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Abstract

The Discrete Gaussian model is the lattice Gaussian free field conditioned to be integer-
valued. In two dimensions, at sufficiently high temperature, we show that its macroscopic
scaling limit on the torus is a multiple of the Gaussian free field. Our proof starts from a
single renormalisation group step after which the integer-valued field becomes a smooth field
which we then analyse using the renormalisation group method.

This paper also provides the foundation for the construction of the scaling limit of the
infinite-volume gradient Gibbs state of the Discrete Gaussian model in the companion paper.
Moreover, we develop all estimates for general finite-range interaction with sharp dependence
on the range. We expect these estimates to prepare for a future analysis of the spread-out
version of the Discrete Gaussian model at its critical temperature.
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1 Introduction and main results

1.1. Introduction. Many fundamental models in two-dimensional statistical physics are related
to two-dimensional Coulomb gas models (with charge symmetry). These models include the
Discrete Gaussian model (which is the Gaussian free field conditioned to be integer-valued),
the Solid-On-Solid model, the plane rotator (or XY) model [42], and many further models [53].
The relation between the former lattice models and Coulomb gas models was rigorously used to
prove the existence of phase transitions in these models in the fundamental work of Frohlich—
Spencer [42]. The Discrete Gaussian model is a model for a crystal interface (in 241 dimensions)
and the phase transition is one between a smooth (localised) low-temperature phase and a rough
(delocalised) high-temperature phase. Its understanding was pioneered in independent works by
Berezinskii [17] and Kosterlitz—Thouless [57]; see [27, Chapter 6] for a textbook treatment and
also the recent survey [56] and references therein.

The rigorous approach of [42] (see also [43]) uses a multiscale resummation based on condi-
tional expectations and Jensen’s inequality. For a recent exposition as well as recent extensions
and applications of this approach, see [46,47,[55,|67], and for recent alternative approaches to
the proof of the existence of the Kosterlitz—Thouless transition, see also [2,/58,/59,/66]. These
approaches have many appealing features which include that they apply quite robustly to various
models, but they are not precise enough to derive scaling limits or sharp asymptotics of corre-
lation functions, or to study the (expected) critical curve — the Kosterlitz—Thouless transition

line, see Fig.
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Figure 1.1. The phase diagram of the Discrete Gaussian model. The blue arrow represents an initial renormalisation group
step which reduces the activity of the Coulomb gas associated with the Discrete Gaussian model from order 1 to O(e~¢<?),
see Section The region shaded in red comprises values of 8 for which the Discrete Gaussian model is shown to rescale to
a Gaussian free field with effective temperature Beg. For J = J, and large enough p, this region invades an entire “strip” to
the right of the (boldfaced) separatrix, as indicated by the red arrow.

A more precise approach to the low-temperature phase of the two-dimensional lattice Coulomb
gas is based on the renormalisation group method. This approach is the standard approach
in physics and it provides very important heuristics as well as precise predictions, but for this
reason it is also more challenging to implement rigorously. For the Coulomb gas at sufficiently low
temperatures and small activity, this approach was first made rigorous by Dimock—Hurd in [35|,36]
(relying on [20]), and an analysis that exhibits a segment of Kosterlitz—Thouless transition line
was finally carried out by Falco in [39,40] (relying on the former works and [21]), again for small
activity.

Discrete models such as the Discrete Gaussian model and the XY model are however related
to Coulomb gases with activity that appears to be not small initially, but rather of order 1. Thus
the relationship between these discrete models and the lattice Coulomb gas is roughly the same



as that between the Ising and the lattice * model. It is widely expected that the phase diagram
of the two-dimensional Coulomb gas looks qualitatively as in Fig. and thus in particular
also that large activities have the large-scale behaviour of an effective Coulomb gas with small
activity, obtained after an appropriate initial renormalisation group step. Implementing such
an initial renormalisation group step is in general difficult and requires ideas different from the
small activity analysis. There are however two scenarios in which we believe that such an initial
renormalisation group step can be carried out effectively by trading the assumption of small
activity for a smallness assumption concerning another parameter.

The first mechanism is to (effectively) trade the assumption of a small activity of the Coulomb
gas for that of a sufficiently low temperature, an idea that was already used in various forms in
the past, including by Frohlich—Spencer. In the present article, we implement this idea in the
context of the renormalisation group approach, in which it is more challenging to carry out as
sufficient precision must be maintained in particular to identify the effective temperature exactly.
As a result, we prove that the scaling limit of the Discrete Gaussian model is a multiplicatively
renormalised Gaussian free field, at sufficiently high temperature; see Theorem below and
also Theorems 1.1 and 1.2 in the companion paper |15]. Note that the high-temperature regime
of the Discrete Gaussian model corresponds by duality to low temperatures in the related Coulomb
gas.

The second mechanism we believe is possible to carry out concerns models with finite-range
step distributions (also called spread-out models), for which the range can be used as a large
parameter. This idea has also been used previously, in particular in the context of the lace
expansion [65]. For large range, we expect that it is possible to show that the scaling limit of the
Discrete Gaussian model is a renormalised Gaussian free field, but now not only at sufficiently
large temperatures, but for all temperatures up to and including the critical temperature of
the Kosterlitz—Thouless transition, where logarithmic corrections to various critical exponents
expectedly appear, cf. also Conjecture [1.3| below. In this article we prepare for such an analysis,
by carrying out all estimates with expllclt dependence on the range of the finite-range distribution,
but we leave the ultimate second-order analysis of the renormalisation group map itself, needed
to control the approach of the critical point, to the future. For the closely related lattice Coulomb
gas but with small activity such a second-order analysis was carried out by Falco [39,40].

We next define the Discrete Gaussian model precisely and state our results.

1.2. Discrete Gaussian model with finite-range coupling. For J C Z?\ {0} finite and symmetric
under reflections and lattice rotations, the normalised range-J Laplacian A is defined by

(QoD)@) = 7 S+ ) - F(a) (1)

yeJ

for f : Z% — R, where |J| denotes the number of elements of J. The normalised standard
nearest-neighbour Laplacian on Z? is given by choosing J = Ju, = {(1,0), (0, 1), (—1,0), (0, —1)}.
Another particular case of interest is the range-p Laplacian, for p > 1, see the discussion below
Theorem [1.1, The Green’s function of A on Z? restricted to functions with sum 0 satisfies, as
[z —y| — oo,

(A Ha,y) ~ ——loglz —y|, 3= 2|J| > fan (1.2)

J zeJ

where = = (z1,x2), see e.g. [60, Theorem 4.4.4]. For example, for the nearest-neighbour model
one has v} =1/4.

We consider the two-dimensional Discrete Gaussian model with periodic boundary conditions.
Thus, let A = Ay be a two-dimensional discrete torus of side length LY for integers L > 1, N > 1,
and fix a point 0 € Ay, the origin. For a given step distribution J, the Discrete Gaussian model



on Ay at temperature 3 € (0, 00) has expectation, for any F : (27Z)*N — R with F(¢) = F(o+c)
for any constant ¢ € 277 and such that the following series converges, defined by

<F>A,I,§ Z o~ 25(® —299) P Z ¢~ T La—yes (0o—0y)? F(o) (1.3)

ceQAN ceQAN

where the sum over z — y € J counts every undirected edge {x,y} twice and
QMW = {5 € (27Z)M : 0,9 = 0} (1.4)

The factors of 27 in the spacing for o will be most convenient for our purposes (but could of
course be absorbed by rescaling ). To relate better to the Coulomb gas literature, we use
% rather than 8 to denote the inverse temperature of the Discrete Gaussian model, so that 3
corresponds to an inverse temperature for the dual Coulomb gas. For small temperature /3, one
can show by a Peierls expansion that the Discrete Gaussian field is localised, e.g., in the sense
of bounded variance and exponential decay of truncated correlations (see, e.g., [29]), and even
the extremal behaviour is understood very precisely [61]. We study the regime of large 8 where
typical fluctuations of the field are unbounded. The transition between the two regimes is the
roughening transition or Kosterlitz—Thouless transition.

1.3. Main results. In this first article, we consider the (small mesh) scaling limit of the Discrete
Gaussian model for macroscopic functions on the torus. The scaling limit of the infinite-volume
limit of the Discrete Gaussian model on Z?2, or the consideration of mesoscopic test functions on
the torus, requires additional analysis and the extension is considered in the companion paper [15].

To state the torus scaling limit, let T? = (R/Z)? and for f € C*°(T?) with [, f dz = 0, define
fN : AN — R by

1 1
)= —(fF(LNg) = —— LN ) z € Ay, 1.5
o) = e (P - S Yy . (1.5
yeAN
so that > 4 fn(z) = 0. By Fourier analysis, one can verify that (see, e.g., Lemma 9.2)
_ 1 _
(s (=B85 fwday = 5 (F (~Ap) 7 P (16)
J

where on the left-hand side the inner product is (u,v)p, = erAN (m)v(y) and ( Aj)~! acts
on {p € RV : Y zery P(x) =0}, and on the rlght hand side (f, )2 = ng x)dx and A2
is the Laplace operator on T?. The constant v2 4 is the one deﬁned in .

Theorem 1.1. Let J C Z?\ {0} be any finite-range step distribution that is invariant under lattice
rotations and reflections and includes the nearest-neighbour edges. Then there exists Bo(J) €
(0,00) and an integer L = L(J) such that for the Discrete Gaussian Model on the torus Ay of
side length LN at temperature 8 > Bo(J), there is Beg(J, B) € (0,00) such that for any f € C°°(T?)
with [ fdz =0, as N — oo,

(fN,U)A >J BGH(J 5) (f7 ( ’]I‘Q)_lf)']l'Q' (17)

log<e 5 2vJ

Moreover, Beg(J, B) = B+ O1(e~P) for some ¢ > 0 (independent of J) as 3 — .

Nonmatching lower and upper bounds on the left-hand side of are known from the
previously mentioned work of Frohlich-Spencer [42] and Ginibre-type correlation inequalities [41],
see also [b5] for a detailed presentation of both as well as [46] for improved estimates. Thus the
main contribution of Theorem is the identification of the exact scaling limit. We expect that
the convergence can be quantified with a rate that is polynomial in |Ay|~!, but we omit the
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detailed analysis. In our companion paper [15], we extend this scaling limit result, which applies
to macroscopic test functions on the torus, by an infinite-volume version and as a by-product also
prove a more precise version for the torus that applies to mesoscopic test functions.

Even though our main objective is Theorem (and the mentioned extensions in the com-
panion paper), which both apply to the Discrete Gaussian model at sufficiently high temperatures
B = Po(J), one important motivation for studying general step distributions J is that sharper
results can be obtained when the set J is sufficiently large, i.e., when it is sufficiently spread out.
For concreteness, we focus on the particular choice J = J, = {z € Z?>\ 0 : |z|x < p}, which
we refer to as the standard range-p distribution, but any choice satisfying certain regularity con-
ditions would be admissible (see below). The following remark is a corollary of our proof
of Theorem [I.T] and already indicates that the result becomes sharper when the range p of the
distribution is large, and its proof will also appear in Section [9

Remark 1.2. For the standard range-p distribution J = J,, there exists C' > 0 such that for
any § > 0, p*> > C|logé| and L = L(J,,d), the conclusion of Theorem holds with By(J,) =
(1 + 9)Bree(Jp), where for any step distribution J, we define

5free(<]) = 877”?]- (18)
Moreover, v%p ~ p?/6 as p — oo.

The parameter Spee(J) is the generalisation of the reference value 87 that frequently appears
in the literature as the approximate value of the transition temperature of the lattice Coulomb
gas. This value is simply 4 = 2d times the constant in the denominator in front of the logarithm
in , and turns out to be actually valid in the 0 activity limit of the lattice Coulomb gas, but
it differs from the transition temperature for finite values of the activity.

For the Discrete Gaussian model, we also expect that the critical point £.(J,) is strictly
greater than Bgee(J,) for any finite p, but asymptotic to Bee(J,) ~ (47/3)p? as p — oo. As
mentioned above, we develop much of the analysis in sufficient generality and precision that we
expect that it forms the basis for the study of the Discrete Gaussian model at the critical point
B = Bc(Jp) when p > pg (spread-out interaction). We state what we expect could be proved by
extending our analysis as the following conjecture (whose proof we hope to come back to in the
future).

Conjecture 1.3. Let J = J, = {z € Z>\ {0} : |2|s < p} be the standard range-p step distribution.
Then there is py € [1,00) such that for p = po, one can choose Bo(J) = Bec(p) in the above theorem

where Be(p) is such that, as B | Be = Be(p),

6eff(Jpa 5) - 56&(Jp7 Bc)
/8 - Bc

6eff(Jpa ﬁc) = 5free(t]p) = 87”)%,,; — 00, (19>

while Beg(J,, B) is differentiable in 3 > B.(p). Moreover, this critical temperature satisfies

4—7rp2 (p — o0). (1.10)

5c(p) ~ ﬁfree(Jp) ~ 3

In addition, we expect the critical Discrete Gaussian model to exhibit various logarithmic cor-
rections, in the approach of the critical point 5 | B. in (1.9), and in pointwise correlations of
composite fields exactly at 5 = ..

In fact, we expect the conjecture to be true for any finite-range step distribution, so in
particular also for p > 1, but a proof for small p currently appears out of reach. For the fractional
charge correlation functions of the Coulomb gas at small activity, logarithmic corrections at the
critical point were derived in [40].



1.4. Related problems. There are many interesting related problems we expect to be within
reach, some with significant effort. These include on the one hand the extension of our theorems
to more general discrete gradient distributions, such as the height functions from [42] arising in
the study of the XY model, and on the other hand the correlation functions (different from the
height correlations studied in this paper) that are needed for the study of Villain and XY models
(both then in the dual low temperature regime, or at the critical point but then with spread-out
interaction J). Further interesting problems include the potential application of the methods to
models of two-dimensional melting [57] (see also [14}51]) and the related analysis of spin systems
that take values in more general lattices than Z.

Finally, we mention that gradient models with sufficiently smooth uniformly convex potential
have been studied extensively. The scaling limit was proven in [63], and a very comprehensive
picture including stochastic dynamics has also been established [44}45]48]. For more recent
developments on these models, we mention [3-6,|16}3234,62,/64,/68]. Smooth gradient models
with nonconvex potential have also been considered, see, e.g., [18,19,30,31], and in relation to our
work we mention in particular [20] and [1] which also use the renormalisation group approach. For
other discrete height functions, we mention in addition to the works discussed in the introduction
the extensive literature on dimer models, see [54] and references therein, their nonintegrable
versions [49,50], as well as recent progress on height functions associated with other six-vertex
models [37,38,/52] and graph homomorphisms [28].

Among the novelties in our paper compared to earlier works on the renormalisation group
method are, to start with, that we develop a new finite-range decomposition that permits us
to integrate out a preliminary renormalisation group step of range 0. We expect this to have
further applications, e.g., to the analysis of critical Ising models and O(n) sigma models, or
strictly self-avoiding walks with spread-out interaction, e.g., using the analysis of || type models
from [10-12,23/-26]; see also [89] for applications of this idea to dynamics in simpler contexts. For
the main renormalisation group analysis, compared to [39,40], we incorporate in particular a more
systematic organisation of the contraction mechanisms inspired by [24], quantify the dependence
on the range of the interaction, and along the way provide the details for some of the technical
properties omitted in [39,40] as well as some simpler arguments.

1.5. Outline of the paper. We now give a high-level exposition of the proof, with pointers to
the relevant sections. We will work with a mass-regularised version of our model, parametrised
by m? € (0,1], see Section 2.1, which amounts to replacing —A; by —A; + m? in (1.3). Al
subsequent arguments will be shown to apply uniformly in m?, and our main results will be
obtained by letting m? | 0 at the end (while considering a suitable class of test functions).

In Section [2[ we carry out the preliminary renormalisation group step (Step 0) mentioned
above, which involves integrating out i.i.d. Gaussians with (small) variance v > 0. The parameter
~ will be chosen small enough (see Proposition where it is fixed), but will otherwise not
require fine-tuning. The benefit of this simple but important step is to turn the singular Z-valued
conditioning inherent to the Discrete Gaussian model into a spin model with smooth periodic
potential, see —, comprising infinitely many cosine modes indexed by an integer q > 1
(which one may regard as a generalised lattice sine-Gordon model, the latter corresponding to
having ¢ = 1 only). The activities (prefactors) z = (2(9) : ¢ > 1) of each mode decay exponentially
in both ¢ and 8. Together with a (scalar) stiffness parameter s discussed shortly, the activities
form the coupling constants of our model, whose evolution will be tracked by the renormalisation
group map. In particular, for § large enough (as in the statement of our main results), this defines
a regime of small coupling constants after this preliminary step, cf. also Fig.

As a result of Step 0, the generalised sine-Gordon potential is now integrated against a Gaus-
sian field with covariance C' = (—A; + m?)~! — 5. Crucially, we extract from C~! a GFF part
sA (with A the usual nearest-neighbor Laplacian) for small |s|, which for approriate choice of s
will act as the correct ‘counterterm’ in the renormalisation. The remaining Gaussian field with
covariance C' = (C~1 — sA)~! will after fine-tuning of s converge in the scaling limit to the lim-



iting GFF on the right-hand side of ((1.7)), and thus constitutes at the discrete level the ‘correct’
(Gaussian) large-scale approximation of the (non-Gaussian) Discrete Gaussian model.

The analysis to identify the scaling limit is driven by a decomposition of the field C for
generic small s, into a sum of spatially localised Gaussian fields ¢, corresponding to contributions
stemming from scales ~ L’ for a parameter L > 1. This finite-range decomposition is the object
of Section |3} The main novelty of our construction is that we obtain a finite-range decomposition
(with precise control on both gradients and on-diagonal behavior of the covariance) in the presence
of the parameters v and s.

Starting from this finite-range decomposition, the renormalisation group analysis then pro-
ceeds using the general strategy proposed in [21], by which the modes (; are progressively in-
tegrated, starting at small scales. This general method was also used for the lattice Coulomb
gas in [39] in combination with the ideas from [35,36]. Sections [4| and [5| contain the framework
that will be used in this paper: Section 4] sets up the decomposition of the torus into blocks of
increasing scales L7 and associated polymers, and Section [5| the norms needed for this analysis,
with particular care on the dependence on the finite-range step distribution, which improves as
the range becomes large, and that we expect are suitable for studying the critical spread-out
problem. These norms are used to control the renormalisation group map ®;, which encodes the
evolution of both the coupling constants (s;,z;) (along with an inessential scalar constant ;)
as well as a remainder coordinate K, which altogether parametrise the quantity of interest —
typically a (generalised) partition function, see . The quantity K is an infinite-dimensional
object (a so-called polymer activity), which is only tractable explicitly to a given order.

The key is to devise a careful inductive choice of (sj, 2, Ej, K;) rendering ®; contractive.
This requires identifying the natural contraction mechanisms in the problem, some of which are
specific to periodic potentials. We list these mechanisms separately in Section [f] They allow to
understand at once all the ‘relevant contributions’ to any polymer activity, i.e., those contributions
which do not automatically contract, and thus ultimately need to be followed carefully through
the iteration. Our organisation, which records these relevant contributions in terms of a certain
localisation operator, is inspired by [24], which we believe makes Section |§| insightful; see in
particular Propositions and which capture the essence of the matter: upon removal
of their localisation, polymer activities contract (see ), and the localisation possesses the

required algebraic structure (see (6.13))).

The actual renormalisation group map ®; is then defined and analysed in Section The
evolution of the remainder coordinate K is the most difficult. It splits into a linear part, and a
nonlinear one. Controlling the latter is among the most technically involved parts of the paper.
In Section [§ we finally analyse the stable manifold of the renormalisation group, i.e., we construct
initial conditions which allow to analyse the Discrete Gaussian model. Among other things, one
issue throughout is to exhibit enough regularity in s, which ultimately translates into a continuity
property (in s) of the initial condition s§(/3, s) for a stable stiffness flow. This is key to the final
coup de grace, which is an application of the intermediate value theorem to resolve the constraint
s = sG(B,s) at high enough f, i.e., matching the initial condition for a stable flow with the
stiffness s sacrificed initially in the Discrete Gaussian model.

This careful choice of s transcribes into the effective temperature Seg of our main result,
Theorem the proof of which is completed in the short Section [0} by connecting all of the
previously obtained ingredients.

In the appendices, we include proofs of some results that are essentially known, but for which
the proof in our exact context is hard to locate or difficult to adapt to our setting without going
carefully through the arguments. In particular, in Appendix [A] we prove the properties of the
regulator defined in Section [5l In Appendix [B], we show that the spaces defined in Section [5] are
complete. In Appendix [C] we include a decay estimate for the Fourier transform of the standard
bump function, used in Section



1.6. Notation. Throughout the paper, all constants are uniform in 5 and p unless explicitly
stated. We use the notation |a| < O(]b]) or a = O(b) to denote |a| < C|b| for an absolute constant
C >0 and a ~ b to denote that lima/b =1 (where the limit is clear from the context).

Usually, the dimension will be assumed to be d = 2 unless otherwise emphasised. Let eq, ..., ¢eq
be the basis of unit vectors with non-negative components spanning Z? or the local coordinates
of A, and set é = {*ey,---,%+eq}. For a function f : Z¢ — C or f : Ay — C, we write
VEf(z) = f(x+ p) — f(x) for p € é. For any multi-index o € {£1,--- , +d}" with n = |a| > 1,
we write VO f = Vi ...V f The vector of n-th order discrete partial derivatives is denoted
by

V' f(z) = (VF .- VP f(z) : py € é for all k), (1.11)

and we write |V" f(x)| for the maximum over all of its components. The symbol A without
subscript denotes the normalised nearest-neighbour Laplacian,

Af(x) =Y (fla+p) - fl@) =) V') = —% Y VT f(a), (1.12)

neé peeé pee

whereas A ; denotes the normalised Laplacian (|1.1)) with finite-range step distribution J.

Throughout, IE% denotes the expectation with respect to the (centred) Gaussian random
variable ¢ with covariance I'. We omit ¢ and I' whenever they are clear from the context.
Typically, we write E for Ep,_ ,, where I';11 = I'j+1(s,0) is the covariance introduced below in
and j without further specification is allowed to take values j =1,...,N — 2, where N > 1
refers to the exponent of the underlying torus size LY, for some L > 1. Unless explicitly stated
otherwise, all results tacitly hold for all choices of integers NV > 1 and L > 1. Throughout ¢,C, ...
refer to generic positive numerical constants that may vary from place to place.

2 Smoothing of discrete to continuous model

In this section, we prepare for the renormalisation group analysis by performing several initial
manipulations of the Discrete Gaussian model as defined in (1.3)). As a first preliminary, it is
convenient for the subsequent analysis to rescale o by a factor 1/4/B so that QM in (T.4) gets
replaced by

QY ={o0 € Z)¥ 109 =0}, Zs=2ap""L (2.1)

Thus, from now on (-) is the Discrete Gaussian model on Qg” , i.e., for any bounded F': Q/EN —
R,

1 1
_ - —5(o,—Ayjo)
(F)g = 7 Z; e 2 79 F(o). (2.2)
UEQﬂN
As with (-) g, we will mostly keep the interaction J and the underlying torus A = Ay (of side length
L) implicit throughout this section. The corresponding statements are then simply understood

to hold for any choice of J satisfying the conditions above (1.1)), all N > 0 and L > 1. In fact
the choice of side length for A will play no role in the present section.

2.1. Mass regularisation. In the first regularisation step, we replace the Discrete Gaussian model
(-)3 supported on o € QgN by a mass-regularised version supported on all o € ZQN , i.e., without

fixing ¢ to be 0, thus restoring translation invariance. To this end, given m? > 0, for any
bounded function F : ZgN — R, let
1
(Floms =5 3 e 2080 (o), (23
pim? oeZd
B



where Zg .2 is the corresponding normalisation constant. The following lemma shows that we

recover (-)g in the limit m? | 0. In the sequel, for ¢t € Zg and o € ZgN we write o + t for the
shifted configuration with entries (o +t), = 0, + ¢, x € Apn.

Lemma 2.1. Let F': Zg — R be such that F (o) = F(o +t) for any constant t € Zg, and assume
that F]%\ is integrable with respect to (-)g. Then F is integrable under (-)g 2 for all m® >0 and

(F(0))5 = i (F(0)se 24)

Proof. For F having the above properties, writing any element of Zg as 0 +t with t € Zg and
o€ Q8 cf. [@2.1), one has that

Z 6—%(0,(—A1+m2)0)’F(U)| _ Z Z 6_%(G+t’(_AJ+m2)(0+t))|F(O’—|—t)|

aezg t€Zs aeQA
9 , (2.5)
_ 2 : 6_2 —Ajo) |F | 2 :e—§m (a+ta+t)
gng teZg

where the second line is obtained using that F(0) = F(o + t) and expanding the exponential
(note that A;f = 0 when f is constant-valued). Since, uniformly in o € Qg,

Z e 2m (o+t,0+t) Z He 2m (oo+t)? < Z e 2 (mt)? (26)

tEZﬁ tEZﬁ zEA tEZB

where the inequality follows by retaining only x = 0 with o, = 0, and combining with the
integrability of F’ |Q§, it follows that the left-hand side of (2.5) is finite; hence F is in L'((-),n2).

Moreover ([2.5)) continues to hold without absolute values, as follows readily by the Dominated
convergence. Now, as m? | 0, for any fixed o € 8, we claim that

Z e 3mi(attott) Z e~z IAl (2.7)

tEZB tEZB

Indeed, since |(o,1)t| < 3et? + 5-(0,1)? for any £ > 0 by Young’s inequality, the left-hand side is

1 2 242
_ m (o,0) Z e 5 e~ 2(o,1)t <e 2™ (00)625 (0,1)? Z e~ 2 (1—e)m?t (28)
telg teZg

lim su 1, 2.9
m2¢0p > tez e~ 3(l-e)m?? (29)
and analogously
1,2
Z e~ 3™ (o+t,0+t)
lim inf 1€z, © > 1 (2.10)

2 L (14€)m?2¢2
m0 ZteZ e 2

From this, (2.7)) follows by taking ¢ — 0. By (12.5)) and the Dominated convergence theorem, thus

PR A AC B S L D L0 4 () (2.11)

A A
o€ l€Zg oeQh

and the claim follows by taking a ratio of this and the expression with F' replaced by 1. O



2.2. Smoothing the Discrete Gaussian model. In the next step, we replace the Discrete Gaussian
model with mass m? € (0,1] given by (2.3]) with a smoothed-out version. For this we write

(=Ay; +m?)~t = vid + C(m?) (2.12)

where v > 0 is a positive constant chosen such that C(m?) is positive definite. Assuming m? €
(0, 1], we have 0 < —Aj+m? < 3id as quadratic forms, and one can choose any v € (0,1/3). Note
that C(m?) inherits symmetry from —A; +m? by (2.12)). The parameter v will later be fixed in
Proposition below. Until then, the dependence of assertions on v will be kept explicit, and
all results hold for any choice of v € (0,1/3). For later reference, note that the covariance C(m?)
appearing in will be denoted by C*N(m?) = C(m?) from Section onwards (see for
instance ((3.14])). We omit the superscript Ay for the remainder of Section [2|to avoid unnecessary
clutter.
The decomposition implies that for any o € R?, one can rewrite

e 3(0.(=A+m?)o) :c(%m2)/ o~ 27 La(pe—02)? —1(p,C(m?)"p) dp, (2.13)
RA

for a suitable constant c(y,m?) € (0,00). The identity is of central importance and a
special case of the well-known property that the sum of two independent Gaussian vectors is
Gaussian with covariance the sum of the two individual covariances.

Inserting the identity into the partition function of the (mass regularised) Discrete
Gaussian model (2-3)), one obtains, for all 8,m? >0 (and v € (0, 3)),

Zﬁ,mQ = Z 67%(‘77(7AJ+m2)U) — 0(77771275)/ 67%(9070(7”2)_190)621 U(WI) d907 (214)

A
UEZQ R

where for ¢ € R and all v > 0 we define

Flo)=c(v,8) Y e =" T(p) = log F(p). (2.15)
0625

Here c(v, 8) > 0 is a constant that is chosen for later convenience such that

2m 1 9
1= 2 7 BB do = C(;;f)/Rew*’ dy. (2.16)

:27T0

Both F and U are smooth periodic functions of the single real variable » € R. For later applica-
tion, we record the following properties of their Fourier representations.

Lemma 2.2. For any v > 0 and 3 > 0, the Fourier representation of F is given by
~ = B 2
F(p)=1+ 226_%(1 cos(qv/By), ¢ €R. (2.17)
q=1

Moreover, there exists C € (0,00) such that for any v8 > C, the function ¢ — U(p) has the
Fourier representation

Ulp) =) _29(B)cos(av/By), ¢ €R, (2.18)
q=1
with coefficients satisfying
12@(B)| < 16e~ 1780+, (2.19)
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Proof. Let F(p) = F(p/\/B) = eU@/VB) Then F is 21 periodic, see (2.15) and recall (2.1)), and
even. Its Fourier coefficients are given by

R 1 2 , IEPCR :
F(q) / F(p)e'?dp = .5) / " T ¢ide dy e_§q2, q€Z. (2.20)
0 R

:% 2T

Thus (2.17) follows. To prove (2.18), (2.19)), consider the following norm on 27-periodic func-
tions f (for which the norm is finite): for ¢ = %yﬁ, denoting by f(q) = % 02” f(p)e'1% dyp the
corresponding Fourier coefficients, one sets

1fllerey =D eIf (). (2.21)

qEZ

Using the fact that ng(q) = ez f(@)g(q" — q) for periodic f and g, one readily deduces that
[|-ll¢1 (¢ is submultiplicative, i.e., that || fglle1 () < | fller(e)l9]ler(c), making the space of 27-periodic
functions with finite norm a unital Banach algebra with unit f = 1. Moreover, for 5v > 4,

1B 2

IE ~ 1l =2 e F0H < gem 175, (2.22)

g1

where the second inequality follows for instance by completing the square, comparing with a
Gaussian integral and applying a standard Gaussian tail estimate. Since U(p/v/B) = log F (),
we have

- _1
1T/ VBl ) < 201F = 1oy < 8e377, (2.23)

where we have used the estimate || log F'|| < 2||F' —1|| which is valid in any (unital) Banach algebra
with norm || - || if ||F — 1|| is small, as follows e.g. by bounding the relevant Taylor remainder. In
view of (2.21)), this yields that |2(9)(3)] < 16e=178=cldl for all q > 1 with 2(9(3) as defined by
(2.18]). O

2.3. Temperature renormalisation. The identity for the partition function and its exten-
sion to the moment generating function in below reformulates the analysis of the Discrete
Gaussian model in terms of a smooth periodic potential integrated against a Gaussian field. Ideas
of this flavour have been used in various contexts in the past. However, to achieve sufficient pre-
cision to control the scaling limit, it is crucial for our work to allow for the parameter s # 0
below, which will correspond to the stiffness renormalisation of the limiting Gaussian free field,
or equivalently, the exact identification of the effective temperature Sog in (1.7)).

To set up this stiffness renormalisation, first recall that A ; is the normalised Laplacian, see
, with step distribution .J, and C'(m?) is its Green’s function minus a diagonal part, see .
For convenience, we will denote by A without subscript the standard unnormalised nearest-
neighbour Laplacian; the irrelevant omission of the normalisation for A simplifies some formulas
later. For |s| sufficiently small, C(m?)~! — sA is positive definite, as shown in Proposition
below (see in particular , where C' = C*V), hence

C(s,m?) = (C(m?)~! —sA)L, (2.24)

is well-defined and positive-definite. We then introduce, for sy € R,

Zo() = Zo(p|Ay) = eVo(®) & o Fle-20)+3, Ulea) (2.25)
with U given by (2.15) and
C(s,m?) = v(1 4 s7A) + (1 4+ syA)C(s,m?)(1 + syA). (2.26)

11



We return to discuss the interpretation of Zy and C (s,m?) below the proof of the following lemma.
This lemma generalises the partition function identity , both by allowing a test function and
by allowing the parameter s # 0 that will later correspond to the stiffness renormalisation. The
right-hand side of will be our starting point for the renormalisation group analysis. Recall
that Ec denotes the expectation with respect to the (centred) Gaussian measure with covariance

C.

