The Discrete Gaussian model, II.
Infinite-volume scaling limit at high temperature
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Abstract

The Discrete Gaussian model is the lattice Gaussian free field conditioned to be integer-
valued. In two dimensions, at sufficiently high temperature, we show that the scaling limit
of the infinite-volume gradient Gibbs state with zero mean is a multiple of the Gaussian free
field.

This article is the second in a series on the Discrete Gaussian model, extending the methods
of the first paper by the analysis of general external fields (rather than macroscopic test
functions on the torus). As a byproduct, we also obtain a scaling limit for mesoscopic test
functions on the torus.
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1 Introduction and main results

This is the second article in a series on the Discrete Gaussian model, which builds on the foun-
dation provided by the first paper [§]. The Discrete Gaussian model is the Gaussian free field
conditioned to be integer-valued. Its two-dimensional version is a model for a crystal interface (in
2+1 dimensions) undergoing a roughening transition, see |16, Section 6] for a textbook treatment.
We refer to our first paper [§] for a more extensive introduction and discussion of the literature.

1.1. Discrete Gaussian model in infinite volume. In our first paper [§], we studied the scaling
limit of the Discrete Gaussian model for macroscopic test functions on the torus. In the present
article, we derive the scaling limit of its infinite-volume gradient Gibbs state, as well as the
scaling limit for mesoscopic test functions on the torus, which is a byproduct of the proof of the
infinite-volume result. These scaling limit results are the objects of Theorems and [I.2] below.
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The infinite-volume limit of the two-dimensional Discrete Gaussian model will be taken
through weak limits with periodic boundary conditions, cf. , and we permit a general finite-
range interaction .J in the definition of the model. To be precise, let J C Z%\ {0} be finite and
symmetric under reflections and lattice rotations, and define the associated normalised range-J
Laplacian A by

(QaD@) = o5 Y +9) - Fa)) (11)
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for f: Z¢ — R, where |.J| denotes the number of elements of .J. Acting on test functions having
mean zero, (—A;)~! has kernel

(_AJ)il(x7y) ~ =

1
- log |z —y|, as |z —y| — oo, where vy = 2]J| ;,xl (1.2)

We now introduce the relevant finite-volume states. Let Ay be a two-dimensional discrete torus
of side length LY for integers L > 1,N > 1, and fix an origin 0 € Ay. Given the above step
distribution J, the Discrete Gaussian model on Ay at temperature 8 € (0,00) has expectation,
for any F : (27Z)* — R with F(0) = F(o + ¢) for any constant ¢ € 277 and such that the
following series converges, defined by

<F>Aﬁ Z e—ﬁ(a,—AJU) F(U) _ Z efﬁmzzwa(ozﬂwﬁ F(U) (1'3)
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where the sum over z — y € J counts every undirected edge {x,y} twice and
QMW = {5 € (2rZ)M 1 04 = 0} (1.4)

Note that, as in our first paper [8], the factors of 27 in the spacing of the integers in (|1.4]) are
convenient (but could be absorbed by rescaling B), and, to relate better to the Coulomb gas
literature (cf. references below), we use ﬂ rather than 3 to denote the inverse temperature of the
Discrete Gaussian model. Equivalent to considering ¢ modulo constants, one can consider the
gradient field = (1¢)cc g where E are the directed nearest-neighbour edges of Z? and 1. = 0, —0,
when e = (z,y). Known correlation mequahties imply that, for any integer L > 1 and any finite-
range distribution J, the weak limit of (- > 3 as N — 00 exists (modulo constants or as a gradient
field), see Appendlx l For concreteness, we define the infinite-volume limit in terms tori of side
lengths 2%, i.e., when Ay has side length 2%,

()55 = lim ()53, (1.5)
This limit <>%26 is a translation-invariant gradient Gibbs measure and every ergodic measure ()
in its extremal decomposition has zero mean, i.e., (n.) = 0 for all e € E, also see Appendix
For J = Jyy, the usual nearest-neighbour interaction, (-) 25 is the unique ergodic gradient Gibbs
measure with zero mean on account of Theorem 9.1.1 in [49]. For general J, such a characterisation
has not been proved.

As is well-known (see refs. below for an overview over the existing literature on the subject),
in the Discrete Gaussian model, the discreteness of the spins is responsible for a phase tran-
sition between a rough (or delocalised) high-temperature phase and an ordered (or localised)
low-temperature phase. Our results apply to large temperatures 5. In contrast, in the regime
of small 3, a Peierls expansion yields that the Discrete Gaussian field is localised (or ‘smooth’),
e.g., there actually exists an (ordinary nongradient) Gibbs measure ()%Qﬁ satisfying

2

<0'a;0'y>§25 — <Uz>§ﬁ<o'y>§2ﬁ < Ce= ¥l for all ,y and 8 < ¢; (1.6)

see also |12,|46] for very precise results on the extremal behaviour in this regime.



1.2. Main results. Our main result is that the scaling limit of the Discrete Gaussian model (-)% 7 5

defined above is a multiple of the Gaussian free field on R? when 3 is large. To state this precisely,
given f € C°(R?) with Jge f(x)dx =0, let fe : 72 — R satisfy > zeze Je(w) = 0 and, with d = 2,

k < 14+d/2 -1 —11d
(nax max |(e” V) felz)| < Cpet™ 2, supp fo € [<Cpe™!, Cpe7 'Y, o
max |e Y2 f.(x) — f(ex)| — 0, '

x€Z4

where C is a constant and V is the vector of discrete gradients on 72, see Section For
example, if f = V,g for some g € C°(R?) and i € {1,2} then one can take f.(z) = e¥?(g(ex +
ee;) — g(ex)). Thus the following scaling limit in particular implies that of the gradient field Vo.

We use the notation (u,v)zz = Y., 0 u(z)v(z) for u,v : Z? —> R square summable, (f,g)r2z =

ng z)dzx for f,g:R? — R square integrable, and Age = a 97 + is the Laplacian on R2.

Theorem 1.1. Let J C Z?\ {0} be any finite-range step distribution that is invariant under lattice
rotations and reflections and includes the nearest-neighbour edges. Then there exists Bo(J) €
(0,00) such that for the infinite-volume Discrete Gaussian Model (- >J6 at temperature 3 = Bo(J),

there is Beg(J, B) = B+ Os(e=P) € (0,00) with a universal constant ¢ > 0 (independent of J)
such that for any f € C(R?) with [ fdx =0 and f. as in (L.7), as e — 0,

log(ee )2 P B) (1 ()1 g (1)
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Theorem superficially resembles [8, Theorem 1.1], but we emphasise that we are now
considering the infinite-volume state; correspondingly the covariance on the right-hand side is
now (—Ap2)~! instead of (—Aq2)~!. The comparison below [8, Theorem 1.1] with previous
results for the Discrete Gaussian model however also applies to the infinite-volume version, i.e.,
to Theorem [T.1] of this paper.

Theorem can be seen as an analogue for the Discrete Gaussian model (with 8 > Bo(J))
of the Naddaf-Spencer theorem [48] which applies to strictly convex smooth gradient models.
In our first paper [§] we discuss many further references concerning such models and concerning
discrete height functions, and we refer to [8] for a more detailed discussion and only list here
the most relevant references. For the Discrete Gaussian and XY models, we of course mention
the fundamental work of Frohlich-Spencer [31,[32] as well as the more recent articles |2}35,[36,
43-45/150,|51]. For smooth gradient models, there is a very comprehensive picture including
stochastic dynamics [33,34,38] and recent developments include [3H6}9,20-22,47,49,52]. For the
smooth but nonconvex gradient models we refer to |10,/11/18,19] and in particular [13] and [1]
which use the renormalisation group approach. For other discrete height functions, recent works
include [17,26}27,[39H42]. Our first paper (and therefore this paper as well) relies in important
ways on ideas developed in [14,[23}25,[28}29].

As a byproduct of the proof of Theorem we also obtain the following mesoscopic scaling
limit for the Discrete Gaussian model on the torus. (Effective error bounds also follow from the
proof.)

Theorem 1.2. Under the same assumptions as in Theorem there exists L = L(J) such that
for the Discrete Gaussian model on the torus Ay of side length LY, for any f € C(R?) with
[fdz =0, fo as in ([1.7), and any sequence en > 0 such that ey — 0 as N — oo while

enLN — 0,
/BCH(J ﬁ)

log(e o )y — B
’ J

(f, (- ARz)_lf)Rz, as N — oo. (1.9)

Note that the assumption e y LY — oo is necessary. Indeed, if ey < L™ then the support of
f- is not a subset of Ay. Moreover, if ey = L™ the limit would correspond to the macroscopic
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scaling limit considered in [8, Theorem 1.1] which is different from the right-hand side above
(given in terms of (—Aq2)~! rather than (—Ag2)~1).

For some of the related open questions, we refer to our discussion in [8, Section [1.3], but
mention in addition that a characterisation of the gradient Gibbs measures with finite range J
as in [49, Theorem 9.1.1] for the nearest-neighbour case would be interesting.

1.3. Outline of the paper. This paper relies heavily on our first article on the Discrete Gaussian
model [8], and in particular we use the set-up and notation from Section 2/ and Sections 4-6 of
that paper. Even though we included some reminders below, we will often refer to [8] to avoid
repetitiveness.

The proofs of Theorems and proceed by decomposing the external field from the
moment-generating function into contributions from all scales, with each contribution smooth at
the respective scale. This is set up in Section Then, the main technical contribution of the
present paper compared to [§] is an extension of the renormalisation group map, originally defined
in [8, Section 7], to allow for a scale-dependent external field. This is carried out in Section
after technical preparation in the preceding sections.

Different methods to extend a renormalisation group flow by observables for pointwise corre-
lation functions in similar setups to ours were considered in [7,|1524,[29]. These approaches do
not allow to derive the infinite-volume scaling limit as in our main result, and we expect that the
approach we develop here could have applications to other models.

1.4. Notation. We use the notation |a| < O(|b]) or a = O(b) to denote |a| < C|b| for an absolute
constant C' > 0 and a ~ b to denote that lima/b =1 (where the limit is clear from the context).
We stress that all constants appearing below are uniform in S unless explicitly stated.

Throughout the paper, the dimension will be d = 2, but we sometimes write d to emphasise the
source of the constant 2. Let eq,...,eq be the basis of unit vectors with nonnegative components
spanning Z% or the local coordinates of A, and set é = {#ej,---,+ey}. For a function f :
7 — Cor f: Ay — C, we write VAf(z) = f(x + p) — f(x) for u € é. For any multi-index
a € {£l, - ,+d}" with n = |a| > 1, we write V¥f = Vi ...V f. The vector of n-th order
discrete partial derivatives are denoted by

V' f(z) = (VFL - VP f(z) : py € é for all k), (1.10)

and we write |V" f(z)| for the maximum over all of its components. A without subscript denotes
the unnormalised nearest-neighbour Laplacian,

Af) = S (flt )~ fa) = 3 VEF(@) = 5 3 VR H () (1.11)

nee HEE neeé

whereas A ; denotes the normalised Laplacian (1.1]) with finite-range step distribution .J.

2 Scale-dependent external fields

In this section, after briefly reviewing some aspects from the setup of our first paper [8], we
proceed to describe how the proofs of the above theorems follow by amending the renormalisation
group flow constructed in [8] by suitable external fields u = (u;), which start to appear at a
characteristic scale j = j; in the renormalisation. We then proceed, assuming these fields u to
have a negligible overall effect, as expressed in Theorem below, to conclude the proofs of
Theorems [I.1] and The remaining sections will be geared towards the proof of Theorem
which appears in Section [6]

2.1. Multiscale decomposition of the field. We first briefly review a few key aspects from the
setup of our previous paper [8], which will prevail here. As in Section , we denote by Ay the
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discrete torus of side length LY and we will later impose that L is sufficiently large, see the
discussion at the end of Section for details; the infinite volume limit will then correspond
to the limit N — oo. As explained in [8, Section 2|, it is convenient to work with the mass-
regularised Discrete Gaussian model (-)g,,2 and take m? | 0 in the end. This is the probability

measure (-)g 2 = <>/B\N obtained by replacing —A; by —A; +m? in (L.3) and Q* by ZQN

7m2

where Zg = 2w 3~1/27, i.e., dropping the constraint op = 0. By [8, Lemma 2.1], then

(F(0))3 = lim (F(0))5,n2. 21)

for any F as appearing above (I.3) (and in particular for the choice F(o) = e"?) for any
f:Ay = R).

