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Abstract

We investigate the percolation phase transition for level sets of the Gaussian
free field on Zd, with d > 3, and prove that the corresponding critical param-
eter h∗(d) is strictly positive for all d > 3, thus settling an open question from
[20]. In particular, this implies that the sign clusters of the Gaussian free field
percolate on Zd, for all d > 3. Among other things, our construction of an in-
finite cluster above small, but positive level h involves random interlacements
at level u > 0, a random subset of Zd with desirable percolative properties,
introduced in [21] in a rather different context, a certain Dynkin-type isomor-
phism theorem relating random interlacements to the Gaussian free field [23],
and a recent coupling of these two objects [10], lifted to a continuous metric
graph structure over Zd.
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1 Introduction

The present work studies the percolation phase transition of Gaussian free field level sets
on Zd, d > 3, which provides a canonical example for a percolation model with strong,
algebraically decaying correlations. It was first proved in [3] that the corresponding critical
level h∗(d), see (1.4) below for its definition, satisfies h∗(d) > 0 for every dimension d > 3
and that h∗(3) <∞. It was later shown in [20] that h∗(d) is finite in every dimension d > 3,
and strictly positive when d is large, with leading asymptotics as d→∞ derived in [7]. We
prove here that this parameter is actually strictly positive in all dimensions d > 3. This
answers a question from [3], see also Remark 3.6 in [20], and fits with numerical evidence
from [12], see Section 4.1.2 and Figure 4.1 therein. A corresponding classical result for
Bernoulli site percolation, psite

c (Zd) < 1
2

for d > 3, has been known to hold for several
decades already [4].

Our construction of infinite clusters (by which, adopting the usual terminology, we mean
unbounded connected components) of excursion sets for the Gaussian free field crucially
relies on another object, random interlacements. The model of random interlacements has
originally been introduced in [21] to study certain geometric properties of random walk
trajectories on large, asymptotically transient, finite graphs. The Dynkin-type isomor-
phism theorem relating interlacements and the Gaussian free field, see [23], has repeatedly
proved a useful tool in their study, see [23], [25], [18], [10], [27] and [1]. In particular, the
cable system method introduced in [10] provides a continuous version of this isomorphism
theorem, from which some links between the level sets of the Gaussian free field and the
vacant sets Vu, u > 0, of random interlacements can be derived. This method was used in
[27] and [1] to find a suitable coupling between those two sets, and was applied in the case
of transient trees. It was also proved in these papers that, under certain conditions on the
geometry of the tree T, the critical parameter h∗(T) for level set percolation of the Gaus-
sian free field on T is strictly positive. As will become apparent below, the isomorphism
theorem on the cable system can be paired with renormalization techniques from random
interlacements, and in particular from [16], which imply a certain robustness property of
Iu = Zd \ Vu with respect to small noise, to yield similar findings on Zd, for all d > 3.

Let us now describe the results in more details. For d > 3, we consider Zd as a graph,
with undirected edge set E, and take uniform weights equal to 1 on all edges in E, so that
the sum of all weights around a vertex x ∈ Zd is 2d. For x, y ∈ Zd, we write x ∼ y if and
only if {x, y} ∈ E. Noting that Zd, d > 3, is transient for discrete time simple random
walk, we define the symmetric Green function by

(1.1) g(x, y) =
1

2d
Ex

[ ∞∑
k=0

1{Xk=y}

]
, x, y ∈ Zd,

where (Xk)k≥0 denotes the simple random walk on Zd starting at x under Px. We also set
g(x) = g(0, x), for x ∈ Zd. We define PG, a probability measure on RZd endowed with its
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canonical σ-algebra generated by the coordinate maps Φx, x ∈ Zd, such that, under PG,

(Φx)x∈Zd is a centered Gaussian field with

covariance function EG[ΦxΦy] = g(x, y) for all x, y ∈ Zd.
(1.2)

(Any random field ϕ = (ϕx)x∈Zd with law PG on RZd will henceforth be called a Gaussian
free field on Zd). We are interested in level sets of Φ, and for every h ∈ R, denote by

{x >h←→∞} the event that x ∈ Zd lies in an infinite connected component of

(1.3) E>h ≡ E>h(Φ) = {y ∈ Zd; Φy > h},

and by η(h) its probability, which does not depend on the choice of x. The function η(·) is
decreasing, and it is natural to ask whether it is strictly positive or not. This leads to the
definition of the critical point

(1.4) h∗(d)
def.
= inf {h ∈ R; η(h) = 0} .

By ergodicity, this definition corresponds to the phase transition for the existence of an
infinite connected component in E>h, see Lemma 1.5 in [20]. It is not a priori clear whether
|h∗| < ∞ or not, and a summary of the status quo was given in the first paragraph. In
summary, it is known that h∗(d) ∈ [0,∞) for all d > 3, and that h∗(d) ∼ (2g(0) log d)1/2

as d→∞. Our main result is the following lower bound in all dimensions.

Theorem 1.1.

(1.5) h∗(d) > 0, for all d > 3.

Moreover, there exists h1 > 0 such that for all h 6 h1, there exists L0 > 0 such that E>h

contains an infinite cluster in the thick slab Z2 × [0, 2L0)d−2.

In fact, one can replace E>h by {y ∈ Zd; K(h) > Φy > h}(⊂ E>h) for sufficiently large
K(h) in the previous statement, see Remark 5.3,2) below. As an immediate corollary of
Theorem 1.1, we note that there exists an open interval I ⊂ R containing the origin and
such that, for all h ∈ I, the level set E>h and its complement E<h = Zd\E>h both percolate

(with probability one). This follows readily from (1.5) and the fact that E<h law
= E>−h for

all h ∈ R, by symmetry of Φ. In particular, choosing h = 0, this implies that

(1.6) Φ almost surely contains two infinite sign clusters (one for each sign).

Put differently, Theorem 1.1 asserts that the critical density pGc (d) = PG[Φ0 > h∗(d)] satis-
fies pGc (d) < 1

2
, for all d ≥ 3, thus mirroring the result psite

c (Zd) < 1
2
, see [4], for independent

Bernoulli site percolation on Zd, d ≥ 3. However, the elegant geometric arguments devel-
oped therein to “interpolate” between two- and three-dimensional structures do not seem
to transfer to the current situation: the correlations present a serious impediment. More-
over, there is no obvious monotonicity of pGc (d) (or h∗(d)) as a function of d. One may
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also conjecture that pGc (d) < psite
c (Zd), the critical density for independent site percolation

on the lattice, based on the reasonable intuition that positive correlations “help” in form-
ing clusters of E>h. We do not currently know a proof of this (nor of the more modest
conjecture pGc (d) ≤ psite

c (Zd)).
A key tool in the proof of Theorem 1.1 is a certain isomorphism, see Theorem 2.2

below, which gives a link between random interlacements and the Gaussian free field.
We now explain its benefits in some detail, and refer to Section 2 for precise definitions.
Suppose that ω denotes the interlacement point process defined in [21], with law PI , and
let ωu be the process consisting of the trajectories in the support of ω with label at most
u. Somewhat informally, ωu is a Poisson cloud of bi-infinite nearest neighbor trajectories
modulo time-shift whose forward and backward parts escape all finite sets in finite time.
One naturally associates to ωu, see for instance (1.8) in [23], a field of occupation times
(`x,u)x∈Zd , where `x,u = `x,u(ω

u) collects the total amount of time spent at x by any of the
trajectories in the support of ωu. The interlacement set at level u is then defined as

(1.7) Iu = {x ∈ Zd; `x,u > 0}.

It corresponds to the set of vertices visited by at least one trajectory in the support of ωu.
For any u > 0, the set Iu is almost surely unbounded and connected [21]. The following
isomorphism was proved in Theorem 0.1 of [23], and has the same spirit as the generalized
second Ray-Knight theorem, see for example [8], [11] or [25]:
(1.8)(
`x,u +

1

2
Φ2
x

)
x∈Zd

under PI ⊗ PG has the same law as

(
1

2
(Φx +

√
2u)2

)
x∈Zd

under PG.

If one attaches to each edge e of Zd a line segment Ie of length 1
2
, the resulting “graph”

Z̃d is continuous and called the cable system, see Section 2. On this cable system, one
then defines probabilities P̃G and P̃I under which the fields (Φx)x∈Zd and (`x,u)x∈Zd admit

continuous extensions Φ̃ = (Φ̃x)x∈Z̃d and ˜̀= (˜̀x,u)x∈Z̃d . It was proved in [10] that for each

u > 0, a continuous version of the isomorphism (1.8) also holds on Z̃d, see (2.14) below, and
in particular (somewhat inaccurately, but see (2.14), (2.15) below for precise statements)

the sign of Φ̃x +
√

2u is constant as long as ˜̀x,u > 0, and thus (using (1.10) below) for all

h > 0, P̃-a.s. the set

(1.9) {x ∈ Z̃d; Φ̃x > −h} contains an unbounded cluster in the cable system Z̃d.

This result was already known to hold on Zd without the isomorphism theorem [3], where
it had been derived using a neat contour argument. It is interesting to note that, on the
cable system, (1.9) is actually sharp, because P̃G-a.s. the set

(1.10) {x ∈ Z̃d; Φ̃x > 0} does not contain unbounded clusters in the cable system Z̃d,

see Proposition 5.5 in [10], which sharply contrasts with (1.6). All in all, the infinite cluster
in E>0 (part of Zd), which exists by Theorem 1.1, “scatters” into finite pieces upon adding
the field on the edges, but the infinite cluster of E>−h does not, for ever so small h > 0.
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On our way towards proving Theorem 1.1, we will also show that a truncated version
of the level sets in (1.9) contains an unbounded cluster on Z̃d. Indeed, it was proved in [16]
that the intersection of the random interlacement set Iu with a Bernoulli percolation having
large success parameter still contains an infinite cluster in Zd. By showing a similar stability
result on the cable system, see Proposition 4.1, and using the isomorphism theorem on the
cable system, we will obtain, cf. Theorem 3.1 and Corollary 4.9 below, that the truncated
(continuous) level set

(1.11) Ãh
def.
= {x ∈ Z̃d; −h 6 Φ̃x 6 K(h)}

contains an unbounded cluster on Z̃d for all h > 0 and large enough, but finite K(h)
(with K(h) → ∞ slowly as h ↘ 0). Let us now briefly describe in how far this helps in

proving Theorem 1.1. By construction, one can view Φ̃, the Gaussian free field on the cable
system Z̃d, as a Gaussian free field on Zd with Brownian bridges of length 1

2
attached on

the edges, see (2.6). On an edge in the set Ãh, those Brownian bridges never go below −h,
which happens with low probability for small h. We are going to use this low probability
on the edges to go from −h 6 Φ 6 K(h) to h 6 Φ 6 K(h) on the endpoints of theses
edges and for small enough h, see in particular Lemmas 5.1 and 5.2, which will then imply
that the set {x ∈ Zd; Φx > h} has an infinite cluster on Zd, as asserted.

We now explain the organization of this article, and highlight its main contributions. In
Section 2, we recall the definitions of the Gaussian free field and random interlacements on
the cable system, and the link between the two via the aforementioned isomorphism theo-
rem. In Section 3, we collect a few preparatory tools by showing some strong connectivity
properties, a large deviation inequality as well as a version of the decoupling inequalities
for random interlacements on the cable system. Most of these are well-known, but existing
results do not entirely fit our needs.

The construction of the infinite cluster comes essentially in three steps, Proposition 4.1,
Corollary 4.9, and Section 5, which are the main reference points of this paper. Proposi-
tion 4.1 is a fairly generic result, which, roughly speaking, for any coupling of a continuous
interlacement and a free field, see (4.1), yields a percolating interlacement cluster, with
good control on the free field part, and some room to play with along the edges. Its proof
follows a standard static renormalization scheme from [16], [18], assembling the results of
Section 3. In Corollary 4.9, we “translate” Proposition 4.1, for a certain choice of the
coupling, to show that suitably truncated level sets of the Gaussian free field on the cable
system contain an unbounded connected component. The reference level for the excursion
sets of Corollary 4.9 is −h, for (small) positive h. Section 5 contains the device to “flip the
sign” and pass from −h to h on the vertices, as indicated above. Together with Corollary
4.9, this then yields a proof of Theorem 1.1.

In the rest of this article, we denote by c and C positive constants that may change
from place to place. Numbered constants such as C0, c0, C1, C

′
1, . . . are fixed until the

end of the article. All constants are allowed to implicitly depend on the dimension d and
a parameter u0 > 0, which will first appear in Lemma 3.2 and throughout the remaining
sections.
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2 Notation and useful facts about the cable system

In this section, we give a definition of the Gaussian free field and random interlacements
on the cable system that will be useful later. We also discuss some aspects of the Markov
property for the Gaussian free field and its consequences, and recall the isomorphism
theorem which links random interlacements and the Gaussian free field.

For later convenience, we endow the graph Zd with a distance function d(·, ·) which is
half of the usual graph distance, i.e., half of the l1-distance on Zd. We define V0 = {2x, x ∼
0}, so that, for all x, y ∈ Zd with x ∼ y, we can write y = x+ 1

2
v(x,y) for a unique v(x,y) ∈ V0.

