ “ 1, ε{3 instead of ε, u1 “ uN pε{2q and u0 “ uN p2q, defined on

some extended probability space rP0. Let

(8.2) K “
 

x P Lα˚ : Lα˚ XQpx, 2Rq “ txu, `px´Xt˚ qx´Xt˚ ,uN p2q
ą 0

(

denote the set of points visited according to the short-range field by the terminal time uN p2qNd.
Conditionally on F˚, we then define

pαx “ sup
 

α P r0, 2s : `
px´Xt˚ q

x´Xt˚ ,uN pαq
“ 0

(

for each x P K;

similarly, for each x P QNzK such that Lα˚ X Qpx, 2Rq “ txu, we define independently pαx as
2 plus an Exp(d logpNq)-distributed random variable, and for each x P QNzK such that Lα˚ X
Qpx, 2Rq ‰ txu, define independently pαx as some Exp(d logpNq)-distributed random variable. In
view of (5.1), (6.3), and the memorylessness property of the exponential random variable, one
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checks that pαx is Exp(d logpNq)-distributed for each x P QN .Moreover, it follows from the short-
range property of `pxq, see (5.2), that conditionally on F˚, pαx is independent of σppαy, y P Kztxuq
for each x P K, since dpx, yq ě 2R for all x ‰ y P K. Therefore ppαxqxPQN is an i.i.d. family of
Exp(d logpNq)-distributed random variables.

It thus remains to prove (8.1). First (5.38) for our choice of parameters implies that a.s.

(8.3) rP0

`

pαx ´ ε ď αx ´ α˚ ď pαx ` ε for all x P K XQpXt˚ , 2Rq
c
ˇ

ˇF˚
˘

ÝÑ
nÑ8

1.

Indeed for each x P K XQpXt˚ , 2Rq
c, if αx ´ α˚ ě ε{2 then the event pαx ´ ε ď αx ´ α˚ ď

pαx ` ε is directly implied by the event in (5.38) for u1 “ uN pε{2q as above and the inequalities
pαx{p1 ´ ε{3q ď pαx ` ε (for ε small enough) as well as pαx{p1 ` ε{3q ě pαx ´ ε. If αx ´ α˚ ď ε{2
the inequalities pαx ´ ε ď 0 ď αx ´ α˚ are similarly implied by (5.38) for u “ uN pε{2q, and the
inequality αx ´ α˚ ď pαx ` ε is trivial, which concludes the proof of (8.3). Moreover

(8.4) P0

`

Lα˚ XQpXt˚ , 2Rq ‰ ∅
˘

ď P0

`

L
1
2 XQpXt˚ , 2Rq ‰ ∅

˘

ď sup
xPT

P0

`

L
1
2 XQpx, 2Rq ‰ ∅

˘

` expp´cNd´2q ď
CRd

Nd{4
,

where in the second inequality we applied the Markov property at time t 1
2
“ uN p

1
2qN

d, observed
that t˚ ´ t 1

2
ě cNd since α˚ ą 1

2 (see (6.11)) and applied a classical bound on the mixing time

of X, see for instance [20, Theorem 5.6], to deduce that Xt˚´t1{2 conditionally on L
1
2 is suitably

close to being uniformly distributed on a sub-lattice; the last inequality then follows by (6.4)
combined with a union bound. Let us now consider vertices x P Lα˚zK. By (6.3), (6.4) and a
union bound and Markov’s inequality, we have for large enough N

(8.5) rP0 ppαx ď ε, αx ´ α˚ ď ε for all x P Lα˚zKq

ě rP0ppαx ď 2 for all x P QN q ´ 3e´εd logpNqE0 r|tx P Lα˚ : Lα˚ XQpx, 2Rq ‰ txuu|s .

Moreover, by (2.6), (2.7), (6.6) and (6.11) we have

(8.6) E0 r|tx P Lα˚ : Lα˚ XQpx, 2Rq ‰ txuu|s

ď E0 r|tx, y P Lα˚ : dpx, yq P r1, 2Rsu|s ď CNdRdN´d ď C logpNq
2d
d´2

since R “ logpNq
2
d´2 , and by (6.6) again and a union bound we know that

(8.7) rP0ppαx ď 2 for all x P QN q ě 1´ CN´d.

The claim now readily follows by combining (8.3), (8.4), (8.5), (8.6) and (8.7). Finally when
P “ PI the proof is similar except that one conditions on F˚ “ σpω

uN pα˚q
QN

q instead, see (2.11),
and uses a version of (5.3’) for the process consisting of the trajectories of interlacements above
level uN pα˚q, which has the same law conditionally on F˚ as an interlacement process since the
increments are stationary and independent.

Remark 8.2. 1) In much the same way as in Remarks 7.3,1) and 6), Theorem 8.1 implicitly
applies to both random walk on T and random interlacements in the box QN . It further
naturally generalises to F Ă QN , i.e. to the process αFx

def.
“ suptα ą 0 : x P LαF u,

x P F (so that αx “ αQNx , see (1.15)). The conclusions of Theorem 8.1 remain true upon
replacing the reference process pα by i.i.d. exponential random variables with mean log |F |.
Note however that the proof of Theorem 8.1 relies heavily on the Markov property of the
random walk, or the independence of the increments of interlacements, and thus might be
harder to generalize to other models than our other results, see Remark 8.4,5).
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2) It might be at first surprising that the proof of Theorem 8.1, giving a description of Lα as a
process in α for α ą α˚, does not rely on the Chen-Stein method from Section 3, contrary
to the proof of Theorem 1.1, which gives a description of Lα at fixed α ą α˚. The reason
is that Theorem 8.1 only describes the law of the hitting times of the points in Lα, α ą α˚,
and not their position on the lattice. In particular, one cannot deduce Theorem 1.1 from
Theorem 8.1. In the proof of Theorem 8.1, the use of Chen-Stein is essentially bypassed
by our localization result, Theorem 1.2, applied to the random walk after time uN pα˚q,
which gives a short-range field r` independent of Lα˚ . The short-range property of r` then
manifests itself as independence property on the set K of well-separated points in Lα˚ ,
which is almost equal to Lα˚ , see (8.5) and (8.6). However, if r` is now the process from
Theorem 1.2 applied to the random walk after time 0, then it is not independent of Lα˚ ,
and so it is not clear at all that the process r`x,u, x P K, is independent, hence our use of
the Chen-Stein method to overcome this issue in the proof of Theorem 1.1.

3) One can also generalize the description of Lα as a processus in α for α ě α˚ from Theo-
rem 8.1 to a description of Lα as a processus in α for α ą 1{2 as follows. For simplicity
we focus on the case P “ P, cf. (6.2). Informally, for each η ą 0, on an event E occurring
with high probability, the set L

1
2
`η is a union of islands drawn from rAT in (6.16), each

at distance at least logpNq
2
d´2 (say) from one another. Then pαxqxPQN behaves almost

independently on each island as the hitting time of this island by interlacements.

We now formulate this precisely. For R ą 0, we say that K is an R-well-separated partition
of S Ă QN if K is a partition of S such that δpKq ă R for all K P K and dpK,K 1q ě R
for all K ‰ K 1 P K. Note that there is at most one R-well separated partition of S. An
example is the set K from (8.2), which forms an R-well-separated partition of S “ Lα˚ into
singletons K “ txu, x P Lα˚ , with high probability as N Ñ8, as shown above.

In a similar vein, let now R “ logpNq
2
d´2 and fix η P p0, 1

2q. Define E “ EpL
1
2
`ηq the event

that L
1
2
`η has a 4R-well-separated partition K, where tη “ uN p

1
2 ` ηqN

d. Then similarly
as in Theorem 8.1 one can define on a suitable extension of P an independent family
ppαKqKPK, such that pαK has the same law as pαxqxPK under PI (corresponding to (1.15)
for interlacements) for every K P K and in addition, for all ε ą 0,

(8.8) P
`

E, pαKx ´ ε ď αx ´
1
2 ´ η ď pαKx ` ε for all x P K and K P K

˘

Ñ 1 as N Ñ8.

In essence, (8.8) asserts that, with high probability, the set L 1
2
`η consists of ‘islands’

K (corresponding to the elements of K) which are far away from one another and such
that the law of α|K ´ 1

2 ´ η is close, up to sprinkling, to the hitting level of each island
by independent random interlacements. The proof of (8.8) follows similar lines as that
of (8.1) and relies on our localization result (5.38). Note that the law of α|K for random
interlacements, i.e. the law of pαK in (8.8), can be explicitly described as follows: first wait a
time Exp(dcappKqgp0q logN), at which a first trajectory in the random interlacements hits
K. This trajectory has law PēK and visits a subset K 1 of K. One can then let K1 “ KzK 1,
and similarly obtain a set K2 by repeating the previous procedure but with K1 instead of
K. Iterating this procedure until Kn is empty, the law of αx, x P K, is then the same as
the law of the first time at which x R Kn, x P K.

4) One can readily deduce Theorem 8.1 from (8.8). To this end, one takes η “ α˚ ´ 1{2 and
defines pαx “ pα

txu
x for each x P QN such that txu P K, on the event EpLα˚q, and for each

other vertex x P QN samples pαx as independent Exp(d logpNq) random variable. One can
control E r|tx P Lα˚ : txu R Ku|s in effectively the same way as (8.6), and conclude as in
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(8.5). Using the explicit description of the law of pαK above, one checks that ppαxqxPQN are
indeed i.i.d. Exp(d logpNq)-distributed.

