PHASE TRANSITION FOR THE LATE POINTS OF RANDOM WALK

Alexis Prévost!, Pierre-Francois Rodriguez? and Perla Sousi?

Abstract

Let X be a random walk on the torus of side length /N in dimension d > 3 with uniform
starting point, and t.,, be the expected value of its cover time, which is the first time
that X has visited every vertex of the torus at least once. For a > 0, the set L of a-late
points consists of those points not visited by X at time at.o,. We prove the existence of
a value a, € (3,1) across which £ trivialises as follows: for all @ > o, and € > N—¢
there exists a coupling of L% and two occupation sets B4+ of i.i.d. Bernoulli fields having
the same density as £*¢, which is asymptotic to N~(®*)¢ with the property that the
inclusion B* < L% < B*- holds with high probability as N — oo. On the contrary,
when a < ay there is no such coupling. Corresponding results also hold for the vacant
set of random interlacements at high intensities. The transition at a. corresponds to the
(dis-)appearance of ‘double-points’ (i.e. neighboring pairs of points) in £%. We further
describe the law of L% for o > % by adding independent patterns to B“%. In dimensions
d = 4 these are exactly all two-point sets. When d = 3 one must also include all connected
three-point sets, but no other.
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1 Introduction

This article studies two models, the random walk on the d-dimensional torus T = (Z/NZ)% of
large side length N, for d > 3, at time scales close to the typical time it takes the walk to cover
the whole torus, and random interlacements on Z? at corresponding intensities. Let P denote the
canonical law of the walk on the graph T started from uniform distribution, and X = (X,)n>0
be the corresponding (discrete-time) canonical process. It is well-known that the cover time C
of X, which is the first time X has visited every vertex of T at least once, satisfies

(1.1) teow = B[ON] ~ g(0)Nlog(N), as N — x,

where ¢(0) denotes the Green’s function of the simple random walk on Z? at the origin, see
Section 2 for notation, and ~ means that the ratio of the two quantities tends to one in the given
limit. In view of (1.1), letting

(1.2) Vi = T\Xg,una), for u>0,
where X[, = {r € T : X, = x for some n < t}, it is natural to introduce

(1.3) un () = ag(0)log(N?), for a >0, N > 1

d

(whence un(a)N* ~ ateoy) and consider the vacant set

(1.4) o VK,N(Q) (under P).

The elements of £ will be referred to as a-late points. Note that £ is decreasing in «, and the
choices (1.2)-(1.3) imply that £ has density (see (6.5))

(1.5) P(0e LY ~ N as N - 0.

The parametrisation in (1.2)-(1.4) is a matter of convenience; our results do in fact remain true
for any choice of ‘a-late time scale’ such that (1.5) holds (for instance, u = aN "%y in (1.2)),
see Remark 7.3,5) for this and more; see also Remark 7.3,8) regarding natural (on account of
(1.5)) extensions to random timescales such as the first time the vacant set of the walk contains
exactly [N(1=)4] points.

We are interested in global (i.e. macroscopic) properties of L% as a subset of T. One difficulty
in addressing questions of this type stems from the long-range correlations inherent to £¢.

For the sake of clarity, we focus on (1.4) in this introduction. As will turn out, all results
presented below allow for either of two generalisations. First, we can deal with late points £% in
arbitrary (large) (sub-)regions F' € T at appropriate timescales, ensuring in essence that £% has
asymptotic density |F|~¢, cf. (1.5). Second, the conclusions of all the results presented in this
introduction continue to hold if one replaces (1.4) by £* = V*~(@) ~ ([0, N) n Z)? (identifying
the vertices of ([0, N) n Z)? with those of T), where V* refers to the vacant set of random
interlacements at level u; see Remark 7.3,1) for details. The set V" is characterised by the
property that

(1.6) P/ (K < V") = exp{—ucap(K)}, for finite K < Z¢,

and corresponds to a local limit of V} in (1.2) as N — . We refer to Corollary 5.2 for an
explicit coupling between V* and V§;. This coupling acts as a powerful transfer mechanism. For
instance it allows to lift the formula (1.6) from V* to V§,, up to small error, see (6.4). We now
present our results.



1.1. Phase transition at «,. The transition we establish as part of our first main result
exhibits a sharp regime of parameters « in which £ in (1.4) completely ‘trivialises,’ i.e. resembles
an i.i.d. sample of appropriate density. This question has, directly and indirectly, already received
considerable attention in the past, as we now briefly review. In view of (1.5), the case a@ > 1
is readily dispensed with since £% is empty with high probability for such values of a. In the
course of proving Gumbel fluctuations for C, Belius obtained [5, (1.4)-(1.5) and Corollary 3.4]
that the suitably rescaled process of points ‘around’ £! converges to a Poisson point process on
(R/Z)?. Intuitively, this means that the ‘very late’ points, i.e. the last few vertices to be covered
around o = 1, are roughly independent and uniform. The proof relies on similar results for
interlacements [4], and a coupling of the two objects. We return to this below.

Matters become all the more delicate in the regime o < 1, notably because |£%| is no longer
tight in N, cf. (1.5). Let (B%)a=0 denote a family of i.i.d. Bernoulli (site) percolation processes
on T with respective density P(0 € £) and coupled in a monotone fashion in « (e.g. by means
of uniform independent random variables). One is naturally led to wonder how £ = (£%)a>0
and B = (BY)a>0 relate, if at all. This question was taken up in [22], the main contribution of
which can be paraphrased as stating that a., < 1, where

(1.7) Qax Z inf {a > 0 : limp dpy (L8, B%) = 0 for all 8 > al,

where dry denotes the total variation distance; the result that drv(£!,B') — 0 had already
been shown prior to this by Prata in [25, Part II]. Within the class of vertex transitive graphs, the
recent work [6] by Berestycki, Hermon and Teyssier actually gives an optimal characterization
in terms of the diameter for the appearance of Gumbel fluctuations and the uniformity of £

The method of [22] originally gave au. < «; for an explicit value of oy = a1(d) < 1 satisfying
a1 — 1 as d — oo0. This deficiency was later removed in [28|, where it is shown that

(18) Qyre < 042(< o] < 1),

with ap = 3(d—2)/(d—1) — 2 as d — o0, see Remark 7.3,7). To be precise, all afore mentioned

results in [22, 25, 28] deal with a slightly different set of late points in place of L%, operating at
time scales at,, where t is carefully chosen, see e.g. 22, (4.3)], and satisfies t, = teov(1 + 0(1)).
A natural barrier for proximity of £ and B arises as follows. Let

or 1
(1.9) p~ 3 Mz L ye Loy,

T~y
where x ~ y denote neighbouring vertices in T, which counts ‘double-points’ in £%, and define

(1.10) g = g (d) def sup {o > 0 : limy E[D?] = 0},

(with the convention sup @ = 0). The quantity E[D®] appearing in the limit as N — oo above
depends implicitly on N via the choice of the side length for the torus T on which £ is defined;
this will in fact be the case for all our limits in N. One can show, see Lemma 6.3 below, that

(1.11) = 3 (1+ Po(Ho < 0)) (€ (3,1)),

where Py denotes the law of simple random walk on Z¢ with starting point X = 0 and I:TO =
inf{n > 1 : X,, = 0}. The inequality a, > % implied by (1.11) is important and signals a
different qualitative behaviour of £* and B®. For, the quantity corresponding to E[D®] with B*
in place of £ in (1.9) diverges for all a > 1. The threshold . already appears in [22], where it
is shown (for slightly different £%) that aus > ax(> 3), which together with (1.8) implies that
the threshold au in (1.7) is non-degenerate.



Our first result establishes a sharp transition for the set £ in (1.4) across the threshold v, for
a slightly different measure of distance between random sets than (1.7), allowing the introduction
of a small sprinkling parameter £ > 0 (the case of dry corresponds to setting ¢ = 0). We note in
passing that such a measure of proximity has a long history in the context of problems involving
strong correlations, see [5, 8, 32, 34| for instance. In the sequel we denote by Q, . n the family
of all couplings between £* and (B¢, B**¢), for a,e > 0 and integer N > 1.

Theorem 1.1 (d > 3). With as as in (1.10), for suitable eg = eo(a,d) > 0, the following hold:

i) For all a > o, e € (0,e09) and N > 1, there exists a coupling Q € Q- N such that
(1.12) h]anQ(Ba*E cLYcB*) =1
ii) If & = o, then for all € € (0,¢¢), with the supremum ranging over Qq, - N below,

(1.13) limsup Q (B¢ < £ < B*7¢) = 7.
Q

iii) For all a < o, € € (0,e0) and any coupling Q € Q, . N one has that

: a+€e « a—e\ __
(1.14) h}{fn@(@ c LB ) =0.

(a) Simulation of £0.6 for N = 400 (b) Simulation of BO'6 for N = 400

Figure 1: In red, the points of £% which have a neighbor in £%. In dimension three for e = 0.6, there are many
such “double points” in L%, but they disappear at ayx =~ 0.67. There are no such red points in B, a > 0.5.

In words, (1.12)-(1.14) indicate that £ is close to an i.i.d. Bernoulli field, up to a sprinkling
parameter ¢, if and only if & > . The constant e~¢ appearing in (1.13) corresponds to the
probability not to have any neighbours in £%* i.e. the probability that there does not exist
x ~ y in T such that {z,y} < L%, see Remark 7.3,3) for details. Theorem 1.1 is proved in
Section 7 and allows for various extensions, see Remark 7.3, which among other things, include
an analogue of Theorem 1.1 for interlacements and give in either case quantitative bounds in N



and ¢ for the probability of the event in (1.12), see (7.23). In fact the quantitative bounds allow
to take € = ey polynomially small in N in (1.12). Up to a small sprinkling, Theorem 1.1 thus
answers Question 1 in Section 7 of [22]. Moreover, all afore mentioned results of [22, 25, 28] (in
particular, (1.8)) as well as [4, 5| can all be easily recovered from Theorem 1.1, see Remark 7.3,7)
for details. We return to the challenges in proving Theorem 1.1 in §1.2 below. We further note
that the process of covering in dimension d = 2 is very different, owing to the recurrence of the
walk, which causes late points to cluster; see [13| for more on this.

In order to support the intuition conveyed by (1.12)-(1.14) that £ consists a.s. of asymptot-
ically independent points if and only if o > «, one could instead also examine the convergence
of the rescaled point process . _ra 0, /Nad tO 2 Poisson point process on R%, as done for instance
in [4, Corollary 0.2], [5, (1.5)], or [10, Theorem 1.1] in the context of the high points of the
Gaussian free field. However, the resulting scaling limit is not fine enough to capture the phase
transition of Theorem 1.1: the limit is actually Poissonian for any o € (0,1], cf. Remark 8.4,3).

In view of Theorem 1.1, a natural question is to describe the law of (£L%),~0 as a process
in . This was first investigated in [25, Theorem 3| for a very close to 1 — more precisely for
a =1+ 2<, B > 0, at which |£%] remains tight — and we will prove a similar result for

log N°
a € (a4, 1] in §8.1. More precisely, defining

(1.15) ay =sup{a>0: xe€ L}, zeT,
we show in Theorem 8.1 that
(1.16) (ap — Qs )gerex is ‘close’ to a family of i.i.d. exponential variables with mean dlog N,

where proximity is again measured in terms of a coupling such that both processes differ by at
most €.

1.2. Localization. We now discuss one of the main difficulties permeating this work, which is
that of ‘localizing’ the dependence of £*. Attending to it leads to Theorem 1.2 below (and its
more elaborate version, Theorem 5.1), which is of independent interest; see also [12]| for other
localization phenomena for Brownian motion in dimensions d > 3. To provide some context,
we now comment on the proof of Theorem 1.1, and focus on the case @ > a,, which already
highlights the essence of the issue. Following [28], see also [10] in the context of the Gaussian free
field, one may seek to apply the Chen-Stein method, e.g. in the form presented in [2, Theorem
3], directly to £%, which requires individual control on three terms, commonly referred to as by,
by and b3, that each need to be small. The problematic term is b3, which carries the long-range
information and leads to limitations of this method, giving rise e.g. to the threshold ay in (1.8).

To overcome this difficulty, we follow a modified scheme, see Lemma 3.1 below, which consists
of introducing an intermediate (localized) family £ = (£%)4=0, coupled to £ in a way that the
two are close (up to sprinkling), and to which [2] applies with b3 = 0. The latter requires a
(pointwise) short-range property: {x € Ea} needs to be independent of £& A Q(x, R)¢, for a
suitable localization scale R. Here Q(z, R) denotes the box around = with size length N in T,
see §2 for a precise definition. Our next result asserts that a process £ with these features can
indeed be constructed. In fact, this is not specific to the high intensity regime (1.3) at all, and
best stated in terms of local times. Thus let (¢, )zeT denote the local times of X, x4 under P,
cf. (2.2), so that V), = {x € T : £, = 0}, cf. (1.2). The following result is proved in Section 5
(see Theorem 5.1 for a more general statement) and has an analogue for random interlacements.

Theorem 1.2 (Localization). For all N > 1, R € [1,45] and ug > 0, there exists a family
(Zx’u)xezd’u>0 such that the following holds. For all u € (0,ug] and € > 0, there exists a coupling
P of L., with Z,u(lis) such that:

~ ~

(1.17) Ly u(1+e) 18 independent from o (ly y(1+¢) * Y ¢ Q(x, R)), for allx € T, and

4



(1.18) f’([lvu(l_s) <y < Zx#(l%), VezeT)>1- CNIR* exp (— ceVuRd=2),
for some ¢ = ¢(d) >0, C = C(d) < .

The set £ alluded to above is then obtained by applying Theorem 1.2 with u = uy () upon

~

defining £* = {r €T :l,uy =0} with R appropriately chosen, e.g. R ~ (672 log(Nd))d%?, to
make the error in (1.18) small. From this, (1.12) eventually follows from |2, Theorem 3].

The two localisation features (1.17) and (1.18) are difficult to engineer simultaneously. The
requirements (1.17)-(1.18) can be seen to correspond to a kind of ‘approximate spatial Markov
property’ (at one point) for the local times. Indeed for the related Gaussian free field, a version of
Theorem 1.2 can be obtained by exploiting the field’s Markov property. In a follow-up article, we
will exploit this to establish a phase transition for the high points of the field, studied previously
in [10, 28], as well as other long-range correlated models.

The ‘approximate’ spatial Markov property implied by Theorem 1.2 is however much harder
to obtain, and the proof of Theorem 1.2 is at the heart of this article. One of our main tools
is the soft local times method from [24, 1|, with a twist. The method has been introduced to
compare random interlacements trajectories on fixed well-separated sets A; and As, to a version
of random interlacements independent on A; and As, whose definition depend on the choice of
Aq and As. In order to derive Theorem 1.2 though, we need to compare random interlacements
with a version of interlacements defined on the whole set T at once, and which is independent on
any pair of well-separated sets A1 and As, when A; is a singleton. We achieve this by introducing
an inverse soft local times technique, see Section 4. Actually, our techniques also lead to a new,
simpler, more explicit but slightly less general proof of the coupling between the random walk
and random interlacements from [8|, see the discussion below Theorem 5.1 and Corollary 5.2.

1.3. Law of the late points for o € (3,a.]. For o < a, Theorem 1.1 asserts that £* and
the i.i.d. set B are not close anymore, which, in view of (1.9)-(1.10), is due to the emergence of
neighboring pairs of points in £ (but not in B%). But could proximity for  smaller but close to
Q4, perhaps be restored by adding such pairs, and, if so, in an independent fashion? What about
other ‘clusters’ of late points, e.g. sets of two points at distance k > 2, or even finite sets of larger
cardinality? Do such ‘clusters’ appear in L% as « is reduced? Is their occurrence Poissonian?
The next result sheds light on these questions. For finite K < Z%, denote by cap(K) the capacity
of K on the transient graph Z¢, d > 3. We also extend this definition to any set K c T with
¢*-diameter §(K), (see Section 2 for a definition) at most N — 1 by essentially identifying T
with the cube Q(0, N) via an adapted bijection so that K < Q(0, N — 1), where Q(0, R) is the
box in Z% around the origin 0 of side length R for all R > 0. For sets K — T with diameter N,
we simply take the convention cap(K) = o0. We refer to below (2.3) for precise definitions. Now
for K either in Z% or in T with diameter at most N — 1, let
(1.19) o (K) < (g(0)cap(K)) ™!
and note that au({z}) = 1 for all € Z% or T by (2.6), while in fact au({z,y}) = ax as in
(1.10), for = ~ y, see Lemma 6.3. As will become clear, the parameter a.(K) corresponds to
the largest value of o at which one can find a translated version of the set K in £ similarly as
in the definition (1.10) of au; cf. (6.10) or Lemma 6.4 for details.

Let p*(A) = P(LY " Q(A,Rt) = A) for all A< T and a > 0, where Rp = log(|T|)ﬁ, let
(Ua)acT be an i.i.d. family of uniform random variables on [0, 1], and for K cc Z¢, define the
family Bx = (B%)a=0 of sets

(1.20) B = U A.
AcCT: ax (A)>au (K)
Ua<p*(A)

5



Note that K < Z¢ in (1.20) (whereas A — T). In particular K does not depend on N, the side
length of the torus, which is important when taking limits as N — o0, as in (1.22) below. Notice
also that sets A < T with diameter IV are never considered in the definition of B% by the above
convention. Actually B% only depends on K through cap(K'). Moreover, if K = {z,y} for x ~ v,
then ay(K) = ay = ax(A) for all A ¢ T with |A| > 2, whence A in (1.20) only ranges over
singletons and B% is virtually equal in law to B, as will later be seen in detail. This is actually
not entirely true, notably when o < a, see (7.17), but one may pretend for the purposes of this

introduction that (B%)a=0 taw (BY)a=0 when K = {z,y}, * ~ y. Admitting this, the following
result can then essentially be viewed as a generalization of Theorem 1.1.

To state it, we introduce one more convenient notation, which allows to capture transitions
such as (1.12)-(1.14) in a concise (albeit less explicit) way. For two decreasing families of random
subsets S = (8%)a=0 and U = (UY)a=0 of T, we define for all a € (0,1) and € € (0, @)

. Ja coupling Q between S and (U* ¢, Y*te
(1.21) d=(S,U; ) = inf {5 €l0.1] - such that Q(Z/lo““S c 8% c Z/IO‘_E() =>1-9. ) }

Note that lin}J d:(L,B;a) = dpy (LY, B*) by continuity.
E—>

Theorem 1.3. For L as in (1.4), all K cc Z% and all o € (0,1),

(1.22) lim lim d.(£, Bk; o)

e—>0 N—>w

=0 ifa>a(K)>1/2
=1 ifa<aiK) orasK)<1/2

and if oy (K) > 1/2

(1.23) 0 < lim lim inf de (£, B; a4 (K)) < lim limsup d. (£, Bx; o (K)) < 1.

e—>0 N—ow e=>0 N oo

By applying Theorem 1.3 with K any pair of neighbors, e.g. K = Ky = {0,2},  ~ 0, one
(essentially, cf. above) recovers Theorem 1.1. Now suppose that K cc Z% is another set with
ax(K) > 1/2, not isomorphic to Ky under lattice symmetries; for instance K = {0, z}, |z|; = 2.
Then (1.22) asserts that £* will be close (as measured by d.) to Bx if and only if a > a,(K).
The set B% comprises independent samples of all allowed ‘clusters’ (namely, sets A < T with
ax(A) > a4 (K)), at the correct intensity, corresponding to their probability to be seen in £*
and to be isolated, i.e. with no other late points present in their Rp-neighbourhood. This can
be regarded as a positive answer to Question 2 in [22, Section 7|. Note the consistency of the
transitions (1.22) as K varies: for instance, if & > (= @« (Kp)), then, as it turns out, for every
K € 74 with a,(K) € (1/2,1), the sets B and Bf, are virtually indistinguishable as N — o0,
and actually also indistinguishable of B*. In fact (1.12) will be deduced from the first line of
(1.22) in precisely this way, cf. §7; see also Remark 7.3,2) for alternatives. Note also that the
critical case (1.23) is less explicit than (1.13), see Remark 7.3,3) for more on this.

Theorem 1.3 is mainly interesting when «a,(K) > 1/2, as it then describes precisely the law
of £ for o > v (K) via B3, Tt is easy to see that the constraint o, (K) > 1/2 is saturated for
K = {z,y} in the limit when |z — y| — o0, see (2.6) below. In particular for all @ > 1/2 there
exists K cc Z¢ with a > a,(K) > 1/2, for which B% is a good approximation of £ by (1.22).
On the other hand if a4 (K) < 1/2, then for all z,y € T we have a,({z,y}) > ax(K) and so
the probability that z € B%, see (1.20), will typically be much larger than the probability that
x € L%, which explains the last part of (1.22); cf. also (7.16). An important question is thus to
determine which kind of sets K are in

(1.24) Ar ={K c T : K # 2, ax(K) = 5},

N[



for these are exactly the sets one needs to consider in Theorem 1.3 to approximate £* for @ > %

By (2.6) below, At contains at least all singletons and two-point sets. But does At contain larger
sets, for instance containing three points, and, if so, which ones? Put differently, as N — oo,
does {L* " Q(x, RT),z € T} contain sets with three points before containing all possible 2 points
sets with diameter at most Rp? Viewing Z? as Z2? x {0}972 < Z4, let

(1.25) K, ={(0,0),(0,1),(0,2)}, K2 = {(0,0),(0,1),(1,0)}.

We denote by Ky and Kg the projections of K; and Ky onto T (and generally bold sets will
always be the projection on T of sets on Z%), which are the only connected sets of cardinality 3,
up to torus isomorphisms. We prove in Appendix B that

(1.26) if Ki,Ko ¢ Ap, then At consists only of sets with cardinality at most 2,

and there are sets A; = Z%, i € {1,...,8} with cardinality at least three such that, denoting by
A; the projection of A; on T

if K1,Ko € At and A; ¢ A for all i € {1,...,8}, then At consists only of sets

1.27
( ) with cardinality at most 2 and images of Ky and Kg by torus isomorphisms.

We then deduce in Theorem B.1 that (1.26) applies for all d > 4 and (1.27) when d = 3. The
proof of Theorem B.1 relies on computer-assisted methods partially inspired by [18, Appendix B,
to determine the capacities of the sets K1, Ky and A;, i € {1,...,8} (the latter only when d = 3)
as well as g(0), cf. (1.19), which are computed with precision 1073°, see Lemma B.4.

Together, Theorems 1.3 and B.1 readily yield the following:

Corollary 1.4. For small enough n > 0, there exists D = D(n,d) < o such that, if D* < T,
a= % + n, is obtained as the union of all sets K < T which are either

i) singletons,
i) pairs of points at {*-distance < D,
ii1) images of K1 or Ka by torus isomorphisms, that is connected sets of cardinality 3,

each sampled independently with probability p®(K), then there exists Q = Q,; such that if d = 3

1437

(1.28) Q(D CE%JF"CDHTW) —1las N >

Moreover if d = 3, there is no such Q if iii) is omitted, whereas if d = 4, all conclusions remains
true upon discarding type iii) from the construction of D*.

We conclude by explaining the significance of the value o = % in (1.24), Theorem 1.3 and
Corollary 1.4. The parameter o = % has already been identified as the critical parameter for
another question in [21], and on the torus the main result from [21] can actually be deduced
from Theorem 1.3, see Remark 7.3,4). For each a > 3, one can find a constant C = C(«) such
that with high probability, each z,y € L* verifies either d(z,y) < C or d(z,y) > (log N)Y/(d=2)
(in fact even d(z,y) = N2¥~177 for some 1 > 0), see Lemma 6.8. In other words, any value of
o> % induces a natural localization scale for £%, which is a union of small sets (with diameter at
most C') far away from one another. This well-separatedness fails when a < %, and one cannot
straightforwardly deduce an approximative version of the law of £% in this regime, see Remark
8.4,4). It would of course be interesting to assess whether a result similar to Theorem 6.5, which
is a consequence of our localization statement Theorem 1.2, valid throughout the phase o > %,

and one of the driving force behind our main results, still holds for a < % or not.



1.4. Organization of this article. Section 2 introduces the setup and a minimal amount of
useful notation. Section 3 is centred around the modified Chen-Stein method, which allows for
a sprinkling. Section 4 introduces the soft local time method to couple two different Markov
chains from [24], and explains how to invert it. This method is then applied in Section 5 to the
excursions of the random walk on T and random interlacements on Z¢ to prove the localization
result, Theorem 1.2. Its strengthened version, Theorem 5.1, also immediately yields a state-of-
the-art coupling between random walk and random interlacements with quantitative coupling
error, stated in Corollary 5.2. Section 6 discusses the consequences of localization for late points.
In §6.1, we introduce the set of late points L% to be studied (see (6.2)), which contains L£*
defined in (1.4) as a special case, and gather its first properties, including precise estimates on
the probability for a generic set to be late. In §6.2, we then compare £ with a suitably localized
version g})‘; defined in (6.17). The main result is Theorem 6.5.

The pieces are put together in Section 7, where we derive Theorems 1.1 and 1.3. Remark 7.3,
which appears at the end of §7, deserves highlighting. It concerns various extensions of these
results and also explains how to recover existing ones. Thereafter, §8 contains some interesting
further results which can be derived using our methods. More precisely, §8.1 deals with £ as a
process in a (see (1.16) and Theorem 8.1), and §8.2 is an outlook to the regime o < 3 containing
a description of the law of large clusters, see Theorem 8.3. Finally, Appendix A contains the
proof of two technical ingredients, Lemmas 5.5 and 5.6, relegated from Section 5, which concern
certain large deviation estimates for the excursions of random walk and random interlacements.
Appendix B revolves around the notion of admissible sets. In particular, Theorem B.1 identifies
the elements of Ar in (1.24), which leads to Corollary 1.4. The elements of the proof of Theo-
rem B.1 relying on computer assistance are all summarized in Lemma B.4. We stress however
that — with the exception of Corollary 1.4 — none of our results make use of Appendix B.

We conclude with our convention regarding constants. In the rest of this article, we denote by
¢, d,... and C, C',... positive and finite constants changing from place to place. All constants
may depend implicitly on the dimension d, and their dependence on any other quantity will be
made explicit.
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2 Notation and preliminaries

We set up some notation that will be used throughout. We use 7 : Z¢ — T = (Z/NZ)?
to denote the canonical projection from the infinite d-dimensional cubic latice Z? to the d-
dimensional torus T of size length N, for d > 3, N > 1. In order to simplify notation, we
will often use the notation x to denote the projection 7(x) of x € Z%. We denote by 0 the
origin of Z4, and thus call 0 := 7(0) the origin of T. For each x € Z¢ and r > 0, we let
Q(z,7) = Qr(x) =z + ([~|(r — 1)/2],[(r — 1)/2]] n Z)? the box of size length r around z in Z,
and we let Q(x,r) = W(Qr(az)), which only depends on @ and r. Our convention for boxes is
tuned so that @n(0) = T, and 7, (0) is @ bijection into T. Note that the definition of Q. (x)
depends on whether x € Z% or 2 € T. We will also introduce the notation Qx (see above (6.1)),
which will only be used in Sections 6-8 (Qn can correspond to either Qxn(0) or @ (0), depending
on the model considered, which will allow for a uniform presentation). We also let Q(A, R) be
the union of the balls Q(z, R) over all z € A, for any A < Z% or A < T.

