AN ISOMORPHISM THEOREM FOR GINZBURG-LANDAU
INTERFACE MODELS AND SCALING LIMITS
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Abstract

We introduce a natural measure on bi-infinite random walk trajectories evolving in a
time-dependent environment driven by the Langevin dynamics associated to a gradient
Gibbs measure with convex potential. We derive an identity relating the occupation
times of the Poissonian cloud induced by this measure to the square of the correspond-
ing gradient field, which — generically — is not Gaussian. In the quadratic case, we
recover a well-known generalization of the second Ray-Knight theorem. We further
determine the scaling limits of the various objects involved in dimension 3, which are
seen to exhibit homogenization. In particular, we prove that the renormalized square of
the gradient field converges under appropriate rescaling to the Wick-ordered square of
a Gaussian free field on R? with suitable diffusion matrix, thus extending a celebrated
result of Naddaf and Spencer regarding the scaling limit of the field itself.
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1 Introduction

Random-walk representations and isomorphism theorems have a long history in mathematical
physics and probability theory, going back at least to works of Symanzik [62], Ray [54] and
Knight [39], among others; we refer to the monographs [31}, 48] 43, 65] and references therein
for a more exhaustive overview. Recent developments, not captured by these references, include
signed versions of some of these identities and their characterization through cluster capacity
observables, see [44] [46] [67, 27], continuous extensions in dimension two [7, [3], applications to
percolation problems in higher dimensions [44, 26], to cover times, see e.g. [23, 24} [35] 1], and
generalizations to different target spaces [8), [, B36] [45], with ensuing relevance e.g. to the study
of reinforced processes.

In the present article, we investigate similar questions for a broader class of (generically)
non-Gaussian scalar gradient models introduced by Brascamp, Lebowitz and Lieb in [16], which
have received considerable attention, see [I7, 52] [32] and further references below. In a sense,
our findings assess the “stability” of such identities under gradient perturbations.

We now explain our main results, which appear in Theorems and below. We consider
the lattice Z4, for d > 3, and for ¢ : Z? — R the (formal) Hamiltonian

def. 1
(1.1) H(p) = 5 >, Ulgs —9y),
lz—yl=1
where the sums ranges over x,y € Z% and | - | denotes the Euclidean norm. We will assume for

simplicity (but see Remark 3) below with regards to relaxing the assumptions on U) that

(1.2) U is even, U € C**(R), for some a > 0 and ¢; < U” < ¢o,

for some ¢1,co € (0,00). We then consider, for finite A = Z? and ¢ € E where E = RZd,
endowed with the corresponding product o-algebra F and corresponding canonical coordinate
maps ¢, : E — R for z € Z%, the probability measure on (E, F) defined as

(13) pi(dg) = (Z) " exp{—Ha(@)} [ [ dee [ e (0a).
zeA xeZA\A

where H) is obtained from H by restricting the summation in ([1.1)) to (neighboring) vertices x, y
such that {z,y} n A # J; the condition (1.2)) guarantees in particular that (|1.3) is well-defined.
Associated to this setup is the Gibbs measure p on (E, F) defined as the weak limit

def. ;. .
1.4 ="lim 1 Rer
(1.4) p S lim tim R
where uﬁel\r, _ refers to the analogue of the finite-volume measure in (L.3) with Ay = (Z/2NZ)?
(periodic boundary conditions) and with Hx () replaced by the massive Hamiltonian Hy (@) +
S D mer ©2, ¢ > 0; combining the Brascamp-Lieb inequality and the bounds of [20], one classically
knows that the measures M?\i . are uniformly tight in NV and ¢ and that the limits in (1.4]) are

monotone (and thus exist). The Gibbs property of y is the fact that, for any finite set A < Z¢,
with Fp = o(ps : @ € ZN\A),

(1.5) 1+ [ Fzap)(€) = p& (), u(de)-as.

The measure p will be the main object of interest in this article. We use E,[-] to denote
expectation with respect to i in the sequel. By construction, p is translation-invariant, ergodic
with respect to the canonical lattice shifts 7, : E — E, x € Z%, and E,[pz] =0 for all z € Z-.



As will turn out, our scaling limit results require probing squares of the canonical field ¢ un-
der p in an unbounded sequence of finite subsets of Z¢, thus leading to generating functionals that
involve tilting the measure p by both linear and quadratic functionals of the field, parametrized
by h and a (typically) signed potential V', with corresponding Hamiltonian (cf. )

(1.6) H'Y () i (p) = Y h@)ee — 5 V()02

(the minus signs are a matter of convenience), where
(1.7) h,V : Z¢ — R have finite support and ||V | - diam(supp(V,))? < Ao

with A\g = ¢(d,c1) € (0,90), where Vi = max{V,0} is the positive part of V, supp(V) = {z €
Z% : V(x) # 0} and diam refers to the /*-diameter of a set; see Remark 2) below regarding
the choice of Ag. Under (1.7]), we introduce the probability measure pp v on (E,F) defined by

dpin,v

(1.8) i

= Zib e { Dhi)es + 5 LV @)t

(note in particular that pu = p9,0); we refer to Lemma and Remark for matters relating
to the tilt in under condition , which, along with , we always assume to be in
force from here on. The measure py, v is a Gibbs measure for the specification (U, h, V). In case
h =0, po,v is invariant under ¢ — —¢ and has zero mean. Moreover, if U(n) = %nQ, then v
is the Gaussian free field on Z¢ (with ‘mass’ V' when V' < 0 and non-zero mean unless h = 0).
We now introduce certain dynamics corresponding to the above setup, which will play a
central role in this article. One naturally associates to p 17 in a diffusion {¢; : t = 0} on

FE attached to the Dirichlet form

(19) Er0) = | IV Py = | 5L duny.
with maximal domain in L?(up v ), where L is the generator

: o [ _yrviy Of
1.1 I — [V —HW N Y| —HMY () 9

The assumptions ([1.2)),(1.7)) ensure that the construction of {p; : ¢ = 0} falls within the realm
of standard theory; indeed {¢; : t = 0} is obtained as a solution to the system of SDE’s

(111) dau(a) = { = Y Uleu(a) = ¢ily) + V(@)pule) + hiw) bt + vV2aWi(a), @ e 2
y: ly—z|=1

with appropriate initial conditions in {p € E : Y |p.|2e?| < oo for some A > 0}, where
(Wi(x)) yega is a family of independent standard Brownian motions. The relevant drift terms in
are globally Lipschitz and guarantee the existence of a unique solution for the associated
martingale problem [59].

For a fixed realization of ¢ € E, we then consider the symmetric weights a(y) = {a(z,y; ¢) :
x,y € 74} given by

(1.12) a(z,y;9) = a(y, z;0) = U (P — oy)1{jz—y|=1)

and define the (quenched) Dirichlet form associated to the weights a(y) as

(1.13) &89, 1) = 3 Y alw v )(F(a) — Fw)? = 3 F@) (L) (a)

w?y



for suitable f € £2(Z¢), and
(1.14) Ly f(x) = Y alz,y; ) (f(y) — f(2)), for z e Z,
)

The assumptions (1.7]) ensure that the weights (1.12)) are uniformly elliptic and the construction
of the corresponding Markov chain on Z% standard. We will be interested in the evolution of
the process X; = (X¢, ;) on Z? x E generated by

(1.15) Lf(z,¢) = L' f(z,0) = LY f(2, ) () + L3D (-, 9) (@),

for suitable f, and the corresponding Dirichlet form with domain D(E) in L%(pp,y), where
Ph,v = K X [p v, With £ counting measure on 7%, given by

E(f.f) = f F(~L)fdpny

(1.16)
= NS ) S ) + | DU S,

Note in particular that L is symmetric with respect to py, v, that is, for suitable f and g,

(1.17) Jf(Lg) dpn,y = J(Lf)g dpn,v .

In line with above notation, we abbreviate p = pg, whence p = xk x u. We write P, ., for the

canonical law of X. started at (z,¢), a probability measure on the space W of right-continous
trajectories on Z¢ x E whose projection on Z% escapes all finite sets in finite time. We use 6,
t = 0, to denote the corresponding time-shift operators. It will often be convenient to write, for
f = f(X.) bounded and supported on {Xg € A}, for some finite A cc Z¢,

118) By l=3 [ mrlao)Ee 0] (: [ prvtan.ao e, [f]) |

The process X. is deeply linked to pn,v- Indeed, adapting the arguments of |21 B3], one knows
that for all functions F, G : E — R satisfying a suitable growth condition at infinity, comprising
in particular any polynomial in the field (which will be sufficient for our purposes),

0 t —
(1.19) covuh,v(F,G):j By, [0P(X0)el VI 0G(X,) | i
0

=Y By [0F (2, 0)(—(L + V) T10G) (2, )],

where 0F (v, p) = 0F(p)/0p,, for z € Z¢ and, with a slight abuse of notation, we regard V as
the multplication operator V f(x,¢) = V(x)f(x,¢), for f: Z% x E — R ; see for instance [21],
Prop. 2.2 and Remark 2.3 for a proof of . This formula links covariances associated to the
(in general non-Gaussian) random field, ¢, to a certain Markov process, X. It is thus natural
to ask if one has identities resembling the classical isomorphism theorems in the Gaussian case.

Our first result is that this is indeed the case: we derive one such identity in Theorem [4.3]
below, which can be regarded as a generalization of the second Ray-Knight theorem. Namely,
for a suitable measure }P’X which we will introduce momentarily, we prove in Theorem that
for all u > 0 and V : Z¢ - R as in ,Withuasin ,

EY Uu(dSO) exp {<V’ Lo+ ;¢?>32(Zd)}]

- fﬂ(dw) P {<V %(90' i m>2>z2(zd)} |

4

(1.20)



The key here is the measure P} governing the field £., which we now describe in some detail.
In a nutshell, PY is a Poisson process of trajectories on Z% x E modulo time-shift, whose total
number is controlled by the scalar parameter v > 0: the larger u is, the more trajectories enter
the picture. The intensity measure v/ of this process, constructed in Theorem below (cf. also
(4.10])), is roughly speaking the unique natural measure on such trajectories whose forward part
evolve like the process X generated by L as given by , with a slight twist. Namely, L is not
simply the generator for the Langevin dynamics associated to p = 0,0. Instead, the potential V'
in (1.20]) manifests itself as a drift term in the system of SDE’s governing the Langevin dynamics
in (1.10)), As it turns out, these dynamics are solutions to the SDE’s where V' corresponds
exactly to the test function in and h is appropriately chosen; see the discussion leading
up to and in Section | for precise definitions.

The field L. is then simply the cumulated occupation time of the spatial parts of all trajec-
tories in the soup. In case U in is quadratic, the components of X decouple, the projection
of the process P! onto the first coordinate has the law of random interlacements and
specializes to the isomorphism theorem of [64]; see Remarks and below for details. In
particular, the construction of the measure P! described above entails the interlacement process
introduced in [63] as a special case.

The derivation in Theorem of the intensity measure lurking behind L. in involves
a patching of several local ‘charts’ (much like the DLR-condition, see Remark and relies on
elements of potential theory associated to the process X, see Section [3l The two crucial inputs
to do the patching are i) a suitable probabilistic representation of the equilibrium measure for
space-like cylinders, and ii) reversibility of X with respect to p, which together give rise to a
desirable sweeping identity, see Proposition Once Theorem is shown, the proof of
in Theorem is essentially obtained as consequence of a suitable Feynman-Kac formula for a
killed version of the (big) process X (rather than just X).

We refer to Remark below for further comments around isomorphism theorems in the
present context of . We will return to applications of and other similar formulas,
e.g. with regards to existence of mass gaps, elsewhere [22]. The utility of identities like
for problems in statistical mechanics cannot be over-emphasized, where it can for instance be
used as a powerful dictionary between the worlds of percolation and random walks in transient
setups, see e.g. [55] for early works in this direction, and more recently [44], [67, 25] [68], 27, 26]
see also [56} [5] for percolation and first-passage percolation in the context of V-models, and
refs. at the beginning of this introduction for a host of other applications.

A version of our first result, Theorem can also be proved on a finite graph with suitable
(wired) boundary conditions, see Remark[5.2/1) below. In case U in is quadratic, was
proved in [30], and later extended to infinite volume in [64] in transient dimensions; see also [57]
for a pinned version in dimension 2 and [53] for a signed version and [58] for an “inversion”; see
also [8, 9, [49] 18] for related findings in the context of certain hyperbolic target geometries.

Similar in spirit to works of Le Jan [42] and Sznitman [66] in the Gaussian case, we then
investigate the existence of possible scaling limits for the various objects attached to . Our
starting point is the celebrated result of Naddaf-Spencer [52] regarding the scaling limit of ¢ itself
to a continuous free field W, see — and below (see also Remark 2) for related
findings among a vast body of work on this topic), whose covariance function is the Green’s
function of a Brownian motion with homogenized diffusion matrix ¥, obtained as the scaling
limit of the first coordinate of X under diffusive scaling, cf. . Given this homogenization
phenomenon for ¢, (|1.20)) may plausibly lie in the ‘domain of attraction’ of a limiting Gaussian
identity involving W.

Among other things, our second main result addresses this question. Indeed, we prove in
Theorem below that, as a random distribution on R3, cf. Section [5| for exact definitions, and



with oy (2) = NY2¢|y,|, 2z € R,

(1.21) (on, : p% 1) under p converges in law to (¥, : U2 :) as N — oo,

. 2 def. o 2
(see Theorem below for the precise statement), where : o5 : () = @3 (-) — Eu[ey(-)] and
: U2 : stands for the Wick-ordered square of U, see . Thus, our theorem can be understood
as an extension of Naddaf and Spencer’s result [52] to the simplest possible non-linear functional
of the field, i.e. ©?, when d = 3.