5) It would also be interesting to prove a version of (8.1) without sprinkling, at least for α
close enough to 1, that is to show that with high probability the hitting times of x, x P Lα,
are close in total variation to i.i.d. exponentials with mean d logpNq for α large enough.
This does not seem to follow easily from Theorem 8.1, as the method from Remark 7.3,7)
only shows that Bα´εn “ Bα`εn for an adapted choice of εn Ñ 0 at a fixed level α, and
not as a process in α.

8.2. Outlook: the regime α ď 1
2 . Let us finish this section with a partial description of

the behaviour of the late points LαF for α ď 1{2. For each F,K Ă QN with δpKq P p0, RF s let
SF,K “ tx P QN : x`K Ă F u, recall from (6.16) that RF “ logp|F |q

1
d´2 and leet

(8.9) LαF,K “
 

x P SF,K : LαF XQpx`K,RF q “ x`Ku,

be the set of x P SF,K such that x ` K is exactly the set of α-late points in F in a small
neighborhood around x ` K, and we take LαF,K “ ∅ if δpKq ě RF . Correspondingly, we also
define

BαF,K “
 

x P SF,K : Ux`K ď P
`

LαF XQpx`K,RF q “ x`K
˘(

.

Theorem 8.3. Fix β0 P p0,8q. There exists C “ Cpβ0q ă 8, such that for all N P N, F,K Ă

QN with cappKq ď β0, δpKq P p0, RF s, α P p
α˚pKq

2 , 1s and ε P p0, α2 q,

(8.10) dε
`

LF,K ,BF,K ;α
˘

ď CRdF |F |
´p

2pα´2εq
α˚pKq

´1q
ε´

2d
d´2 .

We refer to Remark 8.4 below for further comments on the above theorem.

Proof. Consider α, F,K, ε as in the statement of Theorem 8.3. By translation invariance we
may assume that 0 P K. We may also assume that ε ě |F |´

pd´2qp2α´1q
2d , since otherwise the right-

hand side of (8.10) is always larger than 1 (up to taking C ě 1 therein). Consider the field
p rLα

1,pxq
F qα1Pp0,2s,xPQN from Theorem 6.6, where λ ě 2 is a large enough constant chosen so that

(6.20) with R “
`

λ
ε

˘
2
d´2RF is larger than 1´ C{|F |3, uniformly in ε as before. We now define

rLα1F,K “
 

x P SF,K : rLα
1,pxq
F XQpx`K,RF q “ x`K

(

and aim to apply Lemma 3.1 with the choices S “ SF,K , I “ r0, 2s, Y α1
x “ 1tx P Lα1F,Ku,

Zα
1

x “ 1tx P rLα1F,Ku and Nx “ SF,K X Qpx, 3Rq, x P SF,K . Assumption (3.4) is verified by our
choice of rL in Theorem 6.6. Moreover, by (6.20) and since x `K Ă Qpx,Rq for each x P SF,K
under our assumptions we have that

dεpY, Z;α1q ď C|F |´3 for all α1 P I.(8.11)

We thus only need to bound the constants b1 and b2 from Lemma 3.1. By (6.6), we have for all
α P pα˚pKq2 , 1s and α1 ě α´ 2ε,

(8.12) b1pα
1q ď C|SF,K | ¨

`

sup
xPSF,K

|Nx|
˘

¨ |F |
´ 2α1

α˚pKq ď RdF |F |
1´ 2pα´2εq

α˚pKq ε´
2d
d´2 ,

for some constant C “ Cpβ0q ă 8.Moreover for x P SF,K and y P Nxztxu with Y α1
x “ Y α1

y “ 1 we
have dpx, yq ě RF {2, and so by (2.9), (2.10) and (6.6) we readily see that b2pα1q satisfies a bound
similar to b1pα1q in (8.12). We can now conclude by combining (3.5) with (8.11) and (8.12).
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Remark 8.4. 1) Theorem 8.3 indicates that for each K ĂĂ Zd, when considering only the
subsets of the late points LαF which look locally exactly a translation of K, or its projection
on the torus, these sets can be well-approximated up to a sprinkling by independent trans-
lations of K, as long as α ą α˚pKq

2 . For K “ t0u, since α˚pt0uq “ 1, this corresponds to
an approximation of the isolated vertices of LαF by independent vertices as long as α ą 1

2 ,
which is essentially contained in Theorem 1.3. But when |K| ě 2, Theorem 8.3 describes
the behaviour of sets which are translations of K for some α ď 1

2 as well.

2) Actually, Theorem 8.3 is mainly interesting when α ď α˚pKq. Indeed, for α ą α˚pKq, using
a first-moment bound and (6.6), one easily sees that BαF,K and LαF,K are both empty with
high probability as |F | Ñ 8, so LαF,K is trivially well-approximated by BαF,K . In particular,
for any sets K Ă Zd with |K| ě 2, we thus have that both LαF,K and BαF,K are empty with
high probability for all α ą α˚, a fact which is already implicit in Theorem 1.1.

3) Another result which remains true in the regime α ď 1{2 is the convergence of the empirical
process associated to Lα to a Poisson point process on r0, 1sd. More precisely, for each
α P p0, 1q the point process

ř

xPLα δx{Nα converges in law to a point process on Rd with
intensity the Lebesgue measure. This can be proved using (6.5) in exactly the same way as
in [4, Corollary 0.2] for random interlacements and as in [5, Corollary 3.4] for the random
walk.

4) It is an interesting open question to obtain a description for the asymptotic law of the full
set LαF for α ď 1

2 , and not only of LαF,K for large enough K as in Theorem 8.3. The main
obstacle in order to do so is the lack of clustering for α ď 1

2 . Indeed, Theorem 6.5, see
also Lemma 6.8 and (7.20), indicates that for α ą 1

2 , L
α consists with high probability

of ‘islands’ with capacity smaller than 2
gp0q , each with diameter smaller than RN and at

distance at least N2α´1´η for any η ą 0 from one another. Adapting Lemma 6.8, one could
even show that for each α P p1

2 , 1s, these islands have diameter at most C “ Cpα, ηq with
high probability, and are thus asymptotically independent, as highlighted in Theorem 6.5.

However, when α ď 1
2 a reasoning similar to the proof of (6.22) shows that for each p P N

the average number of points in Lα at distance at least p from one another, but less
than logpNdq, diverges to infinity as N Ñ 8. In other words, Lα cannot be decomposed
in bounded islands at infinite asymptotic distance from one another, which is the main
conceptual obstacle in extending Theorem 6.5 to α ď 1

2 . Nevertheless, for large enough
sets K, LαK,QN still consists of bounded islands at infinite asymptotic distance from one
another, which are thus independent as highlighted in Theorem 8.3.

5) With future applications in mind, let us briefly explain which properties of random inter-
lacements and random walk are used to obtain all main results from Sections 6-7, including
Theorem 8.3. First Theorem 6.5 only uses the bound (6.6) and Proposition 6.6. From this,
one can also obtain the case α ą α˚ from Theorem 1.1, the case α ą α˚pKq ą

1
2 from

Theorem 1.3, the last bound in (1.23), as well as Theorem 8.3. One additionally needs
the lower bound (6.7) and the decoupling (6.8) to obtain Lemma 6.4 and its consequences,
namely the case α ă α˚ from Theorem 1.1, the case α ă α˚pKq or α˚pKq ď 1

2 from Theo-
rem 1.3 and the first bound in (1.23). Except for the critical case (1.23), one could afford
weaker versions of the bounds (6.6) and (6.7) with some additional subpolynomial term,
that is only the polynomial order of Pp0 P Lαq is important, i.e. the limit of log Pp0PLαq

logN as
N Ñ8. To obtain the precise asymptotic in the critical case α “ α˚, see (1.13), one needs
the asymptotics of Pp0 P Lαq as N Ñ 8, by which the constants Cpβ0q and cpβ0q from
(6.6)-(6.7) are replaced by 1` op1q.
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This hints at a universal phenomenon, valid for essentially any model satisfying estimates
like (6.6), (6.7) (possibly up to some subpolynomial factor except at criticality) and (6.8),
and allowing for a ‘finite-range’ approximation with properties akin to iq-iiiq of Proposi-
tion 6.6. We hope to return to this elsewhere. Another possible extension is to consider
other graphs than the d-dimensional torus under suitable hypotheses (e.g. polynomial de-
cay of the Green function and polynomial volume growth as in [14]), for which our method
should be stable, see for instance Remark A.11. In a related direction, we refer to [6] for
recent work characterizing the ‘universality class’ of Gumbel fluctuations for cover times.

A Appendix: proofs of Lemmas 5.5 and 5.6

In this appendix, we prove Lemmas 5.5 and 5.6 using some large deviations estimates for ex-
cursions of random walks or random interlacements, see Propositions A.7 and A.9. In order to
finish the proof of Lemma 5.5, we are also going to need some Harnack-type estimate to show
that the function gζpzq, see (5.15) and (5.16), does not depend, up to constants, on the choice
ζ P BB2 ˆ BB

c
3.

