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Abstract

We introduce a natural measure on bi-infinite random walk trajectories evolving in a
time-dependent environment driven by the Langevin dynamics associated to a gradient
Gibbs measure with convex potential. We derive an identity relating the occupation
times of the Poissonian cloud induced by this measure to the square of the correspond-
ing gradient field, which – generically – is not Gaussian. In the quadratic case, we
recover a well-known generalization of the second Ray-Knight theorem. We further
determine the scaling limits of the various objects involved in dimension 3, which are
seen to exhibit homogenization. In particular, we prove that the renormalized square of
the gradient field converges under appropriate rescaling to the Wick-ordered square of
a Gaussian free field on R3 with suitable diffusion matrix, thus extending a celebrated
result of Naddaf and Spencer regarding the scaling limit of the field itself.
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1 Introduction

Random-walk representations and isomorphism theorems have a long history in mathematical
physics and probability theory, going back at least to works of Symanzik [62], Ray [54] and
Knight [39], among others; we refer to the monographs [31, 48, 43, 65] and references therein
for a more exhaustive overview. Recent developments, not captured by these references, include
signed versions of some of these identities and their characterization through cluster capacity
observables, see [44, 46, 67, 27], continuous extensions in dimension two [7, 3], applications to
percolation problems in higher dimensions [44, 26], to cover times, see e.g. [23, 24, 35, 1], and
generalizations to different target spaces [8, 9, 36, 45], with ensuing relevance e.g. to the study
of reinforced processes.

In the present article, we investigate similar questions for a broader class of (generically)
non-Gaussian scalar gradient models introduced by Brascamp, Lebowitz and Lieb in [16], which
have received considerable attention, see [17, 52, 32] and further references below. In a sense,
our findings assess the “stability” of such identities under gradient perturbations.

We now explain our main results, which appear in Theorems 4.3 and 5.1 below. We consider
the lattice Zd, for d ě 3, and for ϕ : Zd Ñ R the (formal) Hamiltonian

(1.1) Hpϕq
def.
“

1

2

ÿ

|x´y|“1

Upϕx ´ ϕyq,

where the sums ranges over x, y P Zd and | ¨ | denotes the Euclidean norm. We will assume for
simplicity (but see Remark 7.6,3) below with regards to relaxing the assumptions on U) that

U is even, U P C2,αpRq, for some α ą 0 and c1 ď U2 ď c2,(1.2)

for some c1, c2 P p0,8q. We then consider, for finite Λ Ă Zd and ξ P E where E “ RZd ,
endowed with the corresponding product σ-algebra F and corresponding canonical coordinate
maps ϕx : E Ñ R for x P Zd, the probability measure on pE,Fq defined as

µξΛpdϕq “ pZ
ξ
Λq
´1 expt´HΛpϕqu

ź

xPΛ

dϕx
ź

xPZdzΛ

δξxpϕxq,(1.3)

where HΛ is obtained from H by restricting the summation in (1.1) to (neighboring) vertices x, y
such that tx, yuXΛ ‰ H; the condition (1.2) guarantees in particular that (1.3) is well-defined.

Associated to this setup is the Gibbs measure µ on pE,Fq defined as the weak limit

(1.4) µ
def.
“ lim

εÓ0
lim
NÑ8

µper
ΛN ,ε

,

where µper
ΛN ,ε

refers to the analogue of the finite-volume measure in (1.3) with ΛN “ pZ{2NZqd
(periodic boundary conditions) and with HΛpϕq replaced by the massive Hamiltonian HΛpϕq `
ε
2

ř

xPΛ ϕ
2
x, ε ą 0; combining the Brascamp-Lieb inequality and the bounds of [20], one classically

knows that the measures µper
ΛN ,ε

are uniformly tight in N and ε and that the limits in (1.4) are

monotone (and thus exist). The Gibbs property of µ is the fact that, for any finite set Λ Ă Zd,
with FΛ “ σpϕx : x P ZdzΛq,

µp ¨ |FZdzΛqpξq “ µξΛp¨q, µpdξq-a.s.(1.5)

The measure µ will be the main object of interest in this article. We use Eµr¨s to denote
expectation with respect to µ in the sequel. By construction, µ is translation-invariant, ergodic
with respect to the canonical lattice shifts τx : E Ñ E, x P Zd, and Eµrϕxs “ 0 for all x P Zd.



As will turn out, our scaling limit results require probing squares of the canonical field ϕ un-
der µ in an unbounded sequence of finite subsets of Zd, thus leading to generating functionals that
involve tilting the measure µ by both linear and quadratic functionals of the field, parametrized
by h and a (typically) signed potential V , with corresponding Hamiltonian (cf. (1.1))

(1.6) Hh,V pϕq
def.
“ Hpϕq ´

ÿ

x

hpxqϕx ´
1

2

ÿ

x

V pxqϕ2
x

(the minus signs are a matter of convenience), where

h, V : Zd Ñ R have finite support and }V`}8 ¨ diampsupppV`qq
2 ă λ0(1.7)

with λ0 “ cpd, c1q P p0,8q, where V` “ maxtV, 0u is the positive part of V , supppV q “ tx P
Zd : V pxq ‰ 0u and diam refers to the `8-diameter of a set; see Remark 2.4,2) below regarding
the choice of λ0. Under (1.7), we introduce the probability measure µh,V on pE,Fq defined by

(1.8)
dµh,V
dµ

“ Z´1
h,V exp

!

ÿ

x

hpxqϕx `
1

2

ÿ

x

V pxqϕ2
x

)

(note in particular that µ “ µ0,0); we refer to Lemma 2.3 and Remark 2.4 for matters relating
to the tilt in (1.8) under condition (1.7), which, along with (1.2), we always assume to be in
force from here on. The measure µh,V is a Gibbs measure for the specification pU, h, V q. In case
h “ 0, µ0,V is invariant under ϕ ÞÑ ´ϕ and has zero mean. Moreover, if Upηq “ 1

2η
2, then µh,V

is the Gaussian free field on Zd (with ‘mass’ V when V ď 0 and non-zero mean unless h ” 0).
We now introduce certain dynamics corresponding to the above setup, which will play a

central role in this article. One naturally associates to µh,V in (1.8) a diffusion tϕt : t ě 0u on
E attached to the Dirichlet form

(1.9) E1pf, fq “

ż

E
}∇f}2dµh,V “

ż

E
fp´L1qfdµh,V ,

with maximal domain in L2pµh,V q, where L1 is the generator

(1.10) L1fpϕq ” Lh,V1 fpϕq “ eH
h,V pϕq

ÿ

x

B

Bϕx

„

e´H
h,V pϕq Bf

Bϕx



.

The assumptions (1.2),(1.7) ensure that the construction of tϕt : t ě 0u falls within the realm
of standard theory; indeed tϕt : t ě 0u is obtained as a solution to the system of SDE’s

(1.11) dϕtpxq “
!

´
ÿ

y: |y´x|“1

U 1pϕtpxq ´ ϕtpyqq ` V pxqϕtpxq ` hpxq
)

dt`
?

2dWtpxq, x P Zd

with appropriate initial conditions in tϕ P E :
ř

x |ϕx|
2e´λ|x| ă 8 for some λ ą 0u, where

pWtpxqqxPZd is a family of independent standard Brownian motions. The relevant drift terms in
(1.11) are globally Lipschitz and guarantee the existence of a unique solution for the associated
martingale problem [59].

For a fixed realization of ϕ P E, we then consider the symmetric weights apϕq “ tapx, y;ϕq :
x, y P Zdu given by

(1.12) apx, y;ϕq “ apy, x;ϕq “ U2pϕx ´ ϕyq1t|x´y|“1u

and define the (quenched) Dirichlet form associated to the weights apϕq as

(1.13) Eapϕq2 pf, fq “
1

2

ÿ

x,y

apx, y;ϕqpfpxq ´ fpyqq2 “
ÿ

x

fpxqp´Lapϕqqfpxq
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for suitable f P `2pZdq, and

(1.14) L
apϕq
2 fpxq “

ÿ

y

apx, y;ϕqpfpyq ´ fpxqq, for x P Zd.

The assumptions (1.7) ensure that the weights (1.12) are uniformly elliptic and the construction
of the corresponding Markov chain on Zd standard. We will be interested in the evolution of
the process Xt “ pXt, ϕtq on Zd ˆ E generated by

(1.15) Lfpx, ϕq ” Lh,V fpx, ϕq “ Lh,V1 fpx, ¨qpϕq ` L
apϕq
2 fp¨, ϕqpxq,

for suitable f , and the corresponding Dirichlet form with domain DpEq in L2pρh,V q, where
ρh,V “ κˆ µh,V , with κ counting measure on Zd, given by

Epf, fq “
ż

fp´Lqfdρh,V

“
ÿ

x

E1pfpx, ¨q, fpx, ¨qq `

ż

E
Eapϕq2 pfp¨, ϕq, fp¨, ϕqqµh,V pdϕq.

(1.16)

Note in particular that L is symmetric with respect to ρh,V , that is, for suitable f and g,

(1.17)

ż

fpLgq dρh,V “

ż

pLfqg dρh,V .

In line with above notation, we abbreviate ρ “ ρ0,0, whence ρ “ κˆ µ. We write Ppx,ϕq for the

canonical law of X ¨ started at px, ϕq, a probability measure on the space W
`

of right-continous
trajectories on Zd ˆ E whose projection on Zd escapes all finite sets in finite time. We use θt,
t ě 0, to denote the corresponding time-shift operators. It will often be convenient to write, for
f “ fpX ¨q bounded and supported on tX0 P Au, for some finite A ĂĂ Zd,

(1.18) Eρh,V rf s “
ÿ

x

ż

E
µh,V pdϕqEpx,ϕqrf s

ˆ

“

ż

ρh,V pdx, dϕqEpx,ϕqrf s

˙

.

The process X ¨ is deeply linked to µh,V . Indeed, adapting the arguments of [21, 33], one knows
that for all functions F,G : E Ñ R satisfying a suitable growth condition at infinity, comprising
in particular any polynomial in the field (which will be sufficient for our purposes),

(1.19) covµh,V pF,Gq “

ż 8

0
Eρh,V

”

BF pX0qe
şt
0 V pXsqdsBGpXtq

ı

dt

“
ÿ

x

Eµh,V
“

BF px, ϕqp´pL` V q´1BGqpx, ϕq
‰

,

where BF px, ϕq “ BF pϕq{Bϕx, for x P Zd and, with a slight abuse of notation, we regard V as
the multplication operator V fpx, ϕq “ V pxqfpx, ϕq, for f : Zd ˆ E Ñ R ; see for instance [21],
Prop. 2.2 and Remark 2.3 for a proof of (1.19). This formula links covariances associated to the
(in general non-Gaussian) random field, ϕ, to a certain Markov process, X. It is thus natural
to ask if one has identities resembling the classical isomorphism theorems in the Gaussian case.

Our first result is that this is indeed the case: we derive one such identity in Theorem 4.3
below, which can be regarded as a generalization of the second Ray-Knight theorem. Namely,
for a suitable measure PVu which we will introduce momentarily, we prove in Theorem 4.3 that
for all u ą 0 and V : Zd Ñ R as in (1.7), with µ as in (1.4),

EVu
„
ż

µpdϕq exp

"

A

V, L¨ `
1

2
ϕ2
¨

E

`2pZdq

*

“

ż

µpdϕq exp

#

B

V,
1

2
pϕ¨ `

?
2uq2

F

`2pZdq

+

.

(1.20)
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The key here is the measure PVu governing the field L¨, which we now describe in some detail.
In a nutshell, PVu is a Poisson process of trajectories on Zd ˆ E modulo time-shift, whose total
number is controlled by the scalar parameter u ą 0: the larger u is, the more trajectories enter
the picture. The intensity measure νVu of this process, constructed in Theorem 3.5 below (cf. also
(4.10)), is roughly speaking the unique natural measure on such trajectories whose forward part
evolve like the process X generated by L as given by (1.15), with a slight twist. Namely, L is not
simply the generator for the Langevin dynamics associated to µ “ µ0,0. Instead, the potential V
in (1.20) manifests itself as a drift term in the system of SDE’s governing the Langevin dynamics
in (1.10), As it turns out, these dynamics are solutions to the SDE’s (1.11) where V corresponds
exactly to the test function in (1.20) and h is appropriately chosen; see the discussion leading
up to (4.2) and (4.10) in Section 4 for precise definitions.

The field L¨ is then simply the cumulated occupation time of the spatial parts of all trajec-
tories in the soup. In case U in (1.6) is quadratic, the components of X decouple, the projection
of the process PVu onto the first coordinate has the law of random interlacements and (1.20)
specializes to the isomorphism theorem of [64]; see Remarks 3.6 and 4.2 below for details. In
particular, the construction of the measure PVu described above entails the interlacement process
introduced in [63] as a special case.

The derivation in Theorem 3.5 of the intensity measure lurking behind L¨ in (1.20) involves
a patching of several local ‘charts’ (much like the DLR-condition, see Remark 3.4) and relies on
elements of potential theory associated to the process X, see Section 3. The two crucial inputs
to do the patching are i) a suitable probabilistic representation of the equilibrium measure for
space-like cylinders, and ii) reversibility of X with respect to ρ, which together give rise to a
desirable sweeping identity, see Proposition 3.2. Once Theorem 3.5 is shown, the proof of (1.20)
in Theorem 4.3 is essentially obtained as consequence of a suitable Feynman-Kac formula for a
killed version of the (big) process X (rather than just X).

We refer to Remark 5.2 below for further comments around isomorphism theorems in the
present context of (1.1). We will return to applications of (1.20) and other similar formulas,
e.g. with regards to existence of mass gaps, elsewhere [22]. The utility of identities like (1.20)
for problems in statistical mechanics cannot be over-emphasized, where it can for instance be
used as a powerful dictionary between the worlds of percolation and random walks in transient
setups, see e.g. [55] for early works in this direction, and more recently [44, 67, 25, 68, 27, 26]
see also [56, 5] for percolation and first-passage percolation in the context of ∇ϕ-models, and
refs. at the beginning of this introduction for a host of other applications.

A version of our first result, Theorem 4.3, can also be proved on a finite graph with suitable
(wired) boundary conditions, see Remark 5.2,1) below. In case U in (1.6) is quadratic, (1.20) was
proved in [30], and later extended to infinite volume in [64] in transient dimensions; see also [57]
for a pinned version in dimension 2 and [53] for a signed version and [58] for an “inversion”; see
also [8, 9, 49, 18] for related findings in the context of certain hyperbolic target geometries.

Similar in spirit to works of Le Jan [42] and Sznitman [66] in the Gaussian case, we then
investigate the existence of possible scaling limits for the various objects attached to (1.20). Our
starting point is the celebrated result of Naddaf-Spencer [52] regarding the scaling limit of ϕ itself
to a continuous free field Ψ, see (5.5)-(5.6) and (5.13) below (see also Remark 5.2,2) for related
findings among a vast body of work on this topic), whose covariance function is the Green’s
function of a Brownian motion with homogenized diffusion matrix Σ, obtained as the scaling
limit of the first coordinate of X under diffusive scaling, cf. (5.4). Given this homogenization
phenomenon for ϕ, (1.20) may plausibly lie in the ‘domain of attraction’ of a limiting Gaussian
identity involving Ψ.

Among other things, our second main result addresses this question. Indeed, we prove in
Theorem 5.1 below that, as a random distribution on R3, cf. Section 5 for exact definitions, and
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with ϕN pzq “ N1{2ϕtNzu, z P R3,

(1.21) pϕN , : ϕ2
N : q under µ converges in law to pΨ, : Ψ2 : q as N Ñ8,

(see Theorem 5.1 below for the precise statement), where : ϕ2
N : p¨q

def.
“ ϕ2

N p¨q ´ Eµrϕ
2
N p¨qs and

: Ψ2 : stands for the Wick-ordered square of Ψ, see (5.7). Thus, our theorem can be understood
as an extension of Naddaf and Spencer’s result [52] to the simplest possible non-linear functional
of the field, i.e. ϕ2, when d “ 3.

The nonlinearity in (1.21) is by no means a small issue. The proof of results similar to (1.21)
are already delicate in the Gaussian case, see [60, 42, 66], and even more so presently, due to
the combined effects of i) the absence of Gaussian tools, and ii) the need for renormalization.