The renormalisation group analysis will involve a decomposition of the covariance

C(s,m?) L (Cm?) ™ —sA)"L,  with C(m2) = (—Ay +m?)~L — vid, (2.2)

where the inverses are interpreted on RN and A is the (unnormalised) nearest-neighbour Lapla-
cian on Ay, and v and s are parameters with v € (0, %) and |s| tacitly assumed sufficiently small
so that C(m?)~! — sA is positive definite. As in [8 (4.1)], and without loss of generality, we work
from here on under the standing assumptions that |s| < 56 (by which is well-defined) and
that, for an arbitrary constant C' > 0, we have §; > C~! and v; > C~!p;, where 0 and p; refer
to the range and spectral characteristics of J, defined in [8, (3.3), (3.5)], and & is the numerical
constant appearing in [8, Proposition 3.4]. The last two conditions hold for any fixed J as in the
theorems. (The use of the constant C' will yield uniform estimates over families of J as above,
see |8, Remark [1.2]. We do not state these in our main theorems above, but still introduce C' to
follow the same setup as in [§]).

Under these assumptions, it follows that for suitable choice of v € (0, %), which we henceforth
regard as fixed, one can decompose C/(s, m?) from as in (8, Section 4] (see in particular (4.4)
therein) to obtain, for all m? > 0 (and |s| < 46.),

C(s,m?) = T1(s,m?) + -+ Tn_1(s,m?) + T3 (s, m?) + tn (s, m?)Qn- (2.3)

The right-hand side is a sum over positive (semi-)definite (covariance) matrices indexed by Ay.
The matrix Qy has all entries equal to 1/|Ax| = L™ and txy(s,m?) is a scalar satisfying [8,
(3.16)], in particular, diverging like m~=2 as m? | 0. The covariances I'j;1 and F%N in
refer to those defined in [8, (4.2), (4.3)]. They correspond to a decomposition over scales L’
of the covariance C(s,m?). By construction, the matrices I'; have range iLj and their key
analytical features are summarised in [8, Lemma 4.1]. We will frequently use the following
notation. For f : Ay — R, we define (with a slight abuse of notation) I';(f) = I'; % f where
(L * f)(z) =3, Tj(x —y) f(y) with I'j(z) = T';(0, ), cf. [8, below (3.8)].

This completes the introduction of our setup. We observe that in fact, the parameter s in
, which implements the renormalisation of the temperature of the model, can be fixed from
the start in the present paper as s = s{(J, 3) with the latter as defined in [8, Proposition 8.1]; we
will return to this later.

In what follows, we write Er denotes the expectation of a Gaussian field ¢ with covariance
I'. We will frequently write E for Er, , when j =1,...,N —2 and E for EF/]\VN when j = N — 1,

whenever the scale j is clear from the context. Since I‘%N satisfies exactly the same upper bounds
as I'; with j = N, we will usually not distinguish between the cases j +1 < N and j+1 = N.
Generally, j without further specification is allowed to take values j =1,..., N — 1.

2.2. Strategy. Contrary to the macroscopic torus scaling limit in [8], in which all the scales
j < N appearing in (2.3) were treated equally, we will have to distinguish in what follows a
characteristic scale j; at which a given test function f starts to induce a ‘perturbation,” cf. ([2.9)
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below, which manifests itself as a shift (or translation) of the corresponding Gaussian field (at
the same scale). This is because the infinite volume limit N — oo in Theorem is decoupled
from the characteristic scale j¢, whereas [§] simply takes j; = N. The induced perturbation
influences the renormalisation group flow in all the larger scales j > jr. The technical difficulties
arising in this paper are due to these changes. Fortunately, it will turn out that the infinite
chain of perturbations will only impact the analysis on a bounded region by the compact support
condition on the external field (see Lemma for example).

Let f : Z* — R be a finitely supported test function with > f(z) = 0. Let j; be the
smallest integer (> 1) such that the support of f and Af is contained in [0, %Ljf )2 up to a spatial
translation. If f : Ay — R then j; is defined similarly by identifying Ax with ([0, LN)NZ)? C Z2,
whence jr < N. We call j; the smoothness scale of f and will frequently assume that

£ llgoo (z2) < L™, (2.4)

where ¢ will be an L-dependent small constant fixed below Lemma The interpretation of jr
as a smoothness scale becomes clear when we focus on lattice functions scaled like f. given by
. Indeed, each e~ 2f.(¢'z) is an approximation of a smooth function, thus j . is the scale
where f. becomes smooth: L7 ~¢g~1

The macroscopic scaling limit considered in [8] corresponds to j; = NN, but now we are inter-
ested in j; < N. The analysis of the macroscopic scaling limit proceeded through a translation
of the field by v f +C(s,m?)(f +syAf) at scale N, with C(s,m?) as given by (2.2). The term ~ f
and the difference between f and f + syAf will be insignificant and result from the preliminary
renormalisation group step in [8, Section [2.3], which integrates out the i.i.d. field with variance ~,
cf. , thus transforming the original discrete field into a smooth periodic potential (integrated
with respect to a Gaussian measure). In view of , we now rewrite C/(s,m?) as

N-1
C(s,m?) =T (s,m?) + Y Ti(s,m?) + T\ (s,m?) + tn(s,m?)Qn, (2.5)
J=js+1

where, with hopefully obvious notation, I'c; = ZK k<j Ll Our starting point in this paper for
the proofs of Theorems and is also a translation, but at the smoothness scale j; rather
than the macroscopic scale NV, and by vf+T'¢;, (f +syAf), see Lemmabelow. An observation
(made precise by Lemmabelow) is that vf+T'<j, (f+syAf) is smooth at scale j; because f is,
while on the other hand, I'y(f + syAf) is smooth for k > j; because of the smoothing properties
of the covariance I'y. We will show that this allows to implement translations iteratively for all
scales k > jr, with small errors accumulating from each scale k starting from k = j; and that as
Jf — oo the sum of these errors is governed by the contribution from the scale j; and tends to 0
as jf — 00.

2.3. Scale-dependent external fields. To formulate the above strategy more precisely, first recall
(as mentioned above) that the parameter s is fixed as s = s{(J, 5) from the start of this paper.
Further let so = s = s§(J, ), and define (as in [8, (2.25)])

with the function U given by [8, (2.15)], which is a 2w 71/2 periodic function of a single real
variable. The next lemma is a slight reformulation of [8, Lemma 2.3]. For its statement let
C(s,m?) be given as in [8, (2.26)], i.e.,

C(s,m?) = 3(1+ s3A) + (1 + 57A)C(s, m?)(1 + 57A), (2.7)

and recall the covariance decomposition ([2.5)).
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Lemma 2.1. For all 8 >0, v € (0, %), m? € (0,1], |s| = |so| small, one has for any f € RM such

that 3, f(z) =0,
o A 1 9 s,m
(eFDVIN ) o 3 FCEmIDNE G oy [Zo(o + T up)], (2.8)

where the expectation acts on @ and

0 (J <Js
T (f+svAf) (G =df)
Uj = . . (2.9)
Li(f + syAf) (N >j>jr)
TN (f + 57Af) (j = N).
Proof. By [8, Lemma 2.3],
Z o~ 30 (=As4m?)0) ,(f.0) e%(f7é(s,m2)f)EC(57m2) [Zo(o + AF)], (2.10)
UGZgN
with .
A= 1+ syA)"IC(s,m?) = v+ C(s,m?)(1 + syA). (2.11)
The statement follows by applying the decomposition (2.5) of C(s,m?) which gives
Af = uj +tNQN(f + 7AF) = Yy, (2.12)
J<N J<N
where the last equality follows because ) f(z) =0, and hence Qn f = QnAf = 0. O

The renormalisation group flow constructed in [8], which we now sometimes refer to as the
bulk renormalisation group flow, is in terms of the recursion (cf. [8, (7.3)])

Zis1(¢) =Er,,, Zi(¢' +¢), ¢ eRMW, (2.13)

where here and below, Er, , is the Gaussian expectation with covariance I'j11 which always
acts on the field ¢. To incorporate the scale-dependent external fields u = (u;) we now define
Zo(u, ) = Zp(p) and

Zin(u,¢') =Er,,, Zi(u, @' + C+uy), ¢ € RMW, (2.14)
with F%N instead of I'j;1 when j + 1 = N. Finally set
Zn(u, @) = Bryon Zn(u, @' +C +uy), ¢ € RMW. (2.15)

Together, (2.14), (2.15) and (2.3) imply in particular that the expectation appearing on the
right-hand side of (2.8) can be recast as (with E¢(, ,,2) acting on )

Ec(sm?)[Zo(e + X72;, wj)] = Zn(u,0). (2.16)

Our analysis of the Z;(u, ¢') relies on the property that the external fields u; are smooth on scale
j for all j, as demonstrated by the next lemma. Here assume that j; in is the smoothness
scale of f, i.e., the smallest integer such that supp f is contained in a block of side length %Ljf .
By definition, a block of size L is any set of the form z + ([0, L) N Z)? for some = € LZ?. Let
||u]HC]2 = HujHCJg(Zz) = maxp=0,1,2[| V}uj|lgeo (22, cf. [8, (5.10)]. In the sequel we often tacitly view
a function f with domain Ay (such as u;) as defined on Z? by identifying Ay with [0, L")? and
extending f to have value 0 outside this set.
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Lemma 2.2. There exists an L-independent constant C' > 0 such that the following holds: for all
f:Z% — R satisfying > f = 0 and such that f and Af have support in a block of side length
%Ljf, the functions u; defined by (2.9) have support in blocks of side lengths %Lj forj < N -1
and

lujllos < CL | fllmzsy, G < N. (2.17)

In particular, if (2.4) holds with ¢ < (CL?)™!, then sup, HUJHCJZ < 1. From here on, we fix
(any) such value of ¢; this choice is implicit when referring to (2.4) in the sequel.

Proof. Let g = f 4+ syAf and note that by assumption g has support in a block of side length
LLir. Also, [lglle= < (1+2|s/)[flle < Cllflle= since [Aflee < 8 flle= for any j. We may
identify I'; with its convolution kernel, i.e., I'jg = I'; * g. Then I'; is supported in a block of side
length $L7 and satisfies IVGTjllee < CL? for |a| < 2 where Vi = L1 see [8, Corollary 4.1,
thus

IVSTglleme < L2|VET, e lglleme < CLZ42] £ e (2.18)

Thus the desired statement holds if j < N.

The same estimates hold when j = N, i.e., with I'; is replaced by FJ%N which satisfies analogous
bounds, see [8, Corollary 4.1]. This completes the proof of the bound .

The statement about the support of the u; follows immediately from the assumption that the
support of f and g have diameter %Ljf < %Lj for all j > j; and that I'; has range iLj. O

2.4. Conclusion of the argument. In Section |§| we will show the following theorem from which
the proof of Theorem can be completed similarly as the torus result in [8, Section 9]. The
theorem is stated under somewhat more general condition on the sequence (u;); = (u; € RY);
of given external fields that are uniformly bounded and supported on a single block in the sense
that:

(A,) There exists j, such that u; = 0 for j < jy, Huchjz < 1 for each j < N, and u;
is supported on the unique By € B; such that 0 € By and d(0By,supp(u;)) > 4.

For the same reason that j; was called a smoothness scale of f, we call j, the smoothness scale
(of u = (u;);). Note that, by translation invariance of the Discrete Gaussian model on the torus
AN, we may assume that f is centred with respect to the block decomposition; that is, supp(f)
and supp(Af) are contained in the box m+ [0, +L; ;)% where m is one of the lattice points closest
to the center of some block B € B; for all j; < j < N. In particular, then, by Lemma @ for
all scales j < N, there is a block B € B; such that whenever L > C, Ns(supp(u;)) C B where
Ni(X) denotes the set of points with ¢!-distance at most k from the set X. Thus the condition
on the support of u; is not stronger than the condition on the support of f.

