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Abstract

For a large class of amenable transient weighted graphs G, we prove that the sign clus-
ters of the Gaussian free field on G fall into a regime of strong supercriticality, in which
two infinite sign clusters dominate (one for each sign), and finite sign clusters are nec-
essarily tiny, with overwhelming probability. Examples of graphs belonging to this class
include regular lattices such as Zd, for d ≥ 3, but also more intricate geometries, such
as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases
in which random walks exhibit anomalous diffusive behavior, for instance various fractal
graphs. As a consequence, we also show that the vacant set of random interlacements
on these objects, introduced by Sznitman in Ann. Math., 171(3):2039–2087, 2010, and
which is intimately linked to the free field, contains an infinite connected component at
small intensities. In particular, this result settles an open problem from Invent. Math.,
187(3):645–706, 2012.
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1 Introduction

This article rigorously investigates the phenomenon of phase coexistence which is associated to
the geometry of certain random fields in their supercritical phase, characterized by the presence
of strong, slowly decaying correlations. Our aim is to prove the existence of such a regime, and to
describe the random geometry arising from the competing influences between two supercritical
phases. The leitmotiv of this work is to study the sign clusters of the Gaussian free field in
“high dimensions” (transient for the random walk), which offer a framework that is analytically
tractable and has a rich algebraic structure, but questions of this flavor have emerged in various
contexts, involving fields with similar large-scale behavior. One such instance is the model of
random interlacements, introduced in [55] and also studied in this article, which relates to the
broad question of how random walks tend to create interfaces in high dimension, see e.g. [53],
[54], and also [66], [69]. Another case in point (not studied in this article) is the nodal domain
of a monochromatic random wave, e.g. a randomized Laplace eigenfunction on the n-sphere Sn,
at high frequency, which appears to display supercritical behavior when n ≥ 3, see [49].

As a snapshot of the first of our main results, Theorem 1.1 below gives an essentially complete
picture of the sign cluster geometry of the Gaussian free field Φ (see (1.5) for its definition) on
a large class of transient graphs G. It can be informally summarized as follows. Under suitable
assumptions on G, which hold e.g. when G = Zd, d ≥ 3 –but see (1.4) below for further
examples, which hopefully convey the breadth of our setup–,

there exist exactly two infinite sign clusters of Φ, one for
each sign, which “consume all the ambient space,” up to
(stretched) exponentially small finite islands of +/− signs;

(1.1)

see Theorem 1.1 for the corresponding precise statement. In fact, we will show that this regime
of phase coexistence persists for level sets above small enough height h = ε > 0. It is worth
emphasizing that (1.1) really comprises two distinct features, namely (i) the presence of un-
bounded sign clusters, which is an existence result, and (ii) their ubiquity, which is structural
and forces bounded connected components to be very small. Our results further indicate a
certain universality of this phenomenon, as the class of transient graphs G for which we can
establish (1.1) includes possibly fractal geometries, see the examples (1.4) below, where random
walks typically experience slowdown due to the presence of “traps at every scale,” see e.g. [6],
[24], [25] and the monograph [4].

As it turns out, the phase coexistence regime for sign(Φ) described by (1.1) is also related
to the existence of a supercritical phase for the vacant set of random interlacements; cf. [55]
and below (1.15) for a precise definition. This is due to a certain algebraic relation linking
Φ and the interlacements, see [58], [33], [61], whose origins can be traced back to early work
in constructive field theory, see [51], and also [13], [20], and which will be a recurrent theme
throughout this work. Interestingly, the arguments leading to the phase coexistence described
in (1.1), paired with the symmetry of Φ, allow us to embed (in distribution) a large part of the
interlacement set inside its complement, the vacant set, at small levels. As a consequence, we
deduce the existence of a supercritical regime of the latter by appealing to the good connectivity
properties of the former, for all graphs G belonging to our class. We will soon return to these
matters and explain them in due detail. For the time being, we note that these insights yield
the answer to an important open question from [57], see the final Remark 5.6(2) therein and
our second main result, Theorem 1.2 below.

We now describe our results more precisely, and refer to Section 2 for the details of our
setup. We consider an infinite, connected, locally finite graph G endowed with a positive
and symmetric weight function λ on the edges. To the data (G,λ), we associate a canonical

1



discrete-time random walk, which is the Markov chain with transition probabilities given by
px,y = λx,y/λx, where λx =

∑
y∈G λx,y. It is characterized by the generator

(1.2) Lf(x) =
1

λx

∑
y∈G

λx,y(f(y)− f(x)), for x ∈ G,

for f : G → R with finite support. We assume that the transition probabilities of this walk
are uniformly bounded from below, see (p0) in Section 2, and writing g(x, y), x, y ∈ G, for the
corresponding Green density, see (2.4) below, that

there exist parameters α and β with 2 ≤ β < α

such that, for some distance function d(·, ·) on G,

λ(B(x, L)) � Lα and g(x, y) � (d(x, y) ∨ 1)−(α−β), for x, y ∈ G,
(1.3)

where � means that the quotient is uniformly bounded from above and below by positive
constants, B(x, L) is the closed ball of radius L in the metric d(·, ·) and λ(A) =

∑
x∈A λx is

the measure of A ⊂ G, see (Vα) and (Gβ) in Section 2 for the precise formulation of (1.3). The
exponent β in (1.3) reflects the diffusive (when β = 2) or sub-diffusive (when β > 2) behavior
of the walk on G, cf. Proposition 3.3 below. Note that the condition on g(·, ·) in (1.3) implies
in particular that G is transient for the walk. For more background on why condition (1.3) is
natural, we refer to [24], [25] as well as Remarks 2.2 and 3.4 below regarding its relation to heat
kernel estimates. As will further become apparent in Section 3, see in particular Proposition
3.5 and Corollary 3.9, choosing d to be the graph distance on G is not necessarily a canonical
choice, for instance when G has a product structure.

Apart from (p0), (Vα) and (Gβ), we will often make one additional geometric assumption
(WSI) on G, introduced in Section 2. Roughly speaking, this hypothesis ensures a (weak)
sectional isoperimetry of various large subsets of G, which allows for certain contour arguments.
Rather than explaining this in more detail, we single out the following representative examples
of graphs, which satisfy all four aforementioned assumptions (p0), (Vα), (Gβ) and (WSI), cf.
Corollary 3.9 below:

G1 = Zd, with d ≥ 3,

G2 = G′ × Z, with G′ the discrete skeleton of the Sierpinski gasket,
G3 = the standard d-dimensional graphical Sierpinski carpet for d ≥ 3,

G4 =
a Cayley graph of a finitely generated group Γ = 〈S〉 with S = S−1

having polynomial volume growth of order α > 2

(1.4)

(see e.g. [6], pp.6–7 for definitions of G′ and G3, the latter corresponds to V (d) in the notation
of [6]), all endowed with unit weights and a suitable distance function d (see Remark 2.1 and
Section 3). The graph G2 is a benchmark case for various aspects of [57], to which we will
return in Theorem 1.2 below. The case G3 underlines the fact that even in the fractal context a
product structure is not necessarily required. The case G4 subsumes G1 of course, which is but
a starting point for the current article, and it contains many interesting examples, for instance
the (2n+ 1)-dimensional Heisenberg group H2n+1(Z), for n = 1, 2, . . .

The fact that (WSI) holds in casesG2, G3 andG4 is not evident, and will follow by expanding
on results of [68], see Section 3. In the case of G4, (WSI) crucially relies on Gromov’s deep
structural result [27]. The reader may choose to focus on (1.4), or even G1, for the purpose of
this introduction.

Our first main result deals with the Gaussian free field Φ on the weighted graph (G,λ). Its
canonical law PG is the unique probability measure on RG such that (Φx)x∈G is a mean zero
Gaussian field with covariance function

(1.5) EG[ΦxΦy] = g(x, y), for any x, y ∈ G.
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Figure 1: A graph of the form G2 = G′ × Z, with G′ the discrete Sierpinski gasket.

On account of (1.3), Φ exhibits (strong) algebraically decaying correlations with respect to the
distance d, captured by the exponent

(1.6) ν
def.
= α− β (> 0).

We study the geometry of Φ in terms of its level sets

(1.7) E≥h
def.
= {y ∈ G; Φx ≥ h}, h ∈ R.

The random set E≥h decomposes into connected components, also referred to as clusters: two
points belong to the same cluster of E≥h if they can be joined by a path of edges whose endpoints
all lie inside E≥h. Finite clusters are sometimes called islands.

As h varies, the onset of a supercritical phase in E≥h is characterized by a critical parameter
h∗ = h∗(G), which records the emergence of infinite clusters,

(1.8) h∗
def.
= inf

{
h ∈ R; PG

(
there exists an infinite cluster in E≥h

)
= 0
}

(with the convention inf ∅ = ∞). The existence of a nontrivial phase transition, i.e., the
statement −∞ < h∗ <∞, was initially investigated in [12], and even in the case G = G1 = Zd
with d ≥ 3, has only been completely resolved recently in [47]. It was further shown in Corollary
2 of [12] that h∗ ≥ 0 on Zd, and this proof can actually be adapted to any locally finite transient
and connected weighted graph, see the Appendix of [1], or [33] for a different proof.

Of particular interest are the connected components of E≥0. The symmetry of Φ implies that
E≥0 and its complement in G have the same distribution. The connected components of E≥0

and its complement are referred to as the positive and negative sign clusters of Φ, respectively.
It is an important problem to understand if these sign clusters fall into a supercritical regime
(below h∗), and, if so, what the resulting sign cluster geometry of Φ looks like. In order to
formulate our results precisely, we introduce a critical parameter h characterizing a regime of
local uniqueness for E>h, whose distinctive features (1.10) and (1.11) below reflect (i) and (ii)
in the discussion following (1.1). Namely,

(1.9) h = sup{h ∈ R; Φ strongly percolates above level h′ for all h′ < h},

with the convention sup ∅ = −∞, where the Gaussian free field Φ is said to strongly percolate
above level h if there exist constants c(h) > 0 and C(h) <∞ such that for all x ∈ G and L > 1,

(1.10) PG
(
E>h ∩B(x, L) has no connected component with diameter at least

L

5

)
≤ Ce−Lc

and

(1.11) PG
 there exist connected components of E>h ∩B(x, L)

with diameter at least L
10 which are not connected

in E>h ∩B(x, 2C10L)

 ≤ Ce−Lc
3



(the constant C10 is defined in (3.4) below). With the help of (1.10), (1.11) and a Borel-Cantelli
argument, one can easily patch up large clusters in E≥h ∩ B(x, 2k) for k ≥ 0 and fixed x ∈ G
when h < h to deduce that h ≤ h∗. One also readily argues that for all h < h, there is a unique
infinite cluster in E≥h, as explained in (2.12) below.

We will prove the following result, which makes (1.1) precise. For reference, conditions (p0),
(Vα), (Gβ) and (WSI) appearing in (1.13) are defined in Section 2. All but (p0) depend on the
choice of metric d on G. Following (1.3), in assuming that conditions (Vα), (Gβ) and (WSI) are
met in various statements below, we understand that

(Vα), (Gβ) and (WSI) hold with respect to some distance function
d(·, ·) on G, for some values of α and β satisfying α > 2 and β ∈ [2, α).

(1.12)

Theorem 1.1.

If (p0), (Vα), (Gβ) and (WSI) hold, then h > 0.(1.13)

The proof of Theorem 1.1 is given in Section 9. For a list of pertinent examples, see (1.4) and
Section 3, notably Corollary 3.9 below, which implies that all conditions appearing in (1.13)
hold true for the graphs listed in (1.4). Some progress in the direction of Theorem 1.1 was
obtained in the recent work [16] by the authors, where it was shown that h∗(Zd) > 0 for all
d ≥ 3. Combining this with the sharpness result [19], which was initially released a couple of
years after the first version of this article, one can deduce Theorem 1.1 on Zd, d ≥ 3, but not
on other graphs satisfying (1.12). The sole existence of an infinite sign cluster without proof of
(1.11) at small enough h ≥ 0 can be obtained under slightly weaker assumptions, see condition
(W̃SI) in Remark 8.5 and Theorem 9.3 below. As an immediate consequence of (1.10), (1.11)
and (1.13), we note that for all h < h̄, and in particular when h = 0, denoting by C h(x) the
cluster of x in E≥h,

(1.14) PG
(
L ≤ diam

(
C h(x)

)
<∞

)
≤ Ce−Lc .

The parameter h, or a slight modification of it, see Remark 9.4, 1) below, has already appeared
when G = Zd in [18], [60], [41], [48], [10] and [14] to test various geometric properties of the
percolation cluster in E>h in the regime h < h; note that h > −∞ is known to hold on Zd
as a consequence of Theorem 2.7 in [18], thus making these results not vacuously true, but
little is known about h otherwise. These findings can now be combined with Theorem 1.1. For
instance, as a consequence of (1.13) and Theorem 1.1 in [41], when G = Zd, denoting by C +

∞
the infinite +-sign cluster,

PG-a.s., conditionally on starting in C +
∞, the random walk on C +

∞

(see below (1.2) in [41] for its definition) converges weakly to a
non-degenerate Brownian motion under diffusive rescaling of space and time.

(1.15)

We refer to the above references for further results exhibiting, akin to (1.15), the “well-
behavedness” of the phase h < h, to which the sign clusters belong.

We now introduce and state our results regarding random interlacements, leading to The-
orem 1.2 below, and explain their significance. As alluded to above, cf. also the discussion
following Theorem 1.2 for further details, the interlacements, which constitute a Poisson cloud
ωu of bi-infinite random walk trajectories as in (1.2) modulo time-shift, were introduced on
Zd in [55], see also [63] and Section 2, and naturally emerge due to their deep ties to Φ. The
parameter u > 0 appears multiplicatively in the intensity measure of ωu and hence governs
how many trajectories enter the picture – the larger u, the more trajectories. The law of the
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interlacement process (ωu)u>0 is denoted by PI and the random set Iu ⊂ G, the interlacement
set at level u, is the subset of vertices of G visited by at least one trajectory in the support of
ωu. Its complement Vu = G \ Iu is called the vacant set (at level u). The process ωu is also
related to the loop-soup construction of [32], if one “closes the bi-infinite trajectories at infinity,”
as in [59].

Originally, ωu was introduced in order to investigate the local limit of the trace left by simple
random walk on large, locally transient graphs {GN ; N ≥ 1} with GN ↗ G as N →∞, when
run up to suitable timescales of the form u tN with u > 0 and tN = tN (GN ), see [9], [52], [53],
[54], [66], as well as [71] and [69]. The trajectories in the support of ωu can roughly be thought
of as corresponding to successive excursions of the random walk in suitably chosen sets, and the
timescale tN defines a Poissonian limiting regime for the occurrence of these excursions (note
that this limit is hard to establish due to the long-range dependence between the excursions
of the walk). Of particular interest in this context are the percolative properties of Vu, as
described by the critical parameter (note that Vu is decreasing in u)

(1.16) u∗
def.
= inf

{
u ≥ 0; PI(there exists an infinite connected component in Vu) = 0

}
.

This corresponds to a drastic change in the behavior of the complement of the trace of the walk
on GN , as the parameter u appearing multiplicatively in front of tN varies across u∗, provided
this threshold is non-trivial; see for instance [66] for simulations when GN = (Z/NZ)d with
tN � Nd. The finiteness of u∗, i.e. the existence of a subcritical phase for Vu, and even a phase
of stretched exponential decay for the connectivity function of Vu at large values of u, can be
obtained by adapting classical techniques, once certain decoupling inequalities are available. As
a consequence of Theorem 2.4 below, see Remark 7.2, 1) and Corollary 7.3, such a phase is
exhibited for any graph G satisfying (p0), (Vα) and (Gβ) as in (1.12).

On the contrary, the existence of a supercritical phase is much less clear in general. It was
proved in [57] that u∗ > 0 for graphs of the type G = G′ × Z, endowed with some distance d
such that (1.3) holds, see (1.8) and (1.11) in [57] (note that the exponent α from (1.3) actually
corresponds to α + β/2 in [57], see (1.9) therein). However, in this source the condition ν ≥ 1
was required, cf. (1.6), excluding for instance the case G = G2 in which ν = log 9−log 5

log 4 < 1, see
[30] and [2], as well as the case G = G3 in dimension three (which was anyway not of the type
G′ × Z), see Remark 3.10, 1). As a consequence of the following result, we settle the question
about the positivity of u∗ affirmatively under our assumptions. This solves a principal open
problem from [57], see Remark 5.6(2) therein, and implies the existence of a phase transition
for the percolation of the vacant set Vu of random interlacements on such graphs. We remind
the reader of the convention (1.12) regarding conditions (Vα), (Gβ) and (WSI), which is in force
in the following:

Theorem 1.2. Suppose G satisfies (p0), (Vα), (Gβ) and (WSI). Then there exists ũ > 0 and
for every u ∈ (0, ũ], a probability space (Ωu,Fu, Qu) governing three random subsets I, V and
K of G with the following properties:

i) I, resp. V, have the law of Iu, resp. Vu, under PI .
ii) K is independent of I.
iii) Qu-a.s., I ∩ K contains an infinite cluster, and (I ∩ K) ⊂ V.

(1.17)

A fortiori, u∗ ≥ ũ(> 0).

Thus, our construction of an infinite cluster of Vu for small u > 0, and hence our resolution
of the conjecture in [57], proceeds by stochastically embedding a large part of its complement,
Iu ∩K inside Vu. The law of the set K can be given explicitly, see Remark 9.4, 2), and K could
also be chosen independent of V instead of I, see Remark 9.4, 3).
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Let us now elaborate shortly on the important case G = G′ × Z considered in [57]. In this
setting, the conclusions of Theorem 1.2 hold under the mere assumptions that (p0) holds and G′

satisfies the upper and lower heat kernel estimates (UHK(α, β)) and (LHK(α, β)), see Remark
2.2, with respect to d = dG′ , the graph distance on G′, for some α > 1 and β ∈ [2, 1 + α);
for instance, if G = G2 from (1.4), then α = log 3

log 2 and β = log 5
log 2 , see [7, 30]. This (and more)

will follow from Propositions 3.5 and 3.7 below; see also Remark 3.10 for further examples.
Incidentally, let us note that Theorem 1.2 is also expected to provide further insights into the
disconnection of cylinders GN × Z by a simple random walk trace, for GN a large finite graph,
for instance when GN is a ball of radius N in the discrete skeleton of the Sierpinski gasket
(corresponding to G2 of (1.4)), cf. Remark 5.1 in [52].

Theorem 1.2 is true on more general product graphs G = G′ × G′′, see Section 3, but in
fact also on graphs which are not product graphs, such as the graphs G3 and G4 from (1.4).
Our proof still requires certain useful geometric features which are trivially true on G′ ×Z and
were crucial in [57] also. We show that in the case of graphs which are not product graphs,
these geometric features can still be derived from the general assumptions (p0), (Vα), (Gβ) and
(WSI). For instance, we show that there are no large bottlenecks in the graph, see the proof of
Lemma 6.5, which is useful to obtain certain elliptic Harnack inequalities on annuli reminiscent
of Lemma 2.3 in [57].

Since Theorem 1.2 builds on the arguments leading to Theorem 1.1, we delay further remarks
concerning (1.17) for a few lines, and first provide an overview of the proof of Theorem 1.1.

As hinted at above, a key ingredient and the starting point of the proof of Theorem 1.1 is a
certain isomorphism theorem, see [58], [33], [61] and (5.2) and Corollary 5.3 below, which links
the free field Φ to the interlacement ωu. The argument unfolds by first studying the random set
Iu, which has remarkable connectivity properties: even though its density tends to 0 as u ↓ 0,
Iu is an unbounded connected set for every u > 0. Much more is in fact true, see Section 4, in
particular Proposition 4.1 below, the set Iu is actually locally well-connected. These features
of Iu, especially for u close to 0, will figure prominently in our construction of various large
random sets, and ultimately serve as an indispensable tool to build percolating sign clusters.
Indeed, as a consequence of the aforementioned correspondence between Φ and ωu, see also
(5.4) below, one can use Iu in a first step as a system of “highways” to produce connections
inside E≥−h, for every h =

√
2u > 0.

A substantial part of these connections persists to exist in Ẽ≥−h (h > 0), the level sets of
the free field ϕ̃ on a continuous extension G̃ of the graph, the associated cable system. This
object, to which all above processes can naturally be extended, goes back at least to [8] and
is obtained by replacing the edges between vertices by one-dimensional cables. This result,
which quantifies and strengthens the early insight h∗(Zd) ≥ 0 of [12] – deduced therein by a
soft but indirect and general argument – is in fact sharp on the cables, see Theorem 9.5 below.
Importantly, the recent result of [61], which can be applied in our framework, see Corollary 5.3,
further allows to formulate a condition in terms of an (auxiliary) Gaussian free field γ̃ appearing
in the isomorphism and Ĩu, the continuous interlacement, for points in Ẽ≥−h to “rapidly” (i.e.
at scale L0 in the renormalization argument detailed in the next paragraph) connect to the
interlacement Ĩu=h2/2. Following ideas from our precursor work [16], we can then rely on a
certain robustness property exhibited on the cables to pass from Ẽ≥−h to E≥+h by means of
a suitable coupling, which operates independently at any given vertex when certain favorable
conditions are met. These conditions in turn become typical as u → 0+, see Lemma 5.5 and
Proposition 5.6.

The previous observations can be combined into a set of good features, assembled in Defi-
nition 7.4 below, which are both increasingly likely as L0 → ∞ and entirely local, in that all
properties constituting a good vertex x ∈ G are phrased in terms of the various fields inside
balls of radius ≈ L0 in the distance d around x. This notion can then be used as the starting
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point of a renormalization argument, presented in Sections 7 and 8, to show that good regions
form large connected components. Importantly, with a view towards (1.10) and (1.11), good
regions need not only to form but do so everywhere inside of G. This comes under the proviso
of (WSI) as a feature of the renormalization scheme, which ensures that subsets of G having
large diameter are typically connected by paths of good vertices, see Lemmas 8.6 and 8.7 be-
low. Using additional randomness, the connection by paths of good vertices is turned into a
connection by paths in E≥h, and this completes the proof of Theorem 1.1, see Section 9.

A renormalization of the parameters involved in the scheme is necessary due to the presence
of the strong correlations, and it relies on suitable decoupling inequalities, see Theorem 2.4
below. At the level of generality considered here, namely assuming only (p0), (Vα), (Gβ),
and particularly in the case of Iu, see (2.21), these inequalities generalize results of [57] and
are interesting in their own right. At the technical level, they are eventually obtained from
the soft local time technique introduced in [39] and developed therein on Zd. The difficulty
stems from having to control the resulting error term, which is key in obtaining (2.21). This
control ultimately rests on chaining arguments and a suitable elliptic Harnack inequality, see in
particular Lemmas 6.5 and 6.7, which provides good bounds if certain sets of interest do not get
too close (note that, due to their Euclidean nature, the arguments leading to the precise controls
of [39] valid even at short distances seem out of reach within the current setup). Fortunately,
this is good enough for the purposes we have in mind.

The proof of Theorem 1.2 then proceeds by using the results leading to Theorem 1.1 and
adding one more application of the coupling provided in Corollary 5.3. Indeed, the above steps
essentially allow to roughly translate the probabilities in (1.10) and (1.11) regarding E≥h, for
h > 0 in terms of the interlacement Iu, for u = h2/2 and some “noise”, see Lemma 8.4 and
(the proof of) Lemma 8.7, but E≥h is in turn naturally embedded into Vu, see (5.4). Following
how the percolative regime for Vu is obtained, one thus starts with its complement Iu, first
passes to Φ and proves the phase coexistence regime around h = 0 asserted in Theorem 1.1,
and then translates back to Vu. The existence of the phase coexistence regime along with the
symmetry of Φ is then ultimately responsible for producing the inclusion iii) in (1.17). The set
K appearing there morally corresponds to all the undesired noise produced by bad regions in
the argument leading to Theorem 1.1. It would be interesting to devise a direct argument for
u∗ > 0 which by-passes the use of Φ. We are currently unable to do so, except when ν > 1, in
which case the reasoning of [57] can be adapted, see Remark 7.2, 2). We refer to Remark 9.4,
5)–8) for further open questions.

We now describe how this article is organized. Section 2 introduces the precise framework,
the processes of interest and, importantly, the conditions (p0), (Vα), (Gβ) and (WSI) appearing
in our main results. We then collect some first consequences of this setup. The decoupling
inequalities mentioned above are stated in Theorem 2.4 at the end of that section.

Section 3 has two main purposes. After gathering some preliminary tools from harmonic
analysis (for the operator L in (1.2)), which are used throughout, we first discuss in Proposi-
tion 3.5 how (Vα), (Gβ) are obtained for product graphs of the form G = G′ × G′′, when the
factors satisfy suitable heat kernel estimates. This has important applications, notably to the
graph G = G2 in (1.4), and requires that we work with general distances d in conditions (Vα),
(Gβ). For this reason, we have also included a proof of the classical (in case d = dG, the graph
distance) estimates of Proposition 3.3 in the appendix. The second main result of Section 3 is
to deduce in Corollary 3.9 that the relevant conditions (p0), (Vα), (Gβ) and (WSI) appearing
in Theorems 1.1 and 1.2 apply in all cases of (1.4). In addition to Proposition 3.5, this requires
proving (WSI) and dealing with boundary connectivity properties of connected sets, which is
the object of Proposition 3.7.

Section 4 collects the local connectivity properties of the continuous interlacement set Ĩu,
see Proposition 4.1 and Corollary 4.2. The overall strategy is similar to what was done in [43]
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on Zd, see also [16], to which we frequently refer. The proof of Proposition 4.1 could be omitted
on first reading.

Section 5 is centered around the isomorphism on the cables. The main takeaway for later
purposes is Corollary 5.3, see also Remark 5.4, which asserts that the coupling of Theorem
2.4 in [61] can be constructed in our framework. This requires that certain conditions be
met, which are shown in Lemma 5.1 and Proposition 5.2. The latter also yields the desired
inclusion (5.4). The generic absence of ergodicity makes the verification of these properties
somewhat cumbersome. Lemma 5.5 contains the adaptation of the sign-flipping argument from
[16], from which certain desirable couplings needed later on in the renormalization are derived
in Proposition 5.6. Section 5 closes with a more detailed overview over the last four sections,
leading to the proofs of our main results.

Section 6 is devoted to the proof of Theorem 2.4, which contains the decoupling inequalities.
While the free field can readily be dispensed with by adapting results of [38], the interlacements
are more difficult to deal with. We apply the soft local times technique from [39]. All the
work lies in controlling a corresponding error term, see Lemma 6.6. The regularity estimates
for hitting probabilities needed in this context, see the proof of Lemma 6.7, rely on Harnack’s
inequality, see Lemma 6.5 for a tailored version.

Section 7 introduces the renormalization scheme needed to put together the ingredients of
the proof, which uses the decoupling inequalities of Theorem 2.4. The important Definition
7.4 of good vertices appears at the end of that section, and Lemma 7.6 collects the features of
good long paths, which are later relied upon. The good properties appearing in this context
are expressed in terms of (an extension of) the coupling from Corollary 5.3.

Section 8 takes advantage of the renormalisation scheme introduced in Section 7 to create
a giant and ubiquitous cluster of good vertices, and of random interlacements with suitable
properties. Proposition 8.3 first yields the desired estimate that long paths of bad vertices are
very unlikely, for suitable choices of the parameters. Lemmas 8.4 and 8.7 provide precursor
estimates to (1.10) and (1.11), which are naturally associated to our notion of goodness. In
particular, Lemma 8.7 directly implies that h ≥ 0 as a first step toward Theorem 1.1, see
Corollary 8.8. An important technical step with regards to Lemma 8.7 is Lemma 8.6, which
asserts that large sets in diameter are typically connected by a path of good vertices.

The pieces are put together in Section 9, and the proofs of Theorems 1.1 and 1.2 appear
towards the end of this last section. Proposition 5.6 exhibits the coupling transforming (for
instance) giant good regions from Lemma 8.7 into giant subsets of E≥h, h > 0, see Lemma
9.2, from which (1.10) and (1.11) are eventually inferred. Finally, Section 9 also contains the
simpler existence result, Theorem 9.3, alluded to above, which can be obtained under a slightly
weaker condition (W̃SI), introduced in Remark 8.5.

We conclude this introduction with our convention regarding constants. In the rest of this
article, we denote by c, c′, . . . and C,C ′, . . . positive constants changing from place to place.
Numbered constants c0, C0, c1, C1, . . . are fixed when they first appear and do so in increasing
numerical order. All constants may depend implicitly “on the graph G” through conditions (p0),
(Vα) and (Gβ) below, in particular they may depend on α and β. Their dependence on any
other quantity will be made explicit.

For the reader’s orientation, we emphasize that the conditions (p0), (Vα), (Gβ) and (WSI),
which will be frequently referred to, are all introduced in Section 2. We seize this opportunity
to highlight the set of assumptions (3.1) on (G,λ) appearing at the beginning of Section 3,
which will be in force from then on until the end.
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2 Basic setup and first properties

In this section, we introduce the precise framework alluded to in the introduction, formulate
the assumptions appearing in Theorems 1.1 and 1.2, and collect some of the basic geometric
features of our setup. We also recall the definitions and several useful facts concerning the two
protagonists, random interlacements and the Gaussian free field on G, as well as their counter-
parts on the cable system. We then state in Theorem 2.4 the relevant decoupling inequalities
for both interlacements and the free field, which will be proved in Section 6.

Let (G,E) be a countably infinite, locally finite and connected graph with vertex set G and
(unoriented) edge set E ⊂ G×G. We will often tacitly identify the graph (G,E) with its vertex
set G. We write x ∼ y, or y ∼ x, if {x, y} ∈ E, i.e., if x and y are connected by an edge in G.
Such vertices x and y will be called neighbors. We also say that two edges in E are neighbors if
they have a common vertex. A path is a sequence of neighboring vertices in G, finite or infinite.
For A ⊂ G, we set Ac = G \A, we write ∂A = {y ∈ A; ∃ z ∈ Ac, z ∼ y} for its inner boundary,
and define the external boundary of A by

(2.1) ∂extA
def.
= {y ∈ Ac; ∃ an unbounded path in Ac beginning in y and ∃ z ∈ A, z ∼ y}

We write x↔ y in A (or x A←→ y in short) if there exists a nearest-neighbor path in A containing
x and y, and we say that A is connected if x A←→ y for any x, y ∈ A. For all A1 ⊂ A2 ⊂ G, we
write A1 ⊂⊂ A2 to express that A1 is a finite subset of A2. We endow G with a non-negative
and symmetric weight function λ = (λx,y)x,y∈G, such that λx,y ≥ 0 for all x, y ∈ G and λx,y > 0
if and only if {x, y} ∈ E. We define the weight of a vertex x ∈ G and of a set A ⊂ G by
λx =

∑
y∼x λx,y and λ(A) =

∑
x∈A λx. We often regard {λx : x ∈ G} as a positive measure on

G endowed with its power set σ-algebra in the sequel.
To the weighted graph (G,λ), we associate the discrete-time Markov chain with transition

probabilities

(2.2) px,y
def.
=

λx,y
λx

, for x, y ∈ G.

We write Px, x ∈ G, for the canonical law of this chain started at x, and Z = (Zn)n≥0 for the
corresponding canonical coordinates. For a finite measure µ on G, we also set

(2.3) Pµ
def.
=
∑
x∈G

µ(x)Px.

Our assumptions, see in particular (Gβ) below, will ensure that Z is in fact transient. We
assume that G has controlled weights, i.e., there exists a constant c0 such that

(p0) px,y ≥ c0 for all x ∼ y ∈ G.

Note that (p0) implies that each x ∈ G has at most b1/c0c neighbors, so G has uniformly
bounded degree.

We introduce the symmetric Green function associated to Z,

(2.4) g(x, y)
def.
=

1

λy
Ex

[ ∞∑
k=0

1{Zk=y}

]
for all x, y ∈ G.

For A ⊂ G, we let TA
def.
= inf{k ≥ 0; Zk /∈ A}, the first exit time of A and HA

def.
= TAc = inf{k ≥

0; Zk ∈ A} the first entrance time in A, and introduce the killed Green function

(2.5) gA(x, y)
def.
=

1

λy
Ex

[ TA−1∑
k=0

1{Zk=y}

]
for all x, y ∈ A.
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Applying the strong Markov property at time TA for A ⊂⊂ G, we obtain the relation

(2.6) Ex[g(ZTA , y)] + gA(x, y) = g(x, y), for all x, y ∈ A.

Finally, the heat kernel of Z is defined as

(2.7) pn(x, y) = λ−1
y Px(Zn = y) for all x, y ∈ G and n ∈ N.

We further assume that G is endowed with a distance function d.

Remark 2.1. A natural choice is d = dG, the graph distance on G, but this does not always
fit our needs. We will return to this point in the next section. Roughly speaking, some care is
needed due to our interest in product graphs such as G2 in (1.4), and more generally graphs of
the type G = G′ × Z as in [57]. This is related to the way by which conditions (Vα) and (Gβ)
below propagate to a product graph, especially in cases where the factors have different diffusive
scalings, see Proposition 3.5 and in particular (3.22) below. These choices of general graph and
distance generate a few technical difficulties that we will solve along the way. For instance,
balls might not be connected, but every two points in the ball can be connected within some
neighborhood of the ball in view of (3.4). Furthermore, there could be bottlenecks in the graph
which make it hard to create local connections between points, but they actually disappear
when considering large enough regions, see the proof of Lemma 6.5.