Our approach also yields a new proof in the Gaussian case, which we believe is more trans-
parent. For instance, it avoids the use of determinantal formulas, such as those typically used
to express generating functionals like (1.22) below – in fact our proof yields a different repre-
sentation of such functionals, see (5.11)-(5.12) and Remark 5.2,3). We now briefly outline our
strategy and focus our discussion on the marginal : ϕ2

N : alone in (1.21) for simplicity. We
first prove tightness by controlling generating functionals of gradient squares in Proposition 6.1,
i.e. for V P C80 pR3q and |λ| small enough, we obtain uniform bounds of the form

(1.22) sup
Ně1

Eµ

”

exp
!

λ

ż

: ϕ2
N pzq : V pzq dz

)ı

ă 8;

cf. (6.3) below. This is facilitated through the use of a certain variance estimate, see Lemma 2.3
(in particular (2.16)), which is of independent interest and can be viewed as a consequence of
the more classical Brascamp-Lieb estimate [15]. Once (1.22) is shown, the task is to identify the
limit in (1.21). To do so, we first replace ϕN by a regularized version ϕεN , corresponding at the
discrete level to the presence of an ultraviolet cut-off in the limit. The removal of the divergence
at ε ą 0 allows for an application of [52], which together with tightness estimates akin to (1.22),
is seen to imply convergence of pϕεN q

2.
To remove the cut-off, the crucial control is the following L2-estimate, derived in Section 6.2.

Namely, we show in Proposition 6.7 that for all ε ą 0, there exists cpεq P p1,8q such that

(1.23) lim
εŒ0

sup
Něcpεq

›

›

›

›

ż

V pzq
“

: pϕN q
2pzq : ´ : pϕεN q

2pzq :
‰

dz

›

›

›

›

L2pµq

“ 0, pd “ 3q.

The bound (1.23) is obtained as a consequence of the Brascamp-Lieb inequality alone; no further
random walk estimates on X are necessary. In particular, no gradient estimates on its Green’s
function are needed, as one might naively expect from the form of (1.23) on account of (1.19).

The controls (1.23) are surprisingly strong. For instance, one does not need to tune ε with
N when taking limits in (1.21). Rather, one can in a somewhat loose sense first let εÑ 0 then
N Ñ 8 (cf. Lemmas 7.1-7.3 below for precise statements) and (1.23) serves to determine the
exact limits of the functionals in (1.22), thus completing the proof.

Returning to the identity (1.20), the result (1.21) then enables us to directly identify the
limit of suitably rescaled occupation times LN of L when d “ 3, and we deduce in Corollary 7.5
below that LN converges in law to the occupation-time measure of a Brownian interlacement with
diffusivity Σ, cf. (7.14)–(7.15) for precise definitions. As in the Gaussian case, the convergence
of the associated occupation time measure does not require counter-terms. In particular, the
drift term implicit in PVu generated by the potential V , which breaks translation invariance, is
thus seen to “disappear” in the limit. Further, we immediately recover from this the limiting
isomorphism proved in [66] in the Gaussian case (albeit with non-trivial diffusivity Σ stemming
from homogenization), see Corollary 7.7 and (7.23) below. In the parlance of renormalization
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group theory, (7.23) is thus seen to be the “Gaussian fixed point” of the identity (1.20) for any
potential U satisfying (1.2).

We now describe how this article is organized. In Section 2 we gather various useful prelim-
inary results. To avoid disrupting the flow of reading, some proofs are deferred to an appendix
(this also applies to several bounds related to ε-smearing in Sections 6-7). In Section 3, we de-
velop some potential theory tools for the process X with generator L, see (1.15), and introduce
the intensity measure underlying PVu in (1.20). In Section 4, we state and prove the isomorphism,
see Theorem 4.3. Section 5 gives precise meaning to our scaling limit result for the renormalized
squares of ϕ. The statement appears in Theorem 5.1 and is proved over the remaining two sec-
tions 6-7. Section 6 contains some preparatory work: Sections 6.1 and 6.2 respectively deal with
matters relating to tightness (cf. (1.22)) and the aforementioned L2-estimate (cf. (1.23)), see
also Propositions 6.1 and 6.7 below; Section 6.3 deals with convergence of the smeared field at a
suitable functional level. The actual proof of Theorem 5.1 then appears in Section 7, along with
its various corollaries, notably the scaling limits of rescaled occupation times (Corollary 7.5)
and the limiting isomorphism (Corollary 7.7).

Throughout, c, c1, . . . denote positive constants which can change from place to place and
may depend implicitly on the dimension d. Numbered constants are fixed upon first appearance
in the text. The dependence on any quantity other than d will appear explicitly in our notation.

Acknowledgments. This work was initiated while one of us (JDD) was visiting UCLA,
while the other (PFR) was still working there. We both thank Marek Biskup for being the great
host he is. PFR thanks TU Berlin for its hospitality on several occasions. We thank M. Slowik
for stimulating discussions at the final stages of this project. Part of this research was supported
by the ERC grant CriBLaM.

2 Preliminaries and tilting

In this section we first gather several useful results for the discrete Green’s function in a poten-
tial V . Lemma 2.1 yields useful comparison bounds for the corresponding heat kernel in terms
of the standard (i.e. with V “ 0) one under suitable assumptions on V . Lemma 2.2 deals
with scaling limits of the associated Green’s function (and its square). We then discuss key
aspects of the ϕ-Gibbs measures µh,V introduced in (1.8) (see also (1.4)) under the assumptions
(1.2),(1.7), including matters relating to existence of µh,V , which involves exponential tilts with
functionals of ϕ2; for later purposes we actually consider general quadratic functionals of ϕ, see
(2.12) and conditions (2.13)-(2.14). Some care is needed because the scaling limits performed
below will require the tilt to be signed and have finite but arbitrarily large support. We also col-
lect a useful variance estimate, of independent interest, see Lemma 2.3 and in particular (2.16),
see also Lemma 2.5 regarding higher moments, which can be viewed as a consequence of the
Brascamp-Lieb inequality.

Let pZtqtě0 denote the continuous-time simple random walk on Zd with generator given by
(1.14) with a ” 1 (amounting to the choice Uptq “ 1

2 t
2 in (1.12)). We write Px for its canonical

law with Z0 “ x and Ex for the corresponding expectation. For V : Zd Ñ R, we introduce the
heat kernels

(2.1) qVt px, yq “ Ex
“

e
şt
0 V pZsqds1tZt“yu

‰

, for x, y P Zd, t ě 0,

and abbreviate qt “ q0
t . The corresponding Green’s function is defined as

(2.2) gV px, yq “
ş8

0 qVt px, yqdt, x, y P Zd
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(possibly `8) with g0 “ g. We now discuss conditions on V` “ maxtV, 0u guaranteeing good
control on these quantities, which will be useful on multiple occasions.

Lemma 2.1 (d ě 3). There exists ε ą 0 such that, for any V : Zd Ñ R` with

(2.3) tsupx V pxqudiampsupppV qq2 ă ε,

and all x, y P Zd, one has:

Ex
“

e
ş8

0 4V pZtqdt
‰

ď cpă 8q,(2.4)

qVt px, yq ď c1qctpx, yq, t ě 0.(2.5)

The proof of Lemma 2.1 is deferred to Appendix A. Now, for smooth, compactly supported
V : Rd Ñ R and arbitrary integer N ě 1, consider its discretization (at level N)

(2.6) VN pxq “ N´2

ż

x
N
`r0,1qd

V p zN qdz, x P Zd,

and the rescaled Green’s function

(2.7) gVN pz, z
1q “ 1

dN
d´2gVN ptNzu, tNz1uq, z, z1 P Rd

with gVN referring to (2.2) with VN given by (2.6). In accordance with the notation g “ g0,
cf. below (2.2), we set gN “ g0

N , whence gN pz, z
1q “ 1

dN
d´2gptNzu, tNz1uq. Associated to gVN p¨, ¨q

in (2.7) is the rescaled potential operator GVN with

(2.8) GVNfpzq “

ż

gVN pz, z
1qfpz1qdz1,

for any function f : Rd Ñ R such that
ş

gVN pz, z
1qk|fpz1q|dz1 ă 8. The operator pGVN q

2 is defined
similarly, with kernel gVN pz, z

1q2 in place of gVN pz, z
1q on the right-hand side of (2.8). Finally,

we introduce continuous analogues for (2.8). Let Wz, z P Rd, denote the law of the standard
d-dimensional Brownian motion pBtqtě0 starting at z and

(2.9) GV fpzq “

ż 8

0
Wz

“

e
şt
0 V pBsqdsfpBtq

‰

dt.

for suitable f , V (to be specified shortly). Let x¨, ¨y refer to the standard inner product on Rd.

Lemma 2.2. For all f, V P C80 pRdq with supppV q Ă BL for some L ě 1 and }V }8 ď cL´2,

lim
N
xf,GVNfy “ xf,G

V fy, pd ě 3q(2.10)

lim
N
xf, pGVN q

2fy “ xf, pGV q2fy, pd “ 3q.(2.11)

In particular (2.10)-(2.11) implicitly entail that all expressions are well-defined and finite,
i.e. all of GVN , GV (and pGVN q

2 when d “ 3) act on C80 pRdq when the potential V satisfies the
above assumptions. The proof of Lemma 2.2 is given in Appendix A.

Next, we introduce suitable tilts of the measure µ defined in (1.4). The ensuing variance
estimates below are of independent interest. We state the following bounds at a level of generality
tailored to our later purposes. For real numbers Qλpx, yq, x, y P Zd, indexed by λ ą 0 (cf. (2.14)
below regarding the role of λ) and vanishing unless x, y belong to a finite set, let

(2.12) Qλpϕ,ϕq “
ÿ

x,y

Qλpx, yqϕxϕy.

and write dµQλ “ Eµre
Qλs´1eQλdµ (with µ “ µ0,0) whenever 0 ă Eµre

Qλs ă 8. Recall g “ g0

from (2.2) and abbreviate BxF “ BF pϕq{Bϕx below.
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Lemma 2.3 (d ě 3, (1.2), (1.7)). If, for some 0 ă λ ă c3, x0 P Zd, R ě 1, with B “ Bpx0, Rq,

Qλpx, yq “ 0 if x R B or y R B and(2.13)

Qλpϕ,ϕq ď λR´2}ϕ}2`2pBq,(2.14)

then eQλ P L1pµq and the following hold: for F P C1pE,Rq depending on finitely many coordi-
nates such that F and BxF , x P Zd, are in L2pµQλq, one has

(2.15) varµQλ pF q ď c
ÿ

x,y

gpx, yqEµQλ rBxF ByF s.

If moreover, F P C2pE,Rq and BxByF P L
2pµQλq for all x, y P Zd, then

(2.16) varµQλ pF q ď c
ÿ

x,y

gpx, yq
´

EµQλ rBxF sEµQλ rByF s ` c
ÿ

x1,y1

gpx1, y1qEµQλ rBx
1BxF By1ByF s

¯

.

Remark 2.4. 1) By adapting classical arguments, see e.g. [21, Corollary 2.7], one readily shows
that the conclusions of Lemma 2.3 (and thus also of Lemma 2.5 below) continue to hold
if one considers the measure µh,Qλ with exponential tilt of the form Qpϕ,ϕq `

ř

x hpxqϕx,
for arbitrary h as in (1.7).

2) In particular, Lemma 2.3 applies with the choice

(2.17) Qλ0px, yq “ V pxq1tx “ yu,

for V as in (1.7) with λ0 “ c3. Indeed with the choice R “ diampsupppV qq, one readily
finds x0 such that (2.13) is satisfied. Moreover, with B “ Bpx0, Rq, (2.17) yields that

Qλ0pϕ,ϕq ď }V`}8 ¨ }ϕ}
2
`2pBq

(1.7)
ď λ0R

´2}ϕ}2`2pBq,

i.e. (2.13) holds. Lemma 2.3 (along with the previous remark) thus implies that the tilted
measure µh,V introduced in (1.8) is well-defined and satisfies the estimates (2.15) and
(2.16) if λ0 ă c3 in (1.7). In fact, in the specific case of (2.17), the same conclusions could
instead be derived by combining (1.19) with (2.18) below and the heat kernel bound (2.5).

Proof. In view of (1.12), (1.14) and (1.15) and (1.7), observe that (with L “ L0,0)

(2.18) ´ L ě ´L
apϕq
2 ě ´c1∆

as symmetric positive-definite operators (restricted to Domp´∆q, tacitly viewed as a subset of

RZdˆE independent of ϕ P E); here ∆fpxq “
ř

y„xpfpyq ´ fpxqq, for suitable f : Zd Ñ R
(e.g. having finite support), so that p´∆q´11ypxq “

1
2dgpx, yq for all x, y P Zd with g “ g0,

cf. (2.2). By assumption on H in (1.2), it follows that (see below (1.3) regarding HΛ) for all
Λ Ą B, and ϕ P E

(2.19) D2HΛpϕq
(2.18)
ě cxϕ,´∆ϕy`2pBq ě c4R

´2}ϕ}2`2pBq

where D2HΛ refers to the Hessian of HΛ and the last bound follows by a discrete Sobolev
inequality in the box B, as follows e.g. from Lemma 2.1 in [13] and Hölder’s inequality. Together
with (2.14), (2.19) implies that whenever λ ă c4{2 “ c3,

Hλ “ H ´Qλ

9



satisfies D2Hλ ě c1p´∆q, in the sense that the inequality holds for the restriction of either side

to `2pΛq with a constant c1 uniform in Λ. This implies that the measure νξΛ ” µξΛ,Qλ defined as
in (1.3) but with Hλ in place of H is log-concave and it yields, together with the Brascamp-Lieb
inequality, uniformly in Λ and ξ,

(2.20) var
νξΛ
pF q ď E

νξΛ
rxB¨F, pD

2Hλq
´1
Λ B¨F ys ď cE

νξΛ
rxB¨F, p´∆q´1

Λ B¨F ys

for suitable F (say depending on finitely many coordinates), where x¨, ¨y denotes the `2pΛq inner
product. In particular, choosing F “ ϕ0 and using that 2dp´∆q´11ypxq Õ gpx, yq ă 8 as
Λ Õ Zd, one readily deduces from the resulting uniform bound in (2.20) and the Gibbs property
(1.5) that eQλ P L1pµq, and (2.15) then follows upon letting Λ Õ Zd in (2.20).

To obtain (2.16), one starts with (2.15) and introduces p´∆q´1{2 (defined e.g. by spectral
calculus) to rewrite the right-hand side of (2.15) up to an inconsequential constant factor as

EµQλ rxB¨F, p´∆q´1B¨F ys “
ÿ

x

EµQλ rpp´∆q´1{2B¨F q
2pxqs

Writing the second moment on the right-hand side as a variance plus the square of its first
moment and applying (2.15) once again to bound varµQλ ppp´∆q´1{2B¨F qpxqq, (2.16) follows.

By iterating (2.15), one also has controls on higher moments. In view of Remark 2.4 above,
the following applies in particular to µh,V for any h, V as in (1.7).

Lemma 2.5. Under the assumptions of Lemma 2.3, for any V : Zd Ñ R with finite support
and all integers k ě 0,

(2.21) EµQλ rxϕ, V y
2k
`2 s ď cp2kqxV,GV yk`2 .

where xV,GV y`2 “
ř

x,y V pxqgpx, yqV pyq.

Proof. Abbreviating Mpkq “ EµQλ rxϕ, V y
k
`2s, one has by (2.15),

(2.22) Mp2kq ďMpkq2 ` c
ÿ

x,y

gpx, yqEµQλ

“

pBxxϕ, V y
k
`2q pByxϕ, V y

k
`2q

‰

“Mpkq2 ` ck2xV,GV y`2Mp2pk ´ 1qq.

Defining cpkq “ 0 for odd k and observing that Mpkq vanishes for such k, (2.21) readily follows
from (2.22) and a straightforward induction argument, with cp2kq “ cpkq2 ` ck2cp2pk´ 1qq.

3 Elements of potential theory for X ¨ and intensity measure

For the remainder of this article, we always tacitly assume that conditions (1.2) and (1.7) are
satisfied for the data pU, h, V q. In this section, we develop various tools around the process X ¨
with generator L given by (1.15). Among other things, these will allow us to define a natural
intensity measure νh,V on bi-infinite Zd ˆ E-valued trajectories, see Theorem 3.5 below. This
measure is fundamental to the isomorphism theorem derived in the next section.