The nonlinearity in is by no means a small issue. The proof of results similar to
are already delicate in the Gaussian case, see [60] [42] [66], and even more so presently, due to
the combined effects of i) the absence of Gaussian tools, and ii) the need for renormalization.

Our approach also yields a new proof in the Gaussian case, which we believe is more trans-
parent. For instance, it avoids the use of determinantal formulas, such as those typically used
to express generating functionals like (1.22)) below — in fact our proof yields a different repre-
sentation of such functionals, see @ — and Remark 3). We now briefly outline our
strategy and focus our discussion on the marginal : gp?v : alone in for simplicity. We
first prove tightness by controlling generating functionals of gradient squares in Proposition [6.1
i.e. for V e CF(R?) and |A| small enough, we obtain uniform bounds of the form

(1.22) sup Eu[exp {)\J LR (2)  V(2) dz}] < 0;
N=1

cf. below. This is facilitated through the use of a certain variance estimate, see Lemma
(in particular (2.16))), which is of independent interest and can be viewed as a consequence of
the more classical Brascamp-Lieb estimate [I5]. Once ((1.22)) is shown, the task is to identify the
limit in . To do so, we first replace ¢ by a regularized version ¢%;, corresponding at the
discrete level to the presence of an ultraviolet cut-off in the limit. The removal of the divergence
at ¢ > 0 allows for an application of [52], which together with tightness estimates akin to ,
is seen to imply convergence of (p%)>.

To remove the cut-off, the crucial control is the following L?-estimate, derived in Section
Namely, we show in Proposition [6.7| that for all € > 0, there exists c(g) € (1,00) such that

(1.23) lim sup
ENO N>c(e)

f V) (on)?(2) 1 — : (930)2(2) : ] dz

L2 ()

The bound is obtained as a consequence of the Brascamp-Lieb inequality alone; no further
random walk estimates on X are necessary. In particular, no gradient estimates on its Green’s
function are needed, as one might naively expect from the form of on account of .

The controls ([1.23]) are surprisingly strong. For instance, one does not need to tune ¢ with
N when taking limits in . Rather, one can in a somewhat loose sense first let € — 0 then
N — o (cf. Lemmas below for precise statements) and serves to determine the
exact limits of the functionals in , thus completing the proof.

Returning to the identity ((1.20f), the result then enables us to directly identify the
limit of suitably rescaled occupation times Ly of £ when d = 3, and we deduce in Corollary
below that £y converges in law to the occupation-time measure of a Brownian interlacement with
diffusivity X, cf. f for precise definitions. As in the Gaussian case, the convergence
of the associated occupation time measure does not require counter-terms. In particular, the
drift term implicit in PY generated by the potential V', which breaks translation invariance, is
thus seen to “disappear” in the limit. Further, we immediately recover from this the limiting
isomorphism proved in [66] in the Gaussian case (albeit with non-trivial diffusivity ¥ stemming
from homogenization), see Corollary and below. In the parlance of renormalization



group theory, (7.23)) is thus seen to be the “Gaussian fixed point” of the identity (1.20) for any
potential U satisfying (|1.2)).

We now describe how this article is organized. In Section [2| we gather various useful prelim-
inary results. To avoid disrupting the flow of reading, some proofs are deferred to an appendix
(this also applies to several bounds related to e-smearing in Sections . In Section |3 we de-
velop some potential theory tools for the process X with generator L, see , and introduce
the intensity measure underlying P}/ in . In Section we state and prove the isomorphism,
see Theorem Section [p| gives precise meaning to our scaling limit result for the renormalized
squares of . The statement appears in Theorem and is proved over the remaining two sec-
tions Section [6] contains some preparatory work: Sections [6.1] and [6.2] respectively deal with
matters relating to tightness (cf. (1.22))) and the aforementioned L%-estimate (cf. (1.23)), see
also Propositions and below; Section deals with convergence of the smeared field at a
suitable functional level. The actual proof of Theorem then appears in Section [7] along with
its various corollaries, notably the scaling limits of rescaled occupation times (Corollary
and the limiting isomorphism (Corollary .

Throughout, ¢,c,... denote positive constants which can change from place to place and
may depend implicitly on the dimension d. Numbered constants are fixed upon first appearance
in the text. The dependence on any quantity other than d will appear explicitly in our notation.
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while the other (PFR) was still working there. We both thank Marek Biskup for being the great
host he is. PFR thanks TU Berlin for its hospitality on several occasions. We thank M. Slowik
for stimulating discussions at the final stages of this project. Part of this research was supported
by the ERC grant CriBLaM.

2 Preliminaries and tilting

In this section we first gather several useful results for the discrete Green’s function in a poten-
tial V. Lemma yields useful comparison bounds for the corresponding heat kernel in terms
of the standard (i.e. with V = 0) one under suitable assumptions on V. Lemma deals
with scaling limits of the associated Green’s function (and its square). We then discuss key
aspects of the ¢-Gibbs measures py, - introduced in (see also (1.4)) under the assumptions
,, including matters relating to existence of y, 17, which involves exponential tilts with
functionals of p?; for later purposes we actually consider general quadratic functionals of ¢, see
and conditions —. Some care is needed because the scaling limits performed
below will require the tilt to be signed and have finite but arbitrarily large support. We also col-
lect a useful variance estimate, of independent interest, see Lemma and in particular ,
see also Lemma [2.5| regarding higher moments, which can be viewed as a consequence of the
Brascamp-Lieb inequality.

Let (Z;)¢=0 denote the continuous-time simple random walk on Z? with generator given by
with @ = 1 (amounting to the choice U(t) = 3¢* in ([.12)). We write P, for its canonical
law with Zy = « and E, for the corresponding expectation. For V : Z¢ — R, we introduce the
heat kernels

(2.1) @ (z,y) = E, [es(t) V(Zs)dsl{zt:y}], for z,ye Z¢,t >0,
and abbreviate ¢; = ¢Y. The corresponding Green’s function is defined as

(2.2) 9" (x,y) =57 @ (z,y)dt, z,yeZd



(possibly +o0) with ¢° = g. We now discuss conditions on V, = max{V,0} guaranteeing good
control on these quantities, which will be useful on multiple occasions.

Lemma 2.1 (d > 3). There exists € > 0 such that, for any V : Z¢ — R with

(2.3) fsup, V (z) }diam(supp(V))? < ¢
and all z,y € Z%, one has:

(2.4) B, [elo V2] < ¢(< w0),
(2.5) @ (z,y) < dqu(z,y), t = 0.

The proof of Lemma is deferred to Appendix [A] Now, for smooth, compactly supported
V :R? - R and arbitrary integer N > 1, consider its discretization (at level N)

(2.6) Vn(z) = N2 V(£)dz, wxelZl
%+[0,1)d

and the rescaled Green’s function

(2.7) 9%(2,2') = AN©2gW(IN2), NZ)), 2,7 e RY

with g"™ referring to (2.2) with Vi given by (2.6). In accordance with the notation g = ¢,
cf. below (2.2), we set gy = g%, whence gn(z,2’) = LN9=2g(|Nz|, | N2'|). Associated to gX (-, ")
in ([2.7) is the rescaled potential operator G, with

(2.8) c%ﬂ@=j%@¢mwma

for any function f : R? — R such that { g% (z,2")¥|f(2')|dz’ < 0. The operator (G%)? is defined
similarly, with kernel gX (z,2’)? in place of gk (z,2’) on the right-hand side of (2.8). Finally,
we introduce continuous analogues for . Let W,, z € R%, denote the law of the standard
d-dimensional Brownian motion (By);>0 starting at z and

(2.9) GVf(z) = foo W, [eSBWBs)dS f(By)]dt.
0

for suitable f, V (to be specified shortly). Let {,-) refer to the standard inner product on R¢.
Lemma 2.2. For all f,V € CL(R?) with supp(V) = By, for some L =1 and ||V < cL72,

(2.10) lim (f,GRf) = {£,GV ), (d=3)
(2.11) i (£, (GR)2f) = (£, (GV)* ), (d=3).

In particular - implicitly entail that all expressions are well-defined and finite,
i.e. all of G¥;, GV (and (GY)? when d = 3) act on C°(R?) when the potential V satisfies the
above assumptions. The proof of Lemma [2.2)is given in Appendix [A]

Next, we introduce suitable tilts of the measure p defined in (1.4). The ensuing variance
estimates below are of independent interest. We state the following bounds at a level of generality
tailored to our later purposes. For real numbers Qy(x,%), z,y € Z%, indexed by A > 0 (cf.
below regarding the role of \) and vanishing unless x, y belong to a finite set, let

(2.12) Qx(,90) = > Qx(x,y)pxpy.

aj7y

and write dug, = E,[e? ] le@ du (with pu = pgp) whenever 0 < E,[e92] < o0. Recall g = ¢°
from ([2.2]) and abbreviate 0,F = 0F(y)/0p, below.



Lemma 2.3 (d > 3, (1.2), (T.7)). If, for some 0 < X\ < c3, xg € Z%, R > 1, with B = B(xo, R),

(2.13) Qx(z,y) =01ifz¢ B ory¢ B and
(2.14) Qx(#,9) < AR7Z|¢| 72 p),

then e@» € LY(p) and the following hold: for F € CY(E,R) depending on finitely many coordi-
nates such that F and 0,F, x € Z%, are in L*(ug,), one has

(2.15) var,, (F) <) g(x,y)Epuq, [0:F 0,F).
w?y
If moreover, F € C*(E,R) and 0,0,F € L*(uq,) for all z,y € Z%, then
(2.16) var,, (F) <c g(z,y) (EMQA [0:F)Bug, [6,F] + ¢ 3 9(a', ) Epg [000,F ay/ayp]).
T,y x/7y/

Remark 2.4. 1) By adapting classical arguments, see e.g. [21, Corollary 2.7], one readily shows
that the conclusions of Lemma (and thus also of Lemma below) continue to hold
if one considers the measure p5, ¢, with exponential tilt of the form Q(¢, ¢) + >, h(x)¢q,

for arbitrary h as in .
2) In particular, Lemma applies with the choice
(2.17) Qxo(7,y) = V(z)H{z =y},
for V as in with A\g = ¢3. Indeed with the choice R = diam(supp(V')), one readily
finds zo such that is satisfied. Moreover, with B = B(x¢, R), yields that
@(2:9) < Vi leo - Ilas) 2 AR 1ol

i.e. (2.13)) holds. Lemma (along with the previous remark) thus implies that the tilted
measure fpy introduced in (1.8) is well-defined and satisfies the estimates (2.15) and

(2.16)) if g < ¢3 in (1.7)). In fact, in the specific case of (2.17)), the same conclusions could
instead be derived by combining (1.19)) with (2.18]) below and the heat kernel bound ([2.5).

Proof. In view of (1.12), (1.14) and (1.15)) and (1.7), observe that (with L = L%0)

(2.18) —L>-L¥ > A

as symmetric positive-definite operators (restricted to Dom(—A), tacitly viewed as a subset of
d . .

RZ°*E independent of ¢ € E); here Af(x) = 2y~ (f(y) — f(z)), for suitable f : 7 - R

(e.g. having finite support), so that (—A)7'1,(z) = g(z,y) for all 2,y € Z¢ with g = ¢°,

cf. (2.2). By assumption on H in (|1.2), it follows that (see below ((1.3) regarding Hy) for all
Ao B ,andpe FE

-
(2.19) D*Hp(p) = o, —A80>42(§) = 4R 2”9"“%(3)

where D?H), refers to the Hessian of H, and the last bound follows by a discrete Sobolev
inequality in the box B, as follows e.g. from Lemma 2.1 in [I13] and Hélder’s inequality. Together

with (2.14), (2.19) implies that whenever A < ¢4/2 = ¢3,
Hyx=H —Q\



satisfies D?H), > ¢/(—A), in the sense that the inequality holds for the restriction of either side
to £2(A) with a constant ¢’ uniform in A. This implies that the measure I/i = uf\ @, defined as
in . ) but with H) in place of H is log-concave and it yields, together with the Brascamp-Lieb
inequality, uniformly in A and &,

(2.20) var ¢ (F) < E ¢ [(0.F, (D*H)) ' 0.F)] < cE L [OF (= A) to.F)]

for suitable F' (say depending on finitely many coordinates), where (-, -> denotes the £?(A) inner
product. In particular, choosing F' = ¢y and using that 2d(—A)"'1,(z) / g(z,y) < © as
A 7% one readily deduces from the resulting uniform bound in (2.20) and the Gibbs property

(1.5) that e®* € L'(1), and ([2.15) then follows upon letting A ' Z% in (2.20).
To obtain (2.16)), one starts with (2.15)) and introduces (—A)*l/ 2 (defined e.g. by spectral
calculus) to rewrite the right-hand side of (2.15) up to an inconsequential constant factor as

Epug, [(0.F, (=A)"'0.F)] ZEMQ A) 2o F) (x)]
Writing the second moment on the right-hand side as a variance plus the square of its first

moment and applying (2.15]) once again to bound var, ((=A)~120.F)( - follows. [

By iterating (2.15)), one also has controls on higher moments. In view of Remark above,
the following applies in particular to uy 1 for any h,V as in (1.7)).

Lemma 2.5. Under the assumptions of Lemma for any V : Z% — R with finite support
and all integers k = 0,

(2.21) By, [{p, V)] < c(2k)V, GV,
where V.GV )e, = >, , V(z)g(z,y)V(y).