Lemma 2.3. For all >0, v € (0, %), m? € (0,1], and |s| small enough that ([2:24)) is well-defined
and positive-definite, and with sy = s, one has for any f € RM,

(U)y, = AClmD)) Eo(sm2)|Zo(e + Af))]

2.27
Bt 7] 220
where A = (14+syA)~*C(s,m?).

Proof. Completing the square and recalling (2.15)), one sees that for any f, ¢ € R,

Z T3 (=0 _ L2 S Z o~ 0= 32 oFe U e S) (2.28)
0€Zg 0€Zg

Using the convolution identity (2.13)), for any f € R, one therefore obtains that

3 e AN ) o FEDE 0 [ D], (2.29)

A
O’EZﬁ

By definition of C(s, m?), see (2.24), the right-hand side is proportional to

w2

DB ma) [el/:0) 5 (0= 20) U (ot1)]

e

(s,m2) [e(ers’YAf,SD)e%(%0+7f,*A(30+'yf))eU(90+’Yf)]

(f’g)Ec(s,mz’)[e(g"p)Zo(sO +95)] (2.30)

(N[

=e
where in the second line we again completed the square and in the third line we set

g=[f+syAf (2.31)

and used that s = sg along with (2.25). Changing variables from ¢ to ¢ — C(s,m?)g, the last
line of ([2.30)) is seen to equal

e%(f7g)+%(g,C(sm?)g)EC(S’mQ) [Zo( + v f + C(s,m?)g)] (2.32)

and the term in the exponential can be simplified as

v(f,9) + (9,C(s,m?)g) = (f,C(s,m*)[), (2.33)

and the term in the argument of Zy can be written as
Af =3f + C(s,m?)g = 7f + C(s,m*) (1 + s7A) f = (1+574)7'C(s,m?), (2.34)

yielding (2.27)). O

To conclude this section, we briefly discuss the role of Uy and C(s,m?) introduced in —
. Compared to U the potential Uy includes an additional Dirichlet energy term (¢, —Ayp) =
(Vp, Vo) with prefactor sg. This parameter s is essentially arbitrary for the moment and can
be chosen independently of s for most part of our analysis. However, it can be compensated by
the s-dependence of C (s,m?) on the right-hand side of by enforcing the restriction s = sg

12



as in the assumption of the last lemma. Thus the parameter s = sy corresponds to a division of
the Gaussian free field into a part that serves as reference measure, i.e., the Gaussian measure
with covariance C (s,m?), and a part that is interpreted as a perturbation of it. A careful choice
of this division will be made at the end of the analysis. This choice will be such that

IEC’(s,mQ) [ZO(()O + Af)]
IEC’(s,mQ) [ZO<SO)]
as N — oo and the covariance C (s,m?) is that of a limiting Gaussian field that approximates the

Discrete Gaussian model on large scales and that converges to the multiple of the Gaussian free
field in Theorem Namely, if f € C*°(T?) and fy is as in the statement of Theorem then

. . = 1 _
]\}E)noo TEQI?O(JCN’ C(Sa m2)fN) - m(.ﬂ (_A'H‘2) 1f)']I‘2a (236>

1 (2.35)

see Lemma and Beg(J, B) defined as B(1 + sv;?) will eventually be the effective temperature
in Theorem [I.1] Then the proof of the theorem will be complete in view of Lemma [2.3

3 Finite-range decomposition

The starting point for our renormalisation group analysis is a finite-range decomposition for the
covariances (recalled for convenience in below), which we construct in the present
section. We expect that this construction will be useful for the analysis of other models where
an initial renormalisation step can be carried out due to the removal of a diagonal part from
the covariance, i.e., an i.i.d. contribution of the Gaussian field. We also refer to Section for
possible applications. Since it comes at no additional cost, we formulate the decomposition in
any dimension d > 2. The main results of this section are Propositions and below, which
exhibit the desired decomposition, first on Z? and then on Ay = (Z/LNZ)?, respectively.

3.1. Existence of the finite-range decomposition. First recall our convenient convention that A
denotes the standard unnormalised nearest neighbour lattice Laplacian while A ; is the normalised
Laplacian with finite-range step distribution J C Z?\ {0}. As discussed at the beginning of
Section for any v € (0,1/3) and any finite-range step distribution J, we can then decompose

(ef. (213)

(=Ay;+m?) ™ =5+ C(m?), (3.1)
with C(m?) a J-dependent positive-definite symmetric matrix. Then recall (2.24), i.e.,
C(s,m?) = (C(m*) ™' —sA)™t = C(m?*) (1 — sAC(m?)) L, (3.2)

which makes sense and is positive definite for |s| small (depending on J; see Proposition
below), as can be seen from the second representation. The main result of this section yields a
decomposition of C(s,m?) into an integral of covariances with a finite-range property. Available
results on such decompositions apply to s = 0 or without subtraction of the constant 7, i.e., to
(—A +m?)~! instead of C(s,m?), but for our purposes it is important to permit both s # 0 and
the subtraction of ~.

Recall that the step distribution J C Z%\ {0} is assumed to satisfy the conditions above (L.1).
The estimates for the resulting decomposition depend on the following parameters specific to J:

ps =sup{|z|ec 1w € J}  (range), (3.3)
1
vh = 27| x;] kR (variance), (3.4)
0y = ir;%()\J(p)/)\(p)) (spectral lower bound). (3.5)
P

In the spectral lower bound, A;(p) and A(p) are the Fourier multipliers of —A; and —A, defined
precisely in Section [3.2] below.
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Example 3.1. For the standard range-p step distribution J, = {z € Z¢\ {0} : || < p},

1 _
PJ, = P U?Jp ~ 6p27 HJ,J =3 da (36>

see Lemma below.

We now state the main results of this section. We refer to Remark below regarding a
version of these findings for the (more standard) choice v = 0 in (3.1)), which implies various
known results of this type (notably for the usual Green’s function in the nearest-neighbour case).
In the following proposition, we first consider and as operators on Z%: the inverses
are then well defined as bounded operators on ¢£2(Z%) if m? > 0. (To emphasise which space an
inverse of an operator A is taken in we will sometimes write A for the inverse of A on ¢?(Z%)

and A A for its inverse of A acting on R*V). Thus the propos1t10n considers the infinite-volume

case of Z® rather than the finite torus relevant for our application to the Discrete Gaussian model.
The torus case is treated thereafter in Proposition In fact, Proposition can be obtained in
large part as a corollary of Proposition Indeed the contributions to the torus decomposition
comprising ranges smaller than the torus size are directly inherited from the decomposition on
72, cf. and below. Scales which ‘feel’ the periodic boundary condition however must
be treated separately. In what follows, recall the discrete gradient notation from Section [I.6

Proposition 3.2. Let d > 2. There exist absolute constants v > 0 and €5 > 0 (both purely
numerical) such that for any finite-range step distribution J C 7%\ {0} as specified above (1.1)),
the following holds. For all |s| < es0; and m? € (0,1], one has a decomposition of the form

cr (s,m?) := (Czd( Hot - SA)Zd = OODtZd(s,mQ) dt, (3.7)
s

where the DtZd(s,mQ) are positive-definite symmetric kernels with range less than t, i.e.,
DtZ (z,y; 5,m?) := (6, DL ( m?)8,) =0 whenever |z — y|oo > L. (3.8)
The left-hand side depends only on x —y € Z% and is invariant under lattice rotations. Moreover,

(i) uniformly in (s,m?) € [—esfs,es05] x (0,1], all multi-indices o (including || =0), t > py,

o 74 _ pJ d+|af —d—lal _ pJ d+|af (g 24)1/4
% DtZ (0733?377712)‘ gcapj%(rﬂ) + Cob; | |pJ2t<t—2) e 0,7t (3.9)

(note: if 05 is bounded from below by a positive value, the second term can be omitted since
vy < pJ/2)7

(ii) for all |s| < 0 and all t, the map m? — D% (s, m?) is continuous and has a limit

DZ'(s) = D% (s,0) = hrfOD( m?) (3.10)

and the map s +— DtZd(s) is analytic in |s| < eb;

(iii) if d = 2, then for all |s| < &40,

1 o’ 9_2122 pJ o’ 6 %02
DF(0,0:5) = = (14 0( 22 + L5 + =L, PLy Pr 210,
e (0,059) 2mt(v? + s) * * v TR @ et

In the above estimates, all constants are independent of J (and s).
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In the particular case of the standard range-p step distribution the conclusions simplify as
follows.

Remark 3.3. For J = J, (see Example , the uniform lower bound on 6, in (3.6) implies that
that the domain of s can be chosen independently of p. For such s, using the bounds from (3.6)),
the estimates in items (i) and (4ii) above become (see also the note below (3.9)), for ¢ > p,

|VaDtZd(0,:L";s,m2)| < Cpp 2tt—d=led (3.12)

and (in d = 2) 1
DX (0,0;8) = ——5—(1+0(% 3.13
e (0,0:5) 27rt(v§p+s)( * (t))’ (3.13)

with all constants independent of p, s and m?.

Proposition applies to covariances defined on all of Z¢. By periodisation, Proposition
and its proof also imply an analogous statement for the discrete torus, which we state next. Since
this is the decomposition we will use in the present article, we consider the torus Ay of side
length LY (even though an analogous statement holds for any side length). For t < iLN , the
covariances DtZd from Proposition are translation invariant and have range less than half the
diameter of the torus. They can thus naturally be identified with covariances on the torus Ay
by projection. More precisely, with 7y : Z% — Ay denoting the canonical projection and for any
fiAn = R, t < 1LV one sets Dy f(rn(z)) == DE(f o my)(z), for x € Z¢, and readily verifies
that this is well-defined, i.e., the right-hand side does not depend on the choice of representative
x in the equivalence class. On the other hand, for ¢ > iLN , the periodisation of the covariance

DtZd does depend on the torus.
Proposition 3.4. Letd > 2, L > 1, N > 1, and Ay = (Z/LVZ)?. With the same constants y > 0
and €5 > 0 as in Proposition m? € (0,1], the matrix

(~A; +m?)3L — = O (m?) (3.14)

is positive definite and for all |s| < €507,
lLNfl

(O (m?) — sA)3 = / '

pJ

o0

DE (s, m?) dt + / DM (s, m2) dt + tu(s,mD)Qy  (3.15)

17N-1
4L

where the DtZd(s,mQ) are the same as in (3.7) (with the identification discussed above), for all
t > %LNfl, the covariances D?N(s,mQ) satisfy translation and lattice rotation invariance, the

same upper bounds as DtZd n , the same analyticity in s, and the same continuity in m?
(including as m? | 0). Finally, QN denotes the matriz with all entries equal to 1/|Ay| = L™
and tn(s,m?) € (0,m™2) is a constant satisfying

[ty (s,m?) —m™2| < Cp32L2N. (3.16)

Remark 3.5. Analogues of Propositions and continue to hold for the choice v = 0 in (3.1)),
yielding for |s| < 560 and m? € (0,1] the decomposition

(=Ay+m? — sA)idl = / DtZd(s, m?) dt, (3.17)
0

(along with a corresponding analogue on Ay); the properties f remain valid for all
t > pj. Moreover, the range of DtZd is 0 for t < py, ie., DtZd(O,x) = 1x:0DtZd(0,0) and is
complemented by the fact that DtZd(O, 0) > 0 is constant for all ¢t < py. The decomposition (3.17)
is obtained by Lemma almost directly (essentially boiling down to |13, Section 3|, without
needing to perform the series expansion of Definition . In particular, for J the usual nearest-
neighbour interaction and s = 0, recovers a well-known decomposition for the Green’s
function (—A + m?)7!, see e.g. [7,/13,22]. Compared to these works, our technical difficulty
includes an extra series expansion step of Definition [3.9

The rest of this section is devoted to proving Propositions [3.2] and
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3.2. Preliminaries on Fourier transforms. Before proving Proposition we collect some prelim-
inaries and conventions about normalisation of Fourier transforms and of the lattice Laplacian A
and its generalised version A j with step distribution J. Throughout, A is a discrete d-dimensional
torus of integer period R with Fourier dual

AN ={27R7%k : ke {-[(R-2)/2],...,|R/2]}%} C (—m, x| (3.18)

For an integrable function f : (—, 7|4 — R, we define
d ~ in-x dp
£ () = /( Jwer gt (319)

|1 > fper, (3.20)

peEA*
where |A| = R? denotes the number of points in A. Then by the Poisson summation formula
=Y Pz +yR). (3.21)
y€ezd

This notation also applies for translation invariant covariances, i.e., when a function f(z,v)
depends only on z — y we will usually identify it with the function f(0,x).
We write A = A(p) and A j,,2 = Aj2(p) > 0 for the Fourier multipliers of —A and —A j +m?:

Ap) =D (1 —cos(p-e)),

le|=1

As(p) |J|Z 1—cos(p-)),  Aym2(p) = As(p) +m”
zeJ

(3.22)

(recall our convention regarding normalisation of A and Aj). The following standard lemmas
provides some comparison estimates for A;(p) and A(p), which will be useful in the sequel.

Lemma 3.6. For any step distribution J as above (L.1)) (with implicit constants independent of

J),
A(p) = v3lpf* + O(p35plY) (0 —0) (3.23)
AJ(P) <min{L,o5p*}  (p € (=m, 7], (3.24)
with py and vy defined by and ([3.4). Moreover, X(p) = |p|* + O(|p|*) as p — 0 and
Ap) € [%|p|2, Ip|?] for p € (— } hence in particular 65 < Tv3.

Proof. Let v?, be as defined by @ Then as p — 0, substituting 1 — cosx = %2 + 0(3;4) in
(3.22)), one finds that

Ai(p) = ‘}” Z (1 — COS (me))

Q‘J‘ > Pyt + O ‘J, Zly! pl*) = v3IpI* + O(p3v3Ipl").
yeJ yeJ

(3.25)

The upper bound in follows similarly, using the inequality 1 — cosz < x2/2 valid for all
x € R instead.

To see the lower bound for A(p), consider the function g(q) =1 — cos(q) — q on q € [0, 7).
Then g(0) = g(m) = 0 while ¢'(¢) = sin(q) — Z5¢ has only one non-zero root, hence g(q) does not
attain 0 on (0,7), i.e., g(¢) = 0 on [0, w]. Therefore

d
Ap) =23 (1= cos(p) > 5l (3.26)

which is the claimed lower bound. O
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Lemma 3.7. For the step distribution J = J, = {x € Z%\ {0} : |7|s < p},

1
P, =P v?,p = vz ~ 6/)27 as p — oo, (3.27)

and with A\, = Ay,
Alp) < 3\,(p), (3.28)

i.e., 0, =0, = infp4g Ao(P)/A(p) = 3—d
Proof. Using that 3°%_, j% ~ 1p as p — oo,

92 1 d—1 2
V2= 2p+ )T 32~ % (3.29)

To show A < 39)\,, first note that since >/_; cos(az) = % -1

1
s e OLLE | (

[Yloo<p
_ (2P + 1)d a 1 & DT
picasai G| Ena POy
(204 1) 4 sin((2p + 1)p;i/2)
C@2pt+1i-1 (1 - 131 (2p+1) sin(pi/2)>' (3.30)
But
sin((2p + 1)p1/2)  sin(3p1/2) s

su - — . 9
p;f (2p+ 1)sin(p1/2)  3sin(p1/2)

50 Ap(p) = (1 — 374 A,=1(p), and

d d
BT =DApmi(p) = Y (L =cosY_pii) = Y (L=cos(D_piwi) = Ap)- (3.32)

[Yloo=1 =1 lyli=1 i=1
Since (1 —379)/(37 — 1) = 37%, the claim holds. O
3.3. Proof of Proposition @ finite-range property. The starting point for the construction of
the finite-range decomposition is the following lemma, from which one can directly obtain the

finite-range decomposition when s = 0. The lemma originated in [7], but we obtain here a better

decay estimate, which is important for our construction of the finite-range decomposition for
s # 0. Also, the lemma specifies the choice of « for (3.1)).

Lemma 3.8. Fort > 0, there exist polynomials P, of degree at most t such that for X € (0, 3],

i: /0 tQPt(A)it (3.33)

For X\ € (0,3] and t > 1, the polynomials satisfy P,(\) > 0 and there is an entire function f that
1§ non-negative on the real axis and satisfies fooo t2f(t)% =1 such that

B
[Pi(X) = f(VAD)]

< Qe (3.34)
< Ot~ L), (3.35)

Fort <1, P(\) =~/t for some constant v > 0.
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Proof. Let f : R — [0,00) be any non-negative function with the following properties: the

Fourier transform of f is smooth, symmetric and has support in [—1,1], and [;¢*f (t)% = 1.
Then by [13, Lemma 3.3.3], (3.33)) holds for A € [0,4] with the function P; given by
1
P(\) = f{ (arccos(1 — 5)\)) (3.36)
where
fi(@) =" fat —2mnt). (3.37)

nez

By |13, Lemma 3.3.5], (3.36) defines a polynomial P;(-) on (0, 3], of degree bounded by t. We will
now choose f as follows. Let .
p(s) = e (3.38)

1/2

be the standard bump function with support [—1/2,1/2]. By Proposition |i(z)] < Celal
for all z € R. We set f(s) = c¢(k * k)(s), with ¢ > 0 chosen as to ensure the normalisation
fooo t2f(t) % = 1. Then f has all the required properties. In particular, since its Fourier transform
has compact support, it extends to an entire function, as easily seen by expanding the exponential
in the Fourier integral, yielding an absolutely convergent power series. Also, f(z) = ck(z)? <
C'e 22" for € R. For ¢ > 1,

ft*(x) < 0/67(21‘,\3301/2 Zef\/lhm < 01/67(2t|x|)1/2' (339)

n=0

Since arccos(l — 2\) > VA, the estimate (3.34) follows immediately from (3-36) and (3.39).
The bound ([3.35) follows similarly using |f/(z)] < C” e~ lel'/? (which follows from the explicit
form of f and that s has compact support) and using that arccos(l — $) — VA = O(\); see [7,

Proposition 3.1] for a similar argument. The constant + is given by f(0)/2x, see [13, Lemma 3.3.6].
O

By applying the previous lemma, we first construct a finite-range decomposition for s = 0.
To this end, insert A2 into for m? < 1 (so that A Jm2 < 3 and Lemma is in force).
Since Aj,,2 has range py, in the sense that it is the Fourier multiplier of an operator with range
pJ, and since P; is a polynomial of degree at most ¢, it follows that P;(A;,,2) has range p;t. We
therefore set in Fourier space

Dy(p;m®) = p3?tP 1, (Agm2 (p), P € (—m, ", (3.40)

By (3.33)) and the explicit form of P; for ¢ < 1, it follows with bt(mQ) = bt(-; m?) that

1 0o oo .
:/ Dt(m2)dt:7+/ Di(m?)dt =~ + C(m?), (3.41)
)‘J,m2 0 0J

with the last equality defining C'(m?) = C(p;m?), p € (—m,7]?%, and we used that

P 1
/ p AP 1, dt = / tPydt = . (3.42)
0 i 0
By (3.41)), the function C'(m?) thus defined in terms of D;(m?) is indeed the Fourier transform
of C(m?) appearing in (3.1). With a view towards our aim (3.7)), we expand for |s| < 8; =
inf, 2 inf)\;,éo()\J,mQ/)\) and m? € (0, 1],
C(s,m?) L (C(m2) ™ + s\) 7L = C(m2)(1 + sAC(m?2)) !

= i SPIAAC(m?)2H (1 — sAC(m?)). (3.43)



The expansion is absolutely convergent since |s|AC(m?2) < |s|A/A Jm2 < |s]/0; < 1. Moreover,
this condition implies that the following integrand is positive:

A Am A o0 .

1 sAG(m2) = 2572 _ \O(m?) = / (Apomz — $ALysp, ) Dy(m?) dt. (3.44)
Jm?2 0

This motivates the following definition of the finite-range decomposition for |s| < 6.

Definition 3.9. For m? € (0,1], all |s| < 0 and t > 0, let

_ﬁt(s m2) =
21+1
21
Az = 5Mtg,) D ADy, (m?) dt; dto. (3.5
4)\ Z /0 00) X [p.7,00) 2113 #=(t— pJ)/4( J, t0>pJ to H t ( )

In this definition, the integral fZ T Hfl;gl dt; over the simplex is the push-forward of the
Lebesgue measure on R?*! along the map (t1,...,ta41) — (T — Zle tiyti, ..., toq1), ie

2041 204+1

flto, - tarr) T dti =/ FT=) tistr, - targa) H di;
=0

[p.7,00)2H L3574, <T
(3 46)

for T > (20 + 1)py, and the left-hand side is interpreted as 0 when 7" < (21 4+ 1)p;. The same
remark applies to various similar quantities below In particular, Dt( m?) =0 for t < 5py, and
if Dy(s,m?) is nonzero, then T' = (t — ps)/4 in satisfies T' € [1t, %t].

/[O,oo) x[pg,00)2+1: 5" ¢, =T

Proof of Proposition[3.9: finite-range property. We will show that the covariances DZ (s,m?)
with Fourler transforms given by (3.45]) define the desired decomposition (3.7]). First, it is clear
from and Lemma that Dt Z%(s,m?) is positive definite. That the decomposition ([3.7)
holds follows by Substltutmg and - ) into (| and using the change of variables

/ dto--- dtoryr1 f(to,- .- tat1) =/ dT/ dto- - dta1 f(to,. .., tay1),
[0,00)2i+2 0 [0,00)2042:3" ¢, =T

(3.47)
with T'= (t — py)/4.

Next we verify the finite-range property. Since A has range 1 and Dy, (m?) has range t;, we
see that AD;,(m?) has range at most 1 +t; < 2t; for t; > p; > 1 and A Jm2 Dt (m?) has range
ps+to < pj+2ty. Since Y t; = i(t —pyJ), from the definition , it follows that the range of
Dy(s,m?) is at most py+ 3(t — ps) = 2(t+ps) < t for t > p;. On the other hand, Dy(s, m?) =0
for t < pyJ. O

We now proceed to prove the estimates asserted in items (i)-(iii) of Proposition for the
above finite-range decomposition.

3.4. Proof of Proposition (i) and (ii). To prove the estimates (i) and (ii), we begin with
the following lemma which we will use repeatedly. In the lemma, we use conventions ||gllcc =

sup, |g(x)| and gl = [ [g(x)|dz.

Lemma 3.10. Let g : [0,00) — R be submultiplicative, i.e., g(x)g(y) < g(x +y), and satisfy
C = max{||zg||oc, ||zg|l1} < c0. Then for all integers k > 1,

. 2k—1
/[Ooo)kZ lt—t]‘_Il)\g (V) tdt; < ﬁmin{ck,%g(ﬁw}. (3.48)

In particular, the estimate holds for g(x) = eV for any ¢ > 0.
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Proof. We bound the left-hand side in two ways. First, the left-hand side equals

VA Hg wi)uidu; < VA||gullsollgul¥ < VACE. (3.49)
[0,00): 320 wi=vAt 32y

On the other hand, since g(x)g(y) < g(x + y), we can also bound it by

k
/ H)\g V) dt; < ’“g(ﬁt)/ Htidti
[0,00)k: 5k Lti=t ;2

K oti=ti [0,00)k: 375
= ﬁ%g(ﬁw (3.50)
where we used
hy(t) := / Ht dt; = 2%~ 1/ Huldul = - (3.51)
[0,00)F: 3K | ti=t 3 [0,00)R: 32 wi=1 ;5 k-1
The last equality can be seen by induction: hs(1) = 1/6 and
' ' 2%—3 hik—1(1)

hi(1) = /0 shi—1(1 — s)ds = /0 s(1—s) hip—1(1)ds = 2k —2)(2k = 1) (3.52)
advances the induction. O

Lemma 3.11. Let g(x) = e~ V. Then there are ¢, > 0 and constants C, ¢ such that for |s| < e,

20+1

§ 2 / [T Mig(Vts) dt; < Cte=o020" (3.53)
)\l() 00)2+2:3Tti=t o
Proof. By Lemma [3.10] the left-hand side is bounded by
Ly oy { o (VAL
— Y Pmin{ C% 2 g(VAt) (3.54)
|
vV — (4l + 3)!

where C = max{||zg||1, ||g]lcc}. We set e, = %max{l,é’}*l so that C|s| < 1/4 whenever
|s| < es. For At? < 2 by using the second term in the minimum, this immediately gives the
desired estimate since

t Y. 270 Cdtg(V e 3.55
/0 Y G D IERE T L
Thus assume A2 > 2. By switching between the two terms in the minimum at [ = [y, the

left-hand side of the claim is bounded by the sum of the following two contributions:

1 X - 1 s 1
Vo VSR 2 S R (3.56)
Al:lzo;rl /\l:lzo;rl 2
and
g(VAE) = (VAU (VL) b O
VX ; sy SMaVAY lzo(ﬁﬂ‘” < tg(VA (VA ot (3.57)
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Choosing Iy = (¢/16)(v/At)*/?(log(v/At))~! gives the upper bound

—log(16)I
; (e Og)\(tQ) 0 N g(ﬁt)eglog(ﬁt)l‘)) <t (e—log(lﬁ)lo 4 efc(\f)\t)l/26810g(\at)lo)

<t (e—log<16>(c/16><ﬁt>1/2<log<ﬁt>)*1 + e—%(xﬁt)l/?)
g 2t€76(ﬁt)1/2(10g(ﬁt))71 (358)
which is less than the claimed bound. O

Proposition 3.12. There are constants C, ¢, e5 > 0 independent of J, m2, s such that for |s| < esby
and m? € (0,1],

. . o 1/4
0 < Dlpss,m?) < Cpy2texp (= ()" [Aume@)t) ). (3.59)

Proof. Let g(z) = e °V? so that P,(\) < Cg(v/At) by (3-34). Then by the definition (3.45)),

20+1

.  — A2
Dy(+;s,m?) < s? sup / p_2)\ 20t P 1, (Aj,,2) dt;
t( ) AN Jm2 ;0 A#£0 ()‘Jm2) [0,00)2142: 5 ¢, =T g e ) ol

21+1
21 21
s7 07 / A2 iy, (A m2) dt;
4pJ>‘Jm2 Z 00) 2423 ty=p7 T ZHO s b ( J, ) dt
02 o 214+1
S oo 2Cs/0 2l/ Aym2 tig(\ /A ymets) dti,  (3.60
ApsA g2 ZZ;( /o) [0,00 )2l+2zt—p;1TH) ’ F ) (3.60)

where T' = (t — ps)/4 € [3t,5t]. Thus the claim follows from Lemma with s replaced by
Cs/07, with t replaced by T'/ps, and with X replaced by A ;2. O

Proof of Proposition[3.9 (i) and (ii). We will show (3.9), i.e.,

dtlof o dtlal __ 12
[VeDE (0, 2;8,m?)| < Cap32t<5—;) +CL07 1 2 (‘ZQJ) e~ OY (3,61

Clearly, (3.59)) implies that |V D;(0, z; s, m?)| is bounded, uniformly in s and m?, by

dp
(2m)4”

& )\|a|/2p;2t6—5(tp;1 As(p))t/4 (3.62)

[_TF’W]d

To apply the lower bound on Aj,,2 from Lemma ie., Ay = v2p2(1+O(p?|p|?)), we will split
the above integral into integrals over |[p| = 1/py and |p| < 1/ps. The latter integral is bounded
by (with other constants C, c)

. / L 1p]|° 5 2tee(e7 0atlp) 4 g, (3.63)
Py Py e

which yields the main term in (3.7), as can be seen by substituting p — p ijltflp. For the
integral over |p| > 1/ps we use Aj(p) = 0;\(p) > %9J|p\2 on [—m,7]? to obtain the bound (again
with possibly different constants)

c. p|o g2l 05 2P gy 3.64
Py

[_Wfﬂ]d\[_p;lvpjl]d

which by substituting p — psp is seen to be bounded by

(6% — / — (|l - o ol — 70/ /
Capy ™" lt/Rd\[ LI R e A e S S AR G
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1/2
Also using e—e(t0y/ )/ < C’n(tQ}/Z)_"e*%C(wJ " with n = d + o],

Caﬂ? 2+|a|t/ ‘p||a\ fc(t91/2\p|)1/4d < 019 (d+|a|)p;2t<pQJ>d+|a|67%c’(9‘l/2t)1/4' (366)
R [~1,1] t

Now using this bound and assuming 67 ! bounded, ¢ > p;, we directly have the required bound.
Since all estimates above are umform in m?2, the continuity claim of Proposition [3.2] (ii) is
immediate.

O]

3.5. Proof of Proposition@: (iii). Next we collect the last piece of our proof of Proposition
which are the asymptotics of the covariances in two dimensions.

Proposition 3.13. Let d = 2. Then for |s| < esfy, as py/t + (phv;% + 0}2v%)/t2 — 0,

. dp 1 p vy 0;°05
p (0’ 0 ; 3) /[ﬂ"ﬂ—}2 t(p 3 S) (27‘(‘)2 27‘(’t(v§ T s) ( + O( n t2 + t2 >> (3 67)

Proof. To estimate the integral over (3.45)), we will approximate

21+1
1 R .
a ()\J — 8A1t0>pJ)Dt0 | | )\Dtl dtz dt() (368)
[0,00)x[p.00)H 1 ti=(t—p) /4 i

as follows: replace P,(\) by f(v/At) using (3.35); replace A(p) by |p|? and A;(p) by v%|p|? using
; remove the constraints t; > py from the integration domain and similarly tg > ps from
the integrand; and replace (t — py)/4 by t/4. After these approximations (which we will justify
afterwards, in inverse order), we are left with

1 20+1
—= (0] —8)/ P02t f (0 tivslp]
Alp[2*7 [0,00)20+2:5 ,—¢ /4 H st (e ) dt
— @9 [ ﬁ 29524 f (0 v o]
4lp| [0,00)2042: 3 ti=t/4 ;-
20+1
— sh—at [ [T o7 Puf Guip3 tospl) dus
‘p’2 [0,00)2042:3 ;=1 ;- +
’ g 1=0
1 a1
|p|2(v?f - S)vj4l 4t 1f2l( letUJ‘pD (369)
with
~ 20+1
Falv) = [ I] fmPusdu, (€ [0,00)). (3.70)
[0,00)242:3 u;=1 ;7

Note that fgl(O) =0, that le decays rapidly, and that for all [ € N and ¢ > 0,

dp = dp -
[, orefuttoh = | %fgmpn

=27

20+1

|
L

_ / ;// T # ()i dus
~on |,

[0,00)214+2:3 u;=1 ;g

20+1

2042
H fui)u; du; =27 (/ f(u udu) =27 (3.71)

0,00)21+2 375
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where the last equality follows from Lemma By deﬁnition Dz2(0 0; s) is the integral of

over p € [—m, % with respect to dp/ (27T and is the sum over 8)) multiplied by
52 Usmg the above approximation (3.69) for ( and then replacing the 1ntegration domain
[—m

, ]2 by R?, we obtain the main contrlbutlon to DtZd (0,0; ) as

o

1 (0 — s)u ! 02 — ohg? 1_ Lo -1
27rt s)v; Z 27rt( s)u (1 — v ts?) —27Tt(vJ+s) . (3.72)

In the remainder of the proof, we show that the approximations we made above are smaller
than the claimed error term.

Error from replacing (t — py)/4 by t/4: the same computation with ¢/4 instead of (t —py)/4 gives

1 2 1
— U +S
an(t—p) T

=53+ ) = d 97 (1 +0(2). BT

so the error is smaller than claimed.

Error from extending the integral from p € [—m,7]? to p € R%: By changing to polar coordinates,
this error is of order

1 e /

" Jv vy%s) le( py tuslpl)

P J lzg J R2\ [— 7] |10|2 /
o 00 dy 2+1

< (0% = s)v; 4/ _2 21/ r2u; f (rug ) dug (3.74)
t 7 J pyttugm/a Y lz(:) [0,00)214+2:3 " w;=1 zHO

By Lemma the right-hand side is bounded, up to some absolute multiplicative factor, by

o0 —c(py o)t/ 1 -1 1
(v7 — 8)1154/ dy eyt = O(e ]2 ) - 2 O(pJvJ ) - 2 O<E)
p7l vt 27‘('th t 277th t

5 tugm/4
(3.75)

| =

where we used that vy > 1/4 for all J.

Error from removing the restriction on tog = py from the integration: The error is bounded by

1 20+1
1S~ . s
/ )\ go /Ooo V2425 4t/ to<pg Zzl_J(:) |p| Py 1f( JpPy |p| z) i

20+1

J
2l+1 2 1
< [ §j L [T o305 l0Pt: 5 (s o) s

00)2H L3t =t/4—to ;g

J
- —c(vgp5 - / —
< Cls| /R2 dp pJ4lpl2/0 to(t/4 — to)ec (vary Ipl(t/4=to)! " f(vap5 plto)dto (3.76)

where the final inequality follows from Lemma and the fact that f(z) < Ce=<le"”? which
follows from (3:34)~(3:35). But since e~ (ve IPIE/A=t) " (3 5T pltg) < Ce=e" wapalpln)!/*
some ¢’,C’" > 0 and t/4 — ty > t/20 because t > 5p; > bty, the last integral is bounded by

_ o — C| |p 1 P2 1 pPJ
o 21 2= wap 7 WO g I < O(J) < 0(7) 3.77
sl /R2 2R P<as Sommf\R) Sz ) BT

for

where the second inequality holds because |s| < €407 < cesv?] and the final inequality because
t > 5pJ.
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Error from removing the restriction ont; = py from the integration: Similarly as above, the error
for removing the restriction on t; (j > 1) in the integral ft_>pJ S tiet/a is bounded by
1= I 3 Vv

204+1

/ Li,<p, 0505 1P t0 f (vrpy  plto) TT P10t f (vapy plts)dtidto
[0,00)242:5 ti=t/4 i1

20+1

_ _ _ -1 N1/
< (Cvy 2! / Loy [T w3lpPog tie=e®res W0 ;. (3.78)
[0,00)2t42:3 " ¢, =t /4 i—0

But since the last expression is symmetric in j, we can just replace 1¢,<,, by ly<p,, S0 summing
the errors over j € {1,---,20 + 1} and applying [go dp A™1 >27% s gives the bound

1 00 2[+1 . 12
dp—= > (20 +1)(Cv72s)2H1 / Liy< V3|2 p7 2 te Py P S gy,
/Rz |p|2§ ! 000212 timt/d pJE) e Z
Py L
gC’/ dpvﬁpf/ to(t/4 —to)e™© (UJ’)J1|p|(t/4*t°))1/4f(vjp}1]p\to)dto. (3.79)
R2 0

2
Comparing this with ([3.76]), this integral is bounded by ~—-O(%) = -1 O(Z) becauset > 5p;.

2mv2t N2 T 2wt
Error from replacement of X;(p) by vi|p|* and A(p) by |p|*: As in the argument following (3.62),
the contribution from |p| > p;' is bounded by

1/4 < 1 93203
Soomoit 2

~ /
/ dp Dy(p:5,m?) < Cofy >t 360 ) (3.80)
lpl=p;

It remains to consider the contribution coming from |p| < p}l. But then by Lemma

pI> = A(p) < O(Ipl") < O(Ip|*) (3.81)

<
< lpl* = A (p) < O(p5v3lpl") < O(v3Ipf?). (3.82)

With & as in in the proof of Lemma we have f = ck?, so

(o5 /X)) = F(vapy tlpD] < Cpy t(oslp| = /A (p) max{(py ' tAs (). A(vaoy tlp])}
2,2
< Cpzttmin {1, B2 pp? (VA Wy 102
J

1/2

g Cpfl]v(;Qt*Qe*C(va;lt‘pD (383)

where the first inequality holds because ||| < oo and the second because (z) is decreasing
in |z| and |&k(z)| < Ce21#1" Thus the error from this approximation is, up to an absolute
multiplicative factor, bounded by

p41)_2 d 9 20+1 L P
- 1
Jt2J / pg (21—1—2)(0’3)2[“/ (v?,—i—s) H \p[szQtiefc(v"pJ Iplti)™/=
pl<py® 1PI* = [0,00)2142:3 t;=t /4 -0
(3.84)

4. —2
Since |s| < e50; < O(v?), this error is again of order 5—1-O(”L;-), comparing this expression

2mv2t t2
with (3.69).