Note that d(x, x + 1
2
v) = 1

2
, for all x ∈ Zd and v ∈ V0. We attach to each edge e = {x, y}

the following interval of length 1
2

:

(2.1) Ie
def.
=
{
x+ tv(x,y); t ∈

(
0,

1

2

)}
=
{
y + tv(y,x); t ∈

(
0,

1

2

)}
,

which is homeomorphic to an open interval of R of length 1
2
, and we write Ie = Ie ∪{x, y}.

The cable system Z̃d is then defined by glueing these intervals through their endpoints.
Z̃d \ Zd is now the union of such Ie, one for every edge e ∈ E, and one can view Z̃d
as a subset of Rd with distance d(x, y) = 1

2
‖x − y‖1, where ‖ · ‖p denotes the usual `p-

distance on Rd for p ∈ [1,∞). For all e ∈ E and z1, z2 ∈ Ie we define (z1, z2) ⊂ Z̃d as
the open interval in Ie between z1 and z2. We also define the distance between two subsets
A1 and A2 of Z̃d by d(A1, A2) = infx∈A1,y∈A2 d(x, y), and the diameter of a subset A of Z̃d
by δ(A) = supx,y∈A d(x, y). For 0 6 R1 < R2, we introduce the boxes [R1, R2)d = {z ∈
Rd; zi ∈ [R1, R2) for all i = 1, . . . , d}. The set Zd will henceforth be considered as a subset

of Z̃d and we will call vertices the elements of Zd.
One can define a continuous diffusion X on the cable system Z̃d, via probabilities

P̃z, z ∈ Z̃d, with continuous local times with respect to the Lebesgue measure on Z̃d.
We now describe this construction somewhat informally, and refer to Section 2 of [10] and
Section 2 of [9] for precise definitions. One simple way of defining X is to use the Brownian
excursions: starting from some vertex x0 ∈ Zd, one chooses randomly and uniformly an
edge leaving x0, and runs a Brownian excursion on it. One repeats this process until one
of these Brownian excursions reaches height 1

2
, i.e., until another vertex y is reached on Z̃d.

The local time of this process in x0 is a.s. finite and has an exponential law with parameter
2d. One then repeats this process starting from y until another vertex is reached, and so
forth, thus obtaining a diffusion X starting from x0 ∈ Zd. The projection of its trajectory
on Zd has the same law as a simple random walk on Zd. For x ∈ Zd, v ∈ V0 and t ∈ (0, 1

2
),

one can also define the diffusion X starting from z := x + tv by running a Brownian
excursion on either {z − sv; s ∈ [0, t]} or {z + sv; s ∈ [0, 1

2
− t]} with probability 1

2
each,

and repeating this process until either x or x + 1
2
v is reached. Once one of these two

vertices is reached, X behaves like the diffusion starting from this vertex, as previously
described. We call g(x, y) for x, y ∈ Z̃d the Green function of this diffusion with respect to

the Lebesgue measure on Z̃d, and its restriction to Zd is the same as the Green function
on Zd defined in (1.1), so the identical notation does not bear any risk of confusion.
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We endow the canonical space Ω0 of continuous real-valued functions on Z̃d with the
canonical σ-algebra generated by the coordinate functions Φ̃x, x ∈ Z̃d, and let P̃G be the
probability on Ω0 such that, under P̃G,

(Φ̃x)x∈Z̃d is a centered Gaussian field with

covariance function ẼG[Φ̃xΦ̃y] = g(x, y) for all x, y ∈ Z̃d.
(2.2)

With a slight abuse of notation, any random variable ϕ̃ = (ϕ̃x)x∈Z̃d on the space of con-

tinuous functions C(Z̃d,R) with law P̃G under P̃ will be called a Gaussian free field on the

cable system Z̃d, and it is plain that the restriction of a Gaussian free field on the cable
system to Zd is a Gaussian free field on Zd.

Let us recall the simple Markov property for ϕ̃. Let K ⊂ Z̃d be a compact subset with
finitely many components, and let U = Z̃d \K. For all x ∈ Z̃d, we define

(2.3) β̃Ux = Ẽx

[
ϕ̃XTU 1{TU<∞}

]
and ϕ̃Ux = ϕ̃x − β̃Ux ,

where TU := inf{t > 0; Xt /∈ U}, with the convention inf ∅ = ∞, is the exit time from U

of the diffusion X on Z̃d. Moreover, for all x, y ∈ Z̃d, we define gU(x, y) the Green function

with respect to the Lebesgue measure on Z̃d in y of the diffusion X under P̃x killed when
exiting U . Then,

(ϕ̃Ux )x∈Z̃d is a centered Gaussian field with

covariance function gU(x, y) for all x, y ∈ Z̃d.
(2.4)

Furthermore, this field is continuous, vanishes on K and is independent of σ(ϕ̃z, z ∈ K).
A strong Markov property is also known to hold, but we will not need it here, see Section
1 of [27] for more details.

Following standard notation, we say that (Bt)t∈[0,l] is a Brownian bridge of length l > 0
between x and y of a Brownian motion with variance σ2 at time 1 under a probability PB
if the process

(2.5) Wt := Bt −
t

l
y −

(
1− t

l

)
x, t ∈ [0, l],

is a centered Gaussian field with covariance function

(2.6) EB [Ws1Ws2 ] =
σ2s1(l − s2)

l
for all s1, s2 ∈ [0, l] with s1 6 s2

(the process (Wlt/
√
lσ2)t∈[0,1] is a standard Brownian bridge). Let e ∈ E, z1 6= z2 ∈ Ie,

v ∈ V0 and t ∈ (0, 1
2
] such that z2 = z1 + tv, and let s1, s2 ∈ [0, t] such that s1 6 s2. Under

P̃z1+s1v, until time T(z1,z2)c , the diffusion X behaves like a Brownian motion on Ie beginning
in z1 +s1v until the hitting time of (z1, z2)c. Since the local time at 0 of a Brownian motion
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starting in 0 has the same law as the absolute value of this Brownian motion, see for
instance Chapter VI, Theorem 2.3 in [17], the local time at z1 + s2v of X under P̃z1+s1v

until time T(z1,z2)c is

g(z1,z2)(z1 + s1v, z1 + s2v) =
2s1(t− s2)

t
.

The Markov property for the Gaussian free field implies that, under P̃ (under which ϕ̃ is
a Gaussian free field),

(2.7)
(
ϕ̃z1+sv −

t− s
t

ϕ̃z1 −
s

t
ϕ̃z2

)
s∈[0,t]

is a centered Gaussian field with covariance function (g(z1,z2)(z1 + s1v, z2 + s2v))s1,s2∈[0,t],

and is independent of σ(ϕ̃z, z ∈ Z̃d \ (z1, z2)), and thus it is a Brownian bridge of length t
between 0 and 0 of a Brownian motion with variance 2 at time 1. In particular, knowing
ϕ̃ � Zd, the Gaussian free field on the edges ((ϕ̃z)z∈Ie)e∈E is an independent family of
random processes such that, for each x ∼ y ∈ Zd, the process (ϕ̃z)z∈I{x,y} has the same law

as a Brownian bridge of length 1
2

between ϕ̃x and ϕ̃y of a Brownian motion with variance
2 at time 1, as mentioned in Section 2 of [10]. More precisely, let

(2.8) Be
t = ϕ̃xe+tv(xe,ye)

− 2tϕ̃ye − (1− 2t)ϕ̃xe , for all t ∈ [0, 1/2] and e ∈ E,

where we have given an (arbitrary) orientation (xe, ye) for each edge e = {xe, ye} ∈ E.

Then, under P̃, (Be)e∈E is a family of independent Brownian bridges of length 1
2

between
0 and 0 of a Brownian motion with variance 2 at time 1. Note that this provides an
explicit (and simple) construction of a Gaussian free field on the cable system starting
from the Gaussian free field (ϕx)x∈Zd on Zd: if one links independently each x ∼ y ∈ Zd
via a Brownian bridge on I{x,y} of length 1

2
between ϕx and ϕy of a Brownian motion with

variance 2 at time 1, then the resulting process is a Gaussian free field on the cable system.
In view of this construction, we will later need the following result on the probability that
the maximum of a Brownian bridge exceeds some value M (see e.g. [2], Chapter IV.26).

Lemma 2.1. Let x, y be two real numbers, M > max(x, y) and, under PB, (Bt)t∈[0,l] a
Brownian bridge of length l between x and y of a Brownian motion with variance σ2 at
time 1. One has

(2.9) PB
(

sup
t∈[0,l]

Bt > M
)

= exp

(
−2(M − x)(M − y)

lσ2

)
.

Let us now turn to the definition of random interlacements on Z̃d, as in [10] or [27]. The
usual definition of random interlacements on Zd, see, for example, [21] or the monograph

[5], can be adapted to define a Poisson point process ω̃ on W̃ ∗ × [0,∞), where W̃ ∗ is the

space of doubly infinite trajectories on Z̃d modulo time-shift, endowed with its canonical
σ-algebra. Recall the law (P̃z)z∈Z̃d of the diffusion X on the cable system, started at z ∈ Z̃d.
The intensity measure of ω̃ is characterized as follows: for some R1, R2 ∈ Z with R1 6 R2,
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let K̃ := [R1, R2]d ∩ Z̃d, let K := K̃ ∩Zd, let ω̃u be the point process which consists of the
trajectories in ω̃ with label at most u > 0, and let ω̃u

K̃
be the point process comprising the

forward trajectories of ω̃u hitting K̃ and beginning at the first time K̃ is reached. Then
ω̃u
K̃

is a Poisson point process with intensity measure uP̃eK = u
∑

x∈K eK(x)P̃x, where eK
is the usual equilibrium measure of K.

One then defines

(2.10) (˜̀z,u)z∈Z̃d the field of local times of random interlacements, for u > 0,

as the sum of the local times of each of the trajectories in the support of ω̃u. The restric-
tion of these local times to Zd has the same law as the occupation times (`x,u)x∈Zd for
random interlacements on Zd alluded to in the introduction, cf. above (1.7). The random
interlacement set is defined as

(2.11) Ĩu = {x ∈ Z̃d; ˜̀x,u > 0},

which is an open connected subset of Z̃d. Note that {x ∈ Zd; x ∈ Ĩu} has the same law as
Iu, cf. (1.7).

We also recall the following formula for the Laplace transform of (`x,u)x∈Zd , see for
instance [23], (1.9)–(1.11) or Remark 2.4.4 in [24]: for all V : Zd → R with finite support
K ⊂ Zd and satisfying

(2.12) ‖GV ‖∞ < 1, where GV (x) =
∑
y∈Zd

g(x, y)V (y),

with g(·, ·) as in (1.1), one has

ẼI
[

exp
{∑
x∈Zd

V (x)˜̀x,u}] = exp{u〈V, (I −GV )−11〉`2(Zd)}(
= exp

{
u
∑
x∈Zd

V (x)
∑
n>0

(GV )n(x)
})
.

(2.13)

We now describe in words how to construct the random interlacement process ω̃u at
level u > 0 on the cable system from the corresponding random interlacement process ωu

on Zd. Let us assume that one of the trajectories in the support of ωu on Zd is jumping
from x to y with x ∼ y ∈ Zd (at some point). One adds Brownian excursions on the
edges leaving x in a similar fashion as for the construction of the diffusion X: as long as
the height of the Brownian excursion is strictly smaller than 1

2
, one chooses uniformly an

edge leaving x and runs this excursion on it, and repeats this process until one of these
Brownian excursions has height larger than 1

2
, and one runs this excursion on I{x,y} until

hitting y for the first time. One then repeats this process starting from y and one iterates
over all jumps of the trajectory. Note that the process thereby obtained has the same law
as X. Doing this independently for all the trajectories in the support of the interlacement
process ωu yields a Poisson point process which has the same law as ω̃u.
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Random interlacements are useful in the study of the Gaussian free field on the cable
system Z̃d because of the existence of a Ray-Knight-type isomorphism theorem proved in
Proposition 6.3 of [10], see also (1.30) in [27].

Theorem 2.2. For each u > 0, there exists a coupling P̃u between two Gaussian free fields
ϕ̃ and γ̃ and a random interlacement process ω̃ on the cable system Z̃d (i.e., under P̃u, the

law of ϕ̃ and γ̃ is P̃G each, and the law of ω̃ is the same as under P̃I) such that γ̃ and ω̃

are independent, and P̃u-a.s.,

(2.14)
1

2

(
ϕ̃x +

√
2u
)2

= ˜̀
x,u +

1

2
γ̃2
x, for all x ∈ Z̃d,

where (˜̀x,u)x∈Z̃d is the field of local times of the random interlacements process ω̃ at level u,
cf. (2.10).

This coupling will be essential for the proof of Theorem 1.1. In particular, we are going
to use results from the theory of random interlacements, along with the coupling (2.14),
to deduce certain properties of the level sets of the Gaussian free field. For now, let us
note that P̃u-a.s. on Ĩu, cf. (2.11), one has |ϕ̃+

√
2u| > 0, where ϕ̃ refers to the Gaussian

free field from the coupling in Theorem 2.2. Since Ĩu is connected (and unbounded, by

construction) and since x ∈ Z̃d 7→ ϕ̃x is continuous, either ϕ̃x > −
√

2u for all x ∈ Ĩu,
or ϕ̃x < −

√
2u for all x ∈ Ĩu. But Proposition 5.5 in [10], cf. also (1.10) above, implies

that the set {x ∈ Z̃d; ϕ̃x < 0}, which contains {x ∈ Z̃d; ϕ̃x < −
√

2u}, only has bounded
components, hence

(2.15) P̃u − a.s., ∀x ∈ Ĩu, ϕ̃x > −
√

2u.