Proof. Abbreviating M (k) = E,, [(¢, V%], one has by (2.15),

(2.22) M(2k) < M(k)* + ¢ g(2,y) Eug, [(0alip, V) (30, V)]

x’y

= M(k)* + ck*(V,GV ), M(2(k — 1)).

Defining ¢(k) = 0 for odd k and observing that M (k) vanishes for such k, (2.21)) readily follows
from (2.22) and a straightforward induction argument, with ¢(2k) = c(k)? 4 ck?c(2(k —1)). O

3 Elements of potential theory for X. and intensity measure

For the remainder of this article, we always tacitly assume that conditions ) and . are
satisfied for the data (U, h, V). In this section, we develop various tools around the process X.
with generator L given by ([L.15] - Among other things, these will allow us to define a natural
intensity measure vy, 1y on bi-infinite 7% x E-valued trajectories, see Theorem |3 . 5 below. This
measure is fundamental to the isomorphism theorem derived in the next section.

We start by developing useful formulas for the equilibrium measure and capacity of “cylin-
drical” sets. For K a finite subset of Z%, abbreviated K cc Z%, we write Qg = K x E with
E = RZ" for the corresponding cylinder and abbreviate Qn = Qp,, where By = [—N, N4 nzd
is the discrete box of radius N. We use 0K to denote the inner boundary of K in Z% and
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K¢ = 7N\ K. Recalling (-, ) from (1.16) with domain D(E), we then define the capacity of Q,
for arbitrary K cc Z%, as

(3.1) cap(Qx) = inf {E(f, f) : f € D(E), fi(,9) = 1, lim f(z,-) = 0}

|z|—>c0

(with inf & = 00). Note that cap = capy,y, £ = &y, cf. , along with various potential-
theoretic notions developed in the present section (e.g. eg, , hq, below), all implicitly depend on
the tilt (h, V). In view of (1.16]), restricting to the class of functions f(z,¢) = f(z) satisfying the
conditions in ) but independent of ¢, and observing that E,, | [a(z,y,¢)] < c2 for [z—y| =1

due to and ., it follows that
(3.2) cap(Qk) < ¢z - capga(K) < oo for all K cc 74,

where capyqa(K) refers to the usual capacity of the simple random walk on Z¢. Similarly,
neglecting the contribution from &; and applying Fatou’s lemma, one obtains that

(3.3) cap(Qk) = ¢1 - capga(K) for all K cc 74,

We now derive a more explicit (probabilistic) representation of cap(Qx). Recalling that
X = (X, p¢) stands for the process associated to £ (with generator L = L™V given by
and canonical law P, ), see below ), we introduce the stopping times Hg, = inf{t > 0:
Yt EQ K}, let

(3'4) hQK (Jja 90) = P(a;,tp) [HQK < OO], T e Zda pEL,
and introduce, for suitable f : Z% x E — R the potential operators

. 0
(35) Uf((]?, (P) = E(x,tp) [JO dtf(Xt7 @t)] :

Lemma 3.1 ((h,V) as in (1.7))). The variational problem (3.1) has a unique minimizer given
by f = hg, with hg, as in (3.4). Moreover, with

def.
(3.6) Qi (2,9) E (—Lhg,)(x,¢), el peE,

one has that

(3.7) supp(eqy) € 0K x E (< Qk),

(3-8) eQx = 0,

and

(3.9) cap(Qk) = Z J pn,v (dp)eqy (@, ¢).
zeK

Proof. The property (3.7) follows by L-harmonicity of hg, in view of (3.6). To see (3.§),
denoting by (P,)¢=o the semigroup associated to X, one has for all z = (x,¢) € Qg, applying
the Markov property at time ¢,

lim ™ (hay (2) = (Phoy)(2)) = limt™ (1 = Ex[ Py [Ho, < <0]]) = limt™ P.[Hoy 06, = ]

which is plainly non-negative; to see that the limit on the right-hand side exists, denoting by 7
the first jump time of X., the spatial part of X., one notes that it equals

(3.10) lim it~ "B o) [H{r < t}Pg [Hg, = «]|

11



because X can only escape Qg through its spatial part X and the contribution stemming from
two or more spatial jumps up to time ¢ is O(t?) as t | 0; similarly the expectation in (3.10) is
bounded by ct for ¢t < 1.

To obtain that hg, is a minimizer, first note that by definition, see , and by transience,
hq, satisfies the constraints in . For arbitrary f as in , one has

(3.11) E(f, f)=&E(f - hQK? - h’QK) + g(h’QK7hQK) +28(f - hQK7h‘QK)
The first term in (3.11)) is non-negative. On account of ([1.16]) and due to (3.6)),
(3.12) g(thw h‘QK) = <hQK7 (_Lﬁ)eQK>L2(ph’v) =1, eQK>L2(phyv) )

where the last step uses that hg, (-,¢) = 1 on K, which is the support of eg, (-, ¢), see .
The last expression in is exactly the right-hand side of . To conclude, one observes
that the third term in can be recast using E(f —hqy, hoi) = {f = hQw: €Qx)12(,), ) 20d
the latter is non-negative because (f — hq,)(-,¢) = 0 on K by (3.1). 7 O

A key ingredient for the construction of the intensity measure v below is the following result.
We write WCJQFK below for the subset of trajectories in W' with starting point in k. Recall
the definition of P, from (3.9) and abbreviate p = pj, - for the remainder of this section.

Proposition 3.2 (Sweeping identity).
With eq, as defined in (3.6)), for all K ¢ K' cc 7% and bounded measurable f : ng — R,

(3.13) Eyleq, (Xo)l(ag, <oy f (X 00mq, )] = Ep[eqx (Xo) f(X)]

To prove Proposition we will use the following

Lemma 3.3 (Switching identity).

For all K cc 7% and v,w € C%(Z* x E) (continuous bounded with compact support),

(3.14) E,|w(Xo, 800)1{HQK<oo}UU (XHQK , SDHQK)]
. = EP[U(XO’SOO)l{HQK<w}Uw(XHQK’SOHQK)]'

Proof. One writes

0e]

Ep[w(Xo) g <oy T0(Krig,.)] = fo B [w(Xo) 11y <oy (K110, )]

0 e}
:fo dsEp[w(Xo)l{HQKgs}v(XS)] :L dSEP[w(XS)1{3te[0,s]:YS,teQK}”(XO)]7

where the last step uses that X. and X,_. have the same law under P,. The last integral is
readily seen to equal the expectation in second line of (3.13)). O

Proof of Proposition[3.9. For a given f as appearing in (3.13), consider the function v defined
such that, with U as in (3.5),

Uv = &, where
f(xa 90) = ]‘QK (fL‘, SD)E(I,QD) [f(Y)] , TE Zdv pEe E.

Note that v is well-defined. By (3.9) and the strong Markov property at time Qg, one can
rewrite

(3.16) Byleq, (Xo) g, <o} f (X © Oniq, )| = Eolequo (Xo)Ling, <o)é (X, )]

(3.15)
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In view of (| , , applying (3 with w = eq,, and v as in (3.15)) yields that the
left-hand 81de Of equals

(3.17) Ey[v(Xo)lim,, <o}Ueq, (Xng,, )]

Since K < K’, (3.6) and (3.4) imply that, on the event {Hg, < o0}, UeQK, (YHQK) =
hi'(X g, ) = 1, whence (3.17) simplifies to

- (3.4)
B [o(Eo) g, <] D | plde.dr)ota, o)ho(z.0) P (-LE o)
(3.18) )
(1.17) 1.'
D (e, —Lhau >z B2 (€, eqidraip -2 | naorcan(e. o Bl
which yields (3.13)). O

Remark 3.4. The sweeping identity (3.13)) corresponds to the classical DLR~equations in equi-
librium statistical mechanics: for all K < K’ < Z¢ and f = L{xy=z}> 2 € K, explicating (3.13)
gives

(3.19) > L p(dp)eq,, (,9) Plog) [Hoy < 90, Xng, = 2] = fEu(dw)eQK(a ®).

We now introduce the intensity measure v which will govern the relevant Poisson processes.
We write W for the space of bi-infinite right-continuous trajectories on Z% x E whose projection
on Z% escapes all finite sets in finite time. Its canonical coordlnates will be denoted by X; =
(X1, 1), t € R, and we will abbreviate X+ = (X+t)t>0 We let W™ = W/ ~ be the correspondlng
space modulo time-shift, i.e. W ~ @ if (;w) = @ for some ¢ € R, and denote by 7* : W — W
the associated projection. We also write WQ . © W for the set of trajectories entering Qp, i.e.
we Wq, if Xi(w) € Qx for some t € R, and WQK = *(W¢,). All above spaces of trajectories
are endowed with their corresponding canonical o-algebra, denoted by W, W*, WQ « etc. We
then first introduce a measure v, on (W, W) as follows:

Vo [ X-€A_, Xoe A, X1 € AL

(3.20) def. -~ -
L p(dw, dp) Pl o) [ X € Ar] X B ) [Lizea_yeqx (X0)];

with eg, as defined in , and where, with a slight abuse of notation, we identify A4 € o(X4)
(part of W) with the corresponding events in W,. The latter is the o-algebra of W, the space
of one-sided trajectories on which P, ) is naturally defined. Note that the p-integral in
is effectively over A n {X( € K}, hence vg, is a finite measure, and by ,

(3.21) vox (W) =vg, Woy) = cap(Qk), for K cc Z°.
The family of measures {vg, : K =< Z%} can be patched up as follows.

Theorem 3.5 (d > 3, h,V as in (1.7))). There exists a unique o-finite measure v = vy y on
(W, W") such that

(3.22) ”’WSK = ¥ ovg,, for all K cc Z°.
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Proof. The uniqueness of v follows immediately from (3.20)), since v(A*) = lim,, vg, (AnWgy )

by monotone convergence, for all A* € W, with A = (7*)~1(A4). In order to prove existence, it
is enough to argue that

for all K ¢ K' cc 7% and A* W*QK:
(7% 0 v, )(A¥) = (7" o g, ) (A¥)

(note that the left-hand side is well-defined since W;  C WE/K ). Indeed, once (3.23) is shown,

one simply sets

(3.23)

V(A% = 3 (7 ovg,,) (4% 0 (W, \Wa, )

n=1

and (]3.22)) is readily seen to hold using (3.23]). Moreover, due to (3.21)) and (3.2]), I/(Ws K) < o0,

whence v is sigma-finite.
It remains to prove that the compatibility condition (3.23)) holds. Writing WOQK c Wo,
for the set of trajectories entering Q at time 0, we first observe that vg, is supported on

W% and similarly vg,, on WOQK/, see (3.20), and, recalling Hg, from around (3.4)), that
g, (WOQK/ NWoi) — WOQK, w — Op, w is a bijection for all K’ < K'. Hence, in order to
obtain (3.23)) it is sufficient to show that for all measurable Ay € 2% x E and A, € 0(X ),

K

(3.24) Qo (Hgy < 0, {Xo€ Ao, X1 € Ay} ofu, ) = vgy (Xo€ Ag, Xy € Ay).

This corresponds to the choice A* = 7*({Xo € Ag, X1+ € A, }) in (3.23)) with Ag, A, as above,
which generate WZ - By (3.20), the left-hand side of (3.24)) can be recast as

(3.25) Ld Pl dg) P [HQK <o, {Xoe Ay, X eA,}o eHQK] x eq .. (x,¢)
X

=k, [eQK/ (Yo)l{HQK@o} X <1{YOEA0,7+EA+}) © HHQK] ;

whereas the right-hand side of (3.24)) equals

(326) EP [eQK (Yo)l{YOEAo,Y+EA+}] .
But by Proposition the right-hand side of (3.25)) and (3.26) coincide, and (3.23) follows,
which completes the proof. O

Remark 3.6. Let IT: W — W* denote the projection onto the first (Z9%-valued) component of
a trajectory, i.e. W is the space of bi-infinite Z%valued transient trajectories. In the Gaussian

case U(n) = %172, cf. (1.1)), the projection
(3.27) v =Moo,y

of the measure v,y constructed in Theorem is independent of V and h; indeed, in view of
(1.12) and ([1.14)) the generator of the spatial component of P, . is that of a simple random walk.

The measure v obtained in this way is precisely (up to defining trajectories in continuous-time)
the intensity measure of random interlacements constructed in Theorem 1.1 of [63].
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4 An isomorphism theorem

We now derive a “Ray-Knight” identity for convex gradient Gibbs measures, which is given in

Theorembelow. Recall that the measure v = v, 1y defined by Theoremdepends implicitly

on the choice of (h, V') appearing in , corresponding to the Gibbs measure p,y in .
In what follows, V will represent a (finite) region on which we seek to probe the field ¢?

sampled under p = pp—ov—o, cf. ., corresponding to the observable (V| ¢ >ZZ 74y and h
will be carefully tuned with V' in the relevant intensity measure, cf. . and We now

introduce these measures. Recall that we assume (h, V') to satisfy (1.7]). For such h V and all
u > 0, define the measure vV on (W*,W*) by

2u
(4.1) vV (A) = J J Voh,v (A) dodr, for A e W
0 0

On account of Theorem v g1ven by (4.1)) defines a o-finite measure. We can thus construct
V . . . .

a P01sson point process w on w* having v,,’" as intensity measure. We denote its canonical law

by phY ; a probability measure on the space of point measures {dy;+ = {w =20 5w>x< RTINS

W*,i >0, and w*(WZK) < o for all K cc 7%}, endowed with its canonical o-algebra Foppe -

The law P}V on (Qypx, Fypx) is completely characterized by the fact that for any non-negative,

W™ -measurable function f,

(4.2) ERY {exp {— JW* fw(d@*)}] — exp {— fw*(l — ef)yﬁ’v(dw*)} .