A.1. Harnack-type estimates. The following results are tailored to our purposes. Through-
out this section we only deal with the process X under Px, but the results immediately transfer
to the walk on T as long as the events in question are measurable in terms of X¨^TQ with
Q “ Qpx, rq for some r ă N under Px (this typically means r3 ă N below). We refer to Sec-
tion 2 for notation. A function f : Zd Ñ R is called harmonic in K Ă Zd if fpxq “ ExrfpX1qs for
all x P K (which only requires knowing f in the 1-neighborhood of K). By [19, Theorem 1.7.2],
one knows that for all δ P p0, 1q, r ě 1 and f non-negative and harmonic in Qp0, rp1` δqq,

fpxq ď Cpδqfpyq, for all x, y P Qp0, rq(A.1)

(note that the ref. [19] states (A.1) for Euclidean balls but (A.1) can be deduced from it via a
straightforward chaining argument). In the sequel we abbreviate Bk “ Qp0, rkq, for k “ 1, 2, 3
with 1 ď r1 ă r2 ă r3; similarly as in (5.23). Let gK denote the Green’s function killed on the
set K Ă Zd, so that g∅px, yq “ gpx, yq, cf. above (2.3). We start with a control which involves
killing in nearby `8-boxes. Note that the following result is completely standard for large δ
(larger than C P p1,8q) but the case of small δ requires some care.

Lemma A.1. For all δ P p0, 1q, r3 ě r1p1 ` δq2, K Ă B1 a box (possibly K “ ∅) and x, y P
Qp0, r3{p1`

δ
2qqzQpK,

δ
2r1q, one has

(A.2) cpδq|x´ y|2´d ď gKYBc3px, yq ď C|x´ y|2´d.

Moreover, with r1, r3 as above and for all x P Qp0, p1` δqr1qzQp0, p1`
δ
2qr1q,

(A.3) cpδq ď PxpHB1 ă TB3q ď PxpHB1 ă 8q ď 1´ cpδq.

Proof. First we observe that the first bound in (A.3) is an easy consequence of (A.2). Indeed,
by a last-exit decomposition similar to (2.4), one obtains that for all x P Qp0, p1` δqr1q,

(A.4) PxpHB1 ă TB3q ě inf
x1PB1

gBc3px, x
1qcapB3

pB1q ě cpδq,

where the last step uses (A.2) for K “ ∅ along with the capacity estimate capB3
pB1q ě

cappB1q ě crd´2
2 . In order to prove the last bound in (A.3), first notice that PxpHB1 ě

TQp0,λr1qq ě cpλ, δq for any λ ą 0 by projecting onto a coordinate and using a Gambler’s ruin
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estimate. Moreover if λ is chosen large enough, it follows from (2.4) similarly as in (A.4) that
PypHB1 ă 8q ď

1
2 for all y P Qp0, λr1q

c. The upper bound follows by the Markov property.
We now prove (A.2). For any K Ă Zd one has gK ď g and the upper bound in (A.2)

follows immediately from standard estimates on the Green kernel, see for instance [19, Theorem
1.5.4]. We now show the lower bound, and note that by monotonicity of B3 ÞÑ gKYBc3px, yq

and symmetry in x and y we may simply assume that |y|8 ě |x|8 and y P BQp0, r3{p1`
δ
2qq.

Noting that by the Markov property gKYBc3px, yq ě PxpHB1 “ 8q infzPBQp0,r3{p1` δ
2
qq
gKYBc3pz, yq

and using the last bound in (A.3), we may further assume that x P BQp0, r3{p1`
δ
2qq. Let us

first fix λ “ λpdq P p1,8q large enough such that for all x P Zd,

(A.5) sup
|z|8ěλ|x|8

gpzq ď
1

2
gpxq

(recall that gpxq “ gp0, xq); the bound (A.5) is obtained again using e.g. [19, Theorem 1.5.4]. We
now distinguish two cases. Suppose first that x, y P BQp0, r3{p1`

δ
2qq and |x´ y|8 ď

δr
10λ , where

we abbreviate r “ r3. Then applying the strong Markov property at time HKYBc3
, it follows that

gKYBc3px, yq “ gpx, yq ´ Ex
“

gpXHKYBc3
, yq

‰
(A.5)
ě

1

2
gpx, yq,

where in the last step, we used that |XHKYBc3
´y|8 ě

1
2δr ě λ|x´y|8. Along with the standard

bounds on g, this completes the verification of (A.2) in that case.
Now suppose that |x ´ y|8 ě δr

10λ . Then since x, y P BQp0, r{p1` δ
2qq the boxes By “

Qpy, δr
100λq and Bx “ Qpx, δr

100λq can be joined using a chain of Cpδq many boxes Bi, each having
radius δr

100λ , in such a manner that iq any two consecutive boxes overlap (i.e. BiXBi`1 ‰ ∅) and
iiq if rBi Ą Bi refers to the concentric box having radius δr

10 , then rBi does not intersect B1 YB
c
3.

It follows that for all x P Bi,

(A.6) PxpHBi`1 ă HKYBc3
q
iiq
ě PxpHBi`1 ă T

rBi
q ě c,

where the last bound uses monotonicity and (A.3), which is in force due to the first inequality in
(A.4) and the lower bound on the killed Green’s function at ‘short’ distances already obtained,
see also iq and the choice of radius for rBi. Iterating (A.6) using the Markov property yields

gKYBc3px, yq ě Px
`

Hy ă HKYBc3

˘

ě c inf
y1PBy

Py1
`

Hy ă HKYBc3

˘

ě c1pδqr2´d ě c2pδq|x´ y|2´d,

where the penultimate step follows by bounding Py1pHy ă HKYBc3
q ě gKYBc3py

1, yq{gp0q and
using the lower bound already derived, and the last step because |x´ y| ě cpδqr by assumption.

We are now ready to prove that the function gζpΘq, see (5.16), is of constant order for suitable
choice of the radii rk for Bk.

Lemma A.2. For all δ P p0, 1q, rk`1 ě rkp1` δq, k “ 1, 2, and all y P BB2 and w P BB3,

Py
`

TB3 ă HB1

ˇ

ˇXTB3
“ w

˘

ě cpδq.

Proof. By a last-exit decomposition in B2, one finds that

(A.7) Py
`

TB3 ă HB1 , XTB3
“ w

˘

“
ÿ

zPBB2

gB1YBc3
py, zqPzp rHB2 ą TB3 , XTB3

“ wq.
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Using the lower bound in (A.2) with the choice K “ B1 and the upper bound with K “ ∅, it
follows that gB1YBc3

py, zq ě cpδqgBc3py, zq for all y, z P BB2. Substituting above, it follows that
the right-hand side of (A.7) is bounded from below by

cpδq
ÿ

zPBB2

gBc3py, zqPzp
rHB2 ą TB3 , XTB3

“ wq “ cpδqPypXTB3
“ wq,

where the last equality follows again by last-exit decomposition.

Next, we prove that the function gζpzq, z P K, see (5.15), does not depend on the choice of
ζ P BB2 ˆ BB

c
3, up to constants. Recall from (2.1) that LB2pTB3q denotes the time of last visit

to B2 prior to exiting B3.

Lemma A.3. For all δ P p0, 1q, rk`1 ě rkp1` δq, k “ 1, 2, and x, y, z P BB2, v P BB1, w P BBc
3,

cpδq ď
Py

`

XHB1
^TB3

“ v,XLB2
pTB3

q “ z
ˇ

ˇXTB3
“ w

˘

Px
`

XHB1
^TB3

“ v,XLB2
pTB3

q “ z
˘ ď Cpδq.(A.8)

We first isolate the following:

Claim A.4. For all δ P p0, 1q, r3 ě p1` δqr2, all y, z P BB2 and w P BBc
3,

cpδq ¨ Py
`

XTB3
“ w

˘

ď Pz
`

XTB3
“ w

ˇ

ˇTB3 ă
rHB2

˘

ď Cpδq ¨ Py
`

XTB3
“ w

˘

.

Proof. Let V “ BQp0, r2p1`δ
1qq, where p1`δ1q2 “ 1`δ. Since V separates B2 from Bc

3, applying
the strong Markov property at time HV , one obtains that

(A.9) Pz
`

XTB3
“ w, TB3 ă

rHB2

˘

“
ÿ

z1PV

Pz
`

XTB3
“ w, TB3 ă

rHB2 , XHV “ z1
˘

“
ÿ

z1PV

Pz
`

HV ă rHB2 , XHV “ z1
˘

Pz1
`

TB3 ă HB2

ˇ

ˇXTB3
“ w

˘

Pz1
`

XTB3
“ w

˘

.

Using Lemma A.2 we know that the middle term in the second line is at least cpδ1q (and at most
1). Since z1 ÞÑ Pz1pXTB3

“ wq is harmonic in B3, by (A.1) one obtains that the last term is
bounded from above and below by Py

`

XTB3
“ w

˘

, up to constants depending only on δ. Finally
one knows by (A.3) that cpδ1q ď Pz1pTB3 ă HB2qpď 1q. Substituting all of this into (A.9) yields
that the left-hand side of (A.9) is bounded up to constants from above and below by

Py
`

XTB3
“ w

˘

ÿ

z1PV

Pz
`

HV ă rHB2 , XHV “ z1
˘

Pz1
`

TB3 ă HB2

˘

“ Py
`

XTB3
“ w

˘

¨Pz
`

TB3 ă
rHB2

˘

,

which is the claim.