Error from replacement Py(z) by f(y/xt): We consider the difference between

20+1

(1 5) /[0700)2l+2:2tit/4 /\JPJ tOijlto ()\J) Z];[1 )\PJ tzppjlti()\J) dt; (3.85)
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and
20+1

(1— s)/ Aips P tof (VA py o) T] Ao Ptif (VA py'ts) dt. (3.86)
[0,00)2l+2:zti:t/4 i=1

By (3.35), one has Pp;lt()\J) — F(VXIp5') = (ps/t)g(vAst) with g(z) = Ce V=, This is
essentially the same bound as P;(Ay) or f(v/Ast) except for an additional factor p;/t. Therefore,
again using Lemma the difference between the above two displays is bounded by

gl _
0, (‘;"C%J‘*’“tgﬂ(\u] let)> , (3.87)

when gy is defined analogously to fy. As in (3-71), the integral of o (t|p|) over dp/|p|? is bounded
by 2rC? with C > Jo~ g(w)udu, for all t > 0. Hence possibly decreasing |s| relative to C' we
obtain the claimed relative error O(p;/t).

Summing up the bounds gives the claimed error. O

3.6. Proof of Proposition Having proved the estimates for the full plane covariance decom-
position, the torus analogue is not difficult to prove.

Proof of Proposition|3.4. By definition,

. o dp
DZd(O,x;s,mQ) :/ eP2Dy(p;s,m?) (3.88)
! [—m,m]d (27r)d
and we define )
DA 0,z;5,m?) = —— eP*Dy(p:s,m?), 3.89

pEA},

where A% C (—m,7|¢ is the dual torus. For ¢t < LY /2, the finite-range property and Poisson
summation (3.21]) imply that

DtZd(O, x;5,m?) = Dé\N (0, x; 5, m?). (3.90)
So we are only left to prove (3.16)) and the bound on f)?”. Let ty = [Ty v Dy(0; s, m?) dt and
4

1

Di\N(O,x; s,m?) = — Z ePTDy(p; s, m?). (3.91)
IAn| &
peAR\{0}
To see the bound for ¢, just notice that
0o iLN_l .
ity = / Dy(0;5,m?)dt — / Dy(0;8,m?)dt < m™2 — C’p}QLQN_2 (3.92)
0 0

by (3.41) and Proposition The proof of the bound on Dé\ N'is analogous to the argument
below ([3.62) using that all p that contribute satisfy |p| > 2rL~" and that ¢ > 1L". Indeed,

1 ) 1 o
] O AP ) < e 3N e s 2T (3.93)
+0 #0

The contribution from 27L~N < |p| < p;' is

_ _ _ 1 _ (-1 1/4
pJQt(pjlet) \Oé||A7N Z (le”UJﬂp’)‘a'e c(py vst|pl)
0<|pl<p;’
<Cap;2t(p;1mt)—|a‘—1 S ety et (3.94)

Ay

—1
0<|p|<pj
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CT’1

but since r — e~/ is decreasing for r > 0 and 2rL~N < pjl, we have the domination

% Z e~ 5oy otV < 2d/ e=3cey vl gy, (3.95)

Hence the contribution from |p| < p}l is bounded by Cgpjzt(%)‘“|+d. Finally, the contribution
from [p| > p;' is bounded by

AC ‘ ST ppllelpy e 0 < g 2a(p5 0y Il ST el Ot (3.96)
N

—1 —1
lpI=p; Ip|=p;

but again by the same domination, the estimate for \VO‘[)? M| is the same as that for \VC“DtZdL
The claim that Df N(s,m?) is continuous in m? and attains a limit as m? | 0 is deduced from the
fact that the partial absolute sums >\ p [Di(p; s, m?)| have a bound uniform in R and m?. O

4 Scales and polymers

In this and the remaining sections, Ay always denotes a discrete torus of side length LY, for
integers L > 1, N > 1. Later we will further assume that L = ¢M for integers ¢ > 1, M > 1.

4.1. Blocks and polymers. We follow the set-up for the renormalisation group coordinates of |21].
Thus for any scale j = 0,1,..., N, we call j-block any set of the form 7y (B), where 7y : 7% — Ay
is the canonical projection and B = x + ([0, L7) N Z)¢ for some = € L/Z%. The set of j-blocks is
denoted by B; = Bj(An). It induces a partition of Ay into j-blocks. A j-polymer is any set X
which is obtained as the union of j-blocks, and we then denote by B;(X) C B; the set of j-blocks
contained in X. The set of j-polymers is denoted by P; = P;j(An). Note that the family P; is
decreasing in j. For X € P;, its closure X e Pj41 is the union of all (j+1)-blocks which intersect
X, ie., X is the ‘smallest’ Y € Pj11 such that X C Y.

Next, a connected polymer is a polymer X # () which forms a connected set in £*°-sense.
Two connected polymers X1, Xo are called connected if X7 U X5 is a connected polymer; this
is denoted by X; ~ Xo and we write X; ¢ Xs if X; and Xy are not connected. The set of
connected j-polymers is denoted by P§ = P7(Ay). It is worth highlighting that 0 ¢ P5 by this
definition. For X € P; we write Comp,;(X) C P7 for the set of constituting connected polymers,
ie,each Y € Compj(X ) is a maximal connected polymer in X and the union over all such Y
is X. Denoting |X|; = |B;(X)|, the number of j-blocks contained in X, a connected polymer
X € P5 is called a small set if |X]; < 2%, and denote X € S;. Finally, for any X € P;, we
define its small-set neighbourhood as X* = J S where the union ranges over all S € S; such that
SNX #0.

For later reference, we note that the combinatorial results of Lemmas 6.15-6.19 from |21}
Section 6.4] all hold in the present set-up.

4.2. Massless finite-range decomposition. As in Section (cf. also above (1.1))), let J C Z2\ {0}
be a finite-range step distribution that is invariant under lattice symmetries, and recall the finite-
range decomposition of the associated covariance matrix C(s, m?) from Propositions and
To simplify the conditions, we will from now on always assume that d = 2 and that there is a

constant C' > 0 such that the parameters from (3.3))—(3.5)) satisfy
Is| <esby, O;=C7Y  CTlpy<vs<py/2. (4.1)

All constants in the sequel are permitted to depend on this constant C but will be otherwise
independent of J. In particular, this assumption holds for any fixed J as in the statement of
Theorem and it also holds uniformly in p for the standard range-p distribution .J, discussed
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above Remark E see Lemma Since thd is independent of Ay for scales < iLN ~1, setting
DtZd =0 for t < py (cf. (3.7)), we define for j > 0,

%Lj#l .,
Dl = [ DF (s at, (42)
lri
4Oo i
AN (5,m?) = / DM (s,m?) dt, (4.3)
1pN-1

4

and set I'; jy = Zg:jﬂ Iy so that, in view of (3.2), (3.15)), we obtain
CM¥(5,m?) = Ti(s,m®) + - + Dy (s,m?) + DY (s,m%) + 1w (s,m)Qn
= Ton—1(s,m?) + T (s,m?) + tx(s,m*)Qn- (4.4)

In particular, the matrices I'; have range %Lj by (3.8) and satisfy the following bounds, which
are straightforward consequences of Propositions [3.2] and

Corollary 4.1. Assume (4.1)) (and recall d =2). Then T'j1 is analytic in |s| < €50,

Cop7 2Ll if | >1
VT j41(0,a38) < 4“7 £ o (4.5)
Cop;~log L ifa=0
and log L
0g —17—j
I..100,0:8) = ——— + 0 LI 4.6
]+1( ) 78) 27‘(’(’(}34-8) + (pJ )7 ( )

and the estimates (4.5)) also hold for T%N and we have ty(s,m?) = m~2+ O(p’L*).

We are ultimately interested in taking m? | 0. While the zero mode ty(s,m?) diverges as
m~2 as m? | 0 like the torus Green function, the covariances I'; and their discrete derivatives are
continuous as m? | 0, and this allows to directly set m? = 0 in these. This is made precise by the
following lemma. To simplify notation, we will abbreviate from now on I'; = I';(s) =T'j(s,0) and

I‘?VN = F%N (s) = FQN (s,0), i.e., m? is set to 0 and the dependence on s is often made implicit.

Lemma 4.2. Let s be as in (A1), let kK < 05 + s, and let F : R® — R be a smooth function
satisfying |F ()| < VN9 Then as m? | 0,

Ecan (s,m2)F ~ EfN( E¢ F(QD/ +¢), (4.7)

$m2)QN Ty y_y (5) 4T (s)

where on the right-hand side ' is (centered) Gaussian with covariance ty(s,m?*)Qn and ¢ is
(centered) Gaussian with covariance FO,N,1(8)+I’§\VN(S), and we recall that a ~ b means lima/b =
1.

Proof. Provided sufficient integrability holds, by (4.4]) and the fact that the sum of independent
Gaussian vectors is Gaussian with covariance the sum of the covariances, we have the identity

_w¥ ¢ ,
Eew sm) E = B s m2)on T, (g ) oy sy i santyf P +C) (4.8)
and thus ) )
E;, E F(¢' +¢)
tN(57m2)QN 1"1(5 0)+"'+FN71(3 0)+FAN (s 0)
1 ~ 9 I N 9 2 0 ’ 4.9
IECAN (s,mQ)F (m ‘ ) ( )

where we used that I'j(s,m?) and F?VN (s,m?) are continuous as m? | 0 which implies that the
inner Gaussian expectation in the numerator is continuous as m? | 0 if F is integrable uniformly
in m?2.

To see the integrability of the function ¢ — e®(V¥:V¥) = r(®:=A%) it i enough to check
that rk(—A) < CM(s,m?)~! for each m? > 0 and sufficiently small x. But by definition

CM(s,m?)"' > —Aj — sA > —(0; + s)A, so this holds as long as xk < 05 + s. O
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Given a function Zy(-|Ay) : R* — R, which in our application will be taken to be ([2.25),
functions Z;(-|Ax) : RAN — R are defined inductively by

Zi1(p|An) = Er, ., [Zj(¢ + ¢|AN)], (4.10)

where the expectation is taken over ¢ ~ N(0,I'j11); here we emphasise again that I'j;; =
I'j+1(s,0), and we assume that Zy is such that the integrals exist. Then by the previous lemma,
and again using that the sum of independent Gaussian vectors is Gaussian with covariance the
sum of the covariances,

ECAN(s,mQ)ZO(QD—i_dAN) NEF?VN( ZN*1(¢+C|AN)7 (777,2 \LO), (411)

s)+in (s,m?) QN
where as usual both expectations are over ¢. In our setting, we will see in Section [J] that the
integral over ¢ ~ N (0, I’%N(s) +tn(s,m?)Qy) on the right-hand side is negligible as N — oo for
the purpose of Theorem Therefore we can and will focus on the massless covariances I';(s)
in Sections BHR

We conclude this short section with the following factorisation property implied by the finite
range property of the covariances.

Lemma 4.3. Let X,Y C Ay with min{|z — y| : @ € X,y € Y} > TLITL. Then for all functions
F(X):R¥ - R and F(Y) : RY — R such that the following integrals exist,

Eryy (F(X @+ OF (Yoo + ) = Eryy, (F(X, 0+ O)Er,, (F(Yii0 +0)): (4.12)

In particular, assuming L > 2%%2, this applies if X and Y are scale-(j + 1) polymers that do
not touch, i.e., X and'Y are distinct elements of Comp; (X UY), and F(X) : RX" — R and
F(Y):RY" — R where X* and Y* denote the small set neighbourhoods of X andY at scale j.

Proof. is immediate from the finite-range property of the covariance I'j1; (recall that I';j ;¢
has range at most iLjH, cf. and ) and the fact that two jointly Gaussian random
variables are independent if their covariance vanishes.

The claim below then follows from the fact that if X and Y are scale-(j + 1) polymers
that do not touch, their £>°-distance is at least L7T! and their scale-j small set neighbourhoods X*
and Y* then still have distance at least L/ t1—24+1[J = [it1(1—2d+1 1) > 11+ > 1pi+l O

4.3. Scale subdecomposition. In some places, it is necessary to subdecompose each I'; 1 further
to obtain better integrability and related better contractivity of the renormalisation group map.
(For example, in the proof of Proposition below this subdecomposition allows to choose s,
of order 1/(log L). Since 1/kr appears in various error terms, this integrability is especially
important to get to the critical temperature or close to it, cf. Remark ) More precisely, we
subdecompose each scale j further into fractional scales j + s with s € {0,1/M,..., 1 —1/M,1}
where M is an integer such that L = ¢* for an integer £. Corresponding to the fractional scales,
we define covariances analogously to , ie.,
i Li+s'
Djisjrs = / D, dt, s, e {o,M~t 2t .. 1) (4.13)

Lri+s
i

for j < N —1, and for j = N — 1,

1r5+s - A .
Ax B f;LHS D;Ndt if & <1 (4.14)
e = ) ' ,
s fﬁHsDi\th if ¢ =1.

In particular I'; ;41 = I'j41. These covariances admit estimates that are analogous to those
for I'j+1 in Corollary [4.1] and they are again corollaries of Proposition [3.2] and Proposition
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Lemma 4.4. Let d = 2 and assume (4.1)). Then for s,s’ € {0, M~ 2M~t ... 1} and s’ — s =
M1,

Capy 2Ll if Ja| > 1

4.15
Cop;2logt if o= (4.15)

‘varj+s,j+s’| < {

. A
and the estimates also hold for FNIXI—‘,-S,N—I—FS"

Finally, for each fractional scale j+ s, we also introduce the corresponding division of the torus
into blocks and polymers, exactly as in Section Thus Pj4 is the set of polymers composed
of blocks in Bjs of (integer) side lengths L/+% = LJ¢* if s = k/M. Given X € Pjis, we define
X¢ (s < §) to be the smallest j + s’-polymer that contains X, i.e., Xy consists of all blocks of
side length L7 that intersect X. In particular, (Xs)y = Xgvg and X = Xj.

5 Norms and regulators

In this section, we define the norms in terms of which we will eventually measure contractivity
and regularity properties of the renormalisation group map, cf. Theorem [7.7] below. Our choice of
norms is almost the same as that in [39, Section 5.1], which is closely related to those of [21,|36].
Compared to these references, we simplify the construction somewhat and make the estimates
explicit to obtain uniform control in the range of the step distribution. Most proofs are given in
Appendix [A]

Henceforth, we assume that d = 2, and recall that Ay denotes the discrete d-dimensional
torus of side length LY, for integers N, L > 1. Unless explicitly stated otherwise, all results in
this section (implicitly) hold for any choice of N and L. In the sequel, we make frequent use of
the notation and set-up introduced in Sections and write E = Er,_, .

5.1. Norms on polymer activities. In Section |7| below, we will define a renormalisation group
map that parametrises the successive integration (cf. (4.10|) and (2.25))

Zi1(p|A) = B[Z;(¢ + ¢|A)] (5.1)
as
Zi(p|A) = e FirlA N MR (X ), (5.2)
XePj(A)

where we recall the definition of polymers from Section that ( is a centred Gaussian random
variable with covariance I'; 11 and we use [E to denote expectation with respect to ¢. This notation
will be fixed in the rest of the paper whenever the scale j is clear from the context. In this
representation, £ is going to be a suitable scalar (parametrising the free energy), U; an explicit
leading part (parametrising the effective potential in the Wilsonian picture of the renormalisation
group), whereas K; will be a so-called remainder coordinate whose main feature is the following
component factorisation property:

EX)= ] &) (5.3)
Y €Comp; (X)

with the convention that the product over the empty set equals 1. In particular, the tuple
(K;(X))xep, is determined by (Kj (X))Xe’p]q. The latter is an example of a polymer activity. We
formalise the space of polymer activities as follows, and then define norms on polymer activites
in the remainder of this section.

Definition 5.1. For X € P;, we write Nj(X) for the space C*(RX"). For F € Nj(X) and p € R}
we make the identification F(p) = F(¢|x+). In particular, F(p) only depends on ¢|x~ and we
have the natural inclusions Nj(X) C N;(Y) if X C Y.
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A scale-j polymer activity is a tuple K = (K(X))Xg'pc where for each connected polymer
X € P}, the corresponding component is a function K(X) € N;(X). Any polymer activity K is
identified with its extension (K (X))xep; to all (not necessarily connected) polymers by means of
the component factorisation property with K; = K. We denote the space of scale-j polymer
activities by Nj.

Note that implies that K (@) = 1 for any polymer activity K according to Definition
and that, with the restriction to connected polymers, the scale-j polymer activities form a linear
space with 0 element given by K(X) = 1x_p. To define norms on polymer activities, we first
define norms of lattice functions which will enter the definition of norms on polymer activities.
Firstly, recall the definition of the set of standard basis é = {+ey, -+, te,}, derivatives V" f for
f Ay — C and the Laplacian A f from Section [1.6] For functions f g: Ay — C, we also define

the inner products

(f,9)x =Y f@)g(x), (V"f,V'g)x =27" > Y VW f@)VWg(x)  (5.4)

zeX ()=(p1,+ pun)€em™ z€X
where VW) f(z) = V1 ... VFn f(z) and

Vi = (V] Vf)x (5.5)

so that (f,—Af)ay = |Vf]%N by summation by parts. (The factors 27" in (5.4)) are natural
because each coordinate direction appears with positive and negative sign in the sum.) At scale
j, it is further natural to consider the rescaled derivatives

Vif=L"V"]. (5.6)

Definition 5.2. Letn € N, X € Pj and f : {x : di(z, X) < n} = C where dy is the graph distance
on Ay. With (u) ranging over {:tel, +eg}™ in the sequel, define for p € [1,00)

97 Flloe ) = max mage [V £ (2) (5.7
n o 2 n )
HijHi?( =L ]ZZ2 V¥ f) (5.8)
reX (
HV”fIILp o) =177 Y 22 Y f ()P (5.9)
r€OX (M
1 llc2x) = mOa{CQHV fllne(x (5.10)

(In (5.9) and elsewhere, QU refers to the inner vertex boundary of U C Ay with respect to the
graph dzstance dy).

These norms on lattice functions provide the basis for the norms on polymer activities that
we use and which we introduce next. This definition is slightly involved, and we therefore briefly
highlight its main features before stating the full definition (see Definition . The norm is
scale-dependent and measures smoothness of polymer activities with respect to typical fields at
scale j, which are lattice functions ¢ with bounded CJ2 norm. The norm needs to permit growth
when Vo is large and give small weight to large sizes of polymers X. These two aspects are
accounted for by two weights often called regulators: the (large-field) regulator G; for growth in
Vi (see Definition and (5.17)) and the parameter A > 1 (the large-set regulator) for decay
in the size of the polymer (see (5.18)).

We start by measuring the size of a polymer activity for fixed ¢ and X C Ay. For all n € N,
given K(X,-) € N;(X), its n-th order derivative D"K along the directions fi,...f, € RX is
given by

n )= 'K (X, ¢) 21) e fo(x
D"K(X,9)(fi. - f) —M’W%EX* Fote) - Dp(e 1) fulan). (5.11)
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with the convention D°K = K. For X € P§, K(X) € Nj(X) and ¢ € RAN | then set
ID"K (X, @)1, (x.6) = sup {[D"K (X, 0) (1, fu)| + (Ifillozxny <1 E=1,...,n}, (5.12)

with the convention ||D°K (X, o)

0.7;(X,p) = K (X, ¢)|. Then, for a parameter h > 0, define

o0

h"
hTj (X 0) = Z EHD K(X,p)

n=0

1K (X, ¢)

n,Tj(X,p) (5.13)

Note that (5.11)) only depends on the fj in X*, but that the norms | fx[[c2(x+y in (5.12) actually
J

depend on f;, in a neighbourhood of X*. The supremum in (5.12)) is thus over all f;, € R* or
equivalently over all extensions of f; € RX™ to a suitable neighbourhood of X*. More generally,
the above definitions of || D"K (X, ¢)|l,1;(x,,) and of [[K (X, ¢)||n1,(x,,) continue to make sense
when K(X) € Ni(X) and X € Py with k£ < j.

The [|*[|4,7;(x,p)-norm measures the size of K in a manner depending on ¢ and X. The norms
on functions of (X, ¢) are defined by weighted supremum norms. The large-field regulator which
is the p-dependent weight is defined next.

Definition 5.3. Given co, k1 > 0, define the large-field regulator for X € P; and ¢ € RAN by

G(X.0) = exp {RLlIVelia ) + eonilI Vil e + WX, ViR ) (5.14)
where
Wi(X,Vie) = > IVieliem): (5.15)
BEBj(X)

The particular form of the regulator is motivated by its properties stated in Section [5.2] below.
Finally, the definition of the norms on polymer activities is given by the following definition.

Definition 5.4. Given G;(X, ) as in (p.14)) with co,xp > 0, h > 0, and A > 1, for any scale-j
polymer activity K, define

| D" K(X)|ln,1;(x) = ;ﬁ&(@(& ©) D K (X, 0)lln1; (x,0) (5.16)
1K (X n,7;x) = gOz}y))(*(Gj(X, ©) K (X, 0)ln1;(x.0) (5.17)
1Kz = sup  ARG|K(X)|h1x): (5.18)
XePe(Ay)
We will sometimes abbreviate || K||; = || K||n1;-

This norm and the associated spaces (of polymer activities of finite norm) implicitly depend
on the choice of Ay. However, the definitions are essentially local and it is thus possible to define
an infinite-volume analogue of the norm, see Section The space of polymer activities in
N;(X) with finite ||| z,(x) norm is complete, see Appendix B} and as a consequence the space
of polymer activities in \V; with finite ||-||5, 7, norm is also complete.

For the reader’s orientation, we now give an overview of how the parameters h, A, co, k7, will
eventually be chosen; see also Definition The constants co, k1, will be fixed below Propo-
sition (see Remark as ¢z > 0 sufficiently small (independent of L), and 1, of order
(log L)~!. The large set weight A will be chosen large enough as a function of L in Theorem
(essentially in such a way that the conclusions of Proposition below hold for a suitably large
value of p). This leaves h, which will be picked large enough (larger than 1) so that the conclusions
of Lemma [6.13] hold.
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5.2. Main properties of the norm and the regulator. The most fundamental properties of the
seminorm ||-||,7;(x,,) are its submultiplicativity property, and its monotonicity in the base poly-
mer X and in the scale j. These properties will be used heavily.

Lemma 5.5. Suppose X,Y € P; with Y C X, and let F(Y) € N;(Y) (here recall the inclu-
sion N;(Y) C N;(X) from Definition . Then for each n > 0, (i) | D"F(Y, SO)HnTjH(Y,w) <
1D (Y N, o (1) D E g 1" (Y- o Hont
1EY o)nty 1 vie) < TEQ, 0)n7yvi0) HF(K O)ln,1;(vp) < IF (Y, @)Hh,Tj(X,go)‘ (5.19)
Moreover, for Y1,Y2, X € P; with Y1,Ys C X (with Y1 and Ya not necessarily disjoint), and
F(Y;) € N;(Y3), the following submultiplicativity property holds:

1EL (Y1, ) F2(Ya, 0)|n,1y x,0) < YL, 0)ln,1y 001,00 1F2(Y2, @)1 (2 0)- (5.20)
Proof. To see (i), notice that for any f € RY, we have [ fllezvy < ||f||C2 . Hence {f € RM:
J

Hf||02+l(y*) <1} c{feRr: [ fllc2(y+) < 1} and (i) follows readily in view of . For (ii), we

J J

have for any f: A — R that || f|lc2(y+) < || fllc2(x+), and the result follows similarly. On account
J

of (5.13), the inequalities in ([5.19)) are immediate consequences of (i) and (ii), respectively. For
the submultiplicativity property, see |21, Lemma 6.7]. O

The second key property of the norm is that it enforces analyticity of polymer activities in a
strip. For open U C CA, the function F : U — C is called complex analytic in U if it admits a
local representation as a convergent power series around any point in U.

Proposition 5.6. Let h > 0, let ||F'[|p1; < +oo and X € P§. Then F(X) € N;(X) can be extended

to a complex analytic function on the domain Sy, = {¢ + i) € CM : p(z),¥(x) € R, [l ez (xy <
J

h}.

Proof. Let Dy(0) = {3y € CA : [¥llc2(x+) < h}. Note that Dp(0) C CM is open because

19| oo (x+) < +L~%h implies ¢ € Dy(0). For ¢ € RX™ and ¢ € Dy(0), let

Fg(X. o +9) = 3 - DUF(X, ) ("), (5.21)
n=0 """

Since [[F(X, ©)lln1;(x.0) < 1 Flln1;x)G5(X, ) < +00 and since ||1/J||Cz y < h, the series
converges absolutely. Thus F(X,) : S, — C given by

F(X,2) < Fy(X, o +1), forany ¢ € RY and ¢ € Dy(0) s.t. 2 = ¢ + 1 (5.22)

is well-defined (that does not depend on ¢) and extends F. Moreover, in view of , F (X,-)
is (plainly) given by a convergent power series in a neighbourhood of ¢, for any ¢ € RA.

Now consider an arbitrary point ¢ € Sp. It remains to argue that F(X,-) defined by -
can be represented as convergent power series around (. Write ( = ¢ + w where ¢ = Re(()
componentwise. Now observe that for 5C € C* small enough (such that 1 + ¢ € Dy,(0)), one has

F(x,¢+a¢) B2 Z S DUF(X, 9)(( +60)") = k,Ak (6¢%F), (5.23)
n>0 k>0
where
Al o) = D0 g DM Q)W o i) (5.24)
=0 "~

and the right-hand side of (5.23)) is obtained by expanding (1) + 62)®", using multilinearity and
re-arranging terms according to the number k that 6z appears. Now use ||F|n7, < +oc once

again to show the series in ((5.23]) converges. All in all, it follows that Fis complex-analytic, as

desired. ]
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The next property of the regulator is the following basic inequality that allows to absorb
polynomial error bounds in the fields when changing from one scale to the next.

Lemma 5.7. For all co,k, >0, X € S for some 0 < j < N, allzg € X and ¢ € RAN | defining
dp(x) = p(x) — ¢(xo), one has

(5221660l o) < CR)G(X, ), k€N, (5.25)

Proof. See Appendix O

The next property of the regularity involves what is called the strong regulator in [21]. (The
term strong regulator refers to the left-hand side of (5.27)) below.) To this end, define

wi(X, 9 = ) max|Viglixpy, X E€P; (5.26)
BeB;(X)

)

Lemma 5.8. For all co,kp > 0, the following hold. If ¢, > 0 is sufficiently small,
et i (X0 < Gi(X, ), X €P;. (5.27)
Moreover, for all X,Y € P; satisfying X NY =0 and all ¢, ¢,y sufficiently small,
ecumr i (0’ LY, o) < G(X UY, ). (5.28)

Proof. See Appendix O

Finally, we will need the following stability result for the Gaussian expectation with respect
to the covariances I';. Thus recall the finite-range decomposition from Section EI, in particular
the definition of I'; from . For a scale-j polymer activity F', a common strategy to bound
E[F(X,¢" + ()], for fixed ¢" and X € P¢, will be to first bound [|[F(X,¢" + )|n1xe) <
[E(X) 1, x) G5 (X, ¢" + €), which follows immediately from (5.17)), so that the fluctuation in-
tegral acts effectively on the large field regulator G only. In this regard, the following Proposi-
tion yields that the form of the large field regulator is stable under the fluctuation integral up
to a factor 21Xl where X denotes the closure of X, cf. Section The proposition is a version
of |39, Lemma 10].

Proposition 5.9. Assume ([&.1)) and that L = (M for integers £, M > 1. For co > 0 sufficiently
small, there exists an integer £ = C(c2) and a constant ¢ = c(c2) > 0 such that with ¢, =
c(e2)0™2 € (0,1), the following holds: for all 0 < j < N —1 and all ky, < cxp*(log L)1,

E[G;(X, ¢ + Q1 <2M0Gn(X,¢), X ePf, ¢ eRMW. (5.29)
For the last scale j = N — 1 an analogous bound holds with E replaced by ]EFAN, i.e., ( ~
N
A
N(O0,T\M).
Proof. See Appendix [A.4] O

The following corollary is a simple consequence of Proposition [5.9

Lemma 5.10. Suppose the assumptions of Proposition hold. Then for any F € Nj with
||FHh,Tj <oo,al X € 73;: and all ' € RAN

IELF (X, ¢+ Ol xen < (4/2) X F

h, T} GjJrl(Ya 80,)3 (530)
and, slightly more generally, for all n > 0,

IDLEIF(X, & + Ol (xery < 25D F(X) o1y x) G (X ) (5.31)

For j = N — 1, analogous bounds hold with IE replaced by ]EFAN.
N
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Proof. The derivative D, can be exchanged with the expectation [E, hence for all functions fj
with kaHCg(X*) <1, k=1,...,n, by (5.12)),
J

IDGEF(X, ¢ + Ol(f1, -, fu)| SEIDLF(X, ¢ + Q) (f1,+, fu)ll

<
< E[”DZ’F(X7 90/ + C)Hn,Tj(X,cp’-l—C)] (532)

and so, taking suprema over the fx’s, multiplying by h"/n! and summing over n > 0, recalling

(5.17), (5.18]) and applying the bound (5.29) from Proposition one obtains that
IE[F(X, ¢ + ()]

< ATXUE[||Fllnr, Gi(X, ¢ + Q) < /AP |1, Gia (X, ¢),
(5.33)
giving (5.30). The bound (5.31) is obtained similarly. -

We conclude this section by fixing the parameters ¢y, k1, appearing in ((5.14]).

Remark 5.11. We choose ¢y > 0 small enough such that both i) the estimate in Lemma
holds whenever ¢,, is sufficiently small and ii) Proposition is in force. Having fixed co, we
choose ¢ = Cpy according to Propositio and set Ky, = c,{p?](log L)~ with ¢, = ¢£72, so that
the conclusions of Proposition (i.e., (5.29))) hold. We can thus freely apply the bounds derived
in Lemmas and (in the latter case whenever ¢, is sufficiently small) and Proposition
in the sequel. Throughout the rest of this article, we always implicitly assume that the base scale
L is of the form L = ¢M with ¢ as fixed above. Unless stated otherwise, all statements hold
uniformly in M > 1, and when we write L > C in the sequel, we tacitly view this as a condition
on M being sufficiently large.

5.3. Subdecomposition of the regulator. The final property of the regulator is a technical prop-
erty involving the scale subdecomposition from Section and that is needed to obtain sharp
integrability estimates. It is used as an ingredient of the proof of Proposition [5.9 above and also
in the justification of complex translations in the proof of Lemma below.

Throughout this section, assume L = ¢M with integers £ and M. For a parameter ¢4 > 0 and
X € Pjis (recall the notion of fractional scales from Section [4.3)), let

gj+s(X, &) = exp (CML > Wins(X, V?Jrsf)z)a (5.34)
a=0,1,2
with W; s defined analogously to (5.15)) by
Wiss(X,V50) = D> [IVieselio () (5.35)
BeBj+s(X)

Then, with hopefully obvious notation, define Gj;4(X, -) for X € P;, asin (5.14) but with j+s in
place of j everywhere. The following Lemmas and can be extracted from [39, Lemma 19]
and its proof. For completeness, we have again included proofs in Appendix and

Lemma 5.12. There exists C > 0 such that for any X € Pjis and ¢ € RAN

4
1
9i+s(X, Q) < exp(5Qj+s(X, () := exp <CC4/<CL > ZHVETSCHEH(X*)); (5.36)
a=0 (u)
where the sum ranges over multiindices (n) = (1, .-, 1a) € {£e1, Lea}®. Moreover, for any

cs > 0, any integer £, there is ¢, = cx(ca,€) > 0 such that if k1, = cop4(log L)~ then

Er (eQit+(X:0)y < oM™ X s, (5.37)

Jts.5+s
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Lemma 5.13. For any co > 0 small enough, there exist c4 = c4(ca) > 0 and an integer £y =

lo(ca) > 1 (both large), such that for all £ > fy, M >1,0< j < N, s € {0, % e ﬁ} and
kL >0, for X € Pig, ¢, € € RAN
Gj+s(X7 p+¢) < gj—l—s(Xs—&-M*lvé)Gj—&—s-i-M*l(Xs-i-M*ly¢)~ (5.38)

5.4. Continuity of the expectation. The next property shows that the expectation is continuous
with respect to the parameter s of the covariances.