For a set A — Z% or A < T we write 0A for the internal vertex boundary of A, i.e. 0A =
{ye A: 3 x ¢ A adjacent to y}, |A| for the cardinality of A and §(A) for the (¢*°-)diameter of A,
that is the smallest R € N such that A € Q(z 4, R) for some vertex x4 € Z% or x4 € T. We use



the notation A cc Z9 to say that A is a finite subset of Z?. Let also d(z,y) = §({x,y}) for all
x,y € Z% or x,y € T, which on Z? corresponds to the ¢*-distance between z and y. For subsets
K, K either of Z% or T we write d(K, K') = inf e yer d(, 2').

We write P, for the canonical law of the discrete-time simple random walk on Z? starting at
z € Z%. We denote by X = (X, Jn>0 the corresponding canonical process, and by 6,,, n = 0, the
canonical shifts, so that X 06, = (X, 1n)m=0. For K < Z¢ we define Hy = inf{n > 0: X, € K}
and Tk = Hya - the respective entrance time in K and exit time from K, for K < 7. We write

Hy =inf{n >1: X, € K} for the hitting time of K. Here, we take the convention inf & = +o0.
For n > 0 we also introduce the time of last visit to K (before time n),

(2.1) Lig(n) =sup{m <n: X, € K}, Lx = lim Lg(n)
n—o0
with the convention sup@ = —oo. For z € T and y € 7~ *({z}), we set P, = 7 o P, which is

well-defined (i.e. does not depend on the choice of y). With a slight abuse of notation, we also
write (X,,)n>0 for the canonical process under P,, z € T, which is the simple random walk on
T, starting at =, and extend the definition of Hg, Tk, Hg, Lx(n) and Lg under P,. Let also

p 4 N—d Y et Pz Under P, (or P), one defines for all ¢,u > 0 the (discrete) local times
(2.2) L) = > YX,=a} te[0,0), Lpy=L(uN?).
0<n<|t|

We denote by g(z,y), z,y € Z% the Green’s function of X under P,, which is known to be
finite and symmetric. Moreover ¢(z,y) = g(z — y,0) = g(z — y) so in particular, g(0) = ¢(0,0).
For suitable f on Z? (e.g. with finite support), we write G f(x) = 2uyeza 9(@,y) f(y). For finite
K < 7%, we denote by eg the equilibrium measure of K,

(2.3) ex(z) = Py(Hg = )1 (z), for € Z%,

which is finite and supported on 6K and by cap(K) its total mass, the capacity of K, which is
monotone in K. We write ex = Cap( ) for the normalized equilibrium measure. If K < T with
§(K) < N, we also define the capacity of K as follows: if K = Qx_1(0) and K’ = Qn_1(0)(c Z%)
is a set such that m(K’) = K, then we let cap(K) = cap(K’). For other K with §(K) < N, we
define cap(K') by translation invariance. Moreover, we take cap(K) = oo for the subsets of T

which are not topologically trivial, i.e. when §(K) = N. One knows that
(2.4) Geg = hg, where hg(x) = Pp(Hg < ), z € Z% is the equilibrium potential of K.

The following straightforward (strict) monotonicity result for g will be repeatedly used. Let |- |1
denote the ¢'-distance (i.e. the graph distance) on Z¢.

Lemma 2.1. For all integers n = 0,

(2.5) sup g(z) < sup g(x).

|z[1>n |z[1=n

Proof. Set Bi(z,n) = {y € Z% : |y — x|y < n}. First, one classically knows that there exists
c(n) > 0 such that Py(Hp, 0n) = ®©) = c(n) for all z ¢ B1(0,n). Hence, by the strong Markov

property and translation invariance, one obtains, for all € Z¢ with |z|; > n,

9(0,2) (24)
) Py(H, < ©) = Eo[I{Hp, (4,n) < OO}PXHBl(z,n) (Hy < 0)]
< (1—c(n)) sup Py(Hy <o) = @4 (1 —¢(n)) sup g(O,y)j
yedB1 (z,n) lyl1=n 9(0)
from which (2.5) follows. O



By evaluating (2.4) for z € K and solving the resulting linear system, one can explicitly
determine e and cap(K) in terms of g. In case K is a singleton or a two-point set, this gives

2
9(0) + g(x —y)

(in particular, cap({z}) = g(0)™!). For K € U < Z% we further set €% (z) = P.(Hg > Ty)1g(z),
so that (2.3) corresponds to choosing U = Z¢, and write cap (K) = . €% (z) for its total mass.
We now collect some further facts about capacity, which will be useful in the rest of the article.

First, as we now explain, combining (2.6) and Lemma 2.1 one obtains that

, forall z,y € i

(2.6) cap({z,y}) =

(2.7) cap(K) > cap({x,y}) for any K c Z¢ with diamy (K) > 2 and = ~ .

Indeed by monotonicity of K +— cap(K), see [19, Prop. 2.2.1], it is enough to consider the case
|K| = 2 with two-points at distance n = 2, from which (2.7) follows using the formula (2.6),
translation invariance, and (2.5) for n > 2. Next, by [15, Lemma 1.11] and [3, Proposition 1.2],
for any sets K, K’ cc Z%, one has

(2.8) 0 < cap(K) + cap(K') — cap(K u K') < ¢|K'||K|d(K, K')~4=2),

for some constant ¢ depending only on d. An important application of the right-hand side of
(2.8) is that if F cc Z% and K, K’ c F are such that d(K, K') = log(|F|)*/(?=2) /2, then for all
ae (0,1]

(2.9) |F|~e9(O)cap(KUK") < | p|~o9(0)eap(K) | p|—ag(O)cap(K")

for some constant C' depending only on d, |K| and |K’|. The following improvement of (2.9) will

!
also be used. If, as will commonly occur in practice, |F| — o0 and %

|K|,|K'| < C’, one can further replace the constant C' appearing in (2.9) by (1 + o(1)) (as
|F| — o). Note that the reverse inequality in (2.9) is also true with C' = 1 by (2.8). Another
interesting application of (2.8) is the following: for each r > 0,

— 00 whereas

(2.10) there exists C' = C(r) < o0 so that each K cc Z% with |K| > C satisfies cap(K) > r.

Indeed, in order to prove (2.10), it suffices to prove that if K contains [r/cap({0})] + 1 points z;
so that d(z;, z;) is large enough for each i # j, then cap(K) > r, which follows easily from (2.8).
Finally note that (2.7), (2.8), (2.9) and (2.10) still hold when K, K’ < T as long as the capacities
in question are not infinite, which is for instance the case when §(K),d(K’) < N/2.

We now briefly introduce the random interlacement process and its associated local times to
the extent we need them. We denote by w the random interlacements process on Z% with law P/,
as defined in [30], which is a Poisson process of bi-infinite random walk trajectories with positive
labels. We will actually never need to describe the full law of w here, but only its push-forward
wp to the trajectories with label less than « which hit a ball B < 7%, and started after their
first hitting time of B, for some u > 0, that we now describe. For each finite set B c Z%, there
exists a Poisson process Ng = (Nj)u=0 on [0,00) with intensity cap(B) and an independent

i.i.d. sequence of random walks (X%);>1, each with law Ps,, such that for all u > 0, under P,

Ng
(2.11) wip = Y Oxi.
=1

This description of w} via Nj and (X );=1 entirely characterises its law. Note that the trajec-
tories (X");>1 depend on the choice of B, but this dependence does not appear in the notation
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for simplicity. We write Z} for the interlacements set in B and ¢, ,, for the associated local time
at y € B at level u, i.e.

D UHX] =y},

Ngh=

(2.12) Cys = Ly u(w) =
i=1k=0
and
N
(2.13) T =T"nB=|JX[0,0)nB (={yeB:ly,>0}
i=1

where X?[0,00) = {X}, k € N}. The vacant set at level u is defined as V* = Z%\TZ* and the
formula (1.6) follows as P/(V* c B) = P!(N% = 0).

3 Modified Chen-Stein method with sprinkling

We now collect a result, of independent interest, which roughly speaking generates a coupling of
some (Bernoulli) process Y of interest —possibly highly correlated— and an independent process
W from a given coupling between Y with another process Z in such a way that (Y, W) are
‘close’ whenever (Y, Z) are. Here, ‘distance’ will be quantified by the functional d. introduced
below, which allows for a sprinkling with parameter ¢ > 0 in the underlying density of the
processes. The main result appears in Lemma 3.1. For the applications in this article, Y will
be the occupation time field of RW/RI, Z will be a suitable finite-range approximation, in a
sense to be made precise, see (3.4), and W the target i.i.d. field. We compare the philosophy
underlying Lemma 3.1 with the traditional Chen-Stein method further in Remark 3.2.

In the sequel, given some probability space (€2,.4,P) and a finite set S (typically a finite
collection of subsets of Z% or Zﬁl\,), we call Bernoulli process on S any random variable Z =
(Zz)zes : Q@ — {0,1}%. The process Z will be referred to as independent whenever {Z, : x € S}
constitutes an independent family of random variables. Given I < [0,00) an interval and two
families Z = (Z%)aer, Y = (Y%)aer of Bernoulli processes on a countable set S (i.e. for every
ael, Y Z% are Bernoulli processes on S), we define, for every o, e > 0 such that a £t e € I,
(3.1) (Y, Z:0) = inf {5 € 0.1] : 3 a coupling P between }io‘ and (Z%¢, Z%F9) }

st. P(Z8te <Y < Zy VeeS)=1-46

Note that do(Y, Z;a) = dpy(Y®, Z¢). This is consistent with the notation from (1.21) by
setting d. (Y, Z; ) = do(Sy,Sz; a), i.e. identifying Y = (Y%),e; with the corresponding family
of occupations sets Sy = (8¢ )aer, where S¢ = {z : Y,* = 1} and similarly for Z. We will use d.
to measure proximity between Y and Z.

The following setup is tailored to our purposes. The process Y = (Y¢)qes is called a decreas-
ing family of Bernoulli processes on S if Y, e € I, are defined on a joint probability space and
e < Y a.s. for all x € S and o, f € I with 5 > . We consider two families Y = (Y%),er and
W = (W) aer with the following properties:

(3.2) Y is a decreasing family of Bernoulli processes on S;

for each v € I, W< is an independent Bernoulli process on S,

(33) decreasing in o, and P(IWS = 1) =P(Y,* =1) forall ae I, z € S.

The goal will typically be to couple Y and W in a manner keeping d.(Y, W) small. In practice,
we will first approximate Y by a family Z = (Z%),es of finite-range processes. Note that our
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notion of finite range processes, see (3.4), is slightly different from the usual notion of finite range,
and is adapted to our context. The following lemma then allows to ‘lift’ couplings between (Y, Z)
controlling the quantity d.(Y, Z; ), to couplings with similar properties between (Y, W).

Lemma 3.1. Let Y, W satisfy (3.2)-(3.3). If
(Z%)qer is a family of Bernoulli processes on S such that

(3.4) (Monotonicity): Z = (Z%)aer is a decreasing family, and
(Finite range): for every = € S, there exists N, < S such that for o, 8 € I, o < 3,
72 and VA 75 are each independent of {Z), Zyﬁ cy ¢ Nt

then for all e > 0 and a € I such that o + 3¢ € I one has

(3.5) do= (Y, W;0) <400 sup  {bi(a’) + ba(a/) + d=(Y, Z; ') - S},
a’'e{a—2e,a}
where
def. a «
(3.6) bi(a) = > YT P = 1DPY = 1),
€S yeN;
(3.7) ba() € DT N P(YE=1,Y0 =1).
S yeNs \(z}

We comment further on the utility of (3.5) in Remark 3.2 at the end of the proof.

Proof. Let 6 > 0 and PV denote a probability measure carrying a family Uy, z € S, of i.i.d. uni-
form random variables on [0,1]. With a slight abuse of notation, we realize W on the space PV
along with an auxiliary process W by setting

(3.8) We=1U, <PY*=1)}, We=1UU,<P(Z=1)}, z€8 acl.

T x

Clearly, (3.3) holds and (3.8) defines a coupling of (W, W) We will first work with W, which
matches the one-point densities of Z, and return to W towards the end of the proof. Henceforth,
fix @« € I and ¢ > 0 such that a + 3¢ € I and let vy(a, ¢) refer to the supremum on the right-
hand side of (3.5). Observe that Z%~¢ — Z%*¢ is a (well-defined) Bernoulli process on S by
monotonicity of Z and the same holds true for W= — Wt on account of (3.8). We will first
construct a coupling Q between (Z%7¢,Z*"¢) and (WQ*E, W“*E) with the property that

(3.9) Q(z078 = W™, 2% = Wre) >1 — 384~(a,e) — 6.

To this end, let S = S x {—, +} and consider the Bernoulli processes Z’ and W' on S’ defined
as

go—e _ gote fo—— N Wa—e _ Jote fo=—
(8.10)  Zlpy =12 S /A 4 v oo BOET
' Zote, if o =+ ’ Wote, ifo=+

Due to (3.8), Z’' and W’ have the same one-dimensional marginals, i.e. Zéw o) law WN/('I o for all
(x,0) € S’. For any point 2’ = (x,0) € §’, define its neighborhood N = N, x {£}, with A, as
given by (3.4). We want to bound the total variation distance between Z’' and W’. Because W’

is not an independent Bernoulli process, we let W” be an independent Bernoulli process with the
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same one dimensional marginals as Z’. Using the triangle inequality for total variation distance
and as we explain below, applying |2, Theorem 3| (see also [9, 29]), one obtains that

(3.11) dov(Z', W) < dpv(Z', W) + doy (W, W) < 24(0, + 1Y),

where

(3.12) b= >, > P(Z,=1P(Z,=1), by=> > PZ,=12Z,=1).
a’'eS’ y'eN, x'eS" y'eN\{«'}

Indeed, the right-hand side of (3.11) a priori includes a third term

(3.13) By = IEHIE[ZQ’C,—IP(Z;, =12,y ¢ Nov]

z'eS’

+ ‘E[I/IN/;, —P(W = 1) | W,y ¢ No]

|

but the finite-range property in (3.4) and the definitions of Z,, VTN/Q’C, and N, imply that b5 =0
(note to this effect that the o-algebra generated by {Zzl/ :y' & N} is the same as that generated

by {Zg7%,Zg%° : y ¢ N;}). Note also that the by and by terms we obtain for dpv(W”, W') are
both smaller than b}, and hence this justifies the constant 24 appearing in (3.11). The reason we
consider the process W' instead of only working with the independent process W” here is that
we want the Bernoulli process W we obtain at the end to be decreasing in «, see (3.3) (note
that we would avoid this problem if we used Poisson processes throughout as in |2, Theorem 2],
instead of Bernoulli processes).

We now proceed to bound the right-hand side of (3.11) in terms of 7(a, ). By means of the
defining properties of d., one sees that for any ' > 0 and z € S,

.10 P(Z(y 1y =1) =P(Zg* = 1) <P(Y; = 1) + de(Y, Z;0) + &
' P(Z(, y=1) <P(Zg° =1) <P} % = 1)+ de(Y, Z;a — 2) + &,

Thus, letting ¢" — 0, abbreviating d. = d.(Y, Z; ) v d.(Y, Z; a — 2¢), observing that |S’| = 2|S|
and using monotonicity of Y to have P(Y,® = 1) < P(Y,*"% = 1) for all x € S, it follows from
(3.14), in view of (3.12) and (3.6), that

(3.15) Vi < 4(b1(a — 2¢) + 3d.|S|%).

Similarly, using that ZE < Z9 ¢ for all x € S and o € {+} by monotonicity in (3.4), one

,0)

obtains that whenever 2’ = (x,0) and ¢ = (y, p) with y # z,

P(Zlpgy =120y = 1) <SP(Z3 7 = 1,25 = 1) Sd. + P(Y 7% = 1,Y 7% = 1),
Observing that P(sz o =L sz o) = 1) = 0 for all z € S by monotonicity, this yields that
(3.16) by < 4(bo(a — 2¢) + d.|S|?).

Substituting (3.15) and (3.16) into (3.11) readily implies that dry(Z/, W) < 384v(a, ). The
existence of a coupling Q having the property (3.9) immediately follows from this (in fact, one
could even choose § = 0 by using a maximal coupling but this won’t be necessary).

With (3.9) at hand, we now prove (3.5), which entails finding a coupling of (W®=2¢ W a+2)
and Y® with suitable properties. To this end, let @ denote a coupling of Y* and (Z*~¢, Z%*¢)
satisfying
(3.17) Q(zete < Y2 <28 Vae S) = 1—d.(Y, Z;a) — 6,

T
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which exists by definition of d.. We proceed to define a measure P on ({0,1}5)3, with canonical
coordinates (W~,Y, W) as follows: for all w™,y e {0,1}°,

o

w+) et
ate

\+ "<>

W
Wt ~

_ @i) 2 @(Wais _ ~i|Zais _ Zi)@(zais _ Zi, ye — y)7

(W
2, P e

wt,w— zt,z

where {W+2¢ = 2t} is short for {We™¢ = w™, W™ = w*} and similarly for other events,
and @F, @, 2% and 2z~ range over all points in {0,1}* such that the corresponding events
appearing in each conditioning have non-zero probability. One readily checks using (3.8) and the

definition of the Couplings @ and @ that PP is a probability measure with marginals (I//I\/_ I//I\/Jr) fa
(W2 Wot2e) and V% ye with Y and Wot2 ag prescribed by (3.2) and (3 3). Finally it
follows from (3.8) combined with the bounds appearing in (3.14) that W22 < Wf‘ ¢ if and only
if P(Y,*"% =1) < U, < P(Z27¢ = 1), which has probability at most d. (similar considerations
apply to the event W2 < Wa+2%) whence

PV (Wot2e < Wote < Wo™s < WO % vz e S) =1 - 2[9|d,,
which, together with (3.9) and (3.17), implies that
(VVJr W VoeS) =21—d(Y,Z;a) — 6 — 384v(a,e) — 6 — 2|S]d-.
Since d:(Y, Z; ) < d. < y(a, ¢) and 6 > 0 was arbitrary, (3.5) follows. O

Remark 3.2. Of course, the utility of (3.5) as a means to compare Y and W around level «
rests in particular on having a good bound on supefa—gea} de(Y, Z; o) to begin with, for a
process Z satisfying (3.4), which in the case of the random walk on the torus will be provided by
Theorem 5.1 below. The presence of d.(Y, Z;a’) acts as a surrogate for a certain quantity “bs”
(much like b above, cf. [2]), which would arise when attempting to compare Y and W directly
using the Chen-Stein method, as done for instance in |28] in the present context. The issue with
this is that b3 typically turns out to be too large when Y has long-range. In fact, limitations
of the method in the presence of long-range correlations are well-known, see for instance the
discussion in [2], Sec. 2 “Open problem,” pp.12-13.

4 Soft local times and inverse soft local times

In this section we give a brief exposition of the method of soft local times introduced by Popov
and Teixeira in [24]. An ‘inversion’ of this technique, introduced below, see (4.10)-(4.11), leading
to Proposition 4.4, will be used to manufacture couplings in the next section. We defer to
Remark 4.5 for a discussion of the benefits of this construction and its interplay with the technique
of [24].

Consider the measure space (X, i), where ¥ is a locally compact Polish metric space endowed
with its Borel o-algebra, carrying a (Radon) measure p. At its root, the method of [24] is a
particular way to sample sequences Z = (Z;);>0 of X-valued random variables from a Poisson
process on X x R;. Although in principle, any sequence Z such that all Z;’s have a density with
respect to p can be accomodated, cf. [1, Section 3|, the following Markovian setup will be enough
for our purposes. Note however that all results presented in this section continue to hold at this
greater level of generality.
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Let Z = (Z;)i>0 be a time-inhomogeneous Markov chain on 3. That is, there exist transition
densities g; : ¥ x ¥ — Ry, ¢ > 1, with respect to p (i.e. the functions g; are measurable and
§gi(x,y)u(dy) = 1 for all z € ¥) such that under a probability measure P,

(4.1) P(Ziy1 € dx| Z;) = gi+1(Zi, x)p(dx) for all 4 = 0.

Under an auxiliary probability @, let n be a Poisson point process on ¥ x R, with intensity
measure p ® dv, where dv denotes Lebesgue measure on R;. Our assumptions on (X, 1) ensure
that the construction of 7 falls within the realm of standard theory. We assume that @) carries
a random variable having the same law as Zy under P, independent of 7, which we continue to
denote by Zg.

Letting zg = Zy, vop = 0 and 19 = 1, one defines recursively, for ¢ = 0,

v
4.2 &iy1 = inf ———,
(4.2) 1 (zv)em; Giv1(2i, 2)

where, in writing e.g. (z,v) € n we tacitly identify the point measure n with its support. Com-

bining Propositions 4.1 and 4.10 of [24], it follows that the infimum in (4.2) is attained Q-a.s. at
a unique pair (2;4+1, vi+1), and defining

(4.3) Mi+1 = Z 5(Z:U—§i+1gz‘+1(zi,2))’
(zv)Eni\{(zi+1,vi+1)}

the following holds:

(4.4) & = (&)i>1 are i.i.d. exponential random variables with parameter 1;
(4.5) foralli=>1, (20,...,2) faw (Zo, ..., Z;) and is independent of (&1, ...&);

(4.6) for all i > 1, n; is a Poisson process of intensity u ® dv independent of (&5, 2, vj)o<j<i

(with &, = 0). We refer to the sequence z = (z;)i>0 thereby constructed as obtained from
(n, Zo, (gi)i=1) via soft local times. The associated soft local time process is defined as

(4.7) Go(z) =0, Git1(2) = Gi(2) + &i+19i+1(zi,2), 1 = 0.

As the next proposition illustrates, one benefit of this construction is to supply a natural coupling
in terms of 7 of two (or more) chains having densities with respect to u. The coupling allows
for a comparison between the ranges of these chains, which is controlled in terms of the scalar
fields Gi(+). To wit, let Z be another Markov chain on ¥ having transition densities (§;)i>1 with
respect to the same measure pu, cf. (4.1). With hopefully obvious notation, we write Z; (along
with é, 7i), © = 0, under @ (which is tacitly understood to carry a copy of Z independent of
1, Zo) when referring to the chain obtained from (1, Zo, (Ji)i>1) by soft local times. We denote
by Gi, i >0 the corresponding soft local times, defined analogously to (4.7).

Proposition 4.1. The processes (z;)i=0, resp. (Zi)i=0, have the same law under Q as (Z;)i>o,

~

resp. (Z;)i=0, and for each m,n =1, on the event

(4.8) G (2) < Gu(2) for all z€ %,
one has
(4.9) {z1,...,2m} S {Z1,..., 20}

15



Proof. The first part is immediate on account of (4.5). To see that (4.8) implies (4.9), observe
that, by construction, cf. (4.2)-(4.3) and by definition of G;, see (4.7), one has for all, m,n > 1,

{z1,...,2m} = {z € ¥ : there exists (z,v) € n s.t. Gy(2) = v}
{Z1,...,2,) = {z €2 : there exists (z,v) € 5 s.t. Gp(2) = v}.
From this, (4.8) plainly yields the inclusion (4.9). O

Proposition 4.1 is not entirely adapted to our purpose. In Section 5, see in particular the
proof of Proposition 5.4, we will actually need to couple the process Z with the initial chain Z on
a suitable extension of P. This is conveniently achieved using an inverse soft local time method,
that we now explain.

With P referring to the original measure under which the Markov chain Z = (Z;);>¢ is
defined, cf. above (4.1), let

extension of P carrying an independent random variable xy = ((gk)kzl, ﬁo),
(4.10) P : where 7)g is a Poisson point process on ¥ x R, with intensity x4 ® dv, and
(&k)k>1 are i.i.d. exponential variables with mean 1, independent of 7).

Given a realisation of the time inhomogeneous Markov chain (Z;)o<i<r up to some deterministic

integer time T' < o0, we set inductively for k = 0,...,7 — 1 (under P)
(4.11) Mk+1 = 5(ZT7k7é\T—kngk(ZTfk—l»ZTfk)) * Z 5(27U+§T7kgT7k(ZT7kflyz))
(Z,U)Gﬁk

and write n = 7. Note that, albeit implicit in our notation, all processes i, 1 < k < T,
implicitly depend on the choice of T'.

Lemma 4.2. Under 13, for all integers T = 1, the process n is a Poisson process of inten-
sity p ® dv, independent of Zy. Moreover, the sequence obtained by applying soft local times to
(n, Zo, (gi)i=1) up to time T is (Z;)o<i<T, With corresponding exponential variables (&;)1<i<r-

Before proving Lemma 4.2, we isolate the case T' = 1.

Lemma 4.3. Let 1,&, Z be independent random variables, with 1j a Poisson process of intensity
p®du, & exponentially distributed of parameter 1 and Z having density g with respect to p. Then

77_5Z§g(Z Z 5zv+£gz)

(z,v)en
1s also a Poisson point process with intensity p & dv.

Proof. For t € R, consider the (measurable) function f; : ¥ x R — ¥ x R with

(4.12) fi(z,v) = (2,0 + tg(2))

and note that f_; = f;!. Given a point measure 7 = >, Oy oy O B x R, et fi() =
220, (2a0y)- Note that (t,7) — fi(7) is measurable, and thus n = f¢(7)) is also measurable.
Consider the Poisson process 19 on ¥ x Ry under the (auxiliary) probability @, cf. above (4.2),
which has intensity p ® dv. In order to be consistent with the previous setup, fix an arbitrary
point zp € ¥ and define g; by declaring that g;(29,2) = g(z). Applying (4.2)-(4.3) for i = 0,
one finds & and a point (z),,vy,), corresponding to the unique minimizer in (4.2), i.e. with
§19(2x,) = vx,. In view of (4.3) and (4.12), one has, for 79 = > 62, )

Z f{l (2x,v2)

A#EAL
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which, in particular, yields that
(4.13) mo = fe (M) + 62y 0x) = Seo (M) + 002y £19(20,))-

Now, by (4.4) one knows that &; law &, by (4.5) one has that zy, v 7 s independent of & and
by (4.6), m1 is a Poisson process of intensity ¢ ® dv independent from &; and z),. Therefore in
view of (4.13) the point processes 1y and 1 have the same law, and so 7 is also a Poisson process
of intensity p ® dv. O

One now easily deduces Lemma 4.2 inductively from Lemma 4.3.

Proof of Lemma 4.2. For k € {0,...,T — 1}, assume that 7)), as defined in (4.11) (see also (4.10)
regarding 7o) is a Poisson point process under P independent of Ay :=0(Z;,§,0<i<T — k),
with the convention & = 0. Note in particular that this is automatically satisﬁedA in case

= 0 on account of (4.10). Then by Lemma 4.3, applied with ) = 0, Z = Zp_p, § = {p— and
9(2) = gr—k(Zp_k_1, 2), one deduces that, conditionally on Ay 1, k11 is a Poisson point process
with intensity p®dwv. In particular, g1 is independent of A 1. By induction, we conclude that
n = 7 is a Poisson point process with intensity u ® dv independent of Ap = o(Zp).

Referring to (4.2)-(4.3), let &, ni, v; and z;, 0 < @ < k, be the variables obtained by applying
soft local times to (1, Zy, (g;)) up to time k (so in particular §o =v0 =0, 20 = Zp and g = n(=
nr)). Assume that for some k € {0,...,T — 1} we have & = &, n; = Nr—i, vi = &9i(Zi—1,Z;)
and z; = Z; for all 0 < i < k (with vg = 0). Then

(4.2) v nk:ﬁ?k v
fpi1 = inf R inf

S — =&
(z0)enk Grr1(2k 2) (z)eir—r ool (Zr,2)

and the infimum is a.s. uniquely attained at (Zx1, é\k+1gk+1(Zk, Z+1)) by definition of 7p_j in
(4.11). Moreover one easily checks that ng1 = np_x—1, and it follows with a simple induction
argument that z; = Z; for all 1 < T. O

Combining Proposition 4.1 and Lemma 4.2, one can couple Z = (Z;);>0 under the extended
measure P defined in (4.10) to any other (inhomogenous) Markov chain having transition den-
sities relative to u, with good control on the ranges in terms of appropriately defined (inverse)
soft local times, see Remark 4.5 below regarding the terminology.