Of particular interest below is the corresponding field of (spatial) occupation times (L) cz4,
defined as follows: for w = > .. dz*, let

=0 “w;

(4.3) L( Z f X, (w;) = a}dt, for x € Z¢,

=0

where w; € W is any trajectory such that 7*(w;) = w} and X;(w;) is the projection onto the
spatial coordinate of w; at time ¢. In what follows, we frequently identify V(z,p) = V(x),
¢ € E, viewed either as such or tacitly as multiplication operator (V f)(z,¢) = V(z, @) f(z, ¢),
for suitable f. We first develop a representation of Laplace functionals for the field £ that will
prove useful in the sequel.

Lemma 4.1 (u > 0,h,V as in (L.7)).
hV [ AV, L Vau T h,V -1
(4.4) log BV [e(V2£0e2] = _J fo V(L7 4+ V) V_1>L2(pah,v) dodr.
(Here, with hopefully obvious notation, 1 refers to the function of (x,p) € Z% x E which is

identically one).

Before going any further, let us first relate the above setup and the formula (4.4]) to the
(simpler) Gaussian case.

Remark 4.2. With II denoting the projection onto the spatial component (cf. Remark for its
definition), consider the induced process

def.
n=Tw) = > S

120
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when w = >, dw* Classically, n is a P01sson process with intensity measure II o yg V, and

L, (w) = Lz(n), as can be plainly seen from (4.3]). In the Gaussian case, substituting (3 into

(4.1) and performing the integrals over 7 and o (note to this effect that S(\)/ﬁ §o dodr = u), one

readily infers that 7 has intensity uv, i.e. the law ]P’S’ of n is that of the interlacement process
at level u > 0, cf. [63]. The field £, = L£;(n) is then simply the associated field of occupation
times (at level u). In this case, the formula simplifies because the test function V' is spatial
and the dynamics generated by L; and Lo decouple, see , and . All in all
Lemma thus yields, for all V' satisfying ([1.7)) and u > 0,

(4.5) —u ' logEG [¢V £ (’l >e2] (V,GYV = 1),,,

where GV (= (—L3=! — V)~1) refers to the convolution operator on £?(Z%) with kernel g" given
by (2.2)). On the other hand, one knows, see e.g. (2.11) in [64] in case V < 0, that the left-hand
side of equals —(V, (I — GV) 1), G = GY=0, whenever |GV| < 1 (incidentally, note
that implies that |GV} | < 1). With a similar calculation as that following below,
which is a continuous analogue, one can show that this expression equals the right-hand side of
when |GV« < 1. Notice however that holds under the more general condition (L.7)),
which places no constraint on V_.

Proof of Lemmal[{.1 The starting point is formula (4.2)). First, note that by definition of the
occupation times L. in ([£.3), one can write (V, L)p = (i fv w(dw*), where (recall that we
tacitly identify V(z,p) = V(x), p € E)

(4.6) fo (@) = f "V @) dt, with @ e W such that (@) = T*.

—00

Hence, applying (4.2)) and then substituting (4.1]), (3.22)) and (3.20|) for the intensity measure,
one obtains, with K = supp(V'), in view of (4.6)), that

V2u 1
(4.7) log EZ’V [e<v’£‘>f2] = f J Voh,V (ef‘/ — 1) dodr
0 0

= fm JT <6QK(‘7 ), E. _)[eggo V(Xs)ds _ 1]> dodr;
0 0 ’ L2(poh,v)

strictly speaking, (4.2)) does not immediately apply since V' is signed but the necessary small
argument using dominated convergence is readily supplied with the help of (2.4]). It thus remains
to be argued that the right-hand side of (4.7) equals that of (4.4). To this end, consider the
function

(@, 9) = (g [6% V(Y‘*)ds] , for t >0,
which is bounded uniformly in ¢ > 0 on account of (2.4)), and observe that

. _ Q0
E(z’¢) [680 V(Xs)ds _ ]_] = J dt atut(x, (p)
0

— L dt E(y ) [eSo dSV(Xt)] - —((L”h’v + V)_IV) (z, ).

Dropping oh, V for ease of notation (i.e. writing L = L7V, p = poh,v ), substituting (4.8) into
(4.7) and noting that L + V' is symmetric with respect to (:,-)r2(,), cf. (L.17), then yields that

(el B [l VI - 1]>L2( )

(4.9) Ed < (L+V)ha, + Vhge, — (L + V)™ V>

(4.8)

L%(p)

= (Vhau L+ V)TV g Ve
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and (4.4) follows from (4.7) and (4.9) since Vhg, = V and <hQK,V>L2( ) = <1,V>L2(p) on
account of (3.4) (recall that K is the support of V). O

We now come to the main result of this section, which is the following theorem. Let

(4.10) vy ==Y (see (@)

and write P = PI=Y"V for the canonical law of the associated Poisson point process on w*.
Recall that p = pp—o,v—o refers to the Gibbs measure (1.4 for the Hamiltonian (1.1). With
hopefully obvious notation, ¢. + a for scalar a € R refers to the shifted field (¢, + a),cza below.

Theorem 4.3 (Isomorphism Theorem).

For allu >0 and V : Z¢ — R satisfying (1.7), one has
(4.11) EL/ ®F, [6<V,£4+%§0A2>52(Zd>] - E, [€%<v,(¢.+m)z>ﬂ<zd)]'

We first make several comments.

Remark 4.4. 1) One way to interpret Theorem is as follows: the equality (4.11) holds
trivially when u = 0. Thus, £. measures in a geometric way the effect of the shift +/2u on
(squares of) the gradient field .

2) When U(n) = 3n* (cf. (L)), Theorem immediately implies the identity derived in
Theorem 0.1 of [64], which is itself an infinite-volume analogue of the generalized second
Ray-Knight identity given by Theorem 1.1 of [30]. The relevant Poissonian law IP’L/ =P,
in the Gaussian case is the random interlacement point process introduced in [63].

3) Our argument also yields a new proof in the Gaussian case U(n) = 3n?. Indeed, whereas

our proof proceeds directly in infinite volume, the proof of Theorem 0.1 in [64] exploits the
generalized second Ray-Knight theorem, along with a certain finite-volume approximation
scheme. Although we will not pursue this here, one could seek an argument along similar
lines in the present context. In particular, this entails deriving a similar identity as
on a general finite undirected weighted graph with wired boundary conditions, thereby
extending results of [30] (e.g. in the form presented in Theorem 2.17 of [65]) to the present
framework.

4) Tt is of course tempting to investigate possible extensions of various others Gaussian isomor-
phism identities, see e.g. the monographs [48], [43], [65] for an overview, to convex gradient
measures. We will return to the case of [42] and applications thereof elsewhere [22].

Proof. Expanding the square on the right-hand side of (4.11)) and rearranging terms, we see
that (4.11) follows at once if we can show that

(4.12) EY [V 9] = exp {(Vulya} B [e/2V902),

where py = po,v, cf. (L.8). The change of measure is well-defined given our assumptions ([1.7))
for V(-) on account of Lemma We rewrite the exponential functional appearing on the
right-hand side of (4.12)) as follows. Introducing the function

f(r) =log B [exp{T(V,0)p }], 7€[0,v2u],
one observes that (see (1.8]) for notation)

(4.13) F)=E, [V.oel, (1) =varu,,, Vo)),
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where var,, ((V, ¢)2) refers to the variance with respect to the tilted measure pip, v, h = 7V
Noting that f(0) = f/(0) = 0, expressing f(v2u) = f(v/2u) — f(0) in terms of its second
derivative by interpolating linearly between 7 = 0 and 7 = v/2u and substituting , one
obtains that

V2u pr
(4.14) log E,,, [emw’@ﬂ] = f(v2u) = f J vary,, ((V, ¢)e) dodr.
o Jo

Now, applying the Hellfer-Sjéstrand formula (1.19) to compute covy,,., (¢z, py), recalling that
V(z,p) = V(x), for all z € Z?, ¢ € E, and abbreviating L = L°""V, it follows that

var, . ((V, o))
- ;yV(:z:)V(y) fuav,v(d@)E(az,@ UOOO dtexp {Jt V(XS)ds} WX = y}}

0

(4.15) _ Jpov,v(d% d9)E ) [V(Xo) JOOO dt exp Uot V(Xs)ds} V(Xt)]
_ <V, q:o dt et(L+V)V) (-, ‘)>L2(pav’v) =Vi=(LAV) " V),

Putting together (4.15) and (4.14)), one sees that the right-hand side of (4.12)) is precisely the
right-hand side of (4.4) for the choice h = V. Hence, the asserted equality in (4.12]) follows

directly from Lemma [4.1{ on account of (4.10)). O

5 Renormalization and scaling limits of squares

We now aim to determine possible scaling limits for the various objects attached to Theorem [4.3]
starting with linear and quadratic functionals of ¢, as do appear e.g. when expanding the square
on the right-hand side of . Our main result to this effect is Theorem below, which will
be proved over the course of the remaining sections.

With ¢ the canonical field under p, we introduce for integer N > 1 the rescaled field

5.1 YN (Z) = d l/sz/2 IQON R for ZERd,
I. ZJ
and for V e C’OOO(]Rd), set

def.

(5.2) (@k. vy fRdV(z)goN(z)kdz, k=12

Moreover, writing : X? := X2 — E,[X?] for any X € L?(p), let
(5.3) GV def, (B3, V) : ( = f V(z):pn(2)?: dz).
Rd

(with : pn(2)? := pn(2)? — E,[en(2)?] in the above notation). To avoid unnecessary clutter,
we regard @k, k = 1,2 (as well as : ®% :) as distributions on R?, by which we always mean
an element of (CF) (R?), the dual of C°(R?), in the sequel. Indeed, (®% ) : CF(RY) — R4
is a continuous linear map; the topology on C{°(R?) is for instance characterized as follows:
fn — 0if and only if supp(f,) = K for some compact set K = R% and f,, and all its derivatives
converge to 0 uniformly on K. We endow the space of distributions with the weak-* topology,
by which u, : C&(RY) — R? converges to u : CF°(RY) — R? if and only if u,(f) — u(f) for all
f e CPRY).
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Our main theorem addresses the (joint) limiting behavior of (®y, : ®% :) as N — oo when
d = 3. Its statement requires a small amount of preparation. Recall that the Gibbs measure pu
from for the Hamiltonian is translation invariant and ergodic. Hence, the environment
ai(-,+) = a(, ;¢ in generated by the p-dynamics associated to p (which solve
with V' = h = 0) inherits these properties, and is uniformly elliptic on account of ; that is,
E,Pgsler < ai(0,e) < cg] = 1forallt > 0 and |e| = 1. By following the classical approach
of Kipnis and Varadhan [38], see Proposition 4.1 in [33], one has the following homogenization
result for the walk X.: there exists a non-degenerate (deterministic) covariance matrix ¥ € R?*¢
such that, as n — o0,

the law of t — n~""/2Xy, on D([0,0)) under E, P () tends
(5.4) to the law of a Brownian motion B = {B;: t > 0} with
By =z, E(B;) = 0 and E((v- By)?) = v - %o, for v e RY

The invariance principle (5.4]) defines the matrix ¥. With Gx(-,-) denoting the Green’s function
of B, we further introduce the bilinear form

(5.5) Es(V.W) = fwx)Gz(a:, YW (y) dz dy = (V, GV,

for V,W e S(R?), which is symmetric, positive definite and continuous (in the Fréchet topology).
Hence, see for instance Theorem 1.10, pp. 21-22 in [60], there exists a unique measure P> on
S'(R%), characterized by the following fact: with ¥ denoting the identity map on S’(R?),

under P*, for every V e S(R?), the random variable (¥, V)

5.6
(5:6) is a centered Gaussian variable with variance Ex(V,V).

We write E*[-] for the expectation with respect to P*. The canonical field ¥ is the massless
Euclidean Gaussian free field (with diffusivity X).

Of relevance for our purposes will be the second Wick power of W. Let H be the (Gaussian)
Hilbert space corresponding to W, i.e. the L?(P*)-closure of {{(¥,V):V e S(R?)}. For X,Y €
H, one defines the first and second Wick products as : X := X — E*[X] = X and : XY :=
XY — E*[XY]. For p>*(-) = e 9p(*=%), with p smooth, non-negative, compactly supported of
unit L'-norm, let W&(x) = (¥, p*®). The field : ¥°(x)? : is thus well-defined. Now let d = 3.
For V € S(R?), one can then define the L?(P*)-limits

(5.7) GOV def limJ S0 (2)? : V() de

E—>

(elements of H) and one verifies that the limit in ((5.7)) does not depend on the choice of smoothing
function p = p'¥. In what follows we often tacitly identify an element of S'(R3) with its
restriction to (C°)(R3). The following set of conditions for the potential V' will be relevant in

the context of (5.3) and (5.7)):
(5.8) V e C*(R?) and for some X\ > 0, L > 1, supp(V) < By, and ||V < AL72.