It remains to give the

Proof of Lemma A.3. We first reduce the task to the case x “ y, by applying (A.1) and a
chaining argument to the function x ÞÑ PxpXHB1

^TB3
“ v,XLB2

pTB3
q “ zq, which is harmonic in

B3zB1. Harmonicity holds crucially because v P BB1, which forces the walk to visit B1 prior to
time LB2pTB3q, whence LB2pTB3q ě 1 under Px. This allows to effectively replace the starting
point x by y in the denominator appearing in (A.8).

We now show (A.8) for x “ y, and write

(A.10) Py
`

XHB1
^TB3

“ v,XLB2
pTB3

q “ z
ˇ

ˇXTB3
“ w

˘
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“
Py

`

XTB3
“ w

ˇ

ˇXHB1
^TB3

“ v,XLB2
pTB3

q “ z
˘

Py
`

XTB3
“ w

˘ Py
`

XHB1
^TB3

“ v,XLB2
pTB3

q “ z
˘

By a last-exit decomposition in BB2,

Py
`

XTB3
“ w

ˇ

ˇXHB1
^TB3

“ v,XLB2
pTB3

q “ z
˘

“ Pz
`

XTB3
“ w

ˇ

ˇTB3 ă
rHB2

˘

.

Inserting this into (A.10) and using Claim A.4 completes the proof.

A.2. Large deviation estimate for excursions. In this section, we prove Lemma 5.5 on the
concentration of the soft local times, as well as Lemma 5.6 on the concentration of the number
of excursions, both for random walk and random interlacements. As in §A.1, we assume that
Bk “ Qp0, rkq for k “ 1, . . . 3 with r1 ă r2 ă r3 ă N .

We start by collecting some preliminary large-deviation estimates, which concern the random
walk on the torus T of side length N ě 1 (in dimension d ě 3). Recall the definition of the
successive return times Rk “ Rkp pX,B2, B3q from (5.4) and (5.7) (well-defined when r3 ă N).
In the sequel, we denote by ν the stationary measure of p pXRkqkě1, which is supported on BB2.
To avoid clumsy notation, we identify ν with its projection on the torus (which is the invariant
distribution of pXRkqkě1), and abbreviate Xrs,ts “ pXnqsďnďt in the sequel.

Lemma A.5. For all δ ą 0 and N ą r3 ě p1 ` δqr2 ě 1, the Markov chain pYkqkě0 with
Yk “ XrRk,Rk`1s

has invariant distribution PνpXr0,R1s P ¨q. Moreover,

(A.11) dTV
`

LppYiM qKi“1q, pPνpXr0,R1s P ¨qq
bK

˘

ď CKe´cpδqM ,

for all M,K P N “ t1, 2, . . . u, with L denoting the joint law of pYiM qKi“1 under Px, x P T.

Proof. By definition, ν is the invariant distribution of pXRkqkě1 and since pYnqně1 are inde-
pendent random variables conditionally on pXRkqkě1, one readily concludes that the invariant
distribution of pYkqkě1 is PνpXr0,R1s P ¨q. A claim on the total variation similar to (A.11) but
concerning pXRkqkě0 instead of Y holds by [22, Lemma 2.2], and (A.11) then follows easily. Note
that [22, Lemma 2.2] is stated for the exit chain, i.e. pX

Dkp pX,B1,B2q
qkě0, but the proof for the

entrance points is identical. There it is further assumed that r3 ě 10
?
dr2, but this is owed

to the fact that excursions from square boxes to round boxes are considered. If instead one
considers excursions from square boxes to square boxes as in the present case, the assumption
r3 ě p1` δqr2 for some δ ą 0 is sufficient.

Remark A.6 (Identifying ν). Recalling that e3
2 denotes the projection of the equilibrium measure

eB3
B2

onto T, see above (5.20) and below (2.6) for notation, it follows from [8, Lemma 6.1] that

(A.12) ν “ e3
2

for r3 ă N . Moreover, by [8, eq. (9.4)], one has the exact(!) formula

(A.13) Ee32
rR1pX,B2, B3qs “

`

capB3
pB2q

˘´1
Nd.

The identities (A.12) and (A.13) are needed to precisely match both the number of excursions
and the soft local times between random walk and random interlacements, but are otherwise
unnecessary; cf. Remark 5.7,1).

Let W2,3 denote the set of nearest-neighbors paths in T starting in BB2, hitting BBc
3, and

then ending the next time BB2 is hit. Thus W2,3 represents the state space of the excursion
process pYkqkě0 appearing in Lemma A.5. We now prove the following large deviations estimate
for these excursions, from which Lemmas 5.5 and 5.6 for the random walk will later follow.
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The following setup is tailored to our purposes. We consider pZiqiě0 an i.i.d. sequence of
random variables with values in a measurable space pA,Aq and independent of X (under Px).
For a measurable function F : W2,3 ˆ A Ñ r0,8q we then introduce the random variables
Vi “ F pXrRi,Ri`1s

, Ziq for i ě 0 and for i0 ě 0 and m P N the average

(A.14) V m “ V i0,m “
1

m

m´1
ÿ

i“0

Vi0`i,

Proposition A.7. For all i0 ě 0, δ ą 0, N ą r3 ě p1 ` δqr2 ě 1, the following holds. If for
θ ě 1,

sup
xPT

ExrVi0s ď θ inf
xPT

ExrVi0s ă 8 and

ExrV
k
i0s ď k!θkExrVi0s

k for all x P T, k P N,
(A.15)

then there exist C “ Cpθ, δq ă 8 and c “ cpθ, δq ą 0 such that for all m P N and η P p0, 1q,

sup
xPT

Px

`

|V m ´EνrVi0s| ą ηEνrVi0s
˘

ď Cm exp
 

´ c
a

η2m
(

.

Proof. Let W “ pWiqiě0 be i.i.d. centered random variables each having the law of Vi0 ´EνrVi0s
under Pν and PW denote their joint law. Then, using (A.11) and e.g. the characterization of
dTV in terms of couplings, one obtains for all M,K P N and 1 ď i ď K the bound

dTV
`

L
`

pViM ´EνrVi0sq
K
i“1

˘

, L
`

pWiq
K
i“1

˘˘

ď CKe´cpδqM ,(A.16)

with L governing the V¨’s on the left-hand side referring to their joint law under Px for any
x P T. Assuming m

M ě 2 we have K def.
“ tm{M u ´ 1 ě 1, and by the triangle inequality and a

union bound,

(A.17) Px

`

|V m ´EνrVi0s| ą ηEνrVi0s
˘

ď a1 ` a2 ` a3,

where

a1 “ Px

ˆ

D p P t0, . . . ,M ´ 1u :
ˇ

ˇ

ˇ

K
ÿ

i“1

pVi0`p`iM ´EνrVi0sq
ˇ

ˇ

ˇ
ą
ηmEνrVi0s

2M

˙

,

a2 “ Px

ˆM´1
ÿ

i“0

ˇ

ˇVi0`i ´EνrVi0s
ˇ

ˇ ą
ηmEνrVi0s

4

˙

,

a3 “ Px

ˆ m´1
ÿ

i“M`KM

ˇ

ˇVi0`i ´EνrVi0s
ˇ

ˇ ą
ηmEνrVi0s

4

˙

.

Applying (A.16), the strong Markov property at time Rk for i0 ď k ă i0 `M , a union bound
and letting t “ ηm

2MEνrVi0s, a1 is bounded by

M sup
xPT

Px

ˆ

ˇ

ˇ

ˇ

K
ÿ

i“1

ViM ´EνrVi0s
ˇ

ˇ

ˇ
ą t

˙

ďMPW
ˆ

ˇ

ˇ

ˇ

K
ÿ

i“1

Wi

ˇ

ˇ

ˇ
ą t

˙

` CMKe´cM .(A.18)

Under (A.15), it follows from the Bernstein inequality, see for instance [7, Corollary 2.11] for the
version we use here, that for some constant c ą 0,

(A.19) PW
ˆ

ˇ

ˇ

ˇ

K
ÿ

i“1

Wi

ˇ

ˇ

ˇ
ą t

˙

ď 2 exp

"

´
ct2

Kθ4EνrVi0s
2 ` θ2EνrVi0st

*

;
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here we are implicitly using that the controls on higher moments appearing in the second line of
(A.15) hold with θ2 in place of θ and Eνr ¨ s in place of Exr ¨ s everywhere. Recalling t and that
K ď m

M , one sees that the right-hand side of (A.19) is bounded by expt´cpθqη
2m
M u, and together

with (A.18) this yields that

(A.20) a1 ďMe´cpθq
η2m
M ` CMKe´cM .

Next, we bound a2 for ηm ě CpθqM . To this effect, first note that, combining the assumptions
in (A.15) and the strong Markov property, one readily obtains that θ´1EνrVi0s ď ExrVi0s ď
θEνrVi0s. Feeding this into a2, a union bound and the strong Markov property (applied at time
Ri) then give that if ηm ě CpθqM ,

a2 ďM sup
xPT

Px

ˆ

ˇ

ˇVi0 ´ExrVi0s
ˇ

ˇ ě
cηmExrVi0s

4M

˙

ďM exp

ˆ

´
c1pθqηm

M

˙

,(A.21)

where the second inequality is obtained by Bernstein’s inequality similarly as in (A.20) forK “ 1.
Similarly, since M `KM ě m´M ` 1 by definition of K, we have that if ηm ě CpθqM ,

a3 ďMe´
cpθqηm
M .(A.22)

Choosing M “ r
a

η2ms, noting that ηm ě CpθqM and m{M ě 2 hold if ηm ě C 1pθq, which is
no loss of generality, we conclude by combining (A.17), (A.20), (A.21) and (A.22).