Proposition 4.4. For allT > 1, Z € ¥ and any family (g:);

1
~

>1 of transition densities with respect
to u, one can define under P two sequences Z = (Zi)is0, € =

(&)i=1 such that, letting

(4.14) Gi(2) = D Go(Zi,2), Gilz2)= > Giw(Zi,2) fori=1,z€%

1<k<i 1<k<i
(see (4.10) regarding Ek), the following hold:
i) Z is a Markov chain with Zo = % and transition densities (§;)i>1;
ii) E are i.i.d. exponential variables with mean one, independent of 2;
iit) For each p,m,ne{1,...,T},

(4.15) {G < Gm(2) < Gn(2), for all z € ¥}
c{{Z1,.... 2y} <21, Zin} S A0, T}
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Proof. Recall n = fir from below (4.11) and let (2;); and (Z;); be the Markov chains obtained
by applying soft local times respectively to (1, Zo, (g;)) and (n,Z,(g;)). Define Zi=3%,i>0,
and fN the corresponding sequence of exponential random variables produced by applying soft
local times, cf. (4.2) and (4.4). In particular, this implies that (G;(-))i=o defined in (4.14) is the
corresponding soft local time process.

With these choices for Z and 5, i) and ii) follow immediately from the first part of Propo-
sition 4.1 and by Lemma 4.2, which guarantees that 1 has the correct law. Finally, one notices
that, due to Lemma 4.2, z; = Z; for all 0 < i < T and (G;(-))o<i<r as defined in (4.14) is
the corresponding soft local time process (up to tlme T). From this, iii) follows upon applying
Proposition 4.1 twice, swapping the roles of (g;) and (g;), to deduce (4.15) from (4.8)-(4.9). O

Remark 4.5.

1) It is natural to refer to G; defined in (4.14) as an inverse (or backwards) soft local time.
Unlike its ‘forward’ counterpart (4.7), in which the random variables £ = ({)k>1 emerge
as minimizers in (4.2), the random variables § = (fk)k>1 involved in (4.14) are given by
fiat, see (4.10). Loosely speaking, this corresponds to the fact that, instead of constructing
the chain Z (and the variables £) from 7, one reconstructs n from a given realization of Z
(with the help of additional independent randomness, comprising E ). The benefit of doing
this (and the gist of Proposition 4.4) is that, with 1 at hand, one can now apply (forward)
soft local times to couple any other chain Z having transition densities relative to u to the
original chain Z via .

2) In Proposition 4.4, the random variables Z and E depend only on the Markov chain Z and
on the variable y from (4.10) (as well as the choice of T, of the probability P and of the
densities g and §). This will be important in Section 5, where we will apply Proposition 4.4
several times simultaneously for varying choices of Z and x. These varying choices are
coupled together on a common probability space, thus the corresponding varying processes
Z and E are also naturally defined on the same probability space, see around (5.25).

5 Localization

In this section we prove our main localization result, Theorem 1.2, which will follow from a more
general result, Theorem 5.1 below. This result is of independent interest and is not specific to
the “late” or “high-intensity” regime, to which it will later be applied. Such applications are
discussed separately in Section 6. The proof of Theorem 5.1 is split over §5.1-5.3, and involves
inverse soft local times, cf. Proposition 4.4. An overview of the proof appears atop of §5.1.

For the purposes of Theorem 5.1, which couples processes with range in both T(= (Z/NZ))
and Z%, it will be important to distinguish clearly between the two. Recall from §2 that 7 : Z¢ —
T denotes the canonical projection, that for 2 € Z% we often abbreviate & = m(z), that 0 is the
origin of Z? whereas 0 is the origin of T, and that Q(z,7) = Q,(z) are boxes around z of side
length 7 either in Z% or in T, depending on whether x € Z¢% or T.

In what follows, a family of (point) processes (w(x))erN(o) is said to have range R in Z¢,
resp. in T, if w® and {w®) : 2/ € Qn(0)\Qr(z)}, resp. {w®) : &’ ¢ Q(z, R)}, are independent
for each 2 € Qn(0). Intuitively, if one identifies Qx (0) with T, then (w®)),cr has range R in T
if for all z € T, w® is independent of w*") for all 2’ ¢ Q(x, R). We refrain from doing such an
identification, since it could cause confusion in the next statement, in which the random walk
and random interlacements appear jointly. Following is our main localisation result, from which
Theorem 1.2 will follow as a special case.
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Theorem 5.1 (Localization). For all 6 € (0,1), there exist ¢ = ¢(§) > 0 and C = C(d) < ©
such that the following holds. For every N € N, R € [1, 1NW] and ug > 0, there exists a probability
measure 150 extending Pg, resp. }TDI, extending P!, carrying a family of processes (w(x))erN(o)
such that

(5.1) w® has law P! for each x € Qn(0),
(5.2) (w(x))zeQN(O) has range 2(1 + §)R in T, resp. 72,

and, writing (fﬁ)yezdwo for the field of local times associated to W) cf. (2.12), for all F <
Qn(0), 0 <v <u<ug, and e € (0,1) with u(l —e) > v(1 + €) one has

~ (z) () (z) (2)
(5:3) Bo (L1 o~ 001 <ty — by <600 =60 Vo e Fye Q. R))
>1- C|F|R*[uR™?|exp (—c-e- Vv - RI-2),

resp. for all u < ug and € € (0,1),

N TSI d d—
(5.3) P (ﬁg(fiu_@ <lyu <L), VTR, ye Q(m,R)) > 1-C|F|R* exp (—cs?uR™?).
We refer to Remark 5.7 at the end of this section for various extensions of the above result,
reflecting in particular a certain flexibility for the requirement (5.1), and alternatives to (5.3) (see
(5.37)-(5.38)), which do not involve increments; these matters are best explained after giving
the proof. Applications of Theorem 5.1 specific to our purposes are postponed to Section 6.

Before proceeding any further, let us give the short:

Proof of Theorem 1.2 (assuming Theorem 5.1). Define P = N4 D reT P, where P, is obtained
from f’o through translation by z € T. One then applies Theorem 5.1 for the choices § = 1, with
2u in place of u, v = u, F' = Qn(0) and % in place of R. Property (5.2) is still verified under
P since the law of w® under P, does not depend on z € T for each y € Qn(0) by (5.1). Upon

defining lzc’u(lis) = Eg%(lig)u — ffj()l;a)u for all x € Qn(0), and observing that £. 9, — ¢. ,, has the

same law under P as £.,, under P due to stationarity, the desired properties (1.17) resp. (1.18)
follow readily from (5.2) resp. (5.3). O

As explained at length in §1.2, the main upshot of Theorem 5.1 is the combined effect of
(5.2) and (5.3)/(5.3’), which yields a “close + local approximation” to the field of interest, the
(increments of) local times. By virtue of the additional requirement (5.1), Theorem 5.1 also
entails a coupling between random interlacements and random walk, which will prove useful as
well; cf. Lemma 6.1. Similar couplings at a mesoscopic scale were first obtained in [34], and then
improved in [32, 5]. At a macroscopic scale, that is, outside of an annulus of size 0N for some
small § > 0, a similar coupling was proved in [8, Theorem 4.1]. In fact, Theorem 5.1 directly
implies the coupling from [8, Theorem 4.1] for fixed § > 0, as we now explain.

Corollary 5.2. For all § > 0, there exist ¢,C € (0,00) depending only on 6 and d~such that
the following holds. For every v > 0, ¢ € (0,1) and N € N there exists a coupling P between
(bzu)zer under P and ({y y1+¢) 1 © € Qn(0)) under P! so that

P (Exyu(l_g) Sl < Ly ui4e), Y2 € Qn(i—s) (0)) =>1- C’de[uNd_z] exp ( —ceV uNd—2).

)
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Proof. The desired coupling P of (Cr)zeT; (Uou(i—e))zeqn©) ad (Lyu(14e))zeqy(0) 15 Ob-

tained as the joint law of (324 — lzu)zeT, (ﬂfggu(lie/s’) — ggc(,)z)L(He/B.))xEQN(O) and (gg,);u(lﬁ/@ —
(0)

£I7u(1,€/3))erN(0) under N~ . P,. Using (5.3) (replacing v by u and u by 2u) with ug = 2u,
F = {0} and R = [N(1 —0)], the claim immediately follows from the independence and station-
arity of the increments of random interlacements. O

Note that P appearing in Corollary 5.2 is in fact the same measure as in Theorem 1.2, hence
the identical notation. As opposed to [8, Theorem 4.1], the coupling error obtained here is more
explicit in u,e and N. We believe moreover that our proof is more elementary since it does not
involve the coupling appearing in [8, Theorems 3.1-2| of general Markov chains via soft local
times. As in [8], one could probably also take § = §(N) — 0 slowly enough as N — o0 in
Theorem 5.1. Actually, Corollary 5.2 is the only reason we chose to prove Theorem 5.1 for all
6 > 0, instead of for all § large enough, which would be sufficient for our purposes. The proof
of Theorem 5.1 would be slightly simpler for § large, for instance one would not have to use
Lemma 5.5 below by proceeding similarly as in [11, Lemma 2.1] (upon adapting the results from
Appendix A.1 to obtain Harnack bounds with constants close to 1 as § — o), and the proof
of Lemma A.1 would also have been simpler. But Lemma 5.5 is actually easy to prove given
the tools developed in Appendix A.2, which are anyway required to prove Lemma 5.6 below. In
other words, proving Theorem 5.1 for all 6 > 0 does not require a lot of additional work, and
provides a more elementary proof of a version of [8, Theorem 4.1].

In the remainder of this section, we prove Theorem 5.1. We shortly explain the general
strategy for the random walk; the case of random interlacements is similar. First, in Section 5.1,
for each By ¢ By © Bs(c Zd), we approximate the excursions (Z;);>o of the random walk from
(the projection of) 0B; to 0By before hitting dBs, see (5.6), by a process (Z,)go of excursions
which is independent of the walk outside of Bs, see Lemma 5.3, using the inverse soft local
times method from Proposition 4.4. Then in Section 5.2 for r1 < ro < rs, we put together
the excursions (Zi(z))i)o, x € Qn(0), each corresponding to the choice B; = Q(x,r;) for each
i € {1,2,3}, and show that they satisfy a short range property, see Proposition 5.4. Moreover

for each fixed m € N, we estimate the probability that (Z(m))lgm is close to the initial excursions

(Zi(x))igm in Lemma 5.5, and show that the number of excursions performed by the random
walk or random interlacements at a given time is well concentrated around some deterministic
m in Lemma 5.6. The proof of these two lemmas is given in Appendix A. Finally, the different

pieces of the proof are put together in Section 5.3 by defining w(®) for each z € Qx(0) as an

interlacement process whose excursions are given by the short-range excursions (Zi(l’))i;o for
r1 =R, 79 = RV1+0 and r3 = R(1 + 9).

5.1. Construction of short-range excursions in a fixed set. We start with a realization
X of the random walk on T under Py, and for By € By € B3 < Q2on(0) with diameter smaller
than N, we first define a process of excursions (Z;) in Bs from B; to dBs, and a corresponding
clothesline process ((;) in 0By x dB3, such that for each j, up to projection onto T, X first visits
the first coordinate of (j, then after hitting By follows the excursion Z; until the last hitting
time in By before reaching 0Bz, and reaches dB3 in the second coordinate of (j, similarly as
in [1, Section 3| and [8, Section 4|. Then, coupling via the inverse soft local time method of
Section 4, conditionally on ((;), we define excursions (ZJ) close to (Z;) and independent of the
walk X outside of Bs, see Lemma 5.3, which will form the basis of the finite-range process w(®)
from Theorem 5.1 in the random walk case. Finally, we extend this construction to the case of
random interlacements.

Let By € By € Bs < Q2n(0) be three concentric boxes with diameter at most N — 1. For
a sequence = = (o, )n>0 in Z%, we introduce two sequences of successive return and departure
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times as Ro(z, Ba, B3) = 0, Do(x, B2, B3) = Hapg, where 0B§ = 0(Bj) is the exterior boundary
of B3, and inductively for integers k > 0

R]H_l(.l‘, BQ,Bg) = 1nf{n Dk(l‘, BQ, Bg) 1 Ip € 0B2},

=
5.4
(54) Dy 1(z, B2, B3) = inf{n > Ry,1(x, B2, B3) : x, € aBg},

Thus, Dy < Rpy1 < Dgq for all £ = 0. We further define, for k > 1,
Hk({L', Bl, Bg, Bg) = inf{n € [Rk(sc, BQ, Bg), Dk({E, BQ, B3>] 1 Ip € @Bl}

(we use the convention inf@ = +400). Attached to these stopping times are the process
(Ci(x, Ba, B3))i>1, where

(5.5) Ci(.l',BQ,Bg) = (xRi(a:,Bz,Bg)vxDi(x7B2,Bg)) € 0By % 635 for i > 1,
and the excursions (Z;(x, B1, Ba, B3))i>1 as

(5.6)  Zi(z, B1, Ba, By) = {m[HimBhBaBs%LBQ<Di<mszzBa>>] i Hi(, Br, By, By) < oo,
©

otherwise,

where 2, = {7x : k € [s,t] n N}, the time Lp,(D;(x, B2, B3)) is defined similarly as in (2.1)
but relative to z and O is a cemetery state corresponding to excursions that do not hit ¢B;. In
words, Z;(x, B1, Ba, Bs) is the part of the i-th excursion from By to Bs from the first time it
hits 0B until the last time it is in By before hitting 0BS. The attentive reader will have noticed
that the system of excursions defined by (5.6), though designed to keep track of x inside By,
actually neglects its first part until first exiting B3 (which may well intersect Bj).

We now introduce By, a box of side length N satisfying By > Bs, which is otherwise arbitrary.
With X the random walk in T under Py, the restriction mp, : By — T is a bijection, and we

let X = (Xpn)ns0 with
(5.7) X, = (7T|B4)71(Xn), for all integers n > 0.

Even though X in (5.7) depends on the choice of By, the subsequent construction (in particular
the definition of the processes Z, ¢ and A below) do not (so long as By > Bsz). We will be
interested in the system Z = (Z;);>1 of excursions (on Z%)

(5.8) Z; Y 72X ,By,Bs,B3), i > 1,

with corresponding clothesline process ¢ = ((;)i>1, where (; = (i()A(,Bg,Bg). For u > 0, we
denote by Nrw (X, B2, Bs, u) the total number of excursions X performs across 7(B3\Bz) before
time uN¢ and after time Do(X, By, B3); that is,

(5.9) Niw (X, By, Bs, u) = sup{k = 0 : Rj;(X, By, Bs) < uN%}.

We now adapt this setup to random interlacements. Let wg, o) = (wéw(o) )u=0 be the restriction

of a random interlacements process w under P! to trajectories hitting Qx5 (0). Recalling (2.11),
WQ,n(0) 18 defined in terms of the Poisson counting process u — N = NéZN(O) of intensity

cap(Q2n(0)) and a family X7, j > 1, of independent simple random walks having law Pz,
each. Let

2 (0)
(5.10) T9 = T(X’, By, B3) = sup{k > 0: Ryp(X’, By, B3) < w0}.
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Note that 77 = 0 with positive probability, and that actually 77 = 0 if and only if X7 does not
visit Bg in view of (5.4) and since we assumed B3 < Q2n(0). Let us now define the clothesline
process A = (\j(w, B2, B3))j>1 and the excursions process (Wj(w, By, Ba, Bs));>1 of random
interlacements by taking for all j > 1 and 1 <4 < 7Y (cf. (5.5) and (5.6) for notation)

) Aiisi-t (@, By, Bs) = G(X, By, Bs) and
Wiyt (W, B, By, Bs) = Zi(X7, By, By, B).

In analogy with (5.9), we write Nri(w, Ba, Bs, u) for the total number of excursions across B3\ B
performed by the interlacement at level u, i.e.

N’u
(5.12) Nri(w, By, By, u) = Y TV,
j=1

with 77 as in (5.10) and where N* is a Poisson random variable of parameter ucap(Qan(0)),
see above (5.10). We will frequently omit various arguments, e.g. the sets Bi, Ba, Bs, from the
above notation whenever those are clear from the context.

We now aim to couple the process Z = (Z;);>1 from (5.8) via inverse soft local times, i.e. using
Proposition 4.4, with a process Z independent from X outside Bj, corresponding to excursions
of random interlacements. We start by defining the appropriate state space ¥, measure p and
transition densities g, cf. (4.1). Let K denote the set of finite nearest-neighbor paths in B3 from
0B1 to &BQ, ie.

(5.13) K={z=(20,...,20) 1 20€ 0B1,2j € B3V j < {,z € 0Ba}.

Recalling © from (5.6), which represents a cemetery state corresponding to the excursions from
0B; to 0B that do not hit By, we set ¥ = K U {O} and define for S € ¥
(5.14) M(S) = Z Pw(X[O,LBQ(TB3)] ES|XLBQ(T53) zy) +1{@ES},

anBl,y€5Bz

with the convention P(-| A) = 0 for any event A with P,(A) = 0, and where Lp, and T,
(= Hopg when starting from Bj) are defined as in Section 2, but for X instead of X (since

~

B; < 7). For every (y,w) € 0By x 0B and z = (zq,...,2) € K, abbreviating Hyx(X) = Hg
we let

(5'15) g(y,w)(z) = Py (TBS = HBl’XHBl - ZO’XLBQ (Trg) = “t | XTB3 B w)
and also
(5.16) 9(yw)(©) = Py(Th, < Hp, | X1, = w).

It then follows that for all z # O,
Py(Zl =z| XTBS = w)
= g(y,w)(z)Py(Zl =z ‘TBg = HB17XH31 = ZO7XLBQ(T33) = '257)(’1133 = w) = g(y,w)(z)ﬂ({z})v

where the last equality follows by writing the relevant conditional probability as a ratio and
applying the simple(!) Markov property separately to numerator and denominator by summing
over all possible values of Lp,(TB,). One readily finds that the equality Py(Z; = z| XTB3 =
W) = g(yw)(2)p({z}) continues to hold for z = ©. That is, g(, ., is the density with respect to
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1 of the image on By of the random walk path from the first time it hits B; until the last time
it visits Bg during one excursion which starts from y and ends at w, cf. (4.1).

By the Markov property of X, conditionally on ¢ = (¢;)i>1 where ¢ = (X, Ba, Bs)), (Zi)is1
is a Markov process with transition densities (g¢,)i>1 with respect to p. Here and in the rest of
the section, we identify z — g¢, () with the function (2/,z) € ¥ x ¥ — g, (2), since the transition
densities of Z only depend on the second variable. This is owed to the fact that, conditionally
on ¢, the random variables (Z;);>1 are independent. With regards to fitting the setup of (4.1),
the latter property also makes specifying Zj obsolete (for definiteness, the reader may wish to
choose some z € ¥ and set Zy = z).

For (y,w) € 0By x 0B§, the measure p and the function gy, stay the same when replacing

in their definition the image X of the random walk under P. by the random walk X on Z¢ under
the probability P, . In particular, conditionally on A = (A;)i>1, (W;)iz1 is a Markov process
with transition densities (gy,)i>1 with respect to p. We refer to [1, Section 3| for a detailed
account, with illustrative figures, of clothesline process, excursions and the resulting density in
the case of random interlacements.

With this setup, which fits the framework of Section 4, cf. around (4.1), we proceed to explain
how to use Proposition 4.4 to approximate the random walk excursions (Z;);>1 in (5.8) by some
random interlacements excursions independent of the walk outside of B3. To this end, assume
Po to be suitably extended as to carry, independently of X, a family x as appearing in (4.10)
and an independent clothesline process A = (A\;)i=1 having the same law as A in (5.11). Now
consider for each sequence z = (zy,)n>0 in Z¢ the map

(5.17) Yi(z, By, Bs) = { "10Fnle: BB im0
T[D,(x,B2,B3),Ris1(z,B2,B3)]» L 1=1,

assuming R;i1(z, B2, B3) < ; in case R;i1(x, B2, B3) = o for some ¢ > 0 the right end-
point is excluded in the corresponding formula for Y; in (5.17), and by convention Y; = & if
D;(x, By, B3) = o0. Thus, Yj(z, Ba, B3) represents the part of x occurring before the clothes-
line (i(x, B, B3) or between the clotheslines (;(z, B2, Bs) and (;+1(x, B, B3). We abbreviate
Y, = Yz()’(\', By, B3). Importantly, conditionally on (, the processes (Z;);>1 and (Y;);>0 are inde-
pendent. Thus, conditionally on (, X and (Yi)i=0, (Z;)i=1 is still a Markov chain with transition
densities (g¢,) with respect to p. Therefore, applying Proposition 4.4 conditionally on (¢;)i>1,
(Xi)@l, and (Y;)i>0, we can construct under the extended measure Pq for every integer T' > 1
and initial state Zo = Z a Markov chain

(5.18) (Zi)izo = (21‘(X,X,X,T, Bl’Bg’Bg))z}O
with transition densities g; = 95, i > 1 and satisfying (4.15). Note that since the transition
densities (2, 2) — 95, (%) do not depend on the first variable, and since both (Z;)i>1 and (¥3)i=0
do not depend on By (as long as it contains Bs), (Z)Z;l does not depend on the choice of the
initial excursion Z, which we will henceforth omit, nor on the choice of By. For later reference,
we denote by GEW (corresponding to G in (4.14)) the soft local times associated to Z, that is

(5.19) GEWV(2) = Z gkgck(z) for all z € ¥ and m > 1;
k=1

cf. (4.10) regarding & (part of X), which are independent of Z. In view of (5.15), GEW(z)
actually only depends on its argument through the start- and endpoint of z. The clothesline
process (¢ corresponding to Z below (5.8) is a Markov chain, as follows readily from the strong
Markov property. One can show, see Lemma A.5 and (A.12), that the stationary distribution
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of ¢ is given by é%(az:)]ﬂ;(Xr_pB3 = y) for (x,y) € (0B2 x 0BS), where &3 = égg denotes the
normalized equilibrium measure of Bj relative to B3 (see below (2.6) for notation). Abbreviating
P, = > pu(z) P, and similarly P, writing @3 for the projection of & onto T (i.e. the measure
such that &5 o 7(x) = Egg (z) for all z € By), and letting

(5.20) 9(2) = Eg3lg¢, (2)] (= Egzlgg (2)]),

(where (o is declared as in (5.5) but with ¢ = 0), which amounts to the average of the random
variable £ — g¢(2) of interest under the stationary distribution for the process ¢, it then readily
follows that mg(z) is the expectation of GEW (2) starting from stationarity.

The process Z introduced in (5.18) by means of Proposition 4.4 will be the basis of the
construction of the short range process w(®) (and Z(“”)) from Theorem 5.1, with x denoting the
common centre of B1-Bs. As one of its central features, which will eventually give rise to the
finite-range property (5.2), the process Zis independent of X outside of Bs, as argued next.

Lemma 5.3. For all bores B1 € By € B < Q2n(0) with diameter at most N —1 and each
T = 1, the process Z = (Zi(X,X,)\,T, Bl,BQ,B3>) is independent of ¢ = ((;(X, Be, B3))i>1

and Y = (Y;(X, Ba, B3))iso.

1>1

Proof. By Proposition 4.4, conditionally on X, ¢ and Y, Z is a Markov chain with transition
densities (g;\.)izl with respect to u, and so its conditional law depends only on A. Since A is

independent of ¢ and Y, it thus follows that Zis independent of ¢ and Y. O

Thus, up to controlling their respective soft local times, (Z-)Z;l are excursions close to (Z;)i>1
by Proposition 4.4, but with an extra independence property, similarly as the processes Z;' from
|24, Proposition 5.3|. There are however two main differences in our construction: first the soft
local times method is used conditionally on the clothesline process ( instead of unconditionally as
in [24], following ideas from [1], and second, using Proposition 4.4, the process (Z;);>1 is defined
directly in terms of the Markov chain X under Pg (and additional independent randomness)
instead of a process on some other probability space having the same law as (Z;);>1, as in |24, 1].
These two changes in the method serve the same purpose: we can construct simultaneously the
processes (Z)Z;l for different choices of sets By & By & Bj that are not necessarily disjoint and
all have the desired independence properties. Moreover, for each three sets By € By € B3, they
are close to the excursion process (Z;);>1 associated to the same initial chain X. We refer to
Proposition 5.4 for the exact statement.

We now adapt the previous construction to the case of random interlacements. Suppose
that P! is extended with the same independent processes (X, X) as in the case of Py, cf. above
(5.17) regarding their respective laws. Conditionally on A (see (5.11)) and Y;(X7, Bs, Bs) for all
0<i<T’andj>1,see (5.17), the process (W;);>1 introduced in (5.11) is a Markov chain
with transition densities (gy,) with respect to p. Thus, applying Proposition 4.4 with any choice
of W(), one obtains for every T' > 1 a Markov chain

(521) W = ("/I\;i)izl = (Wi(w,x,X,T, Bl’BQ’B?’))iZl
with transition densities (g5 ) with respect to ju, (independent of WN/'O). The soft local time
associated to W = (W;);>1 is given by

(5.22) GRl(2) = gkgAk (2) for all ze ¥ and m > 1,

s

(and similarly for W with §~, X in place of é\, A). By [8, Lemma 6.1], starting from the invariant
distribution of ), see (5.11), the expectation of GE! is equal to mg(z), see (5.20), i.e. it is equal

24



to the expectation of GEW starting from the invariant distribution of ({;)i=o; to see this recall ¢
from (5.5) (which can also be defined for i = 0) and note that the expectation in (5.20) equals
Eég [9¢o(x,Bs,Bs)(2)]. Moreover one proves similarly as in Lemma 5.3 above that W is independent
of the clothesline process A\ and the excursions {Y;(X7, By, B3) : 0 <1< T7,j > 1}.

5.2. Simultaneous approximation by short range excursions. Towards proving Theo-
rem 5.1, we now apply the construction of §5.1 jointly to the sets

(5.23) B =Q(z,r;), k=1,...,4, where 0 <ry <ro<rg<ry=N

(with Q(z,7) = Q.(x) referring to the boxes introduced at the beginning of Section 2) as x €
Qn(0) varies. In particular, B3 € Qan(0) and has diameter at most N — 1 as assumed in §5.1.
N(m))

The resulting sequences Z®) = (Z ;' )j=1, see (5.18) and (5.25) below, will provide the excursions

in terms of which the processes w(®, x € Qn(0) will later be defined. For each x € Qn(0) and
J = 1, recalling (5.6) for notation, let

(5.24) 2 (r1,m0,13) & Z3(X, Q(a,11), Q(a, 1), Q(x,73)),

where X is as in (5.7) with By = Q(z, N), and write ¢(*) = (CJ(»I))]-Zl for the associated clothes-

line process, i.e. CJ(@ = ¢ (X,Q($7T2),Q(.’E,T3)), cf. (5.5), and géﬁ), the transition densities of

(Z](‘T))jeN, cf. (5.15) and (5.16). Let Pg be an extension of Pg carrying the additional indepen-
dent processes @@, X(z), x € Qn(0), having the following distributions. For each z, 5@ is an
interlacement process, i.e. it has the same law as w above (2.11). Its induced clothesline process
for the choice (5.23) will be denoted by (Xg.x))j;l. The process x*) is specified by (4.10) with
underlying measure space (2, ) = (2@, () in (5.14) corresponding to (5.23).