For any value of A\ < ¢5 (with a suitable choice of c5 > 0), one then obtains that 7/ (z,2') <
cri(z,2') for all t > 0 and z, 2’ € R? and all V satisfying , where 74 refers to the transition
density of Gy, and r} to that of its tilt by V (cf. in case ¥ = Id), which follows by a
straightforward adaptation of the arguments in the proof of Lemma In particular, this
implies that for all W e CF(R%),

(5.9) |IGY W[ < ¢|[W o, where GY, = (—3A5 — V)7L,
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(so Gy = GY, cf. above (5.5)) whenever V satisfies (5.8, i.e. G¥% acts (boundedly) on CF(RY)
for such V', which is all we Wlll need in the sequel. Assomated to GZ in is the energy form
EY(-,-) defined similarly as in with G¥%(+,-) in place of Gx(, ), Whence Ex(-,) = EX(-,-).
We now have the means to state our second main result, which identifies the scaling limit of
Dy, : <I>%V : introduced in —. In particular, below refers to a weak convergence of
distributions (i.e. elements of (Ci°)'(R3)?).

Theorem 5.1 (Scaling limits, d = 3).

(5.10) po(®y,: ®3 )"t converges weakly to P¥ o (U, : ¥? )7t as N — o0.
Moreover, for all V,W € CP(R3) with V satisfying with A < c,

(5.11) lim B, [e3CHV R ONI] 2 exp (L(AY(V, V) + BE(W, W)},

with EX(-,-) as defined below and AL (V,V) = ({V(2) A% (2, 2/)V (2')dzd2’, where
(5.12) AY (2, 7)) j j GV (2,2 dodr, 2,7 € R3.

The proof of Theorem is given in Section [7] and combines several ingredients gathered in
the next section.

Remark 5.2. 1) The expressions on the right of (5.11)) are well-defined, as follows from (5.9)),
the fact that GZV (z,2') < ¢Gx(z, ') for all 2,2’ € R? and that Gx(z,-) € L (R?), which

together yield that AY(,-) extends to a bilinear form on (say) Cg° (]R3) (cf. Lemma
below). In particular, A%(V,V) < oo for V as in (5.8) (and in fact supy A% (V,V) < ¢).

2) Specializing to the case V = 0, Theorem immediately yields the following
Corollary 5.3. For all W € C§°(R3),

(5.13) h]{;ﬂ E, [e<¢'N7W>] _ eéEg(VV,W)’

(cf. (5.5) for notation), i.e. N under p converges in law to ¥ as N — o0.

Corollary is a celebrated result of Naddaf and Spencer, see Theorem A in [52], which
has generated a lot of activity (see e.g. [14] 19, 2] for generalizations to certain non-convex
potentials, [33] for extensions to the full dynamics {¢; : t = 0}, and [50] for a finite-
volume version; see also [37] regarding similar findings for domino tilings in d = 2 and
more recently [10) [11] for the integer-valued free field in the rough phase; cf. also |28 29]
and refs. therein for height functions associated to other combinatorial models. Thus,
Theorem [5.1| extends the main result of [52] for d = 3.

3) Together, (5.10) and (5.11]) imply in particular that for all V satisfying (5.8]),
(5.14) B [exp(3¢: ¥ 1, V)] = ex5 (),

see also below for a generalization of this formula to a non-zero scalar “tilt” wu.
Explicit representations for moment-generating functionals of Gaussian squares usually
involve (ratios) of determinants, see e.g. (5.46) in [48] or Proposition 2.14 in [65]. We are
not aware of any reference in the literature where or appear.

4) To illustrate the usefulness of these formulas, notice for instance that immediately
yields the following:
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Corollary 5.4 (d =3,V asin (.8)).
/1/[ . €<(¢N)27V>]

—1 ¢ s
(5.15) E, [e<(¢N)2,V>] o @& converges weakly as N — o0 to a ‘massive’ free

field with energy form E% (W, W) = (W, GLW).

We refer to the proof of Corollary below for another application of (5.11)) in order to
identify the scaling limit of the occupation-time field £ appearing in Theorem [4.3]

6 Some preparation

In this section, we prepare the ground for the proof of Theorem [5.1] We derive three results,
see Propositions and organized in three separate subsections. Section [6.1] which
contains Proposition deals with exponential tightness of the relevant functionals (when
k =1) and (when k£ = 2). In Section (cf. Proposition we derive a key comparison
estimate between quadratic functionals of ®n and those of a certain smoothed field ®5%;, to
be introduced shortly, which is proved to constitute a good L?(u)-approximation of : CID?V :
for a suitable range of parameters. Finally, we show in Section that the smoothed field
behaves regularly, i.e. converges towards its expected limit (which actually holds for all d > 3).
Combining these ingredients, the proof of Theorem is presented in the next section.

We now introduce the smooth approximation that will play a role in the sequel. Let p = p
be an arbitrary smooth, non-negative function with |p|;1gey = 1 having compact support
contained in [—1,1]%. For e > 0 and x € R?, let p°(-) = e~9p' (%), p*(-) = p°(z — -). Define

£

1

(6.1) oo lz) = f (e — wyon(w)dw B @y, 7%, zeR?

and ((®5,)%, V), k = 1,2, and ¢ (9%)%:, V) as in (5:2)-(5.3) but with ¢5, in place of p. Note
that z — ¢%(2) inherits the smoothness property of p. The regularized field o3 essentially
reflects at the discrete level the presence of an (ultraviolet) cut-off at scale & in the limit.

6.1. Tightness. The main result of this section is Proposition which implies in particular
the exponential tightness of {: 2, ;) N > 1}, along with similar conclusions for its regularized
version : (®%)? 1, see and Remark 1). The following bounds on Gaussian moments
are interesting in their own right. We conclude this section by exhibiting how these estimates
improve to exact calculations in the Gaussian case. Let

def. 1
(6.2) Ou(x) = log E#[exp {5 fV(z) cx(2)?:dz + fW(z)X(z)dz}]
and recall oy from (5.1)) and that : X := X — E,[X] for X € L?(u). The proofs of the following

estimates will rely on Lemma [2.3]

Proposition 6.1. For all V,W € CF(R?) with V satisfying (5.8)) for A < cg and supp(W) <
Bur, |Wew < v for some v > 0, one has

(6.3) sup O, (pn) < (LA + & (M)v2.
N=1

Similarly, for all € € (0,1) there exists c7(g) € (1,00) such that

(6.4) sup O,(p%) < (L, p)A* + (M, p)v*,

N=cr(e)

for VW as above when \ < ¢(p). Moreover, (6.3)) and (6.4) hold for all d = 3 in case A = 0.
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Remark 6.2. 1) In particular, for any V,W as above, the random variables %< o2 V) +
(PN, W), N > 1, cf. — for notation, are (exponentially) tight by , and sim-
ilarly for ®%; instead of ®y using . Indeed, to deduce tightness observe for instance
that by (6.3), E,[cosh{(: ®% :,V) + (®n,W)}] is bounded uniformly in N, from which
the claim follows using the inequality e/l < cosh(z), valid for all z € R.

2) The estimate depends very mildly on the particular choice of mollifier p in .
For instance, inspection of the proof below reveals that the constants can be chosen in a
manner depending on |p|s only; see below.

Proof. We first assume that W = 0 in and will deal with the presence of a linear term
separately at the end of the proof. Let cp(])\, = @n, cf. and , which will allow us to
treat (6.3) and simultaneously, the former corresponding to the case € = 0 in what follows.
The proof will make use of Lemma, we first explain how its hypotheses — fit the
present setup. Consider the functional

(65) Fio) ™ 5 [ VeGP ce o)

which, up to renormalization, corresponds to the exponential tilt defining ©,(¢% ) in (6.2)) (when
W =0). For € = 0, recalling (5.1)), one writes for all N > 1,

(6.6) Fie) = 5 3 Vn (e,

with Viy as in (2.6]), which is of the form (2.12) with @, = diag(Vy). By assumption on V,
cf. (5.8]), supp(V') < By, hence diam(Vy) < NL. Moreover,

«»
IV llo < 2IIV\Ioo < ANL)?

that is, @) = diag(Vy) satisfies (2.13]) and (2.14) with R = NL, whenever A < ¢3, which we
tacitly assume henceforth. The case ¢ > 0 follows a similar pattern. Here one obtains using

(6.1) that (6.5) has the form (2.12) and (2.13)) is readily seen to hold with R = N(L + 2). To
deduce that ([2.14)) is satisfied, one applies Cauchy-Schwarz and uses that pf(-) < e=¢|p|s and

§p°(- — w)dw = 1, whence §p°(z — w)?dw < e~¢|p| o, to obtain

(N1 2 _ _
275 () B e 2jsz(z)(Jp5(zw)<,0[Ndew> < N? 2JdZIV(Z)e dl\poofwf]ijlp_wkgdw
_ _
=N 2|P|w2¢3fdde'1leJ:z<6 ! fB( Ve Dldz) '€ ANL) el
x w,e

yielding (2.14)). All in all, it follows that e~ € L'(y) for all £ € [0, 1] on account of Lemma
which is in force. In particular, together with Jensen’s inequality, this implies that ©,(¢%),
e € [0, 1], as appearing on the left of —, is well-defined and finite for all N > 1

For t € [0,1], define ©,(x;t) as in (6.2), but with (¢V,0) instead of (V,W), whence
©u(x;0)=0and ©,(x; 1) = ©,(x). Observing that

1

Geueiit|_ = 5 [VOBL e s =0,

one finds, with a similar calculation as that leading to (4.14]),
1 ps 1 ps
(6.7) 0,(p%) = L L vare (: F5i(¢) ) ds dt = L L vare (F5 (i) ds dt,
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where F5, is given by (6.5) and
(6.8) A = 0,,(p ; 1) LtV @iy = B[RO 1t @) gy,

We now derive a uniform estimate (in N and t) for the variance appearing on the right-hand
side of (6.7). We will use (2.16]) for this purpose. For z, 2’ € R? and € > 0, let

(6.9) dele, ) = NSJ

[N2']

p°(z — w) dw
N 05

and define p% (z,2') = N3 - 1| Nz|=|N2|- Abbreviating d, = &, one sees that for all z € Z¢
(6.10) Ovp(2) = NY2.N73p5,(2,2/N), zeR?

(i.e. the right-hand side of (6.10)) equals N'/2 - 1{|nz|=2} When € = 0). Using (6.10), one further
obtains that

o 0,0, F5 () = s jsz(z)aysoW - 2fdzv<z>axwfv<z>ayso§v<z>
6.11
= 2Nfsz(z)N3p§V(z,a:/N) -N73p5 (2, y/N).

Now, one readily infers using and the fact that ¢ is centered under i that E, [0, F ()] = 0.
Recalling the rescaled Green’s function gy = g?\, from , applying with the choice
p = pi and F' = Ff;, observing that the first term on the right-hand side vanishes and
substituting for 0,0, Fy;, one deduces that

var,s (Fy) < cgN© Jf dvdw N gn (v, w)
(6.12) x N© ffdv'dw/]\f1gN(v/,w/)5LNU/J5LN,UJF O 1O N F
= 4cg fj V(2)g5 (2, 22V (2)dzd?

where, for all € > 0, we have introduced

(6.13) gy (z,7') = JJ P (2, 0)gn (v, w) P (2, w) dvdw,  z, 2 € RY

and we also used the fact that p%(z,2) = p5 (2, 2") whenever |[N2'| = |[N2"|, as apparent from
@D. Note that is perfectly valid for € = 0, in which case g?\, =gy as in in view of
@ and the definition of p?v below . To complete the proof, it is thus enough to supply a
suitable bound for the quantity in the last line of . To this effect, let (Gﬁv)k, k =1,2, (with
(G)! = G%) denote the operator with kernel g5(-,)¥, i.e. (GX)¥f(2) = (g5 (2, 2)Ff(2)d7,
for any function f such that { g5 (2, 2')*| f(2')|dz’ < oo for all z € R%. The following result is key.

Lemma 6.3. For all V e CF(R?) with supp(V) < By, and ¢ € (0,1),

(6.14) suwp GV, < oL ol Vo (43 3),
N>C7(8)

(6.15) sup [(GR)2V],, <L lolo)VIs (d=3)
N=cr(e)

and (6.14))-(6.15) hold for e = 0 uniformly in N > 1 with a constant ¢ independent of p.

23



We postpone the proof of Lemma for a few lines. Applying (6.15]) to (6.12)) and recalling
the assumptions on V specified in (5.8]), which are in force, it readily follows that Val“ug(F ]Q,) <
¢(L)A? for all N = 1, t € [0,1] and var,: (F§) < ¢(L,p)A? for all N > ¢;(e), ¢ € [0,1] and
e € (0,1]. Plugging these into , the asserted bounds (6.3) and (6.4) follow for W = 0.