In particular, this means that the negative (upper) level sets percolate on Z̃d, see (1.9).

3 Connectivity and a large deviation inequality for Ĩu

The following result, which is proved over the next two sections, is essentially a refinement of
(2.15), which allows us to truncate Φ̃, cf. (2.2), at sufficiently large heights. This important

technical step will be helpful in dealing with the fact that Φ̃ is a priori unbounded on sets
of interest.

Theorem 3.1. For each h0 > 0, there exist positive constants C0 and c0 only depending
on d and h0, with C0h

−c0
0 > 1, such that for all 0 < h 6 h0, with

(3.1) K(h) =

√
log

(
C0

hc0

)
,

P̃G-a.s. the set

(3.2) Ãh
def.
=
{
x ∈ Z̃d; −h 6 Φ̃x 6 K(h)

}
contains an unbounded connected component in Z̃d.
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The proof of Theorem 3.1 will involve an application of the isomorphism (2.14), and
therefore hinges on a corresponding statement “in the world of random interlacements,”
see Proposition 4.1 at the beginning of the next section. The proof of the latter requires
some preliminary results on the geometry of Ĩu, which we gather now. In the remainder
of this section, we consider, under P̃I , and for each u > 0, the random interlacement set
Ĩu at level u on the cable system, see (2.11), and (˜̀x,u)x∈Z̃d the field of local times of the

underlying interlacement process ω̃u, see (2.10). The following lemma asserts that Ĩu is
typically well-connected.

Lemma 3.2. Let d > 3, ε ∈ (0, 1) and u0 > 0. There exist constants c = c(d, ε, u0) and
C = C(d, ε, u0) such that for all u ∈ (0, u0] and R > 1,

(3.3) P̃I
( ⋂
x,y∈Ĩu∩[0,R)d

{x↔ y in Ĩu ∩ [−εR, (1 + ε)R)d}
)
> 1− C exp

(
−cR1/7u

)
,

where, for measurable A ⊂ Z̃d, the event {x ↔ y in Ĩu ∩ A} refers to the existence of a

continuous path in the subset Ĩu ∩ A of the cable system connecting x and y.

This property is essentially known, see for instance Proposition 1 of [15] or Lemma 3.1
in [16]. However, we need to keep careful track of the dependence of error terms on the
intensity u. For the reader’s convenience, we have included a proof of Lemma 3.2 in the
Appendix.

Next, we will need to know how much time the trajectories of random interlacements
typically spend in a large box with sufficiently high precision. This can be conveniently
formulated in terms of a large deviation inequality for the local times.

Lemma 3.3. Let d > 3 and ε ∈ (0, 1). There exist constants c = c(d, ε) and C = C(d, ε)
such that for all u > 0 and R > 1,

(3.4) P̃I
( ∣∣∣ 1

Rd

∑
x∈[0,R)d∩Zd

˜̀
x,u − u

∣∣∣ > ε · u
)
6 C exp

(
−cRd−2u

)
.

Proof. Abbreviate BR = [0, R)d ∩ Zd and, for λ > 0, let V (x) = (|BR|)−1λ1{x∈BR}. It
follows, cf. (2.12) for notation, that uniformly in x ∈ Zd,

(3.5) |GV (x)| = λ
∑
y∈BR

g(x, y)

|BR|
≤ K1λR

2−d,

using that g(x, y) ≤ c′|x− y|2−d, for x, y ∈ Zd. Hence, for λ = λ0R
d−2, with λ0 < K−1

1 , one
obtains that ‖GV ‖∞ < 1, for all R ≥ 1. In view of (3.5), applying Markov’s inequality
and using (2.13) then yields, for all λ0 < K−1

1 and R ≥ 1,

P̃I
( 1

Rd

∑
x∈[0,R)d∩Zd

˜̀
x,u > (1 + ε)u

)
6 exp

{
− λ0R

d−2u
((

1 + ε
)
−
(
1 +

∑
n>1

(K1λ0)n
))}

.
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The right-hand side is bounded from above by C exp
(
−cRd−2u

)
upon choosing λ0(ε) <

K−1
1 small enough such that

∑
n>1(K1λ0)n ≤ ε/2. In a similar fashion one bounds for V ,

λ as above,

P̃I
( 1

Rd

∑
x∈[0,R)d∩Zd

˜̀
x,u < (1− ε)u

)
= P̃I

(
exp

{
−
∑
x∈Zd

V (x)˜̀x,u} > e−(1−ε)λu
)

6 exp
{
λ0R

d−2u
((

1− ε
)
−
(
1−

∑
n>1

(K1λ0)n
))}

,

from which (3.4) readily follows.

As a direct application of Lemmas 3.2 and 3.3, we derive lower bounds for the proba-
bilities of the following events.

Definition 3.4. For all u, u′ > 0, and integer R ≥ 1, the events Eu,u′

R and F u,u′

R are defined
as follows:

(a) Eu,u′

R occurs if and only if for each e ∈ {0, 1}d, the set (eR + [0, R)d) ∩ Ĩu contains a
connected component Ae such that∑

y∈Ae∩Zd

˜̀
y,u >

3

4
u′Rd,

and such that the components (Ae)e∈{0,1}d are all connected in Ĩu ∩ [0, 2R)d.

(b) F u,u′

R occurs if and only if for all e ∈ {0, 1}d,∑
y∈(eR+[0,R)d)∩Zd

˜̀
y,u <

5

4
u′Rd.

Note that for fixed u′ > 0, the events (Eu,u′

R )u>0 are increasing in u (since u 7→ ˜̀
y,u is)

and that the events (F u,u′

R )u>0 are decreasing in u. The following consequence of Lemmas
3.2 and 3.3 is tailored to our purposes in the next section.

Corollary 3.5. Let d > 3 and u0 > 0. There exist δ ∈ (0, 1), positive and finite constants
C = C(d, u0) and c = c(d, u0) such that for all u ∈ (0, u0] and R > 1,

(3.6) P̃I
(
E
u(1−δ),u
R

)
> 1− C exp

(
−cR1/7u

)
and

(3.7) P̃I
(
F
u(1+δ),u
R

)
> 1− C exp

(
−cRd−2u

)
.
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Proof. Let δ = 1
6
. We begin with (3.7). In view of Definition 3.4, it follows from Lemma 3.3

applied with u(1 + δ) instead of u and translation invariance that for all e ∈ {0, 1}d and
u > 0,

P̃I
 ∑

x∈(eR+[0,R)d)∩Zd

˜̀
x,u(1+δ) <

5

4
Rdu


> P̃I

 1

Rd

∑
x∈(eR+[0,R)d)∩Zd

˜̀
x,u(1+δ) <

15

14
u(1 + δ)

 (3.4)

> 1− C exp(−cRd−2u),

which is (3.7).
In order to obtain (3.6), fix any two constants ε = ε(d) ∈ (0, 1) and µ = µ(d) ∈ (0, 1) in

such a way that (1− 8ε)d(1− µ)(1− δ) = 3
4
. For all e ∈ {0, 1}d, we define the inner boxes

Be(ε) = eR + [2bεRc, R − 2bεRc)d. It is sufficient to prove (3.6) for R satisfying εR > 1,
which we now tacitly assume. We then have |Be(ε) ∩ Zd| · (1− µ)(1− δ) > 3

4
Rd, where |A|

denotes the cardinality of A ⊂ Zd. According to Lemma 3.3,

P̃I
 ∑
x∈Be(ε)∩Zd

˜̀
x,u(1−δ) >

3

4
Rdu

 > P̃I
 1

|Be(ε) ∩ Zd|
∑

x∈Be(ε)∩Zd

˜̀
x,u(1−δ) > (1− µ)u(1− δ)


> 1− C exp

(
−cRd−2u

)
.

We now define A1
e = Be(ε) ∩ Ĩu(1−δ). According to Lemma 3.2, for every e ∈ {0, 1}d, all

the vertices of A1
e are connected in Ĩu(1−δ) ∩ (eR+ [bεRc, R− bεRc)d) with probability at

least 1−C exp(−cR1/7u), and on the corresponding event we define Ae ⊂ Ĩu(1−δ) ∩ (eR+
[bεRc, R− bεRc)d) such that A1

e ⊂ Ae and Ae is connected.
Still according to Lemma 3.2, all the Ae for e ∈ {0, 1}d are connected with each other

in Ĩu(1−δ) ∩ [0, 2R)d with probability at least 1− C exp(−cR1/7u), which gives (3.6).

Since the events Eu,u′

R and F u,u′

R are defined in terms of local times and not in terms of
the occupation field

(
1{x∈Ĩu}

)
x∈Zd , we now give a slightly different version of the decoupling

inequality presented in [14] valid for the local times on the cable system. This inequality

will later enable us to use Eu,u′

R and F u,u′

R as seed events of a suitable multi-scale argument.

In what follows, let Q̃u, u > 0, be the law on Ω = [0,∞)Z̃
d

of the local times (˜̀x,u)x∈Z̃d
of random interlacements on the cable system Z̃d, and let (τx)x∈Z̃d denote the canonical

coordinate functions on Ω, i.e., for all f ∈ Ω and x ∈ Z̃d, τx(f) = f(x).

Theorem 3.6. Let Ã1 and Ã2 be two measurable non-intersecting subsets of Z̃d. Assume
that s := d(Ã1, Ã2) > 1, and that the minimum r of the diameters of Ã1 and Ã2 is finite.
Then there exist κ0(d) and κ1(d) such that for all u > 0 and ε ∈ (0, 1), for any functions

fi : Ω→ [0, 1] which are σ(τx, x ∈ Ãi) measurable for each i ∈ {1, 2}, and which are both
increasing or both decreasing,

(3.8) Q̃u[f1f2] 6 Q̃u(1±ε)[f1]Q̃u(1±ε)[f2] + κ0(r + s)d exp(−κ1ε
2usd−2),
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where the plus sign corresponds to the case where the fi’s are increasing and the minus
sign to the case where the fi’s are decreasing.

Proof. Let A1 and A2 be the smallest subsets of Zd such that for all i ∈ {1, 2}, and

all x ∈ Ãi, there exist y, z ∈ Ai such that x ∈ I{y,z}. Note that Ãi ∩ Zd ⊂ Ai. Since

d(Ã1, Ã2) > 1, the sets A1 and A2 are not intersecting (recall that the distance between
two neighbors of Zd is 1

2
). For two measures µ1 and µ2, denote µ1 � µ2 the absolute

continuity of µ1 with respect to µ2. The proof of the main decoupling result, Theorem
2.1 in [14], see in particular Section 5 therein, implies that, for each u > 0, there exists
a coupling QI

u between the random interlacement process ω on Zd and two independent
Poisson point processes ω1 and ω2 having the same law as ω, such that, for B ⊂ Zd,
denoting by (ωu)|B the point process consisting of the restriction to B of the trajectories
in ωu which hit B,

(3.9) QI
u

[
(ω

u(1−ε)
i )|Ai � (ωu)|Ai � (ω

u(1+ε)
i )|Ai , i = 1, 2

]
> 1−κ0(r+s)d exp(−κ1ε

2usd−2).

For each u > 0 and i ∈ {1, 2}, under an extended probability Q̃I
u, one then constructs an

interlacement process ω̃
u(1−ε)
i at level u(1− ε) on the cable system by adding independent

Brownian excursions to the edges visited by the trajectories of the random interlacement
process ω

u(1−ε)
i on Zd, see Section 2 below (2.11). We now construct a random interlacement

process ω̃u at level u using ω̃
u(1−ε)
i and ωu. Its trajectories are the trajectories of ω̃

u(1−ε)
i

which have a projection on Zd already contained in ωu (i.e. all the trajectories of ω̃
u(1−ε)
i on

the event in (3.9)) and the trajectories of ωu which are not already in ω
u(1−ε)
i , lifted to Z̃d

using additional independent (of ω̃
u(1−ε)
i and ωu) Brownian excursions on the edges. We

repeat this construction to obtain a random interlacement process ω̃
u(1+ε)
i at level u(1 + ε)

in a similar way from ω̃u and ω
u(1+ε)
i . Then, an analogue of (3.9) holds for these processes

ω̃u, ω̃
u(1−ε)
i and ω̃

u(1+ε)
i under Q̃I

u. In particular, denoting by ˜̀x,u, ˜̀ix,u(1−ε) and ˜̀ix,u(1+ε) their

respective local time fields on the cable system, see (2.10), it follows that

(3.10) Q̃I
u

[˜̀i
x,u(1−ε) 6 ˜̀x,u 6 ˜̀ix,u(1+ε), x ∈ Ãi, i = 1, 2

]
> 1− κ0(r + s)d exp(−κ1ε

2usd−2)

The inequalities in (3.8) are a direct consequence of (3.10).