Now, applying Proposition 4.4 in the same manner as above (5.18) but simultaneously for
each x € Qn(0) yields, for each such x and integers 7,7 > 1, the random variables

(525) Ej(x) (T7 r1,T2, 7,3) dif’ 2] (X, X(m)a X(x)a T7 Q(:I;) T1)7 Q(Z’, T?)? Q(:ca T3))'

As in (5.19), the soft local times associated to Z(*) = (Zéx))jzl will be denoted by GRVy(z),

for m > 1 and z € £*), with inherent i.i.d. exponential random variables EJ@, J = 1, carried

by x®), cf. (4.10). The expectation under the stationary distribution of géfz)) (z) is written as
1

39 (2), z e X similarly as in (5.20). R

Finally, for each x € Qx(0), replacing every occurrence of Z;, (;, Z; and GRV above by W,
Aj, Wj and GRI one similarly defines under the extended measure P! (with the same extension
(J)(x),x(x))erN(o) as f’o) the processes Wj(m), )\(m), f/l\//](z) and G%{x for random interlacements,
which correspond to the processes introduced in (5.11), (5.21) and (5.22) for the choices of boxes

By in (5.23). As a result, by Proposition 4.4, for every x € Qn(0),

(5.26) (23(36)) j=1 has the same law conditionally on X as (Wj(m)) j=1 conditionally on A.

In the sequel, mimicking the notion introduced above Theorem 5.1, a collection II =
(15"
is independent of (H§y))j>17y€QN(0)\Q(x7R) (resp. of (H§y))j>1,y¢Q(wyR)) for each x € Qn(0). Here
following the convention from the beginning of §2, we used the symbol y = 7(y), and y ¢ Q(x, R)
means that y is such that y ¢ Q(x, R).

)eeQn (0),j=1 Of Z%valued random paths is said to have range R in Z% (resp. in T) if (Hﬁw))j>1
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Proposition 5.4 (N,T>1,1<r; <ry <rs < N).

i) The excursion process (Zj(z) (T,r1,72,73)) resp. (f/Iv/j(ﬂC) (T,r1,72,73))

zeQn(0),5=17 zeQnN(0),j=1’

have range at most 2rs in T, resp. in Z.

it) For all F < Qn(0), integer m > 1 and € € (0,1) such that me > 3 and my < T where
my = [m(1 £ )], one has with sup ranging over x € F, z € £ and n e [m_, m, ] below,

Po({Z" :j<m_yc{Z" :j<m} {2 j<my}, VaeF)
>1— |F|rid sup {ﬁg(\G}}VX(z) — ng(”:)(z)| > %ng(’”)(z))

(5.27) +2P! (|G (2) - ng@ (2)| = §ng®)(2)) },
]?I({VIN/]@ j<m_} < {I/Vj(x) :j<m}c {W(I) 1j<m4}, Vo eF)
> 1= 3|F|r}" sup B! (|G, (2) —ng™ (2)] = §ng™)(2)).
Proof. We first give the proof for the random walk. We start with item ¢). For every z € Qx(0),

the family (ZJ(-y), Cj(y))j>17y¢Q(m72T3) only depends on the excursions of X from Q(y,r2) to Q(y,rs)

for y ¢ Q(x, 2r3), and is thus measurable with respect to (Yj ()’f, Q(z,72), Q(x, T3)))j>0 defined in
(5.17), with X asin (5.7) for By = B(x, N). Hence, it is independent of (Z](x))j21 by Lemma 5.3.
On account of (5.18) and Remark 4.5,2) (the latter implies that Z; depends on X only through
(Z;)j=1 as well ((j);>1 via the densities (g¢,);j>1, the process (Zj(y))jzl depends by construction
only on (Z(y)7 C;y))jzl, x®) and 2 for all y € Qn(0). Using independence of (x¥), X(y)) as y

J
N(LE)

varies, it follows overall that (Z] )j=1 is independent of (N(-y))j>1 yéQ(x,2r3), as claimed.

We now show 7). For each x € Qn(0), let (GRI )j=1 denote the soft local times corresponding
to (CNJj)j;l in (4.14) when constructing (251))]21 in (5.18) by means of Proposition 4.4. In view
of the choice above (5.17) (A,é\) and (X, &) have the same law, and thus C:’f}lm(z) has the same

law as GR1(2) in (5.22). Proposition 4.4 (see (4.15)) now gives that for all m € N and ¢ € (0, 1),
the event appearing in the first line of (5.27) is implied by

N N {EF ) <6 <@L}

zeF zex ()

Moreover, for each m € N, € € (0, 1) such that me > 3, recalling that m4 = [m(1 +¢)], the latter
event (for fixed z € F and z € (%)) is implied by

{I63%(2) = mg®) ()] < Tmg@ ()} 2 {IGRL 2(2) = mag @ (2)] < Tmag®(2) |
m{@ﬁw@»wmgw@»<§ 57 (2)}

The assertion (5.27) now follows by a union bound over x and z, upon noting that géﬁ) (2) as

defined in (5.15) with By, as in (5.23) only depends on the first and last point of the excursion

z. The same is thus true of G (2), G%ﬂ +(2) and g (2), leading to the factor 3¢ in (5.27).
The proof for random interlacements is similar, using this time in item i) that the family

(Wj(y),Ag.y))j>17yeQ(o7 N)\Q(z,2r;) depends only on the excursions of the trajectories of random

interlacements from Q(y,r2) to Q(y,r3)(c Q2n(0)) for y € Q(0, N)\Q(z,2r3) (if a trajectory
does not hit Q(y,rs2) its excursions are just the full trajectory), and is thus measurable with

respect to {Y;(X7, By, B3) : 0 <i < T7,j > 1}, see above (5.10) and (5.17). O
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The interlacement processes w(®) appearing in Theorem 5.1 will be constructed using the
short range excursions (Z ](x)) (in case of Pyg) or (Wj(w)) (in case of P!) from Proposition 5.4.
Items i) and ii) above thereby roughly correspond to (5.2) and (5.3)/(5.3"). The latter requires

good control on the proximity between the short-range excursion processes (EJ(Z)) / (WN/J(JC)) and

the initial excursion processes (Zj(x))/ (Wj(x)), which is the object of the next two lemmas.

In view of (5.27), one central aspect is showing that the relevant soft local times concentrate
around their mean. For unconditional soft local times, i.e. without conditioning on the clothesline
process as in the construction of Z in (5.18), this was first achieved for random interlacements in
[24, Section 6], and then for random walk if § is large enough in [11, Lemma 2.1|. For conditional
soft local times as in (5.22), concentration around the mean was proved for interlacements in
[1, Proposition 4.1]. In the following lemma, the proof of which is relegated to Appendix A,
we extend this concentration of conditional soft local times to the random walk case, cf. (5.19).
In doing so we also give a shorter proof of [1, Proposition 4.1] when the sets 0By and 0Bj3 are
well-separated, as implied by the parameter § > 0 below.

In view of (5.23) and with a slight abuse of notation, Gﬁn(-), & € {RW, RI}, refers in the sequel
to the quantities introduced in (5.19) and (5.22) but with the choice By = Q(z, 1)) for arbitrary
x € Qn(0) (implicit below; note however that translation invariance is spoiled under Pg so one
cannot simply set z = 0). In particular, G,gn() depends on the parameters 1, 1 < k < 3. Recall
the function g from (5.20).

Lemma 5.5. For all 6 € (0,1), there exist ¢ = ¢(9), C = C(0), such that for all N > 1, all
O0<ri<ro<rs <N withrg = 1+4+00)rg, k=1,2, and alle € (0,1), m>1, z€ X,

Po (|GanW(z) —mg(z)| = emg(z)) < Cmexp (— cVe?m),
P! (|Gg1(z) —mg(z)| = emg(z)) < C exp(—ce?m).

Proposition 5.4 and Lemma 5.5 deal with a fixed number of excursions (parametrized by m).
For this to be successfully deployed, one needs to show that the actual number of excursions,
which is random and given by Ngw /Ngr see (5.9)/(5.12), suitably concentrates. Recalling the
relevant notation from §2, see below (2.6), let

) def.

(5.28) M = M(Bs, Bs) = CapBS(Bg);

the quantity uM represents an ‘asymptotic mean’ number of excursions until the terminal time
uN? for the walk; see also (A.32) for an alternative formula for M conveying this intuition.

Lemma 5.6. For all § € (0,1), there exist ¢,C € (0,00) depending on § so that for all N = 1,
u>0,e€(0,1), 1 <ry<rz <N withrs > (1+0)re, and By, B3 as in (5.23),

PO(‘NRW(BQ, Bg, u) —uM

| >
PI(‘NRI(BQ7 Bs, u) — UM’ =

Lemma 5.6 is essentially proved in [8, Proposition 9.1| for the random walk and in [8, Propo-
sition 9.3| for random interlacements, but the bounds obtained therein are not explicit. We
prove Lemma 5.6 in App. A using general large deviation results for random walk excursions
and random interlacements trajectories, see Propositions A.7 and A.9, from which Lemma 5.5
follows as well.

5.3. Proof of Theorem 5.1. With Proposition 5.4 and Lemmas 5.5 and 5.6 at hand, we are
now ready to proceed to the:
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Proof of Theorem 5.1. We focus on the case of the random walk X under Py and discuss the
necessary modifications to accommodate random interlacements at the end of the proof. With
R as appearing in the statement of Theorem 5.1, let 11 = R, ro = r1(1 +¢') and r3 = ro(1 4+ &),
where ¢’ > 0 is such that (1 + 6')2 = 1 + 6. In particular, 73 < N by assumption on R and this
fixes the value of M = M(Q(z,72),Q(x,r3)) in (5.28), which by a standard capacity estimate
satisfies

(5.29) M = cap(Q(x,72)) = er§? = ¢ RI2,

Throughout the proof we write ¢’ = £ for a given € € (0,1). We first introduce an approximation
for (the increments of) the local times of X, which count a fixed number of excursions. With

ZJ(-x) as introduced below (5.23) (a (finite) excursion in Z%), writing l;x) for its total length, so
thatZ {Z ( ) : Oénél](-x)},we set

(5.30) Z(x Z Z 1{Z =y}, forallze Qn(0), y€ Qr(x) and 0 < v < u,
=[vM]n=0

which counts the total number of visits to y by all excursions with index j between [vM] and
[uM]. Similarly, let £, [, ] = £yu — £y, for y € T, which is the relevant quantity appearing
n (5.3). By (2.2) and (5.9), €, [,,] admits a similar representation as (5.30), but counting
excursions with label j € [Ngw (B2, B3, v), Npw (B2, B3, u)] instead, where B; = Q(z,7;) as in
(5.23). We now claim that for all x € Qn(0), y € Q(z, R) and 0 < v < u,

(531)  ({Naw (B, Bs,v) = [v(1 — &) M1}
N ANRW (B2, Ba, u) < [u(l +&)MI}) < {ly ) < Z(m[) (e u(iren) )

(with y = 7(y)). Indeed, first notice that a possibly non-vanishing contribution to the local
time increment can arise from X.,p,, but only in case where Ry > |vN?| which is equivalent
to Nrw (B2, B3,v) = 0 on account of (5.9). This additional contribution to ¢ compared to v
is owed to the fact, noted below (5.6), that the process Z(®) defined in (5.6) neglects the very
first excursion of the random walk in B; before time R;. To obtain (5.31) one then uses the
definition of £, 7 and Nrw together with the fact that the event in the first line of (5.31) implies
Nrw (Ba, Bs,v) > 0, which prevents £y [v,u] from counting the very first excursion before time R;.
Combining (5.31), a similar inclusion yielding a reverse inequality (for which over-counting
the first excursion is not an issue), applying a union bound over z € F(c @Qx(0)) and using
Lemma 5.6, one thus infers that for all 0 < v < u and € € (0,1) with (1 —&’) > v(1 + &),

[w+e)u—e)] S Culoal S Oy fo—e)u(i+e)]

>1— CluM]|F|exp (— ceVvM),

(5.32) PO(E(*“) <y < 00 , forall z e Fy e Q(x, R))

for positive constants ¢, C' depending only on §.
To proceed further, we now work under the extended measure Pg introduced at the beginning

of §5.2, which will form the basis of the desired coupling. Recall the process (Z ](m)) introduced
in (5.25) which has range at most 2r3 in T by Proposition 5.4,i), and choose T' = [4ugM]|, for a
(fixed) up > 0 as appearing in the statement of Theorem 5.1. Mimicking (5.30), set

7(@)

14
Z n) =y}, for all z € Qn(0), y € Qx(R) and 0 < v < u < 4uy,

[wh
(5.33) 07, 2
j=loM
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with Z;x) denoting the length of Z](x) Combining Proposition 5.4,ii), applied for the choices
m = [uM], [vM], with Lemma 5.5 and a union bound, it follows that for all 0 < v < u < ug and
€ (0,1) such that u(1 — 2¢’) > v(1 + 2¢'),

<2

2)
[v(1+2¢"),u(1—-2¢")]

Y,
p.| 7@ pta)
<534) PO £y7[v( ),u(1+8/)] < gy,[v(1—25/)7U(1+28l)],

for all z € F and y € Q(z, R)

_ @)
< Ly (e u(1—en)

> 1 — Cri¥[uM]|F|exp ( — cevVuM).

To complete the proof, we now define a random interlacements process w(®) (i.e., satisfying
(5.1)), which will inherit the finite-range property of (Z j(x)) (so as to satisfy (5.2)) and whose

local times in Q(x, R) are close to Z;x[)o P YE Q(z, R), up to sprinkling (thus leading to (5.3)).

We first construct a family (X(“T)’i)@l’meQN(o) of independent random walks, where X (@)
has law Pz, , By = Q(x,re), for every i = 1. Importantly, for each x € Qn(0) the excursions by
any of the walks (X(®)7),~; between dQ(z,71) and the last exit time of Q(x,r9) before exiting
Q(z,rs) will be given precisely by Z ](m)) j=1, and the remaining parts of the random walks will
be conditionally independent as x € Qn(0) varies.

Recall from above (5.25) that (&(*)),.z4 is a family of independent random interlace-
ments processes, each with corresponding clothesline process X(®) associated to the choice
By = Q(x,ry), k = 1,...3, cf. (5.23). For B < Z? we denote by ng) the restriction of &®)
to forward (unlabeled) trajectories hitting B, and started at their entrance time in B. We

call ()N( (m)’i)@l, the trajectories thereby obtained from J)gz), corresponding to the trajectories

n (2.11) when B = By and w = &®. Note that by definition, see (5.11), each clothesline
/\(- ), j = 1, arises from a certain trajectory X@)k Ag part of the ranges of (X'(z)’i)pl, we
now define the sequence (%(x)) j=1 as follows. Whenever X§ ) and )\( )1 correspond to the same
trajectory X @),k , we let %(x) be the excursion starting from 0B until first hitting By between
the last time the clothesline ng) is visited and the first time the clothesline ;‘gi)l is visited.
If the clotheslines ng) and Xg?l correspond to two different trajectories X@)k and X @) k+1
of Ggg, then }N/j(x) is defined to be equal to the part of X @)k after last visiting 0B5. Now
define recursively ‘70(;1;) = 0 and ‘N/i(m) = inf{k > 171(2 : range(f/k(x)) is unbounded}. Intuitively,
171.(:6) equals the number of excursions from By to 0B§ before the (i + 1)-st walk from (Dg;)

starts, and 17;(3 — YN/Z-(I) — 1 is precisely the number of excursions performed by this walk.
Recall from above (5.14) that © is the cemetery point of ¥, and intuitively corresponds to
excursions which do not hit Bj. Lastly, by sultable extensmn, assume that Pg carries for each

z € Qn(0) and 7 > 1 independent families B —= {Byzk Yy € 0By, z€ 0B U {O},k > 1} and

B {B(x) toiwe 0By, w € 0B§, k > 1} of independent random variables, whereby B?(fz);
has the same law as (Xt)t<HB under Py(-|Hp, <TB,, Xy, = z) if z € dB; and the same law

as (Xt)i<rp, (Tp,) under Py,(-|Hp, > Tp,) if z = ©, and éf}lz)’lk has the same law as (X¢)i<ry,
under P,( - |wa32 > Ty, X1y, = w).

We can now define the walk X ()% for any z € Qn(0) and i > 1, as follows. We introduce
four sequences (y), (zk), (vk), (wg) (all implicitly depending on z and 7), each with & ranging

from1 <k < ‘Z(x) —171(2 One sets y; = )?éw)’ and foreach 1 < k < V(w) V(x) the vertex ygi1
(in 0By) is defined as the endpoint of Y~(<i) . The points z; and vy are the start- and endpoints

7 (z)

of the excursion Z‘N/(MHC when it is not equal to ©, and we take zp = © and vy = yp when
1—1
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Z(f()z) s ©, and wy, is the starting point of }7(1) . Now X @)% starts in y;. Then, for every
1 1
k, the process X (@7 first follows Bz(/ )Z - then Z(~<)I) Tk if Z(x()z) # © (and otherwise stays in

place), then Bf} @i  and finally Yé (2)+k and the pieces thereby obtained are concatenated as
i—1

ke {1 ( ) (_x%} increases to form the sample path of X (®): (note in particular that the
last plece is 1ndeed unbounded).

The starting point of X @)+ is the same as )N((“*’)’i,
sentation (2.11) of random interlacements. Using (5.26) and a similar calculation as following
(5.16) (in order to witness the correct conditional distributions of the bridges B*)- and B @)y,
one concludes that (X (x)’i)i>1 are i.i.d. random walks with starting distribution ég(,, ) each, as
desired. Moreover, by construction,

and thus has law eg(,,,) by the repre-

(5.35) (X@:%),-1 is independent of {(X®%)21 : y ¢ Q(x,2(1 + §)R)},

since Z(*) has range 2r5 = 2R(1+6) in T and X®)-? only involves additional randomness which
is independent as z varies: namely, B@ B@)i and (}N/j(x))j>1 (function of &(*)).

To complete the construction of w®, let (N*)%),50, z € Qn(0), be an i.i.d. family of Poisson
processes with intensity cap(Bsz) and define

w(Bl;) = Z Ox ()i for all u > 0.
1<i<N(@)u

Then (wgz)’u)u>0 has the same law as the restriction of (w")y,>o to forward trajectories hitting
By after entering B and one completes it independently to obtain an interlacements process
w® = (W), ¢ at all levels on Z%, which has the desired law, see (5.1), and satisfies (5.2) by
means of (5.35).

It remains to show (5.3). Denoting by (@(Jgﬂl)ugo,yezd the field of local times associated to
w®) | recalling (5.33) and noting that the trace of w®) inside B; = Q(z, R) coincides with that
of the excursions (2;37))];1 which enter it, it then follows by Lemma 5.6 and a union bound that
for all 0 < v < u < up and € € (0,1) with u(1 — 3¢’) > v(1 + 3¢'),

/@) )
N “%/ [)U(1+35’) u(1-3¢")] = (,[)U(1+2€’),u(1—25')]’ )
(5.36) Po ey,[ (=2 u(1+2)] S by foa—senuiasen) | =17 C|F|exp (—c-e*vM).

for all z € F and y € Q(z, R)

Thus, (5.3) follows by combining (5.32), (5.34) and (5.36) with the lower bound (5.29) on M.
The proof in the case of random interlacements follows a similar three-step pattern: first one
shows using Lemma 5.6 for random interlacements that ¢, , under P! is well-approximated by

a process S )( for y € Q(x, R) and x € F, having a fixed excursion count, thus yielding an

1te’)?
analogue of (5.32). This step is somewhat streamlined since there is no subtlety regarding the

first excursion, as opposed to X. In the second step, one uses the interlacement parts of Proposi-

tion 5.4 and Lemma 5.5 to approximate Z( 2) by a short-range process Z( z) similarly as

u(l+e’) u(1+2e")
5.34). Finally one reconstructs a short range family of interlacement processes (w®)) .
Qn(0)

such that their associated local times ﬁ; 2) w(14+3¢) AT€ good approximations of Z( 2) (14261 The second
and third of these steps are virtually 1dentical as above upon setting v = 0 O

Remark 5.7 (Extensions of Theorem 5.1).
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1) (Flexibility with (5.1)-(5.2)). One could relax (5.1)-(5.2) by requiring instead that £(*) =
(féﬁ)wQWR%u?O be some field having a finite-range property, satisfying (5.3)/(5.3”) and

whose law is translation invariant (that is (féf.))yeQ(m’ r) has the same law as (f?(f_)x’,)yeQ(x’ R)
see the proof of Theorem 1.2 as to why this is necessary. Under these less stringent condi-
tions, one can afford to simply choose zg(f& = Z;m[)o u] 88 in (5.33) and finish the proof with

(5.34) in two steps instead of three; note that the law of £(*) is translation invariant by
(5.26). This weaker result is in fact sufficient to deduce Proposition 6.6 below, which will
be the driving force behind the proof of Theorems 1.1 and 1.3 in §7 (see also Theorem 6.5).
Various parts of the coupling also simplify in the process. Indeed, one can define the
reference values M in (5.28) and g(z) in (5.20) without identifying the relevant stationary
distribution of the clothesline process, see (A.32) for M and the proof of Lemma 5.5 for
g(z), thus bypassing the use of exact identities such as (A.12) and (A.13), see also [8,
Lemma 6.1 and eq. (9.4)] which, albeit instructive, are not trivial.

Apart from giving a concrete idea as to what ¢(*) is, the conditions (5.1)~(5.2) present the
additional benefit of producing an independent proof of the coupling from [8] between the
random walk and random interlacements, cf. Corollary 5.2, for which £(*) crucially needs
to have the correct law. Moreover, knowing that £(*) are interlacement local times is also
essential in the proof of Lemma 6.1 below.

In a similar vein, one may require as part of Theorem 5.1 that ¢(*) be the local times
associated to a short range family of random walks on T (instead of interlacements). This
is essentially a matter of replacing the interlacement clothesline @) in the construction of
Z@) in (5.25) by a random walk clothesline ¢®). The proof suffers very minor modifications
(mostly trading one of the estimates in either of Lemmas 5.5 or 5.6 for the other). In
particular, in the context of (5.36), the increments of /(%) (now associated to a random
walk) will not overcount the first excursion for similar reasons as in (5.31). Moreover, the
law of £(*) is still translation invariant when starting the corresponding random walks from
the uniform measure on T.

2) (Increments in (5.3)). The choice of observable £y [, ) = £y.u — €y, for y € T is a means
to avoid potential issues with the very first excursion of X, see the discussion leading to
(5.31): the excursion process Z(*) does not count the first excursion of the random walk in
Q(z,71) before time Do(X, Q(x,72), Q(,73)) = HoQ(z,r5)c(X), cf. (5.4), (5.6) and (5.24),
hence this excursion does not appear in (5.30) either. Note that this issue does not arise
for interlacements since trajectories arrive “from infinity,” whence (5.3’) rather than (5.3).
As we now explain, instead of the increment ¢, [, ,,) one could consider the field

() def.
‘ggg,u = Z 1{Xn =y, n= H(?Q(:B,R’)C}, for y € Q(%,R), T e Q(O’ N)a

n=0

with R’ = r3 = (1 4+ 0)R, and replace (5.3) by

(5.37) Py (ﬁ(x) <09 < @)

yu(l—e) S lyu Sy i VT EF, Y€ Q(w,R)>

> 1 - C|F|R*[uR"?|exp (— ceVuRI2).

Observe in particular that Eyaf& = Ly, for all y € Q(x, R) under Py whenever = ¢ Qr/(0),
for then X,, € Q(zx, R) implies n > Hyg (g, rr)e- Thus (5.37) yields a true analogue of (5.3")
if one restricts to z € F\Qpr/(0). The proof of (5.37) does not require any amendments to

the above argument: the restriction on n inherent to ﬂyx)u allows to carry out the proof of
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Theorem 5.1 with v = 0 (and lﬁ(yxzt in place of £y 19 ,1), which in particular does not create

issues in (5.31). Alternatively, one replaces X by X @) = X o On, QR in the definition

)
(5.24) of Z j(»x), which leaves the associated clothesline ¢(*) unchanged. The field Z.% is

measurable in terms of this modified Z(®). The issue with the first excursion disappears in
this context in essence because Do(X®), Q(xz,72), Q(x,73)) = 0, cf. (5.4).

In fact (5.37) also implies directly an approximation of £y, by 5292(1 ot by — gg(fzb for

~

all z € F and y € Q(z, R), which is also a short-range field under Py since it is equal to

yu(lte
necessarily have range 2(1 + )R under the probability measure P from Theorem 1.2.

) outside of Qr/(0). However its law is not translation invariant, and thus does not

3) (Coupling in u). The following extension of (5.37) is tailored to later purposes (see the
proof of Theorem 8.1), but noteworthy in its own right. Let 0 < u; < ug. Then, applying

(5.37) (for § instead of ¢) at levels u = uy + kuie/3 for each k € {0,1,..., [?’(UEOT_I“”]}, using
a union bound and monotonicity of all the relevant fields in u, one deduces (as alternative

to (5.3) in the statement of Theorem 5.1) that
(5.38) Po (E;Ci(l_s) <lyy < Kéﬁ(lﬁ), for all z € F\Qr/(0), y € Q(z, R), u € [uy, uo])

>1- C|F|R2d;i701[uoRd72] exp ( — cen/u R%2)

(with R’ = (1 + §)R). Note here that we used that the field £(*) from (5.37) does not
depend on the choice of u € (0,ug], similarly as in Theorem 5.1. An obvious analogue
of (5.38) holds for random interlacements, with ¢, , in place of £, and without further
restriction on x € F. In closer analogy to (5.3), one could also formulate a version of (5.38)
for increments.

6 Consequences of localization

Our main localization result, Theorem 5.1, derived in the previous section, has two main ap-
plications in the context of late points. First, as asserted in Proposition 6.6 below, it allows
to introduce a (localized) family £ = (£%)a0, coupled to £ (recall (1.4)) in a way that i) the
two are close up to sprinkling (see (6.20) below) and ii) £ is amenable to Chen-Stein (due to its
finite-range property). Second, as alluded to below (1.6), it allows us by means of Corollary 5.2
to compute various key quantities of interest related to the random walk with sufficient precision
using interlacements, see Lemmas 6.1 and 6.3. Combining these two ingredients with Lemma 3.1
(the modified Chen-Stein scheme) then leads to Theorem 6.5, which is the main result of this
section, and will be one of the driving forces behind our main results, proved in §7. By exploiting
L as an intermediate link, Theorem 6.5 gives quantitative control on the difference between the
true set of late points £ and its ‘Poissonized’ version g, comprising a suitable class of indepen-
dently sampled shapes, see (6.16). Our arguments hint at a generic phenomenon, which ought
to be valid for a variety of models of interest, see Remark 8.4,5).

6.1. The set L% and first properties. We start by introducing a setup that fits all needs.
As announced in the introduction, see above (1.6), this includes treating both late-point/high-
intensity regimes for random walk /random interlacements, each in a subset F' of (but not neces-
sarily equal to) the full torus/box (of side length V), at appropriate timescales. Recall from §2
that 0 denotes the origin of Z¢ and 0 = 7(0) where 7 : Z¢ — T is the canonical projection, and
that Qg(x) is the cube of side length R centred at z, either in Z¢ if x € Z% or in T if z € T.
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In order to allow for a unified presentation, we introduce the following notation, valid from
here on and throughout Sections 6-8. In writing P in the sequel, we tacitly allow for either choice
P e {P!, P}, i.e. all statements made under the measure P hold for either model (recall that P’
denotes the canonical law of random interlacements on Z¢ and P the law of the random walk on
T with uniform starting point). We further define the set Qg for any R < N (where N denotes
the side length of T) as Qr = Qr(0)(c Z%) when P = P! and Qg = Qr(0)(c T) when P = P.