We start by developing useful formulas for the equilibrium measure and capacity of “cylin-
drical” sets. For K a finite subset of Zd, abbreviated K ĂĂ Zd, we write QK “ K ˆ E with
E “ RZd for the corresponding cylinder and abbreviate QN “ QBN , where BN “ r´N,N s

dXZd
is the discrete box of radius N . We use BK to denote the inner boundary of K in Zd and
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Kc “ ZdzK. Recalling Ep¨, ¨q from (1.16) with domain DpEq, we then define the capacity of QK ,
for arbitrary K ĂĂ Zd, as

(3.1) cappQKq “ inf
 

Epf, fq : f P DpEq, f|Kp¨, ϕq ě 1, lim
|x|Ñ8

fpx, ¨q “ 0
(

(with infH “ 8). Note that cap ” caph,V , E ” Eh,V , cf. (1.16), along with various potential-
theoretic notions developed in the present section (e.g. eQK , hQk below), all implicitly depend on
the tilt ph, V q. In view of (1.16), restricting to the class of functions fpx, ϕq “ fpxq satisfying the
conditions in (3.1) but independent of ϕ, and observing that Eµh,V rapx, y, ϕqs ď c2 for |x´y| “ 1
due to (1.12) and (1.2), it follows that

(3.2) cappQKq ď c2 ¨ capZdpKq ă 8 for all K ĂĂ Zd,

where capZdpKq refers to the usual capacity of the simple random walk on Zd. Similarly,
neglecting the contribution from E1 and applying Fatou’s lemma, one obtains that

(3.3) cappQKq ě c1 ¨ capZdpKq for all K ĂĂ Zd.

We now derive a more explicit (probabilistic) representation of cappQKq. Recalling that
Xt “ pXt, ϕtq stands for the process associated to E (with generator L “ Lh,V given by (1.15)
and canonical law Ppx,ϕq, see below (1.17)), we introduce the stopping times HQK “ inftt ě 0 :

Xt P QKu, let

(3.4) hQK px, ϕq “ Ppx,ϕqrHQK ă 8s, x P Zd, ϕ P E,

and introduce, for suitable f : Zd ˆ E Ñ R the potential operators

(3.5) Ufpx, ϕq “ Epx,ϕq

„
ż 8

0
dtfpXt, ϕtq



.

Lemma 3.1 (ph, V q as in (1.7)). The variational problem (3.1) has a unique minimizer given
by f “ hQK with hQK as in (3.4). Moreover, with

(3.6) eQK px, ϕq
def.
“ p´LhQK qpx, ϕq, x P Zd, ϕ P E,

one has that

supppeQK q Ă BK ˆ E pĂ QKq,(3.7)

eQK ě 0,(3.8)

and

(3.9) cappQKq “
ÿ

xPK

ż

E
µh,V pdϕqeQK px, ϕq.

Proof. The property (3.7) follows by L-harmonicity of hQK in view of (3.6). To see (3.8),
denoting by pPtqtě0 the semigroup associated to X, one has for all z “ px, ϕq P QK , applying
the Markov property at time t,

lim
tÓ0

t´1phQK pzq ´ pPthQK qpzqq “ lim
tÓ0

t´1p1´ EzrPXt
rHQK ă 8ssq “ lim

tÓ0
t´1PzrHQK ˝ θt “ 8s

which is plainly non-negative; to see that the limit on the right-hand side exists, denoting by τ
the first jump time of X¨, the spatial part of X ¨, one notes that it equals

(3.10) lim
tÓ0

t´1Epx,ϕq
“

1tτ ď tuPXτ
rHQK “ 8s

‰

11



because X can only escape QK through its spatial part X and the contribution stemming from
two or more spatial jumps up to time t is Opt2q as t Ó 0; similarly the expectation in (3.10) is
bounded by ct for t ď 1.

To obtain that hQK is a minimizer, first note that by definition, see (3.4), and by transience,
hQK satisfies the constraints in (3.1). For arbitrary f as in (3.1), one has

(3.11) Epf, fq “ Epf ´ hQK , f ´ hQK q ` EphQK , hQK q ` 2Epf ´ hQK , hQK q

The first term in (3.11) is non-negative. On account of (1.16) and due to (3.6),

(3.12) EphQK , hQK q “
@

hQK , p´LUqeQK
D

L2pρh,V q
“ x1, eQK yL2pρh,V q

,

where the last step uses that hQK p¨, ϕq “ 1 on K, which is the support of eQK p¨, ϕq, see (3.6).
The last expression in (3.12) is exactly the right-hand side of (3.9). To conclude, one observes
that the third term in (3.11) can be recast using Epf ´hQK , hQK q “ xf ´ hQK , eQK yL2pρh,V q

and

the latter is non-negative because pf ´ hQK qp¨, ϕq ě 0 on K by (3.1).

A key ingredient for the construction of the intensity measure ν below is the following result.
We write W

`

QK
below for the subset of trajectories in W

`
with starting point in QK . Recall

the definition of Pρ from (3.9) and abbreviate ρ “ ρh,V for the remainder of this section.

Proposition 3.2 (Sweeping identity).

With eQK as defined in (3.6), for all K Ă K 1 ĂĂ Zd and bounded measurable f : W
`

QK
Ñ R,

Eρ
“

eQK1 pX0q1tHQKă8u
f
`

X ˝ θHQK

˘‰

“ Eρ
“

eQK pX0qfpXq
‰

(3.13)

To prove Proposition 3.2, we will use the following

Lemma 3.3 (Switching identity).

For all K ĂĂ Zd and v, w P CbcpZd ˆ Eq (continuous bounded with compact support),

Eρ
“

wpX0, ϕ0q1tHQKă8u
Uv

`

XHQK
, ϕHQK

˘‰

“ Eρ
“

vpX0, ϕ0q1tHQKă8u
Uw

`

XHQK
, ϕHQK

˘‰

.
(3.14)

Proof. One writes

Eρ
“

wpX0q1tHQKă8u
Uv

`

XHQK

˘‰

“

ż 8

0
dtEρ

“

wpX0q1tHQKă8u
v
`

Xt`HQK

˘‰

“

ż 8

0
dsEρ

“

wpX0q1tHQKďsu
v
`

Xs

˘‰

“

ż 8

0
dsEρ

“

wpXsq1tDtPr0,ss:Xs´tPQKu
v
`

X0

˘‰

,

where the last step uses that X ¨ and Xs´¨ have the same law under Pρ. The last integral is
readily seen to equal the expectation in second line of (3.13).

Proof of Proposition 3.2. For a given f as appearing in (3.13), consider the function v defined
such that, with U as in (3.5),

Uv “ ξ, where

ξpx, ϕq “ 1QK px, ϕqEpx,ϕq
“

fpXq
‰

, x P Zd, ϕ P E.
(3.15)

Note that v is well-defined. By (3.9) and the strong Markov property at time QK , one can
rewrite

(3.16) Eρ
“

eQK1 pX0q1tHQKă8u
f
`

X ˝ θHQK

˘‰

“ Eρ
“

eQK1 pX0q1tHQKă8u
ξ
`

XHQK

˘‰

12



In view of (3.15), (3.16), applying (3.14) with w “ eQK1 and v as in (3.15) yields that the
left-hand side of (3.13) equals

(3.17) Eρ
“

vpX0q1tHQKă8u
UeQK1

`

XHQK

˘‰

.

Since K Ď K 1, (3.6) and (3.4) imply that, on the event tHQK ă 8u, UeQK1
`

XHQK

˘

“

hK1pXHQK
q “ 1, whence (3.17) simplifies to

Eρ
“

vpX0q1tHQKă8u
‰ (3.4)
“

ż

EˆZd
ρpdϕ, dxqvpx, ϕqhQK px, ϕq

(3.15)
“ x´Lξ, hQK yL2pρq

(1.17)
“ xξ,´LhQK yL2pρq

(3.6)
“ xξ, eQK yL2pρq

(3.15)
“

ÿ

x

ż

E
µpdϕqeQK px, ϕqEpx,ϕqrf s,

(3.18)

which yields (3.13).

Remark 3.4. The sweeping identity (3.13) corresponds to the classical DLR-equations in equi-
librium statistical mechanics: for all K Ă K 1 Ă Zd and f “ 1tX0“zu, z P K, explicating (3.13)
gives

ÿ

x

ż

E
µpdϕqeQK1 px, ϕqPpx,ϕq

“

HQK ă 8, XHQK
“ z

‰

“

ż

E
µpdϕqeQK pz, ϕq.(3.19)

We now introduce the intensity measure ν which will govern the relevant Poisson processes.
We write W for the space of bi-infinite right-continuous trajectories on ZdˆE whose projection
on Zd escapes all finite sets in finite time. Its canonical coordinates will be denoted by Xt “

pXt, ϕtq, t P R, and we will abbreviateX˘ “ pX˘tqtą0. We letW
˚
“W { „ be the corresponding

space modulo time-shift, i.e. w „ w1 if pθtwq “ w1 for some t P R, and denote by π˚ : W ÑW
˚

the associated projection. We also write WQK ĂW for the set of trajectories entering QK , i.e.

w PWQK if Xtpwq P QK for some t P R, and W
˚

QK
“ π˚pWQK q. All above spaces of trajectories

are endowed with their corresponding canonical σ-algebra, denoted by W, W˚
, WQK etc. We

then first introduce a measure νQK on pW,Wq as follows:

νQK
“

X´ P A´, X0 P A, X` P A`
‰

def.
“

ż

A
ρpdx, dϕqPpx,ϕq

“

X P A`
‰

ˆ Epx,ϕq
“

1
tXPA´u

eQK pX0q
‰

,
(3.20)

with eQK as defined in (3.6), and where, with a slight abuse of notation, we identify A˘ P σpX˘q
(part of W) with the corresponding events in W`. The latter is the σ-algebra of W`, the space
of one-sided trajectories on which Ppx,ϕq is naturally defined. Note that the ρ-integral in (3.20)
is effectively over AX tX0 P Ku, hence νQK is a finite measure, and by (3.9),

(3.21) νQK
`

W
˘

“ νQK
`

WQK

˘

“ cappQKq, for K ĂĂ Zd.

The family of measures tνQK : K ĂĂ Zdu can be patched up as follows.

Theorem 3.5 (d ě 3, h, V as in (1.7)). There exists a unique σ-finite measure ν “ νh,V on

pW
˚
,W˚

q such that

ν|W ˚

QK

“ π˚ ˝ νQK , for all K ĂĂ Zd.(3.22)
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Proof. The uniqueness of ν follows immediately from (3.20), since νpA˚q “ limn νQBn pAXWQBn
q

by monotone convergence, for all A˚ PW˚
, with A “ pπ˚q´1pAq. In order to prove existence, it

is enough to argue that

for all K Ă K 1 ĂĂ Zd and A˚ PW˚

QK
:

pπ˚ ˝ νQK1 qpA
˚q “ pπ˚ ˝ νQK qpA

˚q
(3.23)

(note that the left-hand side is well-defined since W˚

QK
ĂW˚

Q1K
). Indeed, once (3.23) is shown,

one simply sets

νpA˚q “
ÿ

ně1

pπ˚ ˝ νQBn q
´

A˚ X
`

W˚

QBn
zW˚

QBn´1

˘

¯

,

and (3.22) is readily seen to hold using (3.23). Moreover, due to (3.21) and (3.2), ν
`

W
˚

QK

˘

ă 8,
whence ν is sigma-finite.

It remains to prove that the compatibility condition (3.23) holds. Writing W
0
QK

Ă WQK

for the set of trajectories entering QK at time 0, we first observe that νQK is supported on

W
0
QK

and similarly νQK1 on W
0
QK1

, see (3.20), and, recalling HQK from around (3.4), that

θHQK : pW
0
QK1

XWQK q Ñ W
0
QK

, w ÞÑ θHQKw is a bijection for all K Ă K 1. Hence, in order to

obtain (3.23) it is sufficient to show that for all measurable A0 P 2K ˆ E and A` P σpX`q,

νQK1
`

HQK ă 8,
 

X0 P A0, X` P A`
(

˝ θHQK

˘

“ νQK
`

X0 P A0, X` P A`
˘

.(3.24)

This corresponds to the choice A˚ “ π˚ptX0 P A0, X` P A`uq in (3.23) with A0, A` as above,
which generate W˚

QK
. By (3.20), the left-hand side of (3.24) can be recast as

(3.25)

ż

ZdˆE
ρpdx, dϕqPpx,ϕq

”

HQK ă 8,
 

X0 P A0, X` P A`
(

˝ θHQK

ı

ˆ eQK1 px, ϕq

“ Eρ

”

eQK1 pX0q1tHQKă8u
ˆ

´

1
tX0PA0,X`PA`u

¯

˝ θHQK

ı

,

whereas the right-hand side of (3.24) equals

Eρ
“

eQK pX0q1tX0PA0,X`PA`u

‰

.(3.26)

But by Proposition 3.2, the right-hand side of (3.25) and (3.26) coincide, and (3.23) follows,
which completes the proof.

Remark 3.6. Let Π : W
˚
Ñ W ˚ denote the projection onto the first (Zd-valued) component of

a trajectory, i.e. W is the space of bi-infinite Zd-valued transient trajectories. In the Gaussian
case Upηq “ 1

2η
2, cf. (1.1), the projection

(3.27) νG “ Π ˝ νh,V

of the measure νh,V constructed in Theorem 3.5 is independent of V and h; indeed, in view of
(1.12) and (1.14) the generator of the spatial component of Ppx,ϕq is that of a simple random walk.

The measure νG obtained in this way is precisely (up to defining trajectories in continuous-time)
the intensity measure of random interlacements constructed in Theorem 1.1 of [63].
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4 An isomorphism theorem

We now derive a “Ray-Knight” identity for convex gradient Gibbs measures, which is given in
Theorem 4.3 below. Recall that the measure ν “ νh,V defined by Theorem 3.5 depends implicitly
on the choice of ph, V q appearing in (1.6), corresponding to the Gibbs measure µh,V in (1.8).

In what follows, V will represent a (finite) region on which we seek to probe the field ϕ2

sampled under µ “ µh“0,V“0, cf. (1.4), corresponding to the observable xV, ϕ2y`2pZdq, and h
will be carefully tuned with V in the relevant intensity measure, cf. (4.1) and (4.10). We now
introduce these measures. Recall that we assume ph, V q to satisfy (1.7). For such h, V and all

u ą 0, define the measure νh,Vu on pW
˚
,W˚

q by

(4.1) νh,Vu pAq “

ż

?
2u

0

ż τ

0
νσh,V pAq dσdτ, for A PW˚

.

On account of Theorem 3.5, νh,Vu given by (4.1) defines a σ-finite measure. We can thus construct

a Poisson point process ω on W
˚

having νh,Vu as intensity measure. We denote its canonical law
by Ph,Vu , a probability measure on the space of point measures Ω

W
˚ “ tω “

ř

iě0 δw˚i
: w˚i P

W
˚
, i ě 0, and ω˚pW

˚

QK
q ă 8 for all K ĂĂ Zdu, endowed with its canonical σ-algebra F

W
˚ .

The law Ph,Vu on pΩ
W
˚ ,F

W
˚q is completely characterized by the fact that for any non-negative,

W˚
-measurable function f ,

(4.2) Eh,Vu
„

exp

"

´

ż

W
˚
f ωpdw˚q

*

“ exp

"

´

ż

W
˚
p1´ e´f qνh,Vu pdw˚q

*

.

Of particular interest below is the corresponding field of (spatial) occupation times pLxqxPZd ,
defined as follows: for ω “

ř

iě0 δw˚i
, let

(4.3) Lxpωq “
ÿ

iě0

ż 8

´8

1tXtpwiq “ xudt, for x P Zd,

where wi P W is any trajectory such that π˚pwiq “ w˚i and Xtpwiq is the projection onto the
spatial coordinate of wi at time t. In what follows, we frequently identify V px, ϕq “ V pxq,
ϕ P E, viewed either as such or tacitly as multiplication operator pV fqpx, ϕq “ V px, ϕqfpx, ϕq,
for suitable f . We first develop a representation of Laplace functionals for the field L that will
prove useful in the sequel.

Lemma 4.1 (u ą 0, h, V as in (1.7)).

(4.4) logEh,Vu
“

exV,L¨y`2
‰

“ ´

ż

?
2u

0

ż τ

0

@

V,
`

Lσh,V ` V
˘´1

V ´ 1
D

L2pρσh,V q
dσdτ.

(Here, with hopefully obvious notation, 1 refers to the function of px, ϕq P Zd ˆ E which is
identically one).

Before going any further, let us first relate the above setup and the formula (4.4) to the
(simpler) Gaussian case.