4 Percolation for the truncated level set

In this section, we prove Theorem 3.1: for each h > 0, there exists a finite constant K(h)
such that the level set of the Gaussian free field on the cable system truncated below level
−h and above level K(h) contains an unbounded connected component. We will actually
show a similar statement for random interlacements and use the coupling from Theorem
2.2 to obtain a slightly refined version of Theorem 3.1, stated below in Corollary 4.9. The
corresponding statement for random interlacement, see Proposition 4.1, essentially asserts
that one can intersect the continuous interlacement set Ĩu, the set {x ∈ Zd; |ϕx| < K} and

13



a Bernoulli family on the edges with parameter p and still retain an unbounded connected
component in Z̃d for sufficiently large K and p close enough to 1. The proof of this
statement bears similarities to the proof of Theorem 2.1 in [16], where it is shown that
the intersection of Iu and a Bernoulli family with parameter p on Zd, not necessarily
independent from Iu, contains an infinite connected component in Zd for large enough p.

Henceforth, for a given p ∈ (0, 1) (and d > 3), let Q̃p be any coupling between a
Gaussian free field ϕ̃, a random interlacement process ω̃ and a family of independent
Bernoulli random variables on the edges Bp = (θpe)e∈E with parameter p, i.e.,

under Q̃p, the law of (ϕ̃x)x∈Z̃d is P̃G, the process ω̃ has the same law as under P̃I

and (θpe)e∈E is an i.i.d. family of {0, 1}-valued random variables with

Q̃p(θpe = 1) = p for each e ∈ E.
(4.1)

In particular, ϕ̃, ω̃ and Bp need not be independent, and in fact, we will later use a coupling
such that (2.15) holds. For any level u > 0, we define the random interlacement set Ĩu as

in (2.11) and the local times (˜̀x,u)x∈Z̃d as in (2.10) in terms of ω̃. We further denote by ϕ

the restriction of ϕ̃ to Zd and by Iu the restriction of Ĩu to Zd.

Proposition 4.1. (d > 3, u0 > 0, (4.1))

There exist positive constants C1, c1, C
′
1 and c′1, only depending on d and u0, satisfying

C1u
−c1
0 > 1 and C ′1u

c′1
0 < 1, such that for all u ∈ (0, u0], with

(4.2) K̃(u)
def.
=

√
log

(
C1

uc1

)
and p(u)

def.
= 1− C ′1uc

′
1 ,

there exists L0(u) > 0 such that, if p ∈ [p(u), 1], then Q̃p-a.s. the set

(4.3) Ã′u,p =
(
Ĩu \ Iu

)
∪
{
x ∈ Iu; |ϕx| 6 K̃(u) and ∀ y ∼ x, |ϕy| 6 K̃(u) and θp{x,y} = 1

}
contains an unbounded connected component in the thick slab Z̃2 ∩ [0, 2L0(u))d−2.

We now comment on (4.3). First, note that Iu ⊂ Zd, so saying that Ã′u,p contains

an unbounded connected component implies that Ã′u,p ∩ Zd contains an infinite path such

that all the edges of this path are in Ĩu, and for all vertices x on this path and all y ∼ x,
|ϕx| 6 K̃(u) and θp{x,y} = 1. Proposition 4.1 is true for any choice of coupling probability

Q̃p satisfying (4.1). Once its proof is completed, we will choose the coupling introduced
in (2.14). This will automatically enforce the lower bound −h required for the proof of

Theorem 3.1, since Ã′u,p ⊂ Iu. A good choice of θp{x,y}, cf. Lemma 4.10 below, will then

allow to control the field along the edges. To this effect, (4.3) essentially guarantees that on

Ã′u,p we are dealing with Brownian bridges whose boundary values are uniformly bounded.
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The proof of Proposition 4.1 follows a strategy very similar to the proof of Theorem 2.1
in [16], but we need to pay diligent attention to the dependence on u in order to obtain
the explicit bounds (4.2). We use a renormalisation scheme akin to the one introduced in
Section 4 of [16], which uses a sprinkling technique developed in [21] and later improved
in [22] and [14]. For n > 0 and L0 ≥ 1, we define the geometrically increasing sequence

(4.4) Ln = ln0L0, where l0 = 4l(d) and l(d) = 4(5 · 4d + 1)

and the coarse-grained lattice model

GL0
0 = L0Zd and GL0

n = LnZd ⊂ GL0
n−1 for n > 1.

Note that, albeit only implicitly, the sequence Ln depends on the choice of L0, which is
the only parameter in this scheme. For x ∈ GL0

n , we further introduce the boxes

(4.5) ΛL0
x,n = GL0

n−1 ∩ (x+ [0, Ln)d),

and note that {ΛL0
x,n; x ∈ GL0

n } forms a partition of GL0
n−1. For a given collection of events

indexed by GL0
0 , that we denote by A = (Ax)x∈GL0

0
, we define recursively the events GL0

x,n(A)

such that GL0
x,0 = Ax for all x ∈ GL0

0 , and for all n > 1 and x ∈ GL0
n ,

(4.6) GL0
x,n(A) =

⋃
x1,x2∈Λ

L0
x,n

|x1−x2|∞> Ln
l(d)

GL0
x1,n−1(A) ∩GL0

x2,n−1(A),

where | · |∞ stands for the `∞-distance on Zd. For each x ∈ Zd, let Tx be the translation
operator on the space of point measures on W ∗, the space of doubly infinite trajectories
on Z̃d modulo time-shift such that, if µ is such a measure, then Tx(µ) is the point measure
where each trajectory in the support of µ has been translated by x. Moreover, in a slight
abuse of notation, let τx be defined by

(4.7) ω̃ ◦ τx = Tx(ω̃).

We introduce a family of events on the space Ωcoup on which Q̃p, cf. (4.1), is defined.

Recall the events Eu,u′

L0
and F u,u′

L0
from Definition 3.4 (henceforth tacitly viewed as subsets

of Ωcoup).

Definition 4.2. For each u > 0, integer L0 ≥ 1, K > 0 and p ∈ [0, 1] let

(a) (EL0,u
x )

x∈GL0
0

be the family of increasing events such that, for all x ∈ GL0
0 , the event

EL0,u
x = τ−1

x

(
Eu,u
L0

)
occurs,

(b) (FL0,u
x )

x∈GL0
0

be the family of decreasing events such that, for all x ∈ GL0
0 , the event

FL0,u
x = τ−1

x

(
F u,u
L0

)
occurs,
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(c) (CL0,K
x )

x∈GL0
0

be the family of decreasing events such that, for all x ∈ GL0
0 , the event

CL0,K
x occurs if and only if for all y ∈ (x+ [−1, 2L0 + 1)d) ∩ Zd, we have ϕy 6 K,

(d) (ĈL0,K
x )

x∈GL0
0

be the family of increasing events such that, for all x ∈ GL0
0 , the event

ĈL0,K
x occurs if and only if for all y ∈ (x+ [−1, 2L0 + 1)d) ∩ Zd, we have ϕy > −K,

(e) (DL0,p
x )

x∈GL0
0

be the family of events such that, for all x ∈ GL0
0 , the event DL0,p

x occurs

if and only if for all e ∈ (x+ [−1, 2L0 + 1)d) ∩ E, we have θpe = 1.

A vertex x ∈ GL0
0 is called a good (L0, u,K, p) vertex if

(4.8) CL0,K
x ∩ ĈL0,K

x ∩DL0,p
x ∩ EL0,u

x ∩ FL0,u
x

occurs, and otherwise a bad (L0, u,K, p) vertex.

The reason for the choices in Definition 3.4 and (4.8), with regards to Proposition 4.1,
comes in the following.

Lemma 4.3. (u > 0, L0 > 1, p ∈ (0, 1])

If (x0, x1, . . . ) is an unbounded nearest neighbor path of good (L0, u, K̃(u), p) vertices in GL0
0 ,

then the set
⋃∞
i=0(xi + [0, 2L0)d) contains an unbounded connected path in Ã′u,p, cf. (4.3).

Proof. Let x, y two neighbors in GL0
0 , and assume that there exists e ∈ {0, 1}d such that

x+ eL0 = y. Since EL0,u
x holds, there exist two random sets Ax,0 ⊂ Ĩu ∩ (x+ [0, L0)d) and

Ax,e ⊂ Ĩu ∩ (x+ eL0 + [0, L0)d) which are connected in Ĩu ∩ (x+ [0, 2L0)d), and such that
the sum of the local times on the vertices of each of those two sets is larger than 3

4
uLd0.

Moreover, since FL0,u
y occurs, the sum of the local times on the vertices of Ax,e ∪ Ay,0 is

smaller than 5
4
uLd0 because Ax,e∪Ay,0 ⊂ Ĩu∩ (xi+1 + [0, L0)d). Hence, Ax,e∩Ay,0 6= ∅, and

this implies that Ax,0 is connected to Ay,0 in Ĩu ∩ (x+ [0, 2L0)d).
Applying the above to each of the neighbors in our path (x0, x1, . . . ), we get that for

all i ∈ N0, Axi,0 is connected to Axi+1,0 in Ĩu ∩ ((xi + [0, 2L0)d)∪ (xi+1 + [0, 2L0)d)). Thus,

one can find an unbounded connected path in Ĩu ∩
⋃∞
i=0(xi + [0, 2L0)d), and this path is

actually in Ã′u,p since |ϕx| 6 K̃(u) and θpe = 1 for all x, e ∈
⋃∞
i=1(xi + [−1, 2L0 + 1)d) by

Definition 4.2, (c), (d), (e).

To prove that an unbounded nearest neighbor path of good (L0, u, K̃(u), p) vertices in
GL0

0 exists for a suitable choice of the parameters, we pair our good (seed) events with the
renormalisation scheme (4.6) to show that, if being a good seed is typical, i.e., if it occurs
with probability sufficiently close to 1, then the probability of being good “at level n” cf.
(4.6) and (4.21) below, is overwhelming. The respective bounds for all events of interest,
cf. Definition 4.2, can be found in Lemmas 4.4, 4.6 and 4.7 below. We first consider the
events (EL0,u

x )x∈Zd and (FL0,u
x )x∈Zd , and take advantage of Corollary 3.5 and Theorem 3.6

to show the following.
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Lemma 4.4. (u0 > 0)

There exist C2 = C2(d, u0) and C ′2 = C ′2(d, u0) such that for all u ∈ (0, u0] and L0 ≥ 1 with

L
1/7
0 u > C2,

(4.9) Q̃p
[
GL0

0,n

(
(EL0,u)c

)]
6 2−2n ,

and for all u ∈ (0, u0] and L0 ≥ 1 with L
1/7
0 u > C ′2,

(4.10) Q̃p
[
GL0

0,n

(
(FL0,u)c

)]
6 2−2n .

Proof. We only prove (4.9). The proof of (4.10) is similar. Fix δ ∈ (0, 1) as in Corollary 3.5,
and let δ′ ∈ (0, 1) be small enough such that

(4.11) un :=
u(1− δ)∏n
k=1

(
1− δ′

2k

) < u, ∀n > 0

(with u0 = u(1−δ)). For all x ∈ GL0
0 , let EL0,u,u′

x = τ−1
x (Eu,u′

L0
), cf. (4.7) and Definition 3.4,

and note that EL0,u,u
x = EL0,u

x . Let n > 0. For all L0 > 1, n ∈ N0, i ∈ {1, 2} and

xi ∈ GL0
n such that |x1−x2|∞ > Ln+1

l(d)
= 4Ln, the events GL0

xi,n

(
(EL0,un+1,u)c

)
are σ(l̃z,u, z ∈

xi + [0, Ln + L0)d) measurable, and

sn := d
(
x1 + [0, Ln + L0)d, x2 + [0, Ln + L0)d]

)
> d(x1, x2)− 1

2
(Ln + L0) > Ln.

By Theorem 3.6 applied with ε = 1 − un
un+1

= δ′2−n−1, and since the events (EL0,u,u′)c are
decreasing in u, there exist two constants C and c independent of u, n and L0 such that

Q̃p
[
GL0
x1,n

(
(EL0,un+1,u)c

)
∩GL0

x2,n

(
(EL0,un+1,u)c

)]
6 Q̃p

[
GL0
x1,n

(
(EL0,un,u)c

)]
Q̃p
[
GL0
x2,n

(
(EL0,un,u)c

)]
+ C(sn + Ln + L0)d exp

(
−cusd−2

n 4−n
)
.

(4.12)

We have chosen ld−2
0 > 8, see (4.4), whence for L

1/7
0 u > c(d, u0),

(4.13) l2d0 C(sn + Ln + L0)d exp
(
−cusd−2

n 4−n
)
6 C ′ exp

(
− cuL1/7

0 2n
)
6

1

(4l2d0 )22n+1 .

We now prove by induction over n that for all x ∈ GL0
n , and all u ∈ (0, u0],

(4.14) Q̃p
[
GL0
x,n

(
(EL0,un,u)c

)]
6

1

(2l2d0 )22n
, if L

1/7
0 u ≥ c(d, u0).

For n = 0, the bound on the right-hand side of (4.14) is purely numerical. Thus, it is clear
from Corollary 3.5, and since GL0

x,0

(
(EL0,u0,u)c

)
= EL0,u0,u

x , see above (4.6), that if one takes
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L
1/7
0 u large enough (only depending on u0 and d), then (4.14) holds for n = 0 on account

of (3.6). Suppose now it holds for n− 1 ≥ 0. Then, according to (4.6)

Q̃p
[
GL0
x,n

(
(EL0,un,u)c

)]
6 l2d0 sup

x1,x2∈Λ
L0
x,n

|x1−x2|∞> Ln
l(d)

Q̃p
[
GL0
x1,n−1

(
(EL0,un,u)c

)
∩GL0

x2,n−1

(
(EL0,un,u)c

)]

6
1

(2l2d0 )22n
,

where the last equality follows from (4.12), (4.13) and the induction hypothesis, and (4.14)
follows. The claim (4.9) then follows from (4.11), (4.14) and the fact that the

(
EL0,u,u′

)c
are decreasing events in u.