The case W # 0 is dealt with by considering ji* def. Hi_q, the latter as in , and introducing

i = TN, Fi () = [ W (s
E,as [etFJif ((’0)]
for t € [0,1] and ¢ € [0,1]. Then, one defines ©,(x; t) as in (6.2), but with (V,tW) instead of
(V, W) and repeats the calculation starting above with ©,(x; t) in place of ©,(x; t). The
resulting variance of Iy can be bounded using (2.15) (or (2.16)) which boils down to the former
since 0,0y F5 = 0) and (6.14)). The bounds (6.3))-(6.4) then follow as ©,(-; t =1) = ©,(-). O

We now supply the missing proof of Lemma [6.3] which, albeit simple, plays a pivotal role

(indeed, (6.15]) is the sole place where the fact that d = 3 is being used). Before doing so, we

collect an important basic property of the (smeared) kernel g5 (-, -) introduced in (6.13]) that will
be useful in various places. Recall that g5 implicitly depends on the choice of cut-off function

p = p' through piy cf. .
Lemma 6.4 (d > 3). For alle € (0,1) and N > e~ !,

(6.16) G5 (2, ) < clpld(e v |z — #)P, 2,4 eRY
The proof of Lemma [6.4] is found in App. [B] With Lemma [6.4] at hand, we give the
Proof of Lemma[6.3 We show (6.15]) first. By assumption on V| it is sufficient to argue that

(6.17) swp [ gV < elplgl. L1,
z JB(0,L)

uniformly in N > ¢(e) (and for all N > 1 with ¢g = 0 when ¢ = 0), from which

immediately follows. We first consider the case € = 0, which is simpler. The fact that d = 3

now crucially enters. Recalling gy = gjov from , splitting the integral in according to

whether |2/| < % or not and arguing similarly as below , one sees that for all z € R and

N >1,

d /
f 9 (z,2")2d2’ < cN?*B(0, N™1) + c’f ,722 <L,
B(0,L) +~<|2|<L |2 — 2]
where the last bound follows as
dz |z|+L
(6.18) J 3 < cf dr < 2cL, for all z € R®.
11<L 12 — 2| Ov(|2|-L)

This yields (6.17)) for all N > 1 when ¢ = 0. For ¢ > 0 and all N > ¢! one finds using ([6.16))
that

| G (2, 222 < clpllke 2 B(0,€) < clple

z'eB(0,L),|z—z"|<e

and &
z
gn (2, z’)de’ < C|P|§0J <L m < calHf’}LOL7
2=

L’EB(O,L),|Z—Z’|>5
using (6.18) in the last step. Together, these bounds immediately yield (6.17). The proof
of (6.14)) follows by adapting the previous argument, yielding that SB(O 1) IN (2,2)dz" < c|p|? L?

= 0.

uniformly in z € R%, L > 1 and N > ¢(¢), along with a similar bound when ¢ O

24



Remark 6.5. The case € > 0 in (6.5 could also be handled via a suitable random walk represen-
tation (with potential) when V' > 0. The latter is not a serious issue with regards to producing
estimates like (6.3)-(6.4) since ©,, can be bounded a-priori by replacing V' by V. in (6.2). Now,
letting

Qo) = N2 [V [5G = w)lvageadw [ 64 = w1y’ |z
one can rewrite

V(P) = ) QN (@, y)eatpy = — Z Qi (z,y)(z — ¢y) +ZVN )63,

z,y I?éy

where V5 (z) = >, Qy(z,y). Noting that Q% (z,y) = 0 when V' > 0, this leads to an effective
random walk representation with finite-range (deterministic) conductances Q% (x,y) which add
to a(yp) in (1.12)). In particular, the lower ellipticity only improves. The potential V5 is then
seen to exhibit the correct scaling (e.g. it satisfies ([2.3)).

We conclude this section by refining the above arguments in the Gaussian case. Indeed
the proof of (6.3]) (or (6.4)) can be strengthened in the quadratic case essentially because the
variance appearing in (6.7) can be computed exactly. This improvement will later be used to

yield the formula (5.11)) in Theorem [5.1]

Thus consider a Gaussian measure & converging in law to ¢ in the sense of . For
concreteness, we define & to be the canonical law of the centered Gaussian field ¢ with co-
variance given by the Green’s function of the time-changed process Y; = Z,2;, t = 0, where Z
denotes the simple random walk, cf. above , and ¥ = ¢2Id with X the effective diffusivity
from ; see e.g. [50)], Theorem 1.1 regarding the latter. Incidentally, o2 is proportional to
E,[U" (g0 — ¢e;)] for any 1 < i < d, which is independent of i by 1nvar1ance of p under lattice
rotations. The following is the announced improvement over ) for u&

Proposition 6.6 (d = 3). For all V,W € C(R3) with V satisfying (5.8)) for A < ¢,
1
(6.19) lim ©,6(pn) = 5 (Ax(V,V) + By (W, W))

(see below ) and (5.12) for notation).

Proof. Referring to & as the measure in with e = 0 and pu = u©, it follows using (6.7)
that

1 rs
(6.20) O,c(pN) = f J var, e (FY(9)) dsdt + log Ec [esw(z)“’N(Z)dz]

0 Jo
with F{ as defined in (6.5). We now compute the terms on the right-hand side of (6.20)
separately. To avoid unnecessary clutter, we assume that 0> = 1. Using (5.1) and Wick’s

theorem, one finds that E,c[¢y (2 )2<,oN( ’)2] = 29V (2,2)% + g (2, 2)gl (¢, 2'), where gi/
refers to the rescaled Green s function . Hence,

var, 6 (F% (¢ f f VRV ()dzdz = V(G 2VY
(see (2.8)) for notation), where we used that £ G[F 0 = (V(2)g¥ (2, 2)dz. Similarly,

2log E, e [eSW(z)‘pN(z)d‘z] = var,c (§W(2)en(2)dz) = (W, GRLW).

Substituting these expressions into (6.20)), the claim (6.19]) follows by means of Lemma O
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6.2. L?-comparison. With tightness at hand, the task of proving Theorem requires iden-
tifying the limit. A key step is the following L?-comparison estimate, which implies in particular
that : go?v : and its regularized version : (goj:v)Q : introduced in (6.1)) are suitably close. More
precisely, we have the following control. Recall that : X2 : = X2 — E,[X?] for X € L?(u).

Proposition 6.7 (L%-estimate, € € (0,1)). For all V € CP(R3) such that supp(V) < By, there
exists c11 = c11(g, L) € (1,0) such that

(6.21) lim sup JV(z)[ con(2) = oi(2)? |d= =0, (d=3)
NONzen L2(n)
Moreover, for such V,
(6.22) lim sup fV(z) [on(2) — o (2)]dz =0, (d=3)
NONzen L2 ()

We start by collecting the following precise (i.e. pointwise) estimate for the kernel g5, defined
in , at macroscopic distances, which can be seen to play a somewhat similar role in the
present context as Lemma did to deduce tightness within the proof of Proposition [6.1] For
purposes soon to become clear, we also consider (cf. )

(6.23) Gz, 7) = f o (2 ) (w, ') dw.

Let Gy — z) = G(z,y) = 2%/21"(% — 1|z —y|*>~9, for 2,y € R? denote (d times) the Green’s
function of the standard Brownian motion in R, d > 3.

Lemma 6.8 (d > 3). For alle >0 and hy; € {95, 9%},

(6.24) lij{fn sup  |hy(y, 2) — G(y, 2)| = 0.
ly—z|>3e

The proof of Lemma is deferred to Appendix [Bl We proceed with the

Proof of Proposition[6.21] Since F(p) = [V (2)[: on(2)? : — : ¢5(2)? :]dz is centered, the
square of its L?-norm is a variance. Applying ([2.16)) (see also ([6.12))) and using (6.11)) yields

(6.25) HFH%Q(#) < 4eg ff V(2)k§ (2, 2V (2)dzdz'
foralle > 0 and N > 1, where

(626) kﬁ\f('% Z/) = g?\f(za Z/)2 - glg\f(zv Z/)2 + g?\f(zv ZI)Q - §J€V(za Z,)Q) 2, Z, € R3a

with g%, and g5 as in (6.13)) and (6.23)), respectively (hence the introduction of g5).

We will deal with the short- and long-distance contributions (i.e. |z — 2’| < & or not) to (6.25))
separately. Henceforth, we tacitly assume that N > ce~!, which is no loss of generality. We
claim that for h € {g%, g%, 3%} (and N = ce71),

(6.27) supJV(z’)h(z,z’)de’ <AV]w(plew v 1), |z—2| < 3e.

z

Indeed, for h = g% or g%, this is (6.17), and the case h = g5, is dealt with similarly upon noticing
that §5(2,2") < c|pllwe™? for |2 — 2’| < 3e. The latter is obtained in much the same way as the
argument following (B.3): the absence of a mollification with p%, from the left, cf. (6.23)) and

26



(6.13]), will effectively make the first supremum on the right of (B.3]) disappear; the rest of the
argument is the same. Returning to (6.25)), restricting to the set |z — 2’| < 3e, bounding the
kernel in (6.26)) by a sum of positive kernels and applying (6.28)) readily gives

(6.28) sup ” V(2)kiy(2,2')?V () dzd2 < |V [V ]l v 1)e.
-1
N=ee |z—2"|<3e
(note that (6.28)) is specific to d = 3; the rest of the proof isn’t).
We now consider the case |z — 2’| > 3¢, which exploits cancellations in (6.26). Adding and
subtracting G (see above Lemma for notation) in (6.26]), using the elementary estimate
a® —b? < (|a| + |b])|a — b], one sees that for all N > 1 and ¢ > 0,

f f V(2 ks (2, )2V () dzd?!

|z—2z'|>3e

(6.29)

< 8sup U VI()h(z, )W (2 #) — Gz ) V() dede
h,h’
|z—2'|>3e

where h, b’ € {g%, g%, G5 }- Now, using (6.14) and its analogue for §5;, one obtains that

(6.30) sup (IGHV o v |GV o) < elllploo v 1) L2V oo

N>=ce—1

where, with hopefully obvious notation, C;’?V is the operator with kernel g%; cf. above Lemma
for notation. Going back to (6.29), bounding |2/ (z, ') — G(z, 2’)| by its supremum over |z —z/| >
3e and estimating the remaining integral over |V|(z)h(z, 2")|V|(Z") using and (6.30]), one
sees that the right-hand side of is bounded for N > ce~! by

VIV w(lple v 1) sup  sup  |h(z,2') = G(z,2)],

h |z—2'|>3¢

where the sup is over h € {g?v, g%> 9%}, which in particular tends to 0 as N — oo on account of
(6.24). Together with (6.25) and (6.28)), this readily yields , for suitable choice of ¢15.
The proof of (6.22)) is simpler. Proceeding as with (6.21]), using (or (2.15)), one
obtains a bound of the form where k5, = g5 — g% The proof then proceeds by adding
and subtracting G, splitting the resulting integral and using to control the long-distance
behavior. O

6.3. Convergence of smooth approximation. As a last ingredient for the proof of The-
orem we gather here the convergence of the smooth field % introduced in . This
convergence is not specific to dimension d = 3. In a sense, (6.32) below can be viewed (at
the level of finite-dimensional marginals) as a consequence of @ Some care is needed to
improve this convergence to a suitable functional level, which requires controlling the modulus
of continuity of ¢%. This will bring into play Lemma

Define the centered Gaussian field

(6.31) e (2) = (T, p°), zeRY

where p = p' refers to the choice of mollifier above and ¢ is defined in . In the
sequel we regard both the law of % = (¢%(2)),ere under g and W& = (V¥(2)), ga under P* as
probability measures on C = C(R%,R) (which is all the regularity we will need in the sequel),
endowed with its canonical o-algebra.
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Proposition 6.9 (d > 3, c€ (0,1)).
(6.32) po (o)t converges weakly to P* o (¥¥)7™ as N — .

The proof of (6.32) will follow readily from the next two lemmas. We first establish con-
vergence of finite-dimensional marginals and then deal with the regularity estimate needed to
deduce convergence in C'.

Lemma 6.10. For K < R? ¢ finite set,
(6.33) (p5(2) iz K) —% (¥°(2) 1 z€ K) as N — o.

Proof. For A\, € R, let W(-) = X5 A:p™%(-) € CF(RY) by assumption on p, cf. above (6.1)).
Then by (5.13)

2log B, [eXer v O)] = 21og B, [V N] T By (W, W) = Y AL BT [0 (2) W8 ()],

z,2!

using (6.31)) and (5.6) for the last equality (for a proof of (5.6, see e.g. [52] or the proof of
Theorem 1.13 in [6], Section 5.2). Thus (6.33]) holds. O

To establish the required regularity, we use Lemma to control higher moments.

Lemma 6.11 (¢ >0, d > 3). For allk > 1, z,w € R?,
(6.34) sup B, [ (0)]] < efe),

(6.35) Sup Eu[l¢%(2) — o (w) ] < e(k, )|z — wl*,

Proof. Using (2.15)) (or (2.21) with £ = 1) one obtains that var,(¢%(0)) < cg%(0,0), with g5 as
in (6.13)). The uniform (in N) bound (6.34)) then follows from Lemma |6.4{ and Cauchy-Schwarz.
Proceeding similarly, using (2.21]) for £ > 1, one deduces (6.35)) using the fact that

SUp | (@, 2) = giv (@, w)l < ele)lw — 2|, @€ R,

which is obtained by considering the cases |x — z| < 3¢ and > 3¢ separately, using e.g. (6.24) in
the latter case and the uniform bound supy,|<s. |V:9%(0,2)| < c(¢) in the former case. O

Proof of Proposition[6.9. Let n > 0. Using (6.34) one finds a = a(n, <) € (0, 00) such that

(6.36) Pu[l¢n(0)] = a] <n, forall N > 1.

Let wy (0) = sup|,_,|<s |93 (2) — ¢y (w)| denote the modulus of continuity of z — ¢5(z). Using
with, say, k = d+ 1, one classically deduces, see e.g. [61], Cor. 2.1.4 for a similar argument
when d = 1, see also [40], Lemma 1.2, for a multi-dimensional version of Theorem 2.1.3 in [61],
which is used to deduce Cor. 2.1.4, that

(6.37) lim lim sup P, [wx (6) = n] = 0.