Remark 4.2. With Π denoting the projection onto the spatial component (cf. Remark 3.6 for its
definition), consider the induced process

η “ Πpωq
def.
“

ÿ

iě0

δΠpw˚i q
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when ω “
ř

iě0 δw˚i
. Classically, η is a Poisson process with intensity measure Π ˝ νh,Vu , and

Lxpωq “ Lxpηq, as can be plainly seen from (4.3). In the Gaussian case, substituting (3.27) into

(4.1) and performing the integrals over τ and σ (note to this effect that
ş

?
2u

0

şτ
0 dσdτ “ u), one

readily infers that η has intensity uνG, i.e. the law PG
u of η is that of the interlacement process

at level u ą 0, cf. [63]. The field Lx “ Lxpηq is then simply the associated field of occupation
times (at level u). In this case, the formula (4.4) simplifies because the test function V is spatial
and the dynamics generated by L1 and L2 decouple, see (1.10), (1.14) and (1.15). All in all
Lemma 4.1 thus yields, for all V satisfying (1.7) and u ą 0,

(4.5) ´ u´1 logEG
u

“

exV,L¨pηqy`2
‰

“
@

V,GV V ´ 1
D

`2
,

where GV p“ p´La”1
2 ´ V q´1q refers to the convolution operator on `2pZdq with kernel gV given

by (2.2). On the other hand, one knows, see e.g. (2.11) in [64] in case V ď 0, that the left-hand
side of (4.5) equals ´xV, pI ´ GV q´11y`2 , G “ GV”0, whenever }GV }8 ă 1 (incidentally, note
that (1.7) implies that }GV`}8 ă 1). With a similar calculation as that following (7.22) below,
which is a continuous analogue, one can show that this expression equals the right-hand side of
(4.5) when }GV }8 ă 1. Notice however that (4.5) holds under the more general condition (1.7),
which places no constraint on V´.

Proof of Lemma 4.1. The starting point is formula (4.2). First, note that by definition of the
occupation times L¨ in (4.3), one can write xV, Ly`2 “

ş

W
˚ fV ωpdw

˚q, where (recall that we
tacitly identify V px, ϕq “ V pxq, ϕ P E)

(4.6) fV pw
˚q “

ż 8

´8

V pwptqq dt, with w PW such that π˚pwq “ w˚.

Hence, applying (4.2) and then substituting (4.1), (3.22) and (3.20) for the intensity measure,
one obtains, with K “ supppV q, in view of (4.6), that

(4.7) logEh,Vu
“

exV,L¨y`2
‰

“

ż

?
2u

0

ż τ

0
νσh,V

`

efV ´ 1
˘

dσdτ

“

ż

?
2u

0

ż τ

0

A

eQK p¨, ¨q, Ep¨,¨q
“

e
ş8

0 V pXsqds ´ 1
‰

E

L2pρσh,V q
dσdτ ;

strictly speaking, (4.2) does not immediately apply since V is signed but the necessary small
argument using dominated convergence is readily supplied with the help of (2.4). It thus remains
to be argued that the right-hand side of (4.7) equals that of (4.4). To this end, consider the
function

utpx, ϕq
def.
“ Epx,ϕq

”

e
şt
0 V pXsqds

ı

, for t ě 0,

which is bounded uniformly in t ě 0 on account of (2.4), and observe that

Epx,ϕq
“

e
ş8

0 V pXsqds ´ 1
‰

“

ż 8

0
dt Btutpx, ϕq

“

ż 8

0
dtEpx,ϕq

”

e
şt
0 V pXsqdsV pXtq

ı

“ ´

´

`

Lσh,V ` V
˘´1

V
¯

px, ϕq.

(4.8)

Dropping σh, V for ease of notation (i.e. writing L “ Lσh,V , ρ “ ρσh,V ), substituting (4.8) into
(4.7) and noting that L` V is symmetric with respect to x¨, ¨yL2pρq, cf. (1.17), then yields that

A

eQK p¨, ¨q, Ep¨,¨q
“

e
ş8

0 V pXsqds ´ 1
‰

E

L2pρq

(3.6)
“

A

´pL` V qhQK ` V hQK ,´pL` V q
´1 V

E

L2pρq

“ ´

A

V hQK , pL` V q
´1 V

E

L2pρq
` xhQK , V yL2pρq ,

(4.9)
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and (4.4) follows from (4.7) and (4.9) since V hQK “ V and xhQK , V yL2pρq “ x1, V yL2pρq on

account of (3.4) (recall that K is the support of V ).

We now come to the main result of this section, which is the following theorem. Let

(4.10) νVu “ νh”V,Vu (see (4.1))

and write PVu ” Ph”V,Vu for the canonical law of the associated Poisson point process on W
˚
.

Recall that µ “ µh“0,V“0 refers to the Gibbs measure (1.4) for the Hamiltonian (1.1). With
hopefully obvious notation, ϕ¨` a for scalar a P R refers to the shifted field pϕx` aqxPZd below.

Theorem 4.3 (Isomorphism Theorem).

For all u ą 0 and V : Zd Ñ R satisfying (1.7), one has

EVu bEµ
“

e
xV,L¨` 1

2
ϕ2
¨ y`2pZdq

‰

“ Eµ

”

e
1
2xV,pϕ¨`

?
2uq2y

`2pZdq
ı

.(4.11)

We first make several comments.

Remark 4.4. 1) One way to interpret Theorem 4.3 is as follows: the equality (4.11) holds
trivially when u “ 0. Thus, L¨ measures in a geometric way the effect of the shift

?
2u on

(squares of) the gradient field ϕ.

2) When Upηq “ 1
2η

2 (cf. (1.1)), Theorem 4.3 immediately implies the identity derived in
Theorem 0.1 of [64], which is itself an infinite-volume analogue of the generalized second
Ray-Knight identity given by Theorem 1.1 of [30]. The relevant Poissonian law PVu ” Pu
in the Gaussian case is the random interlacement point process introduced in [63].

3) Our argument also yields a new proof in the Gaussian case Upηq “ 1
2η

2. Indeed, whereas
our proof proceeds directly in infinite volume, the proof of Theorem 0.1 in [64] exploits the
generalized second Ray-Knight theorem, along with a certain finite-volume approximation
scheme. Although we will not pursue this here, one could seek an argument along similar
lines in the present context. In particular, this entails deriving a similar identity as (4.11)
on a general finite undirected weighted graph with wired boundary conditions, thereby
extending results of [30] (e.g. in the form presented in Theorem 2.17 of [65]) to the present
framework.

4) It is of course tempting to investigate possible extensions of various others Gaussian isomor-
phism identities, see e.g. the monographs [48], [43], [65] for an overview, to convex gradient
measures. We will return to the case of [42] and applications thereof elsewhere [22].

Proof. Expanding the square on the right-hand side of (4.11) and rearranging terms, we see
that (4.11) follows at once if we can show that

(4.12) EVu
“

exV,Ly`2
‰

“ exp txV, u1y`2uEµV
“

e
?

2uxV,ϕy`2
‰

,

where µV ” µ0,V , cf. (1.8). The change of measure is well-defined given our assumptions (1.7)
for V p¨q on account of Lemma 2.3. We rewrite the exponential functional appearing on the
right-hand side of (4.12) as follows. Introducing the function

fpτq “ logEµV
“

exp
 

τ xV, ϕy`2
(‰

, τ P r0,
?

2us,

one observes that (see (1.8) for notation)

(4.13) f 1pτq “ EτV,V rxV, ϕy`2s, f2pτq “ varµτV,V
`

xV, ϕy`2
˘

,
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where varµτV,V
`

xV, ϕy2
˘

refers to the variance with respect to the tilted measure µh,V , h “ τV .

Noting that fp0q “ f 1p0q “ 0, expressing fp
?

2uq “ fp
?

2uq ´ fp0q in terms of its second
derivative by interpolating linearly between τ “ 0 and τ “

?
2u and substituting (4.13), one

obtains that

(4.14) logEµV
“

e
?

2uxV,ϕy`2
‰

“ fp
?

2uq “

ż

?
2u

0

ż τ

0
varµσV,V

`

xV, ϕy`2
˘

dσdτ.

Now, applying the Hellfer-Sjöstrand formula (1.19) to compute covµσV,V pϕx, ϕyq, recalling that

V px, ϕq “ V pxq, for all x P Zd, ϕ P E, and abbreviating L “ LσV,V , it follows that

varµσV,V
`

xV, ϕy`2
˘

“
ÿ

x,y

V pxqV pyq

ż

µσV,V pdϕqEpx,ϕq

„
ż 8

0
dt exp

"
ż t

0
V pXsqds

*

1tXt “ yu



“

ż

ρσV,V pdx, dϕqEpx,ϕq

„

V pX0q

ż 8

0
dt exp

"
ż t

0
V pXsqds

*

V pXtq



“

B

V,

ˆ
ż 8

0
dt etpL`V qV

˙

p¨, ¨q

F

L2pρσV,V q

“
@

V,´pL` V q´1 V
D

L2pρσV,V q
.

(4.15)

Putting together (4.15) and (4.14), one sees that the right-hand side of (4.12) is precisely the
right-hand side of (4.4) for the choice h “ V . Hence, the asserted equality in (4.12) follows
directly from Lemma 4.1 on account of (4.10).

5 Renormalization and scaling limits of squares

We now aim to determine possible scaling limits for the various objects attached to Theorem 4.3,
starting with linear and quadratic functionals of ϕ, as do appear e.g. when expanding the square
on the right-hand side of (4.11). Our main result to this effect is Theorem 5.1 below, which will
be proved over the course of the remaining sections.

With ϕ the canonical field under µ, we introduce for integer N ě 1 the rescaled field

(5.1) ϕN pzq “ d´1{2Nd{2´1ϕtNzu, for z P Rd,

and for V P C80 pRdq, set

(5.2) xΦk
N , V y

def.
“

ż

Rd
V pzqϕN pzq

kdz, k “ 1, 2.

Moreover, writing : X2 :“ X2 ´ EµrX
2s for any X P L2pµq, let

x: Φ2
N :, V y

def.
“ : xΦ2

N , V y :
´

“

ż

Rd
V pzq : ϕN pzq

2 : dz
¯

.(5.3)

(with : ϕN pzq
2 :“ ϕN pzq

2 ´ EµrϕN pzq
2s in the above notation). To avoid unnecessary clutter,

we regard Φk
N , k “ 1, 2 (as well as : Φ2

N :q as distributions on Rd, by which we always mean
an element of pC80 q

1pRdq, the dual of C80 pRdq, in the sequel. Indeed, xΦk
N , ¨y : C80 pRdq Ñ Rd

is a continuous linear map; the topology on C80 pRdq is for instance characterized as follows:
fn Ñ 0 if and only if supppfnq Ă K for some compact set K Ă Rd and fn and all its derivatives
converge to 0 uniformly on K. We endow the space of distributions with the weak-˚ topology,
by which un : C80 pRdq Ñ Rd converges to u : C80 pRdq Ñ Rd if and only if unpfq Ñ upfq for all
f P C80 pRdq.
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Our main theorem addresses the (joint) limiting behavior of pΦN , : Φ2
N :q as N Ñ 8 when

d “ 3. Its statement requires a small amount of preparation. Recall that the Gibbs measure µ
from (1.4) for the Hamiltonian (1.1) is translation invariant and ergodic. Hence, the environment
atp¨, ¨q “ ap¨, ¨;ϕtq in (1.12) generated by the ϕ-dynamics associated to µ (which solve (1.11)
with V “ h “ 0) inherits these properties, and is uniformly elliptic on account of (1.2); that is,
EµPpx,ϕqrc1 ď atp0, eq ď c2s “ 1 for all t ě 0 and |e| “ 1. By following the classical approach
of Kipnis and Varadhan [38], see Proposition 4.1 in [33], one has the following homogenization
result for the walk X¨: there exists a non-degenerate (deterministic) covariance matrix Σ P Rdˆd
such that, as nÑ8,

the law of t ÞÑ n´1{2Xtn on Dpr0,8qq under EµPpx,ϕqp¨q tends

to the law of a Brownian motion B “ tBt : t ě 0u with

B0 “ x, EpBtq “ 0 and Eppv ¨Btq
2q “ v ¨ Σv, for v P Rd.

(5.4)

The invariance principle (5.4) defines the matrix Σ. With GΣp¨, ¨q denoting the Green’s function
of B, we further introduce the bilinear form

(5.5) EΣpV,W q “

ż

V pxqGΣpx, yqW pyq dx dy ” xV,GΣV y,

for V,W P SpRdq, which is symmetric, positive definite and continuous (in the Fréchet topology).
Hence, see for instance Theorem I.10, pp. 21–22 in [60], there exists a unique measure PΣ on
S 1pRdq, characterized by the following fact: with Ψ denoting the identity map on S 1pRdq,

under PΣ, for every V P SpRdq, the random variable xΨ, V y

is a centered Gaussian variable with variance EΣpV, V q.
(5.6)

We write EΣr¨s for the expectation with respect to PΣ. The canonical field Ψ is the massless
Euclidean Gaussian free field (with diffusivity Σ).

Of relevance for our purposes will be the second Wick power of Ψ. Let H be the (Gaussian)
Hilbert space corresponding to Ψ, i.e. the L2pPΣq-closure of txΨ, V y : V P SpRdqu. For X,Y P
H, one defines the first and second Wick products as : X :“ X ´ EΣrXs “ X and : XY :“
XY ´ EΣrXY s. For ρε,xp¨q “ ε´dρp ¨´xε q, with ρ smooth, non-negative, compactly supported of
unit L1-norm, let Ψεpxq “ xΨ, ρε,xy. The field : Ψεpxq2 : is thus well-defined. Now let d “ 3.
For V P SpR3q, one can then define the L2pPΣq-limits

(5.7) x: Ψ2 :, V y
def.
“ lim

εÑ0

ż

: Ψεpxq2 : V pxq dx

(elements ofH) and one verifies that the limit in (5.7) does not depend on the choice of smoothing
function ρ “ ρ1,0. In what follows we often tacitly identify an element of S 1pR3q with its
restriction to pC80 q

1pR3q. The following set of conditions for the potential V will be relevant in
the context of (5.3) and (5.7):

(5.8) V P C8pRdq and for some λ ą 0, L ě 1, supppV q Ă BL and }V }8 ď λL´2.

For any value of λ ă c5 (with a suitable choice of c5 ą 0), one then obtains that rVt pz, z
1q ď

crtpz, z
1q for all t ě 0 and z, z1 P Rd and all V satisfying (5.8), where rt refers to the transition

density of GΣ and rVt to that of its tilt by V (cf. (2.9) in case Σ “ Id), which follows by a
straightforward adaptation of the arguments in the proof of Lemma 2.1. In particular, this
implies that for all W P C80 pRdq,

(5.9) }GVΣ |W |}8 ď c}W }8, where GVΣ “ p´
1
2∆Σ ´ V q

´1,
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(so GΣ “ G0
Σ, cf. above (5.5)) whenever V satisfies (5.8), i.e. GVΣ acts (boundedly) on C80 pRdq

for such V , which is all we will need in the sequel. Associated to GVΣ in (5.9) is the energy form
EVΣ p¨, ¨q defined similarly as in (5.5) with GVΣp¨, ¨q in place of GΣp¨, ¨q, whence EΣp¨, ¨q “ E0

Σp¨, ¨q.
We now have the means to state our second main result, which identifies the scaling limit of
ΦN , : Φ2

N : introduced in (5.2)-(5.3). In particular, (5.10) below refers to a weak convergence of
distributions (i.e. elements of pC80 q

1pR3q2).

Theorem 5.1 (Scaling limits, d “ 3).

µ ˝ pΦN , : Φ2
N : q´1 converges weakly to PΣ ˝ pΨ , : Ψ2 : q´1 as N Ñ8.(5.10)

Moreover, for all V,W P C80 pR3q with V satisfying (5.8) with λ ă c,

(5.11) lim
N
Eµ

“

e
1
2
x:Φ2

N :,V y`xΦN ,W y
‰

“ exp
 

1
2

`

AVΣpV, V q ` E
V
Σ pW,W q

˘(

,

with EVΣ p¨, ¨q as defined below (5.9) and AVΣpV, V q “
ť

V pzqAVΣpz, z
1qV pz1qdzdz1, where

(5.12) AVΣpz, z
1q “

ż 1

0

ż τ

0
GσVΣ pz, z1q2 dσdτ, z, z1 P R3.

The proof of Theorem 5.1 is given in Section 7 and combines several ingredients gathered in
the next section.