We now turn to the Gaussian free field part CL0,K and ĈL0,K , see (c) and (d) in
Definition 4.2, of the good events in (4.8). Sprinkling techniques have been used successfully
in investigating level set percolation of the Gaussian free field, see for example [20], [18] or
[7], and also [19] with regard to non-Gaussian measures. These techniques imply similar
results as for random interlacements, and this is mainly due to the fact that decoupling
inequalities as (3.8) also hold for the Gaussian free field. With hopefully obvious notation,
in writing Φ + c below, with Φ as in (1.2), we mean the field whose value is shifted by
c ∈ R everywhere.

Theorem 4.5 ([13, Corollary 1.3]). Let A1 and A2 be two non intersecting subsets of Zd,
define s = d(A1, A2) and assume that the minimum r of their diameters is finite. Then,
there exist positive constants κ′0(d) and κ′1(d) such that, for all ε ∈ (0, 1), and any two
functions fi : RZd → [0, 1] which are σ(Φx, x ∈ Ai) measurable for each i ∈ {1, 2}, and
either both increasing or both decreasing,

(4.15) EG[f1(Φ)f2(Φ)] 6 EG[f1(Φ± ε)]EG[f2(Φ± ε)] + κ′0(r + s)d exp(−κ′1ε2sd−2),

where the plus sign corresponds to the case where the fi’s are increasing and the minus
sign to the case where the fi’s are decreasing.

Theorem 1.2 in [13] gives a slightly better inequality, but (4.15) will be sufficient for our
purposes, and readily yields the following analogue of Lemma 4.4 for the events pertaining
to the free field.

Lemma 4.6. There exist constants C3(d) > 1 and C ′3(d) > 0 such that for all L0 > C3

and K > 0 with

(4.16) K > C ′3
√

log(L0),

one has

(4.17) Q̃p
[
GL0

0,n

(
(CL0,K)c

)]
6 2−2n and Q̃p

[
GL0

0,n

(
(ĈL0,K)c

)]
6 2−2n .
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Proof. One knows from (2.35) and (2.38) in [20] that if K > C
√

log(L0) for some constant
C large enough,

(4.18) Q̃p
[(

ĈL0,K
0

)c]
= Q̃p

[(
CL0,K

0

)c]
= Q̃p

(
sup

x∈[−1,2L0+1)d
ϕx > K

)
6 e−

(K−C
√

log(L0))
2

2g(0) .

The claim (4.17) now follows by induction over n from (4.18) and Theorem 4.5 in exactly
the same way as Lemma 4.4 was obtained from Corollary 3.5 and Theorem 3.6.

Finally, we collect a simple estimate for the Bernoulli part of our good events DL0,p,
see part (e) in Definition 4.2.

Lemma 4.7 ([16, Lemma 4]). There exists C4 = C4(d) such that for all L0 > 1 and
p ∈ (0, 1) satisfying

(4.19) p > exp

(
−C4

Ld0

)
,

one has

(4.20) Q̃p
[
GL0

0,n

(
(DL0,p)c

)]
6 2−2n .

The bounds of Lemmas 4.4, 4.6 and 4.7 allow for a proof of Proposition 4.1 by means
of a standard duality argument. On account of Lemma 4.3, this requires an estimate on
the probability to see certain long (dual) paths. The relevant events, see (4.22), can be
suitably expressed in terms of bad vertices at level n, as Lemma 4.8 asserts.

Recall the definition of good (L0, u,K, p) vertices in (4.8). For n ≥ 0, we call x ∈ GL0
n

a bad n− (L0, u,K, p) vertex if the event

(4.21) GL0
x,n

(
(CL0,K)c

)
∪GL0

x,n

(
(ĈL0,K)c

)
∪GL0

x,n

(
(DL0,p)c

)
∪GL0

x,n

(
(EL0,u)c

)
∪GL0

x,n

(
(FL0,u)c

)
occurs, and a good n − (L0, u,K, p) vertex otherwise. Note that a good 0 − (L0, u,K, p)
vertex is simply a good (L0, u,K, p) vertex. We say that (x0, x1, . . . , xn, . . . ) is a ∗-path in
GL0

0 if for all i ∈ {0, 1, . . . }, xi ∈ GL0
0 and ‖xi − xi+1‖∞ = L0. For each u,K > 0, integer

L0 ≥ 1, p ∈ (0, 1), 0 < M < N with M, N multiples of L0, and x ∈ G0
L0 , let

HN
M(x;L0, u,K, p) =

{
(x+ [−M,M ]d) is connected to (x+ ∂[−N,N ]d) by

a ∗-path of bad (L0, u,K, p) vertices in GL0
0

}
.

(4.22)

Here, ∂[−N,N ]d denotes the boundary of the set [−N,N ]d. The following lemma asserts
that H2Ln

Ln
(x;L0, u,K, p) can only happen if there is a bad n − (L0, u,K, p) vertex in the

box of radius 2Ln around x.

Lemma 4.8. For all integers n ≥ 0 and L0 ≥ 1, u,K > 0, p ∈ (0, 1), and x ∈ GL0
n ,

(4.23) H2Ln
Ln

(x;L0, u,K, p) ⊂
⋃

y∈GL0
n ∩(x+[−2Ln,2Ln)d)

{y is n− (L0, u,K, p) bad}.
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Proof. This is a consequence of Lemma 4.4 of [18] (with N ≡ 5, r ≡ l(d) and L0, l0
as in (4.4) above). We include the proof for the reader’s convenience. We proceed by
induction over n: it is clear that (4.23) is true for n = 0, and we assume that it holds
for any choice of x up to level n − 1. If H2Ln

Ln
(x;L0, u,K, p) occurs, there exists a ∗-path

π of bad (L0, u,K, p) vertices in GL0
0 from (x + [−Ln, Ln]d) to (x + ∂[−2Ln, 2Ln]d). This

path intersects the concentric `∞-spheres (x + ∂[−Ln − 16iLn−1, Ln + 16iLn−1]d) for all
i ∈ {0, . . . ,m− 1}, where m = 5 · 4d + 1 (recall that l0 = 16m). In view of (4.4), for all
i ∈ {0, . . . ,m− 1}, one can thus find yi ∈ GL0

n−1 ∩ (x + ∂[−Ln − 16iLn−1, Ln + 16iLn−1]d)
such that π ∩ (yi + [−Ln−1, Ln−1]d) 6= ∅.

For each i ∈ {0, . . . ,m− 1}, since (yi + [−2Ln−1, 2Ln−1]d) ⊂ (x + [−2Ln, 2Ln]d), the
connected ∗-path π in GL0

0 connects (yi + [−Ln−1, Ln−1]d) to (yi + ∂[−2Ln−1, 2Ln−1]d), and
thus the induction hypothesis implies that there exists zi ∈ (yi + [−2Ln−1, 2Ln−1)d) which
is (n− 1)− (L0, u,K, p) bad, and in particular zi ∈ GL0

n−1. There are m = 5 · 4d + 1 such zi,
and since there are only 4d vectors in GL0

n ∩
(
x+ [−2Ln, 2Ln)d

)
, one can find x0 in this set

such that ΛL0
x0,n

, cf. (4.5), contains at least 6 different zi. By (4.21), one can thus find k 6= j

in {0, . . . ,m− 1} and A0 ∈ {(CL0,K)c, (ĈL0,K)c, (DL0,p)c, (EL0,u)c, (FL0,u)c} such that zk
and zj are in ΛL0

x0,n
, and GL0

zk,n−1(A0) and GL0
zj ,n−1(A0) both occur. Moreover,

‖zk − zj‖∞ > ‖yk − yj‖∞ − 4Ln−1 > 12Ln−1 > Ln/l(d),

which, in view of (4.6), implies that GL0
x0,n

(A0) occurs, and thus x0 is n − (L0, u,K, p)
bad.

By Lemmas 4.4, 4.6 and 4.7, we know that for all u ∈ (0, u0], and for a suitable choice
of the parameters L0, K and p, the probability that a vertex is n− (L0, u,K, p) bad is very
small. Lemma 4.8 then yields that a ∗-path of (L0, u,K, p) bad vertices in GL0

0 exists with
very small probability only, and on account of Lemma 4.3, we can prove Proposition 4.1
using a Peierls argument.

Proof of Proposition 4.1. Choose a constant C5 = C5(d, u0) large enough such that, upon
defining

L0(u) =
⌈
C5/u

7
⌉
,

one has L0(u)1/7u > max(C2, C
′
2), cf. Lemma 4.4, and L0(u) > C3, cf. Lemma 4.6, for all

u ∈ (0, u0]. One can now find constants c1, C1, c
′
1 and C ′1 such that if (4.2) holds, then

K̃(u) > C ′3
√

log(L0(u)), cf. (4.16), and p(u) > exp(− C4

L0(u)d
), cf. (4.19), for all u ∈ (0, u0].

Let us now fix arbitrarily some u ∈ (0, u0] and p ∈ [p(u), 1]. Lemma 4.8, Lemmas 4.4 and
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4.6 and Lemma 4.7 can now be applied with L0 = L0(u), K = K̃(u) and p, to yield

Q̃p
(
H2Ln
Ln

(0;L0(u), u, K̃(u), p)
)

(4.23)

6 4dQ̃p
(
0 is n− (L0(u), u, K̃(u), p) bad

)
(4.21)

6 4d
{
Q̃p
[
G
L0(u)
0,n

((
CL0(u),K̃(u)

)c)]
+ Q̃p

[
G
L0(u)
0,n

((
ĈL0(u),K̃(u)

)c)]
+ Q̃p

[
G
L0(u)
0,n

((
DL0(u),p

)c)]
+ Q̃p

[
G
L0(u)
0,n

((
EL0(u),u

)c)]
+ Q̃p

[
G
L0(u)
0,n

((
FL0(u),u

)c)]}
6 5 · 4d · 2−2n ,

using (4.9), (4.10), (4.17) and (4.20) in the last step. Since this bound holds for all n > 0,

and, in view of (4.4), HN
0 (0;L0(u), u, K̃(u), p) ⊂ H2Ln

Ln
(0;L0(u), u, K̃(u), p) for any n ∈ N

such that 2Ln 6 N, one can find constants c, C > 0 depending only on d, u and u0 such
that, for all integers N,

(4.24) Q̃p
(
HN

0

(
0;L0(u), u, K̃(u), p

))
6 C exp (−cN c) .

Given (4.24), the argument proceeds as follows. For any set A ⊂ Z2 × {0}d−2, de-

fine (x0, . . . , xn, . . . ) to be a nearest neighbor path of good (L0(u), u, K̃(u), p) vertices

in GL0(u)
0 ∩ (Z2 ∩ {0}d−2) that connects A to ∞ if the xi ∈ GL0(u)

0 ∩ (Z2 ∩ {0}d−2) are

good (L0(u), u, K̃(u), p) vertices, ‖xi − xi+1‖1 = L0(u) for all i ∈ {0, 1, . . . }, x0 ∈ A and
‖xi‖∞ → ∞, as i → ∞. Now, assume that there exists no unbounded nearest neighbor

path of good (L0(u), u, K̃(u), p) vertices in GL0(u)
0 ∩(Z2×{0}d−2), and in particular that for

all M ∈ L0(u) · N ≡ Nu there is no nearest neighbor path of good (L0(u), u, K̃(u), p) ver-
tices that connects [M,M ]2 × {0}d−2 to ∞. Then by planar duality, for all M ∈ Nu,

there exists a ∗-path π around [−M,M ]2 × {0}d−2 in GL0(u)
0 ∩ (Z2 × {0}d−2) of bad

(L0(u), u, K̃(u), p) vertices. If N > M denotes the smallest multiple of L0(u) such that

xN ≡ (N, 0) ∈ Nu × {0}d−1 is in π, then HN
0 (xN ;L0(u), u, K̃(u), p) occurs. Thus, the prob-

ability that there is no infinite nearest neighbor path of good (L0(u), u, K̃(u), p) vertices

in GL0(u)
0 ∩ (Z2 × {0}d−2) that connect [M,M ]2 × {0}d−2 to ∞ is bounded by∑

N∈Nu:N>M

Q̃p
(
HN

0 (0;L0(u), u, K̃(u), p
)
6

∑
N∈Nu:N>M

C exp (−cN c).

This is true for all M ∈ Nu, hence the probability of having no unbounded nearest neighbor
path of good (L0(u), u, K̃(u), p) vertices in GL0(u)

0 ∩ (Z2 × {0}d−2) is 0. Lemma 4.3 then

implies that the set Ã′u,p percolates (almost surely), for any u ∈ (0, u0] and p ∈ [p(u), 1],
and the claim of Proposition 4.1 follows.