Theorem 2.3. Let J be a finite-range step distribution as in the statements of Theorems
and[1.3. There are Bo(J) € (0,00), a (large) integer L = L(J) (which can be chosen dyadic), and
a constant a > 0 such that if u = (uj) satisfies[(Ay)| there is C > 0 such that for 8 > Bo(J) and
N > ju,

ZN (u, 0)
ZN(O> O)

—1| < CL™ %, (2.19)

Assuming Theorem [2.3]to hold, and in view of Lemma [2.1] the proofs of Theorems[I.1] and [I.2]
are readily completed by means of the following elementary lemma, as explained below. This
lemma is the infinite-volume analogue of [8, Lemma 9.2]; we postpone its proof to the end of
this section and first give the details for the proof of Theorems and In what follows,
for N > j;., we tacitly identify f. with the corresponding function having domain on the torus
AN by identifying supp(f.) with a suitable subset of the torus Ay. We write CMv = C for the
covariance matrix defined in to stress the dependence on the underlying torus Ay.
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Lemma 2.4. Let f € C(R?) with [ fdx =0 and f. be as in (L.7). Then

ggr(lm}gnom}g?o(fs, CAN (s,m?)f.) = J+S(f,( Ag2) " fre, (2.20)

and the statement also holds if the two leftmost limits are replaced by N — oo withe = ey — 0
while eyLN — 0.

Proof of Theorems and[1.4 Our proof proceeds as the following. We will first prove our main
limit results with f. replaced by 7 f. for 7 > 0 sufficiently small (depending on C'y of and ¢
of ) The convergence can then be extended to all 7 € C by a standard argument which we
include for completeness.

Given f € C°(R?) with [ fdz =0 and f. as in (L.7)), set j; = [log,(8Cfe™')]. Then using
the first two conditions in (1.7)), it readily follows that f. satisfies for all e € (0,1) (including
that f. is supported on a block of side length L7/ /4). Now define u; = uj[e| according to ([2.9)
with f. in place of f. Then by Lemma (Tuj); satisfies with j, = j; whenever 7 > 0 is
small enough depending on Cy and L. Now by Lemma and ,

(TN | T (feClom?ge) Z(TUEL O) (2.21)
pim ZN(O7 0)

Since |(A,,)| holds for Tule], the assumption of Theorem is satisfied uniformly in . Therefore
— 1+ O0p(e®8BC=") = 1 4 04(e%) (2.22)

uniformly in m?,¢ and j ¢t < N. In the context of Theorem 1.1, the last condition j; < N is
immediate as soon as N > C(e) since € > 0 is fixed while N — oo; in the context of Theorem
1.2, it follows from our assumption ey LY — co. Finally, by Lemma if either first N — oo
and then € — 0, or if € = ey — 0 such that ey LY — oo, we have

lim log(e T(f670)>AN2 N TQBeﬁ“( ,B)
m210 B,m 2UJ

(f, (= 2p2) " f)ge- (2.23)

By (2.1), using that >  f. = 0, the left-hand side equals log(e (fE’U)>Ag Thus with f. replaced by
T fe Wlth sufficiently small 7 > 0, the proof of Theorem [I.1] follows on account of Proposition [A
and Theorem [I.2] follows directly from the above, i.e.,

(S J7 —
log< T >J5 26 ﬂ;( 2 2 (f, (=Ag2) " g2, as e — 0, (2.24)
log<eT(f5N’0)>1}g — 2661?2(;7 .5) (f, (—Ag2) "1 f)ge, as N — oo. (2.25)
’ T

Now, we show that the domain of 7 can be extended to C using the Gaussian domination
inequality. Indeed, by (2.24]), we see

(2n)' Beff(‘L 6) —1 p\n
2] T(f’ (= Bme)™ ) (2.26)

Z2
<(f5v 0)%721 J3 -

<(f€7 2n+1>Jﬂ

for each n € N. Also, for any T' > 0, by the Taylor’s theorem (for the second equality), there
exists 0 € [0, 1] such that

n k m 0T|(f=,0)] T(fe:0) 4 o=T(f=:0)
T n T)(f20)| T n € e +e
— £ _ - = < . .

n>k n=0




But by [30] (see also |43 Proposition 1.2]), we have the Gaussian domination

(e(g,o)>§g < eg(g,(*AJ)Xlg) (228)

)

for any g : Ay — R with Y g =0, so we obtain

(3 T o)) | € 2T (2.29)

!
= 180 = (E+1)!

upon letting T = |Re(7)|. In other words, <Zﬁ:o%(fa7 o) >9%’ — <eT(fE’”)>§%’ as k — oo,
uniformly in € and N, proving

i dim (3T N - o 2.30
Ll i (30 T Ueo)) = tim (3 D)) @230)

But by (2.26)), the latter is 72%‘5’5)(]0, (—Apg2)~!f)g2, completing the proof of Theorem
The extension for Theorem is done analogously.

Proof of Lemma[2.7] In what follows, given fe : 7Z? — R, we denote by f(E its Fourier transform,
defined as in [8, (3.19)]. By definition of C(s, m?) and since f.(0) = 0, one has

= / As(ep) ' (1 — syA(ep))
(= /em/e2 L+ sA(ep)(As(ep)~t =)

lim lim (f.,C(s,m?)f.) = ’fs(5p)|2 dp, (2.31)

N—00om2—0 4%2

where A(p) is the Fourier multiplier of the (unnormalised) discrete Laplacian —A and A ;(p) that
of the (normalised) range-J Laplacian —A s, see [8 Section 3.2]. By [8, Lemma 3.6,

lim e 2 \(ep) = |p|%, lim e 2\ s(ep) = v3|p|?, (2.32)
e—0 e—0

and the fraction in the integrand in (2.31)) is bounded by C|p|~2 uniformly in ¢ and p €
[—7 /e, 7 /e]?. Moreover, as we now argue, (L.7) implies that fe(ep) — f(p) as e — 0 for each
p € R? and that |f-(ep)| < C|p|(1 + |p|)~3. To see this in detail, we start from

= 3 L/ (2.33)

y€EeZ?

For |f(p) — f-(ep)| = 0 pointwise, use f € C°(R?) and the last condition in (L.7) to see that,
with [-] denoting the integer part,

Fo) = Reenl < [ e = ay+ [ f) =2/ ay 0. (234

To see the bound on fs(ep), use summation by parts to write

AD)|f-(p)] = |Af.(p)] = Z e PENf(2)| < | Afellnz2)- (2.35)
TEZ2
By (L7),
1A fellorzz) < CFHE" + 12IAfellpo 22y < 2CF(67V)? fellpoo(z2) < 2032, (2.36)

and by 8, Lemma 3.6], we have that ﬁ)\(sp) > %. Thus it follows that |f.(ep)| < C|p|~2. On
the other hand, since Y f- = 0 and || fc|[e= < Ce?, also

el =| 3 L/ =D <lifelles Y0 ly-pl < CCH, (2.37)

y€eeZ? yeeZ?:|y|<Cy
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and therefore | f-(ep)| < Clp|(1 + |p|)~ when combined with |f-(ep)| < C|p|~2.

Finally, using the convergence in Fourier space and that the integrand is dominated by
Clp|=2 x (Ip|(1 + |p])=3)? < C(1 + |p|)~% which is integrable over R?, the Dominated conver-
gence theorem implies

1
2 _ -2 2 _ . —1
ti Jim_ i (5, Clom?) ) = 5 [P @) dp = 7 (5 (<0ee) 1) (239
as claimed. 0

3 Norms and contraction estimates

We now prepare the ground for the proof of Theorem which will essentially follow by suitably
extending the RG flow developed in [8]. This extension is designed to accomodate the external
field u. In the present section, we discuss the necessary amendments to the norms introduced
in [8, Section 5| required to carry this out, as well as the resulting contraction estimates, cf. [8|
Section 6].

3.1. Norms and regulators without external field. We recall some essential elements of [§]. Given
Ay, the discrete two-dimensional torus of side lengths LY and a distinguished point 0 € Ay, let
7N : Z* — Ay be the canonical projection with 7 (0) = 0. Then for each j = 0,---, N, B;
(j-blocks) will be the sets of the form mn (([0, L7) N Z)? + nL’) for n € Z?, P; (j-scale polymers)
are any subsets (not necessarily connected) of Ay that can be obtained as the union of j-blocks.
For various notions related to Pj, see [8, Section 4]. Functions F(X,¢) smooth in ¢ that only
depend on ¢|x+ for each X € P; are called polymer activities at scale j, see [8, Section 5]; here
X* refers to the small-set neighborhood of X, see [8, Section 4.1].
In , Zj will always be parametrised as

Zj(p) = e BTy 7 UG (X ) (3.1)
XEP‘(AN)
1
Uj(X, ) = SJ\VSO!X + 3" LYY N cos(y/Bap(x) ) =55l Velk + Wi(X ), (32)
q=>1 rzeX

with U;(0)) = 0 and initial conditions sp € R given, Ey = 0, Ko(X, ) = 1x—_g and 29 = (z[()q))q>0
given, where the latter refer to the Fourier coefficients of the periodic potential U in ,
see [8, (2.18)]. The coordinates U; and K are polymer activities, and in [8, Sections 5 and 7],
they are controlled using the norms H”Q]U and ||H95< The latter norm needs an extension in
the current work, so it will be reviewed in some detail here. It is defined in terms of positive
parameters 7, A, L, K1, Ca, €4, €y, h, which will essentially be fixed as in [8] in Section below.
The definition of the norms involves the regulator G;, which is a weight defined for X € P; and
© € RAN by

6(X.0) = exo (wu (1956300 + el Vol + 3 IV3elaqeny) ). 63
BeB;(X)

where B;(X) is the set of j-blocks constituting X, 9X denotes the inner ¢!-vertex boundary of X,
and with the relevant LP-norms as introduced in [8, Definition [5.2]. The semi-norms and norms
on polymer activities are then given by (cf. [8, Definition [5.4])

| D" F(X, @) ln,1;(x,0) = Sup {D”F(X, ) fu) lkllez ) <1 Vk} (3.4)
HE (Xm0 = sup Gi(X, ¢) IZ |D"F(X O)ln7;(x0) (3.5)
pERAN n= 0

(3.6)

1Fllgx = 1Fllnz;, = sup AXB|F(X,)
J X€ePs
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We will also need the following somewhat more technical properties of the norms and regula-
tors. For X € P; and ¢ € R recall the definition w; (X, )% = ZBGB]-(X) maxp—1,2 \V?SOH%M(B*)
and then that of the strong regulators

exp (CwFﬂij(X, @)2>, 9;(X, ) = exp (CML > WX, V?SO)2>7 (3.7)
a=0,1,2

where W;(X, V4p)? = >_BeB, (X)HV?QOH%OO(B*). For sharp integrability estimates, we subdecom-
posed in [8], Section 4.3 each scale j into M fractional scales j + s with s =0,...,1—1/M when
L = (M with ¢ an integer. Each covariance I'j11 from the finite-range decomposition has
the corresponding subdecomposition

Pivi=Tj0m+ -+ i1/ 1 (3-8)

The regulators G4, and the strong regulators g;4, are also defined on these fine scales, see (8|
(5.15)] and analogously for G;s. The crucial property of G and g;is is stated in the next
lemma, which is an extension of [8, Lemma 5.13] and proved in Appendix The fields &,, &
appearing in the next lemma will correspond in practice to shifts induced by the external fields.

Lemma 3.1. For X € Pj, and ¢, &, B € RAN for each B € Bjis(X), define

log Gj+s(X, ¢, 80, (§) BeB, 1o (X)) (3.9)

= w1l Viralp+&)I72, (x) + hreallVies(@ + &2, ox) oL D, IV +E8)lIZ(se)-
BeB;4(X)

Assume 0 < j < N, L = ™. For any choice of ca small enough compared to 1, there exist
cy = c4(c2) and an integer by = lo(c1,c2) (both large), such that for all £ > by, M > 1, s €
{O,ﬁ,...,l—ﬁ} and k1, > 0, for X € Pf,

‘SX7707 . < ASXS -1, j+s 7X8 -1, . 1
Gjts(X, 0,80, (§B)BeB; . (X)) ae{o}ISz%i(X)gﬁ (Xognr—1,80)Gjpspn—1 (Xgpm—1,90). (3.10)

and X4y pr-1 is the smallest (j + s + M ~1)-polymer containing X (see [8, Section 4.5]).

3.2. Norms and regulators with external field. To incorporate the effect of the scale-dependent
external fields, we need an extension of the norms and regulators that take the external field
into account. The following definition introduces modified regulators that effectively control the
polymer activities perturbed by the external fields (u;).

Definition 3.2. Given (u;); satisfyz'ng define the V-regulators (cf. (3.3))
GY (X, 5 uy)

= sup exp (k050 + 00l 0 + eamnl Vil + t05) [z + W (X )?) @11
tel0,

where

WY (X, Viesu)? = > sup V3o +tuy)|F (s (3.12)
Bij(X)tBE[OJ]

The dependence on u; will often be hidden.