Lemma 5.14. For any X € P and F(X) with || F(X)||nr,x) < 00, for|s|,[s'| < 0es,

Hm [[Ep, o0 [F(X -+ O = Eryy () [F(X -+ Ol gy, ) = 0 (5.39)

s'—s

More precisely, for any C > 0, the convergence is uniform over all F with || F'(X)||s.1;(x) < C.The
same conclusion holds when X € P, and we assume

SUPG (X, ) HIF X, @)z (x0) < 00, (5.40)

i.e., the convergence is uniform in F for which the left-hand side of (5.40) is bounded by a
given C' > 0.

Proof. We start from the following elementary identity for the derivative of a Gaussian integral
with respect to its covariance: abbreviating I'j+1(z,y) = I'j41(z,y; s, m?), considering first the
centered Gaussian vector on Ay with covariance I'j 1 . = I'j41 + €ld with density f., computing
the derivatives 0f. /Ol j41,(x,y) and letting € — 0 using the Dominated convergence, one finds
that

o 1 Ol j41(z,y) O’F(X, 0 +)
%EFj+1(s) [F(Xv(/) + C)] - 5 Z ]TEFj+1(s)[W]. (5.41)

x:yeAN

Let f*(xz) =Tj4+1(2,2) and g*(z) = 0(2, ). It then follows with the notation from (5.11) that

Er; 1) [F(X 04 O] = Ery (o) [F(X, 0 + )] Z/ ds" Br, (s [D*F(X, ¢+ (5 f*,97)].
ze X*
(5.42)

By taking the || - ||h,Tj+1(Y) norm of this and using Proposition it follows that the left-hand
side of (5.39)) is bounded by

s —§'] <2|X|jh_2 > 1 ez e 1972 (e 1E (XD I, j(X)> : (5.43)
zeX*
Since X* is finite and HfZHCJ?(X*) and HQZHCJZ(X*) are bounded uniformly in |s| < 465 (their

dependence on j and X is not relevant), the claim follows. The case X € PS 741 assuming
follows using the same proof, and we now obtain

21 x| I1E' (X, ©) b1 (X )
s =8| | 25 KR Y P llee (e ll97 ez, ey sup S (5.44)
zez);* C]+1(X ) CH_l(X ) ® Gj(Xv ()0)
instead of (5.43]). O
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6 Contraction mechanisms

The estimates derived in this section exhibit the contraction mechanisms that will be used to
identify contracting (also called irrelevant) terms along the renormalisation flow. There are
essentially three sources of contraction in our set-up, one stemming from periodicity of polymer
activities in ¢ (which is inherited from the original potential), one from terms involving only
gradients of ¢ (or higher-order derivatives), and one coming from large polymers X ¢ S;.

The main results of this section are Propositions [6.5] and which concern small polymers.
Most of the remainder of this section consists of supporting arguments that are used only for the
proof of these propositions and will not be applied directly in the rest of this paper. Finally, in
Section we show that large polymers contract.

6.1. Periodicity, charge decomposition, and lattice symmetries. For a field ¢ = (¢,) and scalar
t € R we often write ¢ + ¢t = (5 + t) in the sequel. Our starting point is the following charge
decomposition of a globally periodic field functional, introduced in [35].

Definition 6.1. Let F'(X, @) be a polymer activity such that t € R — F (X, p+t) is 27 /+/B periodic,
for some B > 0. Its Fourier expansion in the constant part is denoted by

F(X,p+1) =) eVIE (X, ¢), teR (6.1)
qEZ
where .
Fy(X, ) = \Q/B " ds e VPER(X, o+ 5), e (6.2)
™ Jo

The polymer activity Fq is called the charge-q part of F (and the neutral part when g = 0).
Moreover, a polymer activity F' is said to have charge q (be neutral) if Fyy = 0 except when ¢’ = q

(¢ =0), i.e., if F = Fy,.

We simply refer to a 27 /v/B-periodic polymer activity for some 8 > 0 as periodic in the sequel.
In doing so, we always assume that statements hold for any value of 3, unless explicitly stated
otherwise.

Notice that the smoothness assumption on F' guarantees the existence and absolute conver-
gence of the Fourier series . Moreover, F' having charge q is equivalent to the condition
that

F(X,p+1t)=eVPUE(X, o), forallteR (6.3)

(the direct implication follows plainly from (6.2)) and the converse by comparing (6.3]) and (6.1)).

For later use, we record the following instance of the above set-up. For any polymer activity
F(X, ) as appearing in Definition [6.1] fixing a point 29 € X and denoting d¢(z) = ¢(x) — ¢(z0),
using that F(X, ¢) = F(X, p(z9) + d¢), one sees that

F(X,p) =) Vil F (X, 5p). (6.4)
qEZ

The following elementary lemma states that the charge-q part Fq of a polymer activity is bounded
in terms of the norm of the polymer activity (defined in Definition , and also gives the norm
of the F-independent exponential factor in (6.4)).

Lemma 6.2. Let F be a periodic polymer activity. For all ¢ € RM and X € Pj,

1F4(X, )]

nTi(X0) S I E(X) 70 G5(X, 0) (6.5)

and

[P 7, x ) = P, g € X (6.6)
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Proof. The inequality (6.5)) is obtained by starting from (6.2)) and then using the definition of the
norm: for (f)g_; with || fillc2(x+) <1 for each £,
J

R 1
ID"E(X,0)(f1. - f)] < /O ds |D"F(X, + 206~ Y25)(f1,- -, fu)l

1
< / ds| D" F(X, 0 + 2787 28) 0, (x.0) (6.7)
0
hence

1
1y (X, O)n1y(x,0) < / ds||F'(X) ;) G5(X, ¢ +ﬁ )- 1 F (X n1;x) G5 (X5 ). (6.8)

The identity (6.6)) also follows easily from the definition of the norm since

DreVBae(fy .. f,) = (in/Bg)"eVPre ) H Frlo), (6.9)

which gives the claimed bound when substituted in the definition of the norm. It can conceptually
be understood from the fact that the right-hand side is the supremum of |ei\/Bq99\ for ¢ in a strip
of width h around the real axis. O

The localisation operators which will be used to extract the relevant and marginal part from
the remainder coordinates rely on the charge decomposition as well as on lattice symmetries, so
we define these first.

Definition 6.3. A scale-j polymer activity F' = (F (X)) xepe is invariant under lattice symmetries
if for every graph automorphism A of the torus An that maps any block in B; to a block in B;
one has F(AX, Ap) = F(X, ) where (Ap)(x) = o(A™1z). F is even if F(X,¢) = F(X, —¢) for
every (X, o).

6.2. Localisation operator. The main result of Section |§| are the following localisation operators
Locx, g which will be used to extract the relevant and marginal part from the remainder coor-
dinates. Our notation Locx p is inspired by that of [24], but compared to this reference, the
contraction mechanisms in this section rely on oscillations under the Gaussian expectation for
the charged terms in addition. These operators are defined explicitly in the next definition, but
the explicit definition does not play a direct role in the remainder of the paper: all that we will
require in the following sections are its main properties which are stated in Propositions and
[6.6] below.

The definition of Loc has two motivations, one analytic and one algebraic. In analytic con-
siderations, the intuition (and is substantiated by its properties stated in the next propositions)
is related to which terms of a given periodic polymer F' are relevant or marginal: all the higher
order Fourier coefficients Fq, q > 1, contract at large § (i.e., they become irrelevant along the
renormalisation group flow), cf. Lemma below, and so does the neutral part Fy after removal
of its Taylor expansion in Vy up to terms of second order, cf. Lemma below. The combina-
tion of these mechanisms culminates in Proposition [6.6] Moreover, it is sufficient to exhibit these
cancelation for small polymers X € §;. Large polymers will turn out to contract automatically
(due to their size), as explained further in Section see in particular Proposition In alge-
braic considerations, we use relation such as Proposition to define coupling constants ((F,3)
in the proposition). Thus we define Loc as a modified Taylor expansion with symmetry .

Definition 6.4. Let F' be a periodic scale-j polymer activity, and let Fy be its neutral part. For
X €S;, BeBj(X), define

1 -
Locx p F(X) = Locx p F(X, ¢) = WFO(X, 0) (6.10)
J
PR L 2 et Detan X0) D (L8 = ) T (an) (61 V) )
z0,y0E€EB z1,72€X* u,vEe
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where 6x; = x;—xo fori € {1,2}, 6, =1 if p = v and is O otherwise, and y* is the u-component
of y with the convention y=" = —y*. For X € §;, also define

Locx F(X)= > LocxpF(X). (6.11)
BGBj(X)
Following our convention, recall that j is tacitly allowed to take values j =1,..., N — 2 for

a given torus of side length LY and the following statements hold uniformly in N (and L unless
stated otherwise).

Proposition 6.5. Let F' be a periodic scale-j polymer activity that is even and invariant under
lattice symmetries. Then there are scalars E = E(F'), s = 5(F) satisfying (with purely geometric
implicit constants)

E=0A'L|Flp1y), 5=O0Ah72|F|n) (6.12)

such that for any B € B;,

— 1
> LocxsEF(X,¢' +¢) = BBl + 55|V} (6.13)
XeS8;:XDB

here and in the sequel, Locx pEF (X, ¢’ + () refers to the localisation operator applied to the
polymer activity EF(X,- + () and evaluated at ¢'. Moreover, whenever ||F|n1, < oo, both

E = E(F) and 5 = 3(F) are continuous functions of the implicit parameter s € [—es07,e50,]
(inherent to E ).

Proposition 6.6. There exists a constant c;, > 0 such that the following holds for all X € &; and
periodic scale-j polymer activities F such that F(X,¢) = F(X,—¢) and X € S;. Let r € (0, 1]
and assume that h > max{rchpjzx/ﬁ, p}l}, that ki, = cxp*(log L)~ as in Proposition and
that L > C and A > 1. Then for all ' € RAN,

| Loex BF(X,¢' + () = EF(X, ¢ + Olly 1, (r) < 0ocA XU Fllr, Giin (X, ), (6.14)

where

aLoe = CL™3(log L)*? + Cmin{ 1, Z eV/Pahe—(a=1/2)r8541(0) & (6.15)

q=>1
Also, Locx g is bounded in the sense (note the T; instead of Tjy1 norm on the left-hand side)
CwkLW; 2
|Locx, s EF(X, ¢+ Q)llnz,x.p) < Cog L) | F(X) 1,y x0pe "+ ¥ (6.16)

and Locx g EF (X, -+ () is continuous in the implicit parameter s € [—e50,e405] (inherent to E)
with respect to the same norms.

In our application (carried out precisely in Section , we will choose h < max{c, 'rchp}Q\/B }.
The expression for agq. can then be simplified as follows: since with this choice of h,

eVPh < C’emh”fﬁ, (6.17)
the minimum in (6.15)) is bounded by
ef%rﬁFjJrl(O)e\/Bh Z e\/thequBFijl(O) g (067%Fj+1(0))7'6 Z (CefFjH(O))qrﬁ. (618)
q=0 q=0
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By Corollary the covariances satisfy I';(0) ~ (4/Bgee+O(5/B2..)) log L with Bgee = 8T (v3+s).
For any 6 € (0,1/2] and 78 > Bpee(1 + 20), it follows that if L is sufficiently large depending on

C, 0, and vy (to ensure that C' < eiarﬂ'“(o)), and s is sufficiently small,
(Ce—%rj+1(0))rﬁ < L—2T5(1—9/2)((1/5free+0(s/6f2ree)) < L20+20)(1-0/2) 7 -2(1+6) (6.19)

and hence (6.18)) is bounded by CL~272¢. In particular,
Loe < C(L3(log L)3/? 4+ L7272y < 7279, (6.20)

The contractivity of the renormalisation group map will later be ensured by CL%ag,0. < 1.

Much of the remainder of this section is concerned with the proof of these propositions.
Proposition [6.5] is a relatively straightforward consequence of the definitions. Proposition is
more involved and combines different contraction mechanisms for neutral and charged terms. We
thus discuss these mechanisms separately.

6.3. Proof of Proposition
Proof of Proposition[6.5 By Definition the left-hand side of (6.13)) equals
1 A
——EFy(X 6.21
Z X 0( 7<) ( )

XeS;:XDOB X1

1 1 .
+ ) XI5 >y 391 0o EF0 (X, (VY (o), 21 — 0, V' (o), 22 — 20),
XeS;:XDOB z0,YoEB x1,220€ X*

where

1

(Ve'(y)s y1, V' (yo), w2) = D (U4 G = 8 -) VH9 (o) yt V7 (o) s (6.22)
n,vEe

As we now explain, by invariance under lattice rotations, only the diagonal terms in the inner
product contribute and we see that this expression equals the right-hand side of (6.13)) with

— 1 A

E= Y mEFO(X, ¢) (6.23)
XeS;:XDOB

_ 1 .

S = Z ‘X||B| Z 6@(z1)8¢($2)EF0(X, C)(l‘l — X, T —SC()), (624)
Xe§;:XDOB ro€EB,r1,x2€X*

where (-, -) is the standard ¢2 inner product on Z?—although the points lie in Ay, since they live
in a small polymer X, we can define subtraction and inner products as if thy live in Z2. To see
this in detail, expand the second term of using the definition and let I, be the
(scaled) coefficient of V¢ (yo) V¥ ¢ (yo) written explicitly as

, 1 - v
Ly =iw Y X ST0S Open) Dot EF0(X, Q) (a1 — z0) (22 — 0) (6.25)
Xe§;:XDB roEB x1,x90€X*

where iu,u = 2, i(—#)ﬂ
for any u,v € €, so

1 1 .
Lip = Nohy= Y X D> )0 BFOX, ) (21 — m0, 9 — 29)  (6.26)

vEe Xe§;:XDOB ro€EB x1,120€ X*

=0 and iy, = 1if p L v. But by rotational invariance, we have I,,,, = I,,,

Therefore summing over ;4 = +v and yg € B simply gives %E\Vgo’ \ZB Now for the case u L v,
it is direct from the expression that I(_,, = —I,, and I, = I,,. But since p L v, by rotation
invariance, [ v(—p) = Lpv and it follows that I, = 0.
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To bound 5, let f°(x1) = (z1—z0)" for z1 € X* and a fixed 29 € X. Then [|f7°[|c2(x+) < cr’
J
and with (5.30)) it follows that

si=| Y X DERXOU )

xeson XIBL 5o,

1 .
) 2
< Ch Z ‘XHB‘ Z L jHEF(Xa g)”h,Tj(X,O)
XeS;:XDOB roEB,v=1,2
1
<2'Ch AT Fllng, > =T S C'h 2 A7 Y P, (6.27)
X€S;:XDB X1
The bound for E is proved similarly:
— 1 - 1 j
E :‘ Ry (X, )g — (A2 G F Yy < CL YAV F || 1.
Bi=| ¥ gEREOl< X e I1Fl,
XESJ‘:XDB XGSj:XDB
(6.28)
The asserted continuity in the implicit parameter s follows from the expressions in the first line
of (6.27) and (6.28) in combination with Lemma This completes the proof. O

6.4. Proof of Proposition preliminaries. As a preliminary to the proof of Proposition
we state how the norm of a polymer activity changes when measured in terms of 71 compared
to the Tj-norm. We will use the following elementary inequality.

Lemma 6.7. Let X € S;. Fiz xg € X and for f: X* — C, define §f(x) = f(x) — f(xo). Then
16F ez ey < CoL ™" max [V, £l ). (6.29)
for some geometric constant Cyq > 0.

Proof. Since X € Sj, its small set neighbourhood X* contains at most 4b blocks, where b = |B*|;
for any B € B;. Thus the /*°-diameter of X* is at most C’ng and thus

16130 = max £(a) = @)l € QoL _max_ [VAF(@)] < CoL™ [V f ey (6:30)
Also, for m > 1, V™5 f = V™ f, and the result follows. O

This lemma has the following important consequence for neutral polymer activities.
Lemma 6.8. Let F' be a neutral scale-j polymer activity. Then for X € S;, ¢’ € RAN andn >0,
1D F(X, @) ln1y41 (x.0) < (Cq L) D" E(X, 0)|ln7y (x.0)- (6.31)
In particular,
X )70 (x0) < NEX 0)legr—101;(x,0)- (6.32)
Proof. Since F' is neutral, i.e., has charge ¢ = 0, cf. , for fi constant-valued one has

0 d
DF(X,9)(f)=h Y 5 —F(X,9)=fig F(X,p+0)|,_,=0 (6:33)
To€EX Zo
and the same reasoning implies that D"F(X, )(f1, -+, fn) = 0 whenever any of fi,..., f, is

constant-valued. Therefore, having fixed 2o € X, for any f; € RAY, by multilinearity,

DE(X,0)(f1;- -5 fn) = D"F(X, ) (0f1,- -, 0fn);
where (6 fx)(z) = fr(z) — fr(xo). Therefore if kaHCfH(X*) <lfork=1,...,n,

|D"F(X, ) (f1,-- s )l < (Cg L) [D"F(X, 0)|ln1y (x.0) (6.34)
by Lemma In view of (5.13)), the claim follows. O
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The following similar but weaker bound holds for charged polymer activities.

Lemma 6.9. Let F' be a scale-j polymer activity of charge q that is supported on X € S;. Then

1 E (X, @) h 140 (x,0) < eVBlalh| p(X, O)llc,L-1h,15(X,0)- (6.35)

Proof. One may decompose F(X, ) = eiVPa#(@0) (X §p) where dp(z) = ¢(z) — p(20). Define
F(X,p):= F(X,dp), then F is now neutral. The estimate of Lemma applies to F, giving

IE (X, @) Inzy1(x00) < IF ey 101X ) (6.36)
The conclusion now follows from and the submultiplicativity property of the norm (5.20). O

6.5. Proof of Proposition charged part. We will prove Proposition by decomposing F'
into its neutral and charged part and considering both contributions separately, starting with
the latter. The estimate for charged F relies crucially on the expectation of the charged
components on the left-hand side of . The contraction mechanism for charged polymer
activities is a generalisation of the elementary identity

]E[ei\//?qé‘wo] — e—%/BQQFjJrl(O)’ (6.37)

valid for all integers ¢ and 8 > 0, where here and in the sequel, I'j 1 (x) = (09, I'j4+10;). The gen-
eralisation uses the analyticity of polymer activities with finite | - [/ 7,-norm, see Proposition
which justifies the following complex translation.

Lemma 6.10. Let h > 0, and let F' be a charge-q polymer activity with ||F(X)||h7Tj(X) <00, q€Z.
Then for any constant ¢ € R with |c| < h,

F(X, ¢ +ic) = e VPUR(X, ). (6.38)

Proof. First recall that by Proposition F(p + z) is well-defined and complex analytic for
ze{weC:|w| <h} Hence f: {z€C:|z|<h} = C, 2z F(X,p+2) —etVPF(X, ) is a
complex analytic function that takes value 0 on the real line by (6.3)). Therefore f = 0. O

Before we jump into the main result, we first discuss a technical point, which defines the
constant ¢, appearing in the statement of Proposition [6.6] Ultimately, we are interested in
the covariance I'j;1, but to obtain the optimal estimates we must work with its subdecom-
position into fractional scales introduced in Section 4.3l Thus for ¢, M as in Section let
I={0,M- Y 2M~1 ....1— M~'} be the set of fractional scales. Then for s = kM~! € I and
s' = s+ M~ (cf. Remark regarding M), set

&s(x) = VBT jss jus (@ — 20) = Tjrs jrsr (0)), fs = Z & (6.39)

telt<s

Lemma 6.11 (Choice of ¢). There exists c;, > 0 such that for any X € Sj, s € I and > 0,

o
Hszc]?(X*) v H§<s||c;(x*) < icthQ\/E- (6.40)
Proof. By Lemma [4.4]
1D V&l (x-) < CapyV/B (6.41)
seJ

for any J C I and |a| € {1,2}. Also for « = 0 and X € S;, with the same constant Cy as in

(6.30),
sup | Y &s(@)] < CuL|1Y - Vel (xn) < Coll Y Viksllm(xs) < CyCaV/Bpy®.  (6.42)
cJ

zEX™ s sed sed

Combining both inequalities gives the claim with ¢, = 3C(Cy V 1). O
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Henceforth, we fix ¢ so that the conclusions of Lemma hold. The formula (6.37)) can
now be generalised to the following identity.

Lemma 6.12. Let r € (0,1], h > Tchpjz\/ﬁ, and let F' be a charge-q polymer activity with
| F(X)ln1;(x) < 00. Then for X € Sj, q € Z, w0 € X and {(z) = /B(Tj41(z — 20) — Tj11(0)),
for all ¢’ € R,

E[F(X, ¢ + ()] = e 2 an OCrl =g [=VFroudm) (X, of 4 ¢ + iroy€)], (6.43)
where o, = sign(q).

Proof. Recall that ¢ ~ N (0,T'j41) under E. We will need to work with the subdecomposition of
the covariance I';11 discussed above the lemma; see the discussion below for the reason.
Since £ = &, it is sufficient to show the lemma for [|F||p7;,, < +oc and I'j11 replaced by
Ljisjt+s where s = — M~! € I and ¢ replaced by (s + iré<s where (s ~ N(0,Tj s j4s). It is
convenient to work with invertible covariance matrices, so we will work with C' = T'j; j1s + 0
for & > 0 so that C is strictly positive definite, and then take the limit § | 0 to conclude. All in
all, it thus suffices to show that

/ e 3OO P(X, ¢+ ¢+ irogbas) dCs
(6.44)

1

— ¢~ 3BC(0)(2r]q|—r?) /e—é(Cs,C‘le)—i\/quCs(ro)F(X’ @ + (o +irog(Ecs + &) dCs,

from which readily follows by integrating successively over (s, s € I and letting 6 | O.
Here, with a slight abuse of notation, we define &;(z) = v/B(C(z — zo) — C(0)), from which & as
introduced in is obtained in the limit 6 — 0. Then the bound of Lemma holds the
same for this modified & when § is sufficiently small, which we henceforth tacitly assume.

We now show ([6.44). Let X' = {z € A : di(z, X*) < 2} so that ||1/}||CJZ(X*) only depends on

Y| x. Performing a change of variable from (, to (s — iro4&s, the integral on the right-hand side

of (6.44) can be recast as
/X e_%(CS7071C5)_i\/BTUqCS(xO)F(Xv SD/ + s+ ’i?“O'q£<s + Z'TO'qgs) d¢s = 6_%6r2C(O)Rraq€s (T) (6'45)
R ’

where
Ry(r') = / o B (CHir' 2,7 (CHir' 2)) F(X, ¢ + ¢ +irogées)dC. (6.46)
RX' 14

and z = 04v/8C(0). To show that 6*50(0)”‘1'qu55 (r) equals the left-hand side of (6.44), we
will apply Cauchy’s formula to first show R,, ¢ (r) = Ro(r). Indeed, by Proposition
F(X) is complex analytic on S;. By Lemma and assumption on J, the condition h >
cnrp~2y/B guarantees ”TUqszCJZ(X*), ||T0q§<8||CJ2(X*) are strictly less than h/2, and thus in par-

ticular [|rog (s +&<s)llo2(x+) < h. We claim that Ry, = Ro for any 9|2 x+) < h/2. To see this,
J J

consider ¢ as a vector in the space CX " and make the orthogonal (isometric) change of coordinates
(0z :x € X') to (ey : y € E) (so that |E| = |X'|) with ¢ = ce,y, for some yy € F, ¢ € R. Then
showing Ry (r) = Ro(r) is equivalent to showing that

/ e~ CHECT A P(X o 4 ¢ + iragbes) dC(yo)
R+ic
= /R e*%(CJF“”Z’C_I(C*”Z))F(X, O+ ¢ +irogéas) dC(yo). (6.47)

But by Cauchy’s integral theorem, it is sufficient to show that

sup |e_%(<+”’z+i5¢acfl(C”TZ“W))F(X, 90/+C+ir0q£<s+isd))‘ —0 as R— oo. (6.48)
C(yo)==R, |s|<1
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To see this, first note that

‘6—%(c+z‘m+is¢,0—1(<+irz+z's¢))| < e 36010 (LCT )42 (1,07 ) (6.49)

while, by (5.21)), we have

|F(X, ¢+ C +iragées +isy)| < |F(X)|n00Gi (X, ¢ 4 €) < NF(X)Inhgx)Gits(X, ¢ + ()
(6.50)

and by Lemma
Gj+S(X7 90/ + C) g gj+S(X7 C)Gj-i-s’ (X7 QO/) (651>

Now by Lemma [5.12, gj4+4(X, () < 2 @i+s(X:0) where Qj+s(X,() is a quadratic form in ¢ and
e3Qi+s(X:0) g integrable with respect to E¢. This implies

e 3000, (X,¢) < e300 0er QX0 = 6(1) as [¢] = oo (6.52)

and proves (6.48]). (Note that the last step would not have worked if we had directly used G;
instead of gj1s because we do not have a quadratic form @’ such that G;(X,() < 39" and

E[e%Q/(O] < +oo at the same time.)
To compute Ry(r), consider Ry(r’ + dr') for sufficiently small 6r'. Another application of

(6.47)) shows that

Ro(r' + 6r') = / e 2 (HaCTHCHIN (X o 1 ¢t irogéas — i(61)2) dC. (6.53)
RX'

But by (6.38), F(X,¢ + ¢ + iroyfes — i(0r')2) = eVP@' P(X, @' + ¢ + iro,<s) and hence
%Rg(r’) = v/BqzRo(r") = B|q|C(0)Ro(r"), cf. below (6.46) regarding 2. Solving this differential

equation yields
Ry(r) = elaIrfC() / e 2COTOR(X, ¢ + ¢ + irages)dC, (6.54)
RX'

thus proving (6.44)). O

This identity leads to the following contraction mechanism for charge-q polymer activities.

Lemma 6.13. Let r € (0,1] , h > rchpf\/ﬁ and L > 2C,. There exists C > 0 such that for
X € S;, and any charge-q polymer activity F' with |g| > 1 and [|[F(X)|[s1;x) < oo, and all
¢ € RAN,

IEIFQ ¢+ Ol (xpn < Ce¥Plite W=D O P(X) 7,6 Gia1 (X, @) (6.55)

Proof. We will hide the dependence of F (X, ) on the polymer X for brevity and assume that
X is a small set. Let us start from (6.43)) with r € (0,1]. Then

2\q|7‘77‘2

D'E[F(¢ + )] =e 2z PlinOR[e=VBroseo DV (¢ + ¢ + iro )] (6.56)

where (z) = /B(Lj41(z —x0) —'j4+1(0)). By our assumptions and Lemma (with the choice

M = 1), we have C4L~ h+r||¢]| < h, where || || = || ||c2. Thus by Proposition F is analytic
J

in the strip Sc,,-14+|¢||, and hence the Taylor expansion

D"F( + C + iroy€) = Zkl (D"F)(¢' + O)((irog€)™*) (6.57)
k=0
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is convergent and so, combining with (6.56|), and since |oy| = 1,

_2lgl-1 op r&
LB + Ol < 4 m OB[ S LAEIDP R 4 O]

(6.58)

Therefore, for A’ > 0 left to be chosen,

_2lal-1 g1 rEN*
B + Ol < 5 om OB 5™ D vk pt L)) )

12!
< 6—%7"51—}4.1(0)1{2[2 (h + Hrfn) ||DnF(g0 + C) o )}
TL.
n=0
_2lgl=1, g
—e 2 ’BFJH(O)E[HF(@/ 4 C)Hh’—l—rll&ll,Tj(Xv‘P/)]' (6.59)

To complete the lemma, one is just left to compare ||[F'(¢" + ()|[n.1;,,(x,e) With a quantity in a
lower scale. This is where Lemma comes in, yielding the bound

IEF(¢' +¢) o) < PUMNEIRQ + Ollle, i-1h,(x,0) (6.60)

and we see that the choice h' = CgL_lh gives

_2lal-1, g,
IE[F (" + Olllh, 1y (o/40) S eVPlahe= =51 OR[| F( + Olle,z-1hsrpelm; xon]- (6.61)

Now invoking Proposition

2Iq\
IE[F( + Olllngy ) <e FrAl54+1(0 JeVPNE[G (X, ¢ + ONFllcyr—1hsre)z;x)
_2lgl-1 . . —
<e 2 Tﬁr]-ﬁ—l(o)e\/BMhQ‘X'J Gj+1 (X, SD/)||FHCgL71h+T||§H,Tj(X)'
(6.62)
Since [|Fll¢, .- 1htre)1;x) < 1F]lh1;(x) and X is a small set, the proof is complete. O
Finally, we conclude the Proposition [6.6] for charged F.
Proof of Proposition|[6.6: charged part. Assume that F is charged, i.e.,
F=)F, (6.63)
q7#0
The triangle inequality, (5.19) and Lemma give
IEF(X,¢ + C)HhTJH 5 < C Ze\/ﬁlqlhe—(\QI—l/Z)r,BFjﬂ(0) |F(X) (X9,
q=1
(6.64)
If this sum is not convergent, one uses the alternative bound
IEF(X,¢" + ), T (Ke) S CNIF(X)||n,z; ) Gir1 (X, ¢"). (6.65)
This implies the claim since Locx EF(X, ¢’ 4+ ¢) = 0 when F is charged. O
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6.6. Proof of Proposition neutral part. For neutral F', the contraction in does not rely
on the expectation, but instead uses that gradients contract under change of norm. In all of the
following lemmas, we assume that A > p}l as appearing in the assumptions of Proposition
and we also suppose that all remaining assumptions of Proposition are in force. We will also
frequently abbreviate EF(X) = EF(X, ¢’ + ().

In order to bound Locx EF(X) — EF(X) (cf. (6.14)) for neutral F, our starting point is to
split it into two terms whose norms will be bounded separately in Lemmas and [6.17] below.
The proof of Proposition then quickly follows. It appears at the end of this section, and
combines these two ingredients, along with Lemma which will account for . Thus, let

Locx EF(X) — EF(X) = (Locx EF(X) — Tay,EF(X)) + (Tay,EF(X) — EF(X))
= (Locx EF(X) — Tay,EF(X)) — RemyEF(X), (6.66)

where the Taylor approximation and its remainder are defined as follows: for F(X) € N;(X)
with || F ||h,Tj( x) < 00, define the Taylor approximation and remainder of degree n (around 0) by

1 OFF (X, 1)
Tay,, F'(X,p) = kZ::O k!xh“%;@(* 30(a1) - O (zr) wzow(m) - p(ay) (6.67)
Rem, F(X,p) = F(X, ) — Tay, F(X, ). (6.68)

For F(X) € N;(X) neutral, define
— 1
Tay:F(X,9) = 157 > Tay, F(X,6¢) (6.69)
ro€EX
Rema F(X, ¢) = F(X, ¢) — Tay, F(X, ¢) (6.70)

where dp(z) := p(x) — p(x0) is dependent on the choice of g € X. Thus, Tay, corresponds to
a second-order Taylor approximation around the origin for the increment dp, averaged over the
base point x.

We first collect two auxiliary results that will be used to bound the first term in .

Lemma 6.14. For ¢ € RM X ¢ S; and xo,yo € X,

[V o(z0) V= (20) — VI 0(Y0) V(Y0 |17y 41 (X0)
SCL™3(h 4+ Vi@l + Va9l on)? (6.71)

and for any p € € and x € X (see below for notation),
IV (@) VM (@)1 1 (x,0) < CLT 30+ IVl (x) + [Via0lliex)? (6.72)
Proof. To see the first inequality, observe that
[V#p(x0) — V¥(yo)l < CLT 72|V 1 0ll oo ), (6.73)
hence
Dy (VFp(x0) = V*0(y0)) ()] = V" f(w0) = V" (yo)| < CLT72(If e, (x+y- (6.74)

Since V*p(xg) — V*o(yo) is linear in ¢, all but the first two terms in the series expansion (5.13))
of |V p(z0) — V#0(y0)lln,1;.1 (,x) Vanish and therefore, using (6.73)) and (6.74),

IV o(20) = VH0(Y0)lln141 (x,0) < CLT72(h+ [|V5 10l e (x))- (6.75)
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Analogously,

IV (20) ln7y 1 (x.0) + IVFLW0) h 11 (x0) < CLT MR+ IV 160l oo ), (6.76)

and (6.71]) follows using the submultiplicativity of the norm. The second inequality (6.72]) follows
from similar direct computations:

| VHp(a) Vi <P(~”U)H0T < CL™73| V10l oo (x) I V310 2o (x) (6.77)
DV (2)VH o (x >||1T <CL™~ 3(\|VJ+160||L00 ) IVl x) (6.78)
| D2V () V" (2 )HQ,Tj(X,ga) < CL™%73, (6.79)
and higher-order derivatives vanish. O

Lemma 6.15. Let ' € N;(X) with |[F|1,x) < oo, and let X € S;. Choose any xo € X and
denote dx1 = 1 — g, 0x9 = L9 — x9. Then

> Op(en)Op(en BF (X, ()ox4 05| < Ch2L¥ || F(X)

x1,x2€X*

(6.80)

Proof. By definition of [|-[|;, 1;(x) followed by (5.30) with G(X,0) =1,

W21 01 BF (X, ()bl | < |[EF(X, Ol xo 6z o2 x-) ) (6.81)
1,22 .