With Proposition 4.1 at hand, it is possible to deduce Theorem 3.1 for a good choice
of coupling Q̃p in (4.1). The idea is to use (2.14), and to suitably couple the Bernoulli
percolation Bp with {|ϕ̃| 6 K(h)} on the edges. We prove the following slightly stronger
version of Theorem 3.1.
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Corollary 4.9. For each h0 > 0, there exist positive constants C0 and c0, only depending
on d and h0, with C0h

−c0
0 > 1 such that, for all 0 < h 6 h0, with K(h) as in (3.1), there

exists L0 = L0(h) > 0 such that P̃G-a.s. the set
(4.25)

Ã′′h(Φ̃)
def.
=
{
x ∈ Z̃d \ Zd; Φ̃x > −h

}
∪
{
x ∈ Zd; ∀ v ∈ V0, ∀t ∈

[
0,

1

2

]
, |Φ̃x+tv| 6 K(h)

}
contains an unbounded connected component in the thick slab Z̃2 × [0, 2L0)d.

We first comment on why Corollary 4.9 implies Theorem 3.1. Since Φ̃ is continuous,
asserting that Ã′′h has an unbounded component is tantamount to saying that there exists

an infinite path in the set {x ∈ Z̃d; Φ̃x > −h}, and that in addition, for every y ∈ Z̃d
at distance less than 1

2
from a vertex on this path, |Φ̃y| 6 K(h) holds. In particular this

infinite path is also in Ãh, see (3.2), and Theorem 3.1 follows.
The key to the proof of Corollary 4.9 is the following lemma, by which one can essen-

tially couple a Bernoulli percolation {Bp = 1} on the edges with sufficiently large success
parameter p > 1− C ′1uc

′
1 , cf. (4.2), with {|ϕ̃| 6 K ′} on the edges for K ′ large enough.

Lemma 4.10. Let ϕ̃ be a Gaussian free field on the cable system under P̃. For all u0 > 0,
there exist positive constants C0 and c0 such that, for all u ∈ (0, u0], with K̃(u) and p(u)

as defined in (4.2), h =
√

2u and K(h) as defined in (3.1), the following holds: under P̃,
there exists a family of independent Bernoulli variables Bp̃(u) = (θ

p̃(u)
e )e∈E with parameter

p̃(u) > p(u), and the property that

for all e = {x, y} ∈ E, if |ϕx| 6 K̃(u) and |ϕy| 6 K̃(u),

then
{
θp̃(u)
e = 1⇒ ∀ z ∈ Ie, |ϕ̃z| 6 K(h)

}
.

(4.26)

Proof. Let u ∈ (0, u0] and h =
√

2u. With C1, c1, C
′
1 and c′1 as given by Proposition 4.1,

fix constants C0 and c0 depending only on u0 and d such that

K(h)
(3.1)
=

√
log

(
C0

(2u)c0/2

)
>

√
log

(
C1

uc1

)
+

√
−1

2
log

(
C ′1u

c′1

2

)
(4.2)
= K̃(u) +

√
−1

2
log

(
1− p(u)

2

)
.

(4.27)

Let (Be)e∈E be as defined in (2.8), and recall that (Be)e∈E is an i.i.d. family of Brownian
bridges with length 1

2
of a Brownian motion with variance 2 at time 1. For all e ∈ E, define

(4.28) θp̃(u)
e =

 1, if |Be
t | 6 K(h)− K̃(u) for all t ∈

[
0, 1

2

]
,

0, otherwise.
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Then
(
θ
p̃(u)
e

)
e∈E is an i.i.d. family of Bernoulli variables with parameter

p̃(u)
def.
= P̃

(
∀ t ∈ [0, 1/2], |Be

t | 6 K(h)− K̃(u)
)
.

Moreover, by symmetry (the boundary values of Be are both 0) and Lemma 2.1,

p̃(u) > 1− 2P̃

(
sup

t∈[0,1/2]

Be
t > K(h)− K̃(u)

)
(2.9)

> 1− 2 exp
(
−2(K(h)− K̃(u))2

) (4.27)

> p(u),

and, using (2.8) and (4.28), for all e = {x, y} ∈ E such that ϕx 6 K̃(u) and ϕy 6 K̃(u),

θp̃(u)
e = 1 ⇒ ∀t ∈ [0, 1/2], |ϕ̃x+tv(x,y)

− (1− 2t)ϕx − 2tϕy| 6 K(h)− K̃(u)

⇒ ∀z ∈ Ie, |ϕ̃z| 6 K(h),

whence (4.26).

Proof of Corollary 4.9. Let u0 =
h2

0

2
, and, for any h ∈ (0, h0], define u = h2

2
. Let P̃u be

the coupling from Theorem 2.2, under which there exist a Gaussian free field ϕ̃ and a
random interlacement process ω̃ such that (2.15) holds. For this ϕ̃, let Bp̃(u) = Bp̃(u)(ϕ̃) be

the family of independent Bernoulli variables under P̃u introduced in Lemma 4.10. This
yields a coupling Q̃p̃(u) satisfying (4.1), with parameter p̃(u) > p(u). One can now apply

Proposition 4.1 to obtain that, P̃u-a.s, the set Ã′u,p̃(u), cf. (4.3), contains an unbounded

connected component in the thick slab Z̃2× [0, L0(u))d, and thus (4.26) yields that P̃u-a.s.
the set

(4.29)
(
Ĩu ∩ (Z̃d \ Zd)

)
∪
{
x ∈ Zd; ∀ v ∈ V0, ∀t ∈ [0, 1/2], |ϕ̃x+tv| 6 K(h)

}
contains an unbounded connected component in the thick slab Z̃2× [0, L0(u))d. Now (2.15)

implies that the set defined in (4.29) is included in Ã′′h(ϕ̃), and Corollary 4.9 follows.

5 Percolation for positive level set

In this section, we prove our main result, Theorem 1.1, with the help of Theorem 3.1.
A key ingredient is the following observation: we have shown (in Theorem 3.1) that the

set {x ∈ Z̃d; −h 6 Φ̃x 6 K(h)} contains an unbounded connected component for large
enough K(h), cf. (3.1). Suppose that x ∈ Zd is a vertex inside this unbounded component,

and that Ie is attached to x (recall that Φ = Φ̃ � Zd). Then, since Φ̃ behaves like a

Brownian bridge on Ie, see (2.8), the probability that Φ̃z > −h for all z ∈ Ie becomes very
small as h ↘ 0. In fact, if e = {x, y}, for sufficiently small h > 0, it is more costly to

keep Φ̃ > −h along the entire cable Ie, than to require Φx > h (at the vertex x only!),
knowing that −h 6 Φx 6 K(h) and |Φy| 6 K(h), see Lemma 5.1 for the corresponding
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statement. Accordingly, the probability that the set {x ∈ Z̃d; −h 6 Φ̃x 6 K(h)} contains
an unbounded connected component becomes smaller than the probability that the set
{x ∈ Zd; h 6 Φx 6 K(h)} contains an infinite cluster (in Zd) as h goes to 0, which
implies Theorem 1.1. The precise formulation comes through a slightly abstract coupling
argument, which is the content of Lemma 5.2.

Comparing the probability that Φx > h knowing that −h 6 Φx 6 K(h) with the
probability that the Brownian bridge on Ie remains above level −h in a uniform way
requires some control on the Gaussian free field Φ̃ in the neighborhood of x, and for this
purpose we are actually going to use Corollary 4.9 instead of Theorem 3.1. We define, for
x ∈ Zd and v ∈ V0, the open subsets Ux,v and Ux of Z̃d by

(5.1) Ux,v = x+
[
0,

1

4
v
)

and Ux =
⋃
v∈V0

Ux,v = x+
⋃
v∈V0

[
0,

1

4
v
)
.

We call Kx ≡ ∂Ux the boundary of Ux, which has exactly 2d elements, and define K =⋃
x∈Zd Kx. Henceforth, we set

(5.2) h0 = 1

in all the previous definitions and results, and in particular in Corollary 4.9 (this value is
chosen arbitrarily in (0,∞)). For any h ∈ (0, 1], we define K(h) as in (3.1) (with c0, C0

numerical constants depending only on d by the choice (5.2)). We further define two
families of events (Ex

h)x∈Zd and (F x,v
h )x∈Zd,v∈V0

(part of Ω0, cf. above (2.2)) by
(5.3)

Ex,v
h =

{
Φ̃x+ 1

4
v > −h

}
∩
{
∀y ∈ Kx; |Φ̃y| 6 K(h)

}
and F x,v

h =
{
∀ z ∈ Ux,v; Φ̃z > −h

}
,

as well as

(5.4) Ex
h =

⋃
v∈V0

Ex,v
h and Gx

h =
⋃
v∈V0

(
Ex,v
h ∩ F

x,v
h

)
,

and the (random) subsets of Zd

(5.5) Eh = {x ∈ Zd; Ex
h occurs} and Gh = {x ∈ Zd; Gx

h occurs}.

For all K ⊂ Z̃d, we denote by AK the σ-algebra σ (ϕ̃z, z ∈ K) . We note that the sets Ux

are disjoint when x varies, cf. (5.1) and (2.1), and that the events Ex,v
h are AKx-measurable.

Corollary 4.9 implies that Gh contains an infinite connected component, and the goal is to
go from this to the percolation of Eh ∩ {x ∈ Zd; Φx > h}. The following lemma makes the
above observation, see the discussion at the beginning of this section, precise.

Lemma 5.1. There exists h1 ∈ (0, 1] such that for all h ∈ (0, h1] and x ∈ Zd,

(5.6) P̃G (Gx
h | AKx) 6 P̃G (Ex

h ∩ {Φx > h} |AKx) .
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Proof. Let us fix some x ∈ Zd. It is sufficient to prove that there exists h1 ∈ (0, 1] such
that for all h ∈ (0, h1] and all v ∈ V0,

(5.7) 1Ex,vh P̃G (F x,v
h ∩ {Φx 6 2h} |AKx) 6

1

2d
1Ex,vh P̃G (h 6 Φx 6 2h | AKx) .

Indeed, if (5.7) holds, then

P̃G (Gx
h | AKx) = P̃G (Gx

h ∩ {Φx > 2h} |AKx) + P̃G (Gx
h ∩ {Φx 6 2h} |AKx)

(5.4)

6 P̃G (Gx
h ∩ {Φx > 2h} |AKx) +

∑
v∈V0

P̃G (Ex,v
h ∩ F

x,v
h ∩ {Φx 6 2h} |AKx)

(5.7)

6 P̃G (Gx
h ∩ {Φx > 2h} |AKx) +

1

2d

∑
v∈V0

P̃G (Ex,v
h ∩ {h 6 Φx 6 2h} |AKx)

6 P̃G (Ex
h ∩ {Φx > h} |AKx) ,

noting that Gx
h, E

x,v
h ⊂ Ex

h in the last inequality, and (5.6) follows. We now show (5.7).
Let us fix some v ∈ V0. We begin with the study of Φx, by decomposing it suitably. It
follows from the Markov property, cf. (2.3), that Φ̃Ux

x = Φx − β̃U
x

x is a centered Gaussian
variable with variance gUx(x, x). The value of the variance gUx(x, x) ≡ σ2

0 does not depend
on x ∈ Zd (it actually follows from Section 2 of [10] that σ2

0 = 1
4d

). Moreover, on the event

Ex,v
h , it is clear that |β̃Uxx | 6 K(h). Thus, on the event Ex,v

h , since the harmonic average

β̃U
x

x is AKx-measurable, we obtain, for all h > 0,

P̃G (−h 6 Φx 6 2h | AKx) = P̃G
(
−h 6 Φ̃Ux

x + β̃U
x

x 6 2h
∣∣∣AKx)

=
1√

2πσ2
0

∫ 2h

−h
exp

(
−
(
y − β̃Uxx

)2

2σ2
0

)
dy

=
1√

2πσ2
0

exp

(
−
(
β̃U

x

x

)2

2σ2
0

)∫ 2h

−h
exp

(
− y2

2σ2
0

)
exp

(
yβ̃U

x

x

σ2
0

)
dy

6
1√

2πσ2
0

exp

(
−
(
β̃U

x

x

)2

2σ2
0

)
× 3h exp

(
2hK(h)

σ2
0

)
.(5.8)

A similar calculation shows that on the event Ex,v
h , for h > 0,

(5.9) P̃G (h 6 Φx 6 2h | AKx) >
1√

2πσ2
0

exp

(
−
(
β̃U

x

x

)2

2σ2
0

)
× h exp

(
−2h(K(h) + h)

σ2
0

)
.

Define

C6(d) = sup
h∈(0,1]

{
3 exp

(
2hK(h)

σ2
0

)
× exp

(
2h(K(h) + h)

σ2
0

)}
,
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and note that C6 <∞ since hK(h)→ 0 as h→ 0, cf. (3.1). Hence, by (5.8) and (5.9),

(5.10) 1Ex,vh P̃G (−h 6 Φx 6 2h | AKx) 6 C61Ex,vh P̃G (h 6 Φx 6 2h | AKx) , for h ∈ (0, 1].