-0 Now

Together, (6.36) and (6.37)) imply tightness in C' of the family of laws on the left of (6.32)), see
[12] Thms. 7.3 and 15.1, and the asserted convergence in (6.32)) follows upon using (6.33) to
identify the limit. O
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7 Denouement

With the results of the previous section at hand, notably Propositions and we have
gathered the necessary tools to proceed to the

7.1. Proof of Theorem Throughout this section, we assume that V, W e CZ°(R?) with
V satisfying (5.8]) and

(71) A< %66 A C10

(cf. Propositions|[6.1] and [6.6). For such V, W, we introduce the shorthand (recall ¢ from (5.1))

(72) e 3 [Verkia + [Weexe):
and &5, defined analogously with ¢% (see ) in place of ¢y everywhere. The proof of
Theorem combines the following three claims, which correspond to three distinct steps in
taking the scaling limit. Of these three steps, only the first and last, cf. and rely
on the fact that d = 3. The first lemma asserts that the relevant generating functionals of
(on,: @3 @) are well approximated by those of the e-regularized field ¢%; when the mesh size %
is sufficiently large. This relies crucially on the L2-estimate of Proposition along with the

tightness implied by Proposition [6.1
Lemma 7.1 (d = 3). For suitable c(c) € (1, 0),

(7.3) ~(g) © sup ‘E“[e:&\’:] - E“[efi’:]‘ — 0 ase—0.
Nz=c(e)

Proof. For 0 < n < 1 to be chosen shortly and &y as in ([7.2)), consider the event
An(m) = {l: év: = & | >}

Looking at Eu[efN ' — ¢€¥7], distinguishing whether Ax(n) occurs or not, applying Cauchy-
Schwarz in the former case while using in the latter case the elementary estimate |e* —e¥| < ce®™n
valid for all z,y € R with |z — y| < n(< 1), one finds that for alle >0, N >1and 0 <n <1,

(T4)  [Bule®™] = BuleV]| < nBule®] + (Bu[e™]? + Bu[e*5]12) B[ Ax ().

Now, recalling L from condition (5.8), choosing L’ large enough so that supp(W) < By, and
letting c(e) = c7(e) veri(e, L) veri(e, L) in (cf. Prop.[6.]]regarding c; and Prop. [6.6|regard-
ing ¢11), applying , (cf. also for the relevant choice of \) and using Chebyshev’s
inequality, one obtains from that for alle >0 and 0 <n < 1,

2

(7.5) yEe)<dn+d'n ™ sup | én:—: &N l£2¢)-

N=c(e)

Picking n =n(e) = 1 A supysee) | vt — 1 Ex HlL/j(u) and applying the bounds (/6.21])-(6.22))
from Proposition which is in force by choice of ¢(¢), one finds that n(¢) — 0 as ¢ — 0 and

with ([7.5)) that () < en(e). Thus, (7.3) follows. O

The second claim identifies the limit for the functionals of the smooth approximation at fixed
cut-off € > 0, which is not specific to d = 3 since ¢ is fixed. The convergence essentially follows
from tightness and Proposition Let £° refer to the quantity in when ¢y is replaced by
e, cf. . The following is tailored to our purposes.
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Lemma 7.2 (d > 3). Foralle € (0,1),
(7.6) lim E,[eV] = B[],

Proof. With L, L' such that supp(V) < By, supp(W) < By, let K = Br, 1, < R%. In view of
[72), e~ A M is a bounded continuous function of (p%(z) : z € K) for every M > 1. Using

first with A = 0 and , one deduces that
(7.7) Bu[lev]] — EZ[IE°]], as N — co.
Then, using again together with , one further obtains, for all M > 1,
E (e A M| — E¥[e* A M] as N — .
To conclude , one bounds
E [V 1{: & > M}]* < By [e*V]P,[: & > M]

and notices upon letting M — oo that the first term on the right hand side is bounded uni-
formly in N by means of (6.4) (cf. also ([7.1))), and the latter (or even (7.7))) further yields that
limps Sup ns(e) Pul: §& : > M] = 0. This completes the proof of (7.6)). O

Finally, the third item yields that the right-hand side of ([7.6)) converges towards the desired
limit as the cut-off € is removed. Recalling ¥ from (5.6) and : ¥2 : from (5.7)), let

(7.8) &= %<: U2 V) + (U, W) (e L*(PY)).
Lemma 7.3 (d = 3).
(7.9) lgifrolEE[efE:] = E¥[e*].

Lemma is a purely Gaussian claim. Its proof is given in Appendix [C] Equipped with
Lemmas [7.1H7.3] we can give the short:

Proof of Theorem[5.1 We will show that for any V, W € C°(R3) with with V as in (5.8) and A
satisfying (7.1)),

(7.10) 2Nt (=& — Eulén]) converges in law to : {: as N — oo,

which implies (5.10). As we now explain, on account Proposition in order to obtain ([7.10))
it is enough to show that for any such V, W (cf. (7.2))),

(7.11) lim E,[e%] = E*[e%].

Indeed, E,[e*N] = ©,(¢n) in the notation (6.2) and so by (6.3)) (see also Remark 1)) the
sequence : £y :, N > 1, is tight and ((7.11) implies that any subsequential limit has the same

law as : € :. The claim then follows e.g. by the corollary below Theorem 5.1 in [12], p.59.

It remains to argue that holds, which follows by combining Lemmas and
Let € € (0,1). With +/(e) = |E¥[e¢7] — E¥[¢¥]|, one has for arbitrary ¢ € (0,1) that
|E,[e¥V:] — E¥[e]] is bounded for all N > ¢(g) by

|Eu[e*V] — E*[e*7]] + 7(e) + 7 (e).

Picking N > ¢/(¢), one further ensures by means of ([7.6) that the first term is, say, at most ¢,
yielding overall a bound on |E,[e¥¥] — EX[e%]| valid for all N > ¢/(¢) which is o-(1) as e | 0
on account of (7.3) and ([7.9)). Thus, ([7.11)) follows. O
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7.2. Scaling limit of occupation times and isomorphism theorem. We now return to
Theorem with the aim of identifying the limiting behavior of the identity (4.11). As a
consequence of Theorem we first deduce the existence of a limit for the occupation times £

appearing in (4.11)) under appropriate rescaling. With £ = (£;),cza as defined in (4.3]) and for
N =1, we consider

(7.12) Ln(z) = NT2Ln,, zeR?

and the associated random distribution, with values in &’(R?), defined by
(7.13) Ly, V) = f,CN(z)V(z)dz, V e S(RY).

We now introduce what will turn out to be the relevant continuous object. For u > 0, we consider
on a suitable space (Q F, PZ) the &'(R%)-valued random variable £, which is the occupation
time measure at level u > 0 of a Brownian interlacement with diffusivity matrix 3. That is, one
introduces under (Q f PE) a Poisson point process & on the space W* of bi-infinite R%valued
trajectories modulo time-shift with (o-finite) intensity measure

(7.14) u(®* o v),
where v refers to the measure constructed in Theorem 2.2 of [66] and
ELWE W @ = [@] - 0¥(@%) = [{(RV20(t) : t e RY]

(ile.wisa y representant in the equivalence class @W*). The process & induces the occupation-time
measure £ = £(&) with

(7.15) W), V)= ZJ ))ds, for any V e S(RY), if & = 25

A formula for Laplace functionals of the random measure L is given in Prop. 2.6 of [66]. We
derive here a somewhat different identity which is more suitable to our purposes, cf. in particular
(7.21)) below. Recall that (—Ay, — V) is invertible whenever V' satisfies (5.8) with A < ¢s.

Lemma 7.4 (d >3,V asin (5.8), A < ¢5).
(7.16) EX[exp {(£,V)}] = exp {u(V,1 + G¥V)}.

Proof. Applying the analogue of (4.2)) for the Poisson measure PE, one finds using ([7.14) and

that
Ef[exp {<£~, V)}] = exp {ufdeK(x)EE [eggo V(Xs)ds _ 1]}
= exp {u J deg () JOOO thE[ fov dSV(Xt)]} = exp {uek, GY¥V)H},

where K = supp(V'), a compact set, EE denotes expectation for Brownian motion on R¢ with
diffusivity ¥ (cf. (5.4)) started at 2 € R?, ex(-) denotes its equilibrium measure on K and
GY = (—Ax = V)7L cf. (5.9). As Gyex =1 on K = supp(V) where Gy, = G2, one has that
(V,1) ={ek,GxV) and ([7.16) follows upon noticing that (omitting superscripts X)

lek, (GY = Q)W)
= (Geg, (—A)(GY = Q)V) = (Geg, (~AGY —1)V) = (Geg, VGVV) =(V,GV V).

O]
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Now recall PV from (4.2]). The following relates the fields £y and L in (7.12]) and ([7.15]).

Corollary 7.5 (V as in (5.8), A < ¢).
With uy = uN~9=2) and Vi as in (2.6), one has for d = 3 that

(7.17) (LN, V) under ]P’X% converges in law to (L, V) under P> as N — .
Proof. With Vi as above and using (4.3)) and ([7.12)-(7.13)), one readily checks that
(7.18) Ly, VY =Y V(@) Lo =L, Vi)

For integer N > 1, u > 0, let on 4 (2) = on(2) + vV2u with pn(2z) as in (5.1]) and set

def.

(7.19) GPY, V)= f V(2): pnu(2)? i dz, for V e CF(R?).
R3

so that : @?\,’0 : equals : @?V :in view of (5.3). Similarly as in , one has that for all u = 0,
with uy as defined above ((7.17)),

(7.20) (DR V) = D V(@) (0a + v2un)?.

Together, ([7.18)), (7.20) and Theorem then yield that for suitable V,

BV [Er V)] Bulexp{5(®X,,, V)II  Bulexp{3(: %, » V) +u(l,V)}]
uN -

(7.21)

Eu[exp{%<(1>?v,0, VOl Eu[exp{%<: (I)?V,o L VO ’

where the second equality follows using that Eﬂ[<q)?\f,u7 V] = Eu[<‘1)?v,0a Vil + u§V(2)dz. By
Jensen’s inequality, which implies that Eu[exp{%<: @?\,’0 5, V1] = 1, and on account of ,
it follows from that the family {(Ln,V) : N > 1} is tight. Moreover, taking limits and
applying formula separately to numerator (with the choice W = 4/2uV’) and denominator
(with W = 0) on the right-hand side of (7.21]), the terms proportional to (V, AYV') cancel and
one obtains that

(7.22)  lim EVN [eX6vV7) exp { B, (W, W)|jyr_ gy + (w, V)} = exp {u(V,1 + GEV)}.

On account of (7.16), (7.22]) yields (7.17]). O

Remark 7.6. 1) As an immediate consequence of Theorems and and Corollary we
recover the following isomorphism, derived in Corollary 5.3 of [66] (for ¥ = Id), and obtain
along with it an explicit formula for the relevant generating functionals. Let : (¥ ++/2u)? :
be defined as : U2 : +2/2u¥ (under P*), cf. (5.7).

Corollary 7.7 (d = 3). Under P ® P,

(7.23) U2 4L L (04 2u)2

N[

Moreover, for any V as in (5.8)), A <¢,
(7.24) E¥[exp{3¢: (U +V2u)? , V)}] = exp {(V, 3AY +uGY)V )}

with GV = GY%, AV = AY as in (5.9), (5.12).
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A

Proof. The isomorphism ([7.23]) follows from ([5.10)), (7.17) and the identity (4.11)) (see also
(7.22)). The formula ([7.24]) is obtained from (5.11)) with the choice W = /2uV'. O

Let £%; denote the occupation time measure defined as in (7.12))-(7.13) but for the inter-
lacement process with intensity measure uvy_q p—o. Let ]P’?L denote its law. Then one can
in fact show that for all d > 3, with uy as in Theorem ([7.5),

(7.25) LY under ]P’gN converges to £ under JBUE as N — o0

(as random measures on R?). The limit can be obtained by starting from the
analogue of (| - ) for EO by exploiting the invariance principle [5.4] directly and e.g. the
bounds of [20] to deduce convergence to the right-hand side of (7.16} - We omit the details.

It is instructive to note that the proof of Theorem only relied on two ‘external’ ingredi-
ents, Lemma (a consequence of ) and Theorem Whereas the lower ellipticity
seems difficult to get by, the upper ellipticity assumption in can be reduced. For
instance, using the results of [4, [6], it follows that Theorem continues to hold if only

c< V" and E,[V"(dp(e))?] < o0, for all edges e € {e;,1 < i < d} and large enough p > 1.

It would be interesting to obtain an analogue of Theorem in finite volume, much in
spirit like the extension by Miller [50] of the result of Naddaf-Spencer [52], cf. Theorem [.3]
It would be equally valuable to seek such results for potentials with lower ellipticity, such as
those appearing in [I3] and [51]. Suitable extensions of Brascamp-Lieb type concentration
inequalities, such as those recently derived in [47], may plausibly allow to extend the
tightness and L?-estimates in Propositions and to setups without uniform convexity.

Heat kernel bounds with potential and scaling limits

We collect here the proofs of Lemmas [2.1] and which concern estimates for the tilted kernel
¢/ and the corresponding Green’s function ¢g" introduced in (2.1) and (2.2), along with scaling
limits of the latter.

Proof of Lemma[2.1] . We first explain how (2.4) implies (2.5). For all ¢t > 0 and z,y, € Z¢, using

1

the inequality ab < 2(a + b?), applying time-reversal and the Markov property, one obtains

that

(A.1)

E, [e&t) ZV(ZS)dsl{Xt:y}] < ; ( [GSW 4V(Zs) ds]‘{Zt:y}] + By [eff/z 4V(Z5)d81{Zt:y}]>

t/2 /2
< sup B, [ed 4V(Zs)d81{zt=zl}] = sup E, [e¥ W(Zs)ds g, (Z%, 2]
z,2!

z,2! 2

By a standard on-diagonal estimate, it follows from (A.1]) that

(A.2)

Y (z,y) < et v 1)~ sup B, [eld 4V (Z)ds] < /(1 1)=42,

using (2.4)) in the last step. To deduce (2.5)), one applies the Cauchy-Schwarz inequality and a
well-known lower bound on ¢; to deduce, for all t > 0 and z,y € Z¢,

2V

@ (v,y) < ¢ 172 &

(z, )@ (z,y) 't v 1) Gj2(z,y)"? <y, y).
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We now show Let r = diam(supp(V). By translation invariance, we may assume that
supp(V) < = ([ r, 7] N Z)%. Assume that for some € > 0 to be determined, which
translates to V < 5. Then, with Tg = inf{t > 0 : Z; ¢ B} denoting the exit time from B < Z<,
for all 2 € Z¢, one obtains

TBar TBar
(A.3) SupEx[eSOB 2V (Z1)d <supEx[625 2 ]<012

a=1 a=1

whenever ¢ < -5 for some small enough c € (0, 1), using that sup, y>; Ex [ecN _QTBN]

the last step.