Eemark 3.3. The main motivation for G;-I' is to have sup;c(o 1) Gj(X, ¢ + tu;) < G}I’(X, v) and
ence

1K (X, 0+ tuj)lnyx,0) < 1K X)) 700G (X,9),  te0,1],. (3.13)
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Note that we could not use sup,cp 1) Gj(X, ¢ + tu;) for G;-I’ because this definition does not
factorise into connected components, i.e.,

sup Gj(X UY,p+tuj) # sup G;(X, o+ t1u;)G;(Y, ¢ + tau;) (3.14)
te(0,1] t1,t2€[0,1]

if X £Y =0 but X*NY* #(. This is why we introduced the Wj‘l'.

Also note that since ijujﬂiz IV u]HLQ W;(X, V]zuj) are each bounded by some

5 (X)? (0x)’
J
multiple of |Ju;|Z., in particular, there exists ﬁnlte C > 0, independent of X, such that, under
(Au)
G} (X,0;u;) < C. (3.15)

The following are the key properties of G}I’ (cf. the properties of G in [8, Section 5|).

Proposition 3.4. Let (u;); satisfy . Then there exists Cy > 0 such that for L as in the
assumption of Lemma and sufficiently small ca, ¢, > 0, (G}I’)j;O = (G;-I’(-;uj))j>o satisfies
for each (X, ) € P; x R, j >0,

(1) GY(X,9) = Gj(X, ),

(2) GY(X,¢) = lyecomp,x) G5 (Y. 9),

(3) ecunruiXett GV (Y, o) < CyGY (X UY,p) if XNY =0 and t € [0,1],
(4) E[GY(X, ¢ + Q)] < Co2X5G1(X, ) for all ¢ € RM.

Proof. By definition of G}I’, properties (1) and (2) are clear. For (3), first observe from the
definition of w;(X, ) (see above (3.7)) that for each ¢’ € [0,1] and some geometric constant
C >0,

wi(X, o+ tu)? <2 Y (HV (& + tu)|Foo (o) + (E = VIVl o0 5 (3.16)
BeB;(X)
+ V3 (e + t'ug) | Foo ey + (= t/)2|W§UjHLoo(B*))

<2 Y (IVile +tuh)llii =z )+Hvi(swrt’uj)ll%oo(g*))+C||uj||20]z-
BeB;(X)
(3.17)

We then note that for any B € Bj(X), zg € B and « € B*, there is another constant C' > 0 such
that

IVip(@)] < [Vie(zo)| + ClIViel L5, (3.18)

for all u € & (for example, cf. [8, (A.37)], applied to f = V¥ and recall that zo and = be-

long to some small set X, whence |X|; < C) and hence ||Vj<p|]%oo(3*) < 2max,ee| VRp(z0)|? +

202]|V2¢|\Lw(3 Summing over all zy € B, this implies
IVl 5y < QHVJ'SOH%;(B) +20%| V3ol oo (51)- (3.19)
Plugging this into , we get
utty X+t < Ceullus + 51950+ tui)la) + 5WE LV (320)
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for ¢, sufficiently small. The discrepancy between the left- and right-hand sides of item (3) of
the statement of the proposition due to the boundary term of G; can be treated by the discrete
Sobolev trace theorem [8, Corollary A.2|, which shows that there is C' > 0 such that

so if ¢9 is sufficiently small so that C'co < %, then this together with (3.20) gives

waj(X7 -+ tUj)2 + ij(‘P + t/“j) H%?(y) + CQHVJ’(‘P =+ t/uj)H%?(ay) + Wj\P(K V?“PF (3.22)

< chHujHé? + ij(SO + yuj)”i?(XUy) + C2HVJ'(‘P + y“j)”%?(a()(uy)) + W]'\P(X Uy, V?QP)?

After taking supremum over ¢, it follows that (3) holds for any Cg > exp(C’cwﬁLHujH%,z), and
J

C'y can be chosen independent of j because of [(A,,)|

For (4), we may assume that j < N — 2, since I‘%N satisfies the same estimates as I'y. We
use the regulator decomposition: by Lemma [3.1

M

GY(X, ¢ +¢Gu) <[] Sl[ép}gj+%(Xk/M7§k + lp=ituy) Gy (X, @) (3.23)
k=1 tel0,1

whenever ¢ = 7, § and Xy is the smallest polymer in P /5 containing X € P; and X = X;.
Using the covariance subdecomposition (3.8]), we may decompose ¢ ~ N(0,I'j+1) as the sum of
independent &, ~ N(Ovrj+k/M,j+(k+1)/M)- Then each E& (9j+(k—1) /0 (Xiyar, Sk + Lg=1tu;)] are
bounded using [8, Lemma 5.12]. For k = 1, we have from the definition of g; that

g3 (Xnr1, 6+ ) < 05 (Xarr, €020 (X1, 3)? < g5 (X, )%™ 10 (320
for some ¢ > 0. Also for any k € {1,..., M}, [8, Lemma 5.12] gives
E (g4 -1y /00 (Xieyars €] < B (g4 (omyar (Kijar, &)%) < 21X/ (3.25)
with the choice of L and ¢ as in Lemma (cf. [8, Appendix |A.2]). Therefore
EIGY (X ¢ + ) < 0N @y (X, ) (3.26)
which implies the claim with the same choice of C'y as in (3). O

Next we define a norm corresponding to the W-regulators. This norm is defined in the same
way as the || - |p,7;-norm in except that there is, apart from the use of G} instead of Gj,
also a change of the parameter A (large-set regulator) from A to A/2. This is to compensate
a combinatorial factor coming from reblocking in the next section, which will not significantly
affect the resulting estimates.

Definition 3.5. Define, for U; : P; x RAN — R such that ¥;(X) = [Ty ecomp, (x) ¥i(Y),
J

15 (O v ) = sup GY (X, ) T (X, ) I,y (x.0) (3.27)

15llnze = sup (A/2)X6 105X 70 x)- (3.28)
J XeP§ /

J
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3.3. Contraction estimates. This short section can be regarded as an extension of |8, Section (6],
but some results are now generalized to apply to the norm |||, 7w ). In the following we write
g

. G;(X, if ¥=0
]( 790) i * = .

Note that by applying Proposition to both wu; and u; = 0 (which also satisfies , one
obtains that

(3.29)

E[G}(X, ¢ + )] < Cp2™1Gj41(X,¢),  for both x € {0, ¥}. (3.30)

We also use the notation ||'”h,Tj*(X) for either H-||h’Tj(X) or H-||h7T;p(X) and H‘Hh,T; for either ”‘Hh,Tj
or ||-||;,pv when x =0 or U, respectively.
)

Below, we refer to 27 /+/B-periodic polymer activities to be the functions F(X, ) such that
t — F(X,¢+1t) is 2w /+/B-periodic, see |8, Definition 6.1]. Then its charge-q part is defined by
the Fourier expansion

X.o+t)=Y VP (X, p), LER, (3.31)
q€Z
and F is called neutral if ' = Fj. Recall that the norm ||-|| hT7(X) D 3.27)) depends implicitly
on a choice of u = (u;); and the notion of small sets S; at scale j from [8| Section 4.1].
Proposition 3.6. Let X € S;, and let F be a 27 /\/B-periodic polymer activity such that || F||, T (x) <
oo where ¥ € {0,V}. Let (u;); satzsfy- Then for some C' > 0 and L > Lg, the followmg
hold.

e If F has charge q with |q| > 1, then for all ¢’ € RM,
IEF(X, @'+ Olln gy, (x0) < CeVPlilhe (=2 O P(X) |, 1 ()G (X, ). (3.32)

e If F is neutral, then for all ¢’ € RM,

IE[F(X,¢" +¢) = F(X, Ol (x.¢) < CL™ (log L)Y F(X) |77 (x)G1(X, ).
(3.33)

Proof. The first item, (3.32)) for * = 0 is just |8, Lemma 6.13].
For x = W, it suffices to argue that the conclusion of |8, Lemma 6.12] continues to hold under
the modified assumption that |[F||, ;v x) < oo. Indeed with this at hand, the proof of (3.32)
)

proceeds exactly as that of [8, Lemma 6.13], except that one invokes above rather than (8|
Proposition 5.9] towards the end of that proof. As to why the identity [8, (6.43)] still holds, one
simply observes upon inspecting its proof that an analogue of the argument in [8| (6.50)—(6.52)]
involving || F(X )||h’T; (x) still applies when combining (which generalises [8, Lemma 5.13])
with [8, (5.36)].

To see the second point, we proceed similarly as in [8, Lemma 6.17]: writing (Remo EF) (X, ¢') =
E[F(X,¢ 4+ () — F(X, ()], Taylor’s theorem and neutrality of F' give

1
(Remo EF)(X, o) = /0 dt (1 — 1)D Remy EF(X, € + 1) (34), (3.34)

where 0¢'(z) = ¢'(z) — ¢'(z9) for a ﬁxed point g € X. But since DRemgEF(X,¢') =
EDF(X,-+¢'), t he left-hand side of ( is bounded in absolute value by

1
Wt [ = OIEDFOG -+ 1) g x99 ez, o

0

1
<h7lCuL! /0 dt (1= )| F(X) 73 () BIG (X, 1 + )o@ lce,, xoy: (3.35)
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applying [8, (6.31)] in the second line. Moreover, E[G}(X,t¢" + ()] < Cy2XliG;41 (X, ty') for
both x € {0, ¥}, as follows readily from (3.30)), and by [8, (6.100)] (applied with n = 2),

E[G(X, 1" + Olllo¢"[lcz, | (x+) < Clog L)'?G11(X, ). (3.36)
On the other hand, for n > 1, D™ Remy = D" and thus by [8, (6.31)], we immediately get

D" (Remg BF)(X, @)(f1, -+, fu)l < (CoL) M ID"EF(X, ¢ + Ol (x0) Hllfkllc;+l(x*)

k=1
(3.37)
for some constant Cy > 0. We obtain (3.33) from ([3.35), (3.37) by summing % D™ Remo EF'(X, @) |[n,1;(x¢")
over n = 0. 0

Finally, we recall the definition of the reblocking operator from [8, Definition 6.19], defined
for a j-scale polymer activity F' by
Y=X
SF(X)= Y_ F(Y), X€ePf, (3.38)
YePe

and extended to disconnected Z € Pji; by SF(Z) = HXecomij(Z) SF(X). The following

lemma extends the reblocking estimate from [8, Proposition 6.20]. The only difference is that the
bound on the right-hand side also holds for the weaker norm ||-||;, ;v.
(]

Proposition 3.7. There exists a geometric constant n > 0 and e, := A™® such that the following
holds. Let F be a polymer activity supported on large sets and satisfy HF||h7T; < epp. Then for

any L =5, (A/2)" > L(2¢eL?)*™, X € Pj11 and * € {0, ¥},
ISE[F(X, - + Ol x) < (LA™Y E | Bl e (3.39)

Proof. The case x = 0 is exactly [8, Proposition [6.20]. The case x = ¥ is obtained by following
the same proof, but A is replaced by A/2 in view of the definition of ||-||, v, see (3.28)). O
g

3.4. Choice of parameters. Finally, we explain how the parameters in the norms above are
chosen.

First of all, the parameters k1, c2, c4, ¢, are chosen as in [8, Section 5] (see the end of
Section 5.1 and Remark 5.11| therein), except that we impose the extra conditions resulting from
the assumptions of Lemma [3.1] and Proposition [3.4] These do not contradict the conditions
from [8, Section 5] as they only impose further smallness conditions on ¢, ¢2, ¢4.

Next, given a finite-range step distribution J, we fix an additional parameter r € (0,1]
such that (with C' = \/ichcjil, an absolute constant from [8, Lemma [7.4], cf. also [8, (7.6)
and Lemma 6.11] regarding the choices of ¢f and ¢y, respectively)

Cr < p3, (3.40)

and we always impose the condition (with C' = 2 max{cJTQ, 0]71}, also an absolute constant from 8|
Lemma |7.4])
B>C. (3.41)

The parameter h is then chosen as in [8, Definition 7.2] as h = max{c}/Q, renp VB, ;)

Finally, we will assume that L > Lo and A > Ay(L) with Ly and Ag(L) chosen to satisfy
the assumptions of |8, Theorem 7.7] as well as of those of Lemma Proposition and
Proposition above. Moreover, we will always tacitly assume from here on that L is f-adic,
i.e., of the form L = ¢M for some integer M > 1, where £ := min{2" : 2" > {;} is the smallest
dyadic integer larger than ¢y (with ¢y as supplied by Lemma now fixed since cg is). This
ensures that i) Lemma is always in force and ii) eventually, can be used (since L is
automatically dyadic). Later in Sections [5|and |§|, further lower bound conditions on L and A will
be imposed, which are consistent with our standing assumptions L > Ly and A > Ay(L).
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4 Reblocking the external field

We will use a renormalisation group analysis in Section [b| to study the flow of the partition
functions defined by . Ideally, we would like to write the renormalisation group maps in
identical form as those of [8, Section 7], but the introduction of the external field u; breaks the
algebraic form of U; (see ) and the symmetry of the system that we used to define the
localisation operators Loc in [8]. Thus, we will first reduce the problem caused by the external
field to a setting where the form of U; stays the same as in the original renormalisation group steps
and then bound the perturbation created by this operation. This is achieved by the following
proposition and lemma. For X € P;, recall that P;(X) denotes the set of all j-polymers Y such
that Y C X.