We denote by B(x, L)={y ∈ G : d(x, y) ≤ L} the closed ball of center x and radius L
for the distance d and by BE(x, L) the set of edges for which both endpoints are in B(x, L).
For all A ⊂ G we write d(A, x) = infy∈A d(y, x) for the distance between A ⊂ G and x ∈ G,
B(A,L)

def.
= {y ∈ G : d(A, y) ≤ L} is the closed L-neighborhood of A, and if A 6= ∅ we write

δ(A)
def.
= supx,y∈A d(x, y) ∈ [0,∞] for the diameter of A. Note that unless d = dG, balls in the

distance d are not necessarily connected in the sense defined below (2.1).
We now introduce two – natural, see Remark 2.2 below – assumptions on (G,λ), one geo-

metric and the other analytic. We suppose that G has regular volume growth of degree α with
respect to d, that is, there exists α > 2 and constants 0 < c1 ≤ C1 <∞ such that

(Vα) c1L
α ≤ λ

(
B(x, L)

)
≤ C1L

α, for all x ∈ G and L ≥ 1.

We also assume that the Green function g has the following decay: there exist constants 0 <
c2 ≤ C2 <∞ such that, with α as in (Vα), for some β ∈ [2, α), g satisfies

c2 ≤ g(x, x) ≤ C2 for all x ∈ G and
c2d(x, y)−ν ≤ g(x, y) ≤ C2d(x, y)−ν for all x 6= y ∈ G,

(Gβ)

where we recall that ν = α− β from (1.6). The parameter β ≥ 2 in (1.6) can be thought of as
characterizing the order of the mean exit time from balls (of radius L), which grows like Lβ as
L→∞, see Lemma A.1.

Remark 2.2 (Equivalence to heat kernel bounds). The above assumptions are very natural.
Indeed, in case d(·, ·) is the graph distance – but see Remark 2.1 above – the results of [24],
see in particular Theorem 2.1 therein, assert that, assuming (p0), the conditions (Vα) and (Gβ)
are equivalent to the following sub-Gaussian estimates on the heat kernel: for all x, y ∈ G and
n ≥ 1,

(UHK(α, β)) pn(x, y) ≤ Cn−
α
β exp

{
−
(
d(x, y)β

Cn

) 1
β−1
}
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and, if n ≥ dG(x, y) ∨ 1,

(LHK(α, β)) pn(x, y) + pn+1(x, y) ≥ cn−
α
β exp

{
−
(
d(x, y)β

cn

) 1
β−1
}
.

Many examples of graphs G for which (UHK(α, β)) and (LHK(α, β)) hold for the graph distance
are given in [30], [5] and [28], and further characterizations of these estimates can be found in
[25], [3], [7] and [4]. We will return to the consequences of (Vα), (Gβ), and their relation
to estimates of the above kind within our framework, i.e., for general distance function d, in
Section 3, cf. Proposition 3.3 and Remark 3.4 below.

We now collect some simple geometric consequences of the above setup. We seize the
opportunity to recall our convention regarding constants at the end of Section 1.

Lemma 2.3. Assume (p0), (Vα), and (Gβ) to be fulfilled. Then:

d(x, y) ≤ C3dG(x, y) for all x, y ∈ G,(2.8)

d(x, y) ≥ c3 for all x 6= y ∈ G,(2.9)

c4 ≤ λx,y ≤ λx ≤ C4 for all x ∼ y ∈ G.(2.10)

Proof. We first show (2.8). Using (p0), (Gβ), and the strong Markov property at time Hy
def.
=

H{y}, for all x ∼ y ∈ G we have

g(x, y) = Px(Hy <∞)g(y, y) ≥ px,yg(y, y) ≥ c0c2,

where px,y is the transition probability between x and y for the random walk Z, see (2.2). Thus,
one can find C3 such that

(2.11) d(x, y)
(Gβ)
≤
(
g(x, y)

C2

)− 1
ν

≤ C3 for all x ∼ y ∈ G.

For arbitrary x and y in G, we then consider a geodesic for the graph distance between x and y,
apply the triangle inequality (for d) and use (2.11) repeatedly to deduce (2.8). Similarly, for all
x 6= y ∈ G,

d(x, y)
(Gβ)
≥
(
g(x, y)

c2

)− 1
ν (Gβ)
≥
(
C2

c2

)− 1
ν def.

= c3.

We now turn to (2.10). For x ∼ y ∈ G, we have x ∈ B(x, 1) and thus, by (Vα), λx,y ≤ λx ≤
C1

def.
= C4. Moreover, g(x, x) ≥ λ−1

x by definition, and thus by (p0) and (Gβ),

λx,y ≥ c0λx ≥
c0

g(x, x)
≥ c0

C2

def.
= c4.

We now define the weak sectional isoperimetric condition alluded to in Section 1. This is an
additional condition on the geometry of G that will enter in Section 8 to guarantee that certain
“bad” regions are sizeable and thus costly in terms of probability, cf. the proofs of Lemma 8.4 and
Lemma 8.6. We say that (x1, . . . , xn) is an R-path from x to B(x,N)c if x1 = x, xn ∈ B(x,N)c,
and d(xi, xi+1) ≤ R for all i ∈ {1, . . . , n− 1}, with the additional convention that (x1) is an R-
path from x to B(x,N)c if N 6 R. The weak sectional isoperimetric condition is a condition on
the existence of a long R-path in the boundary of sets, and similar conditions have already been
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used to study Bernoulli percolation, see [40]. More precisely, this weak sectional isoperimetric
condition states that there exists R0 ≥ 1 and c5 ∈ (0, 1) such that

for each finite connected subset A of G and all x ∈ ∂extA,
there exists an R0-path from x to B(x, c5δ(A))c in ∂extA.

(WSI)

We now introduce the processes of interest. For each x ∈ G, we denote by Φx the coordinate
map on RG endowed with its canonical σ-algebra, Φx(ω) = ωx for all ω ∈ RG, and PG is
the probability measure defined in (1.5). Any process (ϕx)x∈G with law PG will be called a
Gaussian free field on G; see [50] as well as the references therein for a rigorous introduction to
the relevance of this process. Recalling the definition of the level sets E≥h of Φ in (1.7) and of
the parameter h from (1.9), we now provide a simple argument that

(2.12) for each h < h, PG-a.s., E≥h contains a unique infinite cluster.

Indeed, on the event AhL = {B(x, L/2) intersects at least two infinite clusters of E≥h}, for some
fixed x ∈ G, if L is large enough, there are at least two clusters of E≥h ∩B(x, L) with diameter
at least L/10 which are not connected in G, and thus the event in (1.11) occurs. The events AhL
are increasing toward {E≥h has at least two infinite clusters} as L goes to infinity, and thus by
(1.11) E≥h contains PG-a.s. at most one infinite cluster for all h < h, and (2.12) follows since
h 6 h∗ as explained below (1.11).

On the other hand, random interlacements on a graph G as above are defined under a
probability measure PI as a Poisson point process ω on the product space of doubly infinite
trajectories on G modulo time-shift, whose forward and backward parts escape all compact sets
in finite time, times the label space [0,∞), see [63]. For u > 0, we denote by ωu the random
interlacement process at level u, which consists of all the trajectories in ω with label at most
u. By Iu we denote the random interlacement set associated to ωu, which is the set of vertices
visited by at least one trajectory in the support of ωu, by Vu def.

= G\Iu the vacant set of random
interlacements, and by (`x,u)x∈G the field of occupation times associated to ωu, see (1.8) in [58],
which collects the total time spent in each vertex of G by the trajectories in the support of
ωu, with additional independent exponential holding times at each vertex with parameter λx,
x ∈ G. As stated in Corollary 4.2 below, if (p0), (Vα) and (Gβ) hold,

(2.13) for all u > 0, Iu is PI -a.s. an infinite connected subset of G.

For vertex-transitive G, (2.13) is in fact a consequence of Theorem 3.3 of [65], since all graphs
considered in the present paper are amenable on account of (3.16) below as well as display (14)
and thereafter in [65] (their spectral radius is equal to one).

Recall the definitions of the critical parameters h∗ and u∗ from (1.8) and (1.16), which
describe the phase transition of E≥h, the level sets of Φ (as h varies), and that of Vu (as
u varies). Note that (2.13) indicates a very different geometry of Iu and Vu as u → 0 in
comparison with independent Bernoulli percolation on G. Indeed, it is proved in [64] that for all
the graphs from (1.4), both the set of open vertices and its complement undergo a non-trivial
phase transition.

In order to derive an alternative representation of the critical parameters u∗ and h∗, we
recall that the FKG inequality was proved in Theorem 3.1 of [63] for random interlacements,
and that it also holds for the Gaussian free field on G. Indeed, it is shown in [37] for any centered
Gaussian field with non-negative covariance function on a finite space, and by conditioning on a
finite set and using a martingale convergence theorem this result can be extended to an infinite
space, see for instance the proof of Theorem 2.8 in [26]. As a consequence, for any x ∈ G, we
have that

(2.14) u∗ = inf
{
u ≥ 0; PI(the connected component of Vu containing x is infinite) = 0

}
,
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and similarly for h∗.

The proofs of Theorems 1.1 and 1.2 involve a continuous version of the graph G, its cable
system G̃, and of the various processes associated to it. We attach to each edge e = {x, y} of
G a segment Ie of length ρx,y = 1/(2λx,y), and G̃ is obtained by glueing these intervals to G
through their respective endpoints. In other words, G̃ is the metric graph where every edge e
has been replaced by an interval of length ρe. We regard G as a subset of G̃, and the elements
of G will still be called vertices. One can define on G̃ a continuous diffusion X̃, via probabilities
P̃z, z ∈ G̃, such that for all x ∈ G, the projection on G of the trajectory of X̃ under P̃x has
the same law as the discrete random walk Z on the weighted graph G under Px, and we will
often identify Z with this projection. This diffusion can be defined from its Dirichlet form or
directly constructed from the random walk Z by adding independent Brownian excursions on
the edges beginning at a vertex. We refer to Section 2 of [33] or Section 2 of [21] for a precise
definition and construction of the cable system G̃ and the diffusion X̃; see also Section 2 of [16]
for a detailed description in the case G = Zd. For all x, y ∈ G̃ we denote by g̃(x, y), x, y ∈ G̃,
the Green function associated to X̃, i.e., the density relative to the Lebesgue measure on G̃ of
the 0-potential of X̃, which agrees with g on G, as well as g̃U for an open set U ⊂ G̃, the Green
function associated to the process X̃ killed on exiting U. We also denote by HA and TA the first
hitting and exit time of a set A ⊂ G̃ for X, which exactly correspond to the notion introduced
above (2.5) when A ⊂ G.

We define for Ã ⊂ G̃ the set Ã∗ ⊂ G as the minimal set with respect to inclusion such that
Ã∗ ⊃ G ∩ Ã, and such that for all z ∈ Ã \ G, there exist x, y ∈ Ã∗ such that z ∈ I{x,y}. For
all x ∈ G and L > 0, we write B̃(x, L) for the largest subset B̃ of G̃ such that B̃∗ = B(x, L),
and for all Ã ⊂ G̃ and L > 0, we let B̃(Ã, L) denote the largest subset B̃ of G̃ such that
B̃∗ = B(Ã∗, L). Moreover, for Ã ⊂ G̃, we write

(2.15) z
∼←→ z′ in Ã,

if there exists a continuous path between z and z′ in Ã. We say that Ã is connected in G̃ if
z
∼←→ z′ in Ã for all z, z′ ∈ Ã. Similarly, for Ã1 ⊂ Ã and Ã2 ⊂ Ã, we write Ã1

∼←→ Ã2 in Ã if
there exists a continuous path between Ã1 and Ã2 in Ã.

The Gaussian free field naturally extends to the metric graph G̃: Let Φ̃z, z ∈ G̃, be the co-
ordinate functions on the space of continuous real-valued functions C(G̃,R), the latter endowed
with the σ-algebra generated by the maps Φ̃z, z ∈ G̃. Let P̃G be the probability measure on
C(G̃,R) such that, under P̃G, (Φ̃z)z∈G̃ is a centered Gaussian field with covariance function

(2.16) ẼG
[
Φ̃z1Φ̃z2

]
= g̃(z1, z2) for all z1, z2 ∈ G̃.

The existence of such a continuous process was shown in [33]. Any random variable ϕ̃ with
values in C(G̃,R) and with law P̃G will be called a Gaussian free field on G̃. Moreover, if ϕ̃ is
a Gaussian free field on G̃, then it is plain that (ϕ̃x)x∈G is a Gaussian free field on G. With a
slight abuse of notation, we will henceforth write ϕx instead of ϕ̃x when x ∈ G for emphasis.
We now recall the spatial Markov property for the Gaussian free field on G̃, see Section 1 of [61].
Let K ⊂ G̃ be a compact subset with finitely many connected components, and let U = G̃ \K
be its complement. We can decompose any Gaussian free field ϕ̃ on G̃ as

(2.17) ϕ̃ = ϕ̃U + β̃U with β̃Uz = Ẽz
[
ϕ̃
X̃TU

1{TU<∞}
]
for all z ∈ G̃,

ϕ̃U is a Gaussian free field independent of σ(ϕ̃z, z ∈ K) and with covariance function g̃U , and
in particular ϕ̃U vanishes on K.

One can also adapt the usual definition of random interlacements on G, see [63], to the
cable system G̃ as in [33], [61] and [16]. For each u > 0, one thus introduces under a probability
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measure P̃I the random interlacement process ω̃u on G̃ at level u, whose restriction to the
trajectories hitting K ⊂⊂ G, and started after their first hitting time of K, can be described
by a Poisson point process with intensity uP̃eK where eK is the usual equilibrium measure of
K ⊂⊂ G, see (3.6) below, and P̃eK is defined similarly as in (2.3) but replacing P by P̃ . One
then defines a continuous field of local times (˜̀z,u)

z∈G̃ relative to the Lebesgue measure on G̃
associated to the random interlacement process on G̃ at level u, i.e., ˜̀z,u corresponds for all
z ∈ G̃ to the density with respect to the Lebesgue measure on G̃ of the total time spent by
the random interlacement process around z. For all u > 0, the restriction (˜̀x,u)x∈G of the local
times to G coincides with the field of occupation times (`x,u)x∈G associated with the discrete
random interlacement process ωu defined above (2.13), and just like for the free field, we will
write `x,u instead of ˜̀x,u when x ∈ G. We also define for each measurable subset B̃ of G̃ and
u > 0 the family

(2.18) ˜̀
B̃,u

def.
= (˜̀z,u)

z∈B̃ ∈ C(B̃,R),

and the random interlacement set at level u by

(2.19) Ĩu = {z ∈ G̃; ˜̀z,u > 0}.

The connectivity properties of Ĩu will be studied in Section 4. In particular, as stated in
Corollary 4.2, Ĩu is P̃I -a.s. an unbounded and connected subset of G̃, and the same is true of
Iu (as a subset of G). We will elaborate on an important link between the fields ˜̀

G̃,u
and ϕ̃

from (2.16) and (2.18) in Section 5.
Finally, one of the main tools in the study of the percolative properties of the vacant set

of random interlacements and of the level sets of the Gaussian free field, and the driving force
behind the renormalization arguments of Section 8 are a certain family of correlation inequalities
on G̃, which we now state. Their common feature is a small sprinkling for the parameters u
and h, respectively, which partially compensates the absence of a BK-inequality (after van den
Berg and Kesten, see for instance [26]) caused by the presence of long-range correlations in
these models. The results below, in particular (2.21) below, are of independent interest. We
recall the notation from the paragraph preceding (2.16) and (2.18) and use C(A,R) to denote
the space of continuous functions from A to the reals, where the topology on A is generally
clear from the context. We moreover endow C(A,R) with the partial order f ≤ g if and only if
f(x) ≤ g(x) for all x ∈ A.

Theorem 2.4. Suppose G is infinite, connected and (G,λ) such that (p0), (Vα), (Gβ) hold.
Let Ã1 and Ã2 be two Borel-measurable subsets of G̃, at least one of which is bounded. Let
s = d(Ã∗1, Ã

∗
2) and r = δ(Ã∗1) ∧ δ(Ã∗2) (note that r < ∞). There exist C6 and c6 such that for

all ε ∈ (0, 1), and all measurable functions fi : C(Ãi,R)→ [0, 1], i = 1, 2, which are either both
increasing or both decreasing, if s > 0,

ẼG
[
f1

(
Φ̃|Ã1

)
f2

(
Φ̃|Ã2

)]
≤ ẼG

[
f1

(
Φ̃|Ã1

± ε
)]

ẼG
[
f2

(
Φ̃|Ã2

± ε
)]

+ C6(r + s)α exp
{
−c6ε

2sν
}
,

(2.20)

and there exist C7, C8 and c8 such that for all u > 0, ε ∈ (0, 1) and fi as above, if s ≥ C7(r∨1),

ẼI
[
f1

(˜̀
Ã1,u

)
f2

(˜̀
Ã2,u

)]
≤ ẼI

[
f1

(˜̀
Ã1,u(1±ε)

)]
ẼI
[
f2

(˜̀
Ã2,u(1±ε)

)]
+ C8(r + s)α exp

{
−c8ε

2usν
}
,

(2.21)

where the plus sign corresponds in both equations to the case where the functions fi are increasing
and the minus sign to the case where the functions fi are decreasing.
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The proof of Theorem 2.4 is deferred to Section 6. While (2.20) follows rather straightfor-
wardly from the decoupling inequality from [38] for the Gaussian free field (see also Theorem 6.2
for a strengthening of (2.20)), the proof of (2.21) is considerably more involved. It uses the soft
local times technique introduced in [39] on Zd for random interlacements, but a generalization
to the present setup requires some effort (note also that for graphs of the type G = G′×Z, one
could also use the inequalities of [57], which are proved by different means).

3 Preliminaries and examples

We now gather several aspects of potential theory for random walks on the weighted graphs
introduced in the last section. These include estimates on killed Green functions, see Lemma 3.1
below, a resulting (elliptic) Harnack inequality, bounds on the capacities of various sets, see
Lemma 3.2, and on the heat kernel, see Proposition 3.3, which will be used throughout. We
then proceed to discuss product graphs in Proposition 3.5 and, with a view towards (WSI),
connectivity properties of external boundaries in Proposition 3.7. These results are helpful
in showing how the examples from (1.4), which constitute an important class, fit within the
framework of the previous section. We conclude this section by deducing in Corollary 3.9 that
our main results, Theorems 1.1 and 1.2, apply in all cases of (1.4).

From now on,

we assume that (G,λ) is an infinite, connected, weighted graph endowed with
a distance function d that satisfies (p0), (Vα) and (Gβ)

(3.1)

(see Section 2). Throughout the remainder of this article, we always tacitly work under the
assumptions (3.1). Any additional assumption will be mentioned explicitly.

The following lemma collects an estimate similar to (Gβ) for the stopped Green function
(2.5).

Lemma 3.1. There exists a constant C9 > 1 such that, if U1 ⊂ U2 ⊂⊂ G with d(U1, U
c
2) ≥

C9(δ(U1) ∨ 1), then

c2

2
d(x, y)−ν ≤ gU2(x, y) ≤ C2d(x, y)−ν for all x 6= y ∈ U1, and

c2

2
≤ gU2(x, x) ≤ C2 for all x ∈ U1.

(3.2)

Proof. Let U1 ⊂ U2 ⊂⊂ G. The upper bound in (3.2) follows immediately from (Gβ) since
gU2(x, y) ≤ g(x, y) for all x, y ∈ G by definition. For the lower bound, using (2.6) and (Gβ), we
obtain that for all x 6= y ∈ U1,

gU2(x, y) ≥ c2d(x, y)−ν − C2Ex
[
d(ZTU2

, y)−ν
]
≥ c2d(x, y)−ν − C2d(U1, U

c
2)−ν .

Thus, choosing C9 large enough such that c2
2 ≥

C2
Cν9

, it follows that if d(U1, U
c
2) ≥ C9δ(U1) (≥

C9d(x, y)), then
gU2(x, y) ≥ c2

2
d(x, y)−ν for all x 6= y ∈ U1.

The lower bound for gU2(x, x), x ∈ U1, is obtained similarly.

Using Lemma A.2 in [56], which is an adaptation of Lemma 10.2 in [24], an important
consequence of (3.2) is the elliptic Harnack inequality in (3.3) below. For this purpose, recall
that a function f defined on U2

def.
= BG(U2, 1), the closed 1-neighborhood of U2 for the graph

distance, is called L-harmonic (or simply harmonic) in U2 if Ex[f(Z1)] = f(x), or equivalently
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Lf(x) = 0 (see (1.2)), for all x ∈ U2. The bounds of (3.2) imply that there exists a constant
c9 ∈ (0, 1) such that for all U1 ⊂ U2 ⊂⊂ G with δ(U1) ≥ 2C3 and d(U1, U

c
2) ≥ C9(2δ(U1) ∨ 1),

and any non-negative function f on U2 which is harmonic in U2,

(3.3) inf
y∈U1

f(y) ≥ c9 sup
y∈U1

f(y).

Another important consequence of (3.2) is that the balls for the distance d are almost connected
in the following sense:

(3.4) ∀x ∈ G, R ≥ 1 and y, y′ ∈ B(x,R), y ↔ y′ in B(x,C10R), with C10 = 2C9 + 1.

Indeed, for all U ⊂⊂ G and y, y′ ∈ G, y
U←→ y′ is equivalent to gU (y, y′) > 0, and by

definition,

(3.5) d
(
B(x,R), B(x,C10R)c

)
≥ 2C9R ≥ C9δ

(
B(x,R)

)
.

As a consequence, (3.2) implies that gB(x,C10R)(y, y
′) > 0 for all y, y′ ∈ B(x,R).

We now recall some facts about the equilibrium measure and capacity of various sets. For
A ⊂⊂ U ⊂ G, the equilibrium measure of A relative to U is defined as

(3.6) eA,U (x)
def.
= λxPx(H̃A > TU )1A(x) for all x ∈ G,

where H̃A
def.
= inf{n ≥ 1, Zn ∈ A} is the first return time in A for the random walk on G, and

the capacity of A relative to U as the total mass of the equilibrium measure,

(3.7) capU (A)
def.
=
∑
x∈A

eA,U (x).

By [59, (1.57)] for the graph with infinite killing on U c, for all A ⊂⊂ U ⊂ G, the following
last-exit decomposition relates the entrance time HA of Z in A, the exit time TU of U, the
stopped Green function and the equilibrium measure:

(3.8) Px(HA < TU ) =
∑
y∈A

gU (x, y)eA,U (y) for all x ∈ U.

For ∅ 6= A ⊂⊂ G and x ∈ G, we introduce the equilibrium measure, capacity and harmonic
measure as

(3.9) eA(x)
def.
= eA,G(x), cap(A)

def.
= capG(A) and eA(x)

def.
=

eA(x)

cap(A)
,

respectively. The capacity is a central notion for random interlacements, since we have the
following characterization for the random interlacement set Iu

(3.10) PI(Iu ∩A = ∅) = exp{−u · cap(A)} for all A ⊂⊂ G;

see Remark 2.3 in [63]. With these definitions, it then follows using (3.8) and (2.8) that for all
R ≥ C3 and x0 ∈ G,

c2R
−νcap (B(x0, R)) ≤ 1 =

∑
y∈∂B(x0,R)

g(x0, y)eB(x0,R)(y)

≤ C2(R− C3)−νcap (B(x0, R)) ,
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and hence there exist constants 0 < c11 ≤ C11 < ∞ only depending on G such that for all
R ≥ 1 and x ∈ G,

(3.11) c11R
ν ≤ cap (B(x,R)) ≤ C11R

ν .

A useful characterization of capacity in terms of a variational problem is given by

(3.12) cap(A) =
(

inf
µ

∑
x,y∈A

g(x, y)µ(x)µ(y)
)−1

, for A ⊂⊂ G,

where the infimum is over probability measures µ on A, see e.g. Proposition 1.9 in [59] for
the case of a finite graph with non-vanishing killing measure (the proof can be extended to
the present setup). In particular, since every probability measure µ on A is also a probability
measure on any set containing A, the capacity is increasing, so for A,B ⊂ G,

(3.13) A ⊂ B implies cap(A) 6 cap(B).

Another consequence of the representation (3.12) is the following lower bound on the capacity
of a set.

Lemma 3.2. There exists a constant c depending only on G such that for all L > 1 and A ⊂ G
connected with diameter at least L,

cap(A) >


cL, if ν > 1,

cL
log(L+1) , if ν = 1,

cLν , if ν < 1.

(3.14)

Moreover, if A ⊂ G is infinite and connected, then for all x0 ∈ G

(3.15) cap(A ∩B(x0, L))→∞ as L→∞,

and thus A ∩ Iu 6= ∅ PI-a.s.

Proof. Let us fix some L > 1, A connected subset of G with diameter at least L, and x0 ∈ A.
We introduce L′ = dL/(2C3)e and for each k ∈ {1, . . . , L′} the set Ak = A ∩ (B(x0, C3k) \
B(x0, C3(k − 1))), which is non-empty by (2.8). Then for all k ∈ {1, . . . , L′} and x ∈ Ak, we
have by (Gβ) that

L′∑
p=1

sup
y∈Ap

g(x, y) 6 C2

(
2 + C−ν3

L′∑
p=1

1p6=k−1(k − 1− p)−ν
)
6 2C2

(
2 + C−ν3

L′∑
p=1

p−ν
)
,

Now let µ be the probability measure on A defined by µ(x) = (L′|Ak|)−1 if x ∈ Ak for some
k ∈ {1, . . . , L′}, and µ(x) = 0 otherwise, we have

∑
x,y∈A

g(x, y)µ(x)µ(y) 6
2C2

L′

(
2 + C−ν3

L′∑
p=1

p−ν
)
.

Combining this bound with (3.12), the inequality (3.14) follows. If A is now an infinite and
connected subset of G, then for each x0 ∈ G there exists L0 > 0 such that for all L > L0, the
set A∩BG(x0, L/C3) has diameter at least L

2C3
, and thus by (2.8) A∩B(x0, L) contains at least

a connected component of diameter L
2C3

, and (3.15) then follows directly from (3.14). Finally,
by (3.10),

PI(A ∩ Iu = ∅) 6 PI(A ∩ Iu ∩B(x0, L) = ∅) 6 exp
{
− u · cap(A ∩B(x0, L))

}
−→
L→∞

0.
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Next, we collect an upper bound on the heat kernel (2.7) and an estimate on the distribution
of the exit time of a ball TB(x,R).

Proposition 3.3.

i) There exists a constant C such that for all x, y ∈ G and n > 0,

(3.16) pn(x, y) ≤ Cn−
α
β .

ii) There exist constants c and C such that for all x ∈ G, R > 0 and positive integer n,

(3.17) Px
(
TB(x,R) ≤ n

)
≤ C exp

{
−
(cRβ
n

) 1
β−1
}
.

Proposition 3.3 is essentially known, for instance if d is the graph distance dG then these
results (as well as (UHK(α, β)) and (LHK(α, β))) are proved in [24]. For a general distance d,
some estimates similar to (3.16) and (3.17) (as well as (UHK(α, β)) and (LHK(α, β))) are also
proved in [23] and [22] in the more general setting of metric spaces, and we could apply them
to the variable rate continuous time Markov chain on G. However, there does not seem to be
any proof in the literature that exactly fits our needs (general distance d, discrete time random
walk Z), and so, for the reader’s convenience, we have included a proof of Proposition 3.3 in
the Appendix.
Remark 3.4.

1) With Proposition 3.3 at our disposal, following up on Remark 2.2, we briefly discuss the re-
lation of the above assumptions (3.1) to heat kernel bounds within our setup. A consequence
of (3.16) and (3.17) is that, under condition (p0),

(3.18) (Vα) + (Gβ)⇒ (UHK(α, β));

note that in contrast to the results of Remark 2.2, this holds true even when d is not the graph
distance, where (UHK(α, β)) is defined in Remark 2.2. Indeed, for d = dG this implication
is part of Proposition 8.1 in [24], but the proof remains valid for any distance d. However,
the corresponding lower bound (LHK(α, β)) on the heat kernel does not always hold. To see
this, take for example G a graph such that (p0), (Vα) and (Gβ) hold when d is the graph
distance, and let d′ = d

1
κ for some κ > 1 (cf. Proposition 3.5 and (3.22) below for a situation

where this is relevant). Then for the graph G endowed with the distance d′, the conditions
(p0), (Vα′) and (Gβ′) hold with α′ = ακ and β′ = βκ. Moreover, using (UHK(α, β)) for the

distance d, one obtains that pn(x, y) + pn+1(x, y) ≤ 2Cn
−α
′
β′ exp{−(d

′(x,y)β
′

Cn )
1

β−1 }. Taking
n = bd′(x, y)c for instance, it follows that for any c > 0, since β′ > β,

(
pn(x, y) + pn+1(x, y)

)
n
α′
β′ exp

{(d′(x, y)β
′

cn

) 1
β′−1

}
≤ 2C exp

{
−
(nβ′−1

C

) 1
β−1

+
(nβ′−1

c

) 1
β′−1

}
−→
n→∞

0,

thus (LHK(α′, β′)) cannot hold for G endowed with the distance d′.

2) Even in cases where (LHK(α, β)) does not hold, it is still possible to obtain some slightly
worse lower bounds for a general distance d. We will not need these results in the rest of the
article, and therefore we only sketch the proofs. We introduce the following near-diagonal
lower estimate

(NLHK(α, β)) pn(x, y) + pn+1(x, y) > cn
−α
β for all x, y ∈ G and n > cd(x, y)β.
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Let us assume that the condition (p0) is fulfilled, we then have the following equivalences
for all α > 2 and β ∈ [2, α)

(3.19) (Vα) + (Gβ)⇔ (UHK(α, β)) + (NLHK(α, β)).

The first implication follows from (13.3) in [24], whose proof remains valid for a general
distance d, given (3.18), (3.16), (A.1) and (3.3), and the proof of its converse follows from a
careful inspection of the proof of Proposition 15.1 in [24] or Lemma 4.22 and Theorem 4.26
in [4]. Estimates similar to (UHK(α, β)) and (NLHK(α, β)) for the continuous time Markov
chain on G with jump rates (λx)x∈G and transition probabilities (px,y)x,y∈G, see (2.2), are
also equivalent to (3.19), see Theorem 3.14 in [23]. Let us now also assume that there exist
constants c > 0 and ζ ∈ [1, β) such that

for all r > 0, k ∈ N and x, y ∈ G such that d(x, y) 6 ck
1
ζ r, there exists

a sequence x1 = x, x2, . . . , xk = y with d(xi−1, xi) 6 r for all i ∈ {2, . . . , k},
(Dζ)

then the conditions in (3.19) are also equivalent to (UHK(α, β)) plus the following lower
estimate

(LHK(α, β, ζ)) pn(x, y)+pn+1(x, y) > cn
−α
β exp

{
−
(d(x, y)β

cn

) ζ
β−ζ
}

for all n > dG(x, y).

Indeed, under condition (Dζ), the proof that (3.19) implies (LHK(α, β, ζ)) is similar to the
proof of Proposition 13.2 in [24] or Proposition 4.38 in [4], modulo some slight modifications
when d is a general distance, and its converse is trivial. Note that if d = dG, it is clear that
(D1) holds and that the lower estimate (LHK(α, β, 1)) is the same as (LHK(α, β)), and thus

we recover the results from Remark 2.2. If d′ = d
1
κ
G for some κ > 1 as in the counter-example

of Remark 3.4, 1), and (Vα) and (Gβ) hold with the distance dG, then (Dκ) hold for the
distance d′ and thus also (LHK(α′, β′, κ)) for the distance d′, where β′ = βκ and α′ = ακ,
which is exactly the same as (LHK(α, β)) for the distance dG.

We now discuss product graphs. Let G1 and G2 be two graphs as in the previous section
(countably infinite, connected and with bounded degree), endowed with weight functions λ1

and λ2. The graph G = G1 × G2 is defined such that x = (x1, x2) ∼ y = (y1, y2) if and only
there exists i 6= j ∈ {1, 2} such that xi ∼ yi and xj = yj . One naturally associates with G the
weight function λ such that for all x = (x1, x2) ∼ y = (y1, y2), one has

(3.20) λx,y = λixi,yi , where i ∈ {1, 2} is such that xi 6= yi.

Proposition 3.5. Suppose that (Gi, λ
i) satisfy (UHK(αi, βi)) and (LHK(αi, βi)) with respect

to the graph distance dGi , for i = 1, 2, as well as (p0). Assume that

(3.21) αi ≥ 1 and 2 ≤ βi ≤ 1 + αi, for i = 1, 2, and ∃ j ∈ {1, 2} s.t. αj > 1 or βj > 2.

Then, if β1 ≤ β2, the graph G1 ×G2 endowed with the weights (3.20) satisfies (Vα), (Gβ) with

α = α1
β2

β1
+ α2, β = β2 and d(x, y) = max

(
dG1(x1, y1)

β1
β2 , dG2(x2, y2)

)
.(3.22)

Proof. We first argue that (G,λ) satisfies (Vα). By Remark 2.2, (Gi, λ
i), i = 1, 2, satisfy (Vαi).

On account of (3.20), one readily infers that λ(A × B) = λ1(A) · |B| + |A| · λ2(B) for all
A ⊂ G1, B ⊂ G2. Applying this to A = BdG1

(x1, R
β2/β1), B = BdG2

(x2, R), observing that
Bd((x1, x2), R) = A × B by definition of d(·, ·) and noting that c4|A| ≤ λ1(A) ≤ C4|A| (and
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similarly for B), see (2.10), it follows that uniformly in (x1, x2) ∈ G, λ(Bd((x1, x2), R)) is of
order Rα with α given by (3.22), whence (Vα) is fulfilled.