< CLY | F(X)|ln1;x)

where we used ||z} ch X*) H(SmQHCQ (x*) = O(L7). O

Lemma 6.16. Let h > ,0}1 and k1, = cxpi(log L)~ . Then for all X € S; and neutral F(X) €
N;(X) such that F(X,¢) = F(X,—¢),

| Locx EF (X, ¢ + () — Tay,EF(X, ¢ —|—C)HhT

a1 (X

oy < CL™(log L) A P, G (X, ).
(6.82)
Proof. By definition, see (6.10]) and (6.11)), denoting by B;(x¢) the block B € B; such that zg € B,

Locx EF(X) = Z Locx,p EF(X) = EFy(X, ()

BEB( )
|X’ Z Z Z go(xl xg)EFO(Xa C)<V@,(y0),(5%’1,V(,O/(yo),(h&), (683>
xoeX yOEB (xo)xl,zze)(*

where 0x1 = x1 — x9, 022 = T3 — xo and, following the notation of Lemma “ cf. -

1

(V¢! (y0), 621, Vo' (o), 2) = 7 (4600 = 60 0) VO (yo) 6 V¥ (yo)day.  (6.84)

p,vEe
We firstly replace (V¢'(y0),0x1, V' (yo), d22) by (V' (y0), 0x1){(Ve (yo), dx2) and secondly re-
place yo by zo in (6.83) where (V¢'(z),y) = %Z”Gé VH' (x)y*. This gives

|X| DD S0 O EF (X, OV (w0), 021 ) (Vg (20), 52) (6.85)

ro€X x1, Z‘QEX*
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and, as we now explain, an error term bounded in the |||, 7, (x,,)-norm by

CL=3 ¥ F(X) 2+ V19 o) + V209 o) (6.86)
Indeed, to obtain this error bound, we proceed as follows: observmg that
(V&' (y0), 021 ) (V¢ (90), 622) = (V' (y0), 01, V' (20), d2) = Z V! (o) VUM (yo) ok by,
;LEe
(6.87)

the claimed bound for the first replacement is justified by (6.72)) and (6.80]), whereas the claimed
bound for the second replacement follows from and @ The factor 21Xli appearing
in follows hereby from an application of Proposition @ Rather than including full de-
tails here, we refer to — below, which estimate a similar but slightly more involved
error term, yielding the bound . The bound is readily obtained by adapting these
arguments.

Next we replace (V¢'(z9), dx;) in (6.85) by d¢'(x;) = ¢'(x;) — ¢'(x0). For X € S;, one has
16¢ ez (xy (V¢ (), 62}l o2 (xey < CLTHIV [l oo ) (6.88)
169" () = (V' (20), 02) | 2 (x+) < CLT2( V5119 Loy (6.89)

where the objects above are all functions of x € X*, measured in || HCz -norm. Using again the
definition of the norm , we may thus replace (6.85)) by

2‘X| 2 Z Optan)Dptan EFD (X, O) (¢ (21) = ' (@0)) (¢ (w2) — ¢/ (w0)) (6.90)

xoEX x1,12€X*

with an error in the || - [ 1;,, (x,,)-norm bounded by

CL* X | F(X) 20+ Vi@ e + 1V o) (6.91)

Indeed,

Y Oue Pt BR(X, Q0 (1) — (V6 (w0), 621))0¢ (2)

r1,x2€X*

< E|ID*Fo(X, Q)llary (x.0) 109 (1) — (VQO/(xO)’61‘1)HC;(X*)H&PIHC’?(X*)

< Ch 2| F(X) Iy () BIGH (X, OIL [V j5190' || oo (x4 1V 419 oo ()

< cL 32Xl HF(X)Hh,Tj(X)hJ|Wj+190/||L<><>(X*)HV?H@/HLOO (X*) (6.92)

where §¢'(z1) — (V' (20),6z1) is a function of z; € X*, using (6.5)), (6.88) and (6.89) for the
second inequality and Proposition in the last step, and since each 5<,0 (:Ul) (V¢ (20),021)
and ¢’ (z1) are linear in ¢/, we immediately see (see around (6.74)) for a similar reasoning) that

I > Octen)Oc(an) BEV(X, Q) (59 (1) — (Vi (w0), 621))560" (22) |70, (.01

x1,x20€X*
< cL32iXl IE ) Iy c0h 2 (h+ 1V 319 oo x)) (B + V51160 | oo (x7)) (6.93)
A similar bound holds for >7 . %(5@’@1) — (V¢ (20),021)) (V¢ (20), 0x2) and

hence the claim follows.

Recognizing EFy(X, () in together with as Tay,EF(X) (the first order term in
the Taylor expansion vanished due to the assumption F'(X,¢) = F(X, —¢)) and collecting the
errors, we have thus overall shown

| Locy EF (X, ¢ + () — Tay,EF (X, ¢ —l—C)HhT

J+1 ¥’)

< CL )l (1+ B max V3,1 o)
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The claim now follows from Lemma [5.7] n along with ( -, using that h=2x,! = O(log L) which
holds since h™2 = O(p?%) by our assumption h > pJ and since le = O(,OJ2 log L). O

Lemma 6.17. Under the setting of Lemma

[RemsEF (X, ¢ + Ol < CL 3 (log L2 AN | Pl Gyn(X,). (6.94)

+1(X,9")
Proof. Recall that F(X,¢' + () = F(X, ¢’ + ) with 6¢'(z) = ¢'(z) — ¢'(z0) for neutral F' and
any zo by (6.4). Thus, RemyEF (X, ¢) = ﬁ Y wpex Rema EF(X, 0¢") with §¢'(z) defined for
varying zo’s, we just need to prove the statement for a fixed o € X and Rems replaced by Rems.

We need to estimate |[D" Rema EF (X)), 1, ,(x,)- We will consider the cases n > 3 and
0 < n <2 Writing ¢ = ¢’ + (, using that Remg EF(X, ) is neutral, the estimate for n > 3
follows simply from Lemma and the fact that D" Remy = D" for n > 3:

|D" Rems EF(X, ' + )l s (xio) < (Cy 'L "ID"EF(X, ¢ + QOllryery (695)

Multiplying by A™/n!, summing over n, and combining with Lemma noting that 21Xl < C
since X is small, this readily yields

ZfHD” Remy EF (X, @)lln1, 1 (xp) < CL3A™X Pl 1,Gi41 (X, ). (6.96)

n=3

The cases n = 0,1, 2 require a bit of effort and represent in fact the dominant contributions. We
use Taylor’s theorem and neutrality of F' to write

2
D" Remy EF(X, @) (.-, fn) = Z

(k D Remo EF (X, C)(f1,- -, fa, (30))2F ™)

! (1_t)3 " / —-n
+ /0 dtWD?’RemQEF(qu)(ﬁ, o Fa (5. (6.97)

But since D* Remy EF(X,¢) = D*EF(X, () for k > 3, applying successively (5.12), (6.31]) and
(5.31)), one sees that

|D? Rema EF (X, ¢+t ) (f1, -, fn, (60)E3™)]

< | DPEF(X, ¢+ 1) I3 m, 1 (xa0) Hésou ey 11 Milloz, ey
1<i<n
< (C,'L)?|D*EF (X, ¢+ t¢') s, ey 1 Ml
1<i<n
< C'h L7 F(X)|l3, 13X, 1) 104 H ey 1 Millez, xo)- (6.98)
1<i<n

Moreover, since D* Rema EF(X,¢) = 0 for k € {0,1,2} whenever HleC2 x+) < 1 for each
1l €{1,...,n}, one obtains that the left-hand side of is bounded in absolute value by

1 _
o' [ a e,

Now since Gj+1(X,¢") = Gj11(X,t¢")Gj11(X, V1 — t2¢') by definition of G;41 in (5.14), and
then using Lemma applied with ¢ = /1 — t2¢’, we obtain, for n = 0,1, 2,

(TN oy (699

. ~ / /13—n
o AT ) WA s
% Gi1(X,¢) ’ G]+1(X V1—75290)

(6.100)
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All in all, since
/1(1 — )31 =)~ B2 qr < o, /175(3—”)/2 <00, n<2, (6.101)
this implies, for noz 0,1,2, :
1D" Remy EF (X, ), ., .y < O3k, C )03 F(X) l3.1,00G1 (X, ). (6.102)

hn—3

Multiplying by h"/n!, summing over n, using that » 5., * KZ(B'*n)/Q < C(log L)*2h=3 by
assumption on k7, and h (the dominant term being n = 0), it follows that

h" _ Cixl —
> D" Rems EF (X, 9) 7, (1) < CL 3(log L)32 A~ XU\ F[|, 7, G0 (X, ¢'). (6.103)
n=0,1,2

The claim follows immediately by combining the estimates (with (5.19))) and (6.103).
O

The next result will be used below to deduce (|6.16)).

Lemma 6.18. Let h and k1, be as in Proposition[6.6 and F be a neutral scale-j polynomial activity,
B e Bj and X € S;. Then

CwRLW;j 2
[Locx 5 EF(X.¢' + Ollury () < Cllos L[ EQO) I, ooye 5P (6.104)
Proof. Using (6.10]) and (6.84)), write

1 ~
Locx s EF(X) = ——EFy(X, ()
| X1;
1 1 1 .
+ m Z @ Z §a¢($1)atp(x2)EF0(X7 C)(V(p'(yo),&vl,Vgo’(yo),éx2>.
z0,y0€B x1,T2€X*
(6.105)
The term in the first line is bounded using (5.31)) with ¢/ = 0 by
IEFy (X, ()| < 21| F(X) 1y (x) S CIE(X)|n7yx0) (6.106)

since X is small. We now consider the term in the second line of (6.105)). For u, v € é, Lemma
provides a bound for ) Op(21)Op(22)EF0 (X, €) (d1)H(62)". Moreover since yp € B,

T1,r2€X*
LV*¢ (yo)lyoenllng (x.e) < b+ 1IV9 | Lo (B)- (6.107)
Putting these together, using the submultiplicativity of the norm and recalling the definition of

wj from (5.26), the [|-[|;7;(x,,)-norm of the second term of (6.103)) is readily seen to be bounded
by

- -2 - CwKLW; "2
Ch™2(h + IV 10e(8)) 2N Fllny (x) < C'B 2R LHIF(X) Iy x0€ Lws (B, (6.108)
The claim again follows from the fact that h =2k~ = O(log L). O

Proof of Proposition|[6.6. The Fourier decomposition yields, since Locx EFQ(X ) = 0 when-
ever g # 0 (cf. (6.10)),

Locy EF(X) — EF(X) = Locx EFy(X) — EFy(X) — ) EF,(X), (6.109)

970

which allows to prove by bounding the terms of different charge separately. The last sum
is the charged part of F' and was already bounded at the end of Section In order to bound
|Locx EEy(X, ¢’ +¢) — BEy(X, ¢’ + ) [n. 741 (x,7)» one applies Lemmas and @ (with the
choice F = Fj), which yield suitable estimates for |[Locx EFy(X, ¢ + ¢) — Tay,EFy(X, ¢ +

C)Hh,Tj+1(X,§0/) and [[(1 — TWQ)EFO(X, o+ C)”h7Tj+1(X7L)0/), respectively, from which (6.14) readily
follows. The bound (6.16]) is a direct result of Lemma Finally, the continuity in s again
follows from Lemma [5.14] similarly as in the proof of Proposition [6.5 O
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6.7. Reblocking. The final contraction mechanism states that the contribution to a polymer
activity from large sets contracts under so-called reblocking for entropic reasons.

Definition 6.19. For a scale-j polymer activity F', define the reblocking operator

Y=X

SF(X,p):= Y F(Y,p) for X € Pf,;. (6.110)
YePs

Note that S is a linear map taking a scale-j polymer activity F to a scale-(j + 1) polymer
activity since all polymers are connected. The following proposition shows that reblocking is
contracting when acting on polymer activities F' supported on large sets, i.e., F/(X) = 0 holds
for all X € §;. Contrary to the previous mechanisms, this does not use periodicity of F' nor any
structure of the F'(X).

Proposition 6.20. There exists a geometric constant n > 0 such that the following holds when
2

L>24+1=05 ForAs > Q#eLg, X € Pjiy, and any scale-j polymer activity F with

1|, < oo,

ISEF Ly g, ) Mgy ) < (LAY F . (6.111)

The factor L~! will compensate the loss of the factor of 2 in the A/2 factor in Lemma
The proof is a consequence of the following combinatorial lemma.

Lemma 6.21 (Lemmas 6.14-15 of [21]). There exists a geometric constant n > 0 such that the
following holds when L > 2%+ 1 =15. For every X € Pj,

(1+n)[X|j+1 < [X]; +8(1 + n)| Comp; (X)]. (6.112)
Moreover, if X is connected but not a small set, then
(1+n)[X|j1 < [X];. (6.113)

Proof of Proposition[6:20, By (6.113)), we have |[Y|; > (1 +7)|X|j+1 if Y = X and Y € P{\S;,
and so applying successively (6.110)), (5.17)-(5.19) and (5.29), one obtains

ISE[F1ygs; (X, ©)In 1,41 (x,0)

Y=X
< Y ARGy +OIIF

h,T}
YG'P;\S]'
Y=X
< S (AR NG (X, ) [ Fll,. (6.114)
YGP;\S]'

using the lower bound on |Y|; in the last step. Next, observe that for any z > 0, decomposing
a polymer Y € P; with Y = X over (j + 1)—blocks constituting X, one can rewrite

Y=X Y'=B
DA | D D N ((E e L L (6.115)
YeP; BeBj+1(X) Y'eP;

Returning to (6.114)), using (6.115) with the choice z = (A4/2)~'/2, one obtains that the quantity
ISE[F 1y gs;[(X, ©')[In,1;, (X, 18 Dounded by

(A/2) 2 Xl (14 (A4/2)72)F = )Y @0 (X, @) 1 Flln,
< (A4/2) 5 X (e(4/2) 3 22) X G (X ) | Pl (6.116)
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under the assumption (14/2)_%L2 < 1 where we use (14 b)¢ — 1 < exp(bc) — 1 < ebc for any
b,c > 0, bc < 1 to obtain the last inequality. If we assume further that A is large enough so that
e(A/2)~+mM/212 < L71A~1 then this is bounded by

_24n ) 14— .
(e(A/2)~ 5" L)X Gy (X, )| Fllng, < (LT A™YXm G (X @) | Fllng,,  (6.117)
giving the desired bound. O

We also have the following lemma which is of a slightly different flavour, and has its use in
various places related to large sets.

Lemma 6.22. Let X € Pj11, 0< 2 < g = A=16 n be as in Lemma and L2A=7/(+n) < 1.
Then

Y=X
Z lygs, 2 AW < (en2 A=(F2m/ ) ) [ Xljan g (6.118)
Y €P;:| Comp;(Y)|=1
and
Y=X
Z 1Y€Sw| Comp; (V)| g=IVl5 < A6 (L2 A=OF2m)/(A4n)) 1 X412, (6.119)
J

Y€eP;j:| Comp; (Y)|>2

Proof. For the first estimate, for < 1, (6.113) implies |Y|; =
|Y|; so that

1
! Y+ 5 1Y 2 X+
T+n
Y=X Y=X .
3 lygs,al CmPMI A=Wl ¢ A=Kl ™ 475V (6.120)
Y €Pj:| Comp; (Y)|=1 YePs

For the second estimate, observe that (6.112)) implies |Y|; = ﬁ1n|Y|j + 51 Y 2 X -
8| Comp; (V)| + 15 [Y]; so that

Yf ] Comp; ()] g=IY1; < Yf A~ T 1Y 15 g=1Xj4148] Comp, (V)] | Comp, (V)]
Y €P;:| Comp, (V)| >2 Y| Comp, (V)[>2
Y=X
< ABA- X ST a7 g2, (6.121)
Yep;

where the final line follows under the assumption z < &5, = A6, Now (6.115) implies

= X1
A~ Xl Z ATVl = g X [(1 + A—W/(1+77))L2 _ 1} !
YeP;
< A-Xlis (eA*TI/(lJrn)L? B 1) \X|j+17 (6.122)
If A is chosen so that A= +M[2 < 1, then this can be bounded by
(eL? A~ (1H2m)/(4m)y X1 (6.123)
completing the proof of the second estimate. O
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7 The renormalisation group map

The present section is at the heart of the argument. We define a suitable renormalisation group
map ®;41 from scale j to scale j + 1, which corresponds to integrating out the covariance I'; 1,
and exhibit in Theorems its key algebraic and analytical properties. These are the only
features which will be needed in the sequel and, roughly speaking, will allow to perform a suitable
fixed-point argument in the next section. The map ®;;1 has two components, one describing the
evolution of coupling constants, and one describing that of the remainder coordinate. The latter
is an evolution on polymer activities, whose growth will be controlled in terms of the norms
introduced in Section[5] The estimates corresponding to these two components appear separately
in Theorems and The actual definition of the remainder coordinate (Definition
involves the localisation operator introduced in Section [6.2] which is used to extract the relevant
terms. The most involved part, which occupies most of this section, is to obtain the relevant
bounds for the resulting remainder coordinate, and in particular for its non-linear part, cf. —
below.

Our study of the Discrete Gaussian model proceeds through its mass regularised version ;
the original model will then be recovered by applying Lemma to take m? — 0 at the end
of the analysis (in Section @ The starting point for the renormalisation group analysis of the
mass regularised version of model is the reformulation in Lemma [2.3] which involves the Gaussian
measure with covariance C(s,m?). The renormalisation group is defined in terms of the finite-
range decomposition of this covariance defined in Section [4] (see (4.4))):

N-1
C(s,m?) = > Tj(s,m?) + TV (s,m?) + tn(s,m?)Qw. (7.1)
j=1

Since we will eventually take the limit m? — 0, by Lemma we may actually directly set
m? = 0 in the covariances (I'j+1(s,m?) : 0 < j < N — 2) and I'y? (s, m?). We will do this and
thus replace C(s, m?) by

N-1
Tj(s) + TNV (s) + tn(s,m*)Qn (7.2)
=1

C(s,m?)

<

where I'j(s) = I'j(s,0) and F%N (s) = F%N(S,O). The parameter s is arbitrary in Lemma [2.3
(provided |s| < e505). A careful choice will be necessary in the analysis of the stable manifold
of the renormalisation group map (in Section , but in the present section the parameter does
not play an important role. We will therefore usually leave the s-dependence implicit in our
notation. Thus all definitions in this section do implicitly depend on s, but all estimates will be
uniform in |s| < £50;. Thoughout this section, the distribution J is allowed to be any finite-range
step distribution that is invariant under lattice symmetries (cf. above (1.1])) and we assume ,
which is no loss of generality.

7.1. Coordinates for the renormalisation group map. The initial condition for the renormalisa-
tion group map is the interaction function Zy(p|Ay). This function will eventually be chosen as
in with sg = s and s chosen carefully, but we allow it to be more general for the moment.
Given such a function Zy(¢|An), the renormalisation group map parametrises the successive
integration

Zit1(plAN) = EZj(¢ + (|AN), (<N -1, pcRMW), (7.3)

(recall that E integrates the Gaussian field ¢ with covariance I'j;1 =T'j11(s)) as

Zi(plAn) = e BN N UM KX ). (7.4)
XGPj(AN)
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A careful inductive choice of E;, U; and K; for the representation will later constitute the
renormalisation group flow. For the remainder of this section, we merely specify general conditions
that we impose on the form of U; and K; and how to measure their size. The coordinate U; is
an explicit leading part that is defined in terms of coupling constants (s;, z;) as follows.

Definition 7.1. The coordinate U; is parametrised in terms of the coupling constants (s;, z;) where
s€R and z; = (z](q))q;l 1s itself a sequence of real coupling constants as
1 2

ZZL 220 cos(8'2gp(w)),

zeX g1

(7.5)

where we recall the notation |V|% from (5.5). We will always identify U; with the coupling
constants (sj,z;) and use the norm

1
U, ||QU = Amax{|sj| supecfﬁq\z |} , cr =77 (7.6)

q/

where the constant ~y is the one from Proposition . Let ng be the Banach space of such U,
(with finite || - ||qu-norm).
J

In particular, note for later purposes that ||[Wj||; = |[Wj|lqv is also defined by (7.6) and
J

corresponds to s; = 0. The quantity K is a remainder coordinate on whose form we only impose
the following generic conditions. Note that this includes in particular the important component
factorisation property (/5.3]) which is implied by Definition

Definition 7.2. The coordinate K; is a polymer activity (see Definition , satisfying the peri-
odicity condition K;(X,¢) = K;j(X, ¢ + 2w B~Y2n) for any n € Z, invariance under the lattice
symmetries and evenness (see Definition . For such polymer activitives K; we use the norm

GI9). icc..

155 oz = 115l (7.7)

with
h = max{cy*, renpy /B, o3} (7.8)

where r € (0,1], ¢f is as in (7.6) and cy is chosen by (6.40). Let QJK be the Banach space of
polymer activies K; with finite ||-||n 1, -norm.

Finally, we define the norm on the product space of (Uj, K;) as follows.
Definition 7.3. Let Q; = ng X QJK, i.e.,
Y =A{wj = (U}, Kj) : llwjllo; < +ook, lwjlle, = max{|[Ujllqu, [[Killax}.  (7.9)
. . . - . - . . . () =(q)
Ultimately we will choose Wo(X, @) = > cx U(pz) with U as in (2.15), i.e., with 25"’ = 2
as in Lemma Then Lemma implies ||W0||Qg < Ae— 78 for cr =17

We close this section with the following lemma which shows that ||W;(B)||nr,(5) is bounded
in terms of the ||[W}||qu norm.
J

Lemma 7.4. Let h be as in (7.8]), and assume B > 2max{cf ,Cp Y and p% > \frchc L. Then

for any B € B;,
W3 (B, ) Iz (5.0) < CA Wil (7.10)

93



. . _ - 1/2
Proof. By (7.5)), and the triangle inequality it follows that for 8 > 2h%c f2 and h > ¢ 7
W5 (B, @)y .0y < 2471 IV g 247
=1
<247 Y MV Wlloy < CATNWllgy  (711)
J J

=1

for any B € B;. With h as in , both conditions hold when 8 > Qmax{c]?Q,c]Tl} and
Py > \/irchcgl. Indeed, when h = c}/2, then 2h20;2 = 20171 < . When h = rchpf\/,?, then
2h2c]72 = B(Qrc,%pfcf) < [ by the second condition. When h = pjl, then 2h2c;2 = 2p}20;2 <
20]72 < . This completes the proof. ]

Since ¢j, and cy are absolute constants, the conditions on 3 and p; appearing in Lemma @
can be achieved either by taking r small enough with p; fixed or p; large enough with r = 1.
Note that by Proposition (observe that all of its assumptions hold) and the discussion below
its statement, in particular the second term in the definition of ag,. in indicates that the
price to pay for having r small is to take g sufficiently large so that e~ 37ALi+1(0) < -2 (which we
will later need). We will eventually impose one of these choices of parameters; this choice occurs
in the proof of Corollary

7.2. Estimates for the renormalisation group map. There are many choices of maps that act on
the renormalisation group coordinates (Ej, s;, 2;, K;) — (Ej41, Sj+1, 2j+1, Kj11) such that (7.3)-
hold. The renormalisation group map corresponds to a careful choice in which the remainder
coordinates K; contract from scale to scale in an appropriate sense (i.e., are irrelevant), while the
evolution of the coordinates U; can be analysed explicitly. Such a choice of the renormalisation
group map

Ojp1: (Ej 85,25, Kj) = (B, sivns 21, Kiv) (7.12)

is explicitly given in Definitions below. Note that, throughout Section [7}, ®; depends
implicitly on Ay and 0 < j < N — 1 (but see Section in particular Proposition for its
infinite-volume extension). The precise choice of the definition of ®;; is not significant for later
sections, however, save for certain key properties that follow from this definition, which we gather
in the next three theorems. Any definition that implies these properties would have been equally
good.

We briefly set up some convenient notation. In what follows, we either denote the components
of the map (I)j—i-l by (Ej + 5j+1,5j+1,3j+1,]€j+1) or by (Ej + gj+1,lx[j+1,/€j+1) where Uj+1 =
(8j4+1,3j+1)- Note that the coupling constant E; contributes to only by a @-independent
factor, and therefore its influence on is trivial. As indicated above, we will thus assume that
E; = 0 is assumed in the definition of ®; 1, and that the definition is then extended to general F;
by setting 5j+1(Ej, Sj, 24, Kj) = j+1(0, S5y 25, Kj), 5j+1(Ej, S5, 24, Kj) = 5j+1(0, S5y 24, Kj), and
analogously for the other components. To emphasise the dependence on Ay, we will sometimes
write CID?_{_Vl and IC?}F\’l instead of ®;,1 and Kj 1. Whenever we write only a subset of the arguments
(Ej, sj, zj, K;) below, we implicitly mean that the given map is a function of these arguments
alone. For instance, sj11(s;, K;) means that 5,41 is a function of (s;, Kj;).

The following three theorems refer to the map ®;; introduced below in Definitions
and exhibit its salient features. We start with the algebraic property of the renormalisation group
map.

Theorem 7.5 (Algebraic properties). The renormalisation group map ®ji1 is consistent with
—, i.e., if Zj has the form at scale j with parameters (Ej,sj, zj, Kj) then Zjq
defined by has this form at scale j + 1 with (Ej11, Sj+1,2j+1, Kj+1) = ®j41(Ej, 85, 25, K).
Moreover, if Kj is a scale-j polymer activity (see Definition that is even, invariant un-
der lattice symmetries (see Definition and satisfies the periodicity condition K;(X,¢) =
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Ki(X, o+ 27rﬁ*1/2n) for any n € Z, then K;i1 is a scale-(j + 1) polymer activity with the same
properties.

Next we state the simple estimates for the U-component of the renormalisation group map.

Theorem 7.6 (Estimate for coupling constants). For any choice of L > 1, A > 1, and h > 0, one
has 35-(21(2]') = LQe’%ﬁqQFJ’“(O)z](-q) for all ¢ > 1 and the following estimates hold:
[5j1(55, 5) = 551 < Ch™2 A7 K| e (7.13)

€155, K) + 5,V T14(0)] < CL™ AT Ko (7.14)

Moreover, all maps above are continuous in the implicit parameter s for fixed (sj, zj, K;) € §;.

The final theorem concerns the evolution of the remainder coordinate and shows that it
contracts. Stating it requires a suitable notion of derivative. Let X and Y be Banach spaces with
norms ||-||x and |||y, and let F' : X — Y. The directional derivative of F' at a point = € X, in
direction # is denoted by DF(z, ), i.e., when the limit exists,

DF(z, &) = lim ~(F(z + t) — F(x)), (7.15)

t—0 ¢

and if F' is Fréchet-differentiable the norm of the derivative is the operator norm
|IDF (xz,-)|| := sup{[|DF (z, )[ly : |[2]x <1}. (7.16)

We also say that a family of maps Fy : [ x Dy — Yy, where [ is an interval, the Dy C Xy
are domains in a normed space Xy, and Yy are normed spaces, is equicontinuous in the first
variable if for every € > 0 there exists ¢ > 0 such that ||[Fn(s1,z) — Fy(s2, )|y, < € for all N,
any si,s2 € I with |s; — s3] < 0 and « € Dy. Note that all of Q;, ng, QJK implicitly depend on
the underlying torus Ax. We usually keep this dependence implicit in our notation; emphasise
the dependence we will write Q; = Q?N .

Theorem 7.7 (Estimate for remainder coordinate). The map Kj11 admits a decomposition
Kjr1(Uj; Kj) = Lj1(K;) + M (Uj, Kj) (7.17)

into polymer activities at scale j + 1 such that the following holds for any r € (0,1], 5 > 20]71
and with h given by (7.8)), provided L > Lo, A > Ao(L):

(i) The map L; is linear in K; and there is a constant Cy > 0 independent of B, py, A, L and
r such that, with aree as in (6.15)),

1L41 (K x| < CrL ool Kjllox - (7.18)
(i) The remainder maps Mj1 satisfy Mj1 = O(H(Uj,Kj)H?Zj) in the sense that there exist
ent = eni(B, A, L) > 0 (only polynomially small in its arguments) and Co = Co(S, A, L) > 0

only polynomially large in its arguments) such that M ;1(U;, K;) is continuously Fréchet-
Y poty Yy arg ) JH1I\Vg, By Y
differentiable and, for ||[(U;, Kj)llo, < enl,

M1 (U Klox | < Ca(B, A, L)II(U;, K5)|3, (7.19)
[IDM;1(Ujs Kj)llax | < C2(B8, A, L)[[(Uj, K)o (7.20)

(iii) The family (K22 n with KXY« Dy x[—240;5,240,] = ()M and Dy = {||(U}, K)o, <

Ent} C Q;.XN and ey as in (ii), is equicontinuous as a function of the implicit parameter s.
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The remainder of this section is concerned with the definition of the renormalisation group
map and the proof of the above three theorems. More specifically, the renormalisation group
map is defined in Section [7.3]and we prove Theorems [7.5 and In Section [7.4] we prove Theo-
rem (i), where the contraction mechanisms of Section |§| are combined into one. Theorem [7.6
and Theorem (i) are the key to understanding the construction of the stable manifold in
Section [8} In Sections [7.5H7.9] we prove Theorem (ii) and (iii). These estimates are of rather
technical nature, and may be skipped on the first read.

7.3. Definition of the renormalisation group map. The first definition concerns the coupling
constants (s;, zj, E;). These are given by first order perturbation theory, plus a correction from
the remainder coordinate K, which involves its localisation as introduced in Section

Definition 7.8. For U; of the form (7.5)), define (Ej11,Uj+1) = (Uj, Kj) = (Ej41,Uj41) to be the
unique solution of

— &11(U;, KBl +Ui1(Uj, Kj, B,¢') =BU;(B,¢' + )+ > Locx s EE;(X,¢' + ),
XeS;:XDB
(7.21)
where B € Bj is any scale-j block, £;11(Uj, K;) € R and Uj4q is of the same form as in Defini-
tion . For general Y € Pj, the definition extends by setting Uj11(Y) = ZBij(Y) Uj11(B).

That well-defines (€;41,Uj41), i.e., that the right-hand side of can be uniquely
written in the form of the left-hand side, follows by explicitly evaluating the Gaussian expectation
in the first term and by Proposition @ for the sum over Locy g, as will become apparent in
the proof of Theorem below. Although U; and Uj;1 are defined as polymer activities in scale
J, they can easily be extended to scale j + 1 by simply letting U;(X) = ZBij(X) U;(B) for
X € Pjq1 and likewise for U;1. Thus we may say U 1 € QJUH in this sense. These are the
polymer activities that are used for the definition and the proofs below.

The following definition gives the evolution of the remainder coordinate K;. The explicit for-
mula is somewhat involved, but it arises from simple algebraic principles developed in |21} Section
5], with the small difference that the order of expectation and reblocking reversed, following the
set-up of [39]. The proof of Theorem [7.5| will shed some light on this definition.

Definition 7.9. The map K;i1 : (Uj, Kj) — Kji1 is defined by (suppressing the dependence on ¢’
on the right-hand side, or writing it as - ), for X € Pj¢+1,

Kin(Up, Kj, X, ¢) = > efnlTlinDn
X07X17Z,(BZ//)
« E[(er(cp/JrC) _ €7€j+1|B|+u]'+l)X0 (?j(wl + C) B EKj)[qu H Jj(BZ", Z//)7 (7‘22)
z"eComp;_41(2)

where x refers to the constraints Xo U X1 U (UgznBY,) = X, for (j + 1)-polymers Xo, X1, Z such
that X1 o Z, Bz € Bj11(Z") for each Z" € Comp;,1(Z), T = XoU X1 U Z, and with the
shorthand notation

(er _ €—5j+1|B\+Uj+1)X0 — H (er(B) — e~ j+1|B|+Mj+1(B)) (723)
BeB;11(Xo)
(K; — £k, = 11 (K — EK;)(Y) (7.24)
YeComp; 4 (X1)

(the right-hand side is equal to 1 by convention when Xy or X1 are empty) and the definitions of
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Jj, Fj, and EK; are as follows:

EEK; (X, )= > Ji(B,X,¢) (7.25)
BeB;j1(X)
Q;(D,Y,¢') = lyes,; Locy,p E[K;(Y, ¢ + ()] (7.26)
DeB;(Y)
Ti(B, X, ¢) =1pep, x) D, D>, QDY) (ly_y —1p=x) (7.27)
DeB (B) YES;
Y=X
Kij(X, ¢ +¢) = X 0K (v ¢ + ), (7.28)
YeP;

where on the left-hand sides D € Bj, B € Bj11, Y € Pj and X € Pjy1. These are all, sometimes
implicitly, functions of (Uj, Kj).