Definition 4.1. Given u; € RAN and scale-j polymer activities Kj and U;, define for X € P,
Folu;, U, K5 31(X, 0) = —Kj(X, ) + Z (er('#’-f—uj) _ er('#P))X\YKj(Y,SO_'_ uj)  (4.1)
YeP;(X)

where
(er(.,¢+uj) . er(-,(/}))Z déf. H (er(B#P‘FUj) _ er(BN’))’ for 7 c Pj? (42)
BEB]'(Z)
and Fyluj, Uj, Kj; 51(Z,¢) = [ xecomp,(z) Felwi; Uj, Kj; 51(X, @) for general Z € P;.
The dependence of Fy on the scale j will often be omitted when it is clear from the context.

The following is a purely algebraic statement. Note in particular that the assumptions on Uj;, K;
appearing below will be satisfied by the choices in (3.1), (3.2]).

Proposition 4.2. Assume that for some scale-j polymer activities K; and Uj,
Zi(p) = e FINE N7 LMD KX, ), (4.3)
XeP;
and that U; is additive over blocks, i.e., Uj(XUY) = Uj(X)+U;(Y) for all XNY =0, X,Y € P;.
Let V; = Fyluj,Uj, Kj; j]. Then
Zi(p+uy) = e BN LMD TT (K 4+ 95)(Z, ). (4.4)
XeP; Z€Comp; (X)
If K;,U; are 2w /+/B-periodic, then so is W;. If u; satisfies |(Ay)| then U;(X) = 0 whenever
BjnX =0.
Proof. This is a result of a simple reblocking argument. Using the assumption
Zj(p +uy) = e FIMWE N U0t ) 0 (A\ X 0 + uy), (4.5)
XeP;
by making the substitution
Ui (Xsptu;) H Ui (Byptus) — Z (eVitotug) _ oUs(9))Y U (X\Yo0) (4.6)
BeB;(X) YeP;(X)
we immediately obtain that
Zi(p+uy) = e BIANL ST (Vi) S (Uit _ UiCo) X |(A\(Y U XY, 0 + uy).

YeP; X'eP;(A\Y)
(4.7)

Then we arrive at (4.4) after factoring the above expression into connected components of A\Y.
The asserted periodicity of W; is plainly inherited from Kj;,U; and the last remark is a
consequence of the fact that K;(X, ¢ +u;) = K;(X, ¢) for 0 ¢ X* and u; satisfying O
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For the next estimates, recall the definition of the space ng from [8, Definition 7.1] and of
Qf{ from [8, Definition |7.2]. In particular, the parameters these spaces and their norms depend
on are always assumed to satisfy the conditions specified in Section

Lemma 4.3. Suppose (u;); satisfies |(A,)l Given U; in form [B.2) and K; a 2w /+/B-periodic
polymer activity, let V; = Fyluj, Uj, K;]. Then there exist C > 0 and ey > 0 such that, whenever
lwjlle, = max{[[Ujllou, [[Kjllax} < ew,

(1) 195l 7o < Cllwllo,;

(2) for X € 8j, IIE[¥;(X, @' +¢) = ¥0(X, Olllngy 1 0x.pn <A™ ado 195179 G (X, ¢)
where o, . = CL™'(log L)"/? + C'min {1, >t e\/the*(qfl/Q)’"ﬁrj“(o)} and U is the charge-0
term of .

Proof. To prove (1), we first notice that by [8, Lemma 7.4] (whose assumptions are satisfied by
the assumptions of this lemma) and (3.13), for ¢ € {0,1},

1U;(B, ¢ + tuj)|[n1;(B.p) < CA*lHUjHQywj(Baw +tu;)?, BeDB; (4.8)

. ol
Also, using [l ~ 1l z,8.0) < | Flngyzpe 50,

U (Byotu; U;(B,
He 5 (Byp+us) —e 5( W)Hh,Tj(BﬁO)
CA™H|Uj || qu maxyeo,13 wj(Byp+tuy)
J

< CA*1HU]-HQ§/ Inax wj(B, ¢ + tuj)e

4.10
€{0,1} ( )

Using the submultiplicativity of the ||-[[1 1, (B,,)-norm to bound the powers of eUi(Biptu;) _ oUj(Byp)
and Proposition (3), it follows that

19 5(X, @) 1,1 (x0)
GV (X, )

< D (Cllwjlla,) Y tCome AN < Oluwyll, (A/2) X (4.11)
YeP;(X)

whenever ||wl|q, is sufficiently small. This proves (1). To show (2), take X € S; and recall that
W, is 27 /+/B-periodic to decompose

‘Ilj (X7 ()0> = Z li/J}q(X’ 90) (412>
qE€Z

where W, , is the charge-g term of ¥;. Then apply (3.32) to bound E[W; (X, ¢+ ¢)] for |¢] > 1
and (3.33)) to bound E[V; (X, ¢ + () — ¥;0(X, ¢)]. O

5 The renormalisation group map with external field

To prove the infinite-volume scaling limit we need an extended version of the renormalisation
group maps that admits an external field at every scale. In this section we extend the (bulk)
renormalisation group map from [8, Section 7] to allow for such an external field. The starting
point is the generalisation of the parametrisation of the partition function from [8, (7.4)] to take
into account a local perturbation. In accordance with , partition functions will now be
parametrised as

Zi(p, Wjs (Vi) pej|A) = e BolinTres 3= iMXe) - TT (KG(Y, 03 (W) k) +95(Y, ),
XePj(An) YGCOmpj(X)
(5.1)
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and where e; is a scalar coupling constant (like £;), but originating from a bounded number of
blocks near the origin. Then the renormalisation group flow corresponding to

Zit1(¢,0; (Tr)ki|AN) = EZj (¢ + ¢ V55 (Uk)kes| AN), (j<N-—-1), (5.2)

will be considered. Here recall that E = Er, , for j < N —1 and E = EFAN for the last step
N
j=N-—-1.

5.1. Renormalisation group flow without external field. When Uy = 0 for each k < j, then we

will just denote K;(+; (¥g)r<j) by K;(+;0); this corresponds to the setting of [8]. Here we briefly

recall the main estimates for the renormalisation group map in this setting from [8, Sections 7

and 8]. This maps acts on the coupling constants E; € R, U; of the form , and Kj(-;0)

from [8, Sections 7 and 8]. In particular, U; can be identified with its coupling constants s; and
()

2j = (Zj Ja=1-

Also, we use the abbreviations w; = (Uj, Kj) and |lwjlo;, = max{||Uj||Q§J, HKJHQJK}, where
norms are still as in [8, Definitions 7.1-7.2] with the parameters they depend on always assumed
to satisfy the conditions of Section [3.4]

The following theorem puts together [8, Theorems 7.6 and 7.7) for j+1 < N with its analogue
[8, Proposition 9.1] for the last step j +1 = N.

Theorem 5.1. Fiz a finite-range step distribution J as in Theorem . There exist e (5, A, L)
such that the following holds for |lw;jllo, < en. For all N and 0 < j < N — 1, there is a map

A
QN = (1158541, 3541, K1) = (B, 85,2, Kj(50)) = (Ej, 8541, 2541, Kj41(50),  (5.3)

such that (5.1)), (5.2) hold with e; =0 and ¥, =0, and Zy given by (2.6). The maps Ej41 — Ej,
541, 3j+1, and K1 are functions of w; satisfying

l5j+1(w;) — 55| < CA™wjllq,, (5.4)
|(Ej41 — Ej)(wj) + 5,V 7T (0)] < CAT LT |wjq,, (5.5)
3]'_:,_1((,03‘) = L2€7%’8q2rj+1(0)25j, (5.6)

for some C' > 0 and there exists e > 0 such that whenever ||wj|lo; < en, Kji1 is continuously
(Fréchet-)differentiable and admits a decomposition K11 = L1+ M1 satisfying the estimates

1€5+1(@i)llox, < C1Lavoc|lwjlle, (5.7)
[IDMjr(wi)llax,, < Ca(B, A, Ll|willa, (5.9)

for some C1,Co(B, A, L) >0, where L1 is linear in w; and

OLoe = C’L’?’(log L)3/2 4+ C'min {17 Ze\/ﬁqhef(qflﬂ)?“ﬁfﬂl(o)}_ (5.10)

=1

The next theorem concerns the existence of initial conditions independent of N such that the
renormalisation group flow exists for all NV, i.e., that for all N > 1 and all j < N — 1,

A
(Ejt1, 8541, zj+1, K1) = ®75 (Ej, 85, 25, Kj) (5.11)

such that ||(Uj, Kj)|l, < &y for each j < N. With j < N — 1 instead of j < N, the theorem
is exactly [8, Proposition [8.1], and the bounds (5.12)) for j = N follows from the bounds with
j = N —1 by a single application of Theorem
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Theorem 5.2. For any finite-range step distribution J as in Theorem there exist Bo(J) €
(0,00), sG(J,B) = O(e‘iw), and o = a(J, 8) > 0, such that for 8 = Po(J) the solution to the
flow equation (5.11) with parameter s = s§(J, ) and initial conditions so = sG(J, ), zo = Z(B)
as in |8, Lemma |2.2], and Ko(X) = 1x—g, satisfies for all j < N and N > 1,

_1 i _1 s
IUjlqr < O(e17PL™), || Kjllgx < O(e™177 L), (5.12)

In fact, one can take any o > 0 such that CL?are. < L™% for sufficiently large C.

5.2. Extended coordinates. We next define the extended renormalisation group coordinates that
incorporate a perturbation W. First, recall the definition of polymer activities from [8, Defini-
tion 5.1] and the definition of (bulk) renormalisation group coordinates K from [8, Definition 7.2].
The extended version of the K-coordinate is then defined as follows.

Definition 5.3. The coordinate I?j = (K;(+;0), K;(-; (Vk)k<j)) is a pair of 27 /\/B-periodic polymer
activities such that K;(X, ;0) is even and invariant under the lattice symmetries. For pairs of
such polymer activities, define

HKJ‘HQf = max{ || K; (- 0)[|n1;, 1K (5 (Y ) ki) 101 }- (5.13)

Let Q]R be the Banach space (cf. (8, Appendiz B]) of such pairs where the mazimum is finite.

We also need a new definition of the product space of (Uj, K j,U;) as follows.

Definition 5.4 (Extended coordinates). Define the normed space of polymer activity perturbations
based at the origin by

QF = {W; is 2 //B-periodic : 1, 7 < 00, W5(X) =0if 0 & X} (5.14)

equipped with the norm ||-||qv = |||, 7. Also let Q; = ng X QJI? X Q}I’, i.e.,
J g

Q

j = {wi = (UL K. 95) < llwjllg, < oo}, lwjllg, = max{|Ujllay, Hf?jHng 1¥llgw}. (5.15)
Given ey, Cy > 0 also define Y; = YVj(ew,Cw) C Qj be the closed subset defined by the conditions
(1) K;(X,9;0) = Kj(X, 05 (Vp)r<y) if 0 & X*;
(2) 1¥llgy < Co max{[|Ujllqv, Hf?jHQ]zz} and |lwjllg, < ew ;
(3) For X € S;,
B (X, - +€) = 50X, Ol gy, ) < CoA™ o cllwsl, (5.16)
with off . as defined below Lemma (2).