With the above notation, we introduce for finite F' < Qn and « > 0,

(6.1) ur(a) = ag(0) log(|F]),

whence uy (o) = up(a)|p=q, in view of (1.3) (when P = P). The scaling (6.1) is explained in
Remark 6.2,1) below. With Vj, as in (1.2) and V' as below (2.13), we now define under P the
random set L = (L} )a=0 for arbitrary finite F' < Qn to be

62) o V@ aF itP=P
' Eolywr@ A p it p=p! .

We simply write £* when F' = Q, which is consistent with (1.4); the results of the introduction
thus deal with the case P = P in (6.2) for the specific choice F' = Qn(= Qn(0)). As will become
clear, all of these results can be generalized (with suitable amendments) to the more general
framework of (6.2). We start by gathering a few key properties of £%.

Lemma 6.1.
i) For all K ¢ F cc Z% and o > 0,
(6.3) P(K c £3) = |F|~90)cap(K),

ii) For all N > 1, K ¢ F < T, and all By > 0, the bound

P(K c L%)
(6.4) [F|-o90)can(K) - 1| < C(h)

log(N)3/?
N(d-2)/2

holds whenever a € (0,2] and cap(K) < fo.

Proof. The equality (6.3) follows directly from (1.6), (6.1) and (6.2). To deduce (6.4) first
note that the condition cap(K) < fp implies |K| < C(fp) by virtue of (2.10). Since §(K) <
N(1 - ﬁ) for any K < T, using translation invariance we may therefore assume that K
Qn@1-6)(0) for some 6 = 6(fFp) > 0. We then apply Corollary 5.2 for this § with the choice
e = AN—(@=22_18N__ 4 \ > ( to find that
alog(|F)
P(K c %) <P/(K' < L?;(lfs)) + Calog(|F|)N* exp (— c(d)Alog N),

where K" < Qn(1-4)(0) is such that 7(K’) = K, similarly as in the definition of cap(K’) below
(2.3). From this, one of the two bounds implied by (6.4) readily follows using (6.3) upon taking
A large enough in a manner depending on Fy. The other bound is obtained similarly. O

Remark 6.2.

1) (Asymptotic density of £%). Applying Lemma 6.1 for K = {0} and using (2.6) yields for
any F' = Fy < Qun with |F| — o0 as N — oo that

(6.5) P(0e LE) ~ |F|“ as N — oo,

which accounts for the scaling in (1.3) and (6.1).
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2) Throughout §6.2, the following consequence of (6.3) and (6.4) will be sufficient, cf. Re-
mark 8.4,5): for all By > 0,all N > 1, F c Qn, K ¢ F with cap(K) < Sy, and « € (0, 2],

(6.6) P(K < L3) < C(fo)|F|” =0

(recall the definition of v, (K) from (1.19)). In Lemmas 6.3 and 6.4 as well as in §7 and §8
below, we will also use the following lower bound implied by Lemma 6.1: under the same
assumptions as those of (6.6),

(6.7) P(K < L) > ofo)|F| a5,

Actually the constants C(fp) from (6.6) and ¢(5p) from (6.7) could be replaced by 1+ o(1)
as | F'| — o0, but we will not need this fact except in the proof of (1.13) to obtain the exact
constant 1—e~?. In the proof of Lemma 6.4 below, we will also need the following decoupling
formula, which is easily implied by Lemma 6.1 together with (2.9) in the improved form
discussed immediately below it (along with its analogue on the torus): for all Sy > 0 and

. d(K, K’
a >0, if K, K’ ¢ F are such that W — 0,

(6.8) P(KuK')c LE) = (14 0(1)P(K < LSP(K' < LE) as |F| — oo,
where o(1) is uniform in K, K’ verifying | K|, |K’'| < fp.

Before constructing our coupling between £ and Bernoulli random variables, let us collect
some interesting consequences of (6.6), (6.7) and (6.8), which further elucidate the role of the
parameters a, from (1.10) and a,(K) from (1.19). In view of (6.2), the quantity D® introduced
in (1.9) is naturally declared under P upon summing over all x ~ y with x,y € Qu. For any set
S c @y and K < Qn(0), we introduce similarly

Yweoy Hz + K < S, if P = P!

(6.9) Dr(S) = {erQN Wz +7(K)c S}, ifP=P

the number of times a translate of K (or its projection on the torus) by z € Qn lies in S. We
will often abbreviate D% = Dg(L). Note that D, see (1.9), is half the sum of D% over all
K = {0,z} with  ~ 0. The following result shows that D% is small on average if and only if
a > ax(K).

Lemma 6.3 (Representations of ay). For each @ # K cc Z%, with o (K) as in (1.19),
(6.10) ax(K) = sup {a > 0: limy E[D®] = 0}.

In particular for all x ~ vy,

(6.11) oy = ax({z,y}) =1— 291(0) = %(1 + Py(Hy < 0)).

Proof. First, observe that (6.6) and (6.7) applied with F' = @ immediately yields, for all a > 0,
(6.12) N ) <E[DY] < ONTTE),

from which (6.10) follows. The first equality in (6.11) then follows by rotational invariance of
the capacity. Applying the simple Markov property, one obtains, for all  ~ 0,

~ 1 20 1 gl _g@) 1
6.13) Py(Hy < 0) = — P,(Hy <o) =" — ==L =] —,
< 20 247 3 24 90) " 90 " 50)
where the two last steps follow by invariance of P, under lattice rotations and translations. On
account of (1.11), (1.19) and (2.6), this gives the two last equalities in (6.11). O
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We now collect a lower bound on D%, resp. D, in the ‘supercritical’ phase o < ., (K), resp.
@ < au, which will be useful in due course. For D%, a similar but weaker estimate was derived in
[22, p. 1040], for a very specific choice of timescale asymptotic to atcoy, see also Remark 7.3,5)
below. In addition to yielding a stronger bound valid for any set K, the proof we present below
is considerably simpler, which highlights the strength of Lemma 6.1.

Lemma 6.4. For all K cc 74, a € (0, a4 (K)] and ey > 0 with limy ey = 0, one has

=1 ifa<a(K),

6.14 liminf P(DS > ey N aimy)
(014 N (D > ew ) >0  if a=a.(K),

and the same holds true with oy in place of ay(K) and D in place of DS;.

Proof. 1t follows from (1.19) and (2.8) that there exists C' = C(K) < o0 such that o, ((K + x) U

(K + 1)) < 2a4(K)/3 for all z,2' € Qn with d(x,2’) = C. Applying (6.6) (when d(z,2’) < C
2 2

or C <d(z,2') <log(N)@2) and (6.8) (when d(x,2’) = log(N)@2), one has for all « > 0

E[(D%)’]= > P(K+z,K+2' L%
(6.15) 2.0'eQu
ad 3ad
< ON® 4 Clog(NY) T2 N3 + (1 + o(1))E[D%]2

as N — . If @ < ay(K), then in view of (6.12) the second moment on the right-hand side of
(6.15) dominates. Combining (6.12), (6.15) and a standard second-moment argument, it follows
that )
__a 1-—
P(D§ = eyNU &)Y > P(DY > cenyE[DE]) = ﬂ,
1+o0(1)

for all o < v, (K), from which the claim follows since ey — 0. If @ = a«(K) the proof is similar,
except (6.15) is now only smaller than CE[D%]?. The statement for D* then follows readily
from (6.11) and (6.14) for K = {0,z}, = ~ 0. O

6.2. Main approximation result for £%. We now combine the modified Chen-Stein result
(with sprinkling), Lemma 3.1, with our main localization result, Theorem 5.1 and the asymptotic
bounds (6.6) (a consequence of Lemma 6.1) to derive our main approximation result for L%, see
Theorem 6.5 below. In a nutshell, we first apply Theorem 5.1 to replace (up to sprinkling) the
family Lr by an approximation ZF with a certain finite-range property (see Proposition 6.6
below), to which we then apply Lemma 3.1. The above estimate (6.6) will serve to bound
quantities such as by and by in (3.6)-(3.7).

Theorem 6.5, stated below, is of independent interest. In the next section, it will serve as a
driving force to derive our main results from §1. The approximation result it entails supplies a
coupling between L and a suitably defined process Bofiid. ‘patterns,” which we now introduce.
Let (Ux)kcqy be an ii.d. family of uniform random variables on [0,1] and for F' = Z¢ or T
(depending on whether P equals P! or P) define the set of admissible patterns by

(6.16) Ap={KcF:K#, cap(K) < -%,0(K) < Ry}, where Rp = log(|F|)7

2
9(0)°
(note that compared to (1.24) we additionally ask for §(K) < Rp). We return to the choice of
Ap in Remark 6.9 below. We also define p%(K) = P(L% n Q(K, Rr) = K) for each K € Ap and

a > 0, and note in passing that p®(K) introduced above (1.20) corresponds exactly to p%(K)
for the choice F' = Qn when P = P. We then define the family Br = (B%)a>0 as

(6.17) B = g K.
KeAp: Ug <p3(K)

35



The following result gives quantitative control on the proximity of Lr and B r above level %, as
measured in terms of d., cf. (1.21).

Theorem 6.5 (Lr as in (6.2)). There ezist C,C’ < o such that, for all o € (3,1], N > 1,
Fc@Qn and e € (0,a), one can couple LS with (UK)KE.ZF so that with probability one minus

2d

(6.18) 1 A Clog(|F|)C|F|' 208 a2

one has the inclusions

(6.19)  {Ur <p3*(K)} < {£% N Q(K,Rp) = K} < {Ux < p3=(K)}, for all K € Ap.
Moreover, d. (Ep,gp;oz) is bounded from above by (6.18).

The proof of Theorem 6.5 occupies the remainder of this section. We begin with two prelim-
inary results. The first of these is a consequence of our main localization result, Theorem 5.1,
applied to L in (6.2). In what follows, a family of sets (E%’(x))ae(w],er v is said to be decreasing

if EN%’(I) c E%(“") forall @ = f and x € Qu.

Proposition 6.6 (Short-range approximation for Lp). There exist ¢,C,C" € (0,0) such that
2

the following holds. For all N > 1, F < Qn, €€ (0,1), R = (%)ERF with A = C, there exists

a decreasing family Lp= (E%’(x))ae(og],meQN such that

i) E%’(x) c (Q(x,R) A F) for each x € QN and o € (0, 2],
ii) (EN%’(QC))OCE(OQ] and (Egv’(y))aE(O,QLyEQ(Z‘,gR)c are independent for each x € Qn, and

iii) for each v € (0,2], there exists a coupling Q=Q, of LS and L such that for all e € (0, ),

(6.20) @(E?;FE’(:E) c (LF N Q(z,R)) CN?;E’(I) forallze F) >1— Cle™ Y|P

Proof. We first consider the case P = P of the walk. Consider the processes ¢(*) under P =
D meT f’x, where f’x is the translation by = of the probability f’o from Theorem 5.1 for § = %, R
as above and ug = 3up, where up = up(a = 1) = ¢(0)log(|F|), cf. (6.1). One then defines for
each o € (0,4] and = € Qn(0),

ENaF’(w) =7m({yeQ(z,R): /@) S

v.2+9)ur  y,2—Lup O}) ard

From this, i) plainly follows and 4i) is a consequence of (5.2) since £(*) and hence EN?;’(JC) is a
function of w® alone, whose law does not depend on z in view of (5.1). Moreover, by (5.3)
(applied with & instead of €) one obtains, for all a € (0,2] € € (0,a), v € Qn and y € Q(x, R)

(z) (z) _ N (z) _ @)
Cerestyr ~ emastue S e The-pur SE prasy, T o e,

with probability at least 1 — C |F|~*¢=¢ by choice of R, upon taking X\ large enough. By
definition of £ and £, this yields, for all a € (0,2] and ¢ € (0, @), that

(6.21) Lo < (L5 LE ) A Qe R)) < £975@ for all z e F

with probability at least 1 — C|F|~*¢~¢ and iii) follows since £§+5\£§;5 has the same law as
L% for each o > 0. The proof for P = P! is similar, except that, in view of (5.3") (applied with

£ instead of ¢) one simply defines Z%’(x) ={yeQ(z,R): Kéx) (@) = 0} under Q = P. O

YUF
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Remark 6.7.

1) It follows from Theorem 5.1 and the independence and stationarity of the increments

of random interlacements that for each F' ¢ Qn and z € F, the process (Z%(x))ae(og]
%mQ(w,R))ae(O,Q] under P! when P = P/,
and the same law as (W(E%N(O)) NnFn Q($’R))ae(0,2] under P! when P = P. While
noteworthy, we will not need this fact in the sequel.

introduced in Proposition 6.6 has the same law as (E

2) For the case P = P!, one can afford to take R = (%)ﬁ in Proposition 6.6. This can be
traced back to the additional square root present in the bound (5.3) compared to (5.3’).
Moreover as can be seen plainly in the above proof, one actually has a coupling @ uniform in
all @ € (0,2] in that case, rather than one depending on « as in the random walk case. The

reason the coupling Qu depends on a when P = P is that the sets (Eif%\ﬁiﬂ_%)ae(m) does
not have the same law (as a process in a) as (L% )ae(0,2) under P (only its one-dimensional
a-marginals do) since the corresponding random walks have different starting points for
different values of a. We refer to Remark 5.7,2) for a variant of the approximation supplied
by Theorem 5.1 by which this increment problem can be partially circumvented.

Next, returning to Ap in (6.16), we prove a separation property for £%. Namely, for suitably
large R, the set L% n Q(0, R) either belongs to Ap or is empty with high probability.

Lemma 6.8. Forall N > 1, Fc Qun, a € (%,2] and R € [Rp, %),
P(3ze F: (L% N Q(x,R)) ¢ (Ar U {@})) < CR log(|F|)°|F|'~2°,
Proof. By (6.6) one has, for all r > 1,
E[[{z,y e L% d(z,y) € [r, R]}|]] < [FI2R+1)? sup |F|-9Ocarlizy)),

d(z,y)=r

In particular, by (2.9) and since cap({x}) = g(0)~! for all z € F (see (2.6)), one obtains with
the choice r = Rr by Markov’s inequality that

(6.22) P(3z,ye LS : R >d(z,y) > Rr) < CRYF|'2.

The bound (6.22) takes care of the contribution to the relevant event appearing in Lemma 6.8
when violating the diameter constraint inherent to jfp. It remains to address the possibility to
violate the capacity constraint in (6.16). To this effect, observe that by (2.10), (6.6) and a union
bound we have
P(cap (L% n Qr) = 557.0(LE N Qr) < Rp)
<P(AK < (L% N QR) : |K| < C,ax(K) < L,6(K) < Rp) < CR%Nog(|F|)“"|F|~%.

Combining this with a union bound over z € F' and (6.22), the claim follows. O

Remark 6.9. We now briefly comment on the choice of Ap in (6.16). In view of Lemma 6.8, it
was selected so that L3 n Q(z, R) belongs to Ap or is empty, with high probability for all z € F
when R > Rp — of course, the bound obtained in Lemma 6.8 also implicitly entails an upper
bound R < |F ](20‘*1)/ dlog(|F|)~¢, above which the estimate is useless. Moreover, as implicitly
used in the proof, the definition of Ap also ensures that for all z € F and R € [RF, %),

(6.23) HK cQ,R): Ke KF}’ < C|Q(z, R) n F|log(|F)Y,

which is an easy consequence of (2.10) and the bounds on both capacity and diameter in (6.16).
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Combining Proposition 6.6 and Lemma 6.8, we are now ready to give the

Proof of Theorem 6.5. All subsequent considerations implicitly hold for all N > 1 and F < Q.
We may assume that ¢ > |F|~¢ for sultably large C, for otherwise (6.18) is larger than 1, and

also that e is small enough so that e~ 7 > 2 and (3,1] + 3¢ € (,2], which can be arranged
without loss of generality by monotonicity of € — d., cf. (1.21).

We now apply Proposition 6.6 (for N, F, ¢ as appearing in Theorem 6.5) with R = ( )d 2Rp
and a choice of A > 1 large enough such that the right-hand side of (6.20) is at least 1 — C|F|~3
uniformly in « € (0,2]. In view of the above lower bound on &, A can be chosen uniformly in
N, F and . Thus, defining for K € Ay and arbitrary (fixed) 2 € K the random fields

YE = 1{L% n Q(K, Rp) = K}
7% = YLS"S) ~ Q(K, Ry) = K},

with £ as supplied by Proposition 6.6, (6.20) implies that

(6.24) d.(Y,Z;0) < C|F| 3 forall a e [ ‘= et

(321,
and all NV, F and ¢ as above. N

We now aim to apply Lemma 3.1 for S = Ap and I as above. First observe that Y = (Y%)aer
is indeed a family of decreasing Bernoulli processes, as required by (3.2). Thus (3.3) defines a
process W = (W®)qer with W* = (Wg) - 5, which has the same law as (1{1,c<p (K)}) ke A p.acl-

In particular, recalling (6.17), this means that

(6.25) B | K
KeAp:Wg=1

Our aim is to control do- (Y, W; ) for o € (3, 1] by means of (3.5). With regards to the relevant
condition (3.4), Proposition 6.6 implies that Z = (Z%)aer has the requested monotonicity and
the finite-range property follows from item i1) of the same proposition upon choosing the neigh-

borhood N of K € Ap as Nx = {K’EAF K'nQ(K,3R) # @}. Indeed, for all K’ ¢ Nk we

have that g ¢ Q(xk,3R), and hence (EF( ))ae(o,z],K'¢NK is independent of (L'F (wK))ae(O,g],

and Z inherits this property. Thus, Lemma 3.1 is in force and the desired bound hinges on
suitably estimating by and b in (3.6)—(3.7). Combining (6.6) and (6.23) gives

log(|F|)”"
Cls| sup |Ng| < Clog(|F]) o forallae (3,1] and o > a — 2e.

|F|2a’ KEA’F |F|2(a 2e)— 1Ed 2

(6.26)  bi(a’) <

Moreover for all K, K" € Ap with K # K’ and such that Y[?/ = Yﬁf = 1 occurs with positive
probability, we must have d(K', K) > Rp/2 by definition of Y., and thus using (2.9) and (6.6),
one readily shows that by(a’) verifies the same bound as b1 (') in (6.26) over the given range of
parameters /. Therefore combining (3.5) with (6.23), (6.24) and (6.26), one obtains that

Clog([F)” | CFPlog([F)” _ C"log([F)

doe (Y, W; ) < < ,
< ) |F|2(a72s)716% |F|3 |F|2(a725)71€%

for all o € (3,1]. It readily follows from the definition of d, see (3.1) (and substituting 2¢ by
g), that a coupling exists such that (6.19) occurs except on an event with probability bounded
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by the expression in (6.18). Moreover by Lemma 6.8, since all sets in Ap have diameter at most
Ry, one has

Clog(|F|)

(6.27) IP( v | K) <P@zeF: L3n Q2 2Rr) ¢ Ar U {2}) < TP

Kedp:Yg=1

To conclude, one simply notes comparing (6.25) and (6.27) that d (EF,EF;Q) is bounded by
the sum of d.(Y, W; a) and the probability on the left-hand side of (6.27), which is smaller than
(6.18) up to increasing the constants C,C". O

7 Denouement

Using the findings of §3 and §6, with the latter drawing heavily from Theorem 5.1, we now prove
our main results for the set of late points, Theorems 1.1 and 1.3. Recall ax(K) from~(1.19),~the
measure P introduced atop §6.1, and abbreviate Ay = Ag,, see (6.16), as well as B* = Bg .

see (6.17). For any set S « Qn and K =< Z? we introduce, with Ry = Rg, = log(Nd)ﬁ (see
(6.16)), the event
(7.1) Ek(S)={3K' cS8: K'e Ay and o (K') < ax(K)}

corresponding to the existence of ‘admissible’ sets K’ in S with capacity larger than the capacity
of K. Note that Ex(S) depends implicitly on N via the choice of S € @y. The constant a(K)
is chosen so that the following result holds.

Lemma 7.1. For all n € (0,1), all sequences (an) with an € (5 +1,2] for all N > 1, all
K cc Z¢ with a,(K) > 3, abbreviating E¢. = Ex(B®) one has

=0 if limy (1 - =22%-)log N = —o0,
(7.2) lim P(ESY) = v TmN( iy ) 0 -
N—w =1 if limy (1— a:‘(f}’()) log N = o0,
and
(7.3)  0< 1%@0%@(]3;?) < 1111315;13@(157?) <1, if limy [(1 = ;7¢) log N] € (—o0, 0).

We refer to Remark 7.2 below for a refinement of (7.3).

Proof. Recall that the set B is defined entirely in terms of the family (Ux/) k=g, of i.i.d. uni-
form random variables from above (6.16). The set K’ with the properties postulated by E% may
arise in BY for two reasons: either because the uniform variable U K was triggered, i.e. it is at
most pg) (K’), or because the uniform random variables corresponding to at least two disjoint
subsets whose union is included in K’ were triggered. Accordingly, let Ug, = {Ur < pg, (K')}
and consider the events

(7.4) F*={3K,Koe Ay : K1 # K»,6(K1 U K2) < Ry and U, n U, occurs},
%={31K'e An : K'© Qn, as(K') < o (K) and U, occurs}.
With these definitions, one has

(7.5) P(G%) < P(E%) <P(F) + P(G%),
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for all @« > 0, N = 1. By a union bound and using (6.6) for singletons and (6.23), one gets
(7.6) P(FoN) < CN%log(NH)Y . N72e8vd 0 as N — oo,

since ay > 1/2+n for all N. In view of (7.5) and (7.6), it is enough to find the limit of P(G%")
as N — oo. To this end, first note that cap({z,y}) / 2cap({0}) = 2/¢(0) as d(z,y) — ©
by (2.6), and so for each o/ € (3 + n,ax(K)] and 2 € Qu, the number of sets K’ = Qy
containing x such that a,(K’) = o is bounded uniformly in N and «’. In particular, it follows
that [{K' < Qn : as(K') = a4(K)}| < CN? and that there exists 6 = §(K) > 0 such that
ax(K") < a(K)—§ for each K’ < Qn with oy (K') < ax(K). By (6.6) and (6.23) it thus follows
that

P(G%)) =  J] (=P QUK Ry)=K"))

K'cQn:K'eA
(7.7) s () Soun ()

> (1- CN*%)CNd(l _ CN*%)CN“%(N)C'

We now derive an upper bound on P((G%)¢). To this end, we first introduce a set K 2 K,
or K o 7(K) if Qn = Qn(0), as follows. First, applying (2.8) one finds r = r(K) < oo such
that, whenever = ¢ Q(K, ), one has cap(K u {z}) > cap(K). Then, considering all sets of the
form K u U for U = Q(K,r) one finds for N large enough a set K = Qu having this form
(or a projection on the torus of a set having this form when Qn = @x(0)) and such that both
cap(K) = cap(K) and cap(K’) > cap(K) for all K’ = Qy with K ¢ K’. It follows from this
construction that

(7.8) inf cap(K u {z}) = cap(K) + ¢,
ek

for some §' = §'(K) > 0. The desired upper bound on P((G%)¢) will follow from a lower bound
on the probability of the event {£L* n Q(K, Ry) = K}. Combining the upper bound (6.6) and
(7.8), one obtains that for all a € (0, 2],
P(K c L) —P(L* nQ(K,Ry) = K)
<P(BzeQ(E,Ry)\K : K u {z} c LY) < Clog(N) N~ods(0)(cap(K)+8)

If N is large enough, one deduces from this and the lower bound (6.7) that there exists ¢ = ¢(K)
such that for all a € (0, 2],

(7.9) P(£° A Q(K,Ry) = K) > cN ™ a(x

Now observe that the set K’ = K + x satisfies ax(K') = a4 (K) by construction, see above (7.8).
Thus, by (7.9) and translation invariance we have that for all a € (0, 2],
(7.10)
N —_— do
P((G%)°) < 11 (1-P(L*"Q(K +a,Ry) =K + ) < (1—cN &)
zeQn:K+zcQpn

Combining (7.7) and (7.10) with (7.6) and (7.5) for o = ay readily yields (7.2)—(7.3). O

cN?

Remark 7.2. We now explain how to refine (7.3), which is of interest for the purposes of obtaining
the exact constant e~¢ in (1.13). For simplicity, we focus on the case K = Ko = {x,y} for some
x ~ y, whence ay(K() = ay in view of (6.11). The key is to observe that

(7.11) {K'cQn:auK')=oax}={{z,2} cQn: 2 ~ 2z}
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indeed, recalling av,(+) from (1.19), it follows immediately with the help of (2.6) that au({z}) = 1,
which is larger than a, on account of Lemma 6.3, so the set in question in (6.3) does not contain
singletons. If K’ is not a pair of neighbors then K’ contains at least two points at ¢!'-distance
> 2 and it follows that a(K') < ay using (2.7). From (7.11), one deduces in turn that

(7.12) {K' < QN : ax(K') = ax}| ~ d|Qn]|, as N — 0.

Note also that as explained in Remark 6.2,2), the constants C(f3p) and ¢(5p) in (6.6) and (6.7)
for ' = Qn and By = 2 can be respectively replaced by 1 + o(1) and 1 — o(1) as N — o0, and
thus the constant ¢ in (7.9) can also be replaced by 1 — o(1). Now, inspecting the above proof,
substituting a suitable upper bound implied by (7.12) into (7.7) and a corresponding lower bound
into (7.10), noting that Ky = Ky for the same reasons as those yielding (7.11), one obtains
(7.13) lim P(ERY) =1—¢e,

N—o0

if d-limy [(1— 3—{‘:) log N| = log~ for some v > 0.

We now turn to the proof of our main results. These are formulated entirely within the
framework of (6.2), which subsumes the setup of the introduction (corresponding to F' = Qu for
the choice P = P), thus lending themselves to immediate generalizations, notably to the case of
random interlacements, i.e. the choice P = P!, see Remark 7.3,1). With this in mind, we extend
the definitions of the sets B and Bx from above (1.7) and (1.20) to being subsets of @y, rather
than just subsets of T = Qx(0) as in §1 in accordance with the notation introduced above (6.1),
this amounts to simply replacing T by @y in their definition. Combining Theorem 6.5 and
Lemma 7.1, one now readily obtains the following.

Proof of Theorem 1.3. Let ey = en(a) = N—1(@=2)@a=1) fo; 4]l N > 1. It follows from Theo-
rem 6.5 applied with F' = Qn that for each « € (%, 1] and N > 1, with B = Bg, and L = Lg,,

7.14 d- ﬁ’g;a < Clog(N O y—d(2a=1)/2+2end __,
(7.14) N

N—0

Fix a set K = Qn with a,(K) > 1. Theorem 1.3 deals with By introduced in (1.20) rather than

B as defined below (6.17). We proceed to compare the two sets using Lemmas 6.8 and 7.1. Indeed
recalling the event E® = Ex (B®) from (7.1), one has for N large enough that {B* + B} < E%.
We used here that the inclusion Bf < B is always satisfied for N > N(K) large enough, since
the condition §(A) < Ry in (6.16) holds for all A < T with ax(A) > a.(K)(> 1/2) when N is
large enough by (1.19), (2.6) and (2.7).

Now, first assume that « € (a(K), 1]. By (7.2) applied to the sequence ay = o + e, which
satisfies limy (1 — %) log N = —o0, one deduces that limy P(BoFeN BSFN) = 0. This
implies in turn with (7.14) that d. (£, Bx; ) — 0 as N — o0, from which the first line in (1.22)
directly follows, using that € — d. is decreasing. A similar reasoning using the last bound in
(7.3) instead, with the choice any = a4 (K) £ ey, yields the last bound in (1.23).