In (7.22)), note that since J;(Bz», Z") vanishes if Z” € P;j11\Sj+1, the summation )" does
not vanish only if Z” € S;j1;1 and in particular Z” C B},. We henceforth always assume this
when we write >_*. We now proceed to give the proofs of Theorems and

Proof of Theorem[7.5. The proof is similar to that of [21 Proposition 5.1], except that the order
of expectation and reblocking reversed as in [39], as mentioned above. Thoughout the proof, we
write

p=¢ +¢ (7.29)
with ¢ ~ T'j41 and ¢, ¢ independent, and the fluctuation integral E acts on the variable (. As
explained at the beginning of Section there is no loss of generality in setting E; = 0, which
we henceforth assume. Suppose now that holds and let A = Ay, 0 < j < N — 1. The first
step is the reblocking

z; () Z N (X) = Z Ui (X7 (7.30)

XeP; X'ePji1

with K as defined in , where the second equality follows from the additivity of U; given
by upon writing U;(A\X) = U;(A\X) + U;(X\X) for X € P;. We will repeatedly use
additivity in the sequel. In the next step, %7 is replaced by e Zi+11BI+Uit1 yging the identity,
valid for all X' € Pjy1,

cUi(M\X"0) H (er(va) _ e_E]'+1‘B|+U]'+1(Bv<PI)) + e—Ej+1|B|+Uj+1(Bv<p’)>
BEBj+1(A\X)
= Z e j+1|A\(X’UY)|+UJ'+1(A\(X/UY)AP’)(er(s@) —e j+1|B|+Uj+1(<P'))Y

Y P11 (A\X)
(7.31)

(cf. (7.23)) for notation). Similarly, observing that K; in (7.28) inherits from U; and K; a factori-
sation property at scale j + 1, one replaces K, in (7.30) by K; — EK; (recall £K; from (7.25]))
using the identity, for X’ € P,
Kj(X',¢) = 1T Ki(Z',¢)
Z'€Comp,41(X’)

= H (EEK;(Z', )+ (Kj(Z',9) — EK;(Z',¢))
Z'€Comp;41(X")
ZpX'"\Z

= > EK(AE (p) - EK ()N, (7.32)
ZePj (X))
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with the polymer powers following the convention ((7.24). Using the specific form of £K; given
by (7.25]) the right-hand side in the previous display can be rewritten as

EEj (= > T[7i(Bz, 2", ¢) (7.33)
(Bgi)gn Z"

where the last sum (Bgr)z» runs over the collections of blocks Bz» € Bjy1(Z") for all Z" €
Comp,,1(Z). Thus, returning to ([7.30)), substituting (7.29)), (7.31) and (7.32), taking expectations
and rewriting X” = X’ UY’, the partition function Z;,1(¢’) can be written as

Zj(¢") = E[Z;(¢" + Q)]

— ¢ EitilAlR Z eUit1(M\X") Ejp1] X" Z (Vi — e~ Bt BIHU 1) XNXT (7 34y

X"ePjq1 X'cx"

« S (® -k S T B 2|,

ZcX! (Byn) Z"€Comp; 1 (2)

above the sums over X'(C X”) and Z(C X') are over elements in P;y; and Z satisfies the
additional constraint Z o X'\ Z, i.e., Z runs over all unions of subsets of Comp,,(X"). The final
result is obtained after performing another resummation: we write Xo = X"\ X', X; = X'\ Z,
T=XoUX1UZ = X" and define, summing over Xy, X1,Z € P;41 with the constraint Z % X;
and (Byzn) as above, for all X € Pji1,

K (X, ¢') = Z 1(uz,,B;,,uX0uX1):X€Ej“ITler“(X\T)
X0,X1,Z,(Bn)

X E[(eUi — e~ B BHU )Xo (7, ng)[qu [I  7i(Bz.2"). (135
27" cComp; 41 (Z)

(We remark that the particular arrangement of the sum with B}, in the indicator function will
allow to exhibit the important cancelation , i.e., to sum over all Z while keeping B and X
fixed.)

Note that only T' C X contribute because, by definition of £Kj, the whole expression vanishes
when Z ¢ Sj1. With this definition, it follows that can be recast as

Zin(g) = et 3 i EIG L (X, ) (7.36)
XePji1

which has the desired form.

If we assume that K; obeys the evenness, lattice symmetries and the periodicity condition,
then it is also apparent from the expressions that K;;q has the same properties, since U; and
Uj;1 also satisfy them. Similarly, the factorisation property is inherited from those of eli, Vit
and Kj. O

Proof of Theorem[7.6 Evaluating the expectation EU; on the right-hand side of (7.21)) explicitly
gives, using (|7.5)), the fact that ¢ is centered and invariant under lattice rotations and (6.37),

1 —2j % T
EU (B, +¢) = 555 IV + EIVCIE) + D 30 L2 cos(8"%q¢ () B[P

zeB q>1

= 255 (1Y@l + 1B S E[(Clwo + 0er) — C(w0))?]) + Wia(B, ) (737
o=%

for any reference point xg € Ay, with z]((j_)l = 5521(23-) implicit in W4, given by

5§?31(2’;(~q)) _ L2€féﬁq2rj+1(0)zj(.q) (7.38)
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as declared in Theorem Hence, combining (7.37) with ( - -, it follows that the
right-hand side of ([7.21)) corresponds to the change of coupling constants (s;41,&j41,3j+1) °

(Sja Z],K]) = (Sj+1a Ej+1a Zj+1) given by " and
sj1(s), Kj) = s + O(Aflh”\lKjHQf) (7.39)

Ejv1(s, Kj) = =5,V VT11(0) + O(L™H AT i) (7.40)

where V(7¢I (0) = §3°, E[(¢(z0 + 0€1) — ((0))?] = = Tjs1(e1) — Tjya(—er) + 20;41(0),
giving the bounds (7.13)) and (7.14).

Finally, we argue that the asserted continuity properties in the implicit parameter s hold.
With regards to 35.6_121, this is immediate by @ and the continuity of s — I'j11(s), cf. Propo-
sition [3.2}(ii). Next, referring to Proposition [6.5, we have s;41(s;, K;) = s; + 5;11(0, Kj)
and gj+1(8j,Kj) = —sjV(elv_el)FjH(O) + 5j+1(0,Kj), Whereby gj+1(O,Kj) = —E(KJ) and
sj+1 = 5(K;). Thus, Proposition immediately yields that £;41(0, K;) and s;41(0, K;) are
both continuous in the implicit parameter s whenever || K ]||Q§< < 00. The claim follows. O

The proof of Theorem occupies the remainder of Section |7} More precisely, in Section
we find the explicit expression of £;41 and prove its bound, in Sections the bound on the
nonlinear part M1, and finally in Section the continuity of all maps in the parameter s.

7.4. Proof of Theorem bound of linear part. The constant terms and the terms linear in
Uj, K; can be identified directly from (7.22)) by (1) only keeping the terms with

#(Xo,Xl, Z) = |X0|j+1 + ‘ Compj+1(X1)\ + ’COIIlpj_H(Z)‘ <1, (7.41)

(2) replacing exponentials by 1 outside the expectation, (3) replacing exponentials by their lin-
earisations inside the expectation, and (4) replacing K ; by SK;. This gives (see also (7.51]) below
for the expression for ;1 — Lj41): for X € P§ 1

Lin(Kj)(X,¢) = > (h’erEKJ’(Yv W +¢) —lyves;, Y, Qi(D.Y, 80')) (7.42)
YV:Y=X DeB;(Y)
D=X DEB;(Y)
+ Y (BUD.¢ + O+ EnlDl ~ U (D) + Y. (DY),
DeB; Yes;

In more detail, the terms in the first line above and the @Q;-terms in the second line come from
X =T = X (replacing Ui (X\Y) by 1 in K j, which corresponds to replacing K ; by SKj, cf.
and , and keeping only connected polymers Y'), the remaining terms in the second line are
due to X =T = Xy (and linearising the exponentials), and finally the terms with 7" = Z (and
thus X = B}) actually vanish by the construction of J; (after the replacement of the exponential
outside the expectation, i.e., in the first line of , by 1). Indeed, to see that the contribution
from X = B7, cancels, note that for any B € Bj1,

BeB;ji1(2) BeBj11(2) DeB;(Y)
Z Ji(B, Z) = Z Z Z Q;(D,Y)(1 Y=2 —1p-z)
Z€8jt1 Ze€Sj+1 DEeBj(B) YES;
DEB Y) BEBJ'+1(Z)
- Z Z Q;(D,Y) Z (Iy—z — 1B=z) = 0. (7.43)
DeB;j(B) YES; ZeSj 11

In obtaining the last equality, we have implicitly used that the closure of a small set is again
small. Using the choice of U1, cf. (7.21)), the second line in ((7.42) cancels, and with (6.11)) the
first line simplifies to

Lin(K)(X,¢)= > <1Y6P;]EKj(Ya @'+ () — lyes;[Locy EK;(Y, ¢ + C)])- (7.44)
Y:Y=X
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Proof of Theorem (z) One may decompose L1 further as
Lin(K)(X,¢)= > lves, (1 - Locy)E[K;(Y, ¢ + Q)] + S(E[Kjlygs,]) (X, @), (7.45)
Y:Y=X
where S is the reblocking operator defined by (6.110)). The first term is bounded at once using
Proposition [6.6]
11~ Locy ELKG(Y: ¢ + Ollgy ooy < 0tocA™ Y 1[5 lgx Gy (V. ¢), (7.46)
and since the number of Y € §; with Y = X is O(L?), this gives
I~ tves, (1=Loey)EIK; (Y. @+l (x ) < CLPavoc A~V K llgx G (X, ') (7.47)
Y:Y=X

for L sufficiently large. The bound on the second term is a result of Proposition [6.20
IS(EIE 1y gs,]) ()l 0x) < CLT AT [Kjlgr (7.48)

for L > C and A > C'(L). Since L~! < L%y, for sufficiently large L, cf. (6.15), this yields the
desired bound. O

7.5. Proof of Theorem bound of non-linear part. Below we write s;41, W;41,U;41 in place
of 41, Wjy1,Uj41 (with arguments of these functions clear from the context) for simplicity of
notation. In what follows, it will be convenient to have a shorthand notation for the collection
(&411X),U;j,Ujs1,K;, K ;,EK;, J;), where we view X + &;11]|X| as a polymer activity and define
Ujyr as

Uin(X,¢') = =&l X| + U1 (X, ¢'). (7.49)
Accordingly, we introduce the map
wj = (U}, Kj) = 8j(w)) = (11X, Uy, Ujr, Kj, K, EKG, ;) (wy)- (7.50)

By definition, M1 is just ;1 without its local part £]+1, so by Definition and ((7.42)) one
may decompose M1 into four terms as follows: for X € P, using the notation (7.50),

4
k —
MUK, X, @) = D0, (R (wy), X, ), (7.51)
k=1
where the Sﬁgl_?l are given as follows:
MY @), X, 0) = D Lypxgx,zseedi i Xlelim (D)

Xo,Xl,Z,(BZ//)

X E[( - ) Yo(Ky - ek T Ji(Ban, 2" (7.52)
Z/eComp,,1(2)
mgﬁ(ﬁ (wj), X, ¢) = Z 1#(X0’X17Z)<1(egj+1|X\er+1(X\T) —1)
X07X17Z,(BZ//)
. E[(e — )Xo (K — €K, )[X”} [T  7iBz.2") (7.53)
Z”eCompj+1(Z)
Xo=X

Qﬁgﬁl(ﬁ (wj), X, ') = Z E[(eUi _ Ui+ _ U; + U]+1>XO] (7.54)
| Xolj+1=1
. Y=X

M (R (), X, ) = B[ D2 POV (X\Y) = S[K](X)] (7.55)
YeP;
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and, as in Definition we are letting and T = XO UXiUZ. Each imﬁ)l - zmﬁl arise from the
linearisation process (1) — (4) described above

The bound of M 1(Uj, K;) will follow by boundlng each 9ﬁ§ +)1 (R;) separately. Although the
above is not the most efficient way to express M1, writing it in this way will make it easier to
generalise the estimate in our companion paper [15]. Indeed, one may deduce a bound on each
93?5’1)1 that only depends on the estimates on ﬁj. The next definition collects a list of bounds
on various terms that appear in the above formulas. These estimates are sufficient to imply the
desired bounds on the E)ﬁg-lj_)l, as asserted in Lemma [7.12] The validity of these “building block
estimates” under the assumptions of Theorem is shown separately in Lemma

In the following definition, our main application uses the case when Y is a closed ball of 2},
but it will be useful in the proof of the continuity in s to have the additional flexibility of the

space Y.

Definition 7.10. Let (Y,|-|) be a closed subset of a normed vector space. Given 6, > 0, define
Xﬁ(Y), to be the set of functions &; : x — Rj(z) = (£41|X|,U;,Ujs1, Kj, K, EKj, Jj)(z),
where each component takes polymer activity value as in the right-hand side of -, such that
z — Kj(x) is linear and bounded as a function Y — N, and satisfies the following estimates for
all B € Bj1, Z € Pj11 and ¢ € RM: for k € {0,1,2},

ILU(B; »)
k

|eH(B) Z i(ﬂ(B,so)WHh,W,@ < O3, L) ewria Bl 1, (757)

m)!

w) S C(0,L)(1 + dewkpw;(B, ©)?)|z| (7.56)

m=0

for st € {U;, U1} and some C(L), and the same inequalities hold with ${(B) and C (6, L) replaced
by Ej41|B| and C(L), respectively, but 6 set to 0. Moreover (with D the derivative in x, cf. (7.15))),

1D BD [, ) < C(L)ecwrewsBie)”, (7.58)
ID2eY B9 ||} 1. (5, ) < C(L)ewres B, (7.59)
1DJ;(B, Z, so)HhTJ (B,) < C(L) AT eewras(Be)?, (7.60)
IDE(Z, ¢)In1,(20) < C(A, L)A™ <1+">'Z'f+lGj<Z, ®), (7.61)
IDEK(Z, ) nry(2,0) < C(A, L) ATIEMIZl s geurni;(Zig)”, (7.62)

W € {U;,Uj11,E4+1|B|}, and in the case of Ej41|B|, the factor e tvi(B:) can be omitted.
Moreover the derivatives exist in the space of polymer activities with finite H‘thj(B)—norm for
e, Det, Jj and finite |||, 1;(z)-norm for K, £K;.

Lemma 7.11. Under the assumptions of Theorem for any 6 > 0 and § > 2¢;', there exists
e(L) > 0 only polynomially small in L, and constants C(6,L) = C(4,5,L), C(L) = C(B,L),
C(A,L), e(0,L) = &(5,8,L) and n > 0 such that if Xﬁ() is defined with these ¢, n, C(9, L),
C(L), C(A, L) then R; is in Xﬁ({wj € Qj 1 lwjllo, <e(0,L)}).

Lemma 7.12. Let (Y,|-|) be a closed subset of a normed space. Under the assumptions of Theo-

rem and if R; is in Xﬁ( ), there exists e,; > 0 such that each i)ﬁ§+)1 (Rj(x)) is continuously
differentiable on {z € Y : |x] e} for k€ {1,2,3,4} and satisfies

IDME), (8;(2)) < Ca(A, L) (7.63)

L g4+1
for some C2(A, L) > 0.

In Section we will prove Lemma and in Section then Lemma Assuming
these lemmas to hold, the proof of the bounds on M in Theorem @ is immediate, as we now
explain.
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Proof of Theorem(z'z'). The continuous differentiability of M, together with the bound

|i are a direct consequence of Lemma - applied with 6 > 0 sufficiently small, Y = {w €

s lwillo, < e(6,8,L)}, 8 = K;, and the decomposition M;; = Zk 1 (k_)l from (7.51]),

w1th the assumptlons of Lemma [7.12 - being verified by Lemma [7.11] - The bound 7.19) is simply
obtained from ((7.20) by integration, as M,11(0) = 0. O

7 6. Proof of Lemma In this section we prove Lemma i.e., that &;(w;) defined in
satisfies &; € X ﬁ(Q ) whenever w; = (U;, Kj) is sufﬁciently small. Indeed, in Lemma

we show that (7.56]) and (7 57) hold, and in Lemmas we prove ([7.58)—(7.62).

To control the term 3 \ch[ 5 that appears in the expressions to be bounded (cf. for instance
(7.5)), the expression ({5.26]) will appear repeatedly, i.e.,

wi(X,9)? = Y max||Vig| e pe. (7.64)
DeB;(X) ’

We recall that w; is related to the large field regulator G; by the inequalities ((5.27)) and ([5.28]).
We start with the following simple lemma.

Lemma 7.13. For D € Bj, p,v € €,
(V¥ 0, V¥ )l 1, (D,p) < 4(h° + wi(D,)?). (7.65)

Proof. One has the following exact derivatives of %|V<p\%:

Dy((V* e, VY0)p)(f) = > 0" £,0"ply) + 0 f,0"0(y) (7.66)
yeD
DL((V*0, VY @)p)(f.9) = > 0" f,0"gy + 0"g,0" f, (7.67)
yeD
and hence |[(V*¢, VYQ)p|ln1;(D,0) < 2(h + V¢l oo (py)?, from which (7.65)) follows. O

Lemma 7.14. Under the assumptions of Theor@m there exists (9, B, L) > 0 only polynomially
small in L and B such that the following holds: for any 6 > 0, suppose ||lwjll, = [(Uj, Kj)la, <
e(d,B,L). Then , ) hold, and the same holds when i is replaced by E;11 but with
C(6,8,L) and 0 set to C(L ) and 0, respectively.

Proof. By Theorem (4.5), (7.10) and (7.65)), for j* € {j,j + 1} and B € Bj41,

EinlIBl, W= (B, ) lIn1,(B0) < CL?|wjlla; (7.68)
1
H§3j*’v90‘2BHh,Tj(B,tp) < Y 2R +wi(D,9))|wjlla; < 2LPK +wi(B, 9))|willa,. (7.69)
DEB;(B)

Since h = max{c}ﬂ,rchpf\/ﬁ, ,031}, by taking L > 0;1/2 we have L?h? > 1. Hence for each
choice of 4 € {U;,Uj11}, we obtain in view of (7.5) and (7.49),
1B, @)1, (B.y) < C(6)rL L2h* (1 + bewrrwi(B, 9)?)[|lwilla;- (7.70)

Also since 8 > 26}/2, there exists C' > 0 such that h < C+/3, so for some C(4,3,L) only
polynomially large in 8 and L,

IU(B; ¢) ) S CO,B,L) (1 + bewriLw;(B, ¢)?)||wjlle, - (7.71)

Also using the trivial fact that 1 +z < e” for x > 0,

4B, ©)In1;(Bp) < C (8, 8, L)e s B2 ol . (7.72)
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This shows (7.56). To deduce (7.57), assume |lw;|lo; < (6,5, L) = C(%ﬁL)' Together with the
submultiplicativity ([5.20|) of the norm, (|7.71)) then implies that

by 1 ] 1+8 (B.0)2 S (B.o)2
lle ||h,Tj(B,<,o) < eH lIn, 1, (B.) < eltocurLw;(Bo)® « cpbewrrwi(Bye) (7.73)

and furthermore, using (7.72) to bound ($0)**+! for k € {0, 1,2},

k
1
i1l k+1 oMl (5,
e = 32 " oo < T I g e
m=

< C(6,8,L)||w,; ||k+1 exp (40cyrw;i(B, 90)2), (7.74)

which is equivalent to the claim, by replacing 46 by 6. The remark about &;1 follows from the
same computations starting just from (7.68)). O

Lemma 7.15. Under the assumptions of Theorem |7.7, there exist ¢ = e(8,L) > 0 (only poly-
nomially small in B), C = C(cw, B, L), and Cy = CA(cw,B,L,A) such that the assumption of
Lemma holds and that the bounds (7.58)), (7.59)), (7.60) and hold whenever ||w;|lq, <,
the derivatives exist in the asserted spaces of polymer activities (cf. below ), and, for
DeB;(Y), Y €S,

1Q5 (D, Y, ") In1;(v,ery < Cllog L)”Kj(Y)\|h,Tj(Y)€Cw”ij(D’“DI)2- (7.75)

Proof. Recall that $l is U; or U1 or E;+1|B|. The twice differentiability of et is a consequence
of Lemma as we will show in detail below. In the proof, we make the wj-dependence of I
explicit by writing U (wj, B, ¢), write DF(w;) for the wj;-derivative of F' in direction w; and write
similarly for the second derivative D*F(w;,&;). Let ||lwjllo, < (6,8, L) for small § > 0, where

(9,8, L) is as in Lemma By Lemma and ([7.73)),

e CotenB ) — (1 4+ 4 (g, B, o)) “r PP 1, o) < C(6, 8, L) ey [, e s P97, (7.76)

so Dt (@i B9) (&) = W @B (5, B, ¢). Moreover, as asserted, the differentiability is uniform
in ¢ after dividing by G;(B,¢) by Lemma i.e., the derivatives exist in the space of polymer
activities. Similarly, for [|&;lo, < (4,8, L),

| D it B2 () — (14 80 (G5, B, ) De P9 () |1, 0,)
. cukpw; (B p)?
< C(5, 8, L)||jlla, ][, e B9 (7.77)
so D2t (wiB:¢) (w],w ) = @ BRY (G B, o)W (@, B, @). Tt follows that e, De are differ-
entiable and De''' @i:B:¢) D2tV (@i B:¢) gatisfy the desired bounds again using Lemma |7 n and
(7.73).

Since J;, £Kj are linear functions of K, their differentiabilities follow from boundedness. To
obtain a bound for the derivative of Jj, first consider Q;(D,Y, ') for D € B;, Y € S;, cf. (7.26).

But because of (6.16]),
ILocy,p EK; (Y, @' + Ol viery < Clog LY | K (Y) | vy s (P27, (7.78)

hence Q; satisfies (7.75]) and is differentiable with the desired bound, i.e., its derivative is bounded
in ||-[|n,z; (y)-norm by C(L)ecwrwi(D2)* n view of (7.27), it follows from this that

—1 _cwKkrw; )2
”DJJ(sza @,)”h,Tj(B,Lp’) < C(L>A Lecutt 3(Bre) ) (779)

i.e., (7.60) holds. The final inequality, (7.62)), is a direct result of (7.60)), but just using the fact
that EK;(¢’,Y) = 0 whenever Y ¢ S;;.
O
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Lemma 7.16. Under the assumptions of Theorem[7.7, there exist e = (8, L) > 0 (only polynomi-
ally small in 3) and C(A, L) such that (7.61]) holds whenever will, <e.

Proof. Recall ([7.28) and first rewrite, for X € P¢ 1

Y=X Y=X
Ej(X.0)= Y OVIE(vig) 4 3 VIR (1) (7.80)
YePs YEP;
where
BénRYZW)::1YePAﬁ§B%(Y:W)- (7.81)

We will bound the two terms in (7.80) separately. Observe that, for Y € P, Y = X and any
0 > 0, applying submultiplicativity, Lemma (also see ([7.73])) implies

|| eli (X\Yse) 1y (x,0) < oI X\Y lj+dcwrw; (X\Yip)? w;ll; (7.82)

whenever ||w;lo, < €(d,8,L) for suitable £(d,3,L). Using this bound, together with ([5.28),
Lemma and estimating | X\Y|; < L?|X|;+1, one obtains that

. . 2 — 1]
He X\Y‘P)Kj(Y, (P)Hh,Tj(X,Lp) < e X\Y |j+ocwrpew; (X\Yp) Gj(Y, ©)A IYIJHKJ.”Q]K
< A8+ oL21X i1 G,(X, (p)A_(1+n)|X|.j+1 HKJ”QJK (7.83)

for some 7 > 0 and [lw;lo, < &(6, L). Hence for the first term of (7.80),

IS SOIRLY, Dl < G X, ) Y 15 e AT (7.84)
YePs Y:Y=X

but Yy 5oy 1 < 2K 2L21Xli+1 g0 this is bounded by C(A)A_(H'g)‘le“G-(X ©)|| K| g for
: J

A > C(L) sufficiently large. Now by the linearity of the map K; — Z?Egc Vi X\ (V) we
immediately have, for ' = n/2,

Y=X
Jow[ 3 VAR v (B ) € CAATOTIRE R0 Gy(X, ). (785
YEPS ’ ’

Next, for Y € P;\P5 and Y = X, we have by (5.3) that

(Ki+K)) -k, =[] E@+K2)- [ K2 (7.86)
Z€Comp,;(Y) Z€Comp;(Y)

so, denoting by K](.n) the object defined by ([7.28) with K ](n) from (|7.81)) in place of K, we obtain

| 15 + &) Z > SRz I K2

Y¢P; ZeComp,(Y) Z'€Comp;(Y\Z)

h,T5(X)

Y=X
< Z 6|X\Y|jA—|Y|]- ((8 + ||KjHQJK)|00mpj(Y)| o 5\Compj(Y)| o |Compj(y)|||Kj||9§(8|Compj(Y)\—l)
Y&Pps

Y=X
<0 Y7 WAl Comp; (V) 2| | £ Comes 0012
Y¢Ps
< Ol X Z e 3lYli g Y| K; H? gl Comp; (Y)[-2 (7.87)

Y&Pe
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where the second inequality holds under the assumption ||K illgx < %5. By Lemma [6.22] this is
J

bounded by C/(A)(L2eE* A=(+1"))1X]j+1 ||Kj||522K for some 1" > 0, and hence K](n) is differentiable
]

in K;. The derivative satisfies a similar bound:

Y=X
DN SRR ATeev]

Y¢P; ZeComp,;(Y)

< C(A) A~ 2N K '
h,T;5(X) ¢4) e JHQJKg (7.88)

when A is chosen sufficiently large. So only the derivative in U; is left to be studied. But

VX
_ Ui(X\Y.0) ¢ (Y 7.
HaUJ[Y;jeJ eo)) (L] A
Y=X .
< Z 1T (X\Y, @) [l 0\ v, 1€ SN K (Y, 0) 2 (x.0)
YG’PJ‘
=X | Comp; (V)] -
<O, L) Y e Mmem MGy (X, o) AT 5 o Ul gy
YeP; J
< C(B, L)Yl (X, sO)HUjHQy (eL? A= (F2m/ (4 [Xlj 1l (7.89)

where the final inequality follows again by Lemma assuming || Kj|lgx < €. Also, since
J
C (B, L) is a constant only polynomially large in 3, we obtain

Y=X
v, [ 32 eV (v, 0] @)
YEP;

< C(LD)A~ "Xl G (x o '
Hh,Tj(x,w) C(L) Gj( 790)||UJ||Q§J (7.90)

after choosing A large in L and || K| gx polynomially small in 3. Hence we have the bound for
J

6Ujfj when A is sufficiently large and together, (7.85)), (7.88)) and (7.90)) yield (7.61). O

7.7. Product rule for polymer activities. In preparation of the proof of Lemma we first

prove a product rule for polymer activities defined as in 7. For general polymer activi-

ties K, K’ with HKHQ;K, HK’HQ;K < 00, the polymer activity defined by K”(X) = ZYer(X) K;(Y)Kj(X\Y)
is not necessarily differentiable. There are obstacles related both to the large field and the large

set regulators. The first obstacle is that it is not true that G;(X)G;(Y) = G;(X UY) for general

disjoint X,Y € P;j. The second obstacle is that summing over all Y € P;(X) would create a
combinatorial factor 2/Xl7 in the end, so taking the supremum over X € P§ would make || K"|; di-

verge. Fortunately, we can circumvent these problems in f due to the specific form of

the polymers involved. Sufficient conditions for the former operations are implied by the following
conditions:

(Q) Let (X,|-|) be a normed space and BX be the open ball with radius ¢ > 0. Let ¢/,
be fields taking value in R, and ¢ ~ N(0,Tj41). Let Q be a partition of Bj;1 and let
F.(+,¢',¢) and f¥(-,¢',¢) be polymer activities supported on Q and labelled by = € BX,
y € X. Assume that Fo(Q,¢',¢) = 1g—gp, that fI is linear in y, and that there are C' > 0,
7(Q) = 0 and a function ¢ : X — R with ¢(2) = o(1) as z — 0 such that

(i) (Boundedness) ||f£’(Q,g0’,()|]h7Tj(Q7¢) < CA*(1+ﬁ(Q))|Q|j+1gj(Q’¢/7<)‘y|;
(ii) (Continuity) [|(f2,, — f%)(Q,(p',()Hth(Qw) < CA*(lJrﬁ(Q))lQljﬂgj(Q’@/’C)’yw(z);
(iii) (Derivative) ||(Faty—Fo—f2)(Q, %", Ollnry (0,4 < CA-ITT@DIRIHGHQ, ¢, Oyl (y)
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where G;(Q, ¢’, () satisfies Ellgeo(x QJ(Q,QD 0)] < Ca2XiG11(X,¢") and Q € Q(X)
means ) € Q and Q C X. Further assume that 77(Q) takes value 0 or 79 > 0 and if

7(Q) = 0, then Q € Sj+1.

The flexibility of G; will save us from the problem of regulators and the extra decay due to 77(Q)
will save us from the problem of combinatorial factor 2/Xli. In practice, G; will be either G; or

eCwhL (wj )2 .

Proposition 7.17 (Product rule). Let X, Q, Q(X), f, F, ¥ and 77 be as in (Q) for X € Pji1.
Given collection of parameters & = {z(Q) € X : Q € Q}, define for X € Pjy1,

E[Mgeow) Fr@ (@ ¢, 0)] if 1Q(X)] > 2, X = Ugeox)Q

Lz(X,0) = {0 (7.91)

otherwise.

Then for A sufficiently large and € sufficiently small (polynomially in L, A, C'), the partial deriva-
tives of ¥+ Ly exist (as a map from X to the space of polymer activities of finite ||“|[n.1;,,(x)-
norm), the partial derivatives in directions P € Q are given by

dp =0y pLs = E[ oy (D¢’ C) 11 Fz(Q)(QW',C)] if [X]j+1 22, (7.92)
QEQX\P)

and they are continuous in the domain {¥ : |x(Q)| < e, VQ € Q}. Moreover, in the case

x(Q) = z, if we let L, = Lz, then L, is differentiable in {|z| < €}, the derivative satisfies the

bound (0|1
||D£I(X)Hh,Tj+1(X) < CA_(1+770/2)‘X|]'+1|x|max{l,72 }, (7.93)

and DL (X) is continuous in x.

Proof. Since Cg only contributes as a constant factor, we may assume that Cg = 1. Also, all
X used below are assumed to satisfy |Q(X)| > 2 and Ugco(x)@ = X which is sufficient by the
definition of L£z. We first show that d} has finite norm. Indeed the assumption on G; gives

HdIyJ(LpI,X) o) < C|Q(X)|A*ZQEQ(X)(1+77(Q))|Q\J'+1E[ H gj(Q,QO/,C) ‘x“Q(Xﬂ—l‘y’
QEQ(X)
C1OM| 4 EFE) Qi1 (912 g=(Hm) X1 5, (X, o) Q11

C12(| 440X (9* g=(tmol) Xl 1 (X, )| 2D y|. (7.94)

<
<

Thus (y — d}) is a bounded linear map from X to the polymer activities of finite ||-|| hT1(X)"
norm.

To show that dp is the derivative of Ly, let 0Lz, := Lzysp, — Lz — dp. Then by essentially
the same computation as above,

16L2y (X, @)In 1y (x.0) = B (Fa(p)y+y — Fo(py — fap))(P) H Fo)(@ )} 751 (X0

QEQ(X\P)
< (C A1 QX 11 Q(X) =1 4= (1+m0) |x|j+1|y|E[ I1 9@ @fjg)}w(y)
QEQ(X)
< (CAM)|1QON )1 QEOI=1 (912 A=(4m0)) I Xlitr Gy (X, ) |yl (y),

(7.95)

proving the existence of the partial derivatives of Lz as a function from X to the space of polymer
activities of finite ||-[[ 1,,,(x)-norm. To see the differentiability of £, let

dY(X,¢') = DLa( = ) ay,pﬁf\x@zx. (7.96)
PeQ(X
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Then
1Y (X |1y 0(x) < |Q(X)|(CATm) Q0N QEOI=L (9% A=(tm))IXlia Gy (X, )|yl (7.97)

and hence (y +— dY) is bounded linear from X to the space of polymer activities with finite
Il h,T;.1 (x)-norm. Also applying (7.95) multiple times shows that

H(Ex_i_y — L, — dy)(X)Hh,TjH(X) < (CA4’70)|Q(X)|\Q(X)\ ’x‘\Q(X)Fl<2L2A7(1+770))|X|j+1‘ywj(y)
(7.98)

proving differentiability of £,. The bound for the derivative is obtained from (7.97)) once we
choose |z| < e small and A large so that

A‘X|j+1HD£m(X)Hth+1() (CA4770)|Q \,Q< )‘A_"70|X‘j+1’x“g(x)|_l<C’A_WTO|X|J'+1‘$‘7|Q();H71.
(7.99)

But for the case |Q(X)| = 2, one could just have bounded the left-hand by C'A_%O‘X|j+1|x]
instead.
The continuity of the derivative follows from the assumption on the continuity of f. O

7.8. Proof of Lemma In this subsection, &j4+1|X|,Uj, Uj41, K, K;,EK; and J; will always
be a function of x implicitly. For brevity, we define the following expressions which appear as
part of the definitions of the Dﬁgl_?l

F(&,T,X) = it X[+U;41(X\T) (7.100)
H(8, Xo, X1, 2, (Byn)) = E[ (% — el X0 (K — £K)1%)
X 11 J;(B,Z"). (7.101)
Z"€Comp 1 (Z)

Lemma 7.18. Under the same assumptions as in Lemma

Ar(8(2), X) = 1,1 Bl ) = U5(X) — P10 1 T (X)) (7.102)
#(X0,X1,2)>2
Ay(Ri(z), T)= Y H(x,Xo,X1,Z,(Bgn)) (7.103)

Xo,Xl,Z,(BZ//)
with T = XgU X1 U (UZ"eComij(z)B}N) are differentiable in x with

(XO»XhZ)*l}
2

#
IDH (8 (), Xo, X1, Z, (Bz))lnzy 1 1) < CaA™ DXl | gmaact, (7.104)
IDAK; (@), X) |y yy (ry < CAT Tz =12 (7.105)

for somen >0, Cy =Cy(A, L), C=C(L) and H defined by (7.101). Moreover, each derivative
18 continuous in .