It remains to show that (Gβ) holds. Let (X
i
t)t≥0, i = 1, 2, denote the continuous time walk

on Gi with jump rates λix =
∑

y:dGi (x,y)=1 λ
i
x,y, and suppose X1

· , X
2
· are independent. Let X ·

be the corresponding walk on G (with jump rates λx, cf. (3.20)). Then X · has the same law as
(X

1
· , X

2
· ) and in view of (2.4),

(3.23) g(x, y) =

∫ ∞
0

Px(Xt = y) dt =

∫ ∞
0

Px1(X
1
t = y1)Px2(X

2
t = y2) dt,

with x = (x1, x2) and y = (y1, y2). We introduce for i = 1, 2, the additive functionals

(3.24) Ait =

∫ t

0
λi
X
i
s

ds, for t ≥ 0, i = 1, 2,

along with τ it = inf{s ≥ 0; Ais ≥ t} and the corresponding time-changed processes

(Y i
t )t≥0

def.
= (X

i
τ it

)t≥0.

By the above assumptions, the discrete skeletons of Y i
· , i = 1, 2, satisfy the respective heat

kernel bounds HK(αi, βi) in the notation of [4], and thus by Theorem 5.25 in [4] (the process
Y i
· has unit jump rate), for all x = (x1, x2) and y = (y1, y2) in G, abbreviating di = dGi(xi, yi)

and d = d(x, y), so that dβ2 = dβ11 ∨ d
β2
2 ,

(3.25) ct
−αi
βi exp

{
−
(dβ2
ct

) 1
βi−1

}
≤ Pxi(Y i

t = yi) ≤ c′t
−αi
βi exp

{
−
(dβii
c′t

) 1
βi−1

}
,

where the lower bound holds for all t ≥ di ∨ 1 and the upper bound for all t ≥ di. Going back
to (3.23), noting that Xi

t = Y i
Ait

and that c4t ≤ Ait ≤ C4t for all t ≥ 0 by (2.10) and (3.24),
observe that

(3.26) inf
i∈{1,2}

sup
t≤C4c

−1
4 (d1∨d2)

Pxi(Y
i
t = yi) ≤ Ce−c(d1∨d2),

which follows for instance from Theorem 5.17 in [4]. We obtain for all x and y, with constants
possibly depending on αi and βi, keeping in mind that dβ2 = dβii for some i in the third line
below,

g(x, y) ≤
∫ ∞

0
sup

c4t≤s≤C4t

{
Px1(Y 1

s = y1)Px2(Y 2
s = y2)

}
dt

(3.25),(3.26)
≤ C(d1 ∨ d2)e−c(d1∨d2) + C ′

∫ ∞
c−1
4 (d1∨d2)

t
−(

α1
β1

+
α2
β2

)
exp

{
−

2∑
i=1

(dβii
c′′t

) 1
βi−1

}
dt

u=d−β2 t
≤ Ce−cd + C ′

∫ ∞
0

d
−(

β2α1
β1

+α2)
u
−(

α1
β1

+
α2
β2

)
exp

{
− (c′′u)

− 1
βi−1

}
dβ2 du

≤ C ′′d−(α−β),

(3.27)

recalling the definition of α and β from (3.22) in the last step; we also note that the integral
over u in the last but one line is finite since αi ≥ 1 and βi 6 1 + αi, so that αi

βi
≥ αi

1+αi
≥ 1

2
with strict inequality for at least one of the i’s due to (3.21), whence α1

β1
+ α2

β2
> 1. In view of

(1.6), (3.27) yields the desired upper bound. For the corresponding lower bound, one proceeds
similarly, starting from (3.23), discarding the integral over 0 ≤ t ≤ c−1

4 (d1∨d2∨1), and applying
the lower bound from (3.25). Thus, (Gβ) holds, which completes the proof.
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Remark 3.6.

1) Proposition 3.5 is sufficient for our purposes but one could extend it to graphs (Gi, λi) which
satisfy (p0), (UHK(αi, βi)) and (NLHK(αi, βi)) under a general distance di for i = 1, 2.

2) Under the hypotheses of Proposition 3.5, one can show that there exist constants c > 0 and
C <∞ such that for all n ∈ N, x1 ∈ G1 and x2, y2 ∈ G2, the upper bound (UHK(α, β)) and
the lower bound (LHK(α, β)) for pn((x1, x2), (x1, y2)) hold, and for all n ∈ N, x1, y1 ∈ G1

and x2 ∈ G2, the upper bound

(3.28) pn((x1, x2), (y1, x2)) 6 Cn
−α
β exp

{
−
(d(x, y)β

Cn

) 1
β1−1

}
and the corresponding lower bound (LHK(α, β, β2/β1)) for pn((x1, x2), (y1, x2)) hold. In
particular, the estimates (UHK(α, β)) and (LHK(α, β, β2/β1)) are the best estimates one
can obtain for all x, y ∈ G. We only sketch the proofs since these results will not be needed
in the rest of the paper. Between vertices of the type x = (x1, x2) and y = (x1, y2), one can
show that the condition (D1) holds, and (LHK(α, β))=(LHK(α, β, 1)) is then proved as in
Remark 3.4, 2), and the upper bound (UHK(α, β)) is a consequence of (3.18). Between the
vertices x = (x1, x2) and y = (y1, x2), one can prove a result similar to (A.1) but for the

expected exit time of the cylinder B′(x,R) = BG1

(
x1, R

β2
β1

)
× BG2

(
x2, R

β2
β1

)
, and the proof

of (3.28) is then similar to the proof of (3.18), and (LHK(α, β, β2/β1)) is proved in Remark
3.4, 2) since (Dβ2

β1

) always holds on G.

We now turn to the proof of (WSI) for product graphs and the standard d-dimensional
Sierpinski carpet, d > 3. If G = G1×G2, we say that two vertices x = (x1, x2) and y = (y1, y2)
are ∗-neighbors if and only if both the graph distance in G1 between x1 and y1 and the graph
distance in G2 between x2 and y2 are at most 1. If G is the standard d-dimensional Sierpinski
carpet, we say that x = (x1, . . . , xd) and y = (y1, . . . , yd) in G are ∗-neighbors if and only if there
exist i, j ∈ {1, . . . , d} such that |xi−yi| 6 1, |xj−yj | 6 1, and xk = yk for all k 6= i, j.Moreover,
we say in both cases that A ⊂ G is ∗-connected if every two vertices of A are connected by
a path of ∗-neighbor vertices. We are going to prove that in these two examples–assuming in
the product graph case that G1 and G2 are both connected–the external boundary of any finite
and connected subset A of G is ∗-connected. In order to do this, we are first going to prove a
property which generalizes Lemma 2 in [68], and then apply it to our graphs. In Proposition
3.7, we say that C is a cycle of edges if it is a finite set of edges such that every vertex has even
degree in C, that P is a path of edges between x and y in G if x and y are the only vertices
with odd degree in P, and we always understand the addition of sets of edges modulo 2. We also
define for all x ∈ G the set ∂xextA = {y ∈ ∂extA; y

Ac

←→ x}.

Proposition 3.7. Let C be a set of cycles of edges such that for all finite sets of edges S ⊂ E
and all cycles of edges Q,

(3.29) there exists C0 = C0(S, Q) ⊂ C with S ∩
(
Q+

∑
C∈C0

C
)

= ∅.

Then for all finite and connected sets A ⊂ G and for all x ∈ Ac, the set ∂xextA is connected in
G+, the graph with the same vertices as G and where {y, z} is an edge of G+ if and only if y
and z are both traversed by some C ∈ C.

In particular, if A is either a finite and connected subset of G1 × G2 for two infinite and
locally finite connected graphs G1 and G2, or of the standard d-dimensional Sierpinski carpet
for d > 3, then ∂extA is ∗-connected.
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Proof. Let A be a finite and connected subset of G, and let us fix some x0 ∈ A, x1 ∈ Ac, and
S1 and S2 two arbitrary non-empty disjoint subsets of G such that ∂x1extA = S1 ∪ S2. Define
Si = {(x, y) ∈ E; x ∈ A and y ∈ Si} for each i ∈ {1, 2}. We will prove that there exists C ∈ C
which contains at least one edge of S1 and one edge of S2; thus by contraposition ∂x1extA will be
connected in G+ since S1 and S2 were chosen arbitrary. Since A is finite and connected and S1

and S2 are non-empty, there exist two paths P1 and P2 of edges between x0 and x1 such that
Pi ∩ Si 6= ∅ but Pi ∩ S3−i = ∅ for all i ∈ {1, 2}, and then Q = P1 + P2 is a cycle of edges. By
(3.29), there exists C0 ⊂ C such that

Q′ = Q+
∑
C∈C0

C

does not intersect S2. Let us define C1 = {C ∈ C0; C ∩ S1 6= ∅} and C2 = C0 \ C1, then

(3.30) P2 +
∑
C∈C2

C = Q′ + P1 +
∑
C∈C1

C.

The left-hand side of (3.30) is a path of edges between x0 and x1 which does not intersect S1

by definition, and thus it intersects S2. Therefore, the right-hand side of (3.30) intersects S2 as
well, i.e., there exists C ∈ C1 which intersects S2, and also S1 by definition.

We now prove that ∂extA is ∗-connected when G = G1×G2, for G1 and G2 two infinite and
locally finite connected graphs. We start with considering the case that G2 is a tree, i.e., it does
not contain any cycle. We define C by saying that C ∈ C if and only if C contains exactly every
edge between (x1, x2), (x1, y2), (y1, y2) and (y1, x2) for some x1 ∼ y1 ∈ G1 and x2 ∼ y2 ∈ G2.
Hence, with this choice of C, a set is connected in G+ if and only if it is ∗-connected. Note
that since G1 and G2 are infinite, ∂extA = ∂xextA for all x ∈ Ac, and thus we only need to prove
(3.29).

Let S be a finite set of edges and Q0 be a cycle of edges. We fix a nearest-neighbor
path of vertices π = (y0, y1, . . . , yp) ∈ Gp+1

2 such that all the vertices visited by the edges
in Q0 are contained in G1 × {π}, yp /∈ {y0, . . . , yp−1}, and S ∩ (G1 × {yp}) = ∅. For all
n ∈ {0, . . . , p− 1} and all edges e = {(x1, yn), (x2, yn)}, writing e1

def.
= {x1, x2} ∈ E1 with E1

denoting the edges of G1, we define Cne as the unique cycle in C containing the edges e and
(e1, yn+1)

def.
= {(x1, yn+1), (x2, yn+1)}. Next, we recursively define a sequence (Qn)n∈{0,...,p} of

sets of edges by

Qn+1 = Qn +
∑

e∈Qn∩(G1×{yn})

Cne for all n ∈ {0, . . . , p− 1}.

By construction, for all n ∈ {0, . . . , p− 1}, Qp does not contain any edge in G1×{yn} and thus
if e is an edge in Qp of the form (e1, y) for some e1 ∈ E1 and y ∈ G2, then necessarily y = yp.
Since Qp is a cycle of edges and since G2 does not have any cycle, Qp ⊂ G1 × {yp}, and thus
Qp ∩ S = ∅, which gives us (3.29).

Let us now assume that G2 contains exactly one cycle of edges, and let {x2, y2} and
{x2, z2} be two different edges of this cycle. Let A be a finite and connected subset of G,
then the exterior boundary of A in G1 × (G2 \ {x2, y2}) and the exterior boundary of A in
G1 × (G2 \ {x2, z2}) are ∗-connected in G since G2 \ {x2, y2} and G2 \ {x2, z2} do not contain
any cycle. First assume that there exists x1 ∈ G1 such that (x1, x2) ∈ A, (x1, y2) ∈ ∂extA
and (x1, z2) ∈ ∂extA, then (x1, z2) is ∗-connected in G to any vertex of the external boundary
of A in G1 × (G2 \ {x2, y2}) and (x1, y2) is ∗-connected in G to any vertex of the external
boundary of A in G1 × (G2 \ {x2, z2}), that is (x1, y2) and (x1, z2) are ∗-connected in G. The
other cases are similar, and we obtain that the exterior boundary of A in G is ∗-connected. We
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can thus prove by induction on the number of cycles that if G2 has a finite number of cycles
of edges, then the external boundary of any finite and connected subset A of G is ∗-connected.
Otherwise, let x and y be any two vertices in ∂extA, and let πx be an infinite nearest-neighbor
path in Ac, without loops, beginning in x, such that the projection of πx on G1 is a finite path
on G1, i.e. constant after some time, and πy be a finite nearest-neighbor path in Ac, without
loops, beginning in y and ending in πx. Let G′2 be the graph with vertices the projection on
G2 of A ∪ ∂extA ∪ {πx} ∪ {πy}, and with the same edges between two vertices of G′2 as in G2.
By definition G′2 is infinite and only contains a finite number of cycles of edges, so the exte-
rior boundary of A in G1×G′2 is ∗-connected in G1×G′2, and thus x and y are ∗-connected in G.

Let us now take G to be the standard d-dimensional Sierpinski carpet, d > 3, that we
consider as a subset of Nd, and A a finite and connected subset of G. We define C as the set of
cycles with exactly 4 edges, and then a set is connected in G+ if and only if it is ∗-connected,
thus we only need to prove (3.29). Let S be a finite set of edges, Q0 be a cycle of edges, and
p ∈ N such that Q0 ⊂ G ∩ ({0, . . . , p − 1} × Nd−1) and S ∩ ({p} × Nd−1) = ∅. We also define
Vn as the set of d− 1-dimensional squares V = {n2, . . . , n2 +m} × · · · × {nd, . . . , nd +m} such
that {n}×V ⊂ G and ({n+ 1}×V )∩G = {n+ 1}× (V \V ), where V = {n2− 1, . . . , n2 +m+
1} × · · · × {nd − 1, . . . , nd +m+ 1}. Let us now define recursively two sequences (Qn)n∈{0,...,p}
and (Rn)n∈{1,...,p} of cycles of edges such that Qn ⊂ {n, . . . , p} × Zd−1 for all n ∈ {0, . . . , p}.
For each square V ∈ Vn, all the vertices of {n} × V have an even degree in Qn ∩ ({n} × V )
since Qn ∩ ({n− 1}× V ) = Qn ∩ ({n+ 1}× V ) = ∅ and Qn is a cycle of edges. Moreover, since
d > 3, every cycle of edges in {n} × V is a sum of cycles with exactly 4 edges in {n} × V , and
thus one can find a set CV ⊂ C (with CV = ∅ if ({n} × V ) ∩Qn = ∅) of cycle of edges included
in {n} × V such that

({n} × V ) ∩
(
Qn +

∑
C∈CV

C
)
⊂ {n} × (V \ V )

We first define Rn+1 by
Rn+1 = Qn +

∑
V ∈Vn

∑
C∈CV

C.

By construction, every edge e = (n, e1) ∈ Rn+1 ∩ ({n} × Zd−1) is such that (n+1, e1) ∈ G, and
we then define Cne as the unique cycle in C containing the edges e and (n+ 1, e1), and we take

Qn+1 = Rn+1 +
∑

e∈Rn+1∩({n}×Zd−1)

Cne .

By construction, Qn+1 ∩ ({0, . . . , n} × Zd−1) = ∅ and since Qn+1 is a cycle of edges, we have
Qn+1 ⊂ {n + 1, . . . , p} × Zd−1. Therefore, we have Qp ∩ S = ∅ by our choice of p, which gives
us (3.29).

Remark 3.8.

1) One can extend Proposition 3.7 similarly to Theorem 3 in [68]. Let us assume that there
exists C such that (3.29) hold, and that for each edge e of E+ \ E, where E+ is the set of
edges of G+, there exists a cycle Oe of edges of G+ such that Oe\{e} ⊂ E. Then for all finite
set A connected in G+ and for all x ∈ Ac, the set ∂xextA is connected in G++, the graph with
the same vertices and edges as G+ plus every edge of the type {x, y} for x, y both crossed
by Oe for some edge e ∈ E+ \ E. Indeed let G+

A be the graph with the same vertices as G,
and edge set E+

A which consists of E plus the edges in E+ \ E with both endpoints in A,
and let C+

A = C ∪{Oe, e edge of E+
A \E}. For each cycle Q of edges in E+

A we then have that

Q+
∑

e∈Q\G

Oe
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is a cycle of edges in E, and thus by (3.29) for G with the set of cycles of edges C, one
can easily show that (3.29) also hold for G+

A with the set of cycles of edges C+
A . Since A is

connected in G+
A, by Proposition 3.7, ∂xextA is connected in G++.

In particular, ifG is either a product of infinite graphsG1×G2 or the d-dimensional Sierpinski
carpet, d > 3, taking Oe such that Oe \ {e} only contains two connected edges of E for each
e ∈ E+ \ E, we get that the external boundary of every finite and ∗-connected subset A of
G is ∗-connected since G++ = G+.

2) Proposition 3.7 provides us with a stronger result than Lemma 2 in [68] even when G = Zd,
d > 3. Indeed, Zd = Zd−1 ×Z and thus the external boundary of every finite and connected
(or even ∗-connected) subset of Zd is ∗-connected in the sense of product graphs previously
defined, i.e., it is connected in Zd ∪ {{(x, n), (y, n+ 1)}; n ∈ Z, x ∼ y ∈ Zd−1}.

3) An example of a graph G for which we cannot apply Proposition 3.7, and in fact where we
can find a finite and connected set whose boundary is not ∗-connected, and where (WSI)
does not hold, but where (Gβ) and (Vα) hold, is the Menger sponge. It is defined as the
graph associated to the following generalized 3-dimensional Sierpinski carpet, see Section 2
of [6]: split [0, 1]3 into 27 cubes of size length 1/3, remove the central cube of each face as
well as the central cube of [0, 1]3, and iterate this process for each remaining cube. It is easy
to show that G endowed with the graph distance verifies (Vα) with α = log(20)

log(3) , and (Gβ)
follows from Theorem 5.3 in [6] since the random walk on the Menger sponge is transient,
see p.741 of [5]. One can then easily check that taking An = (3n/2, 5×3n/2)3∩G, where we
see G as a subset of R3, then ∂extA is not ∗-connected. In fact for each p < n, there exists
x ∈ ∂extAn such that there is no 3p-path between x and B(x, 2× 3p)c, and thus (WSI) does
not hold.

We can now conclude that our main results apply to the examples mentioned in the intro-
duction.

Corollary 3.9. The graphs in (1.4) (endowed with unit weights) satisfy (p0), (Vα), (Gβ), for
some α > 2, β ∈ [2, α) and (WSI), with respect to a suitable distance function d(·, ·). In
particular, the conclusions of Theorems 1.1 and 1.2 hold for these graphs.

Proof. Condition (p0) holds plainly in all cases since all graphs in (1.4) have unit weights and
uniformly bounded degree. For G1, we classically have α = d, β = 2 and (WSI) follows e.g.
from Proposition 3.7 with d = dG (or even the `∞-norm) since Zd = Zd−1 × Z. The case of G2

is an application of Propositions 3.5 and 3.7: it is known [7, 30] that G′, the discrete skeleton
of the Sierpinski gasket, satisfies (Vα2) and (Gβ2) with α2 = log 3

log 2 and β2 = log 5
log 2 , whence (Vα),

(Gβ), hold for G2 with respect to d in (3.22), for α = log 45
2 log 2 and β = log 5

log 2 as given by (3.22)
with α1 = 1, β1 = 2 (note that α2 > 1 so (3.21) holds), and it is easy to see that any ∗-
connected path is also a 1-path for d in (3.22), hence (WSI) holds. Regarding G3, the standard
d dimensional graphical Sierpinski carpet endowed with the graph distance, with d ≥ 3 (cf. p.6
of [6]), α = log(3d − 1)/ log(3) (with d = dG) and (Gβ) then follows from Theorem 5.3 in [6]
since the random walk on G3 is transient for d ≥ 3, see p.741 of [5]. We refer to Remark 3.10,
1) below for bounds on the value of β. Moreover, (WSI) on G3 follows from Proposition 3.7
since any ∗-connected path in G3 is also a 2-path.

Finally, G4 endowed with the graph distance d = dG4 satisfies (Vα) for some α > 2 by
assumption and (Gβ) holds with β = 2 by Theorem 5.1 in [29]. To see that (WSI) holds, we
first observe that the group Γ = 〈S〉 which has G4 as a Cayley graph is finitely presented.
Indeed, by a classical theorem of Gromov [27], Γ is virtually nilpotent, i.e., it has a a normal
subgroup H of finite index which is nilpotent. Furthermore, H is finitely generated (this is
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because Γ/H is finite, so writing gH, g ∈ C with |C| < ∞ and 1 ∈ C for all the cosets, one
readily sees that H = 〈{h ∈ H; h = g−1sg′ for some g, g′ ∈ C and some s ∈ S}〉).

Since H is nilpotent and finitely generated, it is in fact finitely presented, see for instance
2.2.4 (and thereafter) and 5.2.18 in [45], and so is Γ/H, being finite. Together with the normality
of H one straightforwardly deduces from this that Γ is finitely presented, see again 2.2.4 in [45].
As a consequence Γ = 〈S|R〉 for a suitable finite set of relators R. This yields a generating set
of cycles for G4 of maximal cycle length t < ∞, where t is the largest length of any relator in
R, and Theorem 5.1 of [67] (alternatively, one could also apply Proposition 3.7) readily yields
that, for all x ∈ ∂extA, every two vertices of ∂xextA are linked via an R0 path in ∂xextA, with
R0 = t/2. Moreover, since G has sub-exponential growth, {∂xextA, x ∈ ∂extA} contains at most
two elements, see for instance Theorem 10.10 and 12.2, (g), in [72] and, since G does not have
linear growth, in fact only 1, see for instance Lemma 5.4, (a), and Theorem 5.12 in [31]. We
also prove this fact for any graph satisfying (3.1) in the course of proving Lemma 6.5, see for
instance below (6.14).

In order to prove (WSI), we thus only need to show that there exists c > 0 such that
δ(∂extA) > cδ(A) for all finite and connected subgraphs A of G, and we are actually going to
show this inequality in the general setting of vertex-transitive graphs G. Write m def.

= δ(∂extA),
let us fix some x0 ∈ ∂extA, and for x ∈ G introduce

B(x,m) = {y ∈ G; every unbounded path beginning in y intersects B(x,m)}.

Let us assume that there exists x1 ∈ B(x0,m) such that B(x1,m)∩B(x0,m) = ∅, and then we
have B(x1,m) ⊂ B(x0,m) \ B(x0,m). Since G is vertex-transitive, there exists x2 ∈ B(x1,m)
such that B(x2,m) ∩ B(x1,m) = ∅. Moreover, by definition, B(x2,m) ⊂ B(x1,m) \ B(x1,m),
and x1 ↔ x2 in B(x1,m). Iterating this reasoning, we can thus construct recursively a sequence
(xn)n∈N of vertices such that B(xn+1,m) ⊂ B(xn,m) \ B(xn,m), and xn ↔ xn+1 in B(xn,m)
for all n ∈ N. Therefore, there exists an unbounded path beginning in x1 in B(x0,m)\B(x0,m),
which is a contradiction by definition of B(x0,m). Hence, δ(B(x0,m)) 6 4m, and so δ(A) 6
4δ(∂extA).

Remark 3.10.

1) To the best of our knowledge, the explicit value of the constant β for the d-dimensional
Sierpinski carpet G3, d ≥ 3, is not known. However, Remark 5.4 2. in [5] with the choices
lF = a = 3, b = 1 and mF = 3d − 1, provides lower and upper bounds for the so-called
resistance scale factor ρF . These bounds can be plugged into (5.3) of [5] to obtain bounds
on the constant dw appearing therein, which is in fact equal to β in view of Theorem 5.3 in
[6], and supply us with

ν = α− β ∈ log(3d−1(3d−1 − 1))

log 3
+

[
−d,− log(3d − 2)

log 3

]
,

and in particular ν ∈ (d− 3, d− 2) for all d ≥ 3.

2) The conclusions of Theorems 1.1 and 1.2 do not only hold for G2 in (1.4), but also for any
product graphs G1×G2 under the same hypotheses as in Proposition 3.5. Further interesting
examples can be generated involving graphs G endowed with a distance d 6= dG which is not
of the form of a product of graph distances as in (3.22). For instance, in Corollary 4.12 of
[28], estimates similar to (UHK(α′, α′ + 1)) and (LHK(α′, α′ + 1, ζ)) for some α′ > 1 and
ζ ∈ [1, α′ + 1) are proved for different recurrent fractal graphs G′ when the distance d′ on
G′ is the effective resistance as defined in (2.4) of [28]. By Lemma 3.2 in [28], (Vα′) hold on
G′ endowed with the distance d′, and thus one can then prove similarly as in the proof of
Proposition 3.5 that G = G′ × Z (or some other product with an infinite graph satisfying
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(UHK(α, β)) and (NLHK(α, β))) satisfy (Vα) and (Gβ) with α = 3α′+1
2 and β = α′ + 1 for

the distance

d((x′, n), (y′,m)) = d′(x′, y′) ∨ |n−m|
2
β for all x′, y′ ∈ G′ and n,m ∈ Z.

Moreover, (WSI) is also verified on G by Proposition 3.7, and thus the conclusions of Theo-
rems 1.1 and 1.2 hold for G. It should be noted that d′ is not always equivalent to the graph
distance on G′, see for instance the graph G′ considered in Corollary 4.16 of [28]. This graph
is also another example of a graph where (Dζ) hold for some ζ > 1 but not ζ = 1, and where
the estimates (UHK(α, β)) and (LHK(α, β, ζ)) are optimal at this level of generality.

4 Strong connectivity of the interlacement set

We now prove a strong connectivity result for the random interlacement set on the cable system,
Proposition 4.1 below; see also Proposition 1 in [43] and Lemma 3.2 in [16] for similar findings
in the case G = Zd.We recall our standing assumption (3.1). The availability of controls on the
heat kernel and exit times provided by Proposition 3.3 will figure prominently in obtaining the
desired estimates; see also Remark 4.8 below. The connectivity result will play a crucial role in
Section 9, where Ĩu will be used as a random network to construct certain continuous level-set
paths for the free field. We recall the notation introduced in (2.15) and (3.4), and our standing
assumptions (3.1).

Proposition 4.1. For each u0 > 0, there exist constants c12 > 0, c > 0 and C < ∞ all
depending on u0 such that, for all x0 ∈ G, u ∈ (0, u0] and L ≥ 1,

(4.1) P̃I
( ⋂
z,z′∈Ĩu∩B̃(x0,L)

{
z
∼←→ z′ in Ĩu ∩ B̃ (x0, 2C10L)

})
≥ 1− C exp {−cLc12u} .

The proof of Proposition 4.1 requires some auxiliary lemmas and appears at the end of the
section. In the rest of the paper, we will not use directly Proposition 4.1 because the event
in (4.1) is neither increasing nor decreasing, see above (7.4), and therefore cannot be used
in the decoupling inequalities, see Theorem 2.4. We will however use two auxiliary lemmas
which together readily imply Proposition 4.1, namely Lemmas 4.3 and 4.7. Another interest of
Proposition 4.1 is the following corollary, which is a generalization of Corollary 2.3 of [55] from
Zd to G as in (3.1).

Corollary 4.2. Let u > 0. Then P̃I-a.s., the subset Ĩu of G̃ is unbounded and connected.
Analogously, PI-a.s., the subset Iu of G is infinite and connected.

Proof of Corollary 4.2. Fix any vertex x0 ∈ G. Let AL denote the event appearing on the left-
hand side of (4.1), and A′L = {Ĩu ∩ B̃ (x0, L) 6= ∅}. Note that {Ĩu is unbounded, connected} ⊃
(
⋃
LA
′
L) ∩ lim infLAL. The events A′L are increasing with limL P̃I(A′L) = 1 by (3.11), and by

(4.1) and a Borel-Cantelli argument, P̃I(lim infLAL) = 1. The same reasoning applies also to
Iu (with (4.2) below in place of (4.1)).

Let us denote for each u > 0 by Îu the set of edges of G traversed by at least one of the
trajectories in the trace of the random interlacement process ωu. From the construction of the
random interlacement process on the cable system G̃ from the corresponding process on G by
adding Brownian excursions on the edges, it follows that the inequality

(4.2) PI
( ⋂
x,y∈Iu∩B(x0,L)

{
x
∧←→ y in Îu ∩BE (x0, 2C10L)

})
≥ 1− C(u0) exp

{
−Lc(u0)u

}
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for all u ≤ u0, will entail (4.1), where for x, y ∈ G and A ⊂ E, {x ∧←→ y in A} means that there
exists a nearest neighbor path from x to y crossing only edges contained in A. We refer to the
discussion at the beginning of the Appendix of [16] for a similar argument on why (4.2) implies
(4.1). In order to prove (4.2), we will apply a strategy inspired by the proof of Proposition 1 in
[43] for the case G = Zd.

For U ⊂⊂ G let Nu
U be the number of trajectories in supp(ωu) which enter U. By definition,

Nu
U is a Poisson variable with parameter ucap(U), and thus there exist constants c, C ∈ (0,∞)

such that uniformly in u ∈ (0,∞),

(4.3) PI
(
cu · cap(U) ≤ Nu

U ≤ Cu · cap(U)
)
≥ 1− C exp {−cu · cap(U)} ,

cf. display (2.11) in [43]. We now state a lemma which gives an estimate in terms of capacity
for the probability to link two subsets of B(x, L) through edges in Îu ∩B(x,C10L).

Lemma 4.3. There exist constants c ∈ (0, 1) and C ∈ [1,∞) such that for all L ≥ 1, u > 0
and all subsets U and V of B(x, L),

(4.4) PI
(
U

∧←→ V in Îu ∩BE(x,C10L)
)
≥ 1− C exp

{
−cL−νucap(U)cap(V )

}
,

with ν as in (1.6).

Proof. For U not to be connected to V through edges in Îu ∩ BE(x,C10L), all of the Nu
U

trajectories hitting U must not hit V after hitting U and before leaving B(x,C10L), so

PI
(
U

∧←→ V in Îu ∩B(x,C10L)
)

≥ 1− PI(Nu
U < cucap(U))−

(
PeU (HV > TB(x,C10L))

)cucap(U)
(4.5)

(recall (2.3) and (3.9) for notation). For all y ∈ B(x, L), by (3.8), (3.5) and (3.2),

(4.6) Py(HV > TB(x,C10L)) ≤ 1−
∑

z∈B(x,L)

gB(x,C10L)(y, z)eV (z) ≤ 1− c2

2
(2L)−νcap(V ),

where we also used eV ≤ eV,B(x,C10L) in the first inequality. Since cap(V ) ≤ C11L
ν by (3.11),

we can combine (4.5), (4.3) and (4.6) to get (4.4).

For each x ∈ G and L > 1, if x ∈ Iu, we denote by Cu(x, L) the set of vertices in G connected
to x by a path of edges in Îu ∩BE(x, L), and we take Cu(x, L) = ∅ otherwise. On our way to
establishing (4.2) we introduce the following thinned processes. For each i ∈ {1, 2, 3}, let ωu/3i

be the Poisson point process which consists of those trajectories in ωu which have label between
(i − 1)u/3 and iu/3. I.e., ωu/3i , i ∈ {1, 2, 3}, have the same law as three independent random
interlacement processes at level u/3 on G. For each i ∈ {1, 2, 3}, let Iu/3i and Îu/3i , respectively,
be the set of vertices and edges, respectively, crossed by at least one trajectory in supp(ωu/3i ),

and for each x ∈ G and L > 0, let Cu/3i (x, L) be the set of vertices connected to x by a path
of edges in Îu/3i ∩BE(x, L). Note that PI -a.s. we have Iu = ∪3

i=1I
u/3
i and Îu = ∪3

i=1Î
u/3
i . Now

fix some x0 ∈ G and L > 0, and assume there exist x, y ∈ Iu ∩ B (x0, L) such that x is not
connected to y through edges in Îu ∩BE (x0, 2C10L) . Let i, j ∈ {1, 2, 3} be such that x ∈ Iu/3i

and y ∈ Iu/3j , and let k = k(i, j) be the smallest number in {1, 2, 3} different from i and j. By

definition, Cu/3i (x, L) is not connected to Cu/3j (y, L) through edges in Îu/3k ∩ BE(x0, 2C10L),
and so

PI
(
x, y ∈ Iu,

{
x
∧←→ y in Îu ∩BE(x0, 2C10L)

}c)
≤

3∑
i,j=1

PI
 x ∈ Iu/3i , y ∈ Iu/3j ,{

C
u/3
i (x, L)

∧←→ C
u/3
j (y, L) in Îu/3k ∩BE(x0, 2C10L)

}c

.(4.7)
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Since Îu/3k is independent from Îu/3i and Îu/3j and Cu/3i (x, L) ⊂ B(x0, 2L), we can use Lemma
4.3 to upper bound the last probability in (4.7). In order to obtain (4.2), we now need a lower
bound on the capacity of Cu/3i (x, L), and for this purpose we begin with a lower bound on
the capacity of the range of N random walks. For each N ∈ N and SN = (x1, . . . , xN ) ∈ GN
we define a sequence (Zi)i∈{1,...,N} of independent random walks on G with fixed initial point
Zi0 = xi under some probability measure PSN , i.e., for each i ∈ {1, . . . , N}, Zi has the same
law under PSN as Z under Pxi . For all positive integers M and N we define the trace T (N,M)
on G of the N first random walks up to time M by

T (N,M)
def.
=

N⋃
i=1

M−1⋃
p=0

{Zip}.

For ease of notation, we also set

(4.8) γ =
α

β
> 1 and Fγ(M) =


M2−γ if γ < 2,
log(M) if γ = 2,
1 otherwise,

with α and β from (Vα) and (Gβ). The function Fγ reflects the fact that the “size” of {Zn; n ≥ 0}
(as captured by β, see Lemma A.1) becomes increasingly small relative to the overall geometry
of G (controlled by α) as γ grows. As a consequence, intersections between independent walks
in Iu are harder to produce for larger γ. This is implicit in the estimates below.