Let us now assume that o < a,(K). To obtain the second line in (1.22) as well as the first

bound in (1.23), it suffices to show that for ¢ < a(1 — %) and for any coupling Q between

20ux
LY and By © one has

=1 if a < ax(K),

(7.15) i QUET & B ) {> 0 ifa=au(K).

Recall D% = Dg(L*) and Dk (B%) from (6.9); that is, D% (B%) counts the number of times
a translated version of K (or its projection on the torus) appears in B%. Now fix p such that
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1-2(a—¢g)<p<l-— ﬁ (the midpoint for instance), which exists by our assumption on €.
Then clearly since By is an independent field one has by a similar reasoning as in (7.6) the bound
Eg [DK(B?{E)] < C'log(N)¢' N4(1-2(e=¢))  Hence by Markov’s inequality one immediately infers
that Q(Dk(B% °) = N%) — 0 as N — o0. On the other hand, applying Lemma 6.4 with
EN = Nd(p_Hﬁ), one finds that liminfy Q(Dg (£*) = N%) is equal to 1 if o < o (K), and
is positive if & = a,(K). Together, these imply (7.15).

Let us finally assume that a4 (K) < 1/2. For each z,y € Qu, it follows from (2.6) that
ax({z,y}) > 1/2 > a(K) and so by (1.20) B% stochastically dominates {z € Qn : Jy €
QN> Ugzyy < p*({z,9})}. Let us define independent Bernoulli random variables X 4, 7,y € Qn,
with parameter p®({z,y})/2 so that X, , = Xy, = 0if U,y > p*({z,y}). Y, = 1{3y €
QN @ Xpy = 1}, then (Y3),ez¢ are i.i.d. Bernoulli random variables and Y, = 1 implies x € B%.
Moreover by (7.9)

(7.16) Pz € BE) > P(Yo = 1) > 1— [ [ P(Xyy =0) > 1—(1—cN 2N > ¢(Nd-20d 1 1),
yeEQN

where in the last inequality we used 1 — cN=20d < =N gpq =2 < 1 — e Yz A 1) for all
x = 0. Therefore |B%| stochastically dominates a binomial random variable with parameters
(N4, ¢ (N9=294 1)), and is thus larger than ¢/(N2?(1=®) A N9) with probability going to 1 as
N — o0 by Chebyshev’s inequality. Moreover E[|£%|] < CN41=®) by (6.6), and so by Markov’s
inequality we have |£%| < N%~2?log N with probability going to 1 as N goes to infinity, and we
can conclude since o < 1. O

We postpone further comments for a few lines and first give the:

Proof of Theorem 1.1. Fix two neighbors  ~ y, z,y € Z%, and let Ky = {x,y}. As we now
explain, 7) is in essence an application of Theorem 1.3 for this choice of K = Kj. First recall
that ax = a4 (Kp) by Lemma 6.11, and that the only sets K’ with au (K’) > a4 (Kj) are singletons
on account of (1.19) and (2.7). Therefore, the set By, in (1.20) only has contributions from sets
A which are singletons, and recalling B from the beginning of §1.1 which we can define via
the same uniform random variables (Uy,})zeqy as By, in (1.20) (that we also define under the
probability measure P), it follows that for all o > a,

(7.17) P(B%, # BY) < Y. P(z€L%,Q(2,Rqy) n L # {z}) < CN"' 7o),

ZEQN

where the last inequality relies on (6.6). Combining this with the first line of (1.22) immediately
yields item i) of Theorem 1.1 for all & € (av, 1) and € € (0, &), for €9 small enough. When o = 1,
the first line of (1.22) is still valid, as should be clear from the proof of Theorem 1.3, and so
item i) of Theorem 1.1 is also fulfilled when o = 1, as well as when « > 1 as both B* and £
are then empty with high probability by (6.5). Note that we can actually take €o(a) = « for all
« > « by monotonicity of € — d..

We now turn to the proof of ii). Let E(L£*) refer to the event appearing in the statement
of Lemma 6.8 for the choices F' = Qn, R = Ry(= Rg,) and a = a. Thus, if E(£%*) does not
occur, for any x € Qn one has that £L* n Q(x, Ry) is either empty or an element of Ay. Ifin
addition Ex, (L") does not occur, then assuming that £L** n Q(z, Ry) = K for some z € Qn
and K # @, one has that a.(K) > a.(Kp) by (7.1), and so |K| = 1. In particular, applying
this to & € £*, one obtains that on the complement of E(£%) U Eg, (L), the set £ is
the union of all the z € Qy such that £ A Q(z, Ry) = {z}. Therefore if E(L£*) U Er, (L)
does not occur and (6.19) at o = v is verified for all K < Qn with |K| = 1, it follows that
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B?‘gg% < L < ByE™°. Combining now Theorem 6.5 with the trivial inclusion Bg* ™ < B¥*~¢
and (7.17) at & = o + ¢, and using Lemma 6.8 to bound P(E(£%*)), one obtains that

(7'18) de(ﬁa B; 04*) < ]P)(EKO (ﬁa*)) + CNigii + Clog(N)C/Nd*ma**E)d.

for some constant C,C’ < o depending only on £ and d. An asymptotically matching lower
bound is

(7.19) d-(L, B ) = P(E, (L)) — P(Ek, (B™77)),

which simply follows from the fact that £ < B%™° cannot occur when L£%* contains sets
K € Ay and ax(K) < ax(Ko) but not B**~¢. Moreover the event Ex, (B%*~¢) is included
in the event F**~¢ from (7.4) by definition, and so by (7.6) we have for all £ € (0,g¢), with

5O(a*) = Oy — %7

(7.20) P(Ex, (B™)) < Clog(N) N*=20 =9, g,

—00
Combining this with (7.18) and (7.19), we deduce that for each ¢ € (0,¢q), d-(L, B; ) is asymp-
totically equivalent to P(Ek,(L£**)) as N — 0. Using (7.13), and combining with (7.14) for

a = ay (recall that ey = N~—1(@=2)20% =) therein and so ey log(N) — 0), we can conclude since

: : Bosteny) —d
(7.21) Aim P(Ere, (£7%)) = lim P(Ep, (B**V)) =1 — e

Finally, éii) can be shown in exactly the same way as the case o < «,(K) in the proof of
Theorem 1.3, replacing throughout the proof a,(K) by ay, Bx by B, Dk by D, see (1.9), and
K by Kj, upon taking eo(a) = (1 — 5-—) for a < ay in Theorem 1.1. O
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Remark 7.3 (Extensions of Theorems 1.1 and 1.3).

1) Although stated in §1 for £* as defined in (1.4), the conclusions of Theorems 1.1 and 1.3
hold for either of the choices for P = P! or P = P above (6.1), i.e. by (6.2) they have an
analogue for random interlacements in Qx(0). Indeed, the proofs of these theorems are
actually written so that they are also valid for random interlacements.

2) The proof of Theorem 1.1,7) given above uses Theorem 1.3 to first compare £ to Bx with
K a set of neighbors (which in turn follows via comparison of £* and B using Theorem 6.5
and Lemma 7.1 to relate B and By ) and then By to B. If a > a, for the sole purpose
of deducing the relevant conclusions ¢) in Theorem 1.1, one can actually bypass the in-
termediate use of Bg (and B) completely. Indeed, item i) can be deduced directly using
Lemma 3.1, combined with Theorem 6.6 and (6.6), similarly as in the proof of Theorem 6.5
itself, thus yielding that d. (E, B; a) — 0if @ > . Note that the proof of Theorem 1.1,ii7)
above also does not require Theorems 1.3 and 6.5, and that if one only wants to prove that
the the supremum in Theorem 1.1,i7) is bounded away from 0 and 1 uniformly in N, one
could bypass the use of B by proceeding similarly as in the proof of (1.23). It seems how-
ever difficult to obtain the exact constant e~¢ at criticality in (1.13) without using the
more general Theorem 6.5 (or Theorem 1.3). In a nutshell, this is because B provides us
with more precise information about £*, see (7.21), than direct moment methods, see
Lemma 6.4. More generally, proceeding similarly as in (7.19), (7.20) and the first equality
in (7.21), one could see Theorems 1.1 and 1.3 when a > 1/2 as direct consequences of
Theorem 6.5 and Lemma 7.1, without using the moment methods of Lemma 6.4 (which is
still required for o« < 1/2). Lastly we note that if a,(K) > 1/2 there is some flexibility
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in defining B% in (1.20) without spoiling the conclusions of Theorem 1.3, e.g. by adding a
constraint on the diameter of A in (1.20) of the form §(A) < Ry, similarly as in (6.16)-
(6.17). However if o (K) < 1/2, it is not clear if (1.22) is still verified when adding such a
diameter constraint, see (7.16), and it is thus an interesting question if a change in (1.20)
might be relevant when studying £% in the phase a < %

As explained in the proof of Theorem 1.1,ii), the constant e~ in (1.13) corresponds to
IP’(EKO (Ea*)c), which is essentially the probability that there do not exist two neighbors
in L% we refer to (7.13) and (7.21) for how to compute this probability. On the other
hand, the limit in the critical case (1.23) of Theorem 1.3 is not explicit (nor is it clear
whether this limit actually exists). This is due to the fact that we only proved (7.13) for
K = {x,y}, * ~ y, and in fact for this choice of K the limit in (1.13) is also e~ by a
similar reasoning. To obtain the limit in (1.13) for other choices of K with a,(K) > 3, one
would need to extend (7.12) when replacing ., by a(K). The limit in (1.23) would then
be 1 — e™#, where B = B(K) would be the constant multiplying |Qy]| on the right-hand
side of this new version of (7.12).

Theorem 1.3 focuses on sets K with a,(K) > 3, and we refer to (6.26) for the main

reason why this condition appears. The pertinence of the first line in (1.22) at values
a € (o (K), 1] for any K with oy (K) < 3 is another matter entirely. We refer to §8.2 for
some results in this direction. The parameter % is also the critical parameter from [21]. For
the random walk on T, they prove that if B < T is an independent set chosen uniformly at
random, then the total variation distance between (£%)¢ n B and B goes to 0 as N — o0
if « > 1/2, and to 1 if & < 1/2. Actually, this can be directly deduced from Theorem 1.3
for the case av > 1/2 (which is the more difficult case), and also when considering random
interlacements instead of the random walk on the torus. Indeed, by |21, Lemma 3.1 and

Proposition 3.2] (applied to P(-| A)), it is enough to find an event A so that

LYNLY

(7.22) E[Q' |1A] — 1 and P(4) — 1,

where £* is an independent copy of £~ Let a > 1/2 and z € Z? be such that a,(K) €
(1/2, ), with K = {0, z}, which exists since a4 ({0,z}) — 1/2 as x — o0 by (2.6). Let A be
the event that {£* < B% °}, with € < a — 1, intersected with (Lo gf‘(_a}, where B\?{—a
are independent copy of B% ©. Then by Theorem 1.3 we have P(A) — 1 (up to changing
the probability space), and one can easily verify that the left-hand side of (7.22) is satisfied
since By © n BA?{E consists of C N¢ independent Bernoulli variables each with parameter
smaller than CN—24*=¢) and 2(a — ¢) > 1.

One could also modify the relevant timescale in the definition (6.2) of £%, and the results
of Theorems 1.1 and 1.3 remain true as long as (6.6)-(6.7) hold. For instance one could
take £ in (6.2) as the vacant set at time atcoy, Where teoy is the expected cover time of
Qn for either random walk or random interlacements, or in fact replace a by any sequence
(an) with aylog(N) ~ alog(N) as N — oo. Indeed if v = limy (1 — %) log N exists in
[—00, +0], using (7.2), as long as ay > %+17, for any n > 0, one can use Theorem 6.5, (7.2),
(7.13) and (7.17) for a instead of «, to show that for & small enough limy de (L, B; o)
is equal to 0 if ¥ = —o0, is equal to 1 — e~ ¢ if v € (—00,0), and is equal to 1 if vy = +o0,
similarly as in the proof of Theorem 1.1. Thus, proceeding similarly for Theorem 1.3, our
results are robust with respect to small changes of time- reparametrization, contrary to
those of [22]| or [28] where one had to consider the walk at timescales at, for a specific
choice of ty ~ teoy.
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As we now explain, inspection of the proof of (1.12) and of the first line of (1.22) (used in
the proof of (1.12)) reveals that item i) of Theorem 1.1 can be quantified as follows; for all
a€ (o, 1], N>1, FcQn, c€(0,a), and LS as in (6.2), one has

(723 de(Lrthsa) < CIF|(|F]log(|F)”' @5 + |75,

where Uy < F and {z € U} def. {Up < P(z € L)} for all z € F, so that in particular,
Ug, = B. The first term on the right-hand side of (7.23) can be traced back to (6.18),
which appears in the course of proving (1.22), and the second term to (7.17). Note also
that this second term is also a bound on the first line of (7.2) when K = {z,y}, x ~ v,
by (7.5), (7.6) and (7.7). Similarly, for all @ > a,(K) one could prove a bound on the
first line of (1.22) similar to (7.23) when replacing a, by a4 (K). The extension to general
F < Qn in (7.23) comes for free since all the results of §6 utilized in the proof (namely,
Theorem 6.5 and the bound (6.6)) hold at this level of generality.

In particular, the quantitative bound (7.23) (applied to F' = @Qu) allows one to choose
e = N~¢ for suitable ¢ = ¢(a) and o > ay, for which

(7.24) dey (L, B;a) > 0 as N — o0.

As we now argue, this yields a non-trivial regime of parameters o < 1, for which e is so
small that (7.24) can be boosted to drv = dp in place of d.,. Let n € (0,2 — 1). Then
in fact (7.23) implies that (7.24) holds for ey = N~ with ¢(a) = 3(d — 2)(2a — 1 — 7).
Moreover, by virtue of Lemma 6.1 one has that if a € (0, 1)

(7.25) P(B*SN = BAeN) < NOP(0 e £LO7EN\LOFEN)
_ Nd ) 1
= Nd(meN)< T N2den

—2

+ ON~ 10g(N)*?) < CeyN=*!10g N,

—2

where in the last inequality we used that N2%~ — 1 and the inequality N -5 log(N )3/ 2 <
Cen valid by our choice of ey and a. Therefore, if d — ad — 3(d — 2)(2a — 1) < 0,
that is if &« > 3(d — 2)/(d — 1), upon choosing 1 > 0 small enough one deduces that
P(BYeN = B*TeN) — 1 as N — o0, which together with (7.24) and when o > a yields
that dry(£%,B*) — 0. Interestingly the parameter oy = a v 3(d — 2)/(d — 1) thereby
emanating coincides with the parameter from [28|, as one can see by carefully inspecting
[28] (see in particular the term by p.10 therein). In view of 4) and 5) above, our findings
thus recover the results for the random walk on the torus of [21, 22, 25, 28] in full (and also
extend results such as (1.8) to an arguably more natural choice of time-parametrization). It
is an intriguing question to determine whether ag and ., see (1.7), coincide, or whether
the (multiple) occurrences of g are an artefact of the methods and in reality . = .
Note that 2(d — 2)/(d — 1) > 2 and oy, which is decreasing in d by (6.11) and [18,
Lemma C.1], verifies a, < 0.68 by computer-assisted methods, see (6.11) and Lemma B.4.

Overall this yields ap = 3(d — 2)/(d — 1) > o

Let us define the a-cover time C*(£) = inf{8 > 0 : |[£F] < N(l_o‘)d} for a € (0,1].
Recalling B and Bk from above (1.7) and (1.20), define C*(B) and C*(Bg) similarly but
replacing £ by B and By, respectively. With C* = C%*(L), one could also show results
akin to Theorems 1.1 when a # ay and to Theorem 1.3 when a # a(K), when replacing
the set £& by £, which is the set of late points which contains exactly N1~ points (or
[N41=)] in case N%1=®) is not an integer), and the sets B% and B by the sets BI(’;Q(BK)
and BC“(B), We refer to [22, Theorem 1.2| for a similar result without sprinkling when o
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is close enough to one. The proof relies on Theorem 1.1, which in particular implies for all
a € (o, 1] and € € (0, @) the inequality

Pla—£ <0 <a+$) =P(|Lote3] < NUI-0) < |Lo=e/3))
>P(|BoFe] < NU1=2) < |BY¢|) 4+ 0(1) — 1

as N — oo, where the last bound is an easy consequence of concentration bounds for
binomial variables and (6.5), along with similar concentration estimates for C%(B) (and
analogues in the context of Theorem 1.3 when a > a4(K) > 1/2, replacing B by Bx
throughout).

8 Extensions

We now discuss two extensions of our main results, one concerning the set £% from (6.2) viewed
as a process in o > 0, the other regarding a partial description of the behaviour of £% valid in
the regime o < %; see Theorems 8.1 and 8.3, respectively, along with the subsequent remarks.
8.1. The process o — L. Recall the process (o )zeq, from (1.15) (see also our convention
n (6.2), by which (a)zeq, implicitly refers to either of two choices). Note also that a, > ax
for any x € LY.

Theorem 8.1. For all N > 1, there exists a coupling of (0z)zeQy With a family (0z)zeqy of
i.i.d. exponential random variables of mean dlog(N) each, such that for all e > 0,

(8.1) A}i_r)noop(@xfegax*a*éc’ierefor all xe L) = 1.

The intuition behind Theorem 8.1 is roughly the following. By similar considerations as in
the proof of Lemma 7.1, one argues that, for each @ > «, all the vertices in L are at distance at
least Ry = log(INV )ﬁ from each other with high probability. Applying our localization results of
Section 5 at this scale then implies that the hitting time of each late point is roughly independent
and distributed as exponential random variable with the above mean.

Proof. We first consider the case P = P. Let t, = uy () N? with uy(a) = ag(0)log(N?) as in
(1.3) and define F, = o(X,, : 0 < n < t.). Remark 5.7,3) can be applied for the random walk
(Xt+t, — X, ) under Po(- | F.) instead of X under Pg since it has law Pg by Markov’s property,

and we denote by (Eé?&)yezd7erN7ue[ the associated short-range field of local times when

ul,uo]
F =Qn, R = log(N)ﬁ, 6 =1, ¢/3 instead of ¢, uy = un(g/2) and up = un(2), defined on
some extended probability space Pg. Let

(8.2) K={xeLl*: L nQx,2R) = {w},ﬁf_}?f:fi]v@) > 0}

denote the set of points visited according to the short-range field by the terminal time ux (2) N
Conditionally on F., we then define

(x_Xi*)
z— X, un (a

ap =sup{ae[0,2]: ¢ )=O}foreachxe/C;

similarly, for each x € Qn\K such that £ n Q(z,2R) = {z}, we define independently &, as
2 plus an Exp(dlog(N))-distributed random variable, and for each z € Qn\K such that £ n
Q(z,2R) # {z}, define independently a, as some Exp(dlog(V))-distributed random variable. In
view of (5.1), (6.3), and the memorylessness property of the exponential random variable, one
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checks that @, is Exp(dlog(V))-distributed for each x € Q n. Moreover, it follows from the short-
range property of £(*) see (5.2), that conditionally on Fy, @, is independent of o(ay,y € K\{z})
for each x € K, since d(z,y) = 2R for all z # y € K. Therefore (4z)zeq, is an i.i.d. family of
Exp(dlog(N))-distributed random variables.

It thus remains to prove (8.1). First (5.38) for our choice of parameters implies that a.s.

(8.3) 150 (&r —e<ay—ay <Qgt+eforallze Kn Q(Xy,,2R)¢ | .7-'*) —o>ol.
n—

Indeed for each z € K n Q(X4,,2R)¢, if a, — ax = /2 then the event a, — e < a; — ay <
Q + € is directly implied by the event in (5.38) for u; = un(g/2) as above and the inequalities
Q. /(1 —€/3) < Gz + ¢ (for € small enough) as well as @, /(1 +¢/3) = a, —e. If ap —ay < g/2
the inequalities @, — ¢ < 0 < ag; — @, are similarly implied by (5.38) for u = un(g/2), and the
inequality o, — e < @ + € is trivial, which concludes the proof of (8.3). Moreover

(84) Po(L™ nQ(X.,2R) # @) < Po(L2 n Q(X,,,2R) # @)

CRY
< supPo(ﬁé N Q(z,2R) # @) + exp(—eN¥7?) < T
zeT Nd/4

where in the second inequality we applied the Markov property at time t1 = u N(%)N 4 observed
2

that ¢, —t1 > cN% since o, > 3 (see (6.11)) and applied a classical bound on the mixing time
2

of X, see for instance [20, Theorem 5.6, to deduce that Xy, 4, ,, conditionally on L3 s suitably
close to being uniformly distributed on a sub-lattice; the last inequality then follows by (6.4)
combined with a union bound. Let us now consider vertices x € L**\K. By (6.3), (6.4) and a
union bound and Markov’s inequality, we have for large enough N

(8.5) Po(Az < &,0, — ay < ¢ for all z € L2*\K)

> Po(A, <2 for all z € Qn) — 3¢ *H8MNE [[{z € L% : L% A Q(x,2R) # {z}}[].
Moreover, by (2.6), (2.7), (6.6) and (6.11) we have

(8.6) Eol[l{ze L™ : L™ nQ(x,2R) # {z}}]]
< Eo[l{z.y € £ d(x,y) € [1,2R]}]] < ON'RIN= < Clog(N) 72

since R = log(N )ﬁ, and by (6.6) again and a union bound we know that
(8.7) Po(d, <2forallze Qy)>1—-CN™<

The claim now readily follows by combining (8.3), (8.4), (8.5), (8.6) and (8.7). Finally when
P = P! the proof is similar except that one conditions on Fy = U(wa\; (a*)) instead, see (2.11),
and uses a version of (5.3”) for the process consisting of the trajectories of interlacements above
level up (e ), which has the same law conditionally on F as an interlacement process since the
increments are stationary and independent. O

Remark 8.2. 1) In much the same way as in Remarks 7.3,1) and 6), Theorem 8.1 implicitly

applies to both random walk on T and random interlacements in the box Q. It further

naturally generalises to F' < @, i.e. to the process af def. supfa > 0 : z € L%},
x € F (so that a, = a9 see (1.15)). The conclusions of Theorem 8.1 remain true upon
replacing the reference process @ by i.i.d. exponential random variables with mean log |F|.
Note however that the proof of Theorem 8.1 relies heavily on the Markov property of the
random walk, or the independence of the increments of interlacements, and thus might be

harder to generalize to other models than our other results, see Remark 8.4,5).
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It might be at first surprising that the proof of Theorem 8.1, giving a description of L% as a
process in « for a > ay, does not rely on the Chen-Stein method from Section 3, contrary
to the proof of Theorem 1.1, which gives a description of £L% at fized a > «4. The reason
is that Theorem 8.1 only describes the law of the hitting times of the points in L%, a > ay,
and not their position on the lattice. In particular, one cannot deduce Theorem 1.1 from
Theorem 8.1. In the proof of Theorem 8.1, the use of Chen-Stein is essentially bypassed
by our localization result, Theorem 1.2, applied to the random walk after time wuy (e ),
which gives a short-range field ¢ independent of £%*. The short-range property of 7 then
manifests itself as independence property on the set I of well-separated points in £,
which is almost equal to £, see (8.5) and (8.6). However, if £ is now the process from
Theorem 1.2 applied to the random walk after time 0, then it is not independent of L£%*,
and so it is not clear at all that the process lzw, x € K, is independent, hence our use of
the Chen-Stein method to overcome this issue in the proof of Theorem 1.1.

One can also generalize the description of £, as a processus in « for o = a, from Theo-
rem 8.1 to a description of £, as a processus in « for o > 1/2 as follows. For simplicity
we focus on the case P = P, cf. (6.2). Informally, for each n > 0, on an event E occurring
with high probability, the set £3+7 is a union of islands drawn from Ar in (6.16), each

2
at distance at least log(N)3—2 (say) from one another. Then (og)zeq, behaves almost
independently on each island as the hitting time of this island by interlacements.

We now formulate this precisely. For R > 0, we say that K is an R-well-separated partition
of S © Qu if K is a partition of S such that §(K) < R for all K € K and d(K,K’) > R
for all K # K’ € K. Note that there is at most one R-well separated partition of S. An
example is the set K from (8.2), which forms an R-well-separated partition of S = £** into
singletons K = {x}, x € £, with high probability as N — o0, as shown above.

In a similar vein, let now R = log(N)ﬁ and fix n € (0, %) Define F = E(E%Jr”) the event
that £377 has a 4 R-well-separated partition K, where ¢, = u N(% +n)N?. Then similarly
as in Theorem 8.1 one can define on a suitable extension of P an independent family
(@) geic, such that @ has the same law as (ay)zerx under P! (corresponding to (1.15)
for interlacements) for every K € K and in addition, for all £ > 0,

(88) P(E,a¥ —e<a,—3-n<aft+cforallze Kand KeK) —1as N — .

In essence, (8.8) asserts that, with high probability, the set £ iy consists of ‘islands’
K (corresponding to the elements of K) which are far away from one another and such
that the law of ayx — % — 7 is close, up to sprinkling, to the hitting level of each island
by independent random interlacements. The proof of (8.8) follows similar lines as that
of (8.1) and relies on our localization result (5.38). Note that the law of o for random
interlacements, i.e. the law of @ in (8.8), can be explicitly described as follows: first wait a
time Exp(dcap(K)g(0)log N), at which a first trajectory in the random interlacements hits
K. This trajectory has law Pz, and visits a subset K’ of K. One can then let K; = K\K’,
and similarly obtain a set Ko by repeating the previous procedure but with K instead of
K. Tterating this procedure until K, is empty, the law of a,, x € K, is then the same as
the law of the first time at which xz ¢ K,,, x € K.

One can readily deduce Theorem 8.1 from (8.8). To this end, one takes n = a, — 1/2 and

defines &, = a4"! for each = € Qn such that {z} € I, on the event E(L*), and for each
other vertex z € @y samples &, as independent Exp(dlog(N)) random variable. One can
control E [[{z € L,, : {z} ¢ K}|] in effectively the same way as (8.6), and conclude as in
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(8.5). Using the explicit description of the law of &% above, one checks that (Q;)zeq, are
indeed i.i.d. Exp(dlog(N))-distributed.

5) It would also be interesting to prove a version of (8.1) without sprinkling, at least for «
close enough to 1, that is to show that with high probability the hitting times of x, x € L%,
are close in total variation to i.i.d. exponentials with mean dlog(N) for « large enough.
This does not seem to follow easily from Theorem 8.1, as the method from Remark 7.3,7)
only shows that B> ¢» = B**en for an adapted choice of £, — 0 at a fixed level «, and
not as a process in «.

8.2. Outlook: the regime o < % Let us finish this section with a partial description of

the behaviour of the late points £% for o < 1/2. For each F, K < Qn with 6(K) € (0, Rp] let
Sk ={xeQn: z+ K c F}, recall from (6.16) that Rp = log(|F|)ﬁ and leet

(89) %7K={IESF7K: E%GQ(JI-FK,RF)::E-FK},

be the set of x € Sp i such that x + K is exactly the set of a-late points in F' in a small
neighborhood around z + K, and we take L%, = @ if §(K) > Rp. Correspondingly, we also
define 7

By ={reSrk: Uprx <P(LE nQ(z+ K, Rp) =z + K)}.

Theorem 8.3. Fix 5y € (0,00). There exists C = C(f5y) < 0, such that for all N e N, F, K
QN with cap(K) < fo, 6(K) € (0, Rr], € (%, 1] and € € (0, %),

22)
(8.10) d-(Lrx,Br ;o) < CRE|F|™ G Vg%

We refer to Remark 8.4 below for further comments on the above theorem.