In particular, if we define ¥; = Fyluj, K;(; (Vi)k<;j), Uj; g] for given Uy, I?j, then, if their as-
sumptions are satisfied, Proposition and Lemma imply (Uj, K;(50), K;(-; (Wi)k<j), V) €
Yj(ew, Cy) for some ey, Cy > 0 whenever ||Uj||qu, || K;ll oz < €w.

i J
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5.3. Definition of the extended renormalisation group map. We will now introduce the extended
renormalisation group map with the extra coordinates Kj(-; (¥y)r<;) and ¥;, which we denote
by

Dy (Ej €5, 5,2, K5, W) = (Bjgas e, Sj41s 241, K, 0) (5.17)

(cf. [8, (7.12)] for @, which we now call the bulk part of the renormalisation group map); here
the e; are scalar coupling constants taking the role for the perturbation due to the external field
that the F; have for the bulk part of the renormalisation group map. In analogy with ®;,, we
will also denote the components of the map ®;41 by (£j41, ej+1,uj+1,/C9+1,lC}'+1) and require
that

(ejr1 — & lAN(E), e5,) = (ej11 — Ej11|A[)(0,0,-) +e5 — Ej|A|. (5.18)

The last condition can be imposed because the scalar prefactor e~ ZilAltei appearing in Zj (see
(5.1)) is mapped to the corresponding quantity at scale j+ 1 and hence does not contribute to the
dynamics, see the discussion below [8, (7.12)] for the bulk case. Moreover, when we write ¢4 1,
Ej+1 without ej, E; as their arguments, they are just ¢;411(0,0,-) and £;11(0,0, -) respectively.

We are thinking of ®;.1 as ®;41 with a perturbation, which entails that the &1, Uj1; and
IC?Jrl will be given as in [8, Section [7], i.e., by Definitions 7.8 and 7.9 in that paper respectively.
The other coordinates ¢j;1 and IC;-I’Jrl are defined explicitly as follows. The definition of IC;IJ+1 is
almost the same as that of ;1 except for the perturbed activity ¥; and the one-point energy
¢j+1 arising from it.

Definition 5.5. For 0 < j < N —1, let { be the centred Gaussian random variable with covariance
Fjy1if j < N—2 and F?,N if j = N — 1. Then for each Y € P;, define the map (K;,V;) —
ejr1 (£, ¥j) by

BCZ
- 1 N N S
(VK0 = Y > WE[‘I’LO(Z, Q)+ Kj0(Z, ¢ (Vi)k<j) — Kj0(Z,¢;0)]
BeB;j(B;NY) ZES; 0l7
(5.19)
where we recall that By is the unique j-block such that 0 € By and let
ej+1(K;, W) = iy (An, Kj, ;). (5.20)
The map (Uj,ﬁj,qu) > K}I’H is defined by
,C;'Ij—l-l(U]" Eh \I’]" X) = Z 65j+1\T|—2j+1(T)€L{j+1(X\T) (521)
Xo,Xl,Z,(BZ//)
« E (er _ 6*5j+1|B‘+23+1(B)+uj+1)X() (F;I’ N g‘l!Kj)[qu H J;II(BZH, Z”),

Z"€Comp,41(2)

where the polymer powers follow the convention [8, (7.23), (7.24)/, the summation * is running
over disjoint (j + 1)-polymers Xo, X1,Z such that X1 o Z, Bzr € Bjy1(Z") for each Z" €
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Compj+1(Z), T=XoUX1UZ and X = UZ//B}N U XoU Xy, and

EVKi(X, )= > JNBX¢) (5.22)
BeB;1(X)
QY(D,Y,¢') = lyes, (Locy,p BIK; (Y, ' + ¢;0)] (5.23)
Lpes;Byny)
e g EWie(Y0) + KiolY:G (Pa)isy) — Kio(Y,G:0)])
DGBj(Y)
T (B, X,¢) =1pep ) Y. Y. QV(DY,¢)(1y_y — 1p=x). (5.24)
DeB;(B) YES;
—v
K; (X, ¢' +¢) = Z W (K5 (Y, + G (Wrhey) + W5V ¢+ 0))) (5.25)
YeP;

for D € B;, B€ Bjt1,Y €Pj and X € Pjy1.

Note that each (j + 1)-block Bz appearing in the summation defining IC;I’Jrl is such that
Z" € B3, since J]‘.I’(BZ//, Z",¢") vanishes whenever Z” ¢ Sj1.

In the remainder of the argument, we will focus on the case 7 < N — 2, and hence { ~
N(0,T41). The argument is identical for the case j < N — 1 because T xN satisfies the same
estimates as I'y.

The next theorem is the extension of [8, Theorem 7.5] with essentially the same proof; see
Appendix (C| for the proof. It shows that Z;;; defined by the map @, is indeed the desired
partition function of scale j + 1.

Theorem 5.6. Let Z;(¢,¥;; (Vi)kp<j|A) and Z]H(go ,0; (Uk)r<j|A) be defined by (B-1) with coor-
dinates (E],e],U],K],\I/ ) and ( ]H,e]H,UJHKJH,O) Dip (Ej,e],U],KJ,\IJ ) respectively.
Then they satisfy (5.2) (and (5.18) holds).

5.4. Estimates for the extended renormalisation group map. Since we have already established
estimates on the bulk components &1, Ujy1, and IC = K;(-;0) of the renormalisation group
map in [8, Theorems 7.6 and |7.7], we only need addltlonal estimates for ¢;;1 and /CJ /1. Since we
will not need a stable manifold theorem to tune parameters, a cruder control of these suffices.

Theorem 5.7. Let (u;); satisfy and the parameters be as in Section . If (Uj,ﬁj, V) €
YVj(e,Cy), for some € >0 and C'y as given by Proposition

€41 (B, V). Kj)| < COy A7 wjllg,, B € By (5.26)

Proof. Let X € S; be such that 0 € X* and B € B;(X). By (4.12) and the definition of

s (= e, see E20)-E29).
[E[0(X, O] < (4/2)7 X012 EIGT (X, ¢)] (5.27)
and by the assumption (Uj, Kj, U,) € V;, we also have ||¥;|qv < Cq,ij|]§j. Similarly,
J

B[ 0(X, G (Uh)res) — Kj0(X, ¢ 0)]] < 247X HKJ‘HQJXE[GJ‘(X, Q)] (5.28)

and note that ||K; HQK < H%HQ by definition, see (5.15)). By Proposition and since | X|; <4
for X € §;, we have that

E[G;(X, )] < E[GY (X, ()] < Co2l < 16Cy. (5.29)
Hence, by definition of e;- 41 in (5.19), we obtain (5.26)). O
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Theorem 5.8 (Estimate for remainder coordinate). Let 0 < j < N — 1 and the parameters be as
in Section . Further assume |( - to hold and let Cy be given by Proposition . Then the
map IC]H(U],K], V) admits a decomposition

]C]Jrl(Uja[?j?\I] ) £j+1( ) +M]+1(Uj7l?j7\1/j) (530>

such that the following estimates hold: the map L’}I’H s linear in (I?j, U;) and there exist Ly,
AG(L), En = Eu(B, A, L,Cy) > 0 (only polynomially small in its arguments), C1 > 0 independent
of A and L and Cy = Ca(5,A,L,Cy) > 0 (only polynomially large in its arguments) such that
for L > Lj, A> Ay(L), wj = (Uj, K;,¥;) € Vi(én, Cu),

£ (K )lley, < C1Cy (LPapoc| K (5 0)llax + afcllwillg, ). (5.31)

—

with aE’OC from Lemma and Mj+1( K, %) is continuously Fréchet-differentiable with

IME1(@h)llgs,, < Ca(8, A, L, Co)llw 2 (5.32)
IDME 1 (@5)llgs,, < Ca(B, A, L, Co)wj - (5.33)

5.5. Proof of Theorem 5 . bound of linear part. We first introduce £] ,1- Proceeding as in [8,

Section |7.4], we may write the terms linear in Uj, K; ; from (5.21) by keeping only the terms in

(B-21) with
#(Xo, X1, Z) := | Xo|j+1 + | Comp; 1 (X1)| + [ Comp,; 1 (Z)| < 1 (5.34)

and replacing exponentials by their linear approximations. This linearisation process is identical
to that of [8, Section 7.4]. For X € P7,,, this gives

£g+1( 790,)
> lveps (E[Kj(Y,cw’; (Tresj—1) + U5V, ¢+ @) —lves, Y Q7 (DY, 90’))
Y= DeB;(Y)
D=X DeB;(Y)
+ Y (B0 ¢+ @) + E11lD] = 5,0 (D) —Upna (D) + Y QDY)
DEBJ' YES]'

= L (B)) (X)) + LFL (U)X, ) + L7 (B (X, )
(5.35)

where, using the choice of ;1 and e; 41, see [8, (7.21)] and (5.19), respectively, we set

LR = Y IyepEE(Y.C+ ¢:0) — yes ElLocy Kjg—o(Y,¢' +¢0)],  (5.36)

YiV=X
£2,(3)) = > yerBlU (Y, ¢ + () — lyes; ¥50(Y; Q) (5.37)
Y:Y=X
£, (K; Z lyepeE[D;(Y,¢' +¢) — 1yes, Djo(Y: ()] (5.38)
and
Dj(Y, ) := Kj(Y, 5 (W )r<y) — K5(Y, 93 0). (5.39)

In fact, the £;4; in Theorem . (see [8, Section 7.4]) is identical to 55421, ie.,

Ly (FK;(50) = LY (K) (5.40)

and also L';-I'H is a function of (I?j, V), not depending on Uj.
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Proof of (5.31) of Theorem|5.8 - We will show that the bound ((5.31] - ) holds for any choice of &, <
€nl, Where the latter refers to the (bulk) Value supphed by Theorem [5 . see above . Thus,
let w; = (U],KJ7 W;) € Yj(En, Cw). By (5.7) and (5.40), we already know that

1 (B llax, < CrLParocl K (5 0) e (5.41)

The estimate on £§2+)1 follows from the decomposition

Y=X

LX) = > BV +0) — Ui0(Y,0)] + S(lygs BT (- + QDX ). (5.42)
YES;,0eY*

The summation is running over Y* 5 0 now because of the assumption that ¥;(Y,¢) =0if0 ¢ Y*
(which is a part of the assumption (I?j, VU;) € Yj(Eu,Cw)). Then the first term is bounded by
CA*‘X|J’+1a]‘f’OCijH§j because of the assumption (K;, ¥;) € V;(ey, Cy) and implied by it
(here we also used that |Y|;j41 < |Y];). The second term is bounded using Proposition [3.7 with
x = U with L and A = A(L) sufficiently large:

IS[1yepers, B (.- + Ol Iz (x) < (L_IA_I)‘X'J'“H‘I’jHQ;.P < CQEOCA_'X‘”II|‘I’J'|IQ}J (5.43)
Finally, we bound

Y=X

P )= > EDi(Y.¢ + Q) = DoY)l + S(lygs, E[D; (- + QDX ). (5.44)
YeS;,0ey

Again, the assumption D;(Y,( + ¢’) = 0 for Y* # 0 (which, as above, is a part of the assump-
tion (Uj, K;,¥;) € Yj(€ni, Cv)) effectively restricts the sum in the first term to Y* > 0, then
Proposition |3.6| with case * = 0 applies to give the bound CA_|X|f+laE'OC||I€j |- For the second

term, Proposition with * = 0 gives the bound same bound with the same éhoice of L and A
as above. O

5.6. Proof of Theorem [5.8t bound of non-linear part. Analogously as in [8, Section 7.5, the
non-linear part MY 1= IC;I’Jr1 E;-I’H (with E;-I’H as defined by the first line of (5.35])) can be
decomposed into four parts,

4
MY U By X ) =Y (&Y (w)), X, ¢) (5.45)
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with

*

. oY
M@ @), X) = D Lpmemzeae TR 0lm (D
X0,X1,Z,(Byn)
x E[( i U Xo(KY _ gk, )[Xﬂ} I  7/Bz.2" (5.46)
Z"€Comp;1(2)
* . o —
MO @), X) = D Loz (TG0 )
X(),Xl,Z,(BZ//)
xE[(e i — U)X fﬂ“K)[Xﬂ} [I  7¥Bu.2") (547)
Z"€Comp;(Z)
w,(3 = 77 =u X0
P/ (w), X) = Y E[(ew _ Uy, +Uj+1) } (5.48)
|X0|j+1=1
v, (4
(R (wy), X) = B 3 O s (ey) + BN 80+ 0)(0)] (549
YeP;

where ﬁ}l’ = ﬁ;l’ (wj) is short for the collection

(E51|X] = &1 (X), Up. Uy, K (Vi) + 05 K L £V, TY) (), (5.50)

we consider X — £;11|X| — ¢j411lpex as a polymer activity,

—v
Ujn(X,¢") = =&l X[ + ¢ 1 (X) + Ui (X, ¢), (5.51)

and the rest of the notations are those of Definition @ Also notice that Uj4q is used in place of
U411 to simplify notations. These look somewhat complicated, but in view of |8, Lemma 7.12],
it is actually sufficient to check some regularity properties of terms appearing in each ,‘Jﬁ ( ) to
show the differentiability of M along with the desired estimates (5.32)) and (5.33). We now
proceed to supply the necessary details. Our discussion follows closely the line of arguments
yielding [8, Lemmas 7.11 and 7.12]. We first gather the estimates that will lead to a suitable
analogue of |8, Lemma 7.11]. This is the object of the next lemma.