Lemma 4.4. There exists C < ∞ such that for all t > 0, positive integers N and M, and
starting points SN ∈ GN ,

(4.9) PSN
(

cap
(
T (N,M)

)
≤ tmin

(
NM

Fγ(M)
,Mγ−1

))
≤ Ct.

Proof. Consider positive integers N and M, and SN ∈ GN . By Markov’s inequality,

PSN
(

cap
(
T (N,M)

)
≤ tmin

(
NM

Fγ(M)
,Mγ−1

))
≤ tmin

(
NM

Fγ(M)
,Mγ−1

)
ESN

[
cap
(
T (N,M)

)−1
]
.

(4.10)

Applying (3.12) with the probability measure µ = 1
(M−dM/2e+1)N

∑N
i=1

∑M
p=dM/2e δZip , which

has support in T (N,M), yields

(4.11) ESN
[
cap(T (N,M))−1

]
≤ ESN

[ C

N2M2

N∑
i,j=1

M−1∑
p,q=dM/2e

g
(
Zip, Z

j
q

)]
.

Moreover, using the heat kernel bound (3.16) and the Markov property at time p, we have
uniformly in all p ∈ N and x, y ∈ G,

(4.12) fxp (y)
def.
= Ex [g(Zp, y)] =

∞∑
n=p

pn(x, y) ≤ C
∞∑
n=p

n−γ ≤ Cp1−γ ,

and, thus, for p < q and every i ∈ {1, . . . ,M}, with P̂· an independent copy of P· governing the
process Ẑ, using symmetry of g(·, ·),

(4.13) Exi
[
g(Zip, Z

i
q)
]

= Exi

[
ÊZip [g(Ẑ0, Ẑq−p)

]
= Exi

[
f
Zip
q−p(Z

i
p)
] (4.12)
≤ C(q − p)1−γ ,
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and the same upper bound applies to Exi
[
g(Ziq, Z

i
p)
]
, again by symmetry of g. Considering the

on-diagonal terms in the first sum on the right-hand side of (4.11), we obtain

ESN
[ N∑
i=1

M−1∑
p,q=dM/2e

g(Zip, Z
i
q)

]
≤ 2N max

i∈{1,...,N}
ESN

[ M−1∑
p,q=dM/2e
p≤q

g(Zip, Z
i
q)

]

(4.13)
≤ CNM

(
1 +

dM/2e∑
k=1

k1−γ
) (4.8)
≤ CNMFγ(M).

(4.14)

For i 6= j on the other hand, (4.12) implies

ESN
[ M−1∑
p,q=dM/2e

g
(
Zip, Z

j
q

) ]
=

M−1∑
p,q=dM/2e

ESN
[
fxip
(
Zjq
)]
≤ CM

M−1∑
p=dM/2e

p1−γ

≤ CM3−γ .

Combining this with (4.10), (4.11) and (4.14) yields (4.9).

We now iterate the bound from Lemma 4.4 over the different parts of the random walks
(Zi)i∈{1,...N} in order to improve it.

Lemma 4.5. For each ε ∈ (0, 1), there exist constants c(ε) > 0 and C(ε) ∈ [1,∞) such that
for all positive integers N and M, and SN ∈ GN ,

(4.15) PSN
(
cap
(
T (N,M)

)
≤ cκ

)
≤ C exp{−cM ε},

where

(4.16) κ = κ(N,M, γ, ε) = min

(
NM1−ε

Fγ(M1−ε)
,M (γ−1)(1−ε)

)
.

Proof. For ε ∈ (0, 1), all positive integers N, M and k, we define

Tk(N,M) =

N⋃
i=1

kM−1⋃
p=(k−1)M

{Zip}.

By the Markov property and Lemma 4.4, for all t > 0, ε ∈ (0, 1) and SN ∈ GN , with FN,Mk =
σ(Zip, 1 ≤ i ≤ N, 1 ≤ p ≤ (k − 1)dM1−εe),

(4.17) PSN
(

cap
(
Tk(N, dM1−εe)

)
≤ tκ

∣∣∣FN,Mk

)
≤ Ct.

Moreover,
bMε/2c⋃
k=1

Tk(N, dM1−εe) ⊂ T (N,M),

whence cap
(
T (N,M)

)
≤ L implies cap

(
Tk(N, dM1−εe)

)
≤ L for all 1 ≤ k ≤ bM ε/2c by the

monotonicity property (3.13). Thus, applying the Markov property and using (4.17) inductively
we obtain

PSN
(
cap
(
T (N,M)

)
≤ tκ

)
≤ (Ct)bM

ε/2c ≤ exp{−cM ε}

for all t small enough and M ≥ 21/ε. This yields (4.15).
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The next step is to transfer the bound in Lemma 4.5 from the trace on G of N independent
random walks to a subset of the random interlacement. For all u > 0 and A ⊂⊂ G, conditionally
on the number Nu

A of trajectories in supp(ωu) which hit A, let SuA ∈ GN
u
A be the family of

entrance points in A by trajectories in the support of the random interlacement process ωu

on G. With a slight abuse of notation, we identify Z1, . . . , ZN
u
A under PSuA with the forward

(seen from the first hitting time of A) parts of the trajectories in supp(ωu) which hit A under
PI(· |SuA). We define Ψ(u,A,M) = T (Nu

A,M) for all positive integers M.

Lemma 4.6. For each u0 > 0 and ε ∈ (0, 1), there exist constants c′ = c′(ε) > 0 independent
of u0, c(u0, ε) > 0 and C(u0, ε) <∞ such that for all u ∈ (0, u0], A ⊂⊂ G, x ∈ G, and positive
integers M, with κ̃u,A

def.
= κ(ucap(A),M, γ, ε) (cf. (4.16)),

PI
(
cap
(
Ψ(u,A,M)

)
≤ c′κ̃u,A

)
≤ C exp

{
− c (ucap(A) ∧M ε)

}
,(4.18)

and for all positive integers k, if A ⊂ B
(
x, kM

1+ε
β
)
(with β as in (Gβ)),

(4.19) PI
(

Ψ(u,A,M) 6⊂ B
(
x, (k + 1)M

1+ε
β
))
≤ Ckν exp

{
− cM

ε(ν∧1)
β u

}
.

Proof. Writing, with N = dcucap(A)e,

PI
(
cap
(
Ψ(u,A,M)

)
≤ c′κ̃u,A

)
≤ PI

(
Nu
A < N

)
+ sup

SN

PSN
(
cap
(
T (N,M)

)
≤ c′κ̃u,A

)
,

the inequality (4.18) easily follows from the Poisson bound (4.3) and Lemma 4.5. We turn to the
proof of (4.19), and we fix x ∈ G, ε ∈ (0, 1 ∧ (γ − 1)) as well as positive integers k and M. Let
us write Ak = B

(
x, kM

1+ε
β
)
to simplify notation. If Ψ(u,Ak,M) 6⊂ Ak+1, then for at least one

trajectory Zi among the forward trajectories Z1, . . . , Z
Nu
Ak in supp(ωu) which hit Ak, the walk

Zi will leave B
(
Zi0,M

1+ε
β
)
before time M, which is atypically short on account of Proposition

3.3 ii). Therefore, since Nu
A 6 Nu

Ak
and Ψ(u,A,M) ⊂ Ψ(u,Ak,M),

PI (Ψ(u,A,M) 6⊂ Ak+1)

≤ PI
(
Nu
Ak
≥ Cu · cap(Ak)

)
+ Cu · cap(Ak) sup

y∈Ak
Py

(
TB(y,M(1+ε)/β) ≤M

)
.

Using (4.3), (3.11) and (3.17), we get

PI
(
Ψ(u,A,M) 6⊂ Ak+1

)
≤ C exp

{
− cukνM

ν(1+ε)
β
}

+ CukνM
ν(1+ε)
β exp

{
− cM

ε
β−1
}
,

and (4.19) follows.

With Lemma 4.6 at hand, we can finally produce the desired bound on the capacity of
Cu(x, L) (see after Lemma 4.3 for the definition).

Proposition 4.7. For each u0 > 0 there exist c13 > 0 and C13 < ∞ independent of u0,
c = c(u0) > 0 and C = C(u0) ∈ [1,∞) such that for every u ∈ (0, u0], x ∈ G and L ≥ 1,

(4.20) PI
(
x ∈ Iu, cap(Cu(x, L)) ≤ c13L

3ν/4ubγ−1c
)
≤ C exp

{
− cuLC13

}
.

Proof. We focus on the case γ < 2. Let u0 > 0, x ∈ G, and u ∈ (0, u0) as above and consider a
positive integer M and δ ∈ (0, 1) to be chosen suitably. Since γ < 2, we have Fγ(M) = M2−γ

by (4.8). Thus, by Lemma 4.5,

PI
(
x ∈ Iu, cap

(
Ψ(u, {x},M)

)
≤ c′M (1−δ)(γ−1)

)
≤ EI

[
1x∈IuPx

(
cap
(
T (1,M)

)
≤ c′M (1−δ)(γ−1)

)]
≤ C exp{−cM δ},
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and with (4.19),

PI
(

Ψ(u, {x},M) 6⊂ B
(
x, 2M

1+δ
β

))
≤ C exp

{
− cM

δ(ν∧1)
β u

}
.

Note that if Ψ(u, {x},M) ⊂ B
(
x, 2M

1+δ
β
)
, then Ψ(u, {x},M) ⊂ Cu

(
x, 2M

1+δ
β
)
by definition.

Thus, combining the previous two estimates,

PI
(
x ∈ Iu, cap

(
Cu
(
x, 2M

1+δ
β
))
≤ c′M (1−δ)(γ−1)

)
≤ C exp

{
− cM

δ
β−1u

}
and (4.20) follows by takingM =

⌊
(L/2)

7β
8

⌋
(6= 0 upon assuming w.l.o.g. that L is large enough),

and δ = 1
7 since β(γ − 1) = ν.

For γ ≥ 2, stronger bounds are required than the one provided by Lemma 4.6 to deduce
(4.20). The idea is to apply recursively Lemma 4.6 to a sequence of bγc independent random
interlacement processes at level u/bγc as in Lemma 8, 9 and 10 of [43] or Lemma A.3 and
Corollary A.4 in [16] for G = Zd. We refer the reader to these references for details.

We conclude with the proof of Proposition 4.1.

Proof of Proposition 4.1. Fix some u0 > 0. Recall the notation below Lemma 4.3, and write for
all x0 ∈ G, L ≥ 1, u ∈ (0, u0] and x, y ∈ B(x0, L),

E1 =
{

cap
(
C
u/3
i (x, L)

)
≥ c13L

3ν/4ubγ−1c
}
,

E2 =
{

cap
(
C
u/3
j (y, L)

)
≥ c13L

3ν/4ubγ−1c
}
.

The probability in the second line of (4.7) is upper bounded by

PI
(
E1 ∩ E2 \

{
C
u/3
i (x, L)

∧←→ C
u/3
j (y, L) in Îu/3k ∩BE(x0, 2C10L)

})
+ PI

(
{x ∈ Iu/3i } \ E1

)
+ PI

(
{y ∈ Iu/3j } \ E2

)
.

(4.21)

For the first term in (4.21), we fix the constant c12 = c12(ε) ∈
(
0, C13/2

]
small enough so that,

using Lemma 4.3 and the capacity estimates on the event E1 ∩ E2, for all x, y ∈ B(x0, L),
whenever uL2c12 ≥ 1,

PI
(
E1 ∩ E2 \

{
C
u/3
i (x, L)

∧←→ C
u/3
j (y, L) in Îu/3k ∩BE(x0, 2C10L)

})
≤ C exp

{
−cL−νu× L3ν/2u2bγ−1c

}
≤ C exp

{
− cL2c12u

}
.

(4.22)

Note that when uL2c12 ≤ 1, it is easy to see that (4.22) still holds upon increasing the constant
C. To bound the probabilities in the second line of (4.21), we apply Proposition 4.7. Combining
the resulting estimate with (4.7), (4.21), (4.22), we get for all u ≤ u0, L ≥ 1 and x, y ∈ B(x0, L),

PI
(
x, y ∈ Iu,

{
x
∧←→ y in Îu ∩BE(x0, 2C10L)

}c)
≤ C exp{−cL2c12u},

and (4.2) follows from a union bound on x, y ∈ B(x, L), (Vα) and (2.10).

Remark 4.8. The resulting connectivity estimate (4.1) is not optimal, see for instance (4.22).
Notwithstanding, its salient feature for later purposes (see Section 8) is that it imposes a
polynomial condition on u and L of the type uaLb ≥ C, for some a, b > 0, in order for the
complement of the probability in (4.1) to fall below any given deterministic threshold (later
denoted c17l

−4α
0 , see Proposition 7.1).
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5 Isomorphism, cable system and sign flipping

In the first part of this section we explore some connections between the interlacement Ĩu and
the (continuous) level sets

(5.1) Ẽ>h
def.
= {z ∈ G̃; Φ̃z > h}

of the Gaussian free field on the cable system defined in (2.16). Among other things, we aim to
eventually apply a recent strengthening of the Ray-Knight type isomorphism from [58], see The-
orem 2.4 in [61] and Corollary 5.3 below. This improvement will be crucial in our understanding
that certain level sets tend to locally (i.e. at the smallest scale L0 of our renormalization scheme
– see Section 7) connect to Ĩu and that the latter can be used to build connections of desired
type, but it requires that certain conditions be met within our framework (3.1). We will in
fact prove that the critical parameter for the percolation of the (continuous) level sets (5.1) is
zero, and that Ẽ>−h contains P̃G-a.s. a unique unbounded connected component for all h > 0.
In the second part of this section, we use a “sign-flipping” device which we introduced in [16],
see Lemma 5.5, but improve it in view of the isomorphism from Corollary 5.3, which leads to
certain desirable couplings gathered in Proposition 5.6 as a first step in proving Theorem 1.1
and 1.2.

Our starting point is the following observation from [33], see also (1.27)–(1.30) in [61] (N.B.:
(5.2) below is in fact true on any transient weighted graph (G,λ)). For each u > 0, there exists
a coupling P̃u between two Gaussian free fields ϕ̃ and γ̃ on G̃, and local times ˜̀

G̃,u
of a random

interlacement process on G̃ at level u such that,

P̃u-a.s., ˜̀
G̃,u

and γ̃ are independent and
1

2

(
ϕ̃z +

√
2u
)2

= ˜̀
z,u +

1

2
γ̃2
z , for all z ∈ G̃.

(5.2)

The isomorphism (5.2) has the following immediate consequence: P̃u-a.s.,

(5.3) Ĩu ⊂ {z ∈ G̃; |ϕ̃z +
√

2u| > 0}.

In particular, by continuity, Ĩu is either included in {z ∈ G̃; ϕ̃z > −
√

2u} or {z ∈ G̃; ϕ̃z <
−
√

2u}. This result will be improved with the help of Corollary 4.2 in Proposition 5.2. We
begin with the following lemma about the connected components of {z ∈ G̃; |Φ̃z + h| > 0}.

Lemma 5.1. For each h 6= 0, P̃G-a.s. the set

{z ∈ G̃; |Φ̃z + h| > 0}

contains a unique unbounded connected component.

Proof. By symmetry of Φ̃ it is sufficient to consider the case h > 0. For convenience, we write
h =

√
2u for suitable u > 0 and consider the field ϕ̃ with law P̃G under P̃u instead of Φ̃.

The existence of an unbounded connected component of {z ∈ G̃; |ϕ̃z + h| > 0} follows from
(5.3) in combination with Corollary 4.2. Thus, it remains to show uniqueness. Assume on the
contrary that the set {z ∈ G̃; |ϕ̃z +

√
2u| > 0} contains at least two unbounded connected

components. Then by connectivity of Ĩu, see Corollary 4.2, and by the inclusion (5.3), at
least one of these unbounded connected components does not intersect Ĩu. Call it Cu. Since
Cu ⊂ Ṽu, the isomorphism (5.2) and continuity imply that Cu is an infinite cluster of {z ∈
G̃; |γ̃z| > 0}. But since γ̃ and Ĩu are independent, it follows from Lemma 3.2 that P̃u-a.s. all
the unbounded connected components of {z ∈ G; |γ̃z| > 0}, and thus Cu, intersect Ĩu, which is
a contradiction.
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The uniqueness and existence of the unbounded component of {z ∈ G̃; |Φ̃z+h| > 0} for h > 0
ensured by Lemma 5.1 implies that P̃G-a.s. either Ẽ>−h or G̃ \ Ẽ>−h contains an unbounded
connected component, and we are about to show that it is always Ẽ>−h. For graphs G having
a suitable action by a group of translations (for instance graphs of the form G = G′ × Z),
this result is clear by ergodicity and symmetry of the Gaussian free field. Due to the lack of
ergodicity, we use a different argument here. The measure P̃u refers to the coupling in (5.2).

Proposition 5.2. For all h > 0, P̃G-a.s., the set Ẽ>h only contains bounded connected compo-
nents whereas the set Ẽ>−h contains a unique unbounded connected component. Moreover, for
all u > 0, P̃u-a.s.,

(5.4) Ĩu ⊂ {z ∈ G̃; ϕ̃z > −
√

2u}.

Proof. We only need to show that for all h > 0

(5.5) P̃u=h2

2
(
{z ∈ G̃; ϕ̃z < −h} contains an unbounded connected component

)
= 0.

Indeed, if (5.5) holds then by symmetry Ẽ>h only contains bounded connected components, by
Lemma 5.1 Ẽ>−h contains P̃G-a.s. a unique unbounded component and (5.4) follows from (5.3)
and Corollary 4.2.

Assume that (5.5) does not hold for some height h > 0, which is henceforth fixed, and set
u = h2

2 . Let C h ⊂ G̃ be the set of points belonging to the infinite connected component of
{z ∈ G̃; ϕ̃z < −h} whenever it exists (C h = ∅ if there is no such component). By a union
bound there exists x0 ∈ G such that

(5.6) P̃u
(
x0 ∈ C h

)
> 0.

For all n ∈ N, we define the random variable

(5.7) Yn =
|Iu ∩B(x0, n)|
|B(x0, n)|

, (where u = h2/2.)

All constants from here on until the end of this proof may depend implicitly on u (or h). By
definition of random interlacements and since cap({x}) = g(x, x)−1, PI(x ∈ Iu) = 1− e−

u
g(x,x) ,

whence for all x ∈ G, c ≤ PI(x ∈ Iu) ≤ C due to (Gβ) and thus, in view of (5.7),

(5.8) c ≤ Ẽu[Yn] =
1

|B(x0, n)|
∑

x∈B(x0,n)

P̃u(x ∈ Iu) ≤ C.

Following the lines of the proof of (1.38) in [57] one finds with the help of (Gβ) that there exists
a constant C such that for all x, x′ ∈ G,

(5.9) CovP̃u
(
1x∈Iu ,1x′∈Iu

)
= CovPI

(
1x∈Vu ,1x′∈Vu

)
≤ Cg(x, x′).

Moreover, by (2.10) and Lemma A.1, there exists a constant C < ∞ such that for all x ∈ G
and n ∈ N,

(5.10)
∑

y∈B(x,n)

g(x, y) ≤ Cnβ.

Combining (5.9), (5.10), (2.10) and (Vα) yields that for all n ∈ N

(5.11) VarP̃u(Yn) =
1

|B(x0, n)|2
∑

x,x′∈B(x0,n)

CovP̃u
(
1x∈Iu ,1x′∈Iu

)
≤ Cnβ−α = Cn−ν .
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With (5.8), (5.11) and Chebyshev’s inequality, one then finds N0 > 0 large enough such that
for all n ≥ N0,

(5.12) P̃u
(
Yn ≤

Ẽu[Yn]

2

)
≤

4VarP̃u(Yn)

Ẽu[Yn]2
≤ Cn−ν ≤ P̃u(x0 ∈ C h)

2
,

where the last step follows from the assumption (5.6). Using (5.12) and (5.8), we get that for
all n ≥ N0,

(5.13) Ẽu[Yn · 1x0∈C h ] ≥ Ẽu[Yn]

2
· P̃u

(
Yn ≥

Ẽu[Yn]

2
, x0 ∈ C h

)
≥ cP̃u(x0 ∈ C h).

If x0 ∈ C h, then C h is the unique unbounded connected component of {z ∈ G̃; |ϕ̃z + h| > 0}
by Lemma 5.1, and thus by (5.3), (5.13), (Vα) and (2.10), for all n ≥ N0 the lower bound

(5.14) Ẽu
[∣∣C h ∩B(x0, n)

∣∣ · 1x0∈C h

]
≥ Ẽu

[∣∣Iu ∩B(x0, n)
∣∣ · 1x0∈C h

]
≥ cnαP̃u(x0 ∈ C h)

follows. On the other hand,

(5.15) Ẽu
[∣∣C h ∩B(x0, n)

∣∣ · 1x0∈C h

]
=

∑
x∈B(x0,n)

P̃u(x ∈ C h, x0 ∈ C h),

and, according to the proof of Proposition 5.2 in [33], for all x ∈ G,

P̃u(x ∈ C h, x0 ∈ C h) ≤ P̃u(x
∼←→ x0 in {z ∈ G̃; |ϕ̃z| > 0})

≤ arcsin
(

g(x0, x)√
g(x0, x0)g(x, x)

) (Gβ)
≤ Cg(x0, x).

(5.16)

Combining (5.15), (5.16) and (5.10) then yields the upper bound

(5.17) Ẽu
[∣∣C h ∩B(x0, n)

∣∣ · 1x0∈C h

]
≤ Cnβ.

Finally, by (5.14) and (5.17) one obtains, for all n ≥ N0, P̃u(x0 ∈ C h) ≤ Cnβ−α ≤ Cn−ν , which
contradicts (5.6) as n→∞.

Having shown Proposition 5.2, taking complements in (5.4), we know that for all u > 0,

(5.18) {z ∈ G̃; ϕ̃z < −
√

2u} ⊂ Ṽu

(and in particular h∗ ≤
√

2u∗) for all graphs G satisying our assumptions (3.1). Moreover, as
will become clear in the proof of Corollary 5.3 below, Proposition 5.2 provides us with a very
explicit way to construct a coupling P̃u as in (5.2) with the help of [61]. With a slight abuse
of notation (which will soon be justified), for all u > 0, we consider a (canonical) coupling P̃u
between a Gaussian free field γ̃ on G̃ (with law P̃G) and an independent family of local times
(˜̀z,u)

z∈G̃ continuous in z ∈ G̃ of a random interlacement process with the same law as under
P̃I , cf. (2.18). Note that this defines the set Ĩu by means of (2.19). We then define

C∞u as the union of the connected components

of {z ∈ G̃; 2˜̀z,u + γ̃2
z > 0} intersecting Ĩu.

(5.19)

The following is essentially an application of Theorem 2.4 in [61].
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Corollary 5.3. The process (ϕ̃z)z∈G̃ defined by

(5.20) ϕ̃z =

{
−
√

2u+ γ̃z if z /∈ C∞u ,
−
√

2u+

√
2˜̀z,u + γ̃2

z if z ∈ C∞u .

for all z ∈ G̃, is a Gaussian free field, i.e., its law is P̃G, and the joint field (γ̃·, ˜̀·,u, ϕ̃·) thereby
defined constitutes a coupling such that (5.2) holds. Moreover, C∞u is the unique unbounded
connected component of {z ∈ G̃; ϕ̃z > −

√
2u}.

Proof. We aim at invoking Theorem 2.4 in [61] in order to deduce that the field ϕ̃ defined in
(5.20) is indeed a Gaussian free field. The conditions to apply this result are that

(5.21) P̃G-a.s., {z ∈ G̃; |Φ̃z| > 0} only contains bounded connected components,

and g(x, x) is uniformly bounded. The latter is clear by (Gβ), but it is not obvious that (5.21)
holds. However, by direct inspection of the proof of Theorem 2.4 in [61], we see that (5.21)
is only used to prove (1.33) and (2.48) in [61], and that it can be replaced by the following
(weaker) conditions:

for all u > 0, P̃u-a.s., Ĩu ⊂ {z ∈ G̃; ϕ̃z > −
√

2u} and(5.22)

all the unbounded connected components of {z ∈ G̃; |γ̃z| > 0} intersect Ĩu,(5.23)

and the proof of Theorem 2.4 in [61] continues to hold. For the class of graphs (3.1) considered
here the condition (5.22) has been shown in (5.4) and the condition (5.23) follows from Lemma
3.2 and the independence of γ̃ and Ĩu. Thus, Theorem 2.4 in [61] applies and yields that ϕ̃
defined in (5.20) has law P̃G.

By (5.19), ˜̀z,u = 0 for z /∈ C∞u and it then follows plainly from (5.20) that (5.2) holds.
Finally, the fact that C∞u is the unique unbounded cluster of {z ∈ G̃; ϕ̃z > −

√
2u} is a conse-

quence of Proposition 5.2 and the definitions of C∞u and ϕ̃, recalling that Ĩu = {z ∈ G̃; ˜̀z,u > 0}
is an a.s. unbounded connected set due to Corollary 4.2 and (2.19).

Remark 5.4.

1) An interesting consequence of Corollary 5.3 is that for all graphs satisfying our assumptions
(3.1), the inclusion (5.18) can be strengthened to

(5.24) for all A ⊂ (−∞, 0), {z ∈ G̃; ϕ̃z ∈ −
√

2u+A} ⊂ Ṽu ∩ {z ∈ G̃; γ̃z ∈ A},

see Corollary 2.5 in [61].

2) For the remainder of this article, with a slight abuse of notation, we will solely refer to
P̃u as the coupling between (γ̃·, ˜̀·,u, ϕ̃·) constructed around (5.19) and (5.20). Thus, the
conclusions of Corollary 5.3 hold, and in particular P̃u satisfies (5.2).

We now adapt a result from Section 5 in [16] which roughly shows that, under P̃u, for each
x ∈ G and with u = h2/2 for a suitable h > 0, except on an event with small probability, a
suitable conditional probability that ϕ̃z ≥ −h for all z on the first half of an edge starting in x
is smaller than the respective conditional probability that ϕx ≥ h at the vertex x whenever h
(or u) is small enough.

For each x ∼ y ∈ G, we denote by Ux,y the compact subset of G̃ which consists of the points
on the closed half of the edge I{x,y} beginning in x, and for x ∈ G let Ux =

⋃
y∼x U

x,y and
Kx = ∂Ux, i.e., Kx is the finite set consisting of all midpoints on any edge incident on x. For
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all U ⊂ G̃, we denote by AU the σ-algebra σ(ϕ̃z, z ∈ U). For all x ∈ G, u > 0 and K > 0, we
also define the events

Rxu =
{
∃ y ∈ G; y ∼ x and ϕ̃z ≥ −

√
2u for all z ∈ Ux,y

}
,

SxK =
{
ϕ̃z ≥ −K for all z ∈ Kx

}
.

(5.25)

For all z ∈ Kx, let yz be the unique y ∼ x such that z ∈ Ux,y. Recall that by the Markov
property (2.17) of the free field, one can write, for all x ∈ G,

(5.26) ϕx = βU
x

x + ϕU
x

x , where βU
x

x =
∑
z∈Kx

Px
(
X̃TUx = z

)
ϕ̃z =

1

λx

∑
z∈Kx

λx,yz ϕ̃z

is AKx-measurable and ϕU
x

x is a centered Gaussian variable independent of AKx and with
variance gUx(x, x) = 2∑

y∼x(ρx,y/2)−1 = 1
2λx

, where we recall ρx,y = 1/(2λx,y) and refer to p.2123
of [33] for an analogous calculation.

Lemma 5.5. There exists c14 > 0 such that for all u > 0, x ∈ G and K >
√

2u satisfying

(5.27) Kλx
√

2u ≤ c14,

we have

(5.28) 1SxK
P̃u
(
Rxu, ϕx ≤ 2

√
2u | AKx

)
≤ 1

2
P̃u
(√

2u ≤ ϕx ≤ 2
√

2u | AKx
)

on {βUxx ≤ K},

and, denoting by F the cumulative distribution function of a standard normal variable,

(5.29) P̃u
(
ϕx ≥

√
2u | AKx

)
≥ F

(√
2λx(K −

√
2u)
)

on {βUxx > K}.

Proof. We first consider the event {βUxx ≤ K}. For any u > 0 and K >
√

2u, on the event
{βUxx ≤ K} ∩ SxK , we have |βUxx | ≤ K by (5.25) and (5.26) and thus

P̃u
(
−
√

2u ≤ ϕx ≤ 2
√

2u
∣∣AKx)

=

√
λx
π

∫ 2
√

2u

−
√

2u
exp

{
−λx(y − βUxx )2

}
dy

≤
√

2uλx
π

exp
{
− λx(βU

x

x )2
}
× 3 exp

{
4
√

2uλxK
}
.

(5.30)

Similarly, still on the event {βUxx ≤ K} ∩ SxK ,

(5.31) P̃u
(√

2u ≤ ϕx ≤ 2
√

2u
∣∣AKx) ≥√2uλx

π
exp

{
−λx(βU

x

x )2
}

exp
{
− 8
√

2uλxK
}
.

For any x ∈ G and z ∈ Kx, by the Markov property (2.17), the law of the Gaussian free
field ϕ̃ on Ux,yz conditionally on AKx∪{x} is that of a Brownian bridge of length ρx,yz/2 =
(4λx,yz)

−1 between ϕx and ϕ̃z of a Brownian motion with variance 2 at time 1. Furthermore,
still conditionally on AKx∪{x}, these bridges form an independent family in z ∈ Kx. Therefore,
on the event {−

√
2u ≤ ϕx ≤ 2

√
2u} ∩ {βUxx ≤ K} ∩ SxK , using an exact formula for the

distribution of the maximum of a Brownian bridge, see for instance [11], Chapter IV.26, we
obtain

P̃u
(
Rxu | AKx∪{x}

)
= 1−

∏
y∼x

P̃u
(
∃ z ∈ Ux,y; ϕ̃z < −

√
2u
∣∣∣AKx∪{x})

= 1−
∏
z∈Kx;

ϕ̃z≥−
√
2u

exp
{
− 4λx,yz(ϕ̃z +

√
2u)(ϕx +

√
2u)
}

≤ 1− exp
{
− 24
√

2uλxK
}
≤ 24

√
2uλxK.

(5.32)
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Together, (5.30), (5.31) and (5.32) imply that for all u > 0 and K >
√

2u, on the event
{βUxx ≤ K} ∩ SxK ,

(5.33)
P̃u
(
Rxu ∩ {ϕx ≤ 2

√
2u}

∣∣AKx)
P̃u
(√

2u ≤ ϕx ≤ 2
√

2u
∣∣AKx) ≤ 72

√
2uλxK exp

{
12
√

2uλxK
}
.

We now choose the constant c14 such that the right-hand side of (5.33) is smaller than 1/2
if
√

2uλxK ≤ c14, and (5.28) then readily follows from (5.33). The inequality (5.29) follows
simply from (5.26): for all u > 0, K >

√
2u and x ∈ G, on the event {βUxx > K},

P̃u
(
ϕx ≥

√
2u | AKx

)
≥ P̃u

(
ϕU

x

x ≥
√

2u−K | AKx
)

= F
(√

2λx(K −
√

2u)
)
.

This completes the proof of Lemma 5.5.

For all parameters u > 0 and p ∈ (0, 1), we consider a probability measure Q̃u,p, exten-
sion of the coupling P̃u introduced above (5.19), see also Remark 5.4, 2), governing the fields
((γ̃z)z∈G̃, (

˜̀
z,u)

z∈G̃, (B
p
x)x∈G) such that, under Q̃u,p,

(5.34)
the fields γ̃·, ˜̀·,u are those from above (5.19) (and thus Corollary 5.3
applies), Bpx, x ∈ G are i.i.d. {0, 1}-valued random variables with

Q̃u,p(Bpx = 1) = p, the three fields Bp· , γ̃·, ˜̀·,u are independent.

We introduce for u > 0, K >
√

2u and p ∈ (0, 1) the condition

(5.35)
1

2
≤ p < inf

x∈G
F
(√

2λx(K −
√

2u)
)
.

Recalling the definition of the σ-algebra AKx , x ∈ G, we consider a family (Xx
u,K,p)x∈G ∈

{0, 1}G of random variables defined on the same underlying probability Q̃u,p from (5.34) and
the property that, for K >

√
2u and all x ∈ G,

(5.36) 1βUxx ≥K · Q̃
u,p
(
Xx
u,K,p = 1 | AKx

)
≤ p.

We will consider the following two natural choices for Xu,K,p, either

(5.37) Xx
u,K,p = Bpx, x ∈ G,

or

(5.38) Xx
u,K,p = 1{ϕx≤K}, x ∈ G,

and we will allow for both. The reason for this twofold choice is explained below in Remark
9.4, 2). In case (5.37), inequality (5.36) follows directly from the definition (5.34), whereas in
the case (5.38) it is a consequence of the decomposition (5.26) and the fact that Q̃u,p(ϕUxx ≤
0 | AKx) = 1/2 ≤ p. We introduce the event

(5.39) SxK
def.
=
{
γ̃y ≥ −K +

√
2u for all y ∈ Kx

}
and the following random subsets of G, cf. (5.25) for the definitions of Rxu and SxK :

Ru
def.
= {x ∈ G; Rxu occurs},

SK
def.
= {x ∈ G; SxK occurs},

SK
def.
= {x ∈ G; SxK occurs}, and

Xu,K,p
def.
= {x ∈ G; Xx

u,K,p = 1}.

(5.40)
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By (5.20), under Q̃u,p, if ϕ̃z < −K, then γ̃z < −K +
√

2u for all z ∈ G̃, and thus for all x ∈ G,
in view of (5.25) and (5.39),

(5.41) (SxK)c ⊂ (SxK)c, and therefore SK ⊂ SK .

We now take advantage of Lemma 5.5 to obtain the following coupling.