Proof. Consider a, F, K, ¢ as in the statement of Theorem 8.3. By translation invariance we
(d— 2)(2a noo. . .
may assume that 0 € K. We may also assume that ¢ > |F|~ , since otherwise the right-

hand side of (8.10) is always larger than 1 (up to taking C' > 1 therein). Consider the field

(Z%l’(x))a 1e(0,2],zeQy from Theorem 6.6, where A > 2 is a large enough constant chosen so that

2
(6.20) with R = (2) 72 Rp is larger than 1 — C’/]F|3 uniformly in € as before. We now define
N%:K—{xGSFK ﬁ mQ(x+KRF)—:c+K}

and aim to apply Lemma 3.1 with the choices S = Spg, I = [0,2], Y = 1{z € E%:K},
z¥ =1z e EN%/K} and Ny = Spx N Q(z,3R), x € Spx. Assumption (3.4) is verified by our

choice of £ in Theorem 6.6. Moreover, by (6.20) and since « + K < Q(x, R) for each z € Sk K
under our assumptions we have that

(8.11) d.(Y,Z;d/) < C|F| ™3 for all o € I.

We thus only need to bound the constants b; and by from Lemma 3.1. By (6.6), we have for all

Oé*(K)
2

ae (&5 1] and o > a — 2e,

—2¢)
(8.12) bi(a) < C|Srxl- ( sup [NG]) - |F|" =00 < REF[ om0 o2,

zeS F.K

for some constant C' = C(fy) < 0. Moreover for € Sp rc and y € Ny \{z} with Y = Yya/ =1we
have d(z,y) = Rp/2, and so by (2.9), (2.10) and (6.6) we readily see that ba(a’) satisfies a bound
similar to b (a’) in (8.12). We can now conclude by combining (3.5) with (8.11) and (8.12). O
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Remark 8.4. 1) Theorem 8.3 indicates that for each K —c Z¢, when considering only the

subsets of the late points £% which look locally exactly a translation of K, or its projection
on the torus, these sets can be well-approximated up to a sprinkling by independent trans-

lations of K, as long as o > w For K = {0}, since a«({0}) = 1, this corresponds to

an approximation of the isolated vertices of L% by independent vertices as long as o > %,
which is essentially contained in Theorem 1.3. But when |K| > 2, Theorem 8.3 describes
the behaviour of sets which are translations of K for some o < % as well.

Actually, Theorem 8.3 is mainly interesting when a < o, (K). Indeed, for a > av, (K), using
a first-moment bound and (6.6), one easily sees that Bf ;- and L - are both empty with
high probability as |F'| — o0, so L% i 1s trivially well-approximated by B ;. In particular,
for any sets K < Z? with |K| = 2, we thus have that both L% ;¢ and Bf ;- are empty with
high probability for all o > «a, a fact which is already implicit in Theorem 1.1.

Another result which remains true in the regime o < 1/2 is the convergence of the empirical
process associated to £ to a Poisson point process on [0,1]¢. More precisely, for each
a € (0,1) the point process Y, . a 0;/ne converges in law to a point process on R? with
intensity the Lebesgue measure. This can be proved using (6.5) in exactly the same way as
in [4, Corollary 0.2] for random interlacements and as in [5, Corollary 3.4| for the random
walk.

It is an interesting open question to obtain a description for the asymptotic law of the full
set L& for o < %, and not only of L% j- for large enough K as in Theorem 8.3. The main

obstacle in order to do so is the lack of clustering for a < % Indeed, Theorem 6.5, see

also Lemma 6.8 and (7.20), indicates that for o > %, LY consists with high probability

of ‘islands’ with capacity smaller than ﬁ, each with diameter smaller than Ry and at
distance at least N2*~1=7 for any n > 0 from one another. Adapting Lemma 6.8, one could
even show that for each a € (1, 1], these islands have diameter at most C' = C(«, n) with
high probability, and are thus asymptotically independent, as highlighted in Theorem 6.5.

However, when a < % a reasoning similar to the proof of (6.22) shows that for each p e N

the average number of points in £% at distance at least p from one another, but less
than log(N?), diverges to infinity as N — oo0. In other words, £ cannot be decomposed
in bounded islands at infinite asymptotic distance from one another, which is the main
conceptual obstacle in extending Theorem 6.5 to a < % Nevertheless, for large enough
sets K, [’(IX(,QN still consists of bounded islands at infinite asymptotic distance from one
another, which are thus independent as highlighted in Theorem 8.3.

With future applications in mind, let us briefly explain which properties of random inter-
lacements and random walk are used to obtain all main results from Sections 6-7, including
Theorem 8.3. First Theorem 6.5 only uses the bound (6.6) and Proposition 6.6. From this,
one can also obtain the case a > oy from Theorem 1.1, the case a > ay(K) > 3 from
Theorem 1.3, the last bound in (1.23), as well as Theorem 8.3. One additionally needs
the lower bound (6.7) and the decoupling (6.8) to obtain Lemma 6.4 and its consequences,
namely the case a < ay from Theorem 1.1, the case a < a,(K) or as(K) < 3 from Theo-
rem 1.3 and the first bound in (1.23). Except for the critical case (1.23), one could afford
weaker versions of the bounds (6.6) and (6.7) with some additional subpolynomial term,
that is only the polynomial order of P(0 € £%) is important, i.e. the limit of logﬁ(g# as
N — 0. To obtain the precise asymptotic in the critical case o = ay, see (1.13), one needs
the asymptotics of P(0 € £L%) as N — o0, by which the constants C(p) and ¢(fp) from
(6.6)-(6.7) are replaced by 1 + o(1).
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This hints at a universal phenomenon, valid for essentially any model satisfying estimates
like (6.6), (6.7) (possibly up to some subpolynomial factor except at criticality) and (6.8),
and allowing for a ‘finite-range’ approximation with properties akin to i)-iii) of Proposi-
tion 6.6. We hope to return to this elsewhere. Another possible extension is to consider
other graphs than the d-dimensional torus under suitable hypotheses (e.g. polynomial de-
cay of the Green function and polynomial volume growth as in [14]), for which our method
should be stable, see for instance Remark A.11. In a related direction, we refer to [6] for
recent work characterizing the ‘universality class’ of Gumbel fluctuations for cover times.

A Appendix: proofs of Lemmas 5.5 and 5.6

In this appendix, we prove Lemmas 5.5 and 5.6 using some large deviations estimates for ex-
cursions of random walks or random interlacements, see Propositions A.7 and A.9. In order to
finish the proof of Lemma 5.5, we are also going to need some Harnack-type estimate to show
that the function g¢(z), see (5.15) and (5.16), does not depend, up to constants, on the choice
(€ 0By x 0B5.

A.1. Harnack-type estimates. The following results are tailored to our purposes. Through-
out this section we only deal with the process X under P,, but the results immediately transfer
to the walk on T as long as the events in question are measurable in terms of X.,7, with
Q = Q(z,r) for some r < N under P, (this typically means r3 < N below). We refer to Sec-
tion 2 for notation. A function f : Z? — R is called harmonic in K < Z¢ if f(x) = E,[f(X1)] for
all x € K (which only requires knowing f in the 1-neighborhood of K). By [19, Theorem 1.7.2],
one knows that for all § € (0,1), » > 1 and f non-negative and harmonic in Q(0,r(1 + 9)),

(A.1) f(z) < C(5)f(y), for all z,y € Q(0,r)

(note that the ref. [19] states (A.1) for Euclidean balls but (A.1) can be deduced from it via a
straightforward chaining argument). In the sequel we abbreviate By = Q(0,7y), for k = 1,2,3
with 1 < r; < r9 < r3; similarly as in (5.23). Let gx denote the Green’s function killed on the
set K < Z%, so that gy (z,y) = g(x,y), cf. above (2.3). We start with a control which involves
killing in nearby £®-boxes. Note that the following result is completely standard for large ¢
(larger than C € (1,0)) but the case of small d requires some care.

Lemma A.1. For all 6 € (0,1), r3 = r1(1 +0)?, K < By a box (possibly K = @) and z,y €
Q0,rs3/(1 + g))\Q(K, %7“1), one has

(A.2) c(8)|z — y[*~? < gropg(r,y) < Cla —y*7.
Moreover, with 1,73 as above and for all x € Q(0, (1 + §)r1)\Q(0, (1 + %)7‘1),
(A.3) c(0) < Py(Hp, <Tp,) < Py(Hp, <) <1—c¢(9).

Proof. First we observe that the first bound in (A.3) is an easy consequence of (A.2). Indeed,
by a last-exit decomposition similar to (2.4), one obtains that for all x € Q(0, (1 + J)r1),

(A.4) P,(Hp, <Tp,) = }glg ng(x’g;’)Casz(Bl) = ¢(9),
z'eBy

where the last step uses (A.2) for K = @ along with the capacity estimate capp,(B1) >
=

cap(B1) = cry % In order to prove the last bound in (A.3), first notice that P,(Hp,
Tooar)) = ¢(A,0) for any A > 0 by projecting onto a coordinate and using a Gambler’s ruin
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estimate. Moreover if X is chosen large enough, it follows from (2.4) similarly as in (A.4) that
Py(Hp, <) < % for all y € Q(0, Ar1)¢. The upper bound follows by the Markov property.

We now prove (A.2). For any K < Z% one has g < ¢ and the upper bound in (A.2)
follows immediately from standard estimates on the Green kernel, see for instance [19, Theorem
1.5.4]. We now show the lower bound, and note that by monotonicity of B3 — gx.pg(z,y)
and symmetry in z and y we may simply assume that |y|s = |z|e and y € 0Q(0,r3/(1 + g))
Noting that by the Markov property gKugéz(x,y) > P,(Hp, = o) infzeaQ(O’TB/(Hg)) gKuBg(z, Y)

and using the last bound in (A.3), we may further assume that x € 0Q(0,7s/(1 + g)) Let us
first fix A = A(d) € (1,0) large enough such that for all x € Z4,

(A.5) sup  g(z) <

[zlo=Alz|oo

g9(z)

(recall that g(z) = g(0, z)); the bound (A.5) is obtained again using e.g. [19, Theorem 1.5.4]. We
now distinguish two cases. Suppose first that x,y € 0Q(0,r3/(1 + %)) and |z — ylo < 1%, where
we abbreviate r = r3. Then applying the strong Markov property at time Hp pg, it follows that

(A5) 1
groBs(@,y) = 9(@,y) = B[ 9(Xa s 9)] = 59(@,),

where in the last step, we used that |Xp, .. — Yyl = 307 = Az — Y. Along with the standard
3
bounds on g, this completes the verification of (A.2) in that case.
Now suppose that |z — ylo > 5. Then since 2,y € dQ(0,7/(1+3)) the boxes B, =
Q(y, lgﬁ) and B, = Q(x, %) can be joined using a chain of C'(§) many boxes B;, each having

or

radius 756y, in such a manner that i) any two consecutive boxes overlap (i.e. B; n B;y1 # @) and

i1) if Ez D B; refers to the concentric box having radius %, then éz does not intersect By u B5.
It follows that for all x € B;,

i)

(A.6) Pe(Hp,,, < Hxupg) = Po(Hp,,, <Tp) = ¢,

where the last bound uses monotonicity and (A.3), which is in force due to the first inequality in
(A.4) and the lower bound on the killed Green’s function at ‘short’ distances already obtained,
see also i) and the choice of radius for B;. Iterating (A.6) using the Markov property yields

groBs(z,y) = Py(Hy < Hxopg) = cyligé Py(Hy < Hgupg) = ¢ (0?4 = " (8)|z — y|*7,
Yy
where the penultimate step follows by bounding P, (H, < Hropg) = gruBs(v',v)/9(0) and

using the lower bound already derived, and the last step because |x —y| = ¢(d)r by assumption.
O

We are now ready to prove that the function g¢(©), see (5.16), is of constant order for suitable
choice of the radii ry, for By.

Lemma A.2. For alld € (0,1), rpeq1 = re(149), k=1,2, and all y € By and w € 0Bs,
Py(Tpy < Hp, | X1y, = w) = ¢(9).
Proof. By a last-exit decomposition in Bs, one finds that

(A7) Py(TBB < HBN XTB3 = ’LU) = Z gBIUBg(y7Z)PZ(ﬁBQ > TB37 ){TB3 = 'U))
ZE(?BQ
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Using the lower bound in (A.2) with the choice K = Bj and the upper bound with K = &, it
follows that gp, uBs(y,2) = c(6)gps(y, 2) for all y,z € 0By. Substituting above, it follows that
the right-hand side of (A.7) is bounded from below by

c(8) Y. gms(y,2)P.(Hp, > Tpy, Xy, = w) = ¢(0) Py(Xry, = w),
ZE@BQ

where the last equality follows again by last-exit decomposition. O

Next, we prove that the function g¢(z), z € K, see (5.15), does not depend on the choice of
¢ € 0By x 0B§, up to constants. Recall from (2.1) that Lp,(Tg,) denotes the time of last visit
to By prior to exiting Bs.

Lemma A.3. For all§ € (0,1), rp41 = 1(1+0), k =1,2, and z,y,z € 0B, v € 0By, w € 0B,

P, (XHglATB3 =0, X1 (T,) = 7 ’ X1p, = w)

(A.8) c(8) < < ().

Py (XHBIATBB =0, Xpp (Tp,) = z)
We first isolate the following;:

Claim A.4. For alld € (0,1), r3 = (1 + d)re, all y,z € 0By and w € 08§,
c(8) - Py(Xry, = w) < Po(X1,, = w|Tp, < Hp,) < C(0) - Py(X1y, = w).

Proof. Let V = 0Q(0,72(1+0")), where (1+6")? = 1+4. Since V separates By from B, applying
the strong Markov property at time Hy,, one obtains that

(A9) P.(Xr, =w,Tp, < Hp,) = Y P-(X1, =w, Tp, < Hp,, Xz, = %)
eV
= Z PZ(HV < E’BZ’XHV = Z/)PZ’(TBa < Hp, ’XTB:«) = w)PZ’(XTBs = w)'
z'eV

Using Lemma A.2 we know that the middle term in the second line is at least ¢(¢") (and at most
1). Since 2’ — Py(Xr,, = w) is harmonic in Bs, by (A.1) one obtains that the last term is
bounded from above and below by P, (XTB3 = w), up to constants depending only on ¢. Finally
one knows by (A.3) that ¢(¢') < P/ (T, < Hp,)(< 1). Substituting all of this into (A.9) yields
that the left-hand side of (A.9) is bounded up to constants from above and below by

Py(Xry, =w) >, P.(Hy < Hp,, X, = 2')P.(Ip, < Hp,) = Py(X1,, = w)-P:(Tp, < Hp,),
z'eV
which is the claim. O

It remains to give the

Proof of Lemma A.3. We first reduce the task to the case © = y, by applying (A.1) and a
chaining argument to the function x — P, (X Hp, ATpy = U XL, (Tp,) = z), which is harmonic in
Bs\B;. Harmonicity holds crucially because v € 0By, which forces the walk to visit By prior to
time Lp,(TB,), whence Lp,(T,) = 1 under P,. This allows to effectively replace the starting
point = by y in the denominator appearing in (A.8).

We now show (A.8) for x = y, and write

(A10)  Py(Xpp, amp, =0 X1y, (15,) = 2| X1, = 0)
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Py (XT33 =w ‘ XHBI/\TBS = U7XLB2(T33) - Z)

= Py(XT33 = w) -PZ/(AXT‘I‘IBl/\TB3 = U’XLBQ(TB?)) = Z)

By a last-exit decomposition in 0Bo,
Py(Xry, = w| Xty a1p, = 0, Xy, (15,) = 2) = Po(Xry, = w| T, < Hp,).
Inserting this into (A.10) and using Claim A.4 completes the proof. O

A.2. Large deviation estimate for excursions. In this section, we prove Lemma 5.5 on the
concentration of the soft local times, as well as Lemma 5.6 on the concentration of the number
of excursions, both for random walk and random interlacements. As in §A.1, we assume that
By =Q(0,r) for k=1,...3 with r; <ry <rz < N.

We start by collecting some preliminary large-deviation estimates, which concern the random
walk on the torus T of side length N > 1 (in dimension d > 3). Recall the definition of the
successive return times Rj, = Ry (X, Ba, Bs) from (5.4) and (5.7) (well-defined when r3 < N).
In the sequel, we denote by v the stationary measure of (Xg, )r>1, which is supported on 0Bs.
To avoid clumsy notation, we identify v with its projection on the torus (which is the invariant
distribution of (Xg, )r>1), and abbreviate X[,y = (Xn)s<n<: in the sequel.

Lemma A.5. For all 6 > 0 and N > r3 = (1 + 0)ry = 1, the Markov chain (Yi)g=o0 with
Yi = X{r,,Rry.,,] has invariant distribution P, (X[o gr,] € -). Moreover,

(A.11) drv (L((Yin)EL), (Pu(Xjo.r, € ))PF) < CKemOM,

for all M, K e N = {1,2,...}, with £ denoting the joint law of (Yirr)!, under P,, z € T.
=1

Proof. By definition, v is the invariant distribution of (Xg, )r>1 and since (Y;)n>1 are inde-
pendent random variables conditionally on (Xpg, )r>1, one readily concludes that the invariant
distribution of (Yi)x>1 is Pu(X[or,] € -). A claim on the total variation similar to (A.11) but
concerning (Xpg, )r>o0 instead of Y holds by [22, Lemma 2.2], and (A.11) then follows easily. Note
that [22, Lemma 2.2| is stated for the exit chain, i.e. (XDk()?,Bl,BQ))k>0’ but the proof for the

entrance points is identical. There it is further assumed that 73 > 10v/dre, but this is owed
to the fact that excursions from square boxes to round boxes are considered. If instead one
considers excursions from square boxes to square boxes as in the present case, the assumption
rg = (1 + d)ry for some 6 > 0 is sufficient. O

Remark A.6 (Identifying v). Recalling that €3 denotes the projection of the equilibrium measure

égz onto T, see above (5.20) and below (2.6) for notation, it follows from [8, Lemma 6.1] that

(A.12) v==g
for r3 < N. Moreover, by [8, eq. (9.4)], one has the exact(!) formula
(A.13) Eqs[R1(X, By, B)] = (capp, (B2))  N°.

The identities (A.12) and (A.13) are needed to precisely match both the number of excursions
and the soft local times between random walk and random interlacements, but are otherwise
unnecessary; cf. Remark 5.7,1).

Let W33 denote the set of nearest-neighbors paths in T starting in 0Bs, hitting 0B, and
then ending the next time 0By is hit. Thus W3 represents the state space of the excursion
process (Yy)k>0 appearing in Lemma A.5. We now prove the following large deviations estimate
for these excursions, from which Lemmas 5.5 and 5.6 for the random walk will later follow.
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The following setup is tailored to our purposes. We consider (Z;);>0 an i.i.d. sequence of
random variables with values in a measurable space (A4,.A) and independent of X (under P).
For a measurable function F' : Wy3 x A — [0,00) we then introduce the random variables
Vi = F(X[RiaRi-H]’ Z;) for i = 0 and for iy = 0 and m € N the average

m—1
— — 1
(A.14) Vin = Vigm = — ZO Vig+is

Proposition A.7. For allig =2 0,6 >0, N > r3 = (1 + d)ry = 1, the following holds. If for
0>1,

sup E;[Vi,] < 6 inf E;[V;,] < o0 and
(A.15) zeT zeT
E, [V} < KI0E,[V;,]* for allz € T, ke N,

then there exist C' = C(0,5) < o0 and ¢ = ¢(0,6) > 0 such that for allm e N and n € (0,1),

sup Pw( Vi —Eu[Vi,]] > 77E,,[Vi0]) < Cmexp{ — c«/an}.
xeT

Proof. Let W = (W;)i>0 be i.i.d. centered random variables each having the law of V;, — E,[V},]
under P, and PV denote their joint law. Then, using (A.11) and e.g. the characterization of
drvy in terms of couplings, one obtains for all M, K € N and 1 < ¢ < K the bound

(A.16) drv (L((Vinr = Bu[Vig i), £(W)i%1)) < CKem O,

with £ governing the V.’s on the left-hand side referring to their joint law under P, for any
r € T. Assuming 7; > 2 we have K def. |m/M|] —1 > 1, and by the triangle inequality and a
union bound,

(A.17) P.([Vi — Eu[Viol| > nEu[Vio]) < a1 + a2 + as,
where

K
ap =P$<3pe {0,...,M —1}: ‘Z(‘/Eo+p+iM—Eu[% ])’ >

nmkE, [Vio] )
=1

2M

M-—1
as Px< N Vigsi — Bu[Vio]| > ’7’”4[]>
=0

= E,[V;
a3=Px< Z |V%0+1—Eu[vz‘]’>77m4[0]>-
i=M+KM

Applying (A.16), the strong Markov property at time Ry for ig < k < ip + M, a union bound
and letting t = 57 E,[Viy], a1 is bounded by

K
>t) < MPW(‘ZWi
=1

Under (A.15), it follows from the Bernstein inequality, see for instance |7, Corollary 2.11] for the
version we use here, that for some constant ¢ > 0,

K
(A.18) M sup P, <’ M Viar — Eu[Vi,]
=1

> t) + OMKe M.
xeT

K 2

¢
Al PV (Y wi|>t) <2 - ¢ :
(4.19) <‘HW >> exp{ K94Eu[vio]2+92Eum0]t}’
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here we are implicitly using that the controls on higher moments appearing in the second line of
(A.15) hold with 62 in place of # and E,[-] in place of E,[ -] everywhere. Recalling ¢ and that
K < Jj, one sees that the right-hand side of (A.19) is bounded by exp{—c(@)"QWm}, and together
with (A.18) this yields that

(A.20) a1 < MO L OMKeM,

Next, we bound agy for nm = C(0)M. To this effect, first note that, combining the assumptions
in (A.15) and the strong Markov property, one readily obtains that 671E,[V;,] < E.[V;,] <
0E,[Vi,]. Feeding this into ag, a union bound and the strong Markov property (applied at time
R;) then give that if nm = C(0)M,

enmE,[Vi, ] d(0)nm

where the second inequality is obtained by Bernstein’s inequality similarly as in (A.20) for K = 1.
Similarly, since M + KM > m — M + 1 by definition of K, we have that if nm > C(0)M,

c(8)nm

(A.22) a3 < Me ™M

Choosing M = [y/n?m], noting that nm > C(6)M and m/M > 2 hold if nm > C’(6), which is
no loss of generality, we conclude by combining (A.17), (A.20), (A.21) and (A.22). O

We now have all the tools to give the proof of Lemma 5.5 in the random walk case.

Proof of Lemma 5.5 (Random walk case). One applies Proposition A.7 with the following choices.
Let n = e. Recalling GEWV from (5.19), one takes Z; {z, A {zgg (z), and notes that (; is
X, Rr;,,j-measurable, cf. (5.4)-(5.5). Then with V,,, = Vi, i.e. ip = 1 in (A.14), one has
mV oy, = GEWV(2), see (5.19), and by (A.12), it follows that E,[Vi] = g(2), see (5.20). Moreover
Ew[fl] = j! since &; is an exponential random variable with parameter one, and one readily
deduces that the assumption (A.15) holds for some 6 = 0(6) < o0 by Lemmas A.2 and A.3, see
also (5.15) and (5.16), if 73 = (1 + d)re and 79 = (1 + d)r1. The claim follows. O

The proof of Lemma 5.6 for the random walk involves another application of Proposition A.7.
Verifying the relevant condition (A.15) in that case will rely on the following result.

Lemma A.8. For any 6 > 0 and r < N, abbreviating Q@ = Q(0,7), one has

o (N2
(A.23) 2161’112 E.[Hg|<C N ( " ) ,

- Ny
(A.24) xeT\Ql({)l,fr(lJré)) B[ Ho| > c(0) N (r ) '

Proof. We will often use the classical fact that for all § € (0,1), x € Q(0,r(1 —0)) and r < N,
(A.25) c(6)r* < E,[Tg] < Cr?,

which follows e.g. by observing that E,[Tq] = Ez[Tq0.n] = 2yeqo.n 92400, (& y), where
7 e Q(0,r) c Z% is such that 7(¥) = z, and performing the sum using (A.2) (the upper bound
in (A.2) remains valid without restriction on x and y).
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We now first assume that r > %. In this case (A.24) is immediate since E [Hg| >

Ex[TQ(x gr)] > c¢(6)N? by (A.25) and assumption on r. As to (A.23), writing the expected
2
value in terms of its tail probabilities, one readily obtains for any A > 1 that
(A.26) E.[Hq] < AN*(1+ ) P.[Hg > kAN?]).
k=1

One then argues that for all z € T, with 7 as above and Q = Q(F, ANV/AN),

P.(Hq < AN?) = Py(H 1) < AN?) = Py(Hp1(g) < Tp5) —cA 2 = g

Q
upon choosing A large enough; here the first lower bound follows from (A.25) and a first-moment
estimate and the second one simply by observing that 7=(Q) n @ always contains at least one
translate of Q(0,7) in its bulk, i.e. at distance at most N from Z, and so since r = ¢N it follows
from (A.3) and monotonicity that the hitting probability Py[H-1(q) < T, Q] admits a uniform
lower bound. Feeding the resulting estimate into (A.26) and applying the Markov property yields
that the sum on the right-hand side is bounded by >}, - (1 — co)F < oo, and (A.23) follows.