Lemma 5.9. Under the assumptions of Theorem forany § > 0, there existse = (6, 5, L, Cy) >
0 such that for wj € Yj(e,Cy), B € Bjt1, k € {0,1,2},

(B, o)In1;(p,8) < C (0,8, L, Cy)(1 + dewrpw;(B, 90)2)”(")]'”5]-7 (5.52)

k

[|e(Bx2) —

cwRkrw; (D, 2 i
(B, 9) "Iz, (p5) < C(0,8, L, Ca)elerrts Bl g[S, (5.53)

==

m=0

where i is either U; or U;-I’H. The same inequalities hold with U(B) and C (9,3, L, Cy) replaced
by Ej+1|B| — e;H(B) and C(B, L, Cy), respectively, and § set to 0.

Proof. For st = U; or £;11|B|, the asserted bounds are then an immediate consequence of [8,
Lemma [7.14]. For the remaining choices of &I, recall the definition and the bound on Uji;
provided by [8, (7.49)] and [8, (7.71)] that for B € B,

||UJ+1(3790) ( 57 )(1 + 5cw"£ij(B790)2)ij”§j‘ (554)
Also by Theorem we have
[¢j11(B,w))| < CCrA™ wjllg, (5.55)
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and since U (X,0) =¢j 1 (X )+ Uj1(X,¢") by (65.51)), we have

||Uj+1( )1y (p) < C6, 8, L, Cu) (1 + bewrrw;(B, ¢)?) wjlle;, (5.56)
showing ([5.52)). For the second 1nequahty, assume € < 1/C(9, 8, L, Cy) and H%‘Hﬁj < g, then the
Submultiphcatlwty of norm and shows

||eUf"+1 Inzy(8 > < e”Uﬁl”h’TﬂBw < O(5. 8,1, Cy)eourvs(Bo)? (5.57)

Then and (| shows

We now state the analogue of 8, Lemma 7.11] in the present context.

Lemma 5.10. Under assumptions of Theorem there exist e—=>6 ¢ = ¢(5,L) > 0, n > 0,
C=C(cw,B,L,Cy) and Cy = Calcy, L, A, Cy) such that

HDeﬂ(va)Hh’Tj(B’w) < Cecuriw;(Byp)® (5.58)
HDzeu(B7SD)|’h,Tj(B,<p) < CleCwrrw;(B)? (5.59)
IDIF (B, Z,&)|n1y(5.4r) < CAT ecorrwa(Be)” (5.60)
HDF;P(Z, <P)Hh,Tj(Z,go) < CAA_(H”)‘Z‘J'“G}I’(Z, ©) (5.61)
IDEYK;(Z,¢) o) < C g A~ UHMIZlj11 gewrrw;(Z¢")? (5.62)

for B € Bjy1, Z € Pjy1 whenever wj € Yj(e(L),Cy) and & is either U; or U;-IJH or Ej41|B| —
e;‘+1(B)- In the final case, ecorLwi (B0l can be omitted.

Proof. The proof is mostly the same as that of [8, Lemma 7.15-7.16]. The bounds and
5.59) are consequences Lemma cf. the discussion around [8, (7.76)—(7.77)]. The bound
5.62)) follows directly from (cf. [8, Lemma 7.15]), which in turn follows from a bound on
||DQ;-I’\|h7T].(w/) (namely, below). To obtain this bound, notice that for D € B;, Y € S,

1 .
vom B0+ D0l (56)

where D;(Y,¢) = K;(Y, (; (Wi)k<;) — K;(Y,¢;0) and @Q; is defined by [8, (7.26)]. But |8, (7.75)]
already bounds Q;(D, Y, @), so we actually only have to bound E[¥;o(Y,¢) 4+ D;o(Y,¢)]. But

IE[Z,0(Y; )] ) < C(A)2) V0 ge BIGT (Y, O)] < CaC(A/4) VBT ge,  (5.64)
HE[ﬁj,O(YvC)]Hh,T () < CATH|K; lor EIG; (Y Q) < (A/2)"Y“HK}HQ§ (5.65)

Q7 (D,Y,¢') = Q;(D,Y,¢') + lyes,

so it follows that Q}I’ is differentiable with
IDQY (D, Y, &)1y vy < CATVlecontwaPe). (5.66)
For (5.61)), notice that if we write F for the function
FU;, K;) Z Vi) (v, (5.67)
YeP;

it follows that F;Il = F(U;, K;(-; (Yg)k<;) + ¥;). So by inspecting the proof of |8, Lemma 7.16],

one sees that DF;-P satisfies exactly the same bound as DK ; (see [8, (7.28), (7.61)] for its definition
and bound), only with A replaced by A/2, i.e.,

I
GY(Z,0) DK (Z,9) 02,4 < Ca(A/2)"FDIZls (5.68)

But for A large enough, this is less than C4 A~ AH1IZli+1 for some 7/ € (0,m) as needed. O
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Proof of continuous differentiability of M;I’H and (5.32)), (5.33). For j < N —2, [8 Lemma 7.12]

implies that the bounds on R}I’(wj) = (€j+1,Uj,U;~II+1,Kj(-; (Yi)k<j) + \I/j,F;y,é"I’Kj,J]‘-I’) pro-

vided by Lemma and Lemma [5.10] are sufficient to prove the differentiability and bounds on
S)ﬁ;-ljjr(f) (Rj(wy)), k € {1,2,3,4}. In fact, (5.61)) now imposes bound in terms of G}I’ instead of
G, but this does not affect the proof because [8, Lemma 7.12| uses the properties of G; that
(1) ecorrwsXGHY) < GHX UY) if X NY =0, (2) Gi(X) = [Tomp,(x) Gi(X) and (3)
J
E[G;(X, ¢ +¢)] < 2XliG;41(X, ¢'). But the same properties are verified on account of Propo-
sition [3.4], while the constant Cy only contributes as a multiplicative factor in each estimate.
For j = N — 1, all of the arguments of Sections continue to apply as F%N satisfies
exactly the same bounds as required for I'; when j = N. O

6 Proof of Theorem 2.3

In Section we defined the extended renormalisation map @H corresponding to the finite
torus Ay. In this section, we analyse the limit (as N — oo) of the final renormalisation group
coordinates (En,en,U. N,I? ~, Y N)n>0 obtained by the iteration of the renormalisation group
map up to scale N, with initial conditions provided by Theorem This limit is not exactly as
the same as the limit j — oo of the local infinite volume limit; in the former limit the size of the
torus Ay is also varying as N — oo. For this reason, we temporarily write the dependence on
AN of the coordinates explicitly in the following theorem and the corollary, e.g., the coordinates
will be denoted (Ej\ N, e?N , UJA N, K jA N, \I/?N ) and the renormalisation group map will be denoted

@?jrvl and 5;-\41:1 for the bulk and the extended flows, respectively.

Theorem 6.1. Let J be any finite-range step distribution as in_Theorem[I.1], choose the parameters
as in Section assume that B > Bo(J) as in Theorem and let (EJAN7 UJAN,KJAN) be the
(bulk) renormalisation group map on Ay as in Theorem i.e.,

A A A A A A A .
(B, UM, K8 (5.0)) = 945 (BM UM KM (50), 0<j<N-1. (6.1)

Assume that (uj);j>o satisfies|(Ay), and define (€;)o<i<n, (\I/;-\N)ogjgj\[, (K]/.\N(-; (\I’QN)kq'))ogjgN
mnductively by

W = Fylug, U™ K7 (5 (Wa)ie)s ] 02
A A VAN (AN AN gh

K5 G (WM esy) = Ky M (UGN, KGN, 05) (63)

€?f1 — eé\N + e;,\i\rl (R‘—‘]{\N7 W?N) (64)

with initial conditions Ké\N (X) =1x—¢p and eé\N = 0. Then there exists C > 0 such that for all
N>21and0<j <N, if L and j, are large enough, then

. K N
max { | K} g, 195 oy } < CL™, (6.5)

with decay factor o = a(B,J) > 0 as in Theorem .

Proof. The asserted exponential decay in j (uniform in N) is almost immediate from Theo-
rems and as we now explain. Throughout the remainder of the proof, we drop the
superscripts NV and Apy. All the following estimates hold uniformly in N. By Theorem it has
already been shown that w; € Y;(&y, Cy) and ||(Uj, K;(+0))[lq, < CL™ for all j < N. We will
now argue that there is C’ > 0 such that, for all j, both

1 (5 (h)k<j) = K5 (5 0) g < C°L™, (6.6)

1%5llqy < Cu(C +C)L™ (6.7)
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hold, where C refers to the constant in the bound ||(Uj, Kj(+;0))|lo, < CL™. The claim then
immediately follows by combining these two estimates with ([5.12]). We now show these two bounds
by induction. For j < j, there is nothing to prove, as ¥; = 0 and K;(; (Vi)r<j) = K;(+;0). Now

assume ((6.6)) and (6.7 . ) hold for some j € [j,, N). If j, is sufficiently large, then these bounds and
Lemma [4.3[imply that wj falls into the admissible range of Theorem |5.8| i.e., UAN KAN \IIAN)

y](enl,(}@). Then and linearity of £j+1 give for w; = (UJ,KJ, V) € yj(s,C\p) (with
€< €~nl)

1251 (@) (0) = £ (@) (5 (Pr)iess Ollax | < Crluatoe|l K7™ (5 (Ph)ias) = KN (50)[lgx

(6.8)
and (5.33)) gives
A A
MG 41 (w5) (50) = M (@) (3 (Ta)iess Ol | < Call BN (5 (Th)iay) — K5 (50) e (6.9)
Here ((\I/k)k<j, 0) refers to (\I/;)KJ with ¥}, = \Ilk for k < j and ¥’ = 0. For ¢ sufficiently small
in af,. and (Ca(B, A, L)), . and (6.9) imply

[EG2.(50) = K38 (5 (Wr)ia Ol , < 201CaC oo L™ (6.10)

Similar arguments gives

A A
0 G5 (k)res) — KGN (5 (Ba)keys )l | < 2C1Cuonoe | ¥lgw (6.11)

Together with (6.7)), these inequalities imply

A A —a(j
1550 G (Wh)rsy) = K55 (5 0)lox < C"L%af, L0, (6.12)
To proceed, we need the fact that LY < C(L%apec)~! for some C' > 0, see the last remark
of Theorem Also since of . = (log L)"*O(L?arec), we now have L%y, . < C/logL and
therefore

A A o
IG5 (Tresy) — KGN (5 )||Qf+1<10gLL a(j+1) (6.13)

which completes the induction step for after choosing C'log L > C". To obtain (6.7)) at

scale j + 1, one now uses that H( Ujt1, Kj11(50))[lo, < CL~*U+Y) by Theorem and the

fact that HK]H( (‘I/k)k<])”QK < (C + C")L=%*1 which follows by combining with the newly

proved (/6.6]) at scale j + 1, along with the fact that ||\Ifj+1HQq/ Cq;||K]+1( (\Ifk)k<j))||QK by
J+

Lemma [4.3]

O
Corollary 6.2. Under the assumptions of Thereom
<O( IR lgr ) < OL ) (6.14)

JZju
for ju from|(A)], uniformly in N.

Proof. We start from the the explicit expression eAN = > jen—1 ej+1(I?fN, \Il;\N) and use (5.26]).
To see that the sum actually only starts from j = j,, note that, by construction, ¥; = 0 for
k < ju, and hence KJAN(-; (\Ilk)k<]) = KJA (;0) for j < j, which implies that ej11 = 0 by its
definition, (5.19). Hence |e NI <O ciene 1HK N HQ % and the sum is uniformly bounded in

N because \\I?fN\|Qg = O(L~%) uniformly in N. O
i
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Theorem 2.3 is almost direct from the above two results.