We now have all the tools to give the proof of Lemma 5.5 in the random walk case.

Proof of Lemma 5.5 (Random walk case). One applies Proposition A.7 with the following choices.
Let η “ ε. Recalling GRW from (5.19), one takes Zi “ pξi, Vi “ pξigζipzq, and notes that ζi is
XrRi,Ri`1s

-measurable, cf. (5.4)-(5.5). Then with V m “ V 1,m, i.e. i0 “ 1 in (A.14), one has
mV m “ GRW

m pzq, see (5.19), and by (A.12), it follows that EνrV1s “ ḡpzq, see (5.20). Moreover
Exrξ

j
1s “ j! since ξ1 is an exponential random variable with parameter one, and one readily

deduces that the assumption (A.15) holds for some θ “ θpδq ă 8 by Lemmas A.2 and A.3, see
also (5.15) and (5.16), if r3 ě p1` δqr2 and r2 ě p1` δqr1. The claim follows.

The proof of Lemma 5.6 for the random walk involves another application of Proposition A.7.
Verifying the relevant condition (A.15) in that case will rely on the following result.

Lemma A.8. For any δ ą 0 and r ď N , abbreviating Q “ Qp0, rq, one has

sup
xPT

Ex
“

HQ

‰

ď C ¨N2
´N

r

¯d´2
,(A.23)

inf
xPTzQp0,rp1`δqq

Ex
“

HQ

‰

ě cpδq ¨N2
´N

r

¯d´2
.(A.24)

Proof. We will often use the classical fact that for all δ P p0, 1q, x P Qp0, rp1´ δqq and r ă N ,

(A.25) cpδqr2 ď ExrTQs ď Cr2,

which follows e.g. by observing that ExrTQs “ E
rxrTQp0,rqs “

ř

yPQp0,rq gZdzQp0,rqprx, yq, where
rx P Qp0, rq Ă Zd is such that πprxq “ x, and performing the sum using (A.2) (the upper bound
in (A.2) remains valid without restriction on x and y).
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We now first assume that r ě N
100 . In this case (A.24) is immediate since ExrHQs ě

ExrTQpx, δ
2
rqs ě cpδqN2 by (A.25) and assumption on r. As to (A.23), writing the expected

value in terms of its tail probabilities, one readily obtains for any λ ě 1 that

(A.26) ExrHQs ď λN2
`

1`
ÿ

kě1

PxrHQ ą kλN2s
˘

.

One then argues that for all x P T, with rx as above and rQ “ Qprx, λ1{4Nq,

PxpHQ ď λN2q “ P
rxpHπ´1pQq ď λN2q ě P

rxpHπ´1pQq ď T
rQ
q ´ cλ´1{2 ě c0

upon choosing λ large enough; here the first lower bound follows from (A.25) and a first-moment
estimate and the second one simply by observing that π´1pQq X rQ always contains at least one
translate of Qp0, rq in its bulk, i.e. at distance at most N from rx, and so since r ě cN it follows
from (A.3) and monotonicity that the hitting probability P

rxrHπ´1pQq ď T
rQ
s admits a uniform

lower bound. Feeding the resulting estimate into (A.26) and applying the Markov property yields
that the sum on the right-hand side is bounded by

ř

kě1p1´ c0q
k ă 8, and (A.23) follows.

Assume now that r ď N
100 . Consider the set V “ BQp0, N20q. As we now explain, it is enough

to argue that

(A.27) c ¨N2
´N

r

¯d´2
ď Ey

“

HQ

‰

ď C ¨N2
´N

r

¯d´2
, y P V ;

indeed, once (A.27) is shown, the bound (A.23) immediately follows by applying the strong
Markov property at time HV , by which ExrHQs ď ExrHV s ` supyPV EyrHQs, using (A.27) to
bound the second term and (A.23) in the case already treated to deduce that supxPTExrHV s ď

CN2. To obtain (A.24), one writes instead ExrHQs ě PxpHQ ą HV q infyPV EyrHQs. The
desired lower bound now follows from (A.27) and since by (A.3)

PxpHQ ą HV q ě inf
zPZdzQp0,rp1`δqq

PzrHQp0,rq “ 8s ě cpδq.

It thus remains to show (A.27), under the assumption r ď N
100 . Throughout the rest of this

proof we abbreviate Rk “ RkpX,Qp0,
N
10q

c Y Q,V cq and Dk “ DkpX,Qp0,
N
10q

c Y Q,V cq, see
(5.4) whose definition can easily be extended from boxes in Zd to general sets in T, the system
of successive stopping times corresponding to the excursions from Qp0, N10q

c YQ to V. Let

(A.28) K “ mintk ě 1 : XRk P Qu,

which counts the number of excursions of type XrDk,Rk`1s
until the first one that visits Q. For all

y P V one obtains by a reasoning similar to (A.4), using the assumption on r, that PypXR1 P Qq
is comparable with p rN q

d´2, which together with the Markov property, is readily seen to imply
that K stochastically dominates/is stochastically dominated by geometric random variables with
corresponding parameters. In particular, it follows that for all y P V ,

(A.29) c ¨
´N

r

¯d´2
ď EyrKs ď C ¨

´N

r

¯d´2
,

which is all we will use in the sequel. Now, by definition of Rk and Dk, for any y P V , one has
that Py-a.s. HQ “ RK , hence

(A.30) Ey
“

HQ

‰

“ Ey

”

ÿ

1ďkďK

pRk ´Rk´1q

ı
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Owing to the strong Markov property, with Fk “ σpX¨^Rkq, since tK ě ku P Fk´1, one has that

(A.31) Ey

”

ÿ

1ďkďK

pRk ´Rk´1q

ı

“
ÿ

kě1

Ey
“

pRk ´Rk´1q1tK ě ku
‰

“
ÿ

kě1

Ey
“

EyrpRk ´Rk´1q|Fk´1s1tK ě ku
‰

and for any y P V and k ě 1

EyrpRk ´Rk´1q|Fk´1s “ Ey
“

EXRk rR1s
‰

ď sup
vPV

EvrTQp0,N
10
q
s ` sup

wPT
EwrHV s ď CN2,

which follows on account of (A.25) and (A.23) for the choice r “ N
20 (already treated). One

also has a corresponding deterministic lower bound of the same order by (A.25), since by the
Markov property, Rk ´ Rk´1 under PypXDk´1

“ y1 |Fk´1q, y
1 P V, is stochastically dominated

by TQpy1,N
50
q
, using the fact that r ď N

100 . Feeding the above deterministic upper/lower bound
on the conditional expectation into (A.31) and using (A.29) to bound the resulting EyrKs, one
deduces (A.27) from (A.30).

With Lemma A.8 at hand, we proceed with the:

Proof of Lemma 5.6 (Random walk case). We aim to apply Proposition A.7 with the choices
i0 “ 0, Vi “ Ri`1´Ri, so that Vi0 “ R1 and mV m “ Rm for any m ě 1 in view of (A.14). Now
pick η “ 1´ 1

1`ε and m “ rp1` εquM s with

(A.32) M “
Nd

EνrV0s
,

which equals the value defined by (5.28) on account of (A.12)-(A.13). Note in passing that
(A.32) is very intuitive (more so than its pendant (5.28)): uM with M as in (A.32) is the total
time uNd for the walk, divided by the ‘average’ time EνrV0s consumed by an excursion, whence
M counts the ‘average’ number of excursions. With the above choices,

P0

`

NRWpB2, B3, uq ě p1` εquM
˘

(5.9)
ď P0

`

Rrp1`εquMs ď uNd
˘

ď P0

`

V m ď p1´ ηqEνrV0s
˘

,

with Bk as in (5.23). Similarly, taking m1 “ tp1´ εquM u` 1 and η1 “ ´1` 1
1´ε{2 , one obtains

that if εuM ě 2

P0

`

NRWpB2, B3, uq ď p1´ εquM
˘

ď P0

`

V m1 ě p1` η
1qEνrV0s

˘

.

Since by monotonicity, we may assume that εuM ě 2 and ε ď 1{2, the claim immediately follows
by means of Proposition A.7, provided we show that (A.15) holds, which we proceed to do with
the help of Lemma A.8.

Recalling the definition of R1p“ V0q from (5.4), identifying Bk with its projection onto T,
one has that R1 ě TB3 holds Py-a.s. for any y P T. Thus, applying the strong Markov property
at time TB3 , and combining (A.23) and the exit time estimate EyrTB3s ď Cr2

3, valid for all x P T
(cf. (A.25)), one sees that

(A.33) sup
yPT

EyrV0s ď sup
yPB3

EyrTB3s ` sup
zPT

EzrHB2s ď C
´

r2
3 `

Nd

rd´2
2

¯

ď C 1
Nd

rd´2
2

.
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In particular, this implies that V0 P L
1pPyq for any y P T, as required by (A.15). On the other

hand, combining the Markov property and (A.24), it follows that

(A.34) inf
yPT

EyrV0s ě inf
zRB3

EzrHB2s ě cpδq
Nd

rd´2
2

.