Proof. The differentiability of A; follows from (7.57)) and (7.58). To see its bound, let X = B €
Bj1. We have E[e%(B)—U;(B) =Vt BT ;11 (B)] = E[((eVr —1-Uj)+ (V1 =1-T;11)) (B)],
and (7.59) implies

IDE[(e” = 1 = UDI(B, & )In, 1 (5o < CEl 5 BT 2] < C'Gyia (B, ¢')|2|  (7.106)

where the second inequality follows from E[ecwrrwi (B2 +0% < B[G, (B, ¢’ +0)] 72L2G]+1( '),
see Lemma, and Proposition [5.9, The same estimate applies to e Uit =1 -T j+1 and hence

IDAL(R;(2), B)lln,1y50(8) < Clal- (7.107)
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To show the differentiability of As, we can apply Proposition To see this, expand

H(8(z), X0,X1, Z, (Bgn)) = Z (—1)1Yols+1+ Comp;, (¥1)]
Yo, Y1
v E[(er . 1)X0\Yo (eﬁj+1 _ 1)Yo (E)[Xl\Yﬂ(ng)[Yl]} H J;(B, Z//)
Z"€Comp,1(2)

(7.108)
where the sum runs over Yy € Pj41(Xo) and Comp, (Y1) C Comp,;(X1). For fixed Xo, X1,
Z, Yy C Xo and Y1 C Xy, let Q = Bj1(Xo) U Comp,4(X1) U Comp,;(Z) U Bj1(T¢) where
T = XoU X7 UZ and define
(V@40 — 1 if Q € Bj11(Xo\Y0)

Uin1(@¢) _ 1 if Qe Bj+1(Yo)
Kj(@Q,¢' +¢) if Q€ Comp;;(X1\Y1)

Fo(Q,¢',¢) = . (7.109)
EKj1(Q,¢") if Qe Compj+1(yl)
Ji(Bg,Q,¢") if Q€ Comp,;,(Z)
1 if Q€ Bj+1(TC),
and
ecorrwi @@+ if Q € B (Xo\Yo)
0,000 — eCurLw; (Qye') if @ € Bjy1(Yo)UComp,,4(Y1) U Comp,,4(2) (7.110)

Gi(Q,¢' +¢) if Q€ Comp; 4 (X1\YV1)
1 if Qe Bj+1(TC).
Then Proposition with the assumption that &; € Xf(X) (i.e., it satisfies the bounds ((7.56))—
(7.62])) shows Ajz is differentiable and
#(X0,X1,2)>2
HDAQ(ﬁj(w)vX)|’h,Tj+1(X) < Z E<X07X17}/0aY17Z7 (BZ”)) (7'111>
X0,X1,Y0,Y1,Z,(Bin)

E(Xo, X1,Y0, Y1, Z,(Bgn)) = CAA_(1+77/2)|T‘]'+1“/L.|Ina)({11

#(X07X17Z)—1}
2

(7.112)

First consider the cases #(Xy, X1,Z) > 4 and note that max{1, #(Xo’gl’z)_l} = #(XO’)gl’Z)_l.
Since Xo, X1, Yo, Y1, (Bz»), Z\(UzrBzr) and X\T partition X, one may bound the sum by a sum

running over partitions of X partitioned into 7 subsets. This gives a crude combinatorial bound
#(X07X17Z)24 #(Xg,X1,2)—1
> B(Xo, X1,Y0,Y1, Z, (Bzn)) < CaT¥lr1 sup A=+ DTl | 728507
X0,X1,Y0,Y1,Z,(B i)
(7.113)
where the supremum also runs over the choices of X, X1, Yy, Y1, Z, (Bz»). Also with the assump-
tion 7A—/4 L 1, this can also be bounded by

C A A~ HDIX] 1 SupA(1+%)IX\T\j+1|$|M (7.114)

But | X\T)j+1 = | Uzr (B5\Z")|j+1 < 48|Z|j41, so AX\Tli+1 < A481Zli+1 . Since each connected
component of Z is a small set, it follows that [Z];11 < 4| Comp,,,(Z), and hence the condition
A192(1+n/4)’m‘1/8 < 1 gives
#(Xo0,X1,2)>4
AMHDXin > E(Xo, X1,Y0,Y1, Z, (Byn)) < Clz. (7.115)
Xo0,X1,Y1,Y2,2,(B 1)
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For the cases #(Xo, X1, 2Z) € {2,3}, we have |Xo|;41 < 3 and [Uzr B},|j41 < 3 %49 so

#(X0,X1,2)€{2,3}
A(1+%)|X|j+l Z E(X(]’Xl?YYO)YhZ? (BZ")) < C"4|$| (7116)
X0,X1,Y1,Y2,Z,(Bgn)

by just setting C4 sufficiently large depending on A.
The continuity of DG and DA, is a result of the continuity of the derivative in Proposition[7.17
O

Proof of Lemma[7.19, case k € {1,2,3}. Consider the function

#(X0,X1,2)>2
Mj+1([IJ,$,) = Z F(ﬁj($)7T7X)H(ﬁj(x,>aX07XlaZv (BZ")) (7117>
Xo,Xl,Z,(BZ//)

and recall that F' and H are defined by ([7.100) and ([7.101f), and we emphasise that above F' uses
x to define Ej; and Uj4; while H uses 2/, so that 9t ! (Rj(z)) = Mj41(z,z). By Lemmas|7.16

Jj+1
and [7.18, Mjiq(z, ), mt§2+)l(ﬁj(g:')) and M (Rj(2")) are differentiable in 2’ with the desired

J+1
bounds. For the z derivative of M;1(x, '), we justify the differentiability more carefully: let

FUT. X, ) = (DEj41(2)|X| + DU 1 (X\T) (&) F(&;(x), T, X) (7.118)
#(X0,X1,2)>2
mi(X, o)=Y FHT,X)H(R('), Xo, X1, Z, (Bgn)). (7.119)

X07X17Z7(BZ”)

Letting 6; M1 (7, 2') = Mj1(z + &, 2") — My (z,2') — m2, the bounds (7.57)) and (7.104) give

#(X0,X1,2)22 #(X0,X1,2)+1
SCa Y OFlm(antoNlneeunies GO Gy (T, ! |20
Xo,Xl,Z,(BZ//)

< Casup(50) Xl (AT X Gy (X, @) i P

/‘max{Q,i#(Xo’}gl’Z)Jrl }

(7.120)
where the supremum ranges over X, X1, Z, (Byz») with #(Xo, X1,Z) > 2. Choosing 5CA™" < 1,
165 M 11 (2, ) (X, ) 1y () < CaA™X01G (X )27, (7.121)

Therefore M1 (z,2’)(X) is differentiable in = and the same computation gives the bound
19:M41 (2,220 1y 1) < Cale’ (7.122)
The continuity of the derivatives are results of continuity of derivatives in Lemma [7.18] O

Proof of Lemma[7.13, case k = 4. We may alternatively write m® — MW = E[MEM) +

jHl = -
M (4’2)] where

Y=X

MUY (8;(2), X,¢',0) = Y Lyepe(DXVFH0) 1)K (v, ¢/ +¢) (7.123)
YeP;
V=x
4,2 ) ’
MU (8(2), X, ¢, 0) = > Lygs; lygpee D W#H0 T K26/ +¢) (7.124)
YeP; Z€Comp;(Y)
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as lygs;lygpe = lygpe. By (7.57),
J

| DeVi CNY9) (5 M (x.0) < C(8,L)e (A+COL) |z (IX\Y|j+0cwrLw; (X\Y,0)?) E
< (L)X gewrrw;(X\Yp) ) (7.125)
for 6 < 1/2 and |z| < 5 oo and then the mean value theorem gives
[|Vs(X\Yse) _ nz (x.0) < (L)X \Y i gewrnw; (X\Y9) |1 (7.126)

So using ) to bound Iy, M(4) and ( m ) to bound Ok; MY ), and since x +— Kj is linear

and bounded we see that B

4,1
IDMED (8(2), X0 )y .
Y=X ,
<c(L) Z 1Y€PJ¢€2|X\Y‘J'+1ecw’iij(X\Y) \:n|A_|Y|J’Gj(Y, o +¢). (7.127)
YeP;
If Y € Sj, then X € Sj41 and | X|;j41 < |Y|; so the summand on the right-hand side is bounded
by C'(A, L)A=UFMIXli+1 || where C'(A,L) = C(L)A*. If Y ¢ S;, then Lemma implies
Y1 = gyl Y 1 + %571X 41 so that

Y=X Y=X
L)Y Lygs, (22X A Vhile| < O(L)(22 A5 ) Xlivifz) 37 A7k Ml (7.128)
YEPJ‘ YE’PJ'

Ul
But for L? < A0+

n
—__n . —__n -
E A"z Yl (1+ A™ 2w )Xl ¢ eL?A PUIIX] 1 ¢ ol Xt (7.129)
Y:Y=X

so we may conclude
IDM@Y (&), X, @)1y (x.0) < C(A L) (AT X126y (X, +¢) (7.130)
For M£4’2), we have

IDMS? (8;(2), X, ¢, ¢)

5 j+1(X7<P/)
Y=X
< (L) Z lygs,| Compj(Y)|A_|Y|j€2|X\Y|jecw"€ij(X\Y:€0)Gj(Y, ¢+ ()|z|l Comp;(V)I=1
YEP;\P§
Y=X
2
<CLIGHX, ¢ + QX S 1y 06 (e24/2)71¥ b g Compy (V=1 (7.131)
Y EP;\PS

But by Lemma this is bounded by

C(L)G(X, ¢ + C)e*V Xl (2e=1 L2 A1) X1 g (7.132)

for some 1 > 0. Hence for sufficiently large A, we have
IDM Y (8;(2), X, &', Ollnry o (x,0) < CL)A™ VDX 1121G5 (X, ¢! + €) (7.133)

and the same bounds also imply the differentiability of DMt _31 with bound

| DO (R @)y 00y < C(A, LY AT 2] Gy (X, ). (7.134)

The continuity of the derivative is a consequence of continuity of derivatives in Lemma [7.18 O
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7.9. Proof of Theorem continuity in s. The proof of continuity in s of the renormalisation
group map uses the following lemma which extends Lemma [5.10)

Lemma 7.19. For any C > 0 and any scale-j polymer activity F' that is invariant under transla-
tions and satisfies ||F|[n1, < C, for |s|,|s'| < 0ses,

. AN X5
Jim sup, (5) B, o [P+ O = Bry [P+ Olllgy oy =0 (7:135)

and the limit is uniform in F' satisfying |||, < C (and in particular in the size of Ay ). An
analogous statement holds if we assume

sup ANl sup G (X, ) THIF(X, )
XePs,, 2

Wi (Xp) S C (7.136)

with the conclusion now being

( 2A )lX\jﬂ

lim sup m

s'—s c
XEPj+1

Proof. We first claim that any scale-j polymer activity F' with || F||7; < C can be approximated
by polymer activities that are supported on polymers consisting of a bounded number of blocks.
Indeed, |[Fllz, = supxepe AN [F(X) gy x) < C implies that (24/3)/X) || F(X)]|y.z,06) — 0

as | X|; — oco. More precisely, for any 6 > 0, there exists M > 0 only depending on C' such that

;11713 (24/3)X1 IE(X) L x;<m — F(X)Inrx) < 6. (7.138)
€P;

By Lemma then also

sup (A/3)X|[Er,, , 5 [F(X, + Oljx,<mr — F(X, -+ Q)]

P
XePs

Since Er, () (X, - + ()1|x|,<a is continuous in s by Lemma [5.14f uniformly in X € Pf and F
with [|F(X)|n7;x) < C (by translation invariance there are only a bounded number of polymers
X with |X|; < M to consider), the claim follows. For the case (7.136]), the conclusion follows
from the same argument and replaced by

_ . .
sup (37127 LA X B (o [F(X, -+ Olxy,enr — F(X, -+ Q)
XePs,,

Ty (x) <O (7.140)

because E[G;(X, ()] < 2Xli = L2 X541 O

We begin with the continuity of the maps £;41. To make their s-dependence explicit we write
L5 for L1 defined with E = Ep

j+1(s)"
Lemma 7.20. Under the assumptions of Theorem and s,s' € [—es0y,e505], we have
B 1541 () = £ (Kl =0 (7141)
and the limit is uniform in Ay.
Proof. By (7.45), for X € P5_,,
E;—I—I(Kj)(Xa QO/) = E;—FI(KJ']-YGS]')(Xa SO,) + S[EF]-+1(S) [KJ1Y€S]H (X7 QD/) (7142)

where L3, | (Kjlyes;) is generated by K;(Y) for Y € S; and we recall the reblocking operator S
from (6.110f). Since by translation invariance the norm effectively only uses a bounded number of
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Y € S;, Lemma[5.14and the continuity statement of Proposition [6.6] directly imply the continuity

of Eﬁjl) (K ;) in s, uniformly in Ax. Concerning the continuity of the second term, (7.135]) shows
that

y(87 3/) ‘= Sup (A/B)‘Y‘] HEFj+1(s) [Kj1Y¢5j (Y7 -+ C)] - EFj+1(S’) [Kj1Y€3j (Y7 g C)] Hh7Tj+1(7)

YeP;
(7.143)
tends to 0 as s’ — s and
Y=X
IS [(EFJ‘H(S) - IEI—‘j+1(8')) [KJ'lYQSjH (X) Hh,Tj+1(X) < Z 1Y€P]‘?\Sj (A/B)_‘Y‘jy(sv 5/)‘ Comp; (Y],
YeP;
(7.144)
But then Lemma directly implies, whenever y(s, s’) < (4/3)78,
Y=X
Y Ivepas, (A/3) M liy(s, o) Comps Il < (e1?(A/3)~ 020/ Xiwry (s, ). (7.145)
YeP;

By setting eL?(A/3)~(1+20/(14n) < A=1 e have that S[Er,,,(s)[Kjlygs;]] is continuous in s in
a way that is uniform in Ay. O

In the definition of the maps M1, there are two sources of dependence on s, the first
one coming from &1, Uj11, EK; and Jj, and the second one coming from the expectation
E = Er,, (s written explicitly in (7.22). Concerning the first dependence, by the continuity

statement of Proposition and Theorem we have that
Rj(w)) = (E411X|, U, Ujia, K, K, EK;, J5) (w)) (7.146)
is continuous in the implicit parameter s, so if we can show that 9315’_?1 () depends ‘continuously’

on £;, then the dependence on s coming from the first source is continuous. Indeed, this will be
shown in the following corollary. For given n > 0, define Q?m to be the linear space of coordinates

(&411X),U;j,Uj41,K;j, K;,EK;, J;) where the following norm takes finite value:

(&I X1, U;, U, Kj, K5, EK;, Jj)

IR
= s {91 10 o [T 51 + €1 X o 1 s
sup A(l_H])lX‘H—lGj (Xv @)_IHKJ (Xv <)D)Hh,Tj(X,go)a

XEPS,,, pERAN (7.147)
sup AWHFDX 1 p—cwrLw (X,0)? IEK; (X, ) ||h’Tj(X’g0)’
XePs,y, PERAN
sup sup Ae—CwriLw;(B.p)? |J;(B, Z, ) Hh7Tj(B,¢) }

Z68j+1, BEB]'+1(Z) @GRAN

Then (Qﬁn, |-ljn,2) forms a normed space. Note that this norm is essentially defined by the

conditions in Definition [7.10]

Corollary 7.21. Letn,6 > 0 and BS = {x € Q"Jf“m 2]y < a}. Then there exists a = a(0, 3, L) >
0 (independent of j and N ) such that the identity map id|Baﬁ 8 in Xjﬁ(Bf). In particular, if we
set Rj(z) = = for x € BY, then each Dﬁ;]—?l (Rj(z)) (k =1,2,3,4) is differentiable in x € B} with

the derivative uniformly bounded in j and N.

Proof. The first statement is obvious because id : Qﬁn — Qﬁn is a linear function with norm 1.
For the second statement, we just need to apply Lemma with (Y, |- [) = (B, | lljns). O
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Note that by Lemma [7.11] -, there exist £(d,,L) and C(6, 3, L) such that |[(Uj, Kj)|lo, <
(9,8, L) gives ||ﬁ Ui, Kj)|ljms < C6,6,L)e(0,5,L). So if we set H(Uj,Kj)HQj < e(0,8,L) <
a(6,B,L)/C(6,B,L), then this corollary implies that each 93?5’_?1 (R;(U;, K;)) is continuous in s
coming from the first source described above.

For the second source of s-dependence of M1, we will make the dependence due to E =

Er,,,(s) Visible in and - - by writing M7 ; and im(k)’ for M;41 and Qﬁyi)l
evaluated by taking the expectation over ¢ ~ N(0,Tj41(s )) This dependence will be studied in
the next lemma.

Lemma 7.22. Under the assumptions of Theorem and s,s' € [—esby,e505], we have
T LM (U, K) = M3y (U, e, = 0 (7.148)

and the limit is uniform in Ay.

Proof. Since we have (7.51) and Lemma we only have to verify

Bim |90 (R ) — R (R ) s, = 0 (7.149)

for each k € {1,2,3,4} and the limit is uniform in Ay. Define

H*(ﬁ]ﬁXOleaZa (BZ“)790,7<) = (6 . Uj+1)XO( —EK; )[Xl] H Jj(BZ”az”)
Z"eComp,14(Z)
(7.150)
and, as in ([7.101]),

H*(RjXo,X1,Z,(Bzn),¢") = Er,, (s H- (8 X0, X1, Z, (Bzn), ¢, (). (7.151)
Expanding (7.108)), i.e.,

(e — )Xo (K — £1)P0) = 37 (e = 1)10(—eet 4 1) T () P (— g ey PO
Yo,Y1
(7.152)

where Yp, Y] run over Yy € Pj1(Xo), Y1 € Pjr1(Y1), Y1 # X1\Y1, the bounds (7.58))—(7.62)
imply, for T'= Xo U X; U Z,
IH_ (R, X0,X1, Z, (Bzn), &', Olln, (1,¢)

< Y (O(A, L) wjllg,) *H0X1A A (mIXouXilin (X, Yo, X1, Y1, 2,4, )
Yo,Y1
(7.153)

for some 1 > 0 where

G(X(], }/0’ Xl, Yl, Z, SOI) C) — eCwliL (’UJj((XO\YO)U(XI\YI)UZ7<,0’)+wj(YO#,D,-FC)) Gj (Y17 S0/ + C) (7154)

Choosmg C(A, L)HWJ||1/4

| Uzn Byulj+1, we have

< 1 and (C(A,L)HWjHQ].)I/Igﬁ < A~04M)since 49| Comp; 1(Z)| <

#(X0,X1,2)
(4C(A, L)||ijQj)#(XO’X1’Z)A (+mIXoUXalj1 4= #(XO’XI’Z)HW H 3 A— ()X

(7.155)
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where X = XoU X1 U (UzrB,,). Therefore

|H_(R; X0, X1, Z, (Bgn), ¢, C)

(T0")

HESLE | mIXly /

< |’w]||QJ A it S'u}I/) G(XO,YO,XlaYhZaSO 7C) (7156)
0,11

since H_(-,¢', () is a function of two field variables, Lemma does not apply directly. Never-
theless, since G serves the role of the regulator satisfying

E[G(XOa }/0, Xla Y17 Z7 Qpla C)] < 2|X|jGj+1(X7 SOI)7
the proof of (|7.137) shows that, defining
H (%), X0, X1, Z, (Bgn), @) = (IEF],H(S) —EFM(S,)) [H_(R;, X0, X1, Z, (Bzn), &, C)], (7.157)

in the limit s’ — s, one has

, IT]5+1 ’ =
|H'|; 11 = sup ( AH") "UNHY (R, Xo, X0, Z, (Bg) ) = 0, (7.158)

2
TEPjt1 3- 2L

In particular each | H** (&;Xo, X1, Z, (Bz))|n T4, () 1s finite. Hence

1S — M) Ry X, )l o (x0)
#(X0,X1,2)>2

= H Z F(EjaTvXaQD/)HS’SI(EjaX())XlaZa (BZ//),SD,)H
X0,X1,Z,(Bg)
#(X0,X1,2)>2

h,Tj+1(X,¢")

/ / 2 _|X‘
< Y OPlmgearn AT o, (3 9L? A(Hm) 6T
X(),Xl,Z,(BZ//)
Xljan s’ | . mlX D (2 4@ "Xl /
< Ol sl (2 A0 ) T G (X ), (7.159)

where 5 in the last line is a combinatorial factor arising from choices of Xo, X, Z and (Byzn).
Taking A" > 15C’2L2_1, we see

Jmy = mE ) @) s, < CLH* 341 >0 as & = 5. (7.160)

A similar but simpler computatlons shows the same for fm( ) . The continuity of 93”((3)1 in s is
implied directly by Lemma [5.14| because it only allows the case | X |41 =1

i1 » recall from (7.130) and (7.133) that

To see the same for i)ﬁ(

1M (R (w), X, @) ln 1y 0x,0) < CCA, L) AT G (X, ¢+ ) loy 2, (7.161)

for some 7 > 0. Since MY = (Br (o) — Ep,,, () MY, (7137) implies

2 1+ Xlj+1 o (4),5,8'
Jim, sup (2 A™) I Ry (), Ol =0 (7162)

Just taking A" > 3 - oL —1, this implies continuity of m' +)1 in s. To see the final remark of

the lemma, notice that the hrnlts lim,_,y are uniform in AN because the limit was uniform in

Lemma [7.19 0

Proof of Theorem |7.7 . (tit). The final continuity statement of kCj 11 = L1+ M ;11 is now a direct
consequence of Lemma [7.20] Corollary [7.2I] and Lemma [7.22] Note that the equicontinuity of
(ICf_fl) ~ in s follows from the fact that the limits in the two previous lemmas are uniform in Ay
and that the Corollary yields an upper bound on the derivative that is uniform in j and N. O

74



8 Stable manifold

8.1. Statement of result. In Section |7, we defined a renormalisation group map

A A
QY 1 (85,25, KG) o> (8541085, K5), 3541 (25), K51 (855 250 K5)), (8.1)

for j4+1 < N, which by iteration constructs a renormalisation group flow (s, z;, K;)j<n, defined
by

A
(8415 241, K1) = @53 (85, 25, K), (8:2)

provided that (s;, z;, K;) remains in the domain of the renormalisation group maps. Compared
to the definition in Section [7] we have dropped the E-coordinate from the renormalisation group
map as it does not influence its dynamics and thus does not play a role in this section.

Our goal is now to show that for appropriate initial conditions (sg, zo, Ko), independent of
A (in the sense explained below), the renormalisation group flow exists indefinitely. Moreover,
we will address the point that our renormalisation group map actually depends on a parameter
s (mostly suppressed in our notation so far), which we ultimately need to set equal to sy (see
Lemma , but which has been arbitrary so far. Thus a renormalisation group flow depends
both on the parameter s and the initial condition (sg, zo, K¢), but we will show that it is possible
to choose s = sg.

Given a finite-range step distribution J, recall the definition of the reference temperature

Btree(J) from :
Bfree(!]) = 87”}3 (8.3)

and recall that v is given by Proposition (see also below ([7.6))). In the sequel we frequently
write Ko = 0 to denote the zero element in the linear space of polymer activities, i.e., the polymer
activity given by Ko(X) =0, X € Pj, whence Ko(X) = 1y(X), cf. below Deﬁnition

Proposition 8.1. (i) For any finite-range step distribution J (as always invariant under lattice
symmetries and satisfying [(A.1)) there exist r € (0,1] and Bo(J) € (0,00) such that the
following holds for 5 > Po(J). There exist s§(J, ) = O(efi'yﬁ) and o = a(J, B) > 0, and
positive integers L = L(J) and A = A(J) such that the solution to with parameter
s = sG(J, B) and initial conditions s = s = s§(J,B), 20 = Z(B) as in Lemma and
Ko = 0 satisfies for 0 < j < N and N > 1,

1Ullgr = O(e™57L9), || Kjllgr = O(e=57PL=29), (84)
J J
where the norms are as in Definitions (and thus depend on A, L,r,[3,ps).
(ii) If J is a family of finite-range step distributions and (4.1)) holds with the same constant
for all J € J, then there exists C(J) > 0 such that for any 6 > 0 and J € J with
02 > C(J)|logd|, one may take fo(J) = (1 + 6)Bre(T) i (i).

We remark that in terms of the function s§(.J, 8) of the proposition, the effective temperature
in Theorem [1.1| will be defined by (cf. the discussion around ([2.36]))

Bet(J, B) = (1 + s5(J, B)v7 )" 5. (8.5)
To prove Proposition [8.1], we first extend the renormalisation group map to an infinite-volume

version, in Section below. In Section [8.3] we then apply a version of the stable manifold
theorem, and finally use the intermediate value theorem to solve the constraint s = sg.
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8.2. Infinite-volume limit. In Section |7} we considered Ay fixed and corresponding scales j <
N — 1. In particular the renormalisation group map also depends on A . However, in order
to talk about the convergence of the flow (sj,z;, K;) as j — 0o, we now introduce notions of
polymer activities and renormalisation flow that is free of this dependence by being defined in
infinite volume.

To distinguish polymer activities that depend on the torus from those defined in Z?2, we now
write KN for the former and K% or K (without index) for the latter.

For each Ay, fix an origin 0 € Ay and let my : Z?> — Ay be the quotient map such that
7n(0) = 0. Define Ry = Z% N [—*, *]2 C Z2, so mn|ry @ BN — Ay is the canonical
bijection with inverse ¢y : Ay — Ry

Definition 8.2. Given the sequence of discrete tori (Ax)n=1 and a sequence of scale-j polymer
activities ((KJAN (X))Xequ(AN) :j = 1) for each N, the polymer activities have a local (infinite-
volume) limit (Kj(X))Xep;(ZQ) if there exist integers Nx such that

Ay
Kj(X,0) = K™ (nn(X), (mn) ) = K (mar (X)), (7)) (8.6)
for X € P;(Zd), j < Nx < N,N" and any ¢ € Vy. Nx 1is called the localising scale of X .

When the local limit exists, it is an element of the infinite-volume analogue of the space
QJI; = QJK(AN) of Definition which we denote by Qf(ZQ). Thus the norm on this space is
defined by

1Kl = 1K llnz, = sup A KG(X) |1 x)- (8.7)
J XePs§(z2)

It follows from Appendix [B] that this space is complete.

Proposition 8.3 (Infinite volume RG map). There exist maps <I>]Zi1 = (L{]-Zjl, ICJZL) and szjl such

that the following hold, when QDJZ-_T_l(Usz, K]-Z2) = ( ].Zj17 K]-Zj_l).

i) If KZ° s even, respects lattice symmetries (in the sense of Definition with Z? in place o
i Yy
AN ), and KjZ2 (X, p) = KjZ2 (X, ¢+ 27871/2¢) for any constant field ¢ taking integer value,
then K]-Z_il satisfies the same.

(ii) The estimates of Theorem and Theorem also hold for this infinite-volume renormal-
isation group map <I>]Z_2H when measured in ||-||qx -norm of (8.7)).
J

72 . . .
(ii1) ®F.q is continuous in s.

(iv) Suppose UJAN = UjZ2 for j < N KjZ2 is a local limit of (K]/-\N)N and (UMY KAN) =

1 B

A A A . 2 A 2 A .
<I)j_f1(Uj2N,Kj Ny for each N > j+ 1. Then 5JZ+1 =& and U]Z_H =U; forj+1 <N
and K]ZJr1 is a local limit of (K;\f’l)N

Proof. We may define ICJZ_QH using the formula obtained from an infinite-volume analogue of ([7.22]),

and analogously for EJ-Zjl and UZ% . Other way to think about <I>JZJ2r1 is to simply think of it as a

Jj+1°
local limit of @?frvl as N — oo. Then (i), (ii), (iv) are direct consequences of the fact that E]/-\ |
and L{;\JFNI only depend on (KJAN(Z) 1 Z € Si(An)), IC;»\JJFVI(X) only depends on the K]/-\N (Y) for

Y € P;j(X*), and the same hold for the analogous objects on Z2. Also (iii) is a consequence of the
fact that the family (ICAN

j+1
to that of K%

)~ is equicontinuous in s by Theorem hence this continuity extends
41, and continuity of Z/{J»Zj1 follows from the continuity statement in Theorem O
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8.3. Stable manifold for the infinite volume RG flow. In this section, we prove an analogue of
Proposition [8.1] for the infinite volume RG flow.

It is somewhat more convenient to represent z; = (z](.q)) and its evolution in terms of W; as
defined in Definition This is mainly so that so that we can use the notation ||[W;|qv from
J

that definition (and do not need to introduce further notation). Thus given the map Uj;1 =
(8j+1,35+1), we define

Wi (w))(B, ) = > > L2050, (2) cos(v/Bag (x)). (8.8)
q=1 zeB

Then by Proposition[8.3](with estimates of Theorems 7.7)), the infinite-volume renormalisation
flow is given by

sj+1 = 8j+1(85, Kj) = sj + Hj1(K;) (8.9)

Wi1(B,¢') = Wit1(W;)(B,¢') = Er, ., [W;(B, ¢ + ()] (8.10)
2 2 2

Kjyr = K5 (s5, Wy, Kj) = L5 (Kj) + M7 (s5, Wy, K;) (8.11)

where #H;41(kKj) is given by Definition (whose extension to Z2 is clear, as it only uses small
polymers) and EJZ_QH, szil are given by Theorem extended to Z? by Proposition We
omitted index Z? for and since we have seen in Proposition (iv) that they do not
depend on the volume of the system. Our goal is to apply the stable manifold theorem in the
form stated in [21, Theorem 2.16] to show the existence of s{ explained earlier. For this it is
essential that the maps IC]Z_QH contract. According to and the definition of oy in ,
this requires control of the lower bound on I'j;1(0). The covariance estimate implies a good
lower bound on I'j;1(0)/log L once j is larger than a critical scale jo, defined precisely by the
next lemma. In the following we will write (note the extra argument s compared to ):

Bert(J, B,5) = (1 + sv7%) 1. (8.12)

Proposition 8.4. For given r € (0,1] and 6 > 0, assume [ is such that rBeg(J,B,s) = (1 +
0)Bree(J). Then there exists jo = jo(pg, L, ) such that

L = O(ij(l + 5—1)) (8.13)

and that, for j = jo,
L2em27Pl+1(0) < =0, (8.14)

Proof. By (3.11) and (4.1, there exists co > 1 such that |27t(v% + s)D;(0,0]s) — 1| < cop,/t for
all t > ps. Hence define

(o 1 N\ 1 Breel) 7!
fo := C°(4 4(1+5)> '0"260(4 4rﬂeﬁ.«(J,/3,s)) pI (8.15)

and jo := [log (2tg)]. Then for j > jo,

B
2log L

2TB€H(J?57 S) CopJ
/Bfree(J) <1 a 2tO ) —2 >

so the claim holds. O

| =3

Fj+1(0; 8) —-22 ) (8.16)

We explain some terminologies for the following theorem. We assume that r € (0,1], 5 > 0,
py = 1 satisfy the assumptions of Lemma and that 78 > fBgee(J). Let L and A be at least
those given in Theorem jo(ps, L,0) be as in Proposition and recall , the definition
of ;. We use various €’s. Given 6 > 0, we let £5 > 0 be such that 78eg(s, J) = (1 + 6)Bee(J)
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for |s| < es. Let e, = €,(B, A, L), a rational function of its arguments, be as in Theorem [7.7], &,
be as in Lemma [7.19 and let

g5 = min{es, 065, 1}, !, =min{e,y, (20)7*C3(8, A, L)'} (8.17)

with C3 as in (7.20)). Thus €§ is a bound for the parameter s and el is a bound for various
polymer activities. Also, let g = L3907 L:0)¢! (B A L) and 6 = L min{1,4} > 0.

Theorem 8.5. Let ¢ be sufficiently large and r,0 > 0. Then for L > Ly(0y) of form L = IN'A>
Ao(L), |s| < €5 and HW()”QU < e there exists 50(6, s) = (HWOHQU) such that (s;, W;, K; ) —0
as j — oo satisfying the flow equations . with initial condmons so = 5§(5,s), Wo given
as above, and K8 = 0. Moreover, s§ is contmuous m s and

I3l IWillay . 1 Kjllax < O(IWollgy )L™ (8.18)

for some o > 0 satisfying CL?ar,0c < L™ for sufficiently large C.