Now consider the sequence of successive return times to B, and departure times from Bg,.:
ie, Ry = Hp, = inf{t > 0: Z; € B,} and for each k > 1, define Dy, = Tp,, o Or, + Rj (with
the convention that D = o0 whenever R, = o) and Ry = Ry o 0p, + Dy (with a similar
convention), where 6, s = 0, denote the canonical shifts for Z. Moreover, let

< c12 in

(A.4) @) sup PRy < 0]
y€ZIN Bar

By transience, one has the partition of unity 1 = 1{R; = 00} + >, - 1{Rr < 00 = Rp41}. Since
supp(V) < By, no contribution to {;” 2V (Z;)dt arises on the event {R; = c0}.

Hence, applying the strong Markov property successively at times Ry and Dj_1, it follows
that

EI[eSSO QV(Zt)dt] <1+ Z E, [ H exp{f ' V(Zt)dt}l{Rk@O}]
k>1 1<n<k
Dy, Tg,,
<1+ kgl Ex[lﬂk exp { fRn QV(Zt)dt}l{Rk@o}EXRk [6SOB 2V(Zt)dt]:|
Dy,
‘ 1+ Z Ex[ H eXp{Jv QV(Zt)dt}l{Rk,1<oo}] . ( e <1+ Z 612 ,
k=1 1<n<k Ry k=1

where the last step follows by a straightforward induction argument. In view of (A.4), v(a) — 0
as « — . Thus, picking a such that y(«a) < ﬁ, 2.4) follows with the choice e = =
cf. below (|A.3)).

(I

Next, we prove Lemma which is employed within the proof of Proposition for the
computation of the limiting generating functionals in the Gaussian case.

Proof of Lemma[2.3, Let L’ be such that supp(f) < [-L/, L']%. Combining Lemma in case
€ = 0 with the bound (note to this effect that the condition (2.3 applies with the choice
V = Vy uniformly in N > 1 whenever V satisfies (5.8)), it follows that |G f|| (L, L") foo
uniformly in N for all d > 3, along with a similar bound for (G%)? when d = 3. The same
conclusions apply to GV, (GV)2.

We now show . Recalling , rescaling time by N2 and using translation invariance
of P,, one rewrites for arbitrary 7> 0 and all N > 1, with Z} = %Z w2 the diffusively rescaled
simple random walk (cf. above for notation),

(A.5) G = an(T) + by (T),
where
T
an(T :N—df dz1dz f(& + 2)E j dteSéV(ng)delJrQJer
v [0,1)4x[0,1)d ' 2x§d N 0[ 0 (¥ % t )]

34



and by(T) is the corresponding expression with integral over t ranging from [T, 00) instead.
Note that by assumption on f, the sum over z is effectively finite and restricted to x satisfying
|z|o < NL'. Using the fact that the functions f(% + % + -) for |2 < NL', z € [0,1)%, are
equicontinuous and uniformly bounded and applymg the invariance principle for Z together with
a straightforward Riemann sum argument, one concludes that for all T' > 0,

N r t
(A.6) an(T) — szf(z) L W, [eoV(B)ds £(By)]dt.

To deal with by (1) one applies the heat kernel estimate (2.5) (to V' = Vj), thus effectively

V(ZN)ds

removing the tilt elo and uses the on-diagonal estimate Py[Z; = x| < ct~%2 to obtain

(A7) supb (T) < o(L))|fI2T~F, T > 1.
N

As the right-hand side of (A.7)) tends to 0 as T' — o, ({A.6]) and (A.7) yield (2.10]).

To obtain (2.11]) (now assuming d = 3), with G"(z,w) denoting the kernel of the potential
operator GV in (2.9)), one argues separately that

(A8) j F2)gk (2 ) (g5 (2, 2') — GV (2, ) f(w)deds’ 0,
(A.9) ff gN(z 2 —GY(z, ) f(w)dzd?’ o,

from which readily follows. We only show ; the case of is handled similarly.
Let ¢y refer to the absolute value of the restriction of the integral on the left-hand side of (]:
to |z — 2/| < %. Bounding the difference of Green’s functions crudely by a sum, applylng (]:
along with 1ts continuous counterpart and arguing similarly as in the display above , one
deduces that ¢y < cN~! for all N > 1, whence cy — 0 as N — 0.

Writing ¢y for the corresponding quantity when |z—z | > N, one simply bounds gk (z,2') < ¢
in this regime (using again to remove V; cf. also and note that g(z,y) < clz —y|™*
for all ,y € Z*). Then the argument yielding implies that ¢y, = 0 as N — oo, and
follows. O

B Properties of the kernel ¢5(-, ")

We supply here various proofs which were omitted in the main body dealing with g%, defined in

(6.13). We first give the proof of Lemma
Proof of Lemma[6.4). Since p(-) is supported on the ball of radius e, implies that
(B.1) for all N > ¢!, p5(2,2') = 0 unless |z — 2/| < 2e.

In particular, combining (B.1]) and the pointwise estlmate P (z,2") < 7% plo, which is readily
obtained from , one deduces that for all N > ¢! and z € R,

(B-2) o (2o = Jp‘?v(za 2)d2" < e™plooB(z, 2¢) < clple-

Turning to (6.16)), we first suppose that |z — 2’| > 10e. Going back to the definition of g5 (z, 2'),
it follows using (B.1]) that the double integral on the right-hand side of (6.13)) has support
contained in the set S° comprising all (v,w) € R* such that |[v — w| — |z — 2/|| < 4e. Thus,

for 2,2’ as considered here, one has that any (v,w) € S¢ satisfies ,Z_Z‘ > ¢ and moreover
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|lv — w| > be. The latter yields in particular that ||Nv| — |[Nw]|| = N|jv — w| —2 > 1 for all
N > 7! In view of (2.7) and using the classical estimate g(z,y) < m valid for all

z,y € Z%, see for instance Theorem 1.5.4 in [41], one readily infers from this that
gy, w) < clz— 2|72 forall 2,y e S° and N > e}

Substituting this bound into (6.13)) and applying (B.2) (twice) then gives (6.16)).
We now assume that |z — 2’| < 10e. In that case (B.1]) implies that the relevant v, w in (6.13))
satisfy |[v — w| < c13¢ for some cj3 > 1 whenever N > ¢~!. For such N, using the pointwise

bound on pf; (see above (B.2))), one estimates the expression in (6.13) as

(B.3) gn(2,2") < (sup | (2, )lo0) - € 4pllo SHPJ gn (v, w)dw.

2 v JB(v,c13¢)
The last integral is bounded by considering the cases [v — w| < % and & < |v — w| < c138
separately (note that this is well-defined as % < ¢) and bounding gn(-,-) < ¢N in the former
case while using that gy (v, w) < W in the latter, thus yielding for all v € R%,

J gn (v, w)dw < cf
B(v,c13¢) z|<

lzl< %

Ndz + c'f dz (N4 4 &2,

|z|<cize ‘Z|d_2

Upon being multiplied by =% and uniformly in N > e~! the first of these terms is of order e!

while the second one is of order €2~¢, which is larger as d > 3. Feeding the resulting bound

into (B-3) and using (B-2) is then seen to imply that g5,(z,2') < [p|%e? for N > ce71, as
desired. O

We continue with the

Proof of Lemma[6.8 We consider the case h5; = g% first and discuss how to adapt the following
arguments to the case of g% at the end of the proof. Let G* = p° x G * p° where * denotes
convolution on R?, ie. (f *g)(z) = § f(z — y)g(y)dy for suitable f,g (note that G¢ is well-
defined since G acts as a convolutlon operator on C°(R?) 3 p° % p°). The function y — G(z,y)
being harmonic for all y € R4\ {z}, one readily deduces using the mean-value property and the
fact that p(-) is supported on B(0,¢) that

(B.4) G (y,2) = G(y, 2) for all |y — z| > 2e.

Hence it suffices to show (6.24) with G° in place of G. We introduce the intermediate kernels
(%), (95)", respectively defined by replacing one or both occurrences of p%; in (6.13)) by p°.
With these definitions, one has

B5)  6h) @) - 6w < [ 0= 1)lowte ) = G/ o (2 = )
In view of (2.7) and by Theorem 1.5.4 in [41], one knows that

N
sup |gn(y', 7)) — G(y', )] — 0.

ly'—2'|>€

Thus, returning to (B.5)), observing that |z — y| > 3¢ and z — 2/, y — ¢’ € supp(p®) imply that
|y’ — 2/| > ¢, one readily deduces that

(B.6) lim sup |(gx)"(y,2) = G*(y,2)] = 0.
|y z|>3e
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Next, observe that

BT) g (02) ~ 63" w2 < | ([ = 9wt ) oiv(z. ) - (e = )

By the integrand in (as a function of 2’ alone) tends to 0 pointwise as N — oo for
all /. Moreover for any f e C&(RY) with supp(f) = B(0, R), denoting by Gy the convolution
operator with kernel g, one has that

(B.8) Jsvupl [GNV oo < ¢(R)|V]|oo, (for all d > 3)
>
as

|GNV(z) < JQN(ﬂf,y)IV(y)Idy < V[N + f gn (@, )|V (y)ldy < cR*| V.

1
Y=~

Going back to and using ), letting R = diam(supp(p®)), the integrand on the right-
hand side is thus bounded unlformly in N (and z) by

_ 1
c(R)[p%]loo NG (2 —v) € L'(d2')

and it follows by dominated convergence that

(B.9) lim sup |(9%)'(4,2) = hi(y, )| = 0

|y z|>3e

for h5, = (¢%)”. The conclusion continues to hold if one chooses h5, = g% instead, for
then p°(y — ') on the right-hand side of (B.7) must be replaced by p% (y,y’) and the rest of the
argument stlll applies since sup =1 ,erd H p VW, )| < 00, as required to obtain a uniform upper
bound in . Together, (B.9), (IBLGI) and (B.4) yield - ) for hyy = g%

To deal With hy = g%, one considers G¢ = G * p* instead of G* (in particular continues
to hold) and introduces (g5,)” as in but with p® in place of (the sole occurrence of) p%,. One
then separately bounds |(g5,)" — G¢| and |(3%,)" — 5| much as in and (B.7), respectively,
but the details are simpler due to the absence of the integral over dy’. This completes the
proof. O

C Some Gaussian results

In this section we prove Lemma which is a purely Gaussian claim used in the course of
proving Theorem 5.1} . We start with a preparatory result. For 6 > 0 and z € ]R3 define z5 to be
the unique element = € 6Z3 such that z € = + [0, ) Recalling ¥¢ from , let W5 be the
Gaussian field defined by ¥§(z) = ¥¢(z5), z € R3. The following is tailored to our purposes.

Lemma C.1. For alle >0, V e C(R3) and k = 1,2,

(C.1) GU)E vy 2D (@Y VY as S | o,

Proof. We only show (C.1|) for k£ = 2. The case k = 1 is simpler. By Theorem 3.50 in [34], it is
enough to show convergence in L'. By Cauchy-Schwarz,

[SIES

(C2) |G (U5 V) = & (U) V) L <f|V(z)|EE[(: (T°)*(25) = (¥5)*(2) :)*] 2 .
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By [34], Theorem 3.9, p.26, one knows that for all V, W € CF(R?),
2
(C.3) ES[: (0, V2 = (W2 o] = 2(HV(Z)GE(Z, SW()dzd')

Using this fact and recalling that W¢(z) = (¥, p>?) for any z € R3, it follows upon expanding
the square that

(C4) E2[(: (T9)(25) — (T9)%(2) )] = 4(G5(0) — G (2 — 2)%) < c= (G5 (0) — G5(= — 23)),

where G5 (2 — w) = (p**, Gxp®) (= EX[¥¢(2)¥¢(w)]) for z,w € R3. One readily argues using
the regularity assumption on p that G%(-) is smooth on R3. Going back to (C.4)), it follows
that sup, E*[(: (U9)?(z5) — (¥)*(2) :)?] — 0 as § — 0. Together with and since V has
compact support, this yields . ]

We conclude with the

Proof of Lemma[7.3. Note that for all § € (0,1), the random variable : £ := (: (V)% V) +
(5, W) is a polynomial of degree 2 in the variables {U°(z) : z € Ks} where K5 = 6Z¢ n
((supp(V) U supp(W)) + [—1,1]9), a finite set. That is, : £ : is an element of Po(H) with
H = L?(P%) in the notation of [34], Chap.II, p.17. Thus, implies that : &5 :€ Po(H), its
closure in H (the chaos of order 2 in H). This in turn yields together with that : £ :€ Po(H).
It then follows from [34], Thm. 6.7, p.82 that the family {E*[e] : x € {£,£5,¢ € (0,1)}} is
uniformly bounded. Combining this fact, and an argument similar to — but for
the quantity |E>[e7] — E>[e€]], follows. O
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