Combining (A.33) and (A.34), the condition in the first line of (A.15) immediately follows, for
all suitably large θ ě Cpδq. Regarding higher moments, noting that by the Markov property
V0 ´ TB3 has the same law as HB2 starting from some random point of Bc

3, and applying the
bound pa` bqk ď 2kpak ` bkq valid for all a, b ě 0, yields that for all x P T, and k ě 2,

(A.35) ExrV
k

0 s ď 2k
`

ExrT
k
B3
s ` sup

yRB3

EyrH
k
B2
s
˘

.

Applying a similar argument as e.g. in [27, (2.21)], one obtains that for all x P T,

(A.36) ExrT
k
B3
s ď k! sup

yPT
EyrTB3s

k
(A.25)
ď k!Ckr2k

3

(A.34)
ď k!C 1pδqk inf

yPT
EyrV0s

k.

Similarly, using the fact that V0 ě HB2 holds Py-a.s. for any y P T, one finds that for all y R B3,

(A.37) EyrH
k
B2
s ď k! sup

xPT
ExrHB2s

k ď k! sup
xPT

ExrV0s
k ď k!Cpδqk inf

xPT
ExrV0s

k,

where the last step follows from the first moment comparison in (A.15) already established.
Feeding (A.36) and (A.37) into (A.35) completes the verification of (A.15), for suitably large
choice of θ “ θpδq P p1,8q, and with it the proof.

We now turn to the proofs of Lemmas 5.5 and 5.6 for random interlacements. The starting
point is the following large deviation estimate, similar to Proposition A.7 above, but simpler.
For finite B Ă Zd let WB denote the set of infinite nearest-neighbor paths in Zd starting in BB
escaping all finite sets in finite time. Recalling (2.11) with B “ Qrp0q, r ě 1, pXjqjě1 denotes in
the sequel the random walks on Zd corresponding to the restriction of the interlacement process
to Qrp0q, which are i.i.d. with law Per , where er ” eQrp0q, and at level u the number Nu

r ” Nu
Qrp0q

of trajectories hitting Qrp0q is a Poisson random variable with parameter ucappQrq, independent
of pXjqjě1. Similarly as above (A.14), we consider an pA,Aq-valued sequence pZjqjě1, which we
assume to be declared under PI and independent of ppXjqjě1, N

u
r q, and study for measurable

F : WQr ˆAÑ r0,8q, u ą 0 and r ě 1 the averages

(A.38) V u “
1

ucappQrq

Nu
r

ÿ

j“1

Vj , Vj “ F pXj , Zjq.

(with V u “ 0 by convention whenever Nu
r “ 0).

Proposition A.9. For all r, θ ě 1, there exist c “ cpθq, C “ Cpθq P p0,8q such that, if

(A.39) EIrV1s ă 8 and EI
“

V k
1

‰

ď k!θkEI rV1s
k , for all k ě 2,

then for all u ą 0 and η P p0, 1q, one has

(A.40) PI
`

|V u ´ EIrV1s| ą ηEIrV1s
˘

ď C exp
 

´ cη2ucappQrq
(

.
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Proof. Under (A.15), it follows from Bernstein’s inequality, see for instance [7, Corollary 2.11]
for the version we use here, that for all δ P p0, 1q and integers m ě 1 (see around (A.19) for a
similar argument)

(A.41) PI
´
ˇ

ˇ

ˇ

1

m

m
ÿ

j“1

Vj ´ EIrV1s

ˇ

ˇ

ˇ
ą δEIrV1s

¯

ď 2 exp
 

´ cpθqδ2m
(

,

Using a Chernoff bound for Poisson random variables, see for instance [7, p.21-23] combined with
the inequality p1` εq logp1` εq ´ ε ě ε2{4 for all ε P p´1, 1q, one has for all u ą 0 and ε P p0, 1q

PIp|Nu
r ´ ucappQrq| ą εucappQrqq ď exp

 

´ cε2ucappQrq
(

.

Combining this with (A.41), applied with pε, δ,mq chosen either as pη{2, η{p2 ` ηq, tup1 `
η{2qcappQrquq or pη{2, η{p2 ´ ηq, rup1 ´ η{2qcappQrqsq, and assuming that ηucappQrq ě 2 and
η ă 1{4 which is no loss of generality, (A.40) readily follows by means of a suitable union
bound.

Remark A.10. Similarly as in Remark A.6 one can derive an exact formula for a key quantity
associated to random interlacements. First, defining T “ T pX,B2, B3q as in (5.10), by [8,
eq. (6.9)-(6.11)] we have

(A.42) EeB2

”

T
ÿ

i“0

1tXRipX,B2,B3q “ xu
ı

“
eB3
B2
pxq

cappB2q
for all x P B2.

Note that compared to [8] we started the sum at i “ 0 instead of i “ 1, which is due to the fact
that we started the definition of Ri from R0 “ 0, see (5.4), while in the paragraph above (4.8)
in [8] it starts from R1 “ 0. In particular in view of (A.12), the left-hand side of (A.42) is crucially
proportional (up to projection on the torus) to the invariant distribution of the stopping times Ri
for the random walk on the torus. Note that we only use these exact formulas to prove that the
means in Lemmas 5.5 and 5.6 are the same for random interlacements and the random walk, and
thus that the process ωpxq is an interlacement process in (5.1) under rP0. In particular, if one is
only interested in the proof of all our results for random interlacements, these formulas are never
required.

Similarly as for the random walk, we are now ready to prove Lemmas 5.5 and 5.6 for random
interlacements (starting with the latter), using Proposition A.9 instead of Proposition A.7.

Proof of Lemma 5.6 (Random interlacements case). For r “ r2 take Vj “ T j ` 1 in (A.38),
see (5.10), where T j “ T jpB2, B3q is defined as in (5.12) but for the walk Xj now starting in B2,
and η “ ε. With these choices V u “ pucappQrqq

´1NRIpω,B2, B3, uq. Note that we consider
here T j ` 1 instead of T j since the walks Xj in (5.12) were started outside of B3, and thus
the times Ri, see (5.4), are shifted by 1 compared to the corresponding walk started in B2. It
moreover follows from (A.3) and monotonicity that the random variable T 1 is dominated by a
geometric random variable of parameter p for some p “ ppδq ą 0, which readily implies that
condition (A.39) is verified for some θ “ θpδq. Moreover by the lower bound in (A.3), we have
capB3

pB2q ď CpδqcappB2q. Since EIrV1s “ EeB2
rT pX,B2, B3qs ` 1 the claim follows by an

application of (A.40) and summing (A.42) over x P B2.

Proof of Lemma 5.5 (Random interlacements case). Take r “ r2 and denote again by T j “
T pXj , B2, B3q the total number of excursions that the walk Xj performs across the annulus
B3zB2, see (5.10), and let pζipXj , B2, B3qqiě0 be the clothesline process associated to Xj , see
(5.5) (whose definition can clearly be extended to the case i “ 0), where pXjqjě1 is now the set
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of walks in the interlacements process ωB2 that hit B2, started after first hitting B2. Let pξ
j
i refers

to pξk as appearing in (5.22) for the unique choice of k such that k “ i`
ř

1ďnăjpT
n ` 1q, which

is an independent and i.i.d. sequence of exponential random variables with mean 1. Define for
some fixed z P Σ

Vj “
ÿ

0ďiďT j

pξji gζipXj ,B2,B3q
pzq.

As in the random walk case, by assumption on the rk’s and Lemmas A.2 and A.3, one has that
gζpzq ď Cpδqgζ1pzq for all ζ, ζ 1 P BB2 ˆ BB

c
3 and z P Σ. One can then deduce that assumption

(A.39) holds similarly as in the proof of Lemma 5.6 for random interlacements, for suitable
choice of θ “ θpδq P p1,8q. Moreover, it follows from (5.5), (5.20), (A.42) and a small calculation
involving the Markov property that

EIrV1s “ ḡpzq ¨
capB3

pB2q

cappB2q
.

Finally, for all u1 ă u2 we have by the definitions of NRI in (5.12) and GRI
¨ in (5.22) (note that

similarly as before the clotheslines in these definition are shifted by 1 since the walk therein is
started outside of B3 instead of inside B2)

NRIpω,B2, B3, u1q ď m ď NRIpω,B2, B3, u2q ùñ u1V u1 ď
GRI
m pzq

cappB2q
ď u2V u2 .

Taking u1 “ m{pMp1 ` ε{3qq and u2 “ m{pMp1 ´ ε{3qq we conclude by combining (A.40) for
u “ u1, u2 and η “ ε{3, with the concentration of NRI supplied by Lemma 5.6, for u “ u1, u2

and ε{3 in place of ε, as well as the inequality capB3
pB2q ď CcappB2q.

Remark A.11 (Extensions). As with all results of Section 5, both Lemmas 5.5 and 5.6 involve
square boxes. In particular, this means for instance that within the setup of Theorem 5.1 or
Corollary 5.2, no `2-smoothing of boxes as used e.g. in [8] is necessary. This degree of flex-
ibility is relevant for applications to more general classes of graphs (for which a meaningful
notion of smoothing is often not even clear) under suitable hypotheses (e.g. polynomial volume
growth, polynomial decay of the Green function and the validity of an elliptic Harnack inequality,
cf. §A.1), to which the above arguments can likely be extended.