Remark 5.2. 1) The expressions on the right of (5.11) are well-defined, as follows from (5.9),
the fact that GσVΣ pz, z1q ď cGΣpz, z

1q for all z, z1 P Rd and that GΣpz, ¨q P L
2
locpR3q, which

together yield that AVΣp¨, ¨q extends to a bilinear form on (say) C80 pR3q (cf. Lemma 6.3
below). In particular, AVΣpV, V q ă 8 for V as in (5.8) (and in fact supV A

V
ΣpV, V q ď c).

2) Specializing to the case V “ 0, Theorem 5.1 immediately yields the following

Corollary 5.3. For all W P C80 pR3q,

lim
N
Eµ

“

exΦN ,W y
‰

“ e
1
2
EΣpW,W q,(5.13)

(cf. (5.5) for notation), i.e. ΦN under µ converges in law to Ψ as N Ñ8.

Corollary 5.3 is a celebrated result of Naddaf and Spencer, see Theorem A in [52], which
has generated a lot of activity (see e.g. [14, 19, 2] for generalizations to certain non-convex
potentials, [33] for extensions to the full dynamics tϕt : t ě 0u, and [50] for a finite-
volume version; see also [37] regarding similar findings for domino tilings in d “ 2 and
more recently [10, 11] for the integer-valued free field in the rough phase; cf. also [28, 29]
and refs. therein for height functions associated to other combinatorial models. Thus,
Theorem 5.1 extends the main result of [52] for d “ 3.

3) Together, (5.10) and (5.11) imply in particular that for all V satisfying (5.8),

(5.14) EΣ
“

expt1
2x: Ψ2 :, V yu

‰

“ e
1
2
AVΣ pV,V q;

see also (7.24) below for a generalization of this formula to a non-zero scalar “tilt” u.
Explicit representations for moment-generating functionals of Gaussian squares usually
involve (ratios) of determinants, see e.g. (5.46) in [48] or Proposition 2.14 in [65]. We are
not aware of any reference in the literature where (5.11) or (5.14) appear.

4) To illustrate the usefulness of these formulas, notice for instance that (5.11) immediately
yields the following:
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Corollary 5.4 (d “ 3, V as in (5.8)).

µ
“

¨ expΦN q
2,V y

‰

Eµ
“

expΦN q2,V y
‰ ˝ Φ´1

N converges weakly as N Ñ8 to a ‘massive’ free

field with energy form EVΣ pW,W q “ xW,G
V
ΣW y.

(5.15)

We refer to the proof of Corollary 7.5 below for another application of (5.11) in order to
identify the scaling limit of the occupation-time field L appearing in Theorem 4.3.

6 Some preparation

In this section, we prepare the ground for the proof of Theorem 5.1. We derive three results,
see Propositions 6.1, 6.7 and 6.9, organized in three separate subsections. Section 6.1, which
contains Proposition 6.1, deals with exponential tightness of the relevant functionals (5.2) (when
k “ 1) and (5.3) (when k “ 2). In Section 6.2 (cf. Proposition 6.7) we derive a key comparison
estimate between quadratic functionals of ΦN and those of a certain smoothed field Φε

N , to
be introduced shortly, which is proved to constitute a good L2pµq-approximation of : Φ2

N :
for a suitable range of parameters. Finally, we show in Section 6.3 that the smoothed field
behaves regularly, i.e. converges towards its expected limit (which actually holds for all d ě 3).
Combining these ingredients, the proof of Theorem 5.1 is presented in the next section.

We now introduce the smooth approximation that will play a role in the sequel. Let ρ “ ρ1

be an arbitrary smooth, non-negative function with }ρ}L1pRdq “ 1 having compact support

contained in r´1, 1sd. For ε ą 0 and x P Rd, let ρεp¨q “ ε´dρ1p ¨εq, ρ
ε,zp¨q “ ρεpz ´ ¨q. Define

(6.1) ϕεN pzq “

ż

ρεpz ´ wqϕN pwqdw
(5.2)
“ xΦN , ρ

ε,zy, z P Rd

and xpΦε
N q

k, V y, k “ 1, 2, and x: pΦε
N q

2 :, V y as in (5.2)-(5.3) but with ϕεN in place of ϕN . Note
that z ÞÑ ϕεN pzq inherits the smoothness property of ρ. The regularized field ϕεN essentially
reflects at the discrete level the presence of an (ultraviolet) cut-off at scale ε in the limit.

6.1. Tightness. The main result of this section is Proposition 6.1, which implies in particular
the exponential tightness of t: Φ2

N :, N ě 1u, along with similar conclusions for its regularized
version : pΦε

N q
2 :, see (6.1) and Remark 6.2,1). The following bounds on Gaussian moments

are interesting in their own right. We conclude this section by exhibiting how these estimates
improve to exact calculations in the Gaussian case. Let

(6.2) Θµpχq
def.
“ logEµ

”

exp
!1

2

ż

V pzq : χpzq2 : dz `

ż

W pzqχpzqdz
)ı

and recall ϕN from (5.1) and that : X :“ X´EµrXs for X P L2pµq. The proofs of the following
estimates will rely on Lemma 2.3.

Proposition 6.1. For all V,W P C80 pR3q with V satisfying (5.8) for λ ă c6 and supppW q Ă
BM , }W }8 ă ν for some ν ą 0, one has

(6.3) sup
Ně1

ΘµpϕN q ď cpLqλ2 ` c1pMqν2.

Similarly, for all ε P p0, 1q there exists c7pεq P p1,8q such that

(6.4) sup
Něc7pεq

Θµpϕ
ε
N q ď cpL, ρqλ2 ` c1pM,ρqν2,

for V,W as above when λ ă cpρq. Moreover, (6.3) and (6.4) hold for all d ě 3 in case λ “ 0.
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Remark 6.2. 1) In particular, for any V,W as above, the random variables 1
2x: Φ2

N :, V y `
xΦN ,W y, N ě 1, cf. (5.2)-(5.3) for notation, are (exponentially) tight by (6.3), and sim-
ilarly for Φε

N instead of ΦN using (6.4). Indeed, to deduce tightness observe for instance
that by (6.3), Eµrcoshtx: Φ2

N :, V y ` xΦN ,W yus is bounded uniformly in N , from which
the claim follows using the inequality e|x| ď coshpxq, valid for all x P R.

2) The estimate (6.4) depends very mildly on the particular choice of mollifier ρ in (6.1).
For instance, inspection of the proof below reveals that the constants can be chosen in a
manner depending on }ρ}8 only; see (6.15) below.

Proof. We first assume that W ” 0 in (6.2) and will deal with the presence of a linear term
separately at the end of the proof. Let ϕ0

N “ ϕN , cf. (5.1) and (6.1), which will allow us to
treat (6.3) and (6.4) simultaneously, the former corresponding to the case ε “ 0 in what follows.
The proof will make use of Lemma 2.3; we first explain how its hypotheses (2.12)-(2.14) fit the
present setup. Consider the functional

(6.5) F εN pϕq
def.
“

1

2

ż

V pzqϕεN pzq
2dz, ε P r0, 1s,

which, up to renormalization, corresponds to the exponential tilt defining Θµpϕ
ε
N q in (6.2) (when

W “ 0). For ε “ 0, recalling (5.1), one writes for all N ě 1,

(6.6) F 0
N pϕq “

1

2

ÿ

x

VN pxqϕ
2
x,

with VN as in (2.6), which is of the form (2.12) with Qλ “ diagpVN q. By assumption on V ,
cf. (5.8), supppV q Ă BL hence diampVN q ď NL. Moreover,

}VN}8
(2.6)
ď N´2}V }8

(5.8)
ď λpNLq´2,

that is, Qλ “ diagpVN q satisfies (2.13) and (2.14) with R “ NL, whenever λ ă c3, which we
tacitly assume henceforth. The case ε ą 0 follows a similar pattern. Here one obtains using
(6.1) that (6.5) has the form (2.12) and (2.13) is readily seen to hold with R “ NpL ` 2q. To
deduce that (2.14) is satisfied, one applies Cauchy-Schwarz and uses that ρεp¨q ď ε´d}ρ}8 and
ş

ρεp¨ ´ wqdw “ 1, whence
ş

ρεpz ´ wq2dw ď ε´d}ρ}8, to obtain

2F εN pϕq
(6.1)
“ Nd´2

ż

dzV pzq
´

ż

ρεpz´wqϕtNwudw
¯2
ď Nd´2

ż

dz|V pzq|ε´d}ρ}8

ż

ϕ2
tNwu1|z´w|ăεdw

“ N´2}ρ}8
ÿ

x

ϕ2
x

ż

dwNd ¨ 1tNwu“x

´

ε´d
ż

Bpw,εq
|V pzq|dz

¯ (5.8)
ď λpNLq´2}ϕ}2`2pBRq,

yielding (2.14). All in all, it follows that eF
ε
N P L1pµq for all ε P r0, 1s on account of Lemma 2.3,

which is in force. In particular, together with Jensen’s inequality, this implies that Θµpϕ
ε
N q,

ε P r0, 1s, as appearing on the left of (6.3)-(6.4), is well-defined and finite for all N ě 1.
For t P r0, 1s, define Θµpχ ; tq as in (6.2), but with ptV, 0q instead of pV,W q, whence

Θµpχ ; 0q “ 0 and Θµpχ ; 1q “ Θµpχq. Observing that

d

dt
Θµpϕ

ε
N ; tq

ˇ

ˇ

ˇ

t“0
“

1

2

ż

V pzqEµr : ϕ
ε
N pzq

2 : sdz “ 0,

one finds, with a similar calculation as that leading to (4.14),

(6.7) Θµpϕ
ε
N q “

ż 1

0

ż s

0
varµεt p: F

ε
N pϕq :q ds dt “

ż 1

0

ż s

0
varµεt pF

ε
N pϕqq ds dt,
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where F εN is given by (6.5) and

(6.8) dµεt “ Θµpϕ
ε
N ; tq´1e:tF εN pϕq:dµ “ Eµre

tF εN pϕqs´1etF
ε
N pϕqdµ.

We now derive a uniform estimate (in N and t) for the variance appearing on the right-hand
side of (6.7). We will use (2.16) for this purpose. For z, z1 P R3 and ε ě 0, let

(6.9) ρεN pz, z
1q “ N3

ż

tNz1u
N

`r0, 1
N
q3
ρεpz ´ wq dw

and define ρ0
N pz, z

1q “ N3 ¨ 1tNzu“tNz1u. Abbreviating Bx “
B
Bϕx

, one sees that for all x P Zd

(6.10) Bxϕ
ε
N pzq “ N1{2 ¨N´3ρεN pz, x{Nq, z P Rd

(i.e. the right-hand side of (6.10) equals N1{2 ¨ 1ttNzu“xu when ε “ 0). Using (6.10), one further
obtains that

BxByF
ε
N pϕq “ Bx

ż

dzV pzqByϕ
ε
N pzq

2 “ 2

ż

dzV pzqBxϕ
ε
N pzqByϕ

ε
N pzq

“ 2N

ż

dzV pzqN´3ρεN pz, x{Nq ¨N
´3ρεN pz, y{Nq.

(6.11)

Now, one readily infers using (6.10) and the fact that ϕ is centered under µεt that Eµεt rBxF
ε
N pϕqs “ 0.

Recalling the rescaled Green’s function gN “ g0
N from (2.7), applying (2.16) with the choice

µ “ µεt and F “ F εN , observing that the first term on the right-hand side vanishes and
substituting for BxByF

ε
N , one deduces that

varµεt pF
ε
N q ď c8N

6

ĳ

dvdwN´1gN pv, wq

ˆN6

ĳ

dv1dw1N´1gN pv
1, w1qBtNv1uBtNvuF BtNw1uBtNwuF

“ 4c8

ĳ

V pzqgεN pz, z
1q2V pz1qdzdz1

(6.12)

where, for all ε ě 0, we have introduced

(6.13) gεN pz, z
1q “

ĳ

ρεN pz, vqgN pv, wqρ
ε
N pz

1, wq dvdw, z, z1 P Rd

and we also used the fact that ρεN pz, z
1q “ ρεN pz, z

2q whenever tNz1u “ tNz2u, as apparent from
(6.9). Note that (6.12) is perfectly valid for ε “ 0, in which case g0

N “ gN as in (2.7) in view of
(6.13) and the definition of ρ0

N below (6.9). To complete the proof, it is thus enough to supply a
suitable bound for the quantity in the last line of (6.12). To this effect, let pGεN q

k, k “ 1, 2, (with
pGεN q

1 ” GεN ) denote the operator with kernel gεN p¨, ¨q
k, i.e. pGεN q

kfpzq “
ş

gεN pz, z
1qkfpz1qdz1,

for any function f such that
ş

gεN pz, z
1qk|fpz1q|dz1 ă 8 for all z P Rd. The following result is key.

Lemma 6.3. For all V P C80 pRdq with supppV q Ă BL and ε P p0, 1q,

sup
Něc7pεq

›

›GεNV
›

›

8
ď cpL, }ρ}8q}V }8 pd ě 3q,(6.14)

sup
Něc7pεq

›

›pGεN q
2V

›

›

8
ď cpL, }ρ}8q}V }8 pd “ 3q,(6.15)

and (6.14)-(6.15) hold for ε “ 0 uniformly in N ě 1 with a constant c independent of ρ.
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We postpone the proof of Lemma 6.3 for a few lines. Applying (6.15) to (6.12) and recalling
the assumptions on V specified in (5.8), which are in force, it readily follows that varµ0

t
pF 0

N q ď

cpLqλ2 for all N ě 1, t P r0, 1s and varµεt pF
ε
N q ď cpL, ρqλ2 for all N ě c7pεq, t P r0, 1s and

ε P p0, 1s. Plugging these into (6.7), the asserted bounds (6.3) and (6.4) follow for W “ 0.

The caseW ‰ 0 is dealt with by considering µ̃ε
def.
“ µεt“1, the latter as in (6.8), and introducing

dµ̃εt “
1

Eµ̃εre
tF̃ εN pϕqs

etF̃
ε
N pϕqdµ̃ε, F̃ εN pϕq “

ż

W pzqϕεN pzqdz

for t P r0, 1s and ε P r0, 1s. Then, one defines Θ̃µpχ ; tq as in (6.2), but with pV, tW q instead of
pV,W q and repeats the calculation starting above (6.7) with Θ̃µpχ ; tq in place of Θµpχ ; tq. The
resulting variance of F̃ εN can be bounded using (2.15) (or (2.16) which boils down to the former
since BxByF̃

ε
N “ 0) and (6.14). The bounds (6.3)-(6.4) then follow as Θ̃µp¨ ; t “ 1q “ Θµp¨q.

We now supply the missing proof of Lemma 6.3, which, albeit simple, plays a pivotal role
(indeed, (6.15) is the sole place where the fact that d “ 3 is being used). Before doing so, we
collect an important basic property of the (smeared) kernel gεN p¨, ¨q introduced in (6.13) that will
be useful in various places. Recall that gεN implicitly depends on the choice of cut-off function
ρ “ ρ1 through ρεN , cf. (6.9).

Lemma 6.4 (d ě 3). For all ε P p0, 1q and N ě ε´1,

(6.16) gεN pz, z
1q ď c}ρ}28pε_ |z ´ z

1|q2´d, z, z1 P Rd.

The proof of Lemma 6.4 is found in App. B. With Lemma 6.4 at hand, we give the

Proof of Lemma 6.3. We show (6.15) first. By assumption on V , it is sufficient to argue that

(6.17) sup
z

ż

Bp0,Lq
gεN pz, z

1q2dz1 ď c}ρ}c98L, L ě 1,

uniformly in N ě cpεq (and for all N ě 1 with c9 “ 0 when ε “ 0), from which (6.15)
immediately follows. We first consider the case ε “ 0, which is simpler. The fact that d “ 3
now crucially enters. Recalling gN “ g0

N from (2.7), splitting the integral in (6.17) according to
whether |z1| ď 1

N or not and arguing similarly as below (B.3), one sees that for all z P Rd and
N ě 1,

ż

Bp0,Lq
g0
N pz, z

1q2dz1 ď cN2Bp0, N´1q ` c1
ż

1
N
ď|z1|ďL

dz1

|z1 ´ z|2
ď c2L,

where the last bound follows as

(6.18)

ż

|z1|ďL

dz1

|z1 ´ z|2
ď c

ż |z|`L

0_p|z|´Lq
dr ď 2cL, for all z P R3.