Proposition 5.6. For all u > 0, K >
√

2u and p ∈ (0, 1) such that (5.27) and (5.35)
hold true for all x ∈ G, with (Xx

u,K,p)x∈G as in (5.37) or (5.38), one can find an extension
(Ωu,K,p,Fu,K,p,Qu,K,p) of the probability space underlying Q̃u,p on which one can define for

each 0 ≤ v ≤ u two random subsets H = Hu,v,K,p and E≥
√

2v of G such that

(5.42) E
≥
√

2v has the same law under Qu,K,p as E≥
√

2v under PG,

the family {x ∈ H}x∈G is i.i.d., for each x ∈ G we have that {x ∈ H} is independent of

{y ∈ E
≥
√

2v}y∈G\{x}, Ĩu, γ̃ and (Bpx)x∈G; moreover Qu,K,p(x ∈ H) > 0 and the following
inclusion holds true:

(5.43) (Ru ∪H) ∩ SK ∩Xu,K,p ⊂ E
≥
√

2v
.

Proof. For fixed values of u, K and p satisfying the above assumptions, we consider an extension
(Ωu,K,p,Fu,K,p,Qu,K,p) of the probability space underlying Q̃u,p, on which we also can define an
i.i.d. family (Vx)x∈G of uniform random variables on [0, 1], independent of Ĩu, γ̃ and (Bpx)x∈G.
For each x ∈ G and 0 ≤ v ≤ u, there exists a measurable function fxu,v : RKx → (−∞, 1] such
that, with K =

⋃
x∈GKx and AK = σ(ϕ̃x, x ∈ K),

(5.44) fxu,v(ϕ̃|Kx) =
Q̃u,p(ϕx ≥

√
2v | AK)− Q̃u,p(Rxu ∩ SxK ∩ {Xx

u,K,p = 1} |AK)

1− Q̃u,p(Rxu ∩ SxK ∩ {Xx
u,K,p = 1} |AK)

(in particular, the right-hand side depends on ϕ̃|K only through ϕ̃|Kx). In order to lower bound
fxu,v(ψ) for ψ ∈ RKx with ψy ≥ −K for all y ∈ Kx, we distinguish cases recalling the de-
composition (5.26): on the event {βUxx > K} we can use the lower bound (5.29) in combina-
tion with (5.36) to obtain fxu,v(ψ) ≥ F

(√
2λx(K −

√
2u)
)
− p. On the complementary event

{βUxx ≤ K} we take advantage of (5.28), using that v ≤ u and the inequality P(N (0, 1) ∈
[a, b]) ≥ c(b − a) exp(−C max(a2, b2)) for all a ≤ b in R; choosing a =

√
2λx(
√

2u − βU
x

x )
and b =

√
2λx(2

√
2u − βU

x

x ) in combination with the fact that |βUxx | ≤ K, we get that
fxu,v(ψ) ≥ c

√
uλx exp

(
− Cλx(K + 2

√
2u)2

)
. Combining these lower bounds, we have for all

ψ ∈ RKx with ψy ≥ −K for all y ∈ Kx,

fxu,v(ψ) ≥
(
F
(√

2λx(K −
√

2u)
)
− p
)
∧
(
c
√
λxu exp

(
− Cλx(K + 2

√
2u)2

))
.

By (2.10) and (5.35), we thus have

(5.45) fmin
def.
= inf

x∈G
inf

ψ∈RKx :
ψy≥−K,y∈Kx

fxu,v(ψ) > 0.

For all 0 ≤ v ≤ u, let

(5.46) E
≥
√

2v def.
= {x ∈ G; Vx ≤ fxu,v(ϕ̃|Kx)} ∪

(
Ru ∩ SK ∩Xu,K,p

)
and

(5.47) H = Hu,v,K,p
def.
=
{
x ∈ G; Vx ≤ fmin

}
.
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It is clear that the family {x ∈ H}x∈G is i.i.d., that {x ∈ H} is independent of {y ∈
E
≥
√

2v}y∈G\{x}, Ĩu, γ̃ and (Bpx)x∈G, and that Qu,K,p(x ∈ H) > 0 due to (5.45). We proceed to
verify (5.43) with SK replacing SK , which is sufficient due to (5.41). We have

H ∩ SK ∩Xu,K,p

(5.25),(5.45)
⊂ H ∩ SK ∩ {x ∈ G : fxu,v(ϕ̃|Kx) ≥ fmin}

(5.47)
⊂ {x ∈ G; Vx ≤ fxu,v(ϕ̃|Kx)}

(5.46)
⊂ E

≥
√

2v
,

from which (5.43) (with SK in place of SK) immediately follows, since (Ru ∩ SK ∩Xu,K,p) ⊂
E
≥
√

2v.
It remains to check that (5.42) holds. Abbreviating q = Qu,K,p

(
x ∈

(
Ru∩SK∩Xu,K,p

) ∣∣AK),
we have

Qu,K,p
(
x ∈ E≥

√
2v ∣∣AK)

(5.46)
= q +Qu,K,p

(
Vx ≤ fxu,v(ϕ̃|Kx), x ∈

(
Ru ∩ SK ∩Xu,K,p

)c ∣∣AK)
= q + fxu,v(ϕ̃|Kx)(1− q)

(5.44)
= Q̃u,p(ϕx ≥

√
2v | AK).

(5.48)

By (5.46) and the definition of Rxu, SxK and Xx
u,K,p see (5.25) and (5.37) or (5.38), conditionally

on AK, the events {x ∈ E
≥
√

2v}, x ∈ G, respectively {ϕx ≥
√

2v}, x ∈ G, are independent

and so by (5.48) the sets E≥
√

2v and {x ∈ G : ϕx ≥
√

2v} have the same conditional law.
Integrating, we obtain (5.42).

Remark 5.7. Lemma 5.5 is stated in terms of the field ϕ̃ under the measure P̃u with u > 0,
or equivalently under the measure Q̃u,p, to which it will eventually be applied. Nevertheless,
let us note here that it could in fact be stated for the Gaussian free field Φ̃ under P̃G for any
weighted graph (G,λ) since the assumptions (3.1) are not required for its proof. Proposition
5.6 is valid on any transient weighted graph (G,λ) such that (2.10) and Corollary 5.3 hold, i.e.
on any graph such g(x, x) is uniformly bounded and such that the conditions (2.10), (5.22) and
(5.23) hold. In particular, the assumptions (3.1) are not necessarily required.

We close this section with an outlook of the remaining sections. Under Qu,K,p from Propo-
sition 5.6 with Xu,K,p from (5.37), we have that SK ∩Xu,K,p and Iu are independent, and by

(5.4) that Iu ∩ SK ∩Xu,K,p ⊂ Ru ∩ SK ∩Xu,K,p ⊂ E
≥
√

2u
. Moreover by (5.42) and (5.24), we

have that E≥
√

2u is stochastically dominated by Vu. In order to prove Theorem 1.2 (but not
Theorem 1.1), we thus only need to show that Iu ∩SK ∩Xu,K,p percolates for a suitable choice
of u, K and p with Kλx

√
2u ≤ c14 and p < F

(√
2λx(K −

√
2u)
)
for all x ∈ G. A promising

strategy to prove that the intersection of Iu and a large set percolates on G is to apply the
decoupling inequalities of Theorem 2.4 to a suitable renormalization scheme, similarly to [44]
and [16]. This requires roughly the same amount of work as obtaining an estimate like (1.10)
for small h > 0 (both are “existence”-type results), and they will follow as a by-product of
the renormalization argument developed in the course of the next three sections. The actual
renormalization scheme will be considerably more involved than the arguments presented in
[44] and [16] in order to produce an estimate like (1.11) for small h > 0 and thereby allow us
to deduce Theorem 1.1.
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6 Proof of decoupling inequalities

The coupling Q̃u,p of (5.34) will eventually feature within a certain renormalization scheme that
will lead to the proof of our main results, Theorems 1.1 and 1.2. This is the content of Sections
7 and 8. The successful deployment of these multi-scale techniques hinges on the availability of
suitable decoupling inequalities, which were stated in Theorem 2.4 and which we now prove. In
essence, both inequalities (2.20) (for the free field) and (2.21) (for interlacements) constituting
Theorem 2.4 will follow from two corresponding results in [38] and [39], see also (6.4) and (6.26)
below (these results are stated in [38], [39], for Zd but can be extended to G̃, the cable system
of any graph satisfying (3.1)), once certain error terms are shown to be suitably small. In the
free field case, see Lemma 6.4, the respective estimate is straightforward and we give the short
argument, along with the proof of (2.20), first.

The issue of controlling the error term is considerably more delicate for the interlacement.
The key control comes in Lemma 6.6 below. Following arguments in [39], it essentially boils
down to estimates on the second moment and on the tail of the so-called soft local times
attached to the relevant excursion process (for one random walk trajectory), see (6.22) below,
which are given in Lemma 6.7. For G = Zd, these bounds follow from the strong estimates of
Proposition 6.1 in [39], but its proof is no longer valid at the level of generality considered here
(the details of the argument are very Euclidean; see for instance Section 8 in [39]). We bypass
this issue by presenting a way to obtain the desired bounds in Lemma 6.7 and along with it,
the decoupling inequality (2.21), without relying on (strong) estimates akin to Proposition 6.1
of [39]. This approach is shorter even when G = Zd but comes at the price of requiring an
additional assumption on the distance between the sets. An essential ingredient is a certain
consequence of the Harnack inequality (3.3), see Lemma 6.5 below.

The following lemma will be useful to find “approximate lattices” at all scales inside G. It
will be applied in the context of certain chaining arguments below. These lattices will also be
essential in setting up an appropriate renormalization scheme in Section 7.

Lemma 6.1. Assume (p0), (Vα), and (Gβ) to be fulfilled. Then there exists a constant C14

such that for each L ≥ 1, one can find a set of vertices Λ(L) ⊂ G with

(6.1)
⋃

y∈Λ(L)

B(y, L) = G,

and for all x ∈ G and N ≥ 1,

(6.2) |Λ(L) ∩B(x, LN)| ≤ C14N
α.

Proof. For a given L ≥ 1, let Λ(L) ⊂ G have the following two properties: i) for all y 6= y′ ∈
Λ(L), d(y, y′) > L, and ii) for all x ∈ G, there exists y ∈ Λ(L) such that d(x, y) ≤ L. Indeed,
one can easily construct such a set Λ(L) = {y0, y1, . . . }, e.g. by labeling all the vertices in
G = {x0, x1, . . . } and then “exploring” G, starting at y0 = x0 ∈ G, then defining y1 as the
point with smallest label in the complement of B(x0, L), idem for y2 in the complement of
B(y0, L) ∪B(y1, L), etc.

By ii), for each x ∈ G, there exists y ∈ Λ(L) such that d(x, y) ≤ L, and so in particular⋃
y∈Λ(L)B(y, L) = G. Moreover, for all x ∈ G and N ≥ 1,⋃

y∈Λ(L)∩B(x,NL)

B
(
y,
L

2

)
⊂ B(x, L(N + 1)),

and the balls B
(
y, L2

)
, y ∈ Λ(L), are disjoint by i). Combining this with (Vα) we infer that for

L ≥ 2,

|Λ(L) ∩B(x,NL)| ≤ C1(L(N + 1))α

c1(L/2)α
≤ 4αC1

c1
Nα,
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and the proof of (6.2) for 1 ≤ L < 2 is trivial by (Vα) and (2.10) (choose Λ(L) = G).

We start with some preparation towards (2.20). Let Ã1 and Ã2 be two disjoints measurable
subsets of G̃ such that Ã1 is compact with finitely many connected components, and let Ũ1 = Ãc

1.

We recall the definition of the harmonic extension β̃Ũ1 of the Gaussian free field Φ̃ from (2.17),
and for each ε > 0 define the event

(6.3) Hε =
{

sup
z∈Ã2

∣∣β̃Ũ1
z

∣∣ ≤ ε

2

}
.

The following result is stated on Zd in [38] but its proof is actually valid on G̃, for any G as
in (3.1), using the Markov property of the free field on G̃, cf. (2.17), instead of the Markov
property on Zd.

Theorem 6.2 ([38, Theorem 1.2]). Let Ã1 and Ã2 be two disjoints measurable subsets of G̃
such that Ã1 is compact with finitely many connected components, and let f2 : C(Ã2,R)→ [0, 1]
be a measurable and increasing or decreasing function. Then for all ε > 0, P̃G-a.s.,{

ẼG
[
f2(Φ̃|Ã2

− σε)
]
− P̃G (Hc

ε)
}
1Hε

≤ ẼG
[
f2(Φ̃|Ã2

)
∣∣ ϕ̃|Ã1

]
1Hε ≤

{
ẼG
[
f2(Φ̃|Ã2

+ σε)
]

+ P̃G (Hc
ε)
}
1Hε

(6.4)

where σ = 1 if f2 is increasing and σ = −1 if f2 is decreasing.

Remark 6.3. We note in passing that conditions (p0), (Vα) and (Gβ) are not even necessary
here: Theorem 6.2 holds on any locally finite, transient, connected weighted graph (G,λ).

Assume now that Ã1 is no longer compact, but only bounded (and measurable) and let Ã′1
be the largest subset B̃ of G̃ such that B̃∗ = Ã∗1 (see before display (2.15) for a definition of
B̃∗), i.e., Ã′1 is the closure of the set where one adds to Ã1 all the edges Ie such that Ã1∩Ie 6= ∅,
and Ã′∗1 = Ã∗1 ⊂ G is the “print” of Ã′1 in G. Note that every continuous path started in G̃ \ Ã′1
and entering Ã′1 will do so by traversing one of the vertices in Ã∗1. The set Ã′1 is a compact
subset of G̃ with finitely many connected components. We can thus define H ′ε as in (6.3) but
with Ũ ′1

def.
= (Ã′1)c in place of Ũ1, for any bounded measurable set Ã1 ⊂ G̃. The inequality

(2.20) will readily follow from Theorem 6.2 once we have the following lemma, which is similar
to Proposition 1.4 in [38].

Lemma 6.4. Let Ã1 and Ã2 be two Borel-measurable subsets of G̃, s = d(Ã∗1, Ã
∗
2) and r = δ(Ã∗1).

Assume that s > 0 and r <∞. There exist constants c6 > 0 and C6 <∞ such that for all such
Ã1, Ã2 and all ε > 0,

(6.5) P̃G
(
H ′ε

c) ≤ C6

2
(r + s)α exp

{
−c6ε

2sν
}
.

Proof. Let K = ∂B(Ã∗1, s). By assumption, every connected path on G̃ from Ã2 to Ã1 must

enter K prior to Ã∗1. By the strong Markov property of X̃, we have β̃Ũ
′
1

z =
∑

x∈K P̃z(HK <

∞, X̃HK = x)β̃
Ũ ′1
x for all z ∈ Ã2 and therefore, in view of (6.3), we obtain the bound

(6.6) P̃G
(
H ′ε

c) ≤ P̃G
(

sup
x∈K

∣∣β̃Ũ ′1x ∣∣ > ε

2

)
= PG

(
sup
x∈K

∣∣βÃ∗1x ∣∣ > ε

2

)
,

with β
Ã∗1
x = Ex

[
ΦZH

Ã∗1
1H

Ã∗1
<∞
]
. Here, the equality follows from the fact that under P̃x for

x ∈ K, X̃T
Ũ′1

= X̃H
Ã′1

is always on Ã∗1 (cf. the discussion below Remark 6.3), that the law of
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Φ̃|G under P̃G is PG, and that the law of X̃|G under P̃x is Px for each x ∈ G. Following the
proof of Proposition 1.4 in [38] (see the computation of Var(hx) therein), if s > 2C3, then for

each x ∈ K, βÃ
∗
1

x is a centered Gaussian variable with variance upper bounded by

(6.7) sup
y∈Ã∗1

g(x, y)
(Gβ)
≤ C2 sup

y∈Ã∗1

d(x, y)−ν
(2.8)
≤ C2(s− C3)−ν ≤ Cs−ν ,

noting that d(K, Ã∗1) ≥ s−C3 by (2.8). By possibly adjusting the constant C, we see that (6.7)
continues to hold if s ≤ 2C3, for then s−ν ≥ c and sup

x∈K,y∈Ã∗1
g(x, y) ≤ supx∈G g(x, x) ≤ C2

by (Gβ) and using that g(x, y) = Px(Hy <∞)g(y, y) ≤ g(y, y). By a union bound, using (Vα)
and (2.10), we finally get with (6.7) and (6.6),

P̃G
(
H ′ε

c) ≤ 2C1c
−1
4 (r + s)α exp

{
− csνε2

}
,

for all s > 0 and r <∞, which completes the proof.

Proof of (2.20). We may assume without loss of generality that Ã1 is bounded and r = δ(Ã1).
Applying Theorem 6.2 with Ã′1 and Ã2, multiplying the upper bound in (6.4) by f1(ϕ̃|Ã1

) for

some monotone function f1 : C(Ã1,R)→ [0, 1] and integrating yields

(6.8) ẼG
[
f1

(
Φ̃|Ã1

)
f2

(
Φ̃|Ã2

)]
≤ ẼG

[
f1

(
Φ̃|Ã1

± ε
)]

ẼG
[
f2

(
Φ̃|Ã2

± ε
)]

+ 2P̃G
(
H ′ε

c)
.

The inequality (2.20) then follows from (6.8) and (6.5).

We now turn to (2.21), the decoupling inequality for random interlacements. We will even-
tually use the soft local times technique which has been introduced in [39] to prove a similar
(stronger) inequality on Zd, for d ≥ 3. In anticipation of arising difficulties when estimating the
error term which naturally appears within this method, we first show a certain Harnack-type
inequality, see (6.11) below, which will be our main tool to deal with this issue. Let

(6.9) K ≥ 5 ∨ (2C3)2

be a parameter to be fixed later (the choice of K will correspond to the constant C7 appearing
above (2.21), see (6.33) below). We consider Ã1 and Ã2 two measurable subsets of G̃ and we
assume that the diameter r of Ã∗1 is finite and smaller than the diameter of Ã∗2 (recall the
definition of Ã∗ ⊂ G for Ã ⊂ G̃ from Section 2), and that s = d(Ã∗1, Ã

∗
2) ≥ K(r ∨ 1). We then

define

(6.10) A1 = Ã∗1, A2 = B
(
A1,

s

2

)c
and V = ∂B

(
A1,

s√
K

)
.

These assumptions imply that s ≥ K
(6.9)
≥ 2C3

√
K, so that by (2.8), the sets A1, A2 and V are

disjoint subsets of G, A2 ⊃ Ã∗2 and any nearest neighbor path from A1 to A2 crosses V. The
following lemma will follow from (3.3) and a chaining argument.

Lemma 6.5. There exists c ≥ 5 ∨ (2C3)2 such that the following holds true: for all K ≥ c,
there exists C15 = C15(K) ≥ 1 such that for any A1, A2, V as above, B ∈ {A1, A2, A1 ∪A2}, v
a non-negative function on G, L-harmonic on Bc,

(6.11) sup
y∈V

v(y) ≤ C15 inf
y∈V

v(y).
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y

y′

A2

U2

A1

V = ∂U1

U0

Figure 2: The grey regions are not part of the graph, but there is always a (purple) path between
y and y′ in U c

0 ∩ U2. In green, the balls B(zi, ε
2s) are included in (A1 ∪A2)c ⊂ Bc.

Proof. Set ε(K) = 1√
K

and

U0 = B
(
A1, ε

2(2C9 + 1)s
)
, U1 = B

(
A1, εs

)
, U2 = B

(
A2, ε

2(2C9 + 1)s
)c
,

where C9 corresponds to the constant in the elliptic Harnack inequality, see above (3.3) and
Lemma 3.1. We first prove that if K ≥ c (so that ε is small enough) then V (= ∂U1) is connected
in U c

0 ∩ U2, that is for every vertices y, y′ ∈ V , there exists a path in U c
0 ∩ U2 from y to y′. We

first assume that K ≥ c so that U0 ⊂ U1 ⊂ U2. Then by (2.6) for all y, y′ ∈ V we have

gU c
0∩U2(y, y′) ≥ g(y, y′)− Py(HU0 < TU2) sup

z∈U0

g(z, y′)− sup
z∈U c

2

g(z, y′)

≥ c2(2εs)−ν − Py(HU0 < TU2)C2(εs− ε2s− C3)−ν − C2(s− εs)−ν ,
(6.12)

where we used (Gβ) and (2.8) in the last inequality. Recall the relative equilibrium measure
eU0,U2(·) and capacity capU2

(U0) from (3.6) and (3.7). Using that s ≥ Kr, it follows that for
K ≥ c′, d(U1, U

c
2) ≥ C9δ(U1) so that, by (3.2) and (3.8), one obtains for all x ∈ A1 ⊂ U0,

1 =
∑
x′∈U0

gU2(x, x′)eU0,U2(x′) ≥ c2

2

(
2r + ε2(2C9 + 1)s

)−ν
capU2

(U0)

r≤ε2s
≥ c2

2

(
ε2(2C9 + 3)s

)−ν
capU2

(U0).

(6.13)

We further assume that K ≥ c and ε is small enough so that d(U0, V ) ≥ εs
4 , and then, using

again (3.2) and (3.8), for all y ∈ V ,

(6.14) Py(HU0 < TU2) =
∑
x∈U0

gU2(y, x)eU0,U2(x) ≤ C2d(U0, V )−νcapU2
(U0)

(6.13)
≤ C × εν .

We stress that C is uniform in K (and ε) in (6.14). Combining (6.12) with (6.14) we get that
gU c

0∩U2(y, y′) > 0 for K ≥ c, and hence y is connected to y′ in U c
0 ∩ U2.
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For all x ∈ B(A1, 2ε
2C9s)

c ∩B(A2, 2ε
2C9s)

c, v is harmonic on B(x, 2ε2C9s) by assumption
and thus (3.3) gives

(6.15) inf
z∈B(x,ε2s)

v(z) ≥ c9 sup
z∈B(x,ε2s)

v(z).

By connectivity of V in U c
0 ∩ U2 and (6.1), for all y, y′ ∈ V, one can find N ∈ N, a sequence

z0, . . . , zN in Λ
(
ε2s/2

)
∩B(A1, 2ε

2C9s)
c∩B(A2, 2ε

2C9s)
c, with Λ

(
ε2s/2

)
as in Lemma 6.1, such

that zi 6= zj for i 6= j, y ∈ B(z0, ε
2s), y′ ∈ B(zN , ε

2s) and for all i ∈ {1, . . . , N}, there exists
yi ∈ B(zi−1, ε

2s) ∩B(zi, ε
2s). Note that with the help of (6.2), we can choose N uniformly in

s and y, y′ ∈ V (but still as a function of K). We then apply (6.15) recursively on each of the
balls B(zi, ε

2s), i ∈ {0, . . . , N}, to find

v(y) ≥ cN+1
9 v(y′),

and (6.11) follows.

We now recall some facts about soft local times from [39]. We continue with the setup
of (6.10) and introduce the excursion process between B ∈ {A1, A2, A1 ∪A2} and V for the
Markov chain Z· on G as follows. Let θn : GN → GN denote the canonical time shifts on GN,
that is for all n, p ∈ N and ω ∈ GN, (θn(ω))p = ωn+p. The successive return times to B and V
are recursively defined by D0 = 0 and for all k ≥ 1,

(6.16) Rk = HB ◦ θDk−1
+Dk−1 Dk = HV ◦ θRk +Rk,

where HB is the first hitting of B by Z·, cf. below (2.4). Let NB = inf{k ≥ 0 : Rk = ∞},
and note that NB < ∞ a.s. since Z· is transient. For k ∈ {1, . . . , NB − 1}, a trajectory
Σk

def.
= (Zn)n∈{Rk,...,Dk} is called an excursion between B and V . It takes values in ΞB, the set

of trajectories starting in ∂B and either ending the first time V is hit or never visiting V. We
add a cemetery point ∆ to ΞB and, with a slight abuse of notation, introduce a new point ∆′

in G such that for any random variable H ∈ N ∪ {∞}, ZH = ∆′ if H = ∞. For each x ∈ ∂B,
let ΞB(x) be the set of trajectories in ΞB \ {∆} starting in x. Set ΞB(∆′) = {∆} and for all
σ ∈ ΞB, let σe ∈ V be the last point visited by σ if σ is a finite trajectory of ΞB \ {∆}, and
σe = ∆′ otherwise. Upon defining Σk = ∆ for k ≥ NB, the sequence (Σk)k≥1 can be viewed as
a Markov process on ΞB, called the excursion process between B and V.

We now sample the Markov chain (Σk)k≥1 using a Poisson point process as described in
Section 4 of [39]. Let µB be the measure on ΞB given by

(6.17) µB(S) =
∑
x∈∂B

Px(Σ1 ∈ S) + δ∆(S)

for all S in the σ-algebra generated by the canonical coordinates, where δ∆ denotes a Dirac
mass at ∆, and let pB : ΞB × ΞB → [0,∞) be defined (see also (5.18) of [39]) by

(6.18) pB(σ, σ′) = Pσe(HB = x) for all σ ∈ ΞB and σ′ ∈ ΞB(x), x ∈ ∂B ∪ {∆′},

with the convention P∆′(HB = ∆′) = 1. Let η be a Poisson random measure on some probability
space (Ω,F ,P) with intensity µB ⊗ λ, where λ is the Lebesgue measure on [0,∞). Let σ0 be a
random variable taking values in ΞB, independent of η, such that

P(σe0 = y) = eV (y) for all y ∈ V

(see (3.9) for notation). Moreover, set Γ0 : ΞB → R+ with Γ0(σ) = 0 for all σ ∈ ΞB. We now
define recursively the random variables ξn, σn, vn and Γn: for all n ≥ 1, (σn, vn) is the P-a.s.
unique point in ΞB × [0,∞) such that

(6.19) ξn
def.
= inf

(σ,v)

v − Γn−1(σ)

pB(σn−1, σ)
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is reached in (σn, vn), where the infimum is taken among all the possible pairs (σ, v) in supp(η)\
{(σ1, v1), . . . , (σn−1, vn−1)}, and define

(6.20) Γn(σ) = Γn−1(σ) + ξnpB(σn−1, σ) for all σ ∈ ΞB.

Note that, for all n ≥ 1 and (σ, v) ∈ supp(η), as follows from (6.19) and (6.20), P-a.s. ,

(6.21) v ≤ Γn(σ) =⇒ (σ, v) ∈ {(σ1, v1), . . . , (σn, vn)}.

According to Proposition 4.3 in [39], (σn)n≥1 has the same law under P as (Σn)n≥1 under PeV
(recall the notation from (2.3)). By definition, see (6.18), for all σ, σ′ ∈ ΞB, pB(σ, σ′) only
depend on the last vertex visited by σ and on the first vertex visited by σ′ and thus, on account
of (6.20), for all x ∈ ∂B ∪ {∆′} and σ, σ′ ∈ ΞB(x), Γn(σ) = Γn(σ′). In particular, we can define
the soft local time up to time TB def.

= inf{n; σn = ∆} of the excursion process between B and
V by

(6.22) FB1 (x) = ΓTB (σx) for all x ∈ ∂B ∪ {∆′},

where σx is any trajectory in ΞB(x). By definition, see (6.20), we can also write

(6.23) FB1 (x) =
TB∑
k=1

ξkpB(σk−1, σx), for all x ∈ ∂B ∪ {∆′}.

Assume that (Ω,F ,P) is suitably enlarged as to carry a family F = {FBk ; k = 1, 2, . . . } of i.i.d.
random variables with the same law as FB1 , and, for each u > 0, a random variable ΘV

u with law
Poisson(u · cap(V )) independent of F . The variables FBk , 1 ≤ k ≤ ΘV

u correspond to the soft
local times attached to each of the trajectories in the support of ωu, the interlacement point
process, which visit the set V (by (6.10) these are the trajectories causing correlations between˜̀
Ã1,u

and ˜̀
Ã2,u

). For all u > 0 and x ∈ ∂B, we then set

(6.24) GBu (x) =

ΘVu∑
k=1

FBk (x),

which has the same law as the accumulated soft local time of the excursion process between B
and V up to level u defined in (5.22) of [39] (note that Section 5 in [39] can be adapted, mutatis
mutandis, to any transient graph).

The proof of Proposition 5.3 in [39] then asserts that there exists a coupling Q between
three random interlacements processes ω, ω1 and ω2 such that ω1 and ω2 are independent and,
for all u > 0 and ε ∈ (0, 1),

Q
[
(ω

u(1−ε)
i )|Ai ≤ (ωu)|Ai ≤ (ω

u(1+ε)
i )|Ai , i = 1, 2

]
≥ 1−

∑
(v,B)=(u(1±ε),A1),

(u(1±ε),A2),(u,A1∪A2)

∑
x∈∂B

P
(∣∣GBv (x)− E[GBv (x)]

∣∣ ≥ ε

3
E[GBv (x)]

)
,(6.25)

where (ωu)|Ai is the point process consisting of the restriction to Ai of the trajectories in ωu

hitting Ai and we write µ ≤ ν if and only if ν−µ is a non-negative measure. Adding independent
Brownian excursions on the cable system G̃ as in the proof of Theorem 3.6 in [16], one then
easily infers that (6.25) can be extended to the local times on the cable system, and thus, in
the framework of (6.10), since A1 = Ã∗1 and Ã∗2 ⊂ A2, that there exists a coupling Q̃ such that

Q̃
[˜̀i
x,u(1−ε) ≤ ˜̀x,u ≤ ˜̀ix,u(1+ε), x ∈ Ãi, i = 1, 2

]
≥ 1−

∑
(v,B)=(u(1±ε),A1),

(u(1±ε),A2),(u,A1∪A2)

∑
x∈∂B

P
(∣∣GBv (x)− E[GBv (x)]

∣∣ ≥ ε

3
E[GBv (x)]

)
,(6.26)
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where (˜̀x,u)
x∈G̃, (˜̀1

x,u)
x∈G̃ and (˜̀2

x,u)
x∈G̃ have the law under Q̃ of local times of random interlace-

ments on the cable system G̃, cf. around (2.18), with ˜̀1 independent from ˜̀2. The decoupling
inequality (2.21) will follow at once from (6.26), see the end of this section, once the following
large deviation inequality on the error term is shown. We continue with the setup leading to
(6.10). Recall the multiplicative parameter K in (6.9) controlling the distance d(Ã∗1, Ã

∗
2).

Lemma 6.6. There exists K0 ≥ 5 ∨ (2C3)2 such that for all u > 0, ε ∈ (0, 1) and B ∈
{A1, A2, A1 ∪A2} as in (6.10) with K ≥ K0 and x ∈ ∂B,

P
(∣∣GBu (x)− E[GBu (x)]

∣∣ ≥ ε

3
E[GBu (x)]

)
≤ C(K) exp

{
−c(K)ε2usν

}
.

In order to prove Lemma 6.6, cf. (6.24), we need some estimates on the law of FB1 (x), which
deals with one excursion process between B and V. Let us define

(6.27) πB(y, x) = Ey

[NB−1∑
k=1

δZRk ,x

]
, for x ∈ B and y ∈ V ,

the average number of times an excursion starts in x for the excursion process beginning in y
(here, δx,y = 1 if x = y and 0 otherwise; recall NB from below (6.16)). It follows from (5.24) in
[39] that

(6.28) πB(x)
def.
= E[FB1 (x)] =

∑
y∈V

eV (y)πB(y, x).

The following estimates will be useful to prove Lemma 6.6.

Lemma 6.7. For K ≥ K0, there exist c16(K) > 0 and C16(K) < ∞ such that, for all B ∈
{A1, A2, A1 ∪A2} as in (6.10), all x ∈ ∂B and v ∈ (0,∞),

(i) E
[
FB1 (x)2

]
≤ 4C15π

B(x)2,

(ii) P
(
FB1 (x) ≥ πB(x)v

)
≤ C16 exp{−c16v}.

Proof. We tacitly assume throughout the proof thatK ≥ c so that Lemma 6.5 applies. Theorem
4.8 in [39] asserts that for all x ∈ B

E
[
FB1 (x)2

]
≤ 4πB(x) sup

y′∈V
πB(y′, x).