Let us now turn to the events F x,v
h . It follows again from the Markov property for the

Gaussian free field, see in particular the discussion below (2.7), that, knowing AKx∪{x}, the

process (Φ̃z)z∈Ux,v is a Brownian bridge of length 1
4

between Φx and Φ̃x+ 1
4
v of a Brownian

motion with variance 2 at time 1. Using Lemma 2.1, one can then find h1 ∈ (0, 1] such
that, for all h ∈ (0, h1], on the event Ex,v

h ∩ {−h 6 Φx 6 2h},

P̃G
(
F x,v
h

∣∣AKx∪{x}) = P̃G
(

min
z∈Ux,v

Φ̃z > −h
∣∣∣∣AKx∪{x})

= 1− exp
(
−4(h+ Φx)(h+ Φ̃x+ 1

4
v)
)

6 1− exp (−12h(K(h) + h))

6
1

2dC6

.(5.11)

We now conclude using (5.10) and (5.11): for all h ∈ (0, h1],

1Ex,vh P̃G (F x,v
h ∩ {Φx 6 2h} |AKx)

(5.3)
= E

[
1Ex,vh ∩{−h6Φx62h}P̃G

(
F x,v
h

∣∣AKx∪{x}) ∣∣∣AKx]
(5.11)

6
1

2dC6

1Ex,vh P̃G (−h 6 Φx 6 2h | AKx)

(5.10)

6
1

2d
1Ex,vh P̃G (h 6 Φx 6 2h | AKx) ,

which is (5.7).

Lemma 5.1 roughly asserts that it is more likely to have {Φx > h} than to have Gx
h

(on Ex
h) and we know by Corollary 4.9 that Gh has an infinite connected component. The

proof of Theorem 1.1 now hinges on the following result.

Lemma 5.2. Let (Ei, Ei) for i ∈ {1, 2, 3} be three measurable spaces, let X, Y and Z be
three independent random variables under P with values in E1, E2 and E3 respectively, and
let A ∈ E1 ⊗ E3 and B ∈ E2 ⊗ E3 be such that

(5.12) P
(
(X,Z) ∈ A

∣∣Z) = P
(
(Y, Z) ∈ B

∣∣Z), P-a.s.

Then, on an extended probability space, there exists a random variable Ỹ independent of Z
and with the same law as Y under P such that

(5.13) (X,Z) ∈ A ⇔ (Ỹ , Z) ∈ B, P-a.s.

N.B.: with a slight abuse of notation, the probability measure on the extended space is
still denoted by P in (5.13). We will use this notation throughout the proof.
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Proof. We may assume that P ((X,Z) ∈ A) ∈ (0, 1), otherwise we simply take Ỹ = Y. By
suitably extending the probability space on which P is defined, we introduce a family of
independent E2-valued random variables Ỹ i

z , i = 0, 1 and z ∈ E3, independent of X, Y and
Z such that for each z ∈ E3 and C ∈ E2,

P
(
Ỹ 0
z ∈ C

)
= P

(
Y ∈ C

∣∣ (Y, z) /∈ B
)

and P
(
Ỹ 1
z ∈ C

)
= P

(
Y ∈ C

∣∣ (Y, z) ∈ B
)

(if P((Y, z) /∈ B) = 0 we just fix an arbitrary value, say 0, for Ỹ 0
z , and if P((Y, z) ∈ B) = 0

we do the same for Ỹ 1
z ). Let PZ be the law of Z, then, for PZ-almost all z ∈ E3, (Ỹ 0

z , z) /∈ B
and (Ỹ 1

z , z) ∈ B, P-a.s. Define p = 1{(X,Z)∈A}, and Ỹ = Ỹ p
Z . We have that for all F2 ∈ E2

and F3 ∈ E3,

P
(

(Ỹ , Z) ∈ F2 × F3

)
=

∫
F3

P
(
Ỹ p
z ∈ F2

)
dPZ(z)

=

∫
F3

P
(
Ỹ 0
z ∈ F2

)
P
(
(X, z) /∈ A

)
+ P

(
Ỹ 1
z ∈ F2

)
P ((X, z) ∈ A) dPZ(z)

=

∫
F3

P (Y ∈ F2, (Y, z) /∈ B) + P (Y ∈ F2, (Y, z) ∈ B) dPZ(z)

= P (Y ∈ F2)P (Z ∈ F3) ,

where we used (5.12) in the third equality. Thus, Ỹ is independent from Z and has the
same law as Y. Moreover, for PZ almost all z ∈ E3,

(X, z) ∈ A ⇔ p = 1 ⇔ (Ỹ p
z , z) ∈ B, P-a.s.

and this gives (5.13).

We now proceed to the

Proof of Theorem 1.1. Let h ∈ (0, h1], with h1 as in Lemma 5.1. We will show that

E>h(Φ̃+), cf. (1.3), where Φ̃+ is a Gaussian free field, see (5.16) below, percolates in a
sufficiently thick slab for any such value of h, thus obtaining Theorem 1.1. The Markov
property for the Gaussian free field, see (2.4), (5.1) and (2.1), implies that the family

(Φ̃Ux

· )x∈Zd is i.i.d. and independent of AK, and that for all x ∈ Zd and z ∈ Ux,

Φ̃z = β̃U
x

z + Φ̃Ux

z

where (β̃U
x

· )x∈Zd is AK-measurable. Let (λx)x∈Zd be an i.i.d. family of random variables

independent from Φ̃ under P̃G (tacitly assumed to be suitably extended), with common
law Unif([0, 1]). Note that for all x ∈ Zd,

P̃G
(
λx 6 P̃G (Gx

h | AKx)
∣∣∣AKx)

= P̃G (Gx
h | AKx)

(5.4)
= P̃G

(⋃
v∈V0

Ex,v
h ∩

{
∀ z ∈ Ux,v; β̃Uxz + Φ̃Ux

z > −h
} ∣∣∣∣∣AKx

)
,
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where Ex,v
h ∈ AKx for all v ∈ V0. For each x ∈ Zd, we can now use Lemma 5.2 with X = λx,

Y = Φ̃Ux
· and Z = β̃Ux· , to find an i.i.d. family of random variables (Φ̃−,U

x

· )x∈Zd independent

of AKx and with the same law as (Φ̃Ux

· )x∈Zd (note that the latter are independent, as x
varies), such that, for each x ∈ Zd,

(5.14)
{
λx 6 P̃G (Gx

h | AKx)
}

=
⋃
v∈V0

Ex,v
h ∩

{
∀ z ∈ Ux,v; β̃Uxz + Φ̃−,U

x

z > −h
}
.

Similarly, we find an i.i.d. family of random variables (Φ̃+,Ux

· )x∈Zd independent of AKx and

with the same law as (Φ̃Ux

· )x∈Zd , such that, for each x ∈ Zd,

(5.15)
{
λx 6 P̃G (Ex

h ∩ {Φx > h} |AKx)
}

= Ex
h ∩

{
β̃Uxx + Φ̃+,Ux

x > h
}
.

We now define, for all x ∈ Zd and z ∈ Ux ∪ Kx,

(5.16) Φ̃−z = β̃U
x

z + Φ̃−,U
x

z and Φ̃+
z = β̃U

x

z + Φ̃+,Ux

z .

Then Φ̃− and Φ̃+ have the same law as Φ̃ and are thus Gaussian free fields on the cable
system. Using Lemma 5.1, (5.14) and (5.15), we obtain that for all x ∈ Zd,

(5.17) G−,xh ⊂ E+,x
h ∩ {Φ̃+

x > h}

and in particular

(5.18) G−h ⊂ E+
h ∩ {x ∈ Zd; Φ̃+

x > h}

where G−,xh and G−h (resp. E+,x
h and E+

h ), are defined as in (5.4) and (5.5), but for the

Gaussian free field Φ̃− (resp. Φ̃+). In deducing (5.17), we have also used that E+,x
h (Φ̃+) =

Ex
h(Φ̃), since both events are AKx-measurable, see (5.3), and thus independent of Φ̃Ux

· and

Φ̃+,Ux

· .

Finally, by Corollary 4.9, there exists L0(h) > 0 such that the set Ã′′h(Φ̃
−), cf. (4.25),

contains a.s. an unbounded connected component M in the thick slab Z̃2 × [0, 2L0)d−2.
By definition, see (5.5), M ∩ Zd ⊂ G−h , and thus, on account of (5.18), M ∩ Zd ⊂ {x ∈
Zd; Φ̃+

x > h}, hence {x ∈ Zd; Φ̃+
x > h} contains a.s. an infinite connected component in

Z2 × [0, 2L0)d−2.

Remark 5.3. 1) The result of [20] is actually slightly better than Theorem 1.1 in high
dimensions: if d is large enough, there exist h2 = h2(d) > 0 and L0 = L0(d) > 1 such that
the level set {x ∈ Zd; Φx > h2} percolates in the slab Z2 × [0, 2L0)× {0}d−3. However, in
all dimensions d > 3, the set {x ∈ Zd; Φx > h} never percolates for h > 0 in Z2 × {0}d−2,
as explained in Remark 3.6.1 of [20].

2) It is possible to get a result similar to Theorem 3.1 for the positive level set of the
Gaussian free field Φ on Zd just constructed, thus obtaining the following strenghtening of
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Theorem 1.1. For all h 6 h1, let K(h) be as in (3.1) for h0 = 1, then the set {x ∈ Zd; h 6
Φx 6 K(h)} contains a.s. an infinite connected component. Indeed, using an argument
similar to that of Lemma 5.1, one can prove that, conditionally on AKx , the probability of
Gx
h∩{Φx 6 K(h)} is smaller than the probability of Ex

h ∩{h 6 Φx 6 K(h)} and the result
follows.

3) Theorem 2 in [16] can also easily be extended to the Gaussian free field: for each h 6 h1,
the set {x ∈ Zd; Φx > h} contains an almost surely transient component. Indeed, looking
at the proof of Theorem 2 in [16], see also Theorem 1 in [15], we can use (4.24) instead of

(5.1) in [16] to obtain that the set Ã′u,p defined in (4.3) contains an unbounded connected
and transient component for p ∈ [p(u), 1]. Using the same coupling as in Lemma 4.10, we

get that this is also true for the set Ã′′h defined in (4.25), and the coupling of Lemma 5.2
tells us that {x ∈ Zd; Φx > h} also contains an infinite connected and transient component
for h 6 h1.

4) Another parameter h 6 h∗ has been introduced in [6], and a similar one has been used
in [26]. This parameter describes a strong percolative regime for E>h, when h < h, i.e.
all connected components of E>h in [−R,R]d with diameter at least R

10
are connected in

[−2R, 2R]d with large enough probability when R goes to ∞. It has been proved that
h > −∞ and it is believed that actually h = h∗, but it is still unknown whether h > 0 or
not. Our methods may perhaps help in that regard.

Appendix: Proof of Lemma 3.2

The proof of Lemma 3.2 is very close to the proof of Proposition 1 in [15], but we need to
remove the dependence on u of the constants, and make the dependence on u of the error
term explicit instead. We will henceforth refer to [15] whenever possible, and in particular,
Lemmas 3 to 6 and 11 in [15] do not involve u at all, so we will use them without proof.
Recall ωu, the interlacement process on Zd, and ω̃u, the interlacement process on the cable
system, obtained from ωu by adding independent Brownian excursions as explained below
(2.11). We denote by Îu the set of edges traversed by at least one of the trajectories in

supp(ωu). Now observe that the event that every x and y in Ĩu ∩ [0, R)d be connected in

Ĩu ∩ [−εR, (1 + ε)R)d, which is the event of interest in (3.3), is more likely than every x

and y in Îu∩ [−1, R+ 1)d being connected in Îu∩ [−εR, (1 + ε)R)d. Thus, we only need to

show the respective statement of Lemma 3.2 for Îu instead of Ĩu, cf. Lemma A.5 below.
The idea of the proof is to show that there exists C > 1 such that for every integer

R > 1 and every x, y ∈ Iu ∩ [−R,R)d, the vertices x and y are connected through edges

in Îu ∩ [−CR,CR)d with high enough probability. It is quite hard to directly link x and

y, especially if R is large. Therefore, let us define ω
u/3
i,3 for i ∈ {1, 2, 3}, three independent

Poisson point process with the same law as ωu/3, such that ωu =
∑3

i=1 ω
u/3
i,3 . Let us call

Iu/3i,3 the set of vertices visited by at least one of the trajectories from supp(ω
u/3
i,3 ), denote

by Îu/3i,3 the set of edges traversed by at least one of the trajectories from supp(ω
u/3
i,3 ),
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and let C
u/3
i (z, R) be the set of vertices connected to z by edges in Îu/3i,3 ∩ [−R,R)d for

i ∈ {1, 2, 3} and z ∈ Zd. We are going to prove that, if x ∈ Iu/31,3 and y ∈ Iu/32,3 , then

C
u/3
1 (x,R) and C

u/3
2 (y,R) are big enough, and that one can connect these two sets by

edges in Îu/33,3 ∩ [−CR,CR)d with high probability. In particular, this will imply that x and

y are connected through edges in Îu ∩ [−CR,CR)d with high probability.

We first recall a property of the Poisson distribution (see for example (2.11) in [15]):
let N be a random variable which has Poisson distribution with parameter λ, then there
exist constants c < 1 and C > 1 independent of λ such that

P (cλ 6 N 6 Cλ) > 1− C exp (−cλ) .

For A ⊂ Zd finite let Nu
A be the number of trajectories in supp(ωu) which enter A, and

write X1, . . . , XNu
A

for the corresponding trajectories, parametrized such that Xi(0) ∈ A
and Xi(−n) /∈ A for all n > 0. Note that X1, . . . , XNu

A
depend on u and A even if this is

only implicit in the notation. Then Nu
A is a Poisson variable with parameter ucap(A) and

(A.1) PI (cucap(A) 6 Nu
A 6 Cucap(A)) > 1− C exp (−cucap(A)) .