This yields (6.17) for all N ě 1 when ε “ 0. For ε ą 0 and all N ě ε´1 one finds using (6.16)
that

ż

z1PBp0,Lq,|z´z1|ďε
gεN pz, z

1q2dz1 ď c}ρ}48ε
´2Bp0, εq ď c}ρ}48ε

and
ż

z1PBp0,Lq,|z´z1|ąε
gεN pz, z

1q2dz1 ď c}ρ}48

ż

|z1|ďL

dz1

|z1 ´ z|2
ď c1}ρ}48L,

using (6.18) in the last step. Together, these bounds immediately yield (6.17). The proof
of (6.14) follows by adapting the previous argument, yielding that

ş

Bp0,Lq g
ε
N pz, z

1qdz1 ď c}ρ}28L
2

uniformly in z P Rd, L ě 1 and N ě cpεq, along with a similar bound when ε “ 0.
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Remark 6.5. The case ε ą 0 in (6.5) could also be handled via a suitable random walk represen-
tation (with potential) when V ě 0. The latter is not a serious issue with regards to producing
estimates like (6.3)-(6.4) since Θµ can be bounded a-priori by replacing V by V` in (6.2). Now,
letting

QεN px, yq “ Nd´2

ż

V pzq
”

ż

ρεpz ´ wq1tNwu“xdw

ż

ρεpz ´ w1q1tNw1u“ydw
1
ı

dz

one can rewrite

F εN pϕq “
ÿ

x,y

QεN px, yqϕxϕy “ ´
1

2

ÿ

x‰y

QεN px, yqpϕx ´ ϕyq
2 `

ÿ

x

V ε
N pxqϕ

2
x,

where V ε
N pxq “

ř

y Q
ε
N px, yq. Noting that QεN px, yq ě 0 when V ě 0, this leads to an effective

random walk representation with finite-range (deterministic) conductances QεN px, yq which add
to apϕq in (1.12). In particular, the lower ellipticity only improves. The potential V ε

N is then
seen to exhibit the correct scaling (e.g. it satisfies (2.3)).

We conclude this section by refining the above arguments in the Gaussian case. Indeed
the proof of (6.3) (or (6.4)) can be strengthened in the quadratic case essentially because the
variance appearing in (6.7) can be computed exactly. This improvement will later be used to
yield the formula (5.11) in Theorem 5.1.

Thus consider a Gaussian measure µG converging in law to ψ in the sense of (5.13). For
concreteness, we define µG to be the canonical law of the centered Gaussian field ϕ with co-
variance given by the Green’s function of the time-changed process Yt “ Zσ2t, t ě 0, where Z
denotes the simple random walk, cf. above (2.1), and Σ “ σ2Id with Σ the effective diffusivity
from (5.4); see e.g. [50], Theorem 1.1 regarding the latter. Incidentally, σ2 is proportional to
EµrU

2pϕ0 ´ ϕeiqs for any 1 ď i ď d, which is independent of i by invariance of µ under lattice
rotations. The following is the announced improvement over (6.3) for µG.

Proposition 6.6 (d “ 3). For all V,W P C80 pR3q with V satisfying (5.8) for λ ă c10,

(6.19) lim
N

ΘµGpϕN q “
1

2

`

AVΣpV, V q ` E
V
Σ pW,W q

˘

(see below (5.9) and (5.12) for notation).

Proof. Referring to µGt as the measure in (6.8) with ε “ 0 and µ “ µG, it follows using (6.7)
that

(6.20) ΘµGpϕN q “

ż 1

0

ż s

0
varµGt

pF 0
N pϕqq ds dt` logEµG1

“

e
ş

W pzqϕN pzqdz
‰

with F 0
N as defined in (6.5). We now compute the terms on the right-hand side of (6.20)

separately. To avoid unnecessary clutter, we assume that σ2 ” 1. Using (5.1) and Wick’s
theorem, one finds that EµGt

rϕεN pzq
2ϕεN pz

1q2s “ 2gtVN pz, z
1q2 ` gtVN pz, zqg

tV
N pz

1, z1q, where gtVN
refers to the rescaled Green’s function (2.7). Hence,

varµGt
pF 0

N pϕqq “
1

2

ĳ

V pzqgtVN pz, z
1q2V pz1qdzdz1 “ xV, pGtVN q

2V y

(see (2.8) for notation), where we used that EµGt
rF 0
N pϕqs “

ş

V pzqgtVN pz, zqdz. Similarly,

2 logEµG1

“

e
ş

W pzqϕN pzqdz
‰

“ varµG1

` ş

W pzqϕN pzqdz
˘

“ xW,GVNW y.

Substituting these expressions into (6.20), the claim (6.19) follows by means of Lemma 2.2.
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6.2. L2-comparison. With tightness at hand, the task of proving Theorem 5.1 requires iden-
tifying the limit. A key step is the following L2-comparison estimate, which implies in particular
that : ϕ2

N : and its regularized version : pϕεN q
2 : introduced in (6.1) are suitably close. More

precisely, we have the following control. Recall that : X2 :“ X2 ´ EµrX
2s for X P L2pµq.

Proposition 6.7 (L2-estimate, ε P p0, 1q). For all V P C80 pR3q such that supppV q Ă BL, there
exists c11 “ c11pε, Lq P p1,8q such that

(6.21) lim
εŒ0

sup
Něc11

›

›

›

›

ż

V pzq
“

: ϕN pzq
2 : ´ : ϕεN pzq

2 :
‰

dz

›

›

›

›

L2pµq

“ 0, pd “ 3q.

Moreover, for such V ,

(6.22) lim
εŒ0

sup
Něc11

›

›

›

›

ż

V pzq
“

ϕN pzq ´ ϕ
ε
N pzq

‰

dz

›

›

›

›

L2pµq

“ 0, pd ě 3q.

We start by collecting the following precise (i.e. pointwise) estimate for the kernel gεN defined
in (6.13), at macroscopic distances, which can be seen to play a somewhat similar role in the
present context as Lemma 6.4 did to deduce tightness within the proof of Proposition 6.1. For
purposes soon to become clear, we also consider (cf. (6.13))

(6.23) g̃εN pz, z
1q “

ż

gN pz, wqρ
ε
N pw, z

1q dw.

Let Gpy ´ xq ” Gpx, yq “ d
2πd{2

Γpd2 ´ 1q|x ´ y|2´d, for x, y P Rd denote (d times) the Green’s

function of the standard Brownian motion in Rd, d ě 3.

Lemma 6.8 (d ě 3). For all ε ą 0 and hεN P tg
ε
N , g̃

ε
Nu,

(6.24) lim
N

sup
|y´z|ą3ε

ˇ

ˇhεN py, zq ´Gpy, zq
ˇ

ˇ “ 0.

The proof of Lemma 6.8 is deferred to Appendix B. We proceed with the

Proof of Proposition 6.21. Since F pϕq ”
ş

V pzqr: ϕN pzq
2 : ´ : ϕεN pzq

2 :sdz is centered, the
square of its L2-norm is a variance. Applying (2.16) (see also (6.12)) and using (6.11) yields

(6.25) }F }2L2pµq ď 4c8

ĳ

V pzqkεN pz, z
1qV pz1qdzdz1

for all ε ą 0 and N ě 1, where

(6.26) kεN pz, z
1q “ gεN pz, z

1q2 ´ g̃εN pz, z
1q2 ` g0

N pz, z
1q2 ´ g̃εN pz, z

1q2, z, z1 P R3,

with gεN and g̃εN as in (6.13) and (6.23), respectively (hence the introduction of g̃εN ).
We will deal with the short- and long-distance contributions (i.e. |z´z1| À ε or not) to (6.25)

separately. Henceforth, we tacitly assume that N ě cε´1, which is no loss of generality. We
claim that for h P tg0

N , g
ε
N , g̃

ε
Nu (and N ě cε´1),

(6.27) sup
z

ż

V pz1qhpz, z1q2dz1 ď c}V }8p}ρ}8 _ 1qc
1

ε, |z ´ z1| ď 3ε.

Indeed, for h “ g0
N or gεN , this is (6.17), and the case h “ g̃εN is dealt with similarly upon noticing

that g̃εN pz, z
1q ď c}ρ}8ε

´1 for |z ´ z1| ď 3ε. The latter is obtained in much the same way as the
argument following (B.3): the absence of a mollification with ρεN from the left, cf. (6.23) and
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(6.13), will effectively make the first supremum on the right of (B.3) disappear; the rest of the
argument is the same. Returning to (6.25), restricting to the set |z ´ z1| ď 3ε, bounding the
kernel in (6.26) by a sum of positive kernels and applying (6.28) readily gives

(6.28) sup
Něcε´1

ĳ

|z´z1|ď3ε

V pzqkεN pz, z
1q2V pz1qdzdz1 ď c}V }1}V }8p}ρ}8 _ 1qc

1

ε.

(note that (6.28) is specific to d “ 3; the rest of the proof isn’t).
We now consider the case |z ´ z1| ą 3ε, which exploits cancellations in (6.26). Adding and

subtracting G (see above Lemma 6.8 for notation) in (6.26), using the elementary estimate
a2 ´ b2 ď p|a| ` |b|q|a´ b|, one sees that for all N ě 1 and ε ą 0,

ĳ

|z´z1|ą3ε

V pzqkεN pz, z
1q2V pz1qdzdz1

ď 8 sup
h,h1

ĳ

|z´z1|ą3ε

|V |pzqhpz, z1q|h1pz, z1q ´Gpz, z1q| |V |pz1qdzdz1
(6.29)

where h, h1 P tg0
N , g

ε
N , g̃

ε
Nu. Now, using (6.14) and its analogue for g̃εN , one obtains that

(6.30) sup
Něcε´1

`

}GεNV }8 _ }G̃
ε
NV }8

˘

ď cp}ρ}8 _ 1qc
1

L2}V }8

where, with hopefully obvious notation, G̃εN is the operator with kernel g̃εN ; cf. above Lemma 6.3
for notation. Going back to (6.29), bounding |h1pz, z1q´Gpz, z1q| by its supremum over |z´z1| ą
3ε and estimating the remaining integral over |V |pzqhpz, z1q|V |pz1q using (B.8) and (6.30), one
sees that the right-hand side of (6.29) is bounded for N ě cε´1 by

c}V }1}V }8p}ρ}8 _ 1qc
1

sup
h

sup
|z´z1|ą3ε

|hpz, z1q ´Gpz, z1q|,

where the sup is over h P tg0
N , g

ε
N , g̃

ε
Nu, which in particular tends to 0 as N Ñ 8 on account of

(6.24). Together with (6.25) and (6.28), this readily yields (6.21), for suitable choice of c11.
The proof of (6.22) is simpler. Proceeding as with (6.21), using (2.16) (or (2.15)), one

obtains a bound of the form (6.25) where kεN “ gεN ´ g0
N . The proof then proceeds by adding

and subtracting G, splitting the resulting integral and using (6.24) to control the long-distance
behavior.

6.3. Convergence of smooth approximation. As a last ingredient for the proof of The-
orem 5.1, we gather here the convergence of the smooth field ϕεN introduced in (6.1). This
convergence is not specific to dimension d “ 3. In a sense, (6.32) below can be viewed (at
the level of finite-dimensional marginals) as a consequence of (5.13). Some care is needed to
improve this convergence to a suitable functional level, which requires controlling the modulus
of continuity of ϕεN . This will bring into play Lemma 2.5.

Define the centered Gaussian field

(6.31) Ψεpzq “ xΨ, ρε,zy, z P Rd

where ρ “ ρ1 refers to the choice of mollifier above (6.1) and ψ is defined in (5.6). In the
sequel we regard both the law of ϕεN “ pϕ

ε
N pzqqzPRd under µ and Ψε “ pΨεpzqqzPRd under PΣ as

probability measures on C “ CpRd,Rq (which is all the regularity we will need in the sequel),
endowed with its canonical σ-algebra.
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Proposition 6.9 (d ě 3, ε P p0, 1q).

µ ˝ pϕεN q
´1 converges weakly to PΣ ˝ pΨεq´1 as N Ñ8.(6.32)

The proof of (6.32) will follow readily from the next two lemmas. We first establish con-
vergence of finite-dimensional marginals and then deal with the regularity estimate needed to
deduce convergence in C.

Lemma 6.10. For K Ă Rd a finite set,

(6.33) pϕεN pzq : z P Kq
d
ÝÑ pψεpzq : z P Kq as N Ñ8.

Proof. For λz P R, let W p¨q “
ř

zPK λzρ
ε,zp¨q P C80 pRdq by assumption on ρ, cf. above (6.1).

Then by (5.13)

2 logEµre
ř

zPK λzϕεN pzqs “ 2 logEµre
xW,ϕN ys

N
ÝÑ EΣpW,W q “

ÿ

z,z1

λzE
ΣrΨεpzqΨεpz1qsλ1z

using (6.31) and (5.6) for the last equality (for a proof of (5.6), see e.g. [52] or the proof of
Theorem 1.13 in [6], Section 5.2). Thus (6.33) holds.

To establish the required regularity, we use Lemma 2.5 to control higher moments.

Lemma 6.11 (ε ą 0, d ě 3). For all k ě 1, z, w P Rd,

sup
N
Eµ

“
ˇ

ˇϕεN p0q|
‰

ď cpεq,(6.34)

sup
N
Eµ

“ˇ

ˇϕεN pzq ´ ϕ
ε
N pwq|

2k
‰

ď cpk, εq|z ´ w|k,(6.35)

Proof. Using (2.15) (or (2.21) with k “ 1) one obtains that varµpϕ
ε
N p0qq ď cgεN p0, 0q, with gεN as

in (6.13). The uniform (in N) bound (6.34) then follows from Lemma 6.4 and Cauchy-Schwarz.
Proceeding similarly, using (2.21) for k ě 1, one deduces (6.35) using the fact that

sup
N
|gεN px, zq ´ g

ε
N px,wq| ď cpεq|w ´ z|, x P Rd,

which is obtained by considering the cases |x´ z| ď 3ε and ą 3ε separately, using e.g. (6.24) in
the latter case and the uniform bound sup|z|ď3ε |∇zg

ε
N p0, zq| ď cpεq in the former case.

Proof of Proposition 6.9. Let η ą 0. Using (6.34) one finds a “ apη, εq P p0,8q such that

(6.36) Pµ
“
ˇ

ˇϕεN p0q| ě a
‰

ď η, for all N ě 1.

Let wN pδq “ sup|z´w|ďδ |ϕ
ε
N pzq´ϕ

ε
N pwq| denote the modulus of continuity of z ÞÑ ϕεN pzq. Using

(6.35) with, say, k “ d`1, one classically deduces, see e.g. [61], Cor. 2.1.4 for a similar argument
when d “ 1, see also [40], Lemma 1.2, for a multi-dimensional version of Theorem 2.1.3 in [61],
which is used to deduce Cor. 2.1.4, that

(6.37) lim
δÑ0

lim sup
NÑ8

Pµ
“

wN pδq ě η
‰

“ 0.

Together, (6.36) and (6.37) imply tightness in C of the family of laws on the left of (6.32), see
[12] Thms. 7.3 and 15.1, and the asserted convergence in (6.32) follows upon using (6.33) to
identify the limit.
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7 Denouement

With the results of the previous section at hand, notably Propositions 6.1, 6.7 and 6.32, we have
gathered the necessary tools to proceed to the

7.1. Proof of Theorem 5.1. Throughout this section, we assume that V,W P C80 pR3q with
V satisfying (5.8) and

(7.1) λ ă 1
2c6 ^ c10

(cf. Propositions 6.1 and 6.6). For such V,W , we introduce the shorthand (recall ϕN from (5.1))

(7.2) ξN
def.
“

1

2

ż

V pzqϕ2
N pzqdz `

ż

W pzqϕN pzqdz

and ξεN defined analogously with ϕεN (see (6.1)) in place of ϕN everywhere. The proof of
Theorem 5.1 combines the following three claims, which correspond to three distinct steps in
taking the scaling limit. Of these three steps, only the first and last, cf. (7.3) and (7.9) rely
on the fact that d “ 3. The first lemma asserts that the relevant generating functionals of
pϕN , : ϕ

2
N :q are well approximated by those of the ε-regularized field ϕεN when the mesh size 1

N
is sufficiently large. This relies crucially on the L2-estimate of Proposition 6.6, along with the
tightness implied by Proposition 6.1.