The function y′ 7→ πB(y′, x) is L-harmonic onBc, and (i) follows from (6.28) and Lemma 6.5. We
now turn to the proof of (ii). Using (6.23) and (6.18), we have for all x ∈ ∂B and x′ ∈ ∂B ∪ {∆′},
P-a.s.,

FB1 (x′) =

TB∑
k=1

ξkPσek−1
(ZHB = x′) ≥ inf

y′∈V

{
Py′(ZHB = x′)

Py′(ZHB = x)

} TB∑
k=1

ξkPσek−1
(ZHB = x)

≥ 1

C15

infy′∈V Py′(ZHB = x′)

infy′∈V Py′(ZHB = x)
FB1 (x),(6.29)

where we used the fact that y 7→ Py(ZHB = x) is harmonic on Bc and Lemma 6.5 in the last
inequality. Slight care is needed above if σe

TB−1
= ∆′, in which case Pσe

TB−1
(ZHB = x′) ≥
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Pσe
TB−1

(ZHB = x) = 0 for all x ∈ ∂B and x′ ∈ ∂B ∪ {∆′} so that (6.29) continues to hold.
With (6.29), we obtain for all x ∈ ∂B and v ∈ (0,∞),

P
(
FB1 (x) ≥ πB(x)v

)
≤ P

(
∀x′ ∈ ∂B ∪ {∆′} : FB1 (x′) ≥ 1

C15

infy′∈V Py′(ZHB = x′)

infy′∈V Py′(ZHB = x)
πB(x)v

)
≤ P

(
∀x′ ∈ ∂B ∪ {∆′} : FB1 (x′) ≥ 1

C15
inf
y′∈V

Py′(ZHB = x′)v

)
,

(6.30)

since πB(x) ≥ infy′∈V Py′(ZHB = x) by (6.27) and (6.28). By (6.21) and (6.22), if FB1 (x′) ≥ u
for some u > 0 and x′ ∈ ∂B ∪ {∆′}, then for every σ ∈ ΞB(x′) and v′ ∈ [0, u] such that
(σ, v′) ∈ supp(η), (σ, v′) ∈ {(σ1, v1), . . . , (σTB , vTB )}, and thus by (6.30), for all x ∈ ∂B and
v ∈ (0,∞),

P
(
FB1 (x) ≥ πB(x)v

)
≤ P

[
η

( ⋃
x′∈∂B∪{∆′}

{ΞB(x′)} ×
[
0,

1

C15
inf
y′∈V

Py′(ZHB = x′)v
])
≤ TB

]
≤ a1 + a2,

where

a1 = P
[
η

( ⋃
x′∈∂B∪{∆′}

{ΞB(x′)} ×
[
0,

1

C15
inf
y′∈V

Py′(ZHB = x′)v
])
≤ v

2C2
15

]
,(6.31)

a2 = P
(
TB ≥ v

2C2
15

)
.(6.32)

We bound a1 and a2 separately. For all x′ ∈ ∂B ∪ {∆′}, µB(ΞB(x′)) = 1, see (6.17), so the
parameter of the Poisson variable in (6.31) is

1

C15

∑
x′∈∂B∪{∆′}

inf
y′∈V

Py′(ZHB = x′)v ≥ v

C2
15

by Lemma 6.5, and thus a1 in (6.31) is indeed bounded by C(K) exp{−c′(K)v} by a standard
concentration estimate for the Poisson distribution (recall that C15 = C15(K)). We now seek
an upper bound for a2. Assume for now that B = A1, whence {Σ1 = ∆} = {HA1 =∞} Py-a.s.
for all y ∈ V, and thus TB(= inf{n; Σn = ∆}) is dominated by a geometric random variable
with parameter infy∈V Py(HA1 = ∞) = 1− supy∈V Py(HA1 < ∞). By (3.8) and (6.10), for all
y ∈ V,

Py(HA1 <∞) =
∑
x∈A1

g(y, x)eA1(x)
(Gβ)
≤ C2

( s√
K
− C3

)−ν
cap(A1)

(3.11)
≤ 2νC2C11K

−ν/2,

(6.33)

for all y ∈ V , where we used s ≥ (2C3

√
K)∨ (Kr) in the last inequality (this is guaranteed, cf.

around (6.10)). By choosing K0 large enough, we can ensure that the last constant in (6.33) is,
say, at most 1/2 for all K ≥ K0, so that TB is dominated by a geometric random variable with
positive parameter and then a2 in (6.32) is bounded by C(K) exp{−c(K)v}, for all K ≥ 0 and
v ∈ (0,∞). The proof is essentially the same if B = A2 or B = A1 ∪ A2; the only point that
requires slight care is that TB ≥ 2 on account of (6.10), and thus we use instead that TB − 1
is bounded by a suitable geometric random variable.
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With Lemma 6.7 at hand, we are now able to prove Lemma 6.6 using arguments similar to
those appearing in the proof of Theorem 2.1 in [39].

Proof of Lemma 6.6. By (6.24), (6.28) and Markov’s inequality, we can write for all a > 0,
x ∈ ∂B and ε ∈ (0, 1), recalling that ΘV

u and the family F are independent,

P
(
GBu (x) ≥

(
1 +

ε

3

)
E[GBu (x)]

)
≤ E

[(
E
[

exp
{
aFB1 (x)

} ])ΘVu
]

exp
{
−a
(
1 +

ε

3

)
ucap(V )πB(x)

}
≤ exp

{
ucap(V )

(
E
[

exp
{
aFB1 (x)

} ]
− 1− a

(
1 +

ε

3

)
πB(x)

)}
.(6.34)

We now bound E
[

exp
{
aFB1 (x)

} ]
for small enough a. If t ∈ [0, 1], et ≤ 1 + t+ t2, so by (i) of

Lemma 6.7, for K ≥ K0, x ∈ ∂B and a > 0,

(6.35) E
[
exp

{
aFB1 (x)

}
1{FB1 (x)≤a−1}

]
≤ 1 + aπB(x) + 4a2C15π

B(x)2

(recall for purposes to follow that C15 and also C16, c16 all depend on K). Moreover, by (ii) of
Lemma 6.7, for all K ≥ K0, x ∈ ∂B and a ∈

(
0, c16

2πB(x)

]
,

E
[
exp

{
aFB1 (x)

}
1{FB1 (x)>a−1}

]
≤ a

∫ ∞
a−1

eatP(FB1 (x) > t) dt+ eP(FB1 (x) > a−1)

≤ aπB(x)C16

∫ ∞
(aπB(x))−1

e(aπB(x)−c16)t dt+ e× C16e
− c16
aπB(x)

≤ C16(1 + e)e
− c16

2aπB(x) ≤ C16(1 + e)

(
2aπB(x)

c16

)2

,

(6.36)

where we took advantage of the inequality e−x < 1
x2

for x > 0 in the last step. Thus, combining
(6.34), (6.35) and (6.36) with the choice a = c(K)ε

πB(x)
for a small enough constant c(K) > 0, we

have for all x ∈ ∂B and ε ∈ (0, 1) and K ≥ K0,

P
(
GBu (x) ≥ (1 +

ε

3
)E[GBu (x)]

)
≤ exp

{
−c′(K)uε2cap(V )

} (3.11)
≤ exp

{
−c′′(K)uε2sν

}
.

In a similar way, one can bound P(GBu (x) ≤ (1− ε
3)E[GBu (x)]) from above. Indeed, using instead

that for all t > 0, e−t ≤ 1− t+ t2, and so by (i) of Lemma 6.7, one obtains for a > 0, x ∈ ∂B
and K ≥ K0,

E
[
exp

{
−aFB1 (x)

}]
≤ 1− aπB(x) + 4a2C15π

B(x)2.

This completes the proof.

We can now conclude.

Proof of (2.21). Consider Ã1 and Ã2 as in the statement of Theorem 2.4 and set C7 = K0 with
K0 as appearing in Lemma 6.6. This fits within the framework described above (6.10) with
K = K0, whence (6.26) and Lemma 6.6 apply. Thus, (2.21) follows upon using (Vα), (2.10) and
(6.10) to bound |∂B| for any B ∈ {A1, A2, A1 ∪A2}.
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7 General renormalization scheme

We now set up the framework for the multi-scale analysis that will lead to the proof of The-
orems 1.1 and 1.2 in Section 9. This will bring together the coupling P̃u from Section 5, see
Corollary 5.3 and Remark 5.4, 2), and the decoupling inequalities of Theorem 2.4, which have
been proved in Section 6 and which will be used to propagate certain estimates from one scale
to the next, see Proposition 7.1 below, much in the spirit of [55] and [57]. Crucially, this renor-
malization scheme will be applied to a carefully chosen set of “good” local features indexed by
points on the approximate lattice Λ(L0) (cf. Lemma 6.1) at the lowest scale L0, see Definition
7.4, which involve the fields (γ̃·, ˜̀·,u,Bp· ) from the coupling Q̃u,p, see (5.34). Importantly, good
regions will allow for good local control on the set C∞u which is defining for ϕ̃·, see (5.20), and
in particular of the γ̃·-sign clusters in the vicinity to the interlacement, cf. (5.19). This will for
instance be key in obtaining the desired ubiquity of the two infinite sign clusters in (1.1), see
also (1.10) and (1.11).

Following ideas of [55], improved in [57], [39] for random interlacements and extended in
[47], [38] to the Gaussian free field, we first introduce an adequate renormalization scheme. As
before, G is any graph satisfying the assumptions (3.1). We introduce a triple L = (L0, l, l0) of
parameters

(7.1) L0 ≥ C3, l ≥ 2 and l0 ≥ 81/ν ∨ C−
1
2α

14 ∨ (8 + 4C7)l

(cf. (2.8) for the definition of C3, before (2.21) for C7, (6.2) for C14, and recall ν from (1.6)),
and define

(7.2) Ln = ln0L0 and ΛLn = Λ(Ln) for all n ∈ {0, 1, 2, . . . }.

Here, Λ(L), L ≥ 1 is any henceforth fixed sequence of subsets of G as given by Lemma 6.1. For
any family B = {Bx : x ∈ ΛL0 } of events defined on a common probability space, we introduce
the events GLx,n(B) for all x ∈ ΛLn recursively in n by setting

GLx,0(B) = Bx for all x ∈ ΛL0 , and

GLx,n(B) =
⋃

y,y′∈ΛLn−1∩B(x,lLn)

d(y,y′)≥Ln

GLy,n−1(B) ∩GLy′,n−1(B) for all n ≥ 1 and x ∈ ΛLn .(7.3)

We recall here that the distance d in (7.3) and entering the definition of balls is the one from
(3.1) (consistent with the regularity assumptions (Vα) and (Gβ)) and thus in general not the
graph distance, cf. Remark 3.4. Note that since L0 > C3 and l0 > 2l > 4, see (7.1), then by
(2.8), (6.1) and (7.2) the union in (7.3) is not empty. For Ã any measurable subset of G̃ and B
a measurable subset of C(Ã,R), we say that B is increasing if for all f ∈ B and f ′ ∈ C(Ã,R)
with f ≤ f ′, f ′ ∈ B, and B is decreasing if Bc is increasing. For h ∈ R and u > 0, we define
the events

(7.4) BG,h = {Φ̃|Ã + h ∈ B} and BI,u = {˜̀
Ã,u
∈ B},

and we add the convention BI,u = ∅ for u ≤ 0. If B is increasing then (7.4) implies that
BG,h ⊂ BG,h′ for h < h′ and BI,u ⊂ BI,u′ for u < u′.

Proposition 7.1. For all graphs G satisfying (3.1), there exist c17 > 0 and C17 ≥ 1 such that
for all all L0, l and l0 as in (7.1), all ε > 0 and h ∈ R (resp. u > 0) with

(7.5)
ε2(
√
l0L0)ν

log(L0 + 1)
≥ C17

(
resp.

uε2(
√
l0L0)ν

log(L0 + 1)
≥ C17

)
,
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and all families B = {Bx : x ∈ ΛL0 } such that the sets Bx, x ∈ ΛL0 , are either all increasing or
all decreasing measurable subsets of C(B̃(x, lL0),R) satisfying

(7.6) P̃G(BG,h
x ) ≤ c17

l4α0

(
resp. P̃I(BI,u

x ) ≤ c17

l4α0

)
for all x ∈ ΛL0 ,

one has for all n ∈ {0, 1, 2, . . . } and x ∈ ΛLn ,

(7.7) P̃G
(
GLx,n(BG,h±ε)

)
≤ 2−2n

(
resp. P̃I

(
GLx,n(BI,u(1±ε))

)
≤ 2−2n

)
,

where the plus sign corresponds to the case where the sets Bx are all decreasing and the minus
sign to the case where the sets Bx are all increasing.

Proof. We give the proof for the Gaussian free field in the case of decreasing events. The proof
for increasing events and/or random interlacements is similar and relies in the latter case on
(2.21) rather than (2.20), which will be used below. Thus, fix some ε > 0, h ∈ R, l and l0 as in
(7.1), and assume B = {Bx : x ∈ ΛL0 } is such that Bx is a decreasing subset of C(B̃(x, lL0),R)
satisfying (7.6), for all x ∈ ΛL0 . The sequence (hn)n≥0 is defined by h0 = h and for all n ≥ 1,
hn = h+

∑n
k=1

ε∧1
2k

, whence hn ≤ h+ ε for all n.
We now argue that there exists a constant C17 such that, if the first inequality in (7.5) holds,

then for all n ∈ {0, 1, 2, . . . },

(7.8) P̃G
(
GLx,n(BG,hn)

)
≤ 2−2n

2C2
14l

4α
0

for all x ∈ ΛLn ,

with α as in (Vα) and C14 defined by (6.2). It is then clear that (7.7) follows from (7.8) since

l0 > C
− 1

2α
14 and the sets Bx, x ∈ ΛL0 , are decreasing. We prove (7.8) by induction on n: for

n = 0, (7.8) is just (7.6) upon choosing

c17
def.
=

1

4C2
14

.

Assume that (7.8) holds at level n − 1 for some n ≥ 1. Note that by (7.3) and (7.1), for all
h′ > 0 and x ∈ ΛLn−1, GLx,n−1(BG,h′) ∈ σ

(
Φ̃x, x ∈ B̃(x, 2lLn−1)

)
. Let rn = 2lLn−1. Then, for

all x ∈ ΛLn and y, y′ ∈ ΛLn−1 ∩B(x, lLn) such that d(y, y′) ≥ Ln (as appearing in the union in
(7.3)),

2lLn ≥ d
(
B(y, rn), B(y′, rn)

)
≥
(
l0 − 4l

)
Ln−1

(7.1)
≥ l0

2
Ln−1

(7.1)
≥ C7rn

def.
= sn.

Using (6.2), (7.3), (7.2), a union bound and the decoupling inequality (2.20), we get

P̃G
(
GLx,n(BG,hn)

)
≤
(
C14l

2α
0

)2[(
sup
y

P̃G
(
GLy,n−1(BG,hn−1)

))2
+ C6L

α
n+1 exp

(
− c6

ε2

22n
sνn

)]
,

where the supremum is over all y ∈ ΛLn−1 ∩ B(x, lLn). Then (7.8) follows by the induction
hypothesis upon choosing C17 large enough such that for all l and l0 as in (7.1), ε ∈ (0, 1) and
L0 > 1 such that the first inequality in (7.5) holds, as well as all n ≥ 1,

C6C
2
14l

(5+n)α
0 Lα0 exp

(
− c6

ε2

22n
sνn

)
≤ 2−2n

4C2
14l

4α
0

,

which is possible since ε2sνn > ε2(C7L0l
n−1
0 )ν > C17 log(L0 + 1)(

√
l0l

n−1
0 /2)ν (where the first

inequality takes advantage of (7.2)) and lν0 ≥ 8.
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Remark 7.2.

1) (Existence of a subcritical regime) As a first consequence of the scheme put forth in (7.1)–
(7.4) and noteworthily under the mere assumptions (3.1), Proposition 7.1 can be readily
applied to a suitable family of events B = {Bx : x ∈ ΛL0 } and of parameters L in (7.1) to
obtain (stretched) exponential controls on the connectivity function above large levels. This
complements results in [57]. The argument is classical, see e.g. [57], so we collect this result
and simply sketch its proof. Let

(7.9) h∗∗
def.
= inf

{
h ∈ R; lim inf

L→∞
sup
x∈G

PG
(
B(x, L)

E≥h←→ ∂B(x, 2L)
)

= 0
}
,

where the event under the probability refers to the existence of a nearest neighbor path of
vertices from the ball B(x, L) to the boundary of the ball ∂B(x, 2L) in E≥h. The parameter
u∗∗ is defined similarly, but with the infimum ranging over u ≥ 0 in (7.9) and the probability
under consideration replaced by PI

(
B(x, L)

Vu←→ ∂B(x, 2L)
)
. By definition, h∗ ≤ h∗∗ and

u∗ ≤ u∗∗, cf. (1.8) and (1.16).

Corollary 7.3. For G satisfying (3.1), there exists c18 > 0 such that

(7.10) h∗∗ = inf
{
h ∈ R; lim inf

L→∞
sup
x∈G

PG
(
B(x, L)

E≥h←→ ∂B(x, 2L)
)
< c18

}
<∞

and

(7.11) u∗∗ = inf
{
u ≥ 0; lim inf

L→∞
sup
x∈G

PI
(
B(x, L)

Vu←→ ∂B(x, 2L)
)
< c18

}
<∞.

Moreover, for all h > h∗∗ and u > u∗∗, there exist constants c > 0 and C <∞ depending on
u and h such that for all x ∈ G and L ≥ 1,

(7.12) PG
(
x
E≥h←→ ∂B(x, L)

)
≤ C exp{−Lc} and PI

(
x
Vu←→ ∂B(x, L)

)
≤ C exp{−Lc}.

We now outline the proof, and focus on (7.11). One chooses l = 4 and l0 = 81/ν∨C−
1
2α

14 ∨(8+
4C7)l in (7.1), takes ε = 1 and fixes some L0 large enough so that the second condition in (7.5)
holds for all u ≥ 1. It is then clear from (Vα), (Gβ) and (2.10) that one can find u ≥ 1 large
enough such that PI

(
B(x, 2L0)

Vu←→ ∂B(x, 4L0)
)
≤
∑

y∈B(x,2L0) e
− u
g(y,y) ≤ c18

def.
= c17l

−4α
0 ,

for all x ∈ G, and where we used (3.10) and a union bound to infer the first inequality.
Having fixed such u, one first shows that u∗∗ 6 2u and hence u∗∗ is finite as asserted by
applying Proposition 7.1 as follows: for x ∈ G, one considers

Bx =
{
f ∈ C(B̃(x, 4L0),R) : B(x, 2L0)

{x∈G; f(x)≤0}←→ ∂B(x, 4L0)
}
,

which are decreasing measurable subsets of C(B̃(x, 4L0),R), and one proves by induction
over n with the help of (6.1) that for all n ∈ {0, 1, 2, . . . } and x ∈ G,

(7.13)
(
{0 V

u(1+ε)

←→ ∂B(x, 4Ln)} ⊂
)
{B(x, 2Ln)

Vu(1+ε)←→ ∂B(x, 4Ln)} ⊂ GLx,n(BI,u(1+ε))

(for now ε = 1 but this is in fact true for any ε, u > 0). By the above choices, Proposition 7.1
applies, yielding for all n ≥ 0 that P̃I

(
GLx,n(BI,2u)

)
≤ 2−2n ≤ C exp{−Lcn}, and in particular,

limn P̃I
(
B(x, 2Ln)

V2u

←→ ∂B(x, 4Ln)}
)

= 0, as desired.
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To prove the equality in (7.11), one repeats the above argument but with different choices
of u, L0 and ε. Namely, one considers any u > 0 for which

(7.14) lim inf
L0→∞

sup
x∈G

PI
(
B(x, 2L0)

Vu←→ ∂B(x, 4L0)
)
< c18.

It suffices to show that u(1 + ε) ≥ u∗∗, for then by letting ε ↓ 0, it follows that u∗∗ is smaller
or equal than the infimum in (7.11), and the reverse inequality is obvious, as follows from
(7.9). With u and ε fixed, one selects L0 ≥ 1 large enough so as to ensure (7.5), and such
that the probabilities in (7.14) are smaller than c18. Proposition 7.1 then implies as explained

above that limn P̃I
(
B(x, 2Ln)

Vu(1+ε)←→ ∂B(x, 4Ln)}
)

= 0 and L 7→ PI
(
x
Vu(1+ε)←→ ∂B(x, L)

)
has

stretched exponential decay in L for all x ∈ G, thus yielding that u(1 + ε) ≥ u∗∗ and the
interlacement part of (7.12) as a by-product. The proof of (7.10) and the free field part of
(7.12) follow similar lines.

2) (Existence of a supercritical regime for ν > 1) Another simple consequence of Proposition
7.1 is that if G is a graph satisfying (3.1) with ν > 1 which contains a subgraph isomorphic
to N2, then, identifying with a slight abuse of notation this subgraph with N2, there exists
u > 0 such that PI -a.s.,

(7.15) Vu ∩ N2 contains an infinite connected component,

and in particular u∗ > 0. In the proof of Theorem 1.2, we only show that under the additional
assumption (WSI), there exist u > 0 and L > 0 such that Vu ∩B(N2, L) contains an infinite
connected component, see Theorem 9.3 and Remark 9.4, 5). Thus, (7.15) provides us with
a stronger, and easier to prove, result for random interlacements when ν > 1. Examples of
graphs for which we can prove (7.15) are product graphs G = G1×G2 as in Proposition 3.5
with ν = α − β > 1 since if P1 and P2 are two semi-infinite geodesics of G1 and G2, which
exist by Theorem 3.1 in [70], then P1×P2 is a subgraph of G isomorphic to N2. Also, finitely
generated Cayley graphs verifying (Vα) for some α > 3 which are not almost isomorphic to
Z, see Theorem 7.18 in [36], are covered by this setting, as well as d-dimensional Sierpinski
carpet with d ≥ 4, see Remark 3.10, 1).

Let us now sketch the proof of (7.15). Using the result from Exercise 1.16 in [17], which is
given for Zd but immediately transfers to our setting, we have for all positive integer L,M
and N, since ν > 1,

cap([M,M + L]× {N}) ≤ L+ 1

infk∈[M,M+L]

∑M+L
p=M g((k,N), (p,N))

(Gβ)
≤ L+ 1

c2C
−ν
3

∑L
p=1 p

−ν
≤ CL.

Here, we used that d((k,N), (p,N)) 6 C3dG((k,N), (p,N)) 6 C3|k − p| in the second
inequality, see (2.8), and we also have a similar bound on the capacity of {M}×[N,N+L]. For
all positive integer L and all x ∈ {L+ 1, L+ 2, . . . }2, we write S(x, L) = x+N2∩∂N2 [−L,L]2,
where ∂N2A is the boundary of A as a subset of N2, and we thus get by a union bound

(7.16) cap (S(x, L)) ≤ CL.

Fix l = 4 and l0 = 81/ν ∨C−
1
2α

14 ∨ (8 + 4C7)l in (7.1), take ε = 1/2, and let C18 be such that
for all u > 0 and L0 > C3 with uL0 6 C18, and all x ∈ {4L0 + 1, 4L0 + 2, . . . }2,

PI
(
S(x, 2L0)

∗-Iu∩N2

←→ S(x, 4L0)

)
(7.16)
6 1− exp{−2CuL0} 6

c17

l20
,
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where A ∗-B←→ C means that there exists a ∗-path in B ⊂ N2, as defined above Proposition
3.7, beginning in A and ending in C. Since ν > 1 one can find L0 large enough so that
(7.5) holds when u = C18L

−1
0 , and, applying Proposition 7.1 and using a property similar

to (7.13) for ∗-paths of Iu, we get that L 7→ supx PI(x
∗-Iu/2∩N2

←→ S(x, L)) has stretched
exponential decay, with the supremum ranging over all x ∈ {L+ 1, L+ 2, . . . }2. If Vu ∩ N2

has no infinite connected component, then for any positive integer L the sphere ∂N2 [0, L]2

is not connected to ∞ in Vu ∩N2. Thus, by planar duality, see for instance Proposition 3.7,
there exists L′ > L − 1 and x ∈ {L′ + 1, L′ + 2} × {L′ + 1} which is connected to S(x, L′)
by a ∗-path in Iu ∩ N2, which happens with probability 0.

In order to prove u∗ > 0 for ν = 1 by the same method, one would need to remove the
polynomial term (rn + sn)α in the decoupling inequality (2.21), and it seems plausible that
one could do that for a large class of graphs (including Z3), using arguments similar to [15]
or [62]. This is proved in the case G = G′×Z in [57]. However, this method does not seem to
work in the case ν < 1. A (simpler) proof of u∗ > 0 is given for G = Zd in [42] without using
decoupling inequalities, but it seems that one cannot adapt simply its proof to more general
graphs if ν < 1. Therefore, the result u∗ > 0 from Theorem 1.2 is particularly interesting
when ν < 1.

We now introduce the families of events of the form (7.4) to which Proposition 7.1 will
eventually be applied. The reason for the following choices will become apparent in the next
section. The strategy developed in [16] to prove h∗ > 0 on Zd, d ≥ 3, serves as a starting
point in the current setting, but the desired ubiquity result (1.13) requires a considerably finer
analysis, which is more involved, see also Remark 7.5 below. All our events will be defined
under the probability Q̃u,p from (5.34), under which the Gaussian free field ϕ̃· on G̃ is defined
in terms of (γ̃·, ˜̀·,u) by means of (5.20).

We now come to the central definition of good vertices. As usual, we denote by (`x,u)x∈G =

(˜̀x,u)x∈G, Iu = Ĩu ∩G, γ = (γ̃x)x∈G and ϕ = (ϕ̃x)x∈G the projections of ˜̀, Ĩu, γ̃ and ϕ̃ on the
graph G. For all u > 0, these fields have the same law as the occupation time field of random
interlacements at level u, a random interlacement set at level u and two Gaussian free fields
on G, respectively. We recall the definition of the constants C10 from (3.4), C3 from (2.8), and
c13 from Proposition 4.7, the definition of Bpy from (5.34), the definition of Îu from above (4.2),
and that Cu(x, L) is the set of vertices in G connected to x by a path of edges in Îu∩BE(x, L),
see below Lemma 4.3.

Definition 7.4 (Good vertex). For u > 0, L0 ≥ 1, K > 0, p ∈ (0, 1), x ∈ G, the event

(i) CL0,K
x occurs if and only if γ̃z ≥ −K

2 for all z ∈ B̃(x, 3C10(L0 + C3) + 2L0 + C3),

(ii) DL0,u
x occurs if and only if Iu/4 ∩B(x, L0) 6= ∅,

(iii) D̂L0,u
x occurs if and only if cap

(
Cu/2(y, 2(L0 + C3))

)
≥ c13(L0 + C3)

3ν
4 (u8 )bγ−1c for all

y ∈ Iu/4 ∩B(x, L0 + C3),

(iv) DL0,u
x occurs if and only if

(7.17) y
∧←→ y′ in Îu ∩BE(x, 3C10(L0 + C3))

for all y, y′ ∈ Iu/2 ∩ B(x, L0 + C3) such that cap
(
Cu/2(y, 2(L0 + C3))

)
≥ c13(L0 +

C3)3ν/4(u/8)bγ−1c and cap
(
Cu/2(y′, 2(L0 + C3))

)
≥ c13(L0 + C3)3ν/4(u/8)bγ−1c.

(v) EL0,u
x occurs if and only if every component of {y ∈ G; ϕy ≥ −

√
2u} ∩ B(x, L0/2) with

diameter at least L0/4 is connected to Iu/4 in {y ∈ G; ϕy ≥ −
√

2u} ∩B(x, L0),
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(vi) FL0,p
x occurs if and only if Bpy = 1 for all y ∈ B(x, 3C10(L0 + C3) + 2L0).

Moreover, a vertex x ∈ G is said to be (L0, u,K, p)-good if the event

(7.18) CL0,K
x ∩DL0,u

x ∩ D̂L0,u
x ∩DL0,u

x ∩ EL0,u
x ∩ FL0,p

x

occurs, and (L0, u,K, p)-bad otherwise.

Remark 7.5. The above definition of good vertices differs in a number of ways from a corre-
sponding notion introduced in [16] (cf. Definition 4.2 therein) by the authors. This is due to
the refined understanding of the isomorphism (5.2) stemming from (5.19) and (5.20). Notably,
property (i) above is new in dealing directly with γ̃· (rather than ϕ̃·). Observe that (v) in-
volves both the field ϕ̃ and the random interlacements set Ĩu simultaneously, coupled as in
(5.20). It will lead to a direct proof of the inequality h ≥ 0, see Corollary 8.8, without using
our sign-flipping method, Proposition 5.6. Properties (ii), (iii) and (iv) can be viewed as a
more transparent substitute for the events involved in Lemma 3.3 and Definition 3.4 in [16] (see
also (4.1) in [44]), and have the advantage of preserving the local uniqueness of interlacements,
at the cost of introducing a sprinkling between u/4 and u. It would be possible to find sharp
estimates on the ‘size’ of the interlacement in a ball similar to Lemma 3.3 in [16] on the class of
graphs considered here, but such bounds are in fact unnecessary once we have Lemma 4.3 and
Proposition 4.7.

We conclude this section by collecting the following result, which will be crucially used in
the next section. It sheds some light on why good vertices may be useful.

Lemma 7.6. For all u > 0, L0 ≥ 1, K > 0, p ∈ (0, 1) and any connected set A ⊂ G such that
each x ∈ A is an (L0, u,K, p)-good vertex, there exists a connected set Ã such that

(7.19) ∅ 6= Iu/4 ∩B(x, L0) ⊂ Ã for all x ∈ A, Ã ⊂ Ĩu ∩ B̃(A, 3C10(L0 + C3)),

as well as

(7.20)
for all x ∈ A, Ã ∩B(x, L0) 6= ∅ and every connected component
of {y ∈ G; ϕy ≥ −

√
2u} ∩B(x, L0/2) with diameter at least

L0/4 is connected to Ã in {y ∈ G; ϕy ≥ −
√

2u} ∩B(x, L0).

and

γ̃z ≥ −K/2 for all z ∈ B̃(Ã, 2L0 + C3) and Bpy = 1 for all y ∈ B(Ã ∩G, 2L0).(7.21)

Proof. For all x1 ∼ x2 ∈ A, by (ii) of Definition 7.4, there exists yi ∈ Iu/4 ∩ B̃(xi, L0) for each
i. By (2.8), d(x1, y2) ≤ L0 +C3 and by (iii) of Definition 7.4 cap

(
Cu/2(yi, L0 +C3)

)
≥ c13(L0 +

C3)3ν/4(u/8)bγ−1c for each i ∈ {1, 2}. Therefore, by (7.17), y1
∧←→ y2 in Îu ∩BE(x1, 3C10(L0 +

C3)), and since each edge traversed by a trajectory of the random interlacement process is
included in Ĩu, we also have that y1

∼←→ y2 in Ĩu ∩ B̃(x1, 3C10(L0 +C3)). We now define Ã as
the union of the connected paths in Ĩu ∩ B̃(x, 3C10(L0 + C3)) between y and y′ for all x ∈ A
and y, y′ ∈ B(x, L0 + C3) ∩ Iu/4, which is thus connected and it is clear that (7.19) holds.

For all x ∈ A, we clearly have Ã ∩ B(x, L0) 6= ∅ by (7.19). Moreover, we have by (v) of
Definition 7.4 that every connected component of {y ∈ G; ϕy ≥ −

√
2u} ∩ B(x, L0/2) with

diameter at least L0/2 is connected to Iu/4 in {y ∈ G; ϕy ≥ −
√

2u} ∩ B(x, L0), and thus is
also connected to Ã in {y ∈ G; ϕy ≥ −

√
2u} ∩B(x, L0), and we obtain (7.20). One infers from

(i) and (vi) of Definition 7.4 that (7.21) also hold.
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8 Construction of a giant cluster

We are now going to use the general renormalisation scheme from Proposition 7.1 to find a
giant, or ubiquitous, cluster of (L0, u,K, p)-good vertices, as defined in Definition 7.4, or of Ĩu
with suitable properties. This comes in several steps. The first one is reached in Proposition 8.3
below and yields under the mere assumptions (3.1) that long good (R-)paths, cf. Definition 7.4,
are very likely for suitable choices of the parameters. The second step is to prove the existence
of a suitable infinite cluster Ã of Ĩu and is presented in Lemma 8.4, and the third step is to
prove that this cluster is ubiquitous, see Lemma 8.7. This giant cluster Ã of Ĩu verifies (7.21)
and is in the neighborhood of a cluster A of good vertices, for which (7.20) hold. It can be
seen as precursor of the giant cluster of E≥h, h > 0, that we will construct in Section 9, which
will lead to (1.10) and (1.11) (for small h > 0). In a sense, the resulting estimates (8.15) and
(8.23) provide a rough translation of the events appearing in (1.10) and (1.11) to the world of
interlacements, and deliver directly (1.10) and (1.11) for any h < 0, see Corollary 8.8. Apart
from the quantitative bounds leading to Proposition 8.3, these two estimates crucially rely on
the additional geometric information provided by (WSI), on all aspects of Definition 7.4 and
on certain features of the renormalization scheme, in particular with regards to the desired
ubiquity, gathered in Lemma 8.6 below.

We continue in the framework of the previous section and recall in particular the scheme
(7.1)–(7.3), the measure Q̃u,p from (5.34) and Definition 7.4. We also keep our standing (but
often implicit) assumption thatG satisfies (3.1) and mention any other condition, such as (WSI),
explicitly. Henceforth, we set

(8.1) l = 22c19C10, l0 = 81/ν ∨ C−
1
2α

14 ∨ (8 + 4C7)l,

where

(8.2) c19
def.
= 7(1 + 7c−1

5 ) if G satisfies (WSI) and c19
def.
= 7 otherwise.

Note that l and l0 satisfy the conditions appearing in (7.1). For all L0 ≥ C3, we write L0 =
(L0, l, l0) rather than L to insist on the choice (8.1). Thus L0 ≥ C3 remains a free parameter
at this point. We now define bad vertices at all scales Ln, n ≥ 0, cf. (7.2). For all L0 ≥ C3,
x ∈ Λ(L0) = ΛL00 , u > 0, K > 0 and p ∈ (0, 1), we introduce

(8.3) CL0,K
x =

⋂
y∈B(x,20c19C10L0)

CL0,K
y ,

and similarly DL0,u
x , D̂L0,u

x , D
L0,u
x EL0,u

x and FL0,p
x by replacing CL0,K

y with the relevant events
DL0,u
y , D̂L0,u

y , DL0,u
y EL0,u

y and FL0,p
y in Definition 7.4, (ii)–(vi). We introduce the family

(CL0,K)c = {(CL0,K
x )c : x ∈ ΛL00 }, and the families (DL0,u)c, (D̂L0,u))c, (D

L0,u))c (EL0,u)c and
(FL0,p)c are defined correspondingly. For n ≥ 0 and x ∈ ΛL0n (cf. (7.2)), we then say that the
vertex x is n− (L0, u,K, p) bad if (recall (7.3))

(8.4)
GL0x,n

(
(CL0,K)c

)
∪GL0x,n

(
(DL0,K)c

)
∪GL0x,n

(
(D̂L0,u)c

)
∪GL0x,n

(
(D

L0,u)c
)
∪GL0x,n

(
(EL0,u)c

)
∪GL0x,n

(
(FL0,p)c

)
occurs (under Q̃u,p), and x is n − (L0, u,K, p) good otherwise. In view of (7.18) and the first
line of (7.3), an (L0, u,K, p)-bad vertex in ΛL00 is always a 0 − (L0, u,K, p) bad vertex, but
not vice versa. A key to Proposition 8.3, see (8.14) below, is to prove that the probability of
having an n − (L0, u,K, p) bad vertex decays rapidly in n for a suitable range of parameters
(L0, u,K, p). This relies on individual bounds for each of the events in (8.4), which are the
objects of Lemmas 8.1 and 8.2 as well as (8.10) below. Due to the presence of long-range
correlations, the decoupling estimates from Proposition 7.1 will be crucially needed.
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Lemma 8.1. There exist constants C19 < ∞ and C ′19 < ∞ such that for all L0 ≥ C19,
K ≥ C ′19

√
log(L0), n ∈ {0, 1, 2, . . . } and x ∈ ΛL0n , and all u > 0, p ∈ (0, 1),

(8.5) Q̃u,p
(
GL0x,n

(
(CL0,K)c

))
≤ 2−2n .