B Appendix: admissible sets

As explained below Theorem 1.3, an important question is to determine which sets are admissible,
i.e. belong to AT in (1.24), for these are precisely the ‘patterns’ that can be seen as part of Lα for
some α ą 1

2 . We classify these sets in Theorem B.1 below. Once this is established, one readily
deduces Corollary 1.4 from Theorem 1.3; the short proof appears at the end of this appendix.

Let

(B.1) AZd “ tK Ă Zd : K ‰ ∅, cappKq ď 2
gp0qu

so that, in view of (1.19), (1.24), (2.10) and our definition of the capacity for subsets of T, see
below (2.3), the family AT corresponds precisely to projections onto T of sets belonging to AZd
when N ě C.

Theorem B.1 (Admissible sets).

AZd “ tK Ă Zd : |K| ď 2u, for all d ě 4, and

AZ3 “ tK Ă Zd : |K| ď 2 or |K| “ 3 and K is connectedu.
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The following lemma will be used to reduce to the cases d P t3, 4u when proving Theorem B.1.
In the sequel we add subscripts Zd to various quantities such as capp¨q or gp¨q to highlight their
dependence on the underlying graph.

Lemma B.2. For all d ě 3 and finite K Ă Zd, the function

d1 P td, d` 1, . . . u ÞÑ
capZd1 pK ˆ t0ud

1´dq

capZd1 pt0uq

is non-decreasing.

Proof. To stress its dependence on dimension, we write PZd
x for the canonical law of simple

random walk on Zd starting from x P Zd. For all x, y P K writing x1 “ px, 0, . . . , 0q and
y1 “ py, 0, . . . , 0q P Zd1 one has

gZdpx, yq

gZdp0, 0q
“ PZd

x pHy ă 8q “ PZd1
x1 pHtyuˆZd1´d ă 8q ě PZd1

x1 pHtyuˆt0ud1´d ă 8q “
gZd1 px

1, y1q

gZd1 p0, 0q
.

The claim follows using a well-known variational characterisation of the capacity, see [31, (1.61)],
whose proof easily extend to infinite transient graphs.

Our next result will be used as a further reduction step, by which fully determining AZd in
(1.24) will effectively boil down to computing the capacities of a small number (at most ten) of
sets. To simplify notation we will from now for each d1 ď d identify Zd1 with Zd1 ˆt0ud´d1 Ă Zd.
Recall the sets K1 “ tp0, 0q, p0, 1q, p0, 2qu and K2 “ tp0, 0q, p0, 1q, p1, 0qu from (1.25), viewed
as subsets of Z2 ˆ t0ud´2 for d ě 3 according to our convention, and which correspond to all
connected sets with cardinality three. Further, let

(B.2)

A1 “ tp0, 0, 0q, p0, 2, 0q, p0, 1, 1qu, A2 “ tp0, 0, 0q, p0, 2, 0q, p0, 3, 0qu,

A3 “ tp0, 0, 0q, p1, 1, 0q, p0, 3, 0qu, A4 “ tp0, 0, 0q, p0, 2, 0q, p1, 2, 0qu,

A5 “ tp0, 0, 0q, p1, 1, 0q, p1, 2, 0qu, A6 “ tp0, 0, 0q, p0, 2, 0q, p1, 1, 1qu,

A7 “ tp0, 0, 0q, p1, 1, 0q, p1, 1, 1qu, A8 “ tp0, 0, 0q, p0, 0, 1q, p0, 1, 0q, p0, 1, 1qu.

The following result mirrors Theorem B.1. Its first part (B.3) will be enough to treat the cases
d ě 4; the more refined (B.4) will be used to deal with the case d “ 3. In what follows, K and
K 1 are called isomorphic if K can be obtained from K 1 by lattice symmetries.

Proposition B.3 (d ě 3, K Ď Zd, |K| ě 3).

inf
K

cappKq ě min
i“1,2

cappKiq,(B.3)

Ăinf
K

cappKq ě min
1ďiď8

cappAiq,(B.4)

where ĂinfK refers to a restricted infimum over sets K not isomorphic to K1 or K2.

Proof. We start by making the following observation, which will be used extensively throughout
the proof. Using again the variational characterization [31, (1.61)] of capp¨q, one sees that,

(B.5) if K,K 1 Ă Zd are such that there exists a bijection ϕ : K Ñ K 1 with gpx, yq ď
gpϕpxq, ϕpyqq for all x, y P K, then cappKq ě cappK 1q.

We proceed to show (B.3). By monotonicity of K ÞÑ cappKq, it is sufficient to prove the claim
for a set K with |K| “ 3. Write K “ tx, y, zu and without loss of generality suppose that
|x´ z|1 ě 2. Then by Lemma 2.1 and translational and rotational invariance we have

gpx, zq ď sup
v:|v|1“2

gp0, vq “ pgpp0, 0q, p0, 2qq _ gpp0, 0q, p1, 1qq.
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Similarly,

pgpx, yq _ gpy, zqq ď sup
v:|v|1“1

gp0, vq “ gpp0, 0q, p0, 1qq “ gpp0, 1q, p0, 2qq “ gpp0, 1q, p1, 1qq.

So if gpp0, 0q, p0, 2qq ě gpp0, 0q, p1, 1qq, then (B.5) applies with K 1 “ tp0, 0q, p0, 1q, p0, 2qu “ K1,
ϕpxq “ p0, 0q, ϕpyq “ p0, 1q and ϕpzq “ p0, 2q and yields that cappKq ě cappK1q. If instead
gpp0, 0q, p0, 2qq ď gpp0, 0q, p1, 1qq, then (B.5) applies similarly with K 1 “ tp0, 0q, p0, 1q, p1, 1qu “
K2 to give cappKq ě cappK2q. Overall, (B.3) follows.

We now show (B.4), and first assume to this effect that |K| “ 3 and K is not isomorphic
to K1 or K2. Writing K “ tx, y, zu, one notices since K is not isomorphic to K1 or K2, then
unless K is isomorphic to A1, in which case cappKq is evidently bounded from below by the
right-hand side of (B.4), the set K must contain two points at `1-distance at least three, say
x and z. Without loss of generality suppose that |x ´ y|1 ě 2 (otherwise |y ´ z|1 ě 2 by the
triangle inequality). Then by Lemma 2.1,

gpx, zq ď sup
v:|v|1“3

gp0, vq, gpx, yq ď sup
v:|v|1“2

gp0, vq, gpy, zq ď sup
v:|v|1“1

gp0, vq.

We then consider three different cases depending on which v P tp0, 3, 0q, p1, 2, 0q, p1, 1, 1qu achieves
supv:|v|1“3 gp0, vq. Then for each possible v we consider two different cases depending on which
v1 P tp0, 2, 0q, p1, 1, 0qu achieves supv1:|v1|1“2 gp0, v

1q. Note also that supv2:|v2|1“1 gp0, v
2q must be

achieved at gpp0, 0, 0q, p0, 0, 1qq by symmetry. If for instance the previous suprema are achieved
at v “ p0, 3, 0q and v1 “ p0, 2, 0q, (B.5) implies cappKq ě cappA2q. Considering all five other
possible cases gives us that if K is not isomorphic to K1 or K2, then

cappKq ě min
1ďiď7

cappAiq,

which completes the proof in the case |K| “ 3. Suppose next that |K| ě 4. It suffices to
prove that assuming cappKq ă miniď7 cappAiq, then cappKq “ cappA8q. The assumption that
cappKq ă miniď7 cappAiq implies that all K 1 Ď K with |K 1| “ 3 must satisfy cappK 1q ă

miniď7 cappAiq. From the proof above for |K| “ 3 we can now deduce that any such K 1 must
be isomorphic to either K1 or K2. By an elementary geometric argument, it then follows that
the only possible shape for K for which this is possible is K “ A8 modulo isomoprhisms. Hence
cappKq “ cappA8q, which finishes the proof.

Combining Lemma B.2 and Proposition B.3 with the next result, we will soon see that in
order to identify the set AZd for all d ě 3, it will be enough to compute the Green’s function gp0q
and the capacities of the sets K1 and K2 from (1.25) in dimensions three and four, as well as
the capacities of the sets Ai, i P t1, . . . , 8u from (B.2) in dimension three. The following lemma
gathers these numerical computations, and, in doing so, also isolates the parts of the argument
which rely on computer-assisted methods. Note that we express our numerical results with an
absolute error of 10´30 as this might be useful in the future, but we will actually only need a
precision 10´3.

Lemma B.4. With an absolute error of at most 10´30, one has when d “ 3

gZ3p0q “ 1.516386059151978018156012159681

capZ3pK1q _ capZ3pK2q “ 1.271113197748638670916474203095

min
1ďiď8

capZ3pAiq “ 1.335471948363948449723770501931

and when d “ 4

gZ4p0q “ 1.239467121848481712678697664859

capZ4pK1q ^ capZ4pK2q “ 1.849398784221098051683201012328.
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Before explaining how the values in Lemma B.4 are obtained, let us conclude the proof of
Theorem B.1.

Proof of Theorem B.1. We first observe that the inclusion

(B.6) AZd Ą tK Ă Zd : 0 ă |K| ď 2u

holds true for all d ě 3 on account of (2.6). We now proceed in increasing order of difficulty,
and start with the case d “ 4. By Lemma B.4 we have that capZ4pK1q ^ capZ4pK2q ě 1.84 ą
1.62 ě 2{gZ4p0q. Using (B.3), we deduce that there are no sets K P AZ4 with |K| ě 3. It follows
that the inclusion in (B.6) is in fact an equality.