Proof of Theorem [2.3 We first note that Lemmaimplies that (uj)j=0 defined by satisfies
with some j, = j;, and so Theorem |6 H and Corollary 2 may be used. We then assume
that 8 > Bo(J) with Bo(J ) as supplied by Theorem [5.2} pick L L(J) large enough (and of the
form specified in Section such that the conclusmns Theorem [6.1] hold and set A(J) = A{(L)
for this choice of L.

For a constant field ¢, we have V¢ = 0 and G (X, () = G¥(X,0) so, with W denoting the
non-gradient term (involving the cosines) in with j = N,

eEN‘AN‘_eNZN(u, C+uy) = 625N|V(C+UN)|A +Wn (AN, (+un) + Kn(AN, ¢+ un; (Pp)p<n)
— e NIVER TN ANO L (A, G (W) ken) + Tar(An, ©)
=1+ 0(IWnllgy + KN (5 (¥R)kan) lx GX (AN, 0)) (6.15)

whenever ||WNHQU 1 and we have used ¥ = Fylun,Un, Kn(; (Yk)k<n); N] and Proposi-
tion [4.2] for the second equahty Also Lemma [4.3] bounds ¥y in terms of Ky (+; (¥ )k<n) in the

third equality. Then by ([2.15]) and ( -,
ZN(U, 0) = EtNQNZN(U C + UN)
e INIANTEN (1 1 O(|Wllag + 1K~ (5 (P)ken) i) (6.16)

For ”WNHQ% + || KEn (5 0)”9{5 sufficiently small, it follows that

Zn(u,0) L+ O([Willoy + K8 (5 (Tr)k<n)llar)

———= =explen
Zn(0,0) 1+ O0([Whllay + [1Kx (-5 0)llox)

(6.17)

But [|[Wllqy < CL™N by Theorem [5.2) [|Kn|yz < C1L™Y by Theorem [6.1} and [en| <
3 N
Co L= by Corollary This implies the desired conclusion.

A Existence of infinite-volume limit

We recall the Frohlich—Park—Ginibre inequalities: Let A be finite, let C' be a positive definite
matrix, and let (-)¢ be the expectation of the associated (generalised) Discrete Gaussian model:

(F)¢ o< Z e 20T p(g), (A1)

e/

By taking limits, the definition of (-) can also be extended to C' positive semidefinite. The finite
volume states ()[J\ 5 given by then correspond to C = B(—A;)~! when o is identified up
to constants (as we do), see also [8, Lemma 2.1]. The results of [30, Section 3] (see also [43,
Proposition 1.2]) then imply that for f: A — R with E f =0:

<(f,0) > < (f, (AN ) (A.3)
Moreover, [30, Corollary 3.2 (1)] implies that
(>IN e < (PN, i Cy <Oy (A.4)

Proposition A.1. Let L > 1 be an integer. For any finite-range step distribution J and any
sequence of discrete tori Ay with side lengths LY, with N € N, the measures <>f}%’ converge

weakly as N — oo (when the field is identified up to constants). For any f : 7Z¢ — R with
compact support and Y f =0, one also has (e(ﬁ“)y}%’ — (elh9)) where (-) = limN_,oo<->f}7g is the
weak limit.
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Proof. We consider the Laplacian —A?N as an operator on ¢%(Z¢) with domain
D(=AM) = {f e 2(Z%) : f(0) =0, f(z) = f(x + L"y) for any y € Z%}. (A.5)

Then clearly D(—AM) c D(—AM+1) and —AM = —AM+1 on D(—AM). This implies
—AM > —AMN+1 and hence (—AM)TL < (=AM+)TL From 1-) it follows that for any
f: Z% — R compactly supported and with 3 f = 0, Sy(f) = (e!(/# ) % is increasing in N. In
particular, since also Sy(f) < 1, the limit S(f) = limy_ o, Sn(f) exists. To show S(f) is the

characteristic function of a probability measure on (277Z)%" /constants to which <>9g converges

weakly, we will apply Minlos’ theorem. To this end, we consider (27TZ)Z2 /constants as a topolog-
ical vector space with the topology defined by the condition that ¢, — ¢ in (27TZ)Z2 /constants
if (¢r,9) — (p,9) for all compactly supported g : Z¢ — R with Y. g = 0. In particular,
(27TZ)Z2 /constants is the dual of a nuclear space. To apply Minlos’ theorem we need to check
that S is continuous in this topology. But this is immediate from the correlation inequality
which implies that for any ¢ : Z? — R with compact support and 3. g = 0,

[S(f+9) = S(Hl = lim |Sx(f+9)—Sn(f) < lim (g, (AN g) = (9, (~A)) 7 g), (A.6)

from which the continuity is clear.
The ﬁnal statement about the convergence of (el/: )> j follows from the weak convergence

and (| which implies that the random variables e(/*?) are uniformly integrable. O

It is also standard, see [37] and analogous extensions to the gradient Gibbs setting as in [33},34],
that any limit as in the previous proposition is translation invariant and satisfies the gradient
Gibbs property. Moreover, the limit satisfies the analogous correlation inequalities.

Proposition A.2. The measure (-)ZQB has tilt 0, i.e., for each gradient Gibbs state in the ergodic
decomposition of (- ) 6 the gradient field has mean 0.

Proof. The proof is analogous to that of [34, Theorem 3.2]. The correlation decay can be replaced
by the following application of the Riemann-Lebesgue lemma. For ¢ : Z? — R¢ with compact
support, where now Vo : Z¢ — R? denotes the vector of discrete forward derivatives, (A.3)
implies

Vo)2) % < ¢ p‘Qd AT

Thus the distributional Fourier transform of (V¢,0(0)V,,o(x)) is integrable in the Fourier variable.
From this, the Riemann-Lebesgue lemma implies that

(Ve,0(@)Ve,o(y))s5 =0 (lz -yl — o). (A-8)

In particular, for every i = 1,...,d, with Qg = [~ R, R]?> N Z2,

2
1
<<11Rrglogf|QR| Z Ve,0(z >>M < liminf = e > [(Ve,o()Ve,o(y))spl =0.  (A.9)

z,YyEQR

This implies that every measure p in the ergodic decomposition of (- ) 5 has mean 0 for Vo (see
e.g. [34, Theorem 3.2] for a similar argument): indeed, for any such u, by (A.9) and ergodicity,
one deduces that |Qr|™* > weqp Ve:o(z) converges p-a.s. and that the hmlt vanlshes whence
E,[Ve,o(x)] = 0. O]
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B Properties of the regulator with external field

Proof of Lemma([3.1 In the proof, the notation
WXV = 3 IVl (B.1)
BeB;j15(X)

will be used. For brevity, s+ M~! will be denoted s’ and X will be denoted X’. We will bound
each term appearing in log Gj;4(X, ¢ + &,). First, HVng%Q(X) will be isolated from ||V (p +

£O)||%Q(X). Le‘; B € Bj1s(X) and without loss of generality, let B, I; (i = 1,2,3,4) be as above
but B = [1, L7*%]2. Then by discrete integration by parts,

D V@)V (@) = = YL@V p(@) = D Eolw +en) Vi p(a) + D &) VIV ().
zeB x€lg x€ly x€EB
(B.2)

Hence in particular, summing this over each direction +ei,dep, B € Bjs(X), and using the
AM-GM inequality,

t(Vp, V&) x < Tt”ﬁO”%? X) + T_ltHv +s§0||L2 L(X) + Tt||50||L2 L(0X) + T_ltHvJJrsSOHL? L(8X)
<2TWjis(X,6)% + 77 (”vj+890||1;§+s(ax) + Wits(X, V2+590) ) (B.3)
for any 7 > 0, and hence
. 2 AT 2
||vj+s(90 + 50)HL12.+S(X) < ||Vj+s SOHL?JFS,(X) + ||VJ+S£O”L?+S(X)

+27Wis(X,80)* + 77 (IVi1s2l 32, ox) + Wits(X, Vis9)?)-

(B.4)
Next, we will use rather trivial bound on the other two terms of log G :
IV5+5(6+ €22, ox) < 2Vss0l3 o) + 2Wis (X, Viato)? (B.5)
IV5 (0 + €8) 705y < 20V50l700 () + 2 V5B F oo ()
By (B.4)), (B.5), (B.6) and setting ¢y = max{2¢,27c1,2¢2},
1
E log Gj+8(Xa ©,%0,((B)B) < ClHVj+54P|’%?+S(X) + (2c2 + et )||VJ+890HL2 LX)
B.7)
1 (
-1 2
F2e1(1+ 77 )Wjas(X, Vi o0) + P log ae{o}rgg]?is(x)gj—&-S(Xv &a)-
Now by repeated application of the discrete Sobolev trace theorem [8, (A.4)],
||Vj+s§9||%]2+s HVJJrsSOHL? L(0X7") + 10HVJ+SSOHL2 L(XN\X) + 1OWJ+S(VJQ'+S<P7X/\X) (B.8)

hence by choosing 7 = c1cy L and 30cs < ¢q,

log(Gj+s(X, 9,8, (tB))/ maxq gj+s(X, a))
KL
clHVJ-i-SSOHL? LX) =+ 3CQHVJ+S‘P”L2 L(0X7) +2c1(1+ 717 )W/j+5(v?+s@’X/)

< ClHVj—l-s’SOHL§+S/(X’) + 30" 02“vj+sl(‘0|’L?+s,(8X’) + 20" 61(1 + r—l)Wj+S/(V?+sltp,X’), (B9>

Hence the conclusion follows upon taking ¢ large enough. O
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C Reblocking and fluctuation integral

Proof of Theorem[5.6. Throughout the proof, we write
p=¢'+¢ (C.1)

with ¢ ~ T'j41 and ¢, ¢ independent, and the fluctuation integral E acts on the variable (. As
explained in [8, below (7.12)], we may assume that F; = 0 and e; = 0. The first step is the
reblocking

_ ALX) T
Zi(0, g5 (Wp)pes) = Y, €O (EG(XG (Wp)pey) + U5(X)) = > IR (X) (C2)
XeP; XePjt1

where K ; is defined in (5.25). In the next step, e Eit1lBl+loesejt1+Uit1 peplaces eVi using the
identity

Ui (M\X"0) _ H (er(va) _ e_Ej+1‘B|+10€Bej+1+Uj+1(B#’,)) + e_Ej+l‘B‘+10€Bej+l+Uj+1(B#’,))
BeBj1(A\X")
= Z e J'+1|A\(X'UY)|+1oeA\<x'uy>€j+1+UJ’+1(A\(X'UY)#P')(er(SD) _ eEj+1\B\+1oeB€j+1+Uj+1(<P'))Y
YeEPj+1(A\X")
(C.3)
and similarly F;D — EY K replaces F;y (recall £YK; from (5.22))) using the identity
v —Wv
K; (X', ¢) = 11 (EYE;(Z',¢)+ (K; (Z',¢) — EYE;(Z',¢)))
Z'e€Comp; 41 (X)
ZAX\Z
7\11 ’
= Y EVE(E () - EVE ()L (C.4)
Z€Pj+1(X)

Using the specific form of £Y K given by (5.22)) the last right-hand side can be rewritten as

VLD S | R (€.5)

(Bgit) g Z"

where the last sum (Bz»)z» runs over collections of blocks Bz € Bj1(Z") and Z" € Comp;4(Z).
Rewriting X” = X' UY, the expectation EZ; can now be written as

Zi1 (€', 0; (Wp)esy) = BZj(¢" + ¢, 55 (Vh)r<j)

— ¢~ EinilAlg E eloen\x/€j+1+ U1 (A\X") JEj 11| X"

X"ePji1
o Z (eUi — e~ Ei1Bltloenejr1+Uj41) XN\ X' (C.6)
chX//
7\11 !
DI LR DN | B AT
ZcX! (Bz) 2" €Comp; 4 (Z)

The final result is obtained after taking e®+! out and another resummation: we write Xg =
X"\X'" X1 =X"\Z,T=XoUX,UZ=X" and define for X = Uyz»B},, U XU X1,

Kj"rl(X? SOI; (\I/k)k<J) = Z eEj+1‘T‘*106T6j+1€Uj+1(X\T)
XOle,Z,(BZ//)
X E|[( — e~BrmlBlloese o Yo7 gl T 0B 2. ()

Z"€Comp;4(2)
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Note that only T'C X contribute because, by definition of E¥Y K j» the whole expression vanishes
when Z ¢ Sj1. Therefore

Zi1 (¢, 05 (Up)pey) = e FrerlAitersn N U MZ (7,5 (W) res) (C.8)
Z€Pj11

which is the desired form. The factorisation property of K;ii(-; (Vk)r<;) is inherited from that
of eVi, eVit1 and K;. O
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