Proof. In view of (8.3), Definition 7.4 (i), and (8.1), if L0 ≥ C3, the event (CL0,K
x )c is measurable

with respect to the σ-algebra generated by γ̃|B̃(x,lL0)
, and (CL0,K

x )c is of the form {γ̃|B̃(x,lL0)
+

K ∈ Bx}, cf. (7.4), for a suitable decreasing subsetBx of C(B̃(x, lL0),R). With this observation,
and since γ̃ has the same law under Q̃u,p as Φ̃ under P̃G, in order to show (8.5), it is enough by
Proposition 7.1 to prove that there exists C ′19 such that

(8.6) for all L0 ≥ C19, K ≥ C ′19

√
log(L0)− 1 and x ∈ ΛL00 : Q̃u,p

(
(CL0,K

x )c
)
<
c17

l4α0

,

where C19 ≥ C3 ∨ 2 is chosen so that the first inequality in (7.5) holds for all L0 ≥ C19, with
l0 as in (8.1) and ε = 1. Conditionally on the field γ = γ̃|G, and for each edge e = {y, y′}, the
process (γ̃y+te)t∈[0,ρy,y′ ]

on Ie has the same law as a Brownian bridge of length ρy,y′ = 1/(2λy,y′)

(the length of Ie, cf. below (2.14)) between γy and γy′ of a Brownian motion with variance 2
at time 1, as defined in Section 2 of [16]. This fact has already appeared in the literature, see
Section 2 of [33], Section 1 of [35] or Section 2 of [34] for example. We refer to Section 2 of [16]
for a proof of this result when G = Zd, which can be easily adapted to a general graph satisfying
(3.1). Let us denote by (W y,y′

t )t∈[0,ρy,y′ ]
defined as W y,y′

t = γ̃y+te − 2λy,y′tγ̃y′ − (1 − 2λy,y′t)γ̃y
the Brownian bridge of length ρy,y′ between 0 and 0 of a Brownian motion with variance 2 at
time 1 associated with (γ̃y+te)t∈[0,ρy,y′ ]

. For all L ≥ 1, K > 0 and x ∈ G, we thus have

Q̃u,p
(

sup
z∈B̃(x,L)

γ̃z ≥
K

2

)
≤ Q̃u,p

(
sup

y∈B(x,L)
γy ≥

K

4

)
+

∑
{y,y′}∈BE(x,L)

Q̃u,p
(

sup
t∈[0,ρy,y′ ]

W y,y′

t ≥ K

4

)
.

(8.7)

We consider both terms in (8.7) separately. For all y ∈ B(x, L), γy is a centered Gaussian
variable with variance g(y, y), thus by (Vα) and (Gβ)

Q̃u,p
(

sup
y∈B(x,L)

γy ≥
K

4

)
≤

∑
y∈B(x,L)

C

√
g(y, y)

K2
exp

{
− K2

32g(y, y)

}
≤ CLα

K
exp{−cK2}.

The law of the maximum of a Brownian bridge is well-known, see for instance [11], Chapter
IV.26, and so for all y ∼ y′ in G, by (2.10),

Q̃u,p
(

sup
t∈[0,ρy,y′ ]

W y,y′

t ≥ K

4

)
= exp

{
− K2

16ρy,y′

}
≤ exp{−cK2},

where to obtain the inequality we took advantage of the fact that 1
ρy,y′

= 2λy,y′ ≥ c, cf. (2.10).
Therefore, returning to (8.7), using (Vα), (2.10) and the fact that G has uniformly bounded
degree, we obtain that for all L ≥ 1 and K ≥ 1, Q̃u,p(sup

z∈B̃(x,L)
γ̃z ≥ K) ≤ CLα exp{−cK2}.

Choosing L = lL0 and using the symmetry of γ̃·, we can finally bound for all L0 ≥ C19 and
K ≥ 1,

Q̃u,p
(
(CL0,K

x )c
)
≤ Q̃u,p

(
sup

z∈B̃(x,lL0)

γ̃z ≥
K

2

)
≤ CLα0 exp{−cK2},

from which (8.6) readily follows for a suitable choice of C ′19.
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The next lemma deals with the events involving the families DL0,u
x , D̂L0,u

x , D
L0,u
x and EL0,u

x

in (8.4), which all involve the interlacement parameter u > 0. For the first three events, this
will bring into play the connectivity estimates from Section 4 in order to initiate the decoupling.

Lemma 8.2. For all u0 > 0, there exist constants c20 and C20 depending on u0 such that for
all u ∈ (0, u0), L0 ≥ C3 with L0u

c20 ≥ C20, n ∈ {0, 1, 2, . . . }, x ∈ ΛL0n , and p ∈ (0, 1),

Q̃u,p
(
GL0x,n

(
(DL0,u)c

))
≤ 2−2n , Q̃u,p

(
GL0x,n

(
(D̂L0,u)c

))
≤ 2−2n ,

Q̃u,p
(
GL0x,n

(
(D

L0,u)c
))
≤ 2−2n and Q̃u,p

(
GL0x,n

(
(EL0,u)c

))
≤ 2−2n .

(8.8)

Proof. We start with the estimate involving the family (DL0,u)c. By (3.10) and (3.11) we have

Q̃u,p
(

(DL0,u/2
x )c

)
≤ exp(−c11(u/8)Lν0).

By (8.3) and a union bound, this readily implies that both (7.5), for l0 as in (8.1) and ε = 1,

and Q̃u,p
(
(D

L0,u/2
x )c

)
≤ c17l

−4α
0 hold for all u ∈ (0, u0) and L0 ≥ C3 ∨ Cu−c (and all x ∈ ΛL00 ).

For all L0 ≥ C3, v > 0 and x ∈ G the events (DL0,u
x )c are measurable with respect to the

σ-algebra generated by ˜̀
B̃(x,lL0),u

and decreasing in u. Therefore, Proposition 7.1 with ε = 1

applies and (7.7) yields the first part of (8.8).
Let us now turn to the events (D̂L0,u)c. For all L0 > 0, v ≥ u/8 and x ∈ G, we say that

the event D̂L0,v,u
x occurs if and only if cap

(
Cu/4+v(y, 2(L0 +C3))

)
≥ c13(L0 +C3)3ν/4(u/8)bγ−1c

for all y ∈ Iu/4 ∩B(x, L0 + C3), and we define D̂L0,v,u
x similarly as in (8.3), replacing CL0,u

y by
D̂L0,v,u
y . Consider a fixed value of u0 > 0. Note that the law of Îu/4+v\Îu/4 conditionally on Îu/4

is the same as the law of Îv. By (2.8) the set Cu/4(y, L0 + C3) has diameter at least L0 for all
y ∈ Iu/4, and thus by (3.10) and (3.14), we have for all v ≥ u/8 and y ∈ Iu/4 ∩B(x, L0 + C3)
that

Q̃u,p
(
(Iu/4+v \ Iu/4) ∩ Cu/4(y, L0 + C3) = ∅ | Îu/4

)
≤ exp

(
− cuL

ν
2
∧1

0

)
.

Moreover, if on the other hand (Iu/4+v \ Iu/4) ∩ Cu/4(y, L0 + C3) 6= ∅ for some y ∈
Iu/4 ∩B(x, L0 + C3), then Cu/4+v(y, 2(L0 +C3)) contains the cluster of edges in B(y′, L0 +C3)
traversed by at least one of the trajectories of Îu/4+v \ Îu/4 for some y′ ∈ (Iu/4+v \ Iu/4) ∩
B(x, L0 + C3). By Proposition 4.7 applied to Îu/4+v \ Îu/4, (Vα) and a union bound, we thus
have for all u < u0 and v ∈ [u/8, u0] that

Q̃u,p
(

(D̂L0,v,u
x )c

∣∣∣ Îu/4) ≤ C(u0)(L0 + C3)α
(

exp
(
− c(u0)u(L0 + C3)C13

)
+ exp

(
− cuL

ν
2
∧1

0

))
.

Moreover, conditionally on Îu/4, the events (D̂L0,v,u
x )c are decreasing in v, i.e., there exists

a decreasing subset Bx of C(B̃(x, lL0),R) (depending on L0 and Îu/4) such that (D̂L0,v,u
x )c

has the same law as BI,v
x for all u > 0 and v ≥ u/8, see (7.4). By a union bound, we have

that Q̃u,p
(
(D̂

L0,u/8,u
x )c

)
≤ c17l

−4α
0 and the second part of (7.5) with l0 as in (8.1) and ε = 1

simultaneously hold for all u ∈ (0, u0), and L0 ≥ C3∨C(u0)u−c(u0), and by another application
of Proposition 7.1 with ε = 1 we obtain that for all u ∈ (0, u0),

Q̃u,p
(
GL0x,n

(
(D̂L0,u/4,u)c

)
| Îu/4

)
≤ 2−2n .

Since D̂L0,u/4,u = D̂L0,u, we obtain directly the second part of (8.8) by integrating over Îu/4.
We now consider the events (D

L0,u)c. For all L0 > 0, u > 0, v > 0 and x ∈ G, we say that
the event DL0,v,u

x occurs if and only if

y
∧←→ y′ in Îu/2+v ∩BE(x, 3C10(L0 + C3)),
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for all y, y′ ∈ Iu/2∩B(x, L0+C3) such that cap
(
Cu/2(y, 2(L0+C3))

)
≥ c13(L0+C3)3ν/4(u/8)bγ−1c

and cap
(
Cu/2(y′, 2(L0 + C3))

)
≥ c13(L0 + C3)3ν/4(u/8)bγ−1c, and we define D

L0,v,u
x similarly

as in (8.3), replacing CL0,u
y by DL0,v,u

y . Note that Cu/2(y, 2(L0 + C3)) ⊂ B(x, 3(L0 + C3)) for
all y ∈ B(x, L0 + C3). By (Vα), Lemma 4.3 and a union bound, we have for all u ∈ (0, u0),
v ∈ [u/4, u/2], x ∈ G and L0 ≥ C3,

Q̃u,p
(

(D
L0,v,u
x )c | Îu/2

)
≤ C(L0 + C3)α exp

(
− cu2bγ−1c+1(L0 + C3)ν/2

)
.

Conditionally on Îu/2, the events (D
L0,v,u
x )c are decreasing in v, and similarly as before we can

apply Proposition 7.1 with ε = 1 to obtain the third bound of (8.8) for all u ∈ (0, u0) and
L0 ≥ C3 ∨ C(u0)u−c(u0) since D

L0,u/2,u
x = D

L0,u
x .

Regarding (EL0,u)c, under Q̃u,p, note that by (5.20), the clusters of {y ∈ G; ϕy > −
√

2u}
are the same as the clusters of {y ∈ G; y ∈ C∞u or γy > 0}. Therefore if the cluster Ux of x in
{y ∈ G; ϕy > −

√
2u} ∩ B(x, L0/2) has diameter at least L0/4 and is not connected to Iu/4 in

{y ∈ G; ϕy > −
√

2u} ∩ B(x, L0), then either Ux is a cluster of {y ∈ G; y ∈ C∞u \ C∞u/4 or γy >
0} ∩ B(x, L0/2) of diameter at least L0/4, or Ux contains a vertex y in C∞u/4 ∩ B(x, L0/2) not
connected to Iu/4 in {y ∈ G; ϕy > −

√
2u} ∩B(x, L0), and then by (5.19) and (5.20), y is in a

connected component of {z ∈ G̃; |γ̃z| > 0}∩ B̃(x, L0) of diameter ≥ L0/4 not intersecting Iu/4.
Therefore, defining the event

EL0,v,u
x =


all the connected components of

{y ∈ G; y ∈ C∞u \ C∞u/4 or γy > 0} ∩B(x, L0/2)

or of {z ∈ G̃; |γ̃z| > 0} ∩ B̃(x, L0)
with diameter ≥ L0/4 intersect Iv


for all v ≤ u/4, we have EL0,v,u

x ⊂ EL0,u
x by Definition 7.4 (v). We also define EL0,v,u

x similarly as
in (8.3), replacing CL0,u

y by EL0,v,u
y . Let Ĩ3u/4

2 = Ĩu \ Ĩu/4, then C∞u \ C∞u/4 is Ĩ3u/4
2 measurable.

Moreover γ̃ is independent from the random interlacement set Iu/4, see (5.34), Ĩ3u/4
2 is also

independent from Iu/4, and there are at most 2|B(x, L0)| connected components of either
({y ∈ C∞u \ C∞u/4} ∪ {y ∈ G; γy > 0})∩B(x, L0/2) or {z ∈ G̃; |γ̃z| > 0}∩B̃(x, L0) with diameter

at least L0
4 . Thus, by (Vα), Lemma 3.2, and (3.10), Q̃u,p-a.s., for all u > 0, v ∈ [u/8, u/4] and

p ∈ (0, 1),

(8.9) Q̃u,p
(

(EL0,v,u
x )c

∣∣∣ γ̃, Ĩ3u/4
2

)
≤ 2C1L

α
0 exp

{
− cuL

ν
2
∧1

0

}
.

The fourth bound in (8.8) is then obtained by virtue of another application of Proposition 7.1
under the conditional measure Q̃u,p(· | γ̃, Ĩ3u/4

2 ), using (8.9) and a union bound to deduce that
Q̃p((E

L0,u/8,u
x )c | γ̃, Ĩ3u/4

2 ) ≤ c17l
−4α
0 ; the second part of (7.5) with l0 as in (8.1) and ε = 1

simultaneously holds true whenever L0u
c ≥ C ′. Noting that, for all v ≤ u/4, conditionally

on γ̃ and Ĩ3u/4
2 , (EL0,v,u

x )c is a decreasing σ(˜̀B(x,lL0),v)-measurable event in v, Proposition

7.1 yields an upper bound similar to (8.8) but for GL0x,n
(
(E

L0,u/4,u
x )c

)
under Q̃u,p(· | γ̃, Ĩ3u/4

2 ).
The desired bound (8.8) then follows by integrating over γ̃ and Ĩ3u/4

2 since GL0x,n
(
(EL0,u

x )c
)
⊂

GL0x,n
(
(E

L0,u/4,u
x )c

)
.

Finally for the events involving the family (FL0,p)c in (8.4), by a similar reasoning as in
Lemma 4.7 of [44] and using (Vα), there exists a constant C21 such that for all p ∈ (0, 1) such
that p ≥ exp{−C21L

−α
0 }, all u > 0, n ≥ 0 and x ∈ ΛL0n ,

(8.10) Q̃u,p
(
GL0x,n

(
(FL0,p)c

))
≤ 2−2n .
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For all u0 > 0 and R ≥ 1 we define

(8.11) L0(u) = R ∨ C3 ∨ C19 ∨ C20u
−c20 ,

where we keep the dependence of various constants and of L0(u) on u0 and R implicit. Fur-
thermore, we choose constants C22 and c22 such that

√
log(C22u−c22) ≥ C ′19

√
log(l0L0(u)) for

all u ∈ (0, u0), and constants C23 and c23 such that 1− C23u
c23 ≥ exp

{
− C21(l0L0(u))−α

}
for

all u ∈ (0, u0), which can both be achieved on account of (8.11). Then, by (8.4), Lemmas 8.1
and 8.2 and (8.10), for all n ∈ N and u ∈ (0, u0)

(8.12)
L0 ∈ [L0(u), l0L0(u)],

K ≥
√

log(C22u−c22)
and p ≥ 1− C23u

c23

 imply Q̃u,p(x is n− (L0, u,K, p) bad) ≤ 6× 2−2n .

Relying on (8.12), we now deduce a strong bound on the probability to see long R-paths of
(L0, u,K, p)-bad vertices (see above (WSI) for a definition of R-paths). We emphasize that the
following result holds for all graphs satisfying (3.1). In particular, (WSI) is not required for
(8.13) below to hold.

Proposition 8.3. For G satisfying (3.1) and each u0 > 0, there exist constants c(u0), C(u0) ∈
(0,∞) such that for all R ≥ 1, x ∈ G, u ∈ (0, u0), K > 0 with K ≥

√
log(C22u−c22), p ∈ (0, 1)

with p ≥ 1− C23u
c23 , and N > 0,

(8.13) Q̃u,p
( there exists an R-path of (L0, u,K, p)

-bad vertices from x to B(x,N)c

)
≤ C(u0) exp

{
−(N/L0(u))c(u0)

}
.

Proof. We will show by induction that for all n ∈ {0, 1, 2, . . . }, L0 ≥ R ∨ C3, and x ∈ ΛL0n ,

(8.14)
{ there exists an R-path of (L0, u,K, p)-bad

vertices from B(x, Ln) to B(x, lLn)c

}
⊂ {x is n− (L0, u,K, p) bad}.

If (8.14) holds, then Proposition 8.3 directly follows from (8.11) and (8.12) by taking n ∈ N
and L0 ∈ [L0(u), l0L0(u)) such that lln0L0 = N. Let us fix some L0 ≥ R∨C3. For n = 0, if there
exists a bad vertex in B(x, L0), then, see below (8.4), x is 0 − (L0, u,K, p) bad. Suppose now
that (8.14) holds at level n− 1 for all x ∈ ΛL0n−1 for some n ≥ 1. Then, since L0 ≥ R ∨ C3 and
l ≥ 22, if there exists an R-path π of (L0, u,K, p)-bad vertices from B(x, Ln) to B(x, lLn)c, one
can find for each k ∈ {1, . . . , 7} a vertex

yk ∈ π ∩
(
B(x, 3kLn) \B(x, (3k − 1)Ln)

)
.

Using (6.1), one then picks for each k ∈ {1, . . . , 7} a vertex zk ∈ ΛL0n−1 such that yk ∈
B(zk, Ln−1). One then easily checks that with the choice of l and l0 in (8.1), for all k 6= k′

in {1, . . . , 7}, d(zk, zk′) ≥ Ln, and B(zk, lLn−1) ⊂ B(x, lLn) \ B(x, Ln). In particular, for
each k ∈ {1, . . . , 7}, π yields an R-path of (L0, u,K, p)-bad vertices from B(zk, Ln−1) to
B(zk, lLn−1)c, and the induction hypothesis implies that zk is (n − 1) − (L0, u,K, p) bad.
Among these seven (n − 1) − (L0, u,K, p) bad vertices, there exist i 6= j ∈ {1, . . . , 7} and
A ∈ {(CL0,K)c, (DL0,K)c, (D̂L0,K)c, (D

L0,K)c, (EL0,u)c, (FL0,p)c} such that GL0zi,n−1(A) and
GL0zj ,n−1(A) both occur, whence zi and zj appear in the union for GL0x,n(A), see (7.3). By
definition (8.4), x is n− (L0, u,K, p) bad and (8.14) follows.

Using the additional condition (WSI), Proposition 8.3 together with Lemma 7.6 can be used
to show the existence of a certain set Ã, see Lemma 8.4 below, from which the prevalence of the
infinite cluster of E≥h, h > 0 small, will eventually be deduced. The bound obtained in (8.15)
will later lead to (1.10).
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Lemma 8.4. Assume G satisfies (WSI) (in addition to (3.1)), and let R = R0 as in (WSI).
Furthermore, let u0 > 0, u ∈ (0, u0), K > 0 with K ≥

√
log(C22u−c22), and p ∈ (0, 1) with

p ≥ 1−C23u
c23 . Then Q̃u,p-a.s. there exists L0 ≥ 1 and a connected and unbounded set Ãu∞ ⊂ Ĩu

such that (7.21) holds and there exist constants c > 0 and C <∞ depending on u and u0 such
that for all x0 ∈ G and L > 0,

(8.15) Q̃u,p
(
Ãu∞ ∩ B̃(x0, L) = ∅

)
≤ C exp{−Lc}.

Proof. Fix a vertex x0 ∈ G. By (WSI), there exists R0 ≥ 1 such that, for all finite connected
subsets A of G with x0 ∈ A and δ(A) ≥ C3, noting that d(x, x0) ≤ δ(A) + C3 ≤ 2δ(A) for all
x ∈ ∂extA by (2.8),

(8.16) for all x ∈ ∂extA, ∃ an R0-path from x to B(x, c5d(x, x0)/2)c in ∂extA.

It is then enough to prove that for L0 as in (8.11), for all u ∈ (0, u0), K ≥
√

log(C22u−c22) and
p ≥ 1− C23u

c23 , the probability under Q̃u,p of the event

(8.17)
{ there does not exist an unbounded nearest neighbor path in G

of (L0, u,K, p)-good vertices starting in B(x0, L)

}
has stretched-exponential decay in L for some L0 ≥ 1 (with constants depending on u and
u0). Indeed by the Borel-Cantelli lemma one easily deduces that there is a.s. an unbounded
nearest neighbor path π in G of (L0, u,K, p)-good vertices, and by Lemma 7.6 there exists an
unbounded connected component Ãu∞ ⊂ Ĩu such that (7.21) holds and Ã∞ ∩ B(x, L0) 6= ∅ for
all x in π. Moreover if (8.17) does not occur, then Ãu∞ intersect B̃(x0, L+ L0), and the bound
(8.15) follows after a change of variable for L.

Thus, in order to establish the desired decay, assume that (8.17) occurs for some u ∈ (0, u0),
K ≥

√
log(C22u−c22), p ≥ 1−C23u

c23 , a positive integer L and L0 as in (8.11). We may assume
that L ≥ C3. We now use Proposition 8.3 and a contour argument involving (8.16) to bound its
probability. Note that the assumptions of Proposition 8.3 on the set of parameters (L0, u,K, p)
are met for all u ∈ (0, u0) by our choice of constants. Define

AL = B(x0, L) ∪
{
x ∈ G; x↔ B(x0, L) in the set of (L0, u,K, p)-good vertices

}
,

which is the set of vertices in G either in, or connected to B(x0, L) by a nearest neighbor path
of (L0, u,K, p)-good vertices in G. Since (8.17) occurs, AL is finite. It is also connected, and
δ(AL) ≥ C3. Hence, since every vertex in ∂extAL is (L0, u,K, p)-bad, by (8.16) there exists
x ∈ ∂extAL and an R0-path of (L0, u,K, p)-bad vertices from x to B(x, c5d(x, x0)/2)c. Let
N = bd(x, x0)c, then N ≥ L, and thus by a union bound the probability that the event (8.17)
occurs is smaller than

∞∑
N=L

∑
x∈B(x0,N+1)

Q̃u,p

(
there exists an R0-path of (L0, u,K, p)

-bad vertices from x to B(x, cN)c

)
,

which has stretched-exponential decay in L by (Vα), (2.10) and Proposition 8.3.

Remark 8.5. One can replace (WSI) by the following (weaker) condition (W̃SI) and still retain
a statement similar to Lemma 8.4. This is of interest in order to determine how little space (in
G) one can afford to use in order for various sets, in particular Vu at small u > 0 in Theorem
1.2, to retain an unbounded component; see Theorem 9.3 and Remark 9.4, 5) below. We first
introduce (W̃SI). Suppose that there exists an infinite connected subgraph Gp of G, ζ > 0,
R0 ≥ 1, a vertex x0 ∈ Gp and c24 > 0 such that

for all finite connected A ⊂ Gp with x0 ∈ A, there exists x ∈ (∂extA) ∩Gp
and an R0-path from x to B(x, c24d(x, x0)ζ)c in (∂extA) ∩Gp,

(W̃SI)
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i.e., all the vertices of this path are in (∂extA) ∩Gp. It is easy to see that (WSI) implies (W̃SI)
with ζ = 1. Suppose now that instead of (WSI), condition (W̃SI) hold for some subgraph Gp
of G. Then the conclusions of Lemma 8.4 leading to (7.19) still hold and the set Ãu∞ thereby
constructed satisfies Ãu∞ ⊂ B̃(Gp, 3C10(L0(u) + C3)). To see this, one replaces (8.16) by the
following consequence of (W̃SI): there exists R0 ≥ 1, x0 ∈ Gp and c > 0 such that for all finite
connected subsets A of Gp with x0 ∈ A,

(8.16’) ∃x ∈ (∂extA) ∩Gp and a R0-path from x to B(x, cd(x, x0)ζ)c in (∂extA) ∩Gp.

One then argues as above, with small modifications due to (8.16’), whence, in particular, the
set AL needs to be replaced by AL(Gp)

def.
=
(
B(x0, L) ∩ Gp

)
∪ {x ∈ Gp; x ↔ B(x0, L) ∩

Gp in the set of (L0, u,K, p)-good vertices in Gp}, so that AL = AL(G).

The bound (8.15) will be useful to prove that (1.10) holds, and we seek a similar result which
roughly translates (1.11) to the world of random interlacements. This appears in Lemma 8.7
below. Its proof rests on the following technical result, which is a feature of the renormalization
scheme.

Lemma 8.6. Assume G satisfies (WSI), and recall the definition of c19 from (8.2). For any
L0 ≥ C3, K > 0, u > 0 and n ∈ {0, 1, 2, . . . }, if there exists a vertex x ∈ ΛL0n which is
n− (L0, u,K, p) good, then every two connected components of B(x, 20c19Ln) with diameter at
least c19Ln are connected via a path of (L0, u,K, p)-good vertices in B(x, 30c19C10Ln).

Proof. We use induction on n. For n = 0, if x is 0 − (L0, u,K, p) good, then in view of (8.3),
(8.4) and Definition 7.4, every path in B(x, 20c19L0) is a path of (L0, u,K, p)-good vertices and
all the vertices in B(x, 20c19C10L0) are (L0, u,K, p)-good, so the result follows directly from
(3.4). Let us now assume that the conclusion of the lemma holds at level n− 1 for some n ≥ 1
and let

(8.18) x be an n− (L0, u,K, p) good vertex.

Let U1 and U2 be any two connected components of B(x, 20c19Ln) with diameter at least c19Ln.
We are first going to show that

(8.19)
U1 and U2 are linked via (n− 1)− (L0, u,K, p)

-good vertices in B(x, 22c19C10Ln),

by which we mean that there exists a subset S of ΛL0n−1∩B(x, 22c19C10Ln) containing only (n−
1)− (L0, u,K, p) good vertices and such that

⋃
y∈S B(y, Ln−1) contains a connected component

intersecting both U1 and U2. To see that (8.19) holds, for each i ∈ {1, 2} choose seven connected
subsets (Uki )k∈{1,...,7} of Ui such that for all k 6= k′ ∈ {1, . . . , 7},

d(Uki ,Uk
′

i ) ≥ Ln + 2Ln−1 and δ(Uki ) ≥ 7Lnc
−1
5 ;

such a choice is possible since L0 ≥ C3, l0 ≥ l ≥ 22 and c19 = 7(1 + 7c−1
5 ). If for each

k ∈ {1, . . . , 7} there exists an (n−1)−(L0, u,K, p) bad vertex yk ∈ ΛL0n−1 such that B(yk, Ln−1)∩
Uki 6= ∅, then there are at least seven (n−1)−(L0, u,K, p) bad vertices in B(x, 20c19Ln+Ln−1) ⊂
B(x, lLn) with mutual distance at least Ln, which contradicts (8.18) by (8.4) and the definition
of the renormalization scheme, see (7.3). For each i ∈ {1, 2} we can thus find ki such that
each y ∈ ΛL0n−1 with B(y, Ln−1) ∩ Ukii 6= ∅ is (n − 1) − (L0, u,K, p) good. Recalling that Ukii
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is connected, we can define for each i ∈ {1, 2} the set compn−1(Ukii ) ⊂ G as the connected
component in

(8.20)
⋃

y∈Λ
L0
n−1∩B(x,22c19C10Ln),

y is (n−1)−(L0,u,K,p) good

B(y, Ln−1)

containing Ukii .
The claim (8.19) amounts to showing that compn−1(Uk11 ) = compn−1(Uk22 ). Suppose on the

contrary that compn−1(Uk11 ) and compn−1(Uk22 ) are not equal. By (3.4), there is a nearest
neighbor path (x1, . . . , xp) in B(x, 20c19C10Ln) connecting Uk11 and Uk22 . Recalling the notion
of external boundary from (2.1), since x1 ∈ Uk11 , either there exists m ∈ {1, . . . , p} such that
xm ∈ ∂extcompn−1(Uk11 ), or every unbounded nearest neighbor path beginning in xp intersects
compn−1(Uk11 ), and likewise for compn−1(Uk22 ). If every unbounded path beginning in xp hits
compn−1(Uk11 ) and every unbounded path beginning in x1 hits compn−1(Uk22 ), then by connectiv-
ity every unbounded path beginning in compn−1(Uk11 ) hits compn−1(Uk22 ) and every unbounded
path beginning in compn−1(Uk22 ) hits compn−1(Uk11 ), which is impossible since compn−1(Uk11 ) 6=
compn−1(Uk22 ) (indeed, unless compn−1(Uk11 ) = compn−1(Uk22 ), these conditions would require
any such path to ‘oscillate’ between compn−1(Uk11 ) and compn−1(Uk22 ) infinitely often and thus
it remains bounded). Therefore, we may assume that ∂extcompn−1(Uk11 ) ∩B(x, 20c19C10Ln) 6=
∅ (otherwise exchange the roles of U1 and U2), and by (WSI), there exists an R0-path in
∂extcompn−1(Uk11 ) of diameter between 7Ln and 8Ln beginning in B(x, 20c19C10Ln). By defi-
nition of compn−1(Uk11 ), see (8.20), every vertex of this R0-path is contained in B(y, Ln−1) for
some (n−1)−(L0, u,K, p) bad vertex y in ΛL0n−1∩B(x, (20c19C10 +8+l−1

0 )Ln) ⊂ B(x, 22c19Ln),

and, since L0 ≥ C3 and l0 ≥ l ≥ 22, there are at least 7 (n − 1) − (L0, u,K, p) bad vertices
in B(x, 22c19C10Ln) = B(x, lLn) with mutual distance at least Ln. By (7.3) and (8.4), x is
n− (L0, u,K, p) bad, which is a contradiction.

Therefore, we have compn−1(Uk11 ) = compn−1(Uk22 ), i.e., (8.19) holds. Thus, by (6.1) there
exists y0 ∈ Uk11 , ym+1 ∈ Uk22 and a sequence of vertices y1, . . . , ym ∈ ΛL0n−1 ∩B(x, 22c19C10Ln)
of good (n− 1)− (L0, u,K, p) vertices such that

(8.21) 5c19Ln−1 ≤ d(yj−1, yj) ≤ 6c19Ln−1∀ j ∈ {1, . . . ,m} and d(ym, ym+1) ≤ 6c19Ln−1.

We now construct the desired nearest neighbor path of (L0, u,K, p)-good vertices connecting
U1 and U2. To this end, we fix a nearest neighbor path π0 in Uk11 beginning in y0, a nearest
neighbor path πm+1 in Uk22 beginning in ym+1, and, for each j ∈ {1, . . . ,m} a nearest neighbor
path πj beginning in yj such that for all j ∈ {0, . . . ,m+ 1}, c19Ln−1 ≤ δ(πj) ≤ 2c19Ln−1,
which is always possible since 7l0c

−1
5 ≥ c19, see (8.1). Note that, using (8.21),

(8.22) π0, π1 ⊂ B(y1, 20c19Ln−1) and d(π0, π1) ≥ c19Ln−1.

Due to (8.22), applying the induction hypothesis to π0 and π1, we can construct a nearest
neighbor path π1 of (L0, u,K, p)-good vertices in B(y1, 30c19C10Ln−1) ⊂ B(x, 30c19C10Ln)
with diameter at least c19Ln−1 connecting π0 and π1. Moreover, we can further extract from π1

a nearest neighbor path π′1 included in B(y1, 2c19Ln−1) and with diameter at least c19Ln−1, and
so we have π′1 ⊂ B(y2, 20c19Ln−1) and d(π′1, π2) ≥ c19Ln−1. By the induction hypothesis, we
can thus find a nearest neighbor path π2 of (L0, u,K, p)-good vertices in B(y2, 30c19C10Ln−1) ⊂
B(x, 30c19C10Ln) with diameter at least c19Ln−1 between π1 and π2. Iterating this construction,
we find a sequence of (πj)j∈{1,...,m+1} of nearest neighbors paths of (L0, u,K, p)-good vertices
in B(x, 30c19C10Ln) such that π0 ∩ π1 6= ∅, πj ∩ πj+1 6= ∅ for all j ∈ {1, . . . ,m} and πm+1 ∩
πm+1 6= ∅. Concatenating the paths π0, . . . , πm+1 provides a path of (L0, u,K, p)-good vertices
in B(x, 30c19C10Ln) connecting U1 and U2, as desired.
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Using Lemma 7.6 and the quantitative bounds derived earlier in this section, we infer from
Lemma 8.6 the following estimate tailored to our later purposes. Let us define

E≥−
√

2u
ϕ = {y ∈ G; ϕy ≥ −

√
2u}.