Here, cap(A) is the capacity of the set A, i.e., the total mass of the equilibrium measure of
A. The following standard bounds will soon prove to be useful: For any A ⊂ [−R,R)d∩Zd
and R > 1,

(A.2) cap(A) 6 cap([−R,R)d) 6 CRd−2 and cap([−R,R)d) > cRd−2.

The next lemma gives a bound on the probability to connect the two sets C
u/3
1 (x,R) and

C
u/3
2 (y,R) in Îu/33 ∩ [−CR,CR)d in terms of capacity.

Lemma A.1. There exist constants c = c(d) > 0 and C = C(d) < ∞ such that for all
R > 0 and u > 0, for all subsets U and V of [−R,R)d,

PI
(
U
Îu∩[−CR,CR)d←→ V

)
> 1− C exp

(
−cR2−ducap(U)cap(V )

)
.

Proof. If there is a trajectory among (X1, . . . , XNu
U

), which hits V after 0 and before leaving

[−CR,CR)d, then U is connected to V through edges of Îu ∩ [−CR,CR)d. We can use
Lemma 11 in [15] to lower bound the probability of a trajectory to behave accordingly by
cR2−dcap(V ), and thus we infer

PI
(
U
Îu∩[−CR,CR)d←→ V

)
> 1− PI(Nu

U < cucap(U))−
(
1− cR2−dcap(V )

)cucap(U)

(A.1), (A.2)

> 1− C exp
(
−cR2−ducap(U)cap(V )

)
.
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We are now going to prove that cap
(
C
u/3
1 (x,R)

)
and cap

(
C
u/3
2 (y,R)

)
are large enough

with high probability, and in particular that they grow faster in R than R
d−2

2 . For all u > 0,
A ⊂ Zd finite and T a positive integer, we define the set Ψ(u,A, T ) by

(A.3) Ψ(u,A, T ) =

Nu
A⋃

i=1

{Xi(n), 0 6 n 6 T}.

Lemma A.2. For all ε ∈ (0, 1), k > 1 and δ > ε, there exist constants c > 0 and C <∞
such that for every u ∈ (0, u0], A ⊂ Zd finite and T a positive integer,

PI
(

cap (Ψ (u,A, T )) > c min
(
ucap(A)T

1−ε
2 , T

(d−2)(1−ε)
2

))
> 1− C exp

(
−cmin

(
T ε/2, ucap(A)

))
,

(A.4)

and, if A ⊂ B = [−kT δ, kT δ),

(A.5) PI
(

Ψ(u,A, T ) ⊂ B + [−T
1+ε

2 , T
1+ε

2 )d
)
> 1− C exp (−cT εu) .

Proof. (A.4) is a simple consequence of Lemma 6 in [15] and (A.1). In order to prove (A.5),
let us first define h(T, ε), the probability that the simple random walk on Zd beginning

in 0 leaves [−T 1+ε
2 , T

1+ε
2 )d before time T . Hoeffding’s inequality yields that h(T, ε) 6

C exp(−cT ε). Moreover, taking B = [−kT δ, kT δ),

PI
(

Ψ(u,A, T ) ⊂ B + [−T
1+ε

2 , T
1+ε

2 )d
)
> PI

(
Ψ(u,B, T ) ⊂ B + [−T

1+ε
2 , T

1+ε
2 )d

)
> 1− PI (Nu

B > Cucap(B))− Cucap(B)h(T, ε)

(A.1), (A.2)

> 1− C exp
(
−cuT (d−2)δ

)
− CuT (d−2)δ exp (−cT ε)

> 1− C exp (−cT εu) .

We now iterate this process to find the desired bound on cap (Cu(z, R)) . Consider a
sequence of independent random interlacement processes (ωk)k>1 at level u which define
an independent sequence (Ψk)k>2 such that for all k > 2, Ψk has the same law as Ψ (see

(A.3) for notation). For each z ∈ Zd, let Xz be the trajectory with the smallest label u
contained in ω1 such that Xz(0) = z. For all z ∈ Zd, u > 0 and T positive integer, we

recursively define a sequence of subsets (U
(k)
u (z, T ))k>1 of Zd by

U (1)
u (z, T ) = {Xz(n), 0 6 n 6 T},

and, for all k > 2,
U (k)
u (z, T ) = Ψk

(
u, U (k−1)

u (z, T ), T
)
.

In the next lemma, we iterate the results of Lemma A.2 to find lower bounds on the
capacity of U

(d−2)
u (z, T ) and upper bounds on the diameter of U

(d−2)
u (z, T ).
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Lemma A.3. For all ε ∈ (0, 1
3
], there exist constants c > 0 and C <∞ such that for every

u ∈ (0, u0], z ∈ Zd and positive integer T,

(A.6) PI
(
d−2⋂
k=1

{
cap

(
U (k)
u (z, T )

)
> uk−1

(
cT

1−ε
2

)k})
> 1− C exp

(
−cT ε/2u

)
and

(A.7) PI
(
d−2⋃
k=1

{
U (k)
u (z, T ) ⊆ z + [−kT

1+ε
2 , kT

1+ε
2 )d

})
> 1− C exp (−cT εu) .

Proof. Let us introduce the shorthand U
(k)
u = U

(k)
u (z, T ), and note that, albeit only im-

plicitly, U
(k)
u depends on z and T . We first prove (A.6). For u0c 6 1, using recursion, the

event in (A.6) is implied by the event

{
cap

(
U (1)
u

)
> cT

1−ε
2

}
∩
d−2⋂
k=2

{
cap

(
U (k)
u

)
> cmin

(
ucap

(
U (k−1)
u

)
T

1−ε
2 , T

(d−2)(1−ε)
2

)}
.

Lemma 6 in [15] tells us that

PI
(

cap
(
U (1)
u

)
> cT

1−ε
2

)
> 1− C exp

(
−cT ε/2

)
> 1− C exp

(
−cT ε/2u

)
.

We only need to prove (A.6) if cT ε/2u > 1, and then cT
1−ε

2 u > T ε/2 and (A.4) gives that
for all 1 6 k 6 d− 3,

PI
(

cap
(
U (k+1)
u

)
> cmin

(
ucap

(
U (k)
u

)
T

1−ε
2 , T

(d−2)(1−ε)
2

) ∣∣∣∣ cap
(
U (k)
u

)
> uk−1

(
cT

1−ε
2

)k)
>1− C exp

(
−cmin

(
T ε/2,

(
cT

1−ε
2 u
)k))

> 1− C exp
(
−cT ε/2u

)
.

The proof of (A.7) is simpler: we only need to use the fact that h(T, ε) 6 C exp(−cT ε)
for k = 1 (see the proof of Lemma A.2 for the definition of h(T, ε)), and then proceed by
induction with (A.5) for k > 2.

Corollary A.4. For all ε ∈ (0, 1
2
], there exist constants c > 0 and C < ∞ such that for

every u ∈ (0, u0], z ∈ Zd and R > 0,

PI
(
z ∈ Iu, cap(Cu(z,R)) < cR(1−ε)(d−2)ud−3

)
6 C exp

(
−cRε/2u

)
,

where Cu(z, R) is the set of vertices connected to z by edges in Îu ∩ [−R,R)d.

Proof. For all ũ ∈ (0, u0], let ω(d−2)ũ :=
∑d−2

i=1 ω
ũ
i , where (ωũi )i>1 are the independent

random interlacement processes at level ũ used in the definition of
(
U

(k)
ũ (. , .)

)
k>1

, see above
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Lemma A.3. Furthermore, let I ũ1 be the random interlacement set associated with ωũ1 and
I(d−2)ũ the random interlacement set associated with ω(d−2)ũ. By definition, ω(d−2)ũ has
the law of a random interlacement process at level (d− 2)ũ, and if z ∈ I ũ1 then U

(k)
ũ (z, T )

is a connected subset of I(d−2)ũ for all k ∈ {1, . . . , d− 2}, z ∈ Zd and positive integer T.
In particular, if z ∈ I ũ1 and if the event in (A.7) occurs with ε in that formula taking the
value of some δ ∈ (0, 1

3
), then

U
(d−2)
ũ (z, T ) ⊂ C(d−2)ũ

(
z, (d− 2)T

1+δ
2

)
.

Using Lemma A.3 we obtain, for all δ ∈ (0, 1
3
), ũ ∈ (0, u0], z ∈ Zd and positive integer T ,

PI
(
z ∈ I ũ1 , cap

(
C(d−2)ũ(z, (d− 2)T

1+δ
2 )
)
< cT

(1−δ)(d−2)
2 ũd−3

)
6 C exp

(
−cT δ/2ũ

)
.

The result follows by taking ũ = u
d−2

, T =
⌊(

R
d−2

)2−ε
⌋

and δ = ε
2−ε .

We now have all the tools required to connect x, y ∈ Iu ∩ [−R,R)d through edges in

Îu ∩ [−CR,CR)d, as mentioned at the beginning of the Appendix.

Lemma A.5. There exist constants c > 0 and C < ∞ such that for every u ∈ (0, u0],
R > 0 and x, y ∈ [−R,R)d,

PI
(
x, y ∈ Iu,

{
x
Îu∩[−CR,CR)d←→ y

}c)
6 C exp

(
−cR1/6u

)
.

Proof. Using the notation introduced at the beginning of the Appendix, we have

PI
(
x, y ∈ Iu,

{
x
Îu∩[−CR,CR)d←→ y

}c)
6

3∑
i,j=1

PI
(
x ∈ Iu/3i,3 , y ∈ I

u/3
j,3 ,

{
x
Îu∩[−CR,CR)d←→ y

}c)
.

Let us now fix i, j ∈ {1, 2, 3} and let k ∈ {1, 2, 3} be different from i and j. We define the
events

E1 =
{

cap
(
C
u/3
i (x,R)

)
> CR

2(d−2)
3 ud−3

}
, E2 =

{
cap

(
C
u/3
j (y,R)

)
> CR

2(d−2)
3 ud−3

}
,

and note that E1 ⊂ {x ∈ Iu/3i,3 } and E2 ⊂ {y ∈ Iu/3j,3 }. Thus,

PI
(
x ∈ Iu/3i,3 , y ∈ I

u/3
j,3 ,

{
x
Îu∩[−CR,CR)d←→ y

}c)
6 PI

(
(E1 ∩ E2) \

{
Cu
i (x)

Îu/3k,3 ∩[−CR,CR)d

←→ Cu
j (y)

})
+ PI

(
{x ∈ Iu/3i,3 } \ E1

)
+ PI

(
{y ∈ Iu/3j,3 } \ E2

)
.

(A.8)
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For uR1/6 > 1, we can now use Lemma A.1 to bound the first summand of (A.8) as

PI
(

(E1 ∩ E2) \

{
Cu
i (x)

Îu/3k,3 ∩[−CR,CR)d

←→ Cu
j (y)

})
6 C exp

(
−cR2−du×R

4(d−2)
3 u2(d−3)

)
6 C exp

(
−cR1/6u

)
.

The second summand of (A.8) can also be bounded using Corollary A.4 with ε = 1
3
, and

the result follows.

We now come to the

Proof of Lemma 3.2. Lemma 3.2 is a simple consequence of Lemma A.5. Indeed, let us
define R′ = bεR/2Cc with C as in Lemma A.5, and we can assume without loss of generality
that εR > 2C. We define for each z ∈ Zd the events

A(1)
z =

{
Iu ∩

(
z + [−R′, R′)d

)
6= ∅
}

and A(2)
z =

⋂
x,y∈Iu∩(z+[−2R′,2R′)d)

{
x
Îu∩z+[−εR,εR)d←→ y

}
.

Note that these events depend on our choice of u and R even if it does not appear in the
notation. It follows from the definition of random interlacements, (A.2) and Lemma A.5
that

PI
(
A(1)
z

)
> 1− exp

(
−cRd−2u

)
and PI

(
A(2)
z

)
> 1− CR2d exp

(
−cR1/6u

)
.

In particular we get that

PI
( ⋂
z∈[0,R)d∩Zd

A(1)
z ∩ A(2)

z

)
> 1− CR3d exp

(
−cR1/6u

)
> 1− C exp

(
−cR1/7u

)
.

Let us call A the event on the left-hand side in the previous line, and suppose that A
occurs. Then, for all x, y ∈ Iu ∩ [0, R)d, one can find a path of nearest neighbors between
x and y in [0, R)d. Moreover, if z and z′ are two neighbors in [0, R)d, then (z+[−R′, R′)d)∪
(z′ + [−R′, R′)d) ⊂ z + [−2R′, 2R′)d, so every vertex in

(A.9) Iu ∩ (z + [−R′, R′)d) is connected to every vertex in Iu ∩ (z + [−R′, R′)d)

by a path of edges in Îu∩(z+[−εR, εR)d) ⊂ Îu∩[−εR, (1+ε)R)d, and the sets in (A.9) are
not empty. This tells us that if A occurs, then every x, y ∈ Iu ∩ [0, R)d can be connected

by edges in Îu ∩ [−εR, (1 + ε)R)d, and thus A implies the event on the left-hand side of
(3.2).
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2012.

[26] Alain-Sol Sznitman. Disconnection and level-set percolation for the Gaussian free
field. J. Math. Soc. Japan, 67(4):1801–1843, 2015.

[27] Alain-Sol Sznitman. Coupling and an application to level-set percolation of the Gaus-
sian free field. Electron. J. Probab., 21:Paper No. 35, 26, 2016.

36