Next when d ě 5, one deduces from Lemma B.2 and the previous case that gZdp0qpcapZdpK1q^

capZdpK2qq ě gZ4p0qpcapZ4pK1q ^ capZ4pK2qq ą 2. Using (B.3), we can conclude similarly as
before.

Finally, assume that d “ 3. Then by Lemma B.4 one has

capZ3pK1q _ capZ3pK2q ď 1.28 ă 1.31 ď
2

gZ3p0q
and min

1ďiď8
capZ3pAiq ě 1.33 ą 1.32 ě

2

gZ3p0q
.

Using (B.4), we deduce that the only sets K P AZ3 with |K| ě 3 are isomorphic to K1 and K2.
Together with (B.6), the claim follows.

We now explain in detail how Lemma B.4 is obtained. The first step in our algorithm consists
in computing the Green’s function gpx, yq for any x, y belonging to the sets for which we want
to compute the capacity, which will be enough in view of (B.10) below. We follow the strategy
developed in [18, Appendix B]. Let us provide some details for the reader’s convenience. The
main idea is to use the formula

(B.7) gpxq “

ż 8

´8

Fxpuqdu, where Fxpuq “ deu
d
ź

k“1

expp´euqI|xk|pe
uq for all x P Zd,

and Ikptq denotes the modified Bessel function of the first kind with parameter k at time t. The
formula (B.7) is a simple consequence of [23, (2.10)] and the substitution u ÞÑ deu. In [18] the
integral in (B.7) is approximated by a finite sum in five steps, which we now summarize.

1) Replace the integral in (B.7) by the Riemann sum h
ř8
m“´8 Fxpmhq for some small h ą 0

to be chosen later. We denote the absolute error made in this step by Error1ph, dq, which
corresponds to [18, (B.64)] for the choice s “ arctanp2π{hq.

2) Remove h
ř´pM`1q
m“´8 Fxpmhq in the previous Riemann sum, for some large M to be chosen

later. We denote the absolute error made in this step by Error2ph, d,Mq, cf. [18, (B.68)].
Note in particular that Error1 and Error2 are uniform in x P Zd.

3) Replace h
ř8
m“M`1 Fxpmhq in the previous Riemann sum by

d

p2πq
d
2

h exp
`

´ pM ` 1qpd2 ´ 1qh
˘

1´ exp
`

´ pd2 ´ 1qh
˘ .

We denote the absolute error made in this step for any |x|8 ď N by Error3ph, d,M,Nq,
which corresponds to [18, (B.72)]. Note that in [18, (B.72)] it is assumed that N ď 54 and
Mh ě 45, as will be the case for us in (B.9).
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4) For some large T ą 0 and J P N with T ď J{2 to be chosen later, replace the occurrence
of e´tIkptq (part of Fx) in the remaining finite sum by T pt, k, Jq for each t ď T , where

T pt, k, Jq “ e´t
ˆ

t

2

˙k J
ÿ

j“0

pt2{4qj

j!pj ` kq!
.

The relative error made in this step is Error4pT, Jq, which is uniform in k; it corresponds
to [18, (B.40)].

5) For some rJ P N to be chosen later, replace e´tIkptq by Apt, k, rJq for each t ą T and k ď N,
where

Apt, k, rJq “
1

?
2πt

rJ
ÿ

j“0

p´1qjpk, jq

p2tqj
, where pk, jq “

1

4jj!

j
ź

i“1

p4k2 ´ p2i´ 1q2q.

We denote the relative error made in this step by Error5pT, rJ,Nq, which corresponds to
[18, (B.7) and (B.46)-(B.47)].

Combining all these steps one can approximate gZdpxq by

rgpx, d, h,M, T, J, rJq
def.
“

M
ÿ

m“´M

dhehm
d
ź

k“1

´

T pemh, |xk|, Jq1emhďT `Ape
mh, |xk|, rJq1emhąT

¯

`
d

p2πq
d
2

h exp
`

´ pM ` 1qpd2 ´ 1qh
˘

1´ exp
`

´ pd2 ´ 1qh
˘ .

The function rg consists of finite sums and products of usual functions, and can thus be ap-
proximated using a computer with high precision. Such computations were performed in high
dimensions in [17, Section 5] using a Mathematica notebook called “SRW.nb” available at [16].
We modified this notebook to include as well the computation of the capacity, and a version
called “Cap.nb” is available at [26]. One still needs to choose the parameters h,M, T, J and rJ.
Since gZdp0q ď 2, we have for all x P Zd with |x|8 ď N

|gpxq ´ rgpx, d, h,M, T, J, rJq| ďError1ph, dq ` Error2ph, d,Mq ` Error3ph, d,M,Nq

` 2
`

p1` Error4pT, Jq _ Error5pT, rJ,Nqqd ´ 1
˘

.
(B.8)

One can find the exact formulas for these errors in the file “Errors.nb”, also available at [26],
where they are also computed. To make these errors small, one typically needs to choose h
small, and hM, T, J{T and rJ large. Choosing

(B.9) N “ 3, d P t3, 4u, h “
76

630
, M “ 630, T “ 80, J “ 139 and rJ “ 30

we obtain that the total error in (B.8) is at most 10´32. We then compute the values of rg for
these parameters and any x appearing in the sets from Lemma B.4, which are stored in the file
“SRWIntegralsData.nb”.

Let us now briefly explain how the capacities can be deduced from these Green’s functions.
For each K Ă Zd, denoting by GK the matrix pgpx, yqqx,yPK , by eK the vector peKpxqqxPK and
by 1 the vector of size |K| with all coordinates equal to one, we have by (2.4)

(B.10) GKeK “ 1.
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Once GK is known, one can thus use Mathematica again to solve the linear system (B.10), which
yields the equilibrium measure and the capacity after summation. Note that we do not know
the values of GK , but only their approximate values rGK with | rGKpx, yq´GKpx, yq| ď 10´32 for
each x, y P K. Denoting by reK the computed solution of rGKreK “ 1, we have eKpxq ´ reKpxq “
G´1
K p

rGK ´GKqreKpxq. Using (1.38) and Proposition 1.11 in [31], one can moreover easily show
that

ř

x,yPK |G
´1
K px, yq| ď 2|K|, and for our choices of K one easily deduces that the values we

obtain for the capacity have an error of at most 5 ¨ 10´31. This solution to the system (B.10)
is also implemented in our Mathematica notebook “Cap.nb”, and the results are stored in the
file “SRWCapacityData.nb”. Running this program, which should take under fifteen minutes on
modern computers, finishes the proof of Lemma B.4.

Remark B.5. In order to check the consistency of our results, let us also mention that the value
of gZ3p0q can alternatively also be computed using the formula from [23, (2.11)]. This formula
corresponds to three times the integral I3 from [33], whose approximate value can for instance
found at http://oeis.org/A091672. The difference between the value obtained by this method
and the value obtained by our Mathematica notebook is 2.8 ¨ 10´33, which is consistent with our
error of 10´32. Note that this error seems to mainly come from the term Error2 in (B.8).

We conclude this appendix with the short

Proof of Corollary 1.4. Let η ą 0 be small enough so that 1
2 ` η ă α˚pK1q ^ α˚pK2q when

d “ 3 and 1
2 ` η ă α˚ when d “ 4 (with α˚ as in (1.10)). Now fix any two-point set K such that

1
2 ă α˚pKq ă

1`η
2 and that there existsD ă 8 verifying for any x, y P T that α˚pKq ă α˚ptx, yuq

if and only if |x´y|1 ď D. Such a set can always be found since α˚ptx, yuq Œ 1
2 as |x´y|1 Ñ8,

and since px, yq ÞÑ α˚ptx, yuq is decreasing in |x´ y|1 by (2.1) and (2.6).
Consider now first the case d “ 3. Applying Theorem 1.3 (specifically, the first line of (1.22))

to this choice of K and with α “ 1
2 ` ηpą α˚pKqq yields a coupling Q with the property (1.28)

upon identifying D¨ with B¨K . In view of (1.20), (1.24), the condition on η and by Theorem B.1,
the patterns sampled independently as part of Dα for α ą 1`η

2 are precisely of the form iq-iiiq
in Corollary 1.4.

Let now Dα
´ be obtained from Dα by removing all sets A included in (1.20) corresponding to

images of Ki by torus isomorphisms for any i P t1, 2u. By Lemma 6.4 applied with K “ Ki one
knows that limN QpDKipL

1
2
`ηq ě N cpηqq “ 1 for some cpηq ą 0. On the other hand, by a similar

calculation as below (7.15) one sees that limN QpDKipD
1`η
2
´ q ě N cpηqq “ 0. It follows that the

limit in (1.28) vanishes if one replaces D¨ by D¨´.
Finally, if d ě 4, the above coupling Q satisfies (1.28) but does not include patterns of

type iiiq on account of Theorem B.1. However, including images A by torus isomorphisms of
Ki for i “ 1, 2 independently with probability pαpAq for α ą 1

2 makes no difference. Indeed by
Markov’s inequality, the probability to sample such A in QN is bounded by CNdPpK1 Ă Lαq Ñ 0
as N Ñ8 on account of (6.6) since α

α˚pK1q
ą 1 for α ą 1

2 when d ě 4.
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