Lemma 7.1 (d “ 3). For suitable cpεq P p1,8q,

γpεq
def.
“ sup

Něcpεq

ˇ

ˇEµre
:ξN :s ´ Eµre

:ξεN :s
ˇ

ˇÑ 0 as εÑ 0.(7.3)

Proof. For 0 ă η ď 1 to be chosen shortly and ξN as in (7.2), consider the event

AN pηq “
 

|: ξN : ´ : ξεN :| ą η
(

Looking at Eµre
:ξN : ´ e:ξεN :s, distinguishing whether AN pηq occurs or not, applying Cauchy-

Schwarz in the former case while using in the latter case the elementary estimate |ex´ey| ď cexη
valid for all x, y P R with |x´ y| ď ηpď 1q, one finds that for all ε ą 0, N ě 1 and 0 ă η ď 1,

(7.4)
ˇ

ˇEµre
:ξN :s ´ Eµre

:ξεN :s
ˇ

ˇ ď cηEµre
:ξN :s `

´

Eµre
:2ξN :s1{2 ` Eµre

:2ξεN :s1{2
¯

PµrAN pηqs.

Now, recalling L from condition (5.8), choosing L1 large enough so that supppW q Ă BL1 and
letting cpεq “ c7pεq_c11pε, Lq_c11pε, L

1q in (7.3) (cf. Prop. 6.1 regarding c7 and Prop. 6.6 regard-
ing c11), applying (6.3), (6.4) (cf. also (7.1) for the relevant choice of λ) and using Chebyshev’s
inequality, one obtains from (7.4) that for all ε ą 0 and 0 ă η ď 1,

(7.5) γpεq ď c1η ` c2η´2 sup
Něcpεq

} : ξN : ´ : ξεN : }L2pµq.

Picking η ” ηpεq “ 1 ^ supNěcpεq } : ξN : ´ : ξεN : }
1{3
L2pµq

and applying the bounds (6.21)-(6.22)

from Proposition 6.7, which is in force by choice of cpεq, one finds that ηpεq Ñ 0 as ε Ñ 0 and
with (7.5) that γpεq ď cηpεq. Thus, (7.3) follows.

The second claim identifies the limit for the functionals of the smooth approximation at fixed
cut-off ε ą 0, which is not specific to d “ 3 since ε is fixed. The convergence essentially follows
from tightness and Proposition 6.9. Let ξε refer to the quantity in (7.2) when ϕN is replaced by
Ψε, cf. (6.31). The following is tailored to our purposes.
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Lemma 7.2 (d ě 3). For all ε P p0, 1q,

lim
N
Eµre

:ξεN :s “ EΣre:ξε:s.(7.6)

Proof. With L,L1 such that supppV q Ă BL, supppW q Ă BL1 , let K “ BL_L1 Ă Rd. In view of
(7.2), eξ

ε
N ^M is a bounded continuous function of pϕεN pzq : z P Kq for every M ě 1. Using

first (6.4) with λ “ 0 and (6.32), one deduces that

(7.7) Eµr|ξ
ε
N |s Ñ EΣr|ξε|s, as N Ñ8.

Then, using (6.32) again together with (7.7), one further obtains, for all M ě 1,

Eµre
:ξεN : ^M s Ñ EΣre:ξε: ^M s as N Ñ8.

To conclude (7.6), one bounds

Eµre
:ξεN :1t: ξεN :ąMus2 ď Eµre

:2ξεN :sPµr: ξ
ε
N :ąM s

and notices upon letting M Ñ 8 that the first term on the right hand side is bounded uni-
formly in N by means of (6.4) (cf. also (7.1)), and the latter (or even (7.7)) further yields that
limM supNěcpεq Pµr: ξ

ε
N :ąM s “ 0. This completes the proof of (7.6).

Finally, the third item yields that the right-hand side of (7.6) converges towards the desired
limit as the cut-off ε is removed. Recalling Ψ from (5.6) and : Ψ2 : from (5.7), let

(7.8) : ξ : “
1

2
x: Ψ2 :, V y ` xΨ,W y

`

P L2pPΣq
˘

.

Lemma 7.3 (d “ 3).

lim
εÓ0

EΣre:ξε:s “ EΣre:ξ:s.(7.9)

Lemma 7.3 is a purely Gaussian claim. Its proof is given in Appendix C. Equipped with
Lemmas 7.1-7.3, we can give the short:

Proof of Theorem 5.1. We will show that for any V,W P C80 pR3q with with V as in (5.8) and λ
satisfying (7.1),

(7.10) : ξN : p“ ξN ´ EµrξN sq converges in law to : ξ : as N Ñ8,

which implies (5.10). As we now explain, on account Proposition 6.1, in order to obtain (7.10)
it is enough to show that for any such V,W (cf. (7.2)),

(7.11) lim
N
Eµre

:ξN :s “ EΣre:ξ:s.

Indeed, Eµre
:ξN :s “ ΘµpϕN q in the notation (6.2) and so by (6.3) (see also Remark 6.2,1)) the

sequence : ξN :, N ě 1, is tight and (7.11) implies that any subsequential limit has the same
law as : ξ :. The claim (7.10) then follows e.g. by the corollary below Theorem 5.1 in [12], p.59.

It remains to argue that (7.11) holds, which follows by combining Lemmas 7.1, 7.2 and
7.3. Let ε P p0, 1q. With γ1pεq “ |EΣre:ξε:s ´ EΣre:ξ:s|, one has for arbitrary ε P p0, 1q that
|Eµre

:ξN :s ´ EΣre:ξ:s| is bounded for all N ě cpεq by
ˇ

ˇEµre
:ξεN :s ´ EΣre:ξε:s

ˇ

ˇ` γpεq ` γ1pεq.

Picking N ě c1pεq, one further ensures by means of (7.6) that the first term is, say, at most ε,
yielding overall a bound on |Eµre

:ξN :s ´ EΣre:ξ:s| valid for all N ě c1pεq which is oεp1q as ε Ó 0
on account of (7.3) and (7.9). Thus, (7.11) follows.
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7.2. Scaling limit of occupation times and isomorphism theorem. We now return to
Theorem 4.3, with the aim of identifying the limiting behavior of the identity (4.11). As a
consequence of Theorem 5.1, we first deduce the existence of a limit for the occupation times L
appearing in (4.11) under appropriate rescaling. With L “ pLxqxPZd as defined in (4.3) and for
N ě 1, we consider

(7.12) LN pzq “ Nd´2LtNzu, z P Rd

and the associated random distribution, with values in S 1pRdq, defined by

(7.13) xLN , V y “
ż

LN pzqV pzqdz, V P SpRdq.

We now introduce what will turn out to be the relevant continuous object. For u ą 0, we consider
on a suitable space ppΩ, pF , rPΣ

u q the S 1pRdq-valued random variable rL, which is the occupation
time measure at level u ą 0 of a Brownian interlacement with diffusivity matrix Σ. That is, one
introduces under ppΩ, pF , rPΣ

u q a Poisson point process pω on the space xW ˚ of bi-infinite Rd-valued
trajectories modulo time-shift with (σ-finite) intensity measure

(7.14) upΦΣ ˝ νq,

where ν refers to the measure constructed in Theorem 2.2 of [66] and

ΦΣ : xW ˚ Ñ xW ˚, pw˚ “ r pws ÞÑ ΦΣp pw˚q “ rtΣ´1{2
pwptq : t P Rus

(i.e. pw is a representant in the equivalence class pw˚). The process pω induces the occupation-time
measure rL “ rLppωq with

x rLppωq, V y “
ÿ

i

ż 8

´8

V p pwipsqqds, for any V P SpRdq, if pω “
ÿ

i

δr pwis.(7.15)

A formula for Laplace functionals of the random measure rL is given in Prop. 2.6 of [66]. We
derive here a somewhat different identity which is more suitable to our purposes, cf. in particular
(7.21) below. Recall that p´∆Σ ´ V q is invertible whenever V satisfies (5.8) with λ ă c5.

Lemma 7.4 (d ě 3, V as in (5.8), λ ă c5).

(7.16) rEΣ
u

“

exp
 

x rL, V y
(‰

“ exp
 

u
@

V, 1`GVΣV
D(

.

Proof. Applying the analogue of (4.2) for the Poisson measure rPΣ
u , one finds using (7.14) and

(7.15) that

rEΣ
u

“

exp
 

x rL, V y
(‰

“ exp
!

u

ż

deKpxqE
Σ
x

”

e
ş8

0 V pXsqds ´ 1
ı)

“ exp
!

u

ż

deKpxq

ż 8

0
dtEΣ

x

”

e
şt
0 V pXsqdsV pXtq

ı)

“ exp
 

uxeK , G
V
ΣV yu,

where K “ supppV q, a compact set, EΣ
x denotes expectation for Brownian motion on Rd with

diffusivity Σ (cf. (5.4)) started at x P Rd, eKp¨q denotes its equilibrium measure on K and
GVΣ “ p´∆Σ ´ V q´1, cf. (5.9). As GΣeK “ 1 on K “ supppV q where GΣ “ G0

Σ, one has that
xV, 1y “ xeK , GΣV y and (7.16) follows upon noticing that (omitting superscripts Σ)

xeK , pG
V ´GqV y

“ xGeK , p´∆qpGV ´GqV y “ xGeK , p´∆GV ´ 1qV y “ xGeK , V G
V V y “ xV,GV V y.
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Now recall PVu from (4.2). The following relates the fields LN and rL in (7.12) and (7.15).

Corollary 7.5 (V as in (5.8), λ ă c).

With uN “ uN´pd´2q and VN as in (2.6), one has for d “ 3 that

(7.17) xLN , V y under PVNuN converges in law to x rL, V y under rPΣ
u as N Ñ8.

Proof. With VN as above and using (4.3) and (7.12)-(7.13), one readily checks that

(7.18) xLN , V y “
ÿ

x

VN pxqLx ” xL, VNy`2

For integer N ě 1, u ě 0, let ϕN,upzq “ ϕN pzq `
?

2u with ϕN pzq as in (5.1) and set

x: Φ2
N,u :, V y

def.
“

ż

R3

V pzq : ϕN,upzq
2 : dz, for V P C80 pR3q.(7.19)

so that : Φ2
N,0 : equals : Φ2

N : in view of (5.3). Similarly as in (6.6), one has that for all u ě 0,
with uN as defined above (7.17),

(7.20) xΦ2
N,u, V y “

ÿ

x

VN pxqpϕx `
?

2uN q
2.

Together, (7.18), (7.20) and Theorem 4.3 then yield that for suitable V ,

(7.21) EVNuN
“

exLN ,V y
‰ (4.11)
“

Eµrexpt1
2xΦ

2
N,u, V yus

Eµrexpt1
2xΦ

2
N,0, V yus

“
Eµrexpt1

2x: Φ2
N,u :, V y ` ux1, V yus

Eµrexpt1
2x: Φ2

N,0 :, V yus
,

where the second equality follows using that EµrxΦ
2
N,u, V ys “ EµrxΦ

2
N,0, V ys ` u

ş

V pzqdz. By

Jensen’s inequality, which implies that Eµrexpt1
2x: Φ2

N,0 :, V yus ě 1, and on account of (6.3),
it follows from (7.21) that the family txLN , V y : N ě 1u is tight. Moreover, taking limits and
applying formula (5.11) separately to numerator (with the choice W “

?
2uV ) and denominator

(with W “ 0) on the right-hand side of (7.21), the terms proportional to xV,AVΣV y cancel and
one obtains that

(7.22) lim
N

EVNuN
“

exLN ,V y
‰ (5.11)
“ exp

 

EVΣ pW,W q
ˇ

ˇ

W“
?

2uV
` xu, V y

(

“ exp
 

uxV, 1`GVΣV y
(

.

On account of (7.16), (7.22) yields (7.17).

Remark 7.6. 1) As an immediate consequence of Theorems 4.3 and 5.1 and Corollary 7.5, we
recover the following isomorphism, derived in Corollary 5.3 of [66] (for Σ “ Id), and obtain
along with it an explicit formula for the relevant generating functionals. Let : pΨ`

?
2uq2 :

be defined as : Ψ2 : `2
?

2uΨ (under PΣ), cf. (5.7).

Corollary 7.7 (d “ 3). Under PΣ b rPΣ
u ,

(7.23) 1
2 : Ψ2 : ` rL law

“ 1
2 : pΨ`

?
2uq2 : .

Moreover, for any V as in (5.8), λ ă c,

(7.24) EΣ
“

expt1
2x: pΨ`

?
2uq2 :, V yu

‰

“ exp
 @

V, p1
2A

V ` uGV qV
D(

with GV ” GVΣ , AV ” AVΣ as in (5.9), (5.12).
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Proof. The isomorphism (7.23) follows from (5.10), (7.17) and the identity (4.11) (see also
(7.22)). The formula (7.24) is obtained from (5.11) with the choice W “

?
2uV .

2) Let L0
N denote the occupation time measure defined as in (7.12)-(7.13) but for the inter-

lacement process with intensity measure uνV“0,h“0. Let P0
u denote its law. Then one can

in fact show that for all d ě 3, with uN as in Theorem (7.5),

(7.25) L0
N under P0

uN
converges to rL under rPΣ

u as N Ñ8

(as random measures on Rd). The limit (7.25) can be obtained by starting from the
analogue of (7.16) for L0

N by exploiting the invariance principle 5.4 directly and e.g. the
bounds of [20] to deduce convergence to the right-hand side of (7.16). We omit the details.

3) It is instructive to note that the proof of Theorem 5.1 only relied on two ‘external’ ingredi-
ents, Lemma 2.3 (a consequence of (2.18)) and Theorem 5.3. Whereas the lower ellipticity
seems difficult to get by, the upper ellipticity assumption in (1.7) can be reduced. For
instance, using the results of [4, 6], it follows that Theorem 5.1 continues to hold if only

c ď V 2 and EµrV 2pBϕpeqqps ă 8, for all edges e P tei, 1 ď i ď du and large enough p ą 1.

4) It would be interesting to obtain an analogue of Theorem 5.1 in finite volume, much in
spirit like the extension by Miller [50] of the result of Naddaf-Spencer [52], cf. Theorem 5.3.
It would be equally valuable to seek such results for potentials with lower ellipticity, such as
those appearing in [13] and [51]. Suitable extensions of Brascamp-Lieb type concentration
inequalities, such as those recently derived in [47], may plausibly allow to extend the
tightness and L2-estimates in Propositions 6.1 and 6.7 to setups without uniform convexity.

A Heat kernel bounds with potential and scaling limits

We collect here the proofs of Lemmas 2.1 and 2.2, which concern estimates for the tilted kernel
qVt and the corresponding Green’s function gV introduced in (2.1) and (2.2), along with scaling
limits of the latter.

Proof of Lemma 2.1 . We first explain how (2.4) implies (2.5). For all t ě 0 and x, y, P Zd, using
the inequality ab ď 1

2pa
2 ` b2q, applying time-reversal and the Markov property, one obtains

that

(A.1) Ex
“

e
şt
0 2V pZsqds1tXt“yu

‰

ď
1

2

´

Ex
“

e
şt{2
0 4V pZsqds1tZt“yu

‰

` Ex
“

e
şt
t{2 4V pZsqds1tZt“yu

‰

¯

ď sup
z,z1

Ez
“

e
şt{2
0 4V pZsqds1tZt“z1u

‰

“ sup
z,z1

Ez
“

e
şt{2
0 4V pZsqdsq t

2
pZ t

2
, z1q

‰

.

By a standard on-diagonal estimate, it follows from (A.1) that

(A.2) q2V
t px, yq ď cpt_ 1q´d{2 sup

z
Ez

“

e
ş8

0 4V pZsqds
‰

ď c1pt_ 1q´d{2,

using (2.4) in the last step. To deduce (2.5), one applies the Cauchy-Schwarz inequality and a
well-known lower bound on qt to deduce, for all t ě 0 and x, y P Zd,

qVt px, yq ď q2V
t px, yq

1{2qtpx, yq
1{2

(A.2)
ď cpt_ 1q´d{2qt{2px, yq

1{2 ď c1qt{2px, yq.
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We now show (2.4). Let r “ diampsupppV q. By translation invariance, we may assume that
supppV q Ă Br “ pr´r, rs X Zqd. Assume that (2.3) for some ε ą 0 to be determined, which
translates to V ď ε

r2 . Then, with TB “ inftt ě 0 : Zt R Bu denoting the exit time from B Ă Zd,
for all x P Zd, one obtains

(A.3) sup
αě1

Ex
“

e
şTBαr
0 2V pZtqdt

‰

ď sup
αě1

Ex

”

e2ε
TBαr
r2

ı

ď c12

whenever ε ď c
α2 for some small enough c P p0, 1q, using that supx,Ně1Exre

cN´2TBN s ď c12 in
the last step.