Assume now that r < %. Consider the set V = 0Q(0, 2—]\6) As we now explain, it is enough
to argue that

N
r

(A.27) c~N2< )d 2<Ey[HQ]<C~N2<g)d Loyev

indeed, once (A.27) is shown, the bound (A.23) immediately follows by applying the strong
Markov property at time Hy, by which E;[Hq] < Ez[Hy] + sup,ey Ey[Hg], using (A.27) to
bound the second term and (A.23) in the case already treated to deduce that sup,.p E,[Hy| <
CN?. To obtain (A.24), one writes instead E,[Hg] > P,(Hg > Hy)infyey E,[Hg]. The
desired lower bound now follows from (A.27) and since by (A.3)

P.(Hp > Hy) > inf P.|Hpw = ] = c(9).
(Ho>Hy)> , dnf ) FrHeon =*] =)

It thus remains to show (A.27), under the assumption r < 1NW' Throughout the rest of this

proof we abbreviate R, = Ry(X,Q(O0, 1—]\6)6 U Q,V¢) and Dy = Di(X,Q(0, 1—]\6)'3 U Q,V°), see
(5.4) whose definition can easily be extended from boxes in Z? to general sets in T, the system
of successive stopping times corresponding to the excursions from Q(0, %)C uQ toV. Let
(A.28) K =min{k > 1: Xp, € Q},

which counts the number of excursions of type X|p, g, ] until the first one that visits Q. For all
y € V one obtains by a reasoning similar to (A.4), using the assumption on r, that P, (Xg, € Q)
is comparable with (%)d_Q, which together with the Markov property, is readily seen to imply
that K stochastically dominates/is stochastically dominated by geometric random variables with
corresponding parameters. In particular, it follows that for all y € V,

(A.29) ¢ (g>d_2 <E/[K]<C: (EYH,

r r

which is all we will use in the sequel. Now, by definition of Ry and Dy, for any y € V, one has
that Py-a.s. Hy = Rk, hence

(A.30) Ey[Hol = E,| Y (Ri—Ri)|
1<k<K
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Owing to the strong Markov property, with Fj, = 0(X. g, ), since {K > k} € Fj_1, one has that

(A31) B[ > (Bi—Re1)] = Y By[(Br— Re )UK > k}]
1<k<K k=1

= Y Ey[Ey[(Ri — Rp—1)|Fe1]1{K >k}
k=1

and for any y e V and k > 1

Ey[(Ry, — Rp-1)|Fr-1] = Ey[Ex, [R1]] < sup Ey [T, + sup E,[Hy] < CN?,
ve we
which follows on account of (A.25) and (A.23) for the choice 7 = £ (already treated). One

also has a corresponding deterministic lower bound of the same order by (A.25), since by the
Markov property, Ry — Ri—1 under Py(Xp, , = ¢/ | Fr—1), ¥ € V, is stochastically dominated

by T QWX using the fact that r < 1](\)[0 Feeding the above deterministic upper/lower bound
on the conditional expectation into (A.31) and using (A.29) to bound the resulting E,[K], one
deduces (A.27) from (A.30). O

With Lemma A.8 at hand, we proceed with the:

Proof of Lemma 5.6 (Random walk case). We aim to apply Proposition A.7 with the choices
10=0,V, = Rl+1 R;, so that V;, = Ry and mV,, = Ry, for any m > 1 in view of (A.14). Now
pick n = 1 — 1= and m = [(1 + £)uM| with

Nd
E,[Vo]’

which equals the value defined by (5.28) on account of (A.12)-(A.13). Note in passing that
(A.32) is very intuitive (more so than its pendant (5.28)): uM with M as in (A.32) is the total
time uN¢ for the walk, divided by the ‘average’ time E,[Vj] consumed by an excursion, whence
M counts the ‘average’ number of excursions. With the above choices,

(A.32) M =

(5.9) _
PO(NRW(BQ7B37U) = (1 + S)UM) < PO(R[(1+5)uM] < UNd) < PO(Vm < (1 - ﬁ)Eu[Vo]),

with By as in (5.23). Similarly, taking m’ = [(1 —e)uM |+ 1 and ' = —1 + ﬁ, one obtains
that if euM > 2

PO (NRw(BQ,Bg,u) < (1 — E)UM) < Po(vm/ = (1 + U/)Ey[‘/()])

Since by monotonicity, we may assume that euM > 2 and € < 1/2, the claim immediately follows
by means of Proposition A.7, provided we show that (A.15) holds, which we proceed to do with
the help of Lemma A.S8.

Recalling the definition of Ry(= V) from (5.4), identifying By with its projection onto T,
one has that Ry > Tz, holds Py-a.s. for any y € T. Thus, applying the strong Markov property
at time Tg,, and combining (A.23) and the exit time estimate E,[Tg,] < Cr3, valid for all z € T
(cf. (A.25)), one sees that

N N4
(A.33) sup B, (Vo] < sup B, [Tp,] + sup E.[Hp,] < c(rg n ﬂ> <o ¥
yeT yeBs3 zeT Ty Ty
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In particular, this implies that Vp € L(P,) for any y € T, as required by (A.15). On the other
hand, combining the Markov property and (A.24), it follows that

Nd
A34 inf > inf E, > () s
(A34) BB 6] > it BelHs] > e(0)

Combining (A.33) and (A.34), the condition in the first line of (A.15) immediately follows, for
all suitably large 6§ > C(0). Regarding higher moments, noting that by the Markov property
Vo — T's, has the same law as Hp, starting from some random point of Bf, and applying the
bound (a + b)* < 2¥(a* + b*) valid for all a,b > 0, yields that for all z € T, and k > 2,

(A.35) E,[VF] < 28(E.[TE,] + s;pr E,[H}]).
YEDL3

Applying a similar argument as e.g. in [27, (2.21)], one obtains that for all z € T,

(A (A.

.25) 34)
(A.36) E,[T5,] < klsupEy[Tg,]" < KIC*r3F < KIC'(6)F in%Ey[VO]k.
ye

yeT

Similarly, using the fact that Vp > Hp, holds Py-a.s. for any y € T, one finds that for all y ¢ B3,

(A.37) E,[HE,] < k!'supE,[Hp,|" < k!'sup E,[Vp]* < kIC(5)* inf E.[Vo]",
xzeT zeT TE€

where the last step follows from the first moment comparison in (A.15) already established.
Feeding (A.36) and (A.37) into (A.35) completes the verification of (A.15), for suitably large
choice of § = 6(d) € (1,00), and with it the proof. O

We now turn to the proofs of Lemmas 5.5 and 5.6 for random interlacements. The starting
point is the following large deviation estimate, similar to Proposition A.7 above, but simpler.
For finite B < Z® let Wx denote the set of infinite nearest-neighbor paths in Z¢ starting in 0B
escaping all finite sets in finite time. Recalling (2.11) with B = Q,(0), r > 1, (X7?);>1 denotes in
the sequel the random walks on Z% corresponding to the restriction of the interlacement process
to Q- (0), which are i.i.d. with law P, , where €, =2, (), and at level u the number N;* = NG, )
of trajectories hitting @, (0) is a Poisson random variable with parameter ucap(Q, ), independent
of (X7)j>1. Similarly as above (A.14), we consider an (A, .A)-valued sequence (Z7);>1, which we
assume to be declared under P/ and independent of ((X7);>1, N*), and study for measurable
F:Wq, x A—[0,0), u>0and r > 1 the averages

N’LL
_ 1 T S
A.38 V= ———> Vi, Vi=F(X7,7%).
(A.38) ucap(@ajzl G Vi=F( )

(with V,, = 0 by convention whenever N = 0).

Proposition A.9. For all r,0 > 1, there exist ¢ = ¢(8),C = C(0) € (0,00) such that, if
(A.39) E'[Vi] < o0 and B! [VF¥] < KIO*E! [Vi]*, for all k > 2,

then for allu >0 and n € (0,1), one has

(A.40) IP’I(|VU —E'W] > n]EI[Vl]) < Cexp{— cn2ucap(Q,«)}.
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Proof. Under (A.15), it follows from Bernstein’s inequality, see for instance [7, Corollary 2.11]
for the version we use here, that for all 6 € (0,1) and integers m > 1 (see around (A.19) for a
similar argument)

(A.41) IP’I(‘% i Vi — IEI[Vl]‘ > 515:1[1/1]) < 2exp { — ¢(0)8%m},
j=1

Using a Chernoff bound for Poisson random variables, see for instance [7, p.21-23| combined with
the inequality (1 +¢)log(l+¢) —e = &2/4 for all € € (—1,1), one has for all u > 0 and ¢ € (0,1)

PY(|N;* — ucap(Qy)| > eucap(Qy)) < exp { — cc®ucap(Qr)}.

Combining this with (A.41), applied with (e,0,m) chosen either as (1/2,7/(2 + n), |u(1 +
n/2)cap(Qr)|) or (n/2,n/(2 —n),[u(l —n/2)cap(Q.)]), and assuming that nucap(Q,) = 2 and
n < 1/4 which is no loss of generality, (A.40) readily follows by means of a suitable union
bound. 0

Remark A.10. Similarly as in Remark A.6 one can derive an exact formula for a key quantity
associated to random interlacements. First, defining T' = T'(X, By, Bs) as in (5.10), by [8,
eq. (6.9)-(6.11)] we have

d B3 ()
A .42 Ee 1{Xp, _a] = B e B,
(A.42) BQ[ZZE) {XR,(x.B,.B3) m}] cap(Ba) or all x € By

Note that compared to [8] we started the sum at i = 0 instead of ¢ = 1, which is due to the fact
that we started the definition of R; from Ry = 0, see (5.4), while in the paragraph above (4.8)
in [8] it starts from Ry = 0. In particular in view of (A.12), the left-hand side of (A.42) is crucially
proportional (up to projection on the torus) to the invariant distribution of the stopping times R;
for the random walk on the torus. Note that we only use these exact formulas to prove that the
means in Lemmas 5.5 and 5.6 are the same for random interlacements and the random walk, and
thus that the process w® is an interlacement process in (5.1) under f’o. In particular, if one is
only interested in the proof of all our results for random interlacements, these formulas are never
required.

Similarly as for the random walk, we are now ready to prove Lemmas 5.5 and 5.6 for random
interlacements (starting with the latter), using Proposition A.9 instead of Proposition A.7.

Proof of Lemma 5.6 (Random interlacements case). For r = ry take V; = T7 + 1 in (A.38),
see (5.10), where 77 = T7(By, B3) is defined as in (5.12) but for the walk X/ now starting in Bo,
and n = . With these choices V,, = (ucap(Q,)) *Ngi(w, B2, B3,u). Note that we consider
here T7 + 1 instead of TV since the walks X7 in (5.12) were started outside of Bs, and thus
the times R;, see (5.4), are shifted by 1 compared to the corresponding walk started in Bs. It
moreover follows from (A.3) and monotonicity that the random variable 7! is dominated by a
geometric random variable of parameter p for some p = p(d) > 0, which readily implies that
condition (A.39) is verified for some 8 = (). Moreover by the lower bound in (A.3), we have
capp,(B2) < C(d)cap(Bs). Since E/[V;] = Eep, [T(X, B2, B3)] + 1 the claim follows by an
application of (A.40) and summing (A.42) over x € Bs. O

Proof of Lemma 5.5 (Random interlacements case). Take r = r5 and denote again by T7 =
T(X7, By, B3) the total number of excursions that the walk X7 performs across the annulus
B3\By, see (5.10), and let ((;(X7, B2, B3))i=0 be the clothesline process associated to X7, see
(5.5) (whose definition can clearly be extended to the case i = 0), where (X7);>1 is now the set
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of walks in the interlacements process wp, that hit B, started after first hitting By. Let ég refers
to Ek as appearing in (5.22) for the unique choice of k such that k = ¢ + Zlgnq (T™ 4+ 1), which
is an independent and i.i.d. sequence of exponential random variables with mean 1. Define for
some fixed z € X N
Vi= >0 &€9cx5,8,8(2)-
0<i<TI

As in the random walk case, by assumption on the r;’s and Lemmas A.2 and A.3, one has that
gc(2) < C(6)ger(2) for all ¢, € 0By x dB§ and z € 3. One can then deduce that assumption
(A.39) holds similarly as in the proof of Lemma 5.6 for random interlacements, for suitable
choice of # = 6(5) € (1, 00). Moreover, it follows from (5.5), (5.20), (A.42) and a small calculation
involving the Markov property that

cap, (B)
cap(Ba)

Finally, for all u; < ug we have by the definitions of Mgy in (5.12) and GR® in (5.22) (note that
similarly as before the clotheslines in these definition are shifted by 1 since the walk therein is
started outside of Bs instead of inside Bj)

E'[V1] = 3(2)

_ GRI _
Nri(w, B2, B3,u1) < m < Nri(w, Ba, Bg,u2) = w1V, < Cnl2) < U2V,
cap(Bz)
Taking u; = m/(M(1 + ¢/3)) and ug = m/(M(1 — ¢/3)) we conclude by combining (A.40) for
u = uy,us and 1 = ¢/3, with the concentration of Ny supplied by Lemma 5.6, for u = uy, uso
and ¢/3 in place of €, as well as the inequality capp, (B2) < Ccap(Ba). O

Remark A.11 (Extensions). As with all results of Section 5, both Lemmas 5.5 and 5.6 involve
square boxes. In particular, this means for instance that within the setup of Theorem 5.1 or
Corollary 5.2, no #2-smoothing of boxes as used e.g. in [8] is necessary. This degree of flex-
ibility is relevant for applications to more general classes of graphs (for which a meaningful
notion of smoothing is often not even clear) under suitable hypotheses (e.g. polynomial volume
growth, polynomial decay of the Green function and the validity of an elliptic Harnack inequality,
cf. §A.1), to which the above arguments can likely be extended.

B Appendix: admissible sets

As explained below Theorem 1.3, an important question is to determine which sets are admissible,

i.e. belong to At in (1.24), for these are precisely the ‘patterns’ that can be seen as part of £ for

some o > % We classify these sets in Theorem B.1 below. Once this is established, one readily

deduces Corollary 1.4 from Theorem 1.3; the short proof appears at the end of this appendix.
Let

(B.1) Age = {K c Z': K # @, cap(K) < 3}

so that, in view of (1.19), (1.24), (2.10) and our definition of the capacity for subsets of T, see

below (2.3), the family A corresponds precisely to projections onto T of sets belonging to Aya
when N > C.

Theorem B.1 (Admissible sets).

}, foralld =4, and
or |K| =3 and K is connected}.

NN
[N
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The following lemma will be used to reduce to the cases d € {3,4} when proving Theorem B.1.
In the sequel we add subscripts Z? to various quantities such as cap(-) or g(-) to highlight their
dependence on the underlying graph.

Lemma B.2. For all d > 3 and finite K = 72, the function
capy (K x {0} )

de{dd+1,...} — capya ({0})

18 non-decreasing.

Proof. To stress its dependence on dimension, we write Pde for the canonical law of simple
random walk on Z? starting from z € Z% For all z,y € K writing 2/ = (x,0,...,0) and
y = (y,0,...,0) € Z one has

974 (2, y) 74 zd zd 9z (@' 1))

== =P (H, <o) =P; (H g <) = Po (H g < 0) = FH— L

924(0,0) = (Hy ) o Hiypeza ) o Hiypcgoper— ) 974(0,0)
The claim follows using a well-known variational characterisation of the capacity, see |31, (1.61)],
whose proof easily extend to infinite transient graphs. O

Our next result will be used as a further reduction step, by which fully determining A4 in
(1.24) will effectively boil down to computing the capacities of a small number (at most ten) of
sets. To simplify notation we will from now for each d’ < d identify Z% with Z¢ x {O}d_d/ c z°.
Recall the sets K1 = {(0,0),(0,1),(0,2)} and Ky = {(0,0),(0,1),(1,0)} from (1.25), viewed
as subsets of Z2 x {0}972 for d > 3 according to our convention, and which correspond to all
connected sets with cardinality three. Further, let

A, ={(0,0,0),(0,2,0),(0,1,1)}, A2 = {(0,0,0),(0,2,0),(0,3,0)},
As = {(0,0,0),(1,1,0),(0,3,0)}, A4 = {(0,0,0),(0,2,0),(1,2,0)},
As = {(0,0,0),(1,1,0),(1,2,0)}, As = {(0,0,0),(0,2,0),(1,1,1)},
A7 ={(0,0,0),(1,1,0),(1,1,1)}, As = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)}.

(B.2)

The following result mirrors Theorem B.1. Its first part (B.3) will be enough to treat the cases
d = 4; the more refined (B.4) will be used to deal with the case d = 3. In what follows, K and
K’ are called isomorphic if K can be obtained from K’ by lattice symmetries.

Proposition B.3 (d > 3, K < Z%, |K| = 3).

. inf 2 p )

where inf i refers to a restricted infimum over sets K not isomorphic to K1 or K.

Proof. We start by making the following observation, which will be used extensively throughout
the proof. Using again the variational characterization [31, (1.61)] of cap(-), one sees that,

if K,K' ¢ Z% are such that there exists a bijection ¢ : K — K’ with g(z,y) <

(B-5) g(p(z), p(y)) for all z,y € K, then cap(K) > cap(K’).

We proceed to show (B.3). By monotonicity of K — cap(K), it is sufficient to prove the claim
for a set K with |K| = 3. Write K = {x,y, 2} and without loss of generality suppose that
|z — z|1 = 2. Then by Lemma 2.1 and translational and rotational invariance we have

g9(x,z) < sup ¢(0,v) = (9((0,0),(0,2)) v ¢((0,0), (1,1)).

vilv|1=2
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Similarly,

(g(m, y) 4 g(ya Z)) < \Sl|lp 19(071}) = g((oa 0)7 (07 1)) = g((07 1)? (O’ 2)) = g((ov 1)7 (13 1))
v:lvj1=
So if ¢((0,0), (0,2)) = g((0, ,1)), then (B.5) applies with K’ = {(0,0),(0,1),(0,2)} = K,
o(z) = (0,0), v(y) = (0, ) and go( ) = (0,2) and yields that cap(K) > cap(Ki). If instead
9((0,0),(0,2)) < ¢((0,0),(1,1)), then (B.5) applies similarly with K’ = {(0,0), (0,1),(1,1)} =
K> to give cap(K) = cap(K2). Overall, (B.3) follows.

We now show (B.4), and first assume to this effect that |[K| = 3 and K is not isomorphic
to K7 or Ky. Writing K = {x,y, z}, one notices since K is not isomorphic to K; or K, then
unless K is isomorphic to Aj, in which case cap(K) is evidently bounded from below by the
right-hand side of (B.4), the set K must contain two points at ¢!-distance at least three, say
x and z. Without loss of generality suppose that |x — y|; = 2 (otherwise |y — z|; = 2 by the
triangle inequality). Then by Lemma 2.1,

g(x,2) < sup ¢(0,v),  g(z,y) < sup g(0,v),  g(y,2) < sup g(0,v).
vilv[1=3 vilv]1=2 vilv[1=1

We then consider three different cases depending on which v € {(0,3,0), (1,2,0), (1,1, 1)} achieves
SUD,: ||, =3 g(0,v). Then for each possible v we consider two different cases depending on which
v' € {(0,2,0),(1,1,0)} achieves sup,.,,|,—2 g(0,v"). Note also that sup,.j,»|,—1 g(0,v") must be
achieved at ¢((0,0,0),(0,0,1)) by symmetry. If for instance the previous suprema are achieved
at v = (0,3,0) and v = (0,2,0), (B.5) implies cap(K) > cap(As3). Considering all five other
possible cases gives us that if K is not isomorphic to K7 or Ko, then

> 1 ;
cap(K) > min cap(4y),

which completes the proof in the case |K| = 3. Suppose next that |K| > 4. It suffices to
prove that assuming cap(K) < min;<7 cap(A4;), then cap(K) = cap(Ag). The assumption that
cap(K) < min;<7cap(4;) implies that all K/ € K with |K’| = 3 must satisfy cap(K’) <
min;<7 cap(4;). From the proof above for |K| = 3 we can now deduce that any such K’ must
be isomorphic to either Ky or K5. By an elementary geometric argument, it then follows that
the only possible shape for K for which this is possible is K = Ag modulo isomoprhisms. Hence
cap(K) = cap(As), which finishes the proof. O

Combining Lemma B.2 and Proposition B.3 with the next result, we will soon see that in
order to identify the set Aa for all d > 3, it will be enough to compute the Green’s function g(0)
and the capacities of the sets K; and Ks from (1.25) in dimensions three and four, as well as
the capacities of the sets A;, i € {1,...,8} from (B.2) in dimension three. The following lemma
gathers these numerical computations, and, in doing so, also isolates the parts of the argument
which rely on computer-assisted methods. Note that we express our numerical results with an
absolute error of 1073 as this might be useful in the future, but we will actually only need a
precision 1073,

Lemma B.4. With an absolute error of at most 10739, one has when d = 3

973(0) = 1.516386059151978018156012159681
capgs (K1) v capgs (Ka) = 1.271113197748638670916474203095
121218 capys(A;) = 1.335471948363948449723770501931

RS

and when d = 4

974(0) = 1.239467121848481712678697664859
capy (K1) A capge(K2) = 1.849398784221098051683201012328.
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Before explaining how the values in Lemma B.4 are obtained, let us conclude the proof of
Theorem B.1.

Proof of Theorem B.1. We first observe that the inclusion
(B.6) Aza o {K cZ%:0<|K| <2}

holds true for all d > 3 on account of (2.6). We now proceed in increasing order of difficulty,
and start with the case d = 4. By Lemma B.4 we have that capya (K1) A capga(Ka) > 1.84 >
1.62 > 2/g74(0). Using (B.3), we deduce that there are no sets K € Aza with |K| > 3. It follows
that the inclusion in (B.6) is in fact an equality.

Next when d > 5, one deduces from Lemma B.2 and the previous case that gz (0)(capga (K1) A
capya(K2)) = gz4(0)(capga (K1) A capya(K2)) > 2. Using (B.3), we can conclude similarly as
before.

Finally, assume that d = 3. Then by Lemma B.4 one has

2
and min capys(4;) > 1.33>1.32 >

K K) <1.28 <1.31 < 73(0)
capgs (K1) v capgs(Ks) 8§ <1.3 g73(0) 1<i<8 923(0)

Using (B.4), we deduce that the only sets K € Azs with |K| > 3 are isomorphic to K; and K.
Together with (B.6), the claim follows. O

We now explain in detail how Lemma B.4 is obtained. The first step in our algorithm consists
in computing the Green’s function g(x,y) for any z,y belonging to the sets for which we want
to compute the capacity, which will be enough in view of (B.10) below. We follow the strategy
developed in [18, Appendix B|. Let us provide some details for the reader’s convenience. The
main idea is to use the formula

Q0
(B.7) g(x) = J F,(u)du, where F(u) = de* H exp(—e“)I, (") for all x € 74,

—00

and I (t) denotes the modified Bessel function of the first kind with parameter &k at time ¢. The
formula (B.7) is a simple consequence of [23, (2.10)] and the substitution u — de*. In [18] the
integral in (B.7) is approximated by a finite sum in five steps, which we now summarize.

1) Replace the integral in (B.7) by the Riemann sum hY,~___ F,(mh) for some small h > 0
to be chosen later. We denote the absolute error made in this step by Errorl(h, d), which
corresponds to [18, (B.64)| for the choice s = arctan(27/h).

2) Remove hzm_j‘{ 2-01 F,(mh) in the previous Riemann sum, for some large M to be chosen
later. We denote the absolute error made in this step by Error2(h,d, M), cf. [18, (B.68)].
Note in particular that Errorl and Error2 are uniform in z € Z¢.

3) Replace h Y, _ ;.1 Fyx(mh) in the previous Riemann sum by

d hexp(— (M+1)(771)h)
(27r)g 1—exp(—(4—-1)h)

We denote the absolute error made in this step for any |z|, < N by Error3(h,d, M, N),
which corresponds to [18, (B.72)]. Note that in [18, (B.72)| it is assumed that N < 54 and
Mh > 45, as will be the case for us in (B.9).
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4) For some large T' > 0 and J € N with T' < J/2 to be chosen later, replace the occurrence
of e 'Ii(t) (part of F,) in the remaining finite sum by T'(t, k, J) for each t < T', where

L \F S (12/4)
T(t,k,J) = e t<2> ;}M

The relative error made in this step is Error4(7T, J), which is uniform in k; it corresponds
to [18, (B.40)].

5) For some J € N to be chosen later, replace e tI;(t) by A(t, k, J) for cach t > T and k < N
where

J P j
Alt, k, Z = where (k, j) H (4k? — (20 — 1)?).
=0 i=1

We denote the relative error made in this step by Error5(7, J , N), which corresponds to
[18, (B.7) and (B.46)-(B.47)|.

Combining all these steps one can approximate gzqa(x) by
§(x,d, h, M, T, J, J) < Z dheh™ H ( (€™ |zg], I gmiey + A(e™, |xk|,,7)nemh>T)
m=—M k=1

d hexp(—(M+1)(¢-1)h)
(277)% 1—exp ( — (5 — 1)h)

The function § consists of finite sums and products of usual functions, and can thus be ap-
proximated using a computer with high precision. Such computations were performed in high
dimensions in [17, Section 5| using a Mathematica notebook called “SRW.nb” available at [16].
We modified this notebook to include as well the computation of the capacity, and a version
called “Cap.nb” is available at [26]. One still needs to choose the parameters h, M, T, J and J.
Since gz4(0) < 2, we have for all z € Z? with |z]|, < N

lg(z) — §(x,d, h, M, T, J,J)| <Errorl(h,d) + Error2(h,d, M) + Error3(h,d, M, N)

B.8 :
(B.8) + 2((1 + Errord(T, J) v Error5(T, J, N))d _ 1)'

One can find the exact formulas for these errors in the file “Errors.nb”, also available at [26],
where they are also computed. To make these errors small, one typically needs to choose h

small, and hM, T, J/T and J large. Choosing

(B.9) N =3, de{3,4}, h= %, M =630, T =280, J=139andJ=30
we obtain that the total error in (B.8) is at most 10732, We then compute the values of § for
these parameters and any x appearing in the sets from Lemma B.4, which are stored in the file
“SRWlntegralsData.nb”.

Let us now briefly explain how the capacities can be deduced from these Green’s functions.
For each K < Z¢, denoting by Gk the matrix (9(z,9))zyek, by ex the vector (ex(z))zex and
by 1 the vector of size |K| with all coordinates equal to one, we have by (2.4)

(B.10) Grex = 1.
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Once Gk is known, one can thus use Mathematica again to solve the linear system (B.10), which
yields the equilibrium measure and the capacity after summation. Note that we do not know
the values of G, but only their approximate values G with G (z,y) — Gr(x,y)] < 10732 for
each x,y € K. Denoting by €x the computed solution of GKeK = 1, we have ex () — €x(z) =
G;{l(CNJK — Gg)ék(x). Using (1.38) and Proposition 1.11 in [31], one can moreover easily show
that >, cr |G (z,y)| < 2|K], and for our choices of K one easily deduces that the values we
obtain for the capacity have an error of at most 5- 1073, This solution to the system (B.10)
is also implemented in our Mathematica notebook “Cap.nb”, and the results are stored in the
file “SRWCapacityData.nb”. Running this program, which should take under fifteen minutes on
modern computers, finishes the proof of Lemma B.4.

Remark B.5. In order to check the consistency of our results, let us also mention that the value
of g73(0) can alternatively also be computed using the formula from [23, (2.11)]. This formula
corresponds to three times the integral I3 from [33|, whose approximate value can for instance
found at http://oeis.org/A091672. The difference between the value obtained by this method
and the value obtained by our Mathematica notebook is 2.8 - 10733, which is consistent with our
error of 10732, Note that this error seems to mainly come from the term Error2 in (B.8).

We conclude this appendix with the short

Proof of Corollary 1.4. Let 7 > 0 be small enough so that % + 1 < (K1) A ax(K2) when
d=3and 1 +n < a, when d = 4 (with o, as in (1.10)). Now fix any two-point set K such that
F<au(K) < 1%7 and that there exists D < oo verifying for any =,y € T that a.(K) < ax({z,y})
if and only if |z —y|1 < D. Such a set can always be found since a. ({z,y}) \, % as |z —y|l1 — o,
and since (z,y) — ax({z,y}) is decreasing in |x — y|; by (2.1) and (2.6).

Consider now first the case d = 3. Applying Theorem 1.3 (specifically, the first line of (1.22))
to this choice of K and with a = § + 1(> a.(K)) yields a coupling Q with the property (1.28)
upon identifying D* with Bj. In view of (1.20), (1.24), the condition on 1 and by Theorem B.1,
the patterns sampled independently as part of D¢ for o > HT” are precisely of the form 7)-7i7)
in Corollary 1.4.

Let now D% be obtained from D% by removing all sets A included in (1.20) corresponding to
images of K; by torus isomorphisms for any i € {1,2}. By Lemma 6.4 applied with K = K; one

knows that limpy Q(DKZ.(E%“’) > N¢) = 1 for some ¢(n) > 0. On the other hand, by a similar

14+n

calculation as below (7.15) one sees that limy Q(Dg,(D_? ) = N°M) = 0. It follows that the
limit in (1.28) vanishes if one replaces D" by D-.

Finally, if d > 4, the above coupling Q satisfies (1.28) but does not include patterns of
type iii) on account of Theorem B.1. However, including images A by torus isomorphisms of
K; for i = 1,2 independently with probability p®(A) for a > % makes no difference. Indeed by
Markov’s inequality, the probability to sample such A in Q N is bounded by CNYP(K; < L%) — 0

as N — o0 on account of (6.6) since - (K > 1fora> 5 L when d > O
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