Lemma 8.7. Assume G satisfies (WSI) (in addition to (3.1)), and take R = R0 from (WSI).
Then for all u0 > 0, u ∈ (0, u0), x ∈ G, K > 0 with K ≥

√
log(C22u−c22), p ∈ (0, 1) with

p ≥ 1 − C23u
c23 and L > 0, there exists L0 = L0(L) ∈

[
L0(u), l0L0(u)

)
, C < ∞ and c > 0

depending on u and u0 such that

Q̃u,p
(
Eux,L

)
≥ 1− C(u, u0) exp{−L(u, u0)c},

where Eux,L is the event

(8.23)



∃ a connected set Aux,L ⊂ B(x, 2C10L) which intersects every cluster
of B(x, L) with diameter ≥

√
L, and a connected set Ãux,L ⊂ Ĩu∩

B̃(x, 2C10L) verifying (7.21), such that B(y, L0) ∩ Ãux,L 6= ∅
for all y ∈ Aux,L and every cluster of E≥−

√
2u

ϕ ∩B(x, L) with
diameter ≥ L/10 is connected to Ãux,L ∩G in E≥−

√
2u

ϕ ∩B(x, 2L)


.

Proof. As a direct consequence of Lemma 8.6 and (8.12) with R = R0 from (WSI), we obtain
that for all u0 > 0, u ∈ (0, u0], K ≥

√
log(C22u−c22), p ≥ 1 − C23u

c23 n ∈ N, x ∈ ΛL0n , and
L0 ∈ [L0(u), l0L0(u)], see (8.11),

(8.24) Q̃u,p

 there exist connected components of B(x, 20c19Ln)
with diameter ≥ c19Ln which are not connected by

a path of (L0, u,K, p)-good vertices in B(x, 30c19C10Ln)

 ≤ 6× 2−2n .

Therefore, for all L large enough, taking L0 = L0(L) ∈
[
L0(u), l0L0(u)

)
and n ∈ N such that

L = 20c19l
n
0L0, we have

Q̃u,p

 there exist connected components of B(x, L)

with diameter ≥ L
10 which are not connected by a

path of (L0, u,K, p)-good vertices in B(x, 2C10L)

 ≤ C exp{−Lc},(8.25)

for some constants C = C(u, u0) and c = c(u, u0). Let us call Eux,L the complement of
the event on the left-hand side of (8.25). On the event Eux,L, there exists a connected set
Aux,L ⊂ B(x, 2C10L) of (L0, u,K, p)-good vertices which intersects every connected component
of B(x, L) with diameter ≥ L

10 . One can construct such a set by starting with a path π of
(L0, u,K, p)-good vertices in B(x, L) with diameter ≥ L

10 , and taking Aux,L as the union of all
the paths of (L0, u,K, p)-good vertices between π and every other connected component of
B(x, L) with diameter ≥ L

10 .

By Lemma 7.6, for L large enough, this implies the existence of a connected set Ãux,L ⊂
B̃(x, 2C10L + 3C10(L0 + C3)) ⊂ B̃(x, 3C10L) such that (7.19), (7.20) and (7.21) hold when
replacing A by Aux,L and Ã by Ãux,L. Moreover, if C is a cluster of E≥−

√
2u

ϕ ∩ B(x, L) with
diameter at least L/10, then there exists z ∈ C ∩ Aux,L, and thus C contains a cluster of E≥−

√
2u

ϕ ∩
B(z, L0/2) with diameter at least L0/4. By (7.20) we obtain that C is connected to Ãux,L in
E≥−

√
2u

ϕ ∩B(z, L0) ⊂ B(x, 3C10L).

If Euy,L and Euy′,L happen for y and y′ in G with y ∼ y′, then δ(Auy,L ∩B(y′, L)) ≥ L
10 , and so

there exists z ∈ Auy,L ∩ Auy′,L. By (7.19), ∅ 6= B(z, L0)∩Iu/4 ⊂ Ãuy,L ∩Ãuy′,L. If E
u
y,10
√
L happens
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for all y ∈ B(x,C10L), let us define BL ⊂ B(x,C10L) a connected set containing B(x, L), which
exists by (3.4), and

Aux,L =
⋃
y∈BL

Au
y,10
√
L

and Ãux,L =
⋃
y∈BL

Ãu
y,10
√
L
.

Then Aux,L is a connected subset of B(x,C10(L+20
√
L)) ⊂ B(x, 2C10L) and Ãux,L is a connected

subset of B(x,C10(L+ 30
√
L)) ⊂ B(x, 2C10L) for L large enough. We clearly have that (7.21)

still holds, that B(y, L0)∩Ãux,L 6= ∅ for all y ∈ Aux,L, that every cluster of E≥−
√

2u
ϕ ∩B(x, L) with

diameter at least
√
L is connected to Ãx,L in E≥−

√
2u

ϕ ∩B(x, L+30C10

√
L) ⊂ E≥−

√
2u

ϕ ∩B(x, 2L),
and that Ax,L intersects every connected component of B(x, L) with diameter at least

√
L.

Therefore by (Vα) and (8.25), we have

Q̃u,p
(
Eux,L

)
≥ Q̃u,p

 ⋂
y∈B(x,C10L)

Euy,10
√
L

 ≥ 1− CLα exp
{
−(10

√
L)c
}
.

Under Eux,L, we have constructed by (5.4) a giant cluster Ãux,L∩G intersecting B(x, L/2), with
Ãux,L∩G ⊂ E≥−

√
2u

ϕ ∩B(x, 2C10L) and such that Ãux,L∩G is connected in E≥−
√

2u
ϕ ∩B(x, 2L) to

every cluster of E≥−
√

2u
ϕ ∩B(x, L) with diameter at least L/10. Combining this with Lemma 8.4,

we readily obtain by (8.23) that:

Corollary 8.8. For all h < 0, there exists constants c(h) > 0 and C(h) <∞ such that (1.10)
and (1.11) hold, and thus h ≥ 0.

Remark 8.9. As the perceptive reader will have already noticed, one does not need to use our
“sign flipping” result, Proposition 5.6, to prove h ≥ 0. One also does not need local uniqueness
for random interlacements on the cable system, see Proposition 4.1, but only on the discrete
graph. We need to use percolation results for random interlacements on the cable system and
Proposition 5.6 only to prove h > 0, which is the content of the next section. This is similar to
the case of h∗ on Zd, d ≥ 3, where one can prove h∗ ≥ 0 without using Proposition 5.6, see for
instance [12] or (5.4), but an equivalent of Proposition 5.6 is used to prove h∗ > 0, see Lemma
5.1 in [16]. We also note that in the next section to prove h > 0 we will never use the events
EL0,u
x from Definition 7.4, which we only introduced to prove Corollary 8.8.

9 Denouement

We proceed to the proof of our main results, Theorems 1.1 and 1.2. In Lemma 9.2, we first
use Proposition 5.6 to translate the result of Lemma 8.7, which is stated in terms of Iu and
E≥−

√
2u

ϕ , to a similar result in terms of E≥
√

2v
, 0 ≤ v < u, which correspond to level sets of a

Gaussian free field, see (5.42). This gives us directly, with overwhelming probability as L→∞,

that there exists a giant cluster of E≥
√

2u in B(x, L) which is at distance at most `0L0(u),
see (8.1) and (8.11), of any connected component in B(x, L) with diameter

√
L, see Lemma

9.2. The sets Hu,v,K,p from Proposition 5.6 provide us with additional randomness, and we will

take advantage of it to finish the connection of the giant cluster of E≥
√

2u to any connected
component of E≥

√
2u with diameter at most

√
L, and together with Lemma 8.4 this delivers

Theorem 1.1. We then use the couplings from (5.24) and Proposition 5.6 to also obtain Theorem
1.2. As a by-product of our methods, Theorem 9.3 asserts the existence of infinite sign clusters
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(in slabs) without any statements regarding their local structural properties under the slightly
weaker assumption (W̃SI), introduced in Remark 8.5 above. We then conclude with some final
remarks.

Let us first choose the parameters u > 0, K < ∞ and p ∈ (0, 1) in such a way that
the conclusions of Proposition 5.6 and Lemmas 8.4 and 8.7 simultaneously hold. Recall that
c4 ≤ λx ≤ C4 for all x ∈ G, see (2.10). Fix an arbitrary reference level u0 > 0, say u0 = 1, and
choose u1 ∈ (0, u0) such that, for all 0 < u ≤ u1,

∃K ≥ 2
√

2u with
√

log(C22u−c22) ∨ c14

2
√

2uC4

≤ K ≤ c14√
2uC4

,

and ∃ p ∈
[

1
2 , 1
)
such that 1− C23u

c23 ≤ p ≤ F
(√c4c14

8
√
uC4

)
,

(9.1)

where we recall that F denotes the cumulative distribution function of a standard normal
distribution. Also, note that u1 with the desired properties exists by considering the limit as
u ↓ 0 and using the standard bound F (x) ≥ 1 − 1√

2πx
exp{−x2

2 } for all x > 0 in the second
line. For a given u ∈ (0, u1], we then select any specific value of K = K(u) and p = p(u)
satisfying the constraints in (9.1), and henceforth refer to these values when writing K and
p, and in particular we take the probability Q̃u,p, cf. (5.34), and Qu,K,p, cf. Proposition 5.6,
for this particular value of K and p. Then K satisfies the constraint in (5.27) and p satisfies
the constraint in (5.35) on account of (9.1) and (2.10), and noting that K/2 ≤ K −

√
2u.

Therefore Proposition 5.6 applies for u ∈ (0, u1]. Recalling SK from (5.39) and (5.40), taking
Xu,K,p as in (5.37) and (5.40) and using (2.8), we have for all sets Ã such that (7.21) holds that
B(Ã∩G,L0) ⊂ SK ∩Xu,K,p. Moreover, recalling Ru from (5.25) and (5.40), and using (5.4), we
have that Iu ⊂ Ru. We thus obtain by (5.43) that for all u ∈ (0, u1] and v ≤ u, under Qu,K,p,

(9.2)
if Ã ⊂ Ĩu is a connected set such that (7.21) holds for some L0 ≥ 1,

then Ã ∩G ⊂ Iu ∩ SK ∩Xu,K,p ⊂ E
≥
√

2v and B(Ã ∩G,L0) ∩Hu,v,K,p ⊂ E
≥
√

2v
.

Definition 9.1. For all x ∈ G, L > 0, L0 = L0(L) as in Lemma 8.7, u ∈ (0, u1) and 0 ≤ v < u
let us define Eu,vx,L as the event that

i) there exists a σ
(
Ĩu, γ̃, (Bpx)x∈G

)
-measurable and connected set Au,vx,L ⊂ B(x, 2C10L) such

that Au,vx,L intersects every connected component of B(x, L) with diameter at least
√
L,

ii) there exists a connected set Cu,vx,L ⊂ E
≥
√

2v∩B(x, 2C10L) such that B(Cu,vx,L, L0)∩Hu,v,K,p ⊂

E
≥
√

2v
,

iii) for all y ∈ Au,vx,L, B(y, L0) ∩ Cu,vx,L 6= ∅.

Applying (9.2) to the set Ãux,L from (8.23) and taking Au,vx,L = Aux,L and Cu,vx,L = Ãux,L ∩G, it
is clear that Eux,L ⊂ E

u,v
x,L, see (8.23) for the definition of Eux,L. Moreover, it is clear that Lemma

8.7 holds for any 0 < u ≤ u1, and K and p as in (9.1), and we obtain:

Lemma 9.2. For all x ∈ G, L > 0, L0 = L0(L) as in Lemma 8.7, u ∈ (0, u1), K and p as in
(9.1), and 0 ≤ v < u ≤ u1, there exist constants C <∞ and c > 0 depending on u such that

Qu,K,p
(
Eu,vx,L

)
≥ 1− C exp{−Lc},

Under Eu,vx,L, we have thus constructed a giant component Cu,vx,L ⊂ E
≥
√

2u ∩ B(x, 2C10L)

such that, by i), any cluster of E≥
√

2v ∩ B(x, L) with diameter at least
√
L intersect the set
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Au,vx,L, and, by iii), it also intersects B(y, L0) for some y ∈ Cu,vx,L. Therefore, any cluster of

E
≥
√

2v∩B(x, L) with diameter at least L/10 is connected to B(y, L0) for many vertices y ∈ Cu,vx,L,
and if B(y, L0) ⊂ Hu,v,K,p for one of these y, by ii), this cluster would be connected to the giant

component Cu,vx,L in E≥
√

2v ∩B(y, L0). We use this remark and the independence of H from Au,vx,L
to deduce Theorem 1.1 from (5.42) and Lemma 9.2.

Proof of Theorem 1.1. Let h ≤ h1
def.
=
√

2u1. The set Ãu1∞ from Lemma 8.4 is included in
E
≥h1 ⊂ E

≥h by (9.2) and monotonicity, and (1.10) follows readily. Let us now prove that
(1.11) hold for all h ≤ h1. By Corollary 8.8, it is enough to prove that (1.11) hold for all
0 ≤ h ≤ h1, and let us fix u = u1 and v = h2/2. We will simply denote by H the event
Hu,v,K,p from Proposition 5.6. Let us define for all x ∈ G, L large enough, L0 as in Lemma 8.7,
k ∈ {2, . . . , b

√
L

20 c} and y ∈ B(x, L)

Êy,kx,L = Eu,vx,L ∩

{
the cluster of y in E≥

√
2v ∩B(y, 2k

√
L) ∩B(x, L)

intersects ∂B(y, 2k
√
L) but does not intersect Cu,vx,L

}
.

Let also Zy,kx,L = Au,vx,L ∩B(y, 2k
√
L−L0−C3)∩B(x, L) \B(y, 2(k− 1)

√
L+L0), and Zk be the

smallest z ∈ Zy,kx,L (in some deterministic fixed order on the vertices of G) such that

(9.3) y ←→ ∂extB(z, L0) in E≥
√

2v ∩B(y, 2k
√
L) ∩B(x, L) \

⋃
z′∈Zy,kx,L

B(z′, L0).

We fix arbitrarily Zk = y if (9.3) never happens. By (2.8), if Êy,kx,L happens and L is large
enough, since the set of vertices in B(y, 2k

√
L − L0 − C3) ∩ B(x, L) \ B(y, 2(k − 1)

√
L + L0)

connected to y in E≥
√

2v∩B(y, 2k
√
L)∩B(x, L) contains a connected component with diameter

≥ 2
√
L−2L0−3C3 ≥

√
L, by i) of Definition 9.1 it must intersect some z ∈ Au,vx,L, and so Zk 6= y.

Since under Êy,kx,L the cluster of y in E≥
√

2v ∩ B(y, 2k
√
L) ∩ B(x, L) does not intersect Cu,vx,L, we

obtain by ii) and iii) of Definition 9.1 that Hc ∩B(Zk, L0) 6= ∅. Therefore

(9.4) Êy,kx,L ⊂ {Zk 6= y, Hc ∩B(Zk, L0) 6= ∅}.

Since Au,vx,L is σ(Ĩu, γ̃, (Bpx)x∈G) measurable, we have that the events {Zk = z} are Fz measurable
for all z ∈ B(y, 2(k − 1)

√
L+ L0)c, where

Fz = σ
(
Ĩu, γ̃, (Bpx)x∈G, {x′ ∈ E

≥
√

2v}x′∈B(z,L0)c
)
.

Moreover by Lemma 5.6 the event {x′ ∈ H} is independent of Fz for all z ∈ G and x′ ∈ B(z, L0)
and so, under Qu,K,p(· | Fz), {x′ ∈ H}x′∈B(z,L0) is an i.i.d. sequence of events with common
probability Qu,K,p(x ∈ H) > 0. Since for all k ∈ N we have Êy,kx,L ⊂ Ê

y,k−1
x,L and Êy,k−1

x,L is Fz
measurable for all z ∈ B(y, 2(k − 1)

√
L+ L0)c, with the convention Êy,0x,L = Eu,vx,L, we obtain by

(Vα) and (9.4) that

Qu,K,p(Êy,kx,L)

≤
∑

z∈B(y,2(k−1)
√
L+L0)c

EQu,K,p
[
1Êy,k−1

x,L ∩{Zk=z}Q
u,K,p(Hc ∩B(z, L0) 6= ∅ |Fz)

]
≤ Qu,K,p(Êy,k−1

x,L )
(
1−Qu,K,p(x ∈ Hc)C1Lα0

)
,
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Iterating, we obtain that there exist constants c = c(u, v) > 0 and C = c(u, v) < ∞ such
that for all k ∈ {2, . . . , b

√
L

20 c},

(9.5) Qu,K,p(Êy,kx,L) ≤ C exp(−ck).

By ii) of Definition 9.1, we have moreover under Eu,vx,L that Cu,vx,L ⊂ E
≥
√

2v ∩B(x, 2C10L) and is

connected. Now the event in (1.11) for h =
√

2v and E≥
√

2v instead of E≥h implies that either
Eu,vx,L does not happen, or it happens and there exists y ∈ B(x, L) such that the component of y in

E
≥
√

2v∩B(x, L) has diameter at least L/10 and is not connected to Cu,vx,L in E≥
√

2v∩B(x, 2C10L),

and then there exists y ∈ B(x, L) such that Êy,b
√
L

20
c

x,L happens. By (5.42) E≥
√

2v has the same
law under Qu,K,p as E≥h under PG, and thus by (Vα), Lemma 9.2 and (9.5), we obtain that the
probability in (1.11) is smaller than

Q̃u,p
(
(Eu,vx,L)c

)
+Qu,K,p

( ⋃
y∈B(x,L)

Êy,b
√
L

20
c

x,L

)
≤ C exp(−Lc) + CLα exp(−c

√
L).

We now continue with the proof of Theorem 1.2.

Proof of Theorem 1.2. We continue with the setup of (9.1), and fix some u ≤ ũ def.
= u1. We now

define the probability ν1 on ({0, 1}G)2 × ({0, 1}G) as the (joint) law of((
1{x∈Iu},1{SxK∩{X

x
u,K,p=1}}

)
x∈G,

(
1
{x∈E≥

√
2u}

)
x∈G

)
under Qu,K,p, and the probability ν2 on ({0, 1}G)× ({0, 1}G)2 as the law of((

1{−ϕx≥
√

2u}
)
x∈G,

(
1{x∈Vu},1{−γx≥0}

)
x∈G

)
under Q̃u,p. We concatenate these probabilities by defining the probability Qu on the product
space ({0, 1}G)2 × ({0, 1}G) × ({0, 1}G)2 such that for all measurable sets A1 ⊂ ({0, 1}G)2,
A2 ⊂ {0, 1}G and A3 ⊂ ({0, 1}G)2

Qu
(
A1 ×A2 ×A3

)
= Eν1

[
1{η11∈A1,η12∈A2}ν2

(
η2

2 ∈ A3

∣∣ η2
1 = η1

2

)]
,

where we wrote the coordinates under νi as (ηi1, η
i
2) for all i ∈ {1, 2}, and furthermore ν2(η2

2 ∈
· | η2

1 = ·) is a regular conditional probability distribution on {0, 1}G for η2
2 given σ(η2

1). One
then defines the three random sets from the statement of the theorem under Qu as follows: the
sets I and K are defined by the marginals of η1

1 and the set V as the first marginal of η2
2. With

this choices, part i) and ii) of (1.17) are clear by definition, noting that Iu and SK∩Xu,K,p with
Xu,K,p coming from (5.37) are independent under Q̃u,p, which follows from (5.34) on account of

(5.39). Since Iu∩SK ∩Xu,K,p ⊂ E
≥
√

2u by (5.4), (5.25) and (5.43), E≥
√

2u has the same law as
{x ∈ G;−ϕx ≥

√
2u} by (5.42) and symmetry of ϕ, and {x ∈ G;−ϕx ≥

√
2u} ⊂ Vu by (5.24),

one can easily check that the inclusion I ∩ K ⊂ V holds under Qu. Finally, Iu ∩ SK ∩Xu,K,p

contains Q̃u,p-a.s. an infinite cluster by Lemma 8.4 and (9.2), and thus I ∩ K under Qu too.
This completes the proof.

As the perceptive reader will have noticed, the inclusion in part iii) of Theorem 1.2 can be
somewhat strengthened to a statement of the form (I ∩ K) ⊂ (V ∩ K′) with K′ independent of
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V and with the same law as {x ∈ G; Φx > 0} under PG by taking into account the effect of γ̃
in (5.24), cf. (5.34) regarding the asserted independence.

The sole existence of an infinite cluster without the local connectivity picture entailed in
(1.11) can be obtained under the slightly weaker geometric assumption (W̃SI) from Remark
8.5. We record this in the following

Theorem 9.3. Under the assumptions (3.1) and (W̃SI) on G, there exists h1 > 0 such that for
all h ≤ h1, (1.10) holds for some x ∈ G and there exists a.s. an infinite connected component
in E≥h ∩ B(Gp, CL0(h2/2)) and in Vh2/2 ∩ B(Gp, CL0(h2/2)) with L0(·) given by (8.11). In
particular h∗ > 0 and u∗ > 0.

Proof. One adapts the argument leading to (1.10) in the proof of Theorem 1.1, replacing Lemma
8.4 by the corresponding result obtained under the weaker assumption (W̃SI) described in
Remark 8.5. We omit further details.

We conclude with several comments.

Remark 9.4.

1) In [18], on Zd, d ≥ 3, a slightly different parameter h1 is introduced since only a super-
polynomial decay in L is required in the conditions corresponding to (1.10) and (1.11),
and in [60] yet another parameter h2 is introduced by allowing the addition of a small
sprinkling parameter h′ to connect together the large paths of E≥h. However, it is clear that
h ≤ h1 ≤ h2, and so the parameters h1 and h2 are also positive as a consequence of Theorem
1.1.

2) Looking at the proof of Theorem 1.2, one sees that for u small enough, the set K can be taken
with the same law under Qu as SK ∩Xu,K,p under Q̃u,p, for some K > 0 and p ∈ (0, 1) as in
(9.1), where SK is defined in (5.39) and (5.40), and Xu,K,p in (5.37) and (5.40). Changing
the event CL0,p

x in Definition 7.4 by the increasing event CL0,p
x which occurs if and only if for

all z ∈ B̃(x, 2C10(L0 + C3) + C3), ϕ̃z ≥ −K, and the event FL0,p
x by the decreasing event

FL0,p
x which occurs if and only if for all z ∈ B̃(x, 2C10(L0 + C3) + C3), ϕ̃z ≤ K, one can

show as in Lemma 8.4 that there exists a connected and unbounded set Ã ⊂ G̃ such that

Ã ⊂ Ĩu, and |ϕ̃z| ≤ K for all z ∈ B̃(Ã, 2L0 + C3).

Therefore, adapting the proof of Theorem 1.2, one can take K with the same law under
Qu as SK ∩ Xu,K,p under Q̃u,p, for some K > 0 and p ∈ (0, 1) as in (9.1), where SK
is defined in (5.25) and (5.40), and Xu,K,p in (5.38) and (5.40), or with the same law as
{x ∈ G; |ϕ̃z| ≤ K for all z ∈ Ux}, and i) and iii) in (1.17) still hold. This choice for K has
a simple expression and would be enough for the purpose of proving h > 0 and u∗ > 0, but
has the disadvantage of not being independent from I. Independence, however, is expected
to be useful for future applications.

3) Taking complements in the inclusion I ∩ K ⊂ V, see Theorem 1.2, and intersecting with K,
we obtain that Vc∩K ⊂ Ic. Taking I ′ = Vc and V ′ = Ic, we obtain the inclusion I ′∩K ⊂ V ′,
and K is independent of I, and thus of V ′. Therefore, we could have chosen K independent
of V in ii) of (1.17) instead of K independent of I.

4) Using a similar reasoning as the one leading to Corollary 8.8, one can prove strong percola-
tion, as in (1.9), for the level sets Ẽ>h, see (5.1), for all h < 0, in the sense that (1.10) and
(1.11) hold but for the level sets Ẽ>h of the Gaussian free field on the cable system G̃ instead
of the graph G. Moreover, the critical parameter h̃∗ for percolation of the continuous level
sets Ẽ>h is exactly equal to 0 by Proposition 5.2, and thus the strongly percolative phase

68



consists of the entire supercritical phase for the Gaussian free field on the cable system,
i.e. if one introduces h̃ as in (1.9), but putting “tildes everywhere” in (1.10) and (1.11), one
arrives at the following

Theorem 9.5. If G satisfies (3.1) and (WSI), then h̃ = h̃∗ = 0.

This result can also be proved without condition (WSI). Indeed, by (5.4), (3.11) and the def-
inition of random interlacements, the probability that Ẽ>−

√
2u does not contain a connected

component of diameter at least L/10 has stretched exponential decay in L for any u > 0.
Moreover, by Corollary 5.3, any connected component of {z ∈ G̃; ϕ̃z > −

√
2u} ∩ B(x, L)

either intersects Ĩu or is a connected component of {z ∈ G̃; γ̃z > 0} not intersecting Ĩu.
Since Ĩu and γ̃ are independent under Q̃u,p, the probability that Ĩu does not intersect a
component of {z ∈ G̃; γ̃z > 0} with diameter at least L/10 has stretched exponential decay
by Lemma 3.2 and (3.10). Therefore, with high enough probability, any connected compo-
nent of {z ∈ G̃; ϕ̃z > −

√
2u}∩B(x, L) with diameter at least L/10 intersects Ĩu, and strong

connectivity of Ẽ>−
√

2u then readily follows from Proposition 4.1.

5) Looking at Theorem 9.3, we have in fact proved that if (W̃SI) holds for some subgraph in
Gp of G, then there exists 0 < h1 ≤ h∗ such that for all h < h1, there exists L > 0 with

PG
(
there exists an infinite connected components in E≥h ∩B(Gp, L)

)
= 1.

It then follows by (5.18), that the same is true for Vu i.e., there exists 0 < u1 ≤ u∗ such that
for all u < u1, and some L > 0,

PI
(
there exists an infinite connected components in Vu ∩B(Gp, L)

)
= 1.

If G = G1 × G2, we may choose Gp = P1 × P2 a half-plane, where P1 and P2 are two
semi-infinite geodesics in G1 and G2. Hence, we obtain that E≥h and Vu percolate in thick
planes B(Gp, L) for h > 0 and u > 0 small enough. If ν > 1, then Vu actually percolates
in the plane Gp for u small enough, see Remark 7.2, 2), and in Theorem 5.1 of [57], it is
shown that this is also true if ν = 1 and G1 = Z. It is still unclear, and an interesting open
question, whether this holds true for ν < 1 or not.

6) The existence of a non-trivial supercritical phase for Bernoulli percolation (and other models)
is proved in [64] if G satisfies the volume upper bound of (Vα) and a local isoperimetric
inequality. The proof involves events similar to those considered in (1.11), and it is possible
that our condition (WSI) could be replaced by this local isoperimetric inequality, which
would for example cover the case of the Menger sponge, see Remark 3.8, 3). However, one
would then need to take a super-geometric scale in our renormalization scheme (7.2), and
then lose the stretched exponential decay in (1.10) and (1.11).

7) One may also inquire whether a phase coexistence regime for percolation of {|ϕ| > h} and
{|ϕ| < h} exists, or similarly for the level sets of local times {x ∈ G; `x,u > α} of random
interlacements, with u > 0, α ≥ 0, considered in [46]. For instance, regarding the latter, is
it possible for all α > 0 to find u ≥ 0 such that percolation for the local times at level u
above and below α occur simultaneously?

8) Finally, it would be desirable to have a conceptual understanding of the mechanism that
lurks behind the percolation above small enough levels h ≥ 0 for the discrete level sets E≥h

(as opposed to their continuous counterparts Ẽ≥h, cf. 4) above). Our current techniques
are based on stochastic comparison, see Lemma 5.5 and Proposition 5.6, but the induced
couplings suggest that one should be able to exhibit these features as a property of ϕ̃ itself,
without resorting to additional randomness.
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Appendix: Proof of Proposition 3.3

Proposition 3.3 is proved in [24] when d is the graph distance, and we are going to adapt its
proof for a general distance d. Let us begin with the

Proof of Proposition 3.3, i). Using (Gβ) and (Vα), we have for all x ∈ G and t ≤ C2,

λ({y ∈ G : g(x, y) > t})
(Gβ)
≤ λ({y ∈ G : C2d(x, y)−ν > t})

≤ λ
(
B
(
x,
( t

C2

)− 1
ν )) (Vα)

≤ Ct
− α/β
α/β−1

Moreover, by (Gβ), λ({y ∈ G : g(x, y) > t}) = 0 for all x ∈ G and t > C2, and (3.16) follows
directly from Proposition 5.1 in [24].

In order to prove Proposition 3.3, ii) we first need the following bounds on the expected
time at which the random walk Z on G leaves a ball.

Lemma A.1. There exist constants 0 < c25 ≤ C25 <∞ only depending on G such that for all
x ∈ G and R ≥ 1,

(A.1) c25R
β ≤ Ex[TB(x,R)] =

∑
y∈B(x,R)

λygB(x,R)(x, y) ≤
∑

y∈B(x,R)

λyg(x, y) ≤ C25R
β

Proof. Let us fix some x ∈ G andR ≥ 1. The equality in (A.1) is true by definition of the stopped
Green function (2.5). Partitioning B(x,R) \ B(x, 1) into Bk = B(x, 2−kR) \ B(x, 2−k−1R) for
k ∈ {0, . . . , blog2Rc}, we have

∑
y∈B(x,R)\B(x,1)

λyg(x, y) ≤
blog2Rc∑
k=0

∑
y∈Bk

λyg(x, y)
(Gβ)
≤ C2

blog2Rc∑
k=0

λ(Bk)
(
2−k−1R

)−ν
(Vα)
≤ CRα−ν

∞∑
k=0

2−k(α−ν),

and the upper bound in (A.1) follows since α− ν = β > 0 and∑
y∈B(x,1)

λygB(x,R)(x, y) ≤ C1C2.

For the lower bound, we can assume w.l.o.g. that R is large, and we write∑
y∈B(x,R)

λygB(x,R)(x, y) ≥
∑

y∈B(x, R
1+2C9

)

λygB(x,R)(x, y)

(3.2)
≥ c2

2

∑
y∈B(x, R

1+2C9
)\{x}

λyd(x, y)−ν
(Vα)
≥ cRα−ν .

70



We now follow the proof of Proposition 4.33 in [4]. The bounds in Lemma A.1 on the
expected exit time of a ball give us the following lemma as a first step in the proof of Proposition
3.3, ii).

Lemma A.2. There exist constants C26 > 0 and c26 > 0 only depending on G such that for all
x ∈ G and R > 0,

Px
(
TB(x,R) > C26R

β
)
≥ c26

Proof. Take C26 = (c25 ∧ 1)/4. Let us fix x ∈ G and R > 0, and we can assume w.l.o.g.
that C26R

β ≥ 1/2 (and then R ≥ 1). We first need to remark that, by Lemma A.1, for all
y ∈ B(x,R),

Ey
[
TB(x,R)

]
≤ Ey

[
TB(y,2R)

]
≤ C25(2R)β.

Let us write n =
⌈
C26R

β
⌉
. An application of the Markov property of Z at time n gives us

(A.2) Ex
[
TB(x,R)1TB(x,R)>n

]
= Ex

[
EXn [TB(x,R) + n]1TB(x,R)>n

]
≤ CRβPx(TB(x,R) > n).

On the other hand, by Lemma A.1,

(A.3) Ex
[
TB(x,R)1TB(x,R)>n

]
≥ c25R

β − n ≥ C26R
β,

and combining (A.2) and (A.3) let us conclude.

It is interesting to note that Lemma A.2 is analogue to Proposition 3.3, ii) for n =
⌊
C26R

β
⌋
,

and we are going to use it iteratively with the help of (2.8) to finish the proof of Proposition
3.3.

Proof of Proposition 3.3, ii). Let us fix x ∈ G, r > 0 and a positive integer m. We define
recursively the sequence of stopping times Sp, p ∈ N by

S0 = 0, and for all p ≥ 1, Sp = TB(XSp−1
,r).

For all p ∈ N, d(ZSp−1 , ZSp−1) ≤ r and by (2.8), d(ZSp−1 , ZSp) ≤ r+C3. In particular, d(x, Zk) ≤
(r + C3)m for all 0 ≤ k ≤ Sm and thus Sm ≤ TB(x,(r+C3)m). Let us define

ξp = 1Sp−Sp−1≥C26rβ and N =

m∑
p=0

ξp.

By definition, TB(x,(r+C3)m) ≥ Sm ≥ C26r
βN. Moreover, by the strong Markov property and

Lemma A.2, Ex[ξp | FSp−1 ] ≥ c26, where Fi = σ(Z0, . . . , Zi) for all i ≥ 0. Using a martingale
inequality, Lemma A.8 in [4], we thus get

(A.4) Px

(
TB(x,(r+C3)m) <

C26c26

2
rβm

)
≤ Px

(
N <

mc26

2

)
≤ exp{−cm}.

Let us now fix a constant c27 small enough so that, if C−1
3 R ≤ n ≤ c27R

β, then

m
def.
=

⌈(c27R
β

n

) 1
β−1

⌉
≤ 2
(c27R

β

n

) 1
β−1

, r
def.
=

R

m
− C3 ≥

1

4

( n

c27R

) 1
β−1

,

and
C26c26

2
rβm ≥ C26c26

2× 4β
× n

c27
≥ n,

and (3.17) (with C = 1) then readily follows from (A.4) as long as C−1
3 R < n < c27R

β. Finally,
if n < C−1

3 R, then by (2.8) BG(x, n) ⊂ B(x,R) and the left-hand side of (3.17) is always 0,
and it is easy to find a constant C large enough so that the right-hand side of (3.17) is always
larger than 1 whenever n > c27R

β.
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