Now consider the sequence of successive return times to Br and departure times from Bαr:
i.e., R1 “ HBr “ inftt ě 0 : Zt P Bru and for each k ě 1, define Dk “ TBαr ˝ θRk ` Rk (with
the convention that Dk “ 8 whenever Rk “ 8) and Rk`1 “ R1 ˝ θDk ` Dk (with a similar
convention), where θs, s ě 0, denote the canonical shifts for Z. Moreover, let

(A.4) γpαq
def.
“ sup

yPZdzBαr
PyrR1 ă 8s.

By transience, one has the partition of unity 1 “ 1tR1 “ 8u `
ř

kě1 1tRk ă 8 “ Rk`1u. Since
supppV q Ă Br, no contribution to

ş8

0 2V pZtqdt arises on the event tR1 “ 8u.
Hence, applying the strong Markov property successively at times Rk and Dk´1, it follows

that

Ex
“

e
ş8

0 2V pZtqdt
‰

ď 1`
ÿ

kě1

Ex

”

ź

1ďnďk

exp
!

ż Dn

Rn

2V pZtqdt
)

1tRkă8u

ı

ď 1`
ÿ

kě1

Ex

”

ź

1ďnăk

exp
!

ż Dn

Rn

2V pZtqdt
)

1tRkă8uEXRk

”

e
şTBαr
0 2V pZtqdt

ıı

(A.4),(A.3)
ď 1`

ÿ

kě1

Ex

”

ź

1ďnăk

exp
!

ż Dn

Rn

2V pZtqdt
)

1tRk´1ă8u

ı

¨ γpαq ¨ c12 ď 1`
ÿ

kě1

pγpαqc12q
k,

where the last step follows by a straightforward induction argument. In view of (A.4), γpαq Ñ 0
as α Ñ 8. Thus, picking α such that γpαq ď 1

2c12
, (2.4) follows with the choice ε “ c

α2 ,
cf. below (A.3).

Next, we prove Lemma 2.2, which is employed within the proof of Proposition 6.6 for the
computation of the limiting generating functionals in the Gaussian case.

Proof of Lemma 2.2. Let L1 be such that supppfq Ă r´L1, L1sd. Combining Lemma 6.3 in case
ε “ 0 with the bound (2.5) (note to this effect that the condition (2.3) applies with the choice
V “ VN uniformly in N ě 1 whenever V satisfies (5.8)), it follows that

›

›GVNf
›

›

8
ď cpL,L1q}f}8

uniformly in N for all d ě 3, along with a similar bound for pGVN q
2 when d “ 3. The same

conclusions apply to GV , pGV q2.
We now show (2.10). Recalling (2.7), rescaling time by N´2 and using translation invariance

of Px, one rewrites for arbitrary T ą 0 and all N ě 1, with ZNt “
1
NZN2t the diffusively rescaled

simple random walk (cf. above (2.1) for notation),

(A.5) xf,GVNfy “ aN pT q ` bN pT q,

where

aN pT q “ N´d
ż

r0,1qdˆr0,1qd
dz1dz2

ÿ

xPZd
fp xN `

z1
N qE0

”

ż T

0
dt e

şt
0 V pZ

N
s qdsfp xN `

z2
N ` Z

N
t q

ı
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and bN pT q is the corresponding expression with integral over t ranging from rT,8q instead.
Note that by assumption on f , the sum over x is effectively finite and restricted to x satisfying
|x|8 ď NL1. Using the fact that the functions fp xN `

z
N ` ¨q for |x|8 ď NL1, z P r0, 1qd, are

equicontinuous and uniformly bounded and applying the invariance principle for Z together with
a straightforward Riemann sum argument, one concludes that for all T ą 0,

(A.6) aN pT q
N
ÝÑ

ż

dzfpzq

ż T

0
Wz

“

e
şt
0 V pBsqdsfpBtq

‰

dt.

To deal with bN pT q one applies the heat kernel estimate (2.5) (to V “ VN ), thus effectively

removing the tilt e
şt
0 V pZ

N
s qds and uses the on-diagonal estimate P0rZt “ xs ď ct´d{2 to obtain

(A.7) sup
N
bN pT q ď cpL1q}f}28T

´ d´2
2 , T ą 1.

As the right-hand side of (A.7) tends to 0 as T Ñ8, (A.6) and (A.7) yield (2.10).
To obtain (2.11) (now assuming d “ 3), with GV pz, wq denoting the kernel of the potential

operator GV in (2.9), one argues separately that

ż

fpzqgVN pz, z
1q
`

gVN pz, z
1q ´GV pz, z1q

˘

fpwqdzdz1
N
ÝÑ 0,(A.8)

ż

fpzqGpz, zq
`

gVN pz, z
1q ´GV pz, z1q

˘

fpwqdzdz1
N
ÝÑ 0,(A.9)

from which (2.11) readily follows. We only show (A.8); the case of (A.9) is handled similarly.
Let cN refer to the absolute value of the restriction of the integral on the left-hand side of (A.8)
to |z ´ z1| ă 1

N . Bounding the difference of Green’s functions crudely by a sum, applying (2.5)
along with its continuous counterpart and arguing similarly as in the display above (6.18), one
deduces that cN ď cN´1 for all N ě 1, whence cN Ñ 0 as N Ñ8.

Writing c1N for the corresponding quantity when |z´z1| ě 1
N , one simply bounds gVN pz, z

1q ď c
in this regime (using again (2.5) to remove V ; cf. also (2.7) and note that gpx, yq ď c|x ´ y|´1

for all x, y P Z3). Then the argument yielding (2.10) implies that c1N Ñ 0 as N Ñ8, and (A.8)
follows.

B Properties of the kernel gεNp¨, ¨q

We supply here various proofs which were omitted in the main body dealing with gεN defined in
(6.13). We first give the proof of Lemma 6.4.

Proof of Lemma 6.4. Since ρεp¨q is supported on the ball of radius ε, (6.9) implies that

(B.1) for all N ě ε´1, ρεN pz, z
1q “ 0 unless |z ´ z1| ď 2ε.

In particular, combining (B.1) and the pointwise estimate ρεN pz, z
1q ď ε´d}ρ}8, which is readily

obtained from (6.9), one deduces that for all N ě ε´1 and z P Rd,

(B.2) }ρεN pz, ¨q}8 “

ż

ρεN pz, z
1qdz1 ď ε´d}ρ}8Bpz, 2εq ď c}ρ}8.

Turning to (6.16), we first suppose that |z´ z1| ě 10ε. Going back to the definition of gεN pz, z
1q,

it follows using (B.1) that the double integral on the right-hand side of (6.13) has support
contained in the set Sε comprising all pv, wq P R2d such that

ˇ

ˇ|v ´ w| ´ |z ´ z1|
ˇ

ˇ ď 4ε. Thus,

for z, z1 as considered here, one has that any pv, wq P Sε satisfies |v´w|
|z´z1| ě c and moreover
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|v ´ w| ą 5ε. The latter yields in particular that |tNvu ´ tNwu| ě N |v ´ w| ´ 2 ą 1 for all
N ě ε´1. In view of (2.7) and using the classical estimate gpx, yq ď c

|x´y|d´2_1
valid for all

x, y P Zd, see for instance Theorem 1.5.4 in [41], one readily infers from this that

gN pv, wq ď c|z ´ z1|´pd´2q, for all x, y P Sε and N ě ε´1.

Substituting this bound into (6.13) and applying (B.2) (twice) then gives (6.16).
We now assume that |z´z1| ď 10ε. In that case (B.1) implies that the relevant v, w in (6.13)

satisfy |v ´ w| ď c13ε for some c13 ą 1 whenever N ě ε´1. For such N , using the pointwise
bound on ρεN (see above (B.2)), one estimates the expression in (6.13) as

(B.3) gεN pz, z
1q ď

`

sup
z
}ρεN pz, ¨q}8

˘

¨ ε´d}ρ}8 ¨ sup
v

ż

Bpv,c13εq
gN pv, wqdw.

The last integral is bounded by considering the cases |v ´ w| ď 1
N and 1

N ď |v ´ w| ď c13ε
separately (note that this is well-defined as 1

N ď ε) and bounding gN p¨, ¨q ď cN in the former

case while using that gN pv, wq ď
c1

|v´w|d´2 in the latter, thus yielding for all v P Rd,
ż

Bpv,c13εq
gN pv, wqdw ď c

ż

|z|ď 1
N

Ndz ` c1
ż

|z|ďc13ε

dz

|z|d´2
ď c2pN1´d ` ε2q.

Upon being multiplied by ε´d and uniformly in N ě ε´1 the first of these terms is of order ε´1

while the second one is of order ε2´d, which is larger as d ě 3. Feeding the resulting bound
into (B.3) and using (B.2) is then seen to imply that gεN pz, z

1q ď c1}ρ}28ε
2´d for N ě cε´1, as

desired.

We continue with the

Proof of Lemma 6.8. We consider the case hεN “ gεN first and discuss how to adapt the following
arguments to the case of g̃εN at the end of the proof. Let Gε “ ρε ˚ G ˚ ρε where ˚ denotes
convolution on Rd, i.e. pf ˚ gqpxq “

ş

fpx ´ yqgpyqdy for suitable f, g (note that Gε is well-
defined since G acts as a convolution operator on C80 pRdq Q ρε ˚ ρε). The function y ÞÑ Gpx, yq
being harmonic for all y P Rdztxu, one readily deduces using the mean-value property and the
fact that ρεp¨q is supported on Bp0, εq that

(B.4) Gεpy, zq “ Gpy, zq for all |y ´ z| ą 2ε.

Hence it suffices to show (6.24) with Gε in place of G. We introduce the intermediate kernels
pgεN q

1, pgεN q
2, respectively defined by replacing one or both occurrences of ρεN in (6.13) by ρε.

With these definitions, one has

(B.5)
ˇ

ˇpgεN q
2py, zq ´Gεpy, zq

ˇ

ˇ ď

ĳ

ρεpy ´ y1q|gN py
1, z1q ´Gpy1, z1q|ρεpz ´ z1qdy1dz1

In view of (2.7) and by Theorem 1.5.4 in [41], one knows that

sup
|y1´z1|ąε

|gN py
1, z1q ´Gpy1, z1q|

N
ÝÑ 0.

Thus, returning to (B.5), observing that |z ´ y| ą 3ε and z ´ z1, y ´ y1 P supppρεq imply that
|y1 ´ z1| ą ε, one readily deduces that

(B.6) lim
N

sup
|y´z|ą3ε

ˇ

ˇpgεN q
2py, zq ´Gεpy, zq

ˇ

ˇ “ 0.
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Next, observe that

(B.7)
ˇ

ˇpgεN q
1py, zq ´ pgεN q

2py, zq
ˇ

ˇ ď

ż

´

ż

ρεpy ´ y1qgN py
1, z1qdy1

¯

ˇ

ˇρεN pz, z
1q ´ ρεpz ´ z1q

ˇ

ˇdz1

By (6.9) the integrand in (B.7) (as a function of z1 alone) tends to 0 pointwise as N Ñ 8 for
all z1. Moreover for any f P C80 pRdq with supppfq Ă Bp0, Rq, denoting by GN the convolution
operator with kernel gN , one has that

(B.8) sup
Ně1

}GNV }8 ď cpRq}V }8, (for all d ě 3)

as

|GNV |pxq ď

ż

gN px, yq|V pyq|dy ď c}V }8N
1´d `

ż

|y|ą 1
N

gN px, yq|V pyq|dy ď cR2}V }8.

Going back to (B.7) and using (B.8), letting R “ diampsupppρεqq, the integrand on the right-
hand side is thus bounded uniformly in N (and z) by

cpRq}ρε}8 max
vPBpz1,1q

ρεpz ´ vq P L1pdz1q

and it follows by dominated convergence that

(B.9) lim
N

sup
|y´z|ą3ε

ˇ

ˇpgεN q
1py, zq ´ hεN py, zq

ˇ

ˇ “ 0

for hεN “ pgεN q
2. The conclusion (B.9) continues to hold if one chooses hεN “ gεN instead, for

then ρεpy´ y1q on the right-hand side of (B.7) must be replaced by ρεN py, y
1q and the rest of the

argument still applies since supNě1,yPRd }ρ
ε
N py, ¨q}8 ă 8, as required to obtain a uniform upper

bound in (B.8). Together, (B.9), (B.6) and (B.4) yield (6.24) for hεN “ gεN .
To deal with hεN “ g̃εN , one considers G̃ε “ G˚ρε instead of Gε (in particular (B.4) continues

to hold) and introduces pg̃εN q
2 as in (6.23) but with ρε in place of (the sole occurrence of) ρεN . One

then separately bounds |pg̃εN q
2 ´ G̃ε| and |pg̃εN q

2 ´ g̃εN | much as in (B.5) and (B.7), respectively,
but the details are simpler due to the absence of the integral over dy1. This completes the
proof.

C Some Gaussian results

In this section we prove Lemma 7.3, which is a purely Gaussian claim used in the course of
proving Theorem 5.1. We start with a preparatory result. For δ ą 0 and z P R3, define zδ to be
the unique element x P δZ3 such that z P x ` r0, 1

δ q
3. Recalling Ψε from (6.31), let Ψε

δ be the
Gaussian field defined by Ψε

δpzq “ Ψεpzδq, z P R3. The following is tailored to our purposes.

Lemma C.1. For all ε ą 0, V P C80 pR3q and k “ 1, 2,

(C.1) x: pΨε
δq
k :, V y

L2pPΣq
ÝÑ x: pΨεqk :, V y as δ Ó 0.

Proof. We only show (C.1) for k “ 2. The case k “ 1 is simpler. By Theorem 3.50 in [34], it is
enough to show convergence in L1. By Cauchy-Schwarz,

›

›x: pΨε
δq

2 :, V y ´ x: pΨεq2 :, V y
›

›

L1pPΣq
ď

ż

|V pzq|EΣ
“

p: pΨεq2pzδq ´ pΨ
εq2pzq :q2

‰
1
2dz.(C.2)
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By [34], Theorem 3.9, p.26, one knows that for all V,W P C80 pR3q,

(C.3) EΣr: xψ, V y2 :: xψ,W y2 :s “ 2
´

ĳ

V pzqGΣpz, z
1qW pz1qdzdz1

¯2
.

Using this fact and recalling that Ψεpzq “ xΨ, ρε,zy for any z P R3, it follows upon expanding
the square that

(C.4) EΣ
“

p: pΨεq2pzδq´ pΨ
εq2pzq :q2

‰

“ 4
`

GεΣp0q
2´GεΣpz´ zδq

2
˘

ď cε´1pGεΣp0q´G
ε
Σpz´ zδq

˘

,

where GεΣpz ´ wq “ xρε,z, GΣρ
εy p“ EΣrΨεpzqΨεpwqsq for z, w P R3. One readily argues using

the regularity assumption on ρ that GεΣp¨q is smooth on R3. Going back to (C.4), it follows
that supz E

Σ
“

p: pΨεq2pzδq ´ pΨ
εq2pzq :q2

‰

Ñ 0 as δ Ñ 0. Together with (C.2) and since V has
compact support, this yields (C.1).

We conclude with the

Proof of Lemma 7.3. Note that for all δ P p0, 1q, the random variable : ξεδ :“ x: pΨε
δq

2 :, V y `
xΨε

δ,W y is a polynomial of degree 2 in the variables tΨεpzq : z P Kδu where Kδ “ δZd X
ppsupppV q Y supppW qq ` r´1, 1sdq, a finite set. That is, : ξεδ : is an element of P2pHq with
H “ L2pPΣq in the notation of [34], Chap.II, p.17. Thus, (C.1) implies that : ξε :P P2pHq, its
closure in H (the chaos of order 2 in H). This in turn yields together with (5.7) that : ξ :P P2pHq.
It then follows from [34], Thm. 6.7, p.82 that the family tEΣre:χ:s : χ P tξ, ξε, ε P p0, 1quu is
uniformly bounded. Combining this fact, (5.7) and an argument similar to (7.4)-(7.5) but for
the quantity |EΣre:ξε:s ´ EΣre:ξ:s|, (7.9) follows.
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