Proof. We drop Z? in the proof. The proof is an application of the stable manifold theorem in the

form of [21, Theorem 2.16], only with smoothness replaced by continuous differentiability in its

assumption and conclusion. To obtain the continuity in s we will work with spaces of continuous

functions in s. For this application, we begin by defining Banach spaces (I;);, (¥}); for j € Nxg
by

I = {55(5) € C(~h, 5, R) : [y, < +00}, (8.19)

Fy = {(W;,K;)(s) € C([—¢5,e5), Q) x Q) + [|[(W, Kj)||p, < 400}, (8.20)

where Q;/V C ng is the (closed) subspace of elements with s-component equal to 0,

Isjllr; =7(7)  sup |sj(s)],

s€[—ef,e5]
1(Wj, Kj)ll 7y = 7(5) Sup ]maX{IIW( Mo, [15;(s)llx } (8.21)
sE 557‘56
and
7(j) = L3Uo=+ = p3max{jo=50}, (8.22)

The weight 7(7) will ensure contractiveness of the map for scales j < jo where it is not guaranteed
that I'j+1(0) is not bounded below. Since ng and QJK (Z*) are Banach spaces, I; and Fj are Banach
spaces. Also let BZ be the open ball in normed space X centred at 0 with radius a > 0. Define

I; F;
Tj+1 :Bey X Bey — Ljp1 X Fjqa,

(8.23)
(85, Wi, Kj) = (841(85, Kj), W1 (W;), Kja(s5, Wy, Kj)).

Since H;y1, Wjt1, L1 are bounded linear functions and M1 is a continuously differentiable
function, Tj41 is also continuously differentiable. Also, the operators Tj+1 are uniformly invertible
in a neighbourhood of (0,0) in the following sense: by Proposition |8.3| (and using estimates of
Theorems [7.6) n . there are constants C1, Cy independent of j such that

Q

1) supy{[Ha (5)] < | Klgx < 1} < oo

2)  sup{11£9,1 (K5 lax K llgx <1} < Crl2anec ;

3)  sup;{[Wini(Willgy,, : [Willgy < 1} < L2e=27501(0)
)

)

Q

Q

4 (85, Wj, Kj) — M1 is continuously differentiable ;
I; F;
5)  IDMjsa(s)s Wi Kj)llax, | < Call(sj, Wi, Kl for (s, Wi, Kj) € Beg x Beg,
and M;;1(0,0,0) = 0.

A~ o~~~ —~
Q

Q
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Note that Proposition implies, for e2VFh < (eérﬁrﬂ'“w;s))eo (which is implied always possible
by choosing L > Lo(6p) sufficiently large),

L2aLoc < C(L—l(logL)3/2 +L2ZL—(2+5)(2(]—1)(1—90)) < C/(L—l(log L)3/2 + L—5/2) (824)

g=1
Together with (C2), (C3), and ({8.14]), this implies

Sup‘|(Wj+1, £j+1)HFj—>Fj+1 < 2CIL204L0(: <L %<1 (8.25)
J

for some o when L is chosen sufficiently large. Then, by (C1), (C4), (C5), and (8.25)), Tj1 is as
required for the proof of |21, Theorem 2.16] (with smoothness of M replaced by continuous
differentiability) to apply, thus yielding the existence of a continuously differentiable function
S(s) Bf;o — I such that the initial condition (S(s)(Wo, Ky), Wy, Ko) solves the flow equations
(8-9)—(8.11)) with the final condition (s;, W}, K;) — (0,0, 0) exponentially. The rate of the expo-
nential decay also follows from the proof of the cited theorem.

Then s§ = S©)(W,, 0) is as desired: indeed,

1558, 5)| < sup ([ D) S (W, 0l 7yt [[Wollgw = O(IWollag ), (8.26)
(W4,0eBL0

Finally, s§(s) is continuous in s by construction, as Iy is a space of functions continuous in s. [

Corollary 8.6. Let s§(3,s), Lo, and Ay be as in Theorem applied with Wy = U as in (2.15)),
and set N}y = [log, Lo]. The following hold for L = ¢No and A = Ag(L).

(i) If J is fized and B is sufficiently large, there exists s§(J,3) such that s§(5,sG(J,B)) =
s6(J, B).

(ii) Let J be a family of finite-range step distributions and suppose that (4.1)) holds with the
same constants for all J € J. Then for any 6 > 0, there exists C > 0 such that whenever
J € J,v: > Cllogd| and B > (1+46)Bxee(J), there exists s§(J, B) such that s§(8, s§(J, B)) =
507, 5).

The proof of the corollary is an application of the intermediate value theorem.

Proof. To see (i), first choose r > 0 small enough and 3 > 0 large enough so that the assumption

of Lemma is satisfied and r8 = 28gee. Also choose g9 > 0 as in Theorem and fix 6 = 1/2.
Then €5 > 0 is chosen to be less than 1/10.

Now note that Lemma [2.2 implies that ||| au < CAe~17%. By Theorem and Proposi-
tion gg = L=%0rL:0)¢g (B, A, L) is only polynomially decaying in 3. Therefore ||WOH96] <
CAe 178 < gy for sufficiently large 3, and the assumption concerning Wy of Theorem is satis-
fied with Wy = U. Also by the choice of |s| < €5 = min{es, 0,¢5, 1} above and because v3 > 1/2,
it is also true that rBeg(s,J) = r(1 + svf)_lﬁ > %rﬁ > %Bﬁ«ee, verifying the other assumption
of Theorem Hence by the theorem, there is s5(3, s) = O(e_%%g ) so taking /3 sufficiently large
so that |s§(3,s)| < €5/2 for all |s| < €§ then (i) follows from continuity: if f(s) = s — s§(05,s)
then f(+¢j5) > €5/2 and f(—¢§) < —§/2. By the intermediate value theorem there is s such that
f(s) = 0 which is the claim.

To see (i), first fix r = 1 and p; large enough to satisfy the assumptions of Lemma
Having v% sufficiently large and 8 = (1 + 6)Bgee(J) = 8m(1 + §)v? is again sufficient to obtain
HWO”%} < CAe 1% < ). Then we choose ey = min{es,07¢5, 1} (in place of €f) so we have
a common domain [—&j, ] of s on which Theorem is satisfied for all J € J. Moreover,
whenever [s| < &% < &,

Bur(s,7) = (1+ 50727 8> (14 6/2) 718> (1+0)(1+6/2) Breol ) (8.27)
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hence one has uniform lower bound of Seg (s, J)/Bee(J) greater than 1. Since s§(5, ¢) = O(e_%"’ﬁ ) =
O(e=2™7) by Theorem taking v3 > C|logd| for sufficiently large C' gives |s§| < €% /2. The
same continuity argument as in (i) then applies to give the conclusion. O

Proof of Proposition[8.1 The claims are a consequence of Corollary and Proposition
To be more specific, we first tune the initial condition to (so, W, Ko) = (s§,U,0) and assume
as an induction hypothesis that the flow of (sg, Wi, K ,i\ N) determined by (<I>£N Jk<; exists up
to k < j < N — 2. Then by Proposition (iv), they have the same coupling constants s;
and W; as the flow defined by (@%Q)kgj with the same initial conditions, thus in particular

1Ullgw < O(|Wollgg )L, Now by (7-18) and (7-20), since 2C1 Laroc < L™,
J

1

A — A A
12 o, < 52K o + CaIE M e + 1T ). (5.28)

for j < N — 2. The flow of (KJAN ))o<j<n—1 is thus dominated by an exponentially converging

X,

sequence uniformly in N, i.e., if (k;);j=0 solves ky = 0 and

=

ki1 =5 L™%; + Ca(k; + |Ujllav)?, (8.29)

N —

then HKJANHQ;K < kj < O(HWOHQBJL*C“J') for HWOHQg sufficiently small. Thus the flow of the

renormalisation group coordinates exist up to scale j+1, completing the induction. The estimates
(8.4) are by-products of the induction.
O

9 Torus scaling limit

We assume that the conclusions of Proposition hold. In particular, we will fix s = s§(J, 5)
and the renormalisation group flow (Ej, U;, K;) satisfies (8.4) for j < N — 1. We now consider

o . . A
the final renormalisation group steps corresponding to the covariances I'y¥ (s) and ty (s, m?)Qn
— as was done in ([7.2)), m? is set to be 0 in I‘%N.

9.1. Final renormalisation group steps. We first consider the N-th renormalisation group step

corresponding to the covariance F%N = F?VN (s).

Proposition 9.1 (Integration with respect to the bounded covariance). Let
SN (Ex_1,8n-1, W1, Kn_1) = (Ely, sy, Wi, K'y) (9.1)
. . . . . An
be defined according to Deﬁmtwn and Definition but with I'j 1 replaced by I'\. Then

Zn (@) = e PN K (A, o) = Be oy [Zv-a (e + 0) (9.2)
N

where Uy (AN, ¢') = %S’N|ch’|iN + Wh(An,¢") and EY, sy, Wy, Ky satisfy the estimates of

Theorem 7.6 and Theorem 7.7,
In particular, there are C > 0, ¢ = (B, A, L) (only polynomially small in B) such that

whenever ||[(Un-1, Kn-1)|lay_, <€, then
I(UN KN oy < OL?[(Un-1. Kn—1)lloy -, (9-3)

Proof. The identity is true by construction since By (Ay) only consists of the empty polymer
and Ay itself. Also the estimates of Theorem and Theorem hold because F%N satisfies
the same estimates as 'y, cf. Corollary and Lemma [{.4] for the covariance estimates and
Proposition for the corresponding regulators.
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To see the final remark, notice that the analogue of Theorem bounds sy. Also since

Wy(An, @) = L‘2N2L2 —1Bg2TRN (0) 4 ZCOS (qv/Be(z) (9.4)

q=1 reB

and T%N(O) > 0, we have HU]/V”Q% < CL2||UN_1HQ%. Also (7.18)) and (7.19) bound K, but now

ALoe = CL_3(lOg L)3/2 4+ C min 1’ Z e\/the—(q—l/Q)TﬁF?,N (0) < 20, (95)

q=1

so || Kylly < 2CL2|(Un-1, Kn-1)llay_,- O

Finally, we consider the integration of the zero mode, i.e., the last covariance tyQ . Since
Qn is the orthogonal projection onto the constant vectors in R*,

Zn(p;m?) = Ez(sm2)20(e + ¢) = Eiy(sm2)Qn Zn (9 + C)

A Ayl
AN 380 2o+ ) de (9.6)

2t N

where C'is defined by (7.2]). For constant ¢, using G (A, o +¢) = Gn (A, p) for such , see ,

eENIANIZN (o + ¢) = UNANHOD) L KL (A, ¢+ C)
1y 2
= >NV (14 O([Willag)) + OUE N llax )G (A ). (9.7)

whenever ||lev‘|(z% < 1. The last right-hand side is independent of ¢, so uniformly in m? > 0,

~ / lsl 2
Zn(psm?) = e NI (2N VR (14 O(|1 Wiy ) + OUIE N lgg) )G (An,9)). (98)
9.2. Proof of Theorem To prove the theorem, we will apply with

o =uy = C(s,m?) (1 +syA) " fy (9.9)

where the covariance C (s,m?) is the one from Lemma and fy is as in Theorem The next
elementary lemma shows that the exponential term and the regulator of the above are bounded
for this choice.

Lemma 9.2. Let J C 72\ 0 be any finite-range step distribution as in Section @ and assume that
07 is bounded below (see ) Let f € C*(T?) with Jp2 fdx =0, let fn be given by , and
define un by . Then there are constants C,c > 0 uniform in m? > 0 and N € N such that
for|s| <,

Vunli, <C Gn(An,un) <C. (9.10)

Further,

1
Jim i (v o, ) = 5 (7 (=80 e (911)

The proof of the lemma is given after the following conclusion of the proof of our main theorem.

Proof of Theorem[I.1l By assumption, the conditions of Proposition (1) hold and Zy and Zy
are then defined as above. By Lemma [2.1] and Lemma

<e(fN,<p)>1}N — lim <6(fN,<p)>A — lim e%(fN,é(S,mQ)fN)EC(S,mQ)[ZO(C +UN)]

, 9.12
5 = lim @ O)ate = lim Ecqm Zo(0) (6:12)
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and by Lemma

lizlilo EC(s,mQ)[Z()(C + UN)] = hzriloEtN(&mQ)QNZN(g + uN). (913)
But by and (9.10)),

EtNQN[ZN(C"i'uN)] 1o (un,—Aun) , )
:eQSN UN, uN 1_|_O W +O K G A 7u
Evvan [Zv(0) (1+ 0(Wllag)) + O KR lgg) G (Aw, un)

= PN (1+ 0(IWillay)) + O K llox) (9.14)

while Proposition (1) and (9.3) implies that ||+ HW]/VHQ% + HK§VHQ§ = O(L=*N), provided
that sp and s are tuned to the correct initial value s§(J,3). Therefore the limit in N — oo
converges to 1, uniformly in m? > 0, hence in particular

Ec(se m2)|Zo(C +u
i lim CCCsom ZoC Funl (9.15)
N=oom2l0  Eo(sg(,8),m2)[Z0(C)]

Also, by (0.11),

N B 1
]\}gn hzrn e%(fN7C(58(PwB)7m2)fN) = exp (;fag A?EQ) f)) ) (916)
0o m?,0 (v7 +55(J, )

In view of the rescaling discussed around ({2.1)), this proves the main conclusion (1.7) with
Beff(bLﬁ) :/B’ULQI/(’ULQ]—FS(C)(J?B)) O

Proof of Remark[1.2 Let J = {J, : p € N} be the family of range-p step distributions. Then

by Lemma if we let 87 = 3% = %, then 65 > 64 for each J € J and v%p ~ %pQ. Hence J

satisfies the assumptions of Proposition (ii), so there exists C' > 0 such that for any § > 0,
|Ujllqu and || K| qx both decay exponentially in j and uniformly in Ay whenever p? > C|log |
J J

and 8 = Bo(Jp) = (1 4 9)Brece(Jp) ~ Mﬁ as p — oo. Together with (9.3]), this implies
|sh |+ ||W]’VHQ% + HK;VHQ];\\; — 0 as N — oo for 8 > Bo(J,). Therefore we may follow exactly the
same proof as that of Theorem but in the temperature range 8 = (1 + §)Bree(Jp)- O

9.3. Proof of Lemma The proof of Lemma uses the following standard estimates for the
Fourier coefficients of the functions fx.

Lemma 9.3. For f € C™(T?), let fy be given by (1.5)). Then there exist constants C, for a >0
independent of Ay such that, for any p € Ay C [—m, 7%,

v (0)] < Call V2 £l oo 2y L2V [p| 2. (9.17)
Proof. Define two components of the Fourier multiplier
A1(p) =2 —2cos(p1), Aa2(p) =2 —2cos(p2) (9.18)

for p = (p1,p2) so that A(p) = A1 (p) + A2(p). One has

s

futw) = 37 il (919)

hence for k € {1,2},

N 1 . ek, —€L)\a — €k,—€k)\a —
M) =[5 3 e O ™) | < s )N (920)

TEAN z€AN
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where 8/(Xe£’_€’“)f(x/LN) = —f((x+ex)/LN)— f((x—e)/LN) +2f(x/LN) for x € Ay. But since
Ak(p) = %pi by Lemma we are just left to bound |(d(ex—¢))a f(z/LN)|. We now claim that

( €k7—€k ) f(z = /0 LN HdSl dt; 822 (Z + Z(Sl +t — L_N)el). (9.21)
=1 =1

To see this, start from the elementary observation
(ekv_ek) _
9\ N f(z) =

2f(2) — f(z+ L™ Ney) — flz — L™ Nep) = — /[0 Lo dsdt 8§kf(z +(s+t—LNey) (9.22)

and proceed by induction. Now by and ,
| ()] < Calpi L7V V2 f| oo (12 (9.23)
for k = 1,2, which concludes the proof. O
Proof of Lemmal[9.3 We defined
uy = (14 syA)"1C(s,m?) fy (9.24)
C(s,m?) = v(1 4 s7A) + (1 + s7A)C(s,m?)(1 + s7A). (9.25)

We claim a bit stronger statement than the first inequality in (9.10)): for any f € C°°(T?) and all
a € {1,2,3,4}, the norm HV(]IVUNHL?V(AN) is bounded uniformly in N. Indeed, in Fourier space,
and recalling that A (resp. Ay) denote the Fourier multipliers of —A (resp. —Ay),

(As(p) +m?)~! .
1+ sA(®) (s (p) + m2)—1 77)fN(p)' (9.26)

Since A(p) € [0,2] and (As(p) +m?)~1A(p) < 65", for |s| small,

in(p) =

i (p)| < COT M) v (p)| (9.27)

and for Ay = oL NAp,

. . . Cco7 Q]AN\“ 2 Jo-
IV unlizs (ay) = LNV un 7200 < > AW i) (9.28)
peEAy
= OO S~ (ALY R f (2r LV )
= 2 N s N2 .
keAn

By Lemma and the lower bound cos(z) > 1 — x2/2,
16|k? < |AnIAN@2TL™Nk) = 202N (2 — cos(2n L™V k1) — cos(2n LN ko)) < 472 |k|? (9.29)
and together with Lemma we have

> (IANIATLNE)) 2| fv (27 LV E))? < Co(1 + > RPOPET) <o (9.30)
keEAN keAn\{0}

for a € {1,2,3,4}. The case a = 1 concludes the proof of the first inequality (9.10). Moreover,
by the lattice Sobolev inequality (Lemma [A.3)) there exists ¢/ > 0 such that

4

log G (An,un) < R Y I Vunllzz (ay): (9.31)
a=1
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also giving the second inequality in (9.10). For the final claim (9.11)), recalling fx(0) = 0, one
has

N1 — g _N
hm (fN7 2(s,m?) fn) = 1 Z AJ(L=NE) (1 — syML k)

— in (L7 k)2
m? 42| A| 1+ sALNEY(As(L~NEk)=1 — [An]|~17) [ )

ke2mAn\{0}
(9.32)

Since f € C(T2), we have fy(L Nk) — f(k) as N — oo for each k € (27Z)2\{0}. By

Lemma [3.6]
lim L*YNLVk) = k%, lim L2V (L Nk) = 2 |k|?, (9.33)
N—oo N—oo

where v? is defined by (3.4)). Also by Lemma the sum is dominated by C' >} c0.2)2\ (0} k|~
for some C' > 0, and therefore the Dominated convergence theorem implies

1 1

lim lim (fN, (s m )fN) —5 Z |k~ 2’f( )‘ 2 s (f, (=Ag2)7'f)
N—oom2— 41 ke (2aZ)?\ (0} J + s v+ s
(9.34)
as needed. O

A Properties of the regulator

In this appendix, we prove the properties of the regulator as introduced in Definition The
choice of this weight is essentially that from [21], and the estimates we derive follow that reference,
incorporating the improvements from [39, Appendix D]. In our presentation, we pay particular
care to obtain estimates with the correct dependence on the range of the step distribution J. Some
simplifications in our presentation result from the use of the continuous scale decomposition from
Section [3l and the use of the discrete Sobolev trace theorem.

A.1. Lattice Sobolev estimates. The proof of Lemma heavily depends on lattice versions
of the Sobolev inequality and the trace theorem for Sobolev spaces. We include the versions we
need here. To simplify notation, from now on we fix d = 2.

Trace theorem. Consider a block B € {1,..., R}? with I; = {0} x [I, R], l» = [1,R] x {R + 1},
l3={R+1} x[1,R], ls = [1, R] x {0}. Note that l;’s are the outer boundary, which are different
from 0B, which is the inner boundary.

Lemma A.1. For any u: {0,-, R+ 1}? = R, if (k, ux) € {(1,—e1), (2,e2),(3,e1), (4, —e2)},

RS u(e) < Z( )2+ R|VHsu(z) |). (A.1)

T€ly, zeB
Proof. Without loss of generality, fix k = 1. Define a function £ : BU (U%zllk) — R by
&(ae; + beg) = (R —a)/R. (A.2)
Then
Ry u@)?=R1)_ &x)u(z)
T€lL T€lL
L LI
= R! Zv—el [Z &(ker + beg)u(ker + b€2)2]
=R Z Vo (E(x)u()?)
z€eB
= R Y ((RV el + €@ — e)RY (@), (A3)
z€B
But |£(z)|, RIV~¢{(z)| < 1 for x € B and hence the result follows. O
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In particular, this lemma can be applied to the control the field on the boundary of the box
by the field inside the box.

Corollary A.2. Let B be a box with outer boundary Ugly as above and diameter R > 10. Then
for ¢ : {0, R+1}? = R,

RN V(@) <10(R2 Y [Ve(@) + V%6 e(s) ) (A4)

rEURlL zeB

Proof. In Lemma [AT] set
u(@)® = [Vie(z) . (A.5)
Then for v € é = {*e;, Lea},

Rlu(z +v)* = u(x)?| = RIV"¢(z + v) + V()| [V V!p(2)|

1
< 5 Vie(z +v) + Vio(@)] + R V20| o (5). (A.6)
so summation over x € B gives
RY [Vu(@)?| < Y [Vio(@)]” + RYV¢| 1 () (A.7)
z€B z€BUI,
Therefore the lemma gives
R7'Y IVe(@)P <2R™? Y [Vo(@)? + RVl (). (A.8)
€l r€BUIg

If R > 10, we may send the [ part in the sum erBulk to the left-hand side to obtain

RY Vo) < 3 (B 19e@) + V%l ecs))- (A9)

T€ly zeB

Sobolev inequality. While the large field regulator G contains exp(||V290||200(B*)) for B € Bj, we
have a nice estimate of Gaussian integration only for exponentials of quadratic forms. Hence it is
desirable to bound ||V2<,0H200(B*) in terms of HVGQDH%Q(B*)’ a > 2. This follows from the following

Sobolev inequality. Here, we are using the convention || f|lz2(x) = Y ex |f(2)[%.

Lemma A.3. For B be square of diameter R as above. There exists a constant C > 0 uniform in

R such that for all f:{x € A:di(z,B) <2} - R,

2
112y < © S B2V 2 (A.10)
a=0

Proof. Take x € [1, %]Z N B. By symmetry, the conclusion follows if we bound f(x)? in terms
of ||V“f|]%2(3), a=0,1,2. Take

_ — . 1
(1-3R'a)(1-3R"") if0<ab< iR '

) (A.11)
0 otherwise

&x(x + aep + beg) = {
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Also let D, = {x + ae; +bez : 0 < a,b < éR—|—2}. Then

LR/3]
f(m)2 = f($)2fx(93) = Z Vave(f(r + aer + beg)Qﬁm(m + aey + beg))
a,b=0
LR/3]
= Z (VIVE f(x + aer + b62)2)§x(l‘ + (a+1)er + (b+1)ea)
a,b=0

+(Vf(z + aer + bea)?) (V' (x + aer + (b+ 1)ea))
+(V f(z + aer + b62)2) (V& (x + aey + (b+ 1)eg))
+f(x + aeq + bez)?VVAE, (x + aey + b62)>. (A.12)

Noticing that [|V§&s||pe(p) < 3% for a=0,1,2,

2
F@)?<9> RV b, (A.13)
a=0

but also the Young’s inequality implies

IV2 %) 1 (p.) < vaHL?(B + R fl T2 + BRIV £l 2(p) (A.14)
IV 2o,y < BN 2s) + BRIV 228 (A.15)
which completes the proof of the inequalities. ]

A.2. Proof of Lemma The proof of the lemma heavily depends on formulas derived from
the lattice versions of the Sobolev estimates, see Section

Proof of Lemma[5.13 For brevity, s+ M ~! will be denoted s’ and X will be denoted X’ (which
we recall that it is the smallest j + s’-polymer containing X). We will bound the terms in

log Gj1s(¢+&, X) one by one, see . First, HV(,OHL2 (x) Will be isolated from HV(cp—i—§)|]L2(X
Let B € Bj1s(X) and without loss of generality, let B, [; (i = 1,2,3,4) be as above but B =
[1, L7+5]2. Then by discrete integration by parts,

D V@) V() = = ) @)V () — > Ela+e) V() + Y E(x) VIV ().
zeB x€lg x€lq x€B
(A.16)

Hence in particular, summing this over each direction +e;,+es, B € Bjis(X), and using the
Young’s inequality,

(V. VEx < 76,y + T VRl oy + TIEIR oy + 7 Vsl o
< 27’Wj+5(§,X)2 (HVH-SQOHLQ L(0X) + WJ+S(V2+s‘Pa X) ) (A.17)
for any 7 > 0, and hence
IVisslo+ O, oy < IVsewllia oo+ I¥netls,
+ 27 Wigs (€, X)? + 77 (ij“(p”%?“(@)() + Wjts(V5 a0 X)?).

(A.18)

Next, we will use the following rather trivial bounds on the other two terms of log Gj:
IVjts(p + 5)||%§+3(3X) < 2||Vj+s90||%2 (ox) T 2Wj1s(Vj1s€, X)? (A.19)
Wits(Vips(0 +6), X)? < 2Wits(Vip, X)? 4 2Wj (V516 X)2 (A.20)
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By (A.18), (A.19), (A.20) and setting ¢4 = max{2,27,2c2},

1
—log Gjs(p + 6 X) < HVJ+ss0||L2 x0T Qe+ )”vj+390||%§+g(8X)
L . ‘ (A.21)
+2(1 + T_I)Wj+s(V?+5S03 X) + g IOg gj+s (53 X)

Now by repeated application of (A.4), the discrete trace theorem,
||vj+s<»0”%?+s(ax) < ||Vj+850||%§+s(ax/) + 10||Vj+590||%§+5(xf\x) + 10Wj+5(v?+s% X/\X)- (A.22)

Hence by choosing 7 = cgl and 30cy <1

log(Gj+8((p + 57 X)/gj-f—S(ga X))
RL

”VJ—S-SSDHL2 X/)+3C2||VJ+SSOHL2 6X’)+2(1+T )Wj+s(vj2‘+s%X/)
||VJ+8’90HL2 Xl)+3£ C2||vj+5’90”L2 8X')+2€ (+T_1)Wj+8’(vg+s’(PaX,)- (A.23)

The inequality (5.38) follows upon taking ¢ large enough. O

A.3. Proof of Lemma

Proof of (5.36) of Lemma . By the Sobolev inequality, Lemma for each a = 0,1, 2, we
have

Wjts(X, V§1:0) < Cadl Vi Cllzoe ey < Coa Y IVl L2, xo) (A.24)
b 0,1,2

Plugging this into the definition of gj4(X, ¢) with scaled coefficients give the desired result. [

For the proof of (5.37)), we will need the following general estimate for Gaussian fields; see |21,
Lemma 6.28] for a proof.

Lemma A.4. Let ( be a centered real-valued Gaussian field on a finite set X with covariance

matriz C and suppose that the largest eigenvalue of C is smaller or equal to % Then

E|exp(= Z C(z . (A.25)

xeX

Applying this lemma to gradients of the slices & (see Section gives the following lemma.

Lemma A.5. For any j € {1,...,N}, ke {1,...,M}, s = %, s’ = 37, let Y € P§,,, and let
& be a centered Gaussian field with covariance I'j s j+s. For a multzmdex () = (p1y--- 4 la) €
{£e1, £ea}® for a €{0,1,2,3,4}, then let n, () be the Gaussian field defined by
Moy (x) = py(log L)~ L-UHIVIHeg (), (A.26)
Then there is a constant C' > 0 such that if t < (2C"¢%)71, then (recall L = (M)
E[e2 Xeey 1(0)%]  lC'M ™!V Ijs (A.27)

where |Y|;+s denotes the number of LI*5-blocks contained in'Y .
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Proof. By Lemma for all z,y € Ay and (u) as above, defining o = (u, —p) to be the
concatenated multi-index (of length 2a),
[ES [(V7,60) @) (V2,60 W)] | < Capy® log, (A.28)

which follows by considering the (worst) case estimate |a] = 0 in Lemma Letting H, (,)(z,y) =

Cov (1, () (%), Mo, () (y)), it follows from (A.26) and (A.28) that there is a constant C’ > 0 such
that for all z,y € Y and a =0,1,...,4,

|Ha,(u) (l‘,y)

Since also H, () (z,y) = 0 for [z —y|oo > %Lj“‘“'Mfl = %ELj+S by the finite-range property (3.8]),
it follows from (|A.29) that

< C'(log L)' L720%9) Jog 0. (A.29)

1 1
t sup ||Hy g llop < tC'¢*(log €)(log L) ™! = —62 <3

A.30
acf{0,...,4} ’ 2M ( )

whenever ¢t < (2C"¢2)~!. Thus \/7?77&(,1) satisfies the assumption of Lemma so that with

A2,

Elez Zoev 1]  lOM Wit (A.31)

as claimed. 0

Proof of (5.37) of Lemma . Let 74, be as in Lemma and write k;, = cxp%(log L)~
with ¢,; > 0. Then by ([5.36)) there is a constant C' > 0 such that

4
CC4CK a
gi+s(V26) < TT TTexo (5556 29 o 320 ). (A.32)
a=0 (p)
and hence by Hoélder’s inequality,
1/(5-2%)
E[g+(Y, €)] HHE[exp( )] (A.33)
a=0 ()

Applying (A.27)) with t = C'cqey, the right-hand side is bounded by eCeacnC' MY jrs < oMY ]js
when ¢, < (20C"c4¢?)~1 is chosen small enough.
For the analogous conclusion for the last step with F%,N instead Ofi+1, we just need to

use the decomposition (4.14)) instead of (4.13]) and recall from Lemma [4.4] that F% L. N—1ts!
satisfies the same estimates as I'y_145 N—14/- ]

A.4. Proof of Proposition

Proof of Proposition[5.9. Assuming that ¢ is sufficiently small so that Lemma applies, fix
(with the right-hand sides as in the conclusion of Lemma [5.13))

= {y(ca), cs = c4(ca). (A.34)
By the subdecomposition I'j11 =I'; i 10 + -+ T 1-1/0,541 and the corresponding decompo-

sition of the field ¢ = Z,]y:l & ~ N(0,T41), by repeated application of (5.38), for all ¢ € RAN,
X € Pj, it follows that

M

E[G(X,¢ + Q) < [[E*[g;, 00 (X1 &)] Gja (X, ), (A.35)
k=1

where we recall that Xy, is the smallest j + 7 k _polymer containing X. Now by Lemma
since | Xy /arlj4x/m < | X|j, we obtain the claim:

E[G;(X,¢" + ()] < (2M71‘X|j)MGj+1(Y’ o) <2XiG (X, ¢). (A.36)

The proof of the analogous conclusion for the last step with F%N instead of I'j 1 is analogous. []
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A.5. Proof of Lemmas and

Proof of Lemma[5.7. We first collect the following elementary but fundamental inequality. For
any function f : Ay — R, any connected polymer X € P (not necessarily small) and xy € X,

ma | £ (@) = £(w0)| < 24XV 00y = X195l x)- (A.37)

Observing that 2| X*|; < C for some C' > 0 when X € §;, this gives
[0¢]lzoo(x+y < ClIVjpllpeo(x+), X €S;. (A.38)
Similarly, applying (A.37) with the choice f = V¢ for e € {£e1, +ea} to obtain that |V§ch(x)] <

|V§‘<p(y)] + C’||V?<p||Loo(X*) for any x,y € X*, averaging over y in X and p in é, taking squares
and using that (a + b)? < 2(a? + b?), one obtains for any X € Py that

IV 50ll7 0 () < C(IX[; M IVj0ll72 r2x) + WilX, Vip)?), (A.39)
where we also used that

V3l oo (x+) < Wi(X, V), (A.40)

which follows from (5.15). Recalling [|-[|¢c2(x+) from (5.10), combining (A.38), (A.39) and (A.40)
J
while noting that V;6p = V¢, one readily infers that

H5<PH02 X*) (HVMHLz x) TWiX,Vi9)?), XeS§;, (A.41)

from which (5.25) follows in view of (5.14]) by means of the elementary inequality t* < C (k)etQ,
valid for all t > 0. L]

Proof of Lemmal[5.8. The bound is a direct consequence of the first estimate in (6.100)
of [21, Lemma 6.21] upon taking a product over B € B;(X) (for the reader’s orientation, the
quantity ecw® 2% (@B for B € B; corresponds to Gstmng »(B) in the notation of [21]). In particular,
the presence of the factors 27" in and (5.9)), absent in [21], (6.67)], is inconsequential for the
validity of these results. The same applies to further references to [21] in the sequel.

Note also that, while the value of ¢, is fixed in |21] as ¢,, = 2 and there is an extra parameter

c1 in G chosen large enough, we take ¢; = 1, ¢, small, which is equivalent. Finally, note that
(-27) does not rely on the presence of the |- ||L2 -term in Gy, i.e., (5.27) holds with ¢z =0 in
(5.14).

The inequality (5.28)) is the content of (6.103) in [21]. Here G; and ¢ corresponds to G and

c3, respectively, in the notation of [21]. Conditions on cg, ¢,, above ((5.28)) follows by inspection of
the proof of |21, Lemma 6.22], see in particular (6.105) therein.

9

O]

B Completeness of the space of polymer activities

Variations of the space of polymer activities have been defined and used by various different
authors in similar contexts but we could not find reference for its completeness with this specific
norm, so we include a proof in this appendix.

Proposition B.1. For any h > 0, the space {F' € Nj(X) : | F||nz;x) < o0} is a Banach space.
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Proof. Suppose (Fj)x>1 is a Cauchy sequence in the norm |- 1, (x). Without loss of generality,
we will assume || Fy — Fiy1ln,7;x) < 27%. In particular,

h"
EHD (Fy — Fiy1) ()]

n,T; (X ) < 27ij(X7 QD) (B1>

for each n > 0. Therefore the pointwise limit exists for (Fj)g>1, say F'. From the completeness of
the spaces CF(RX"), it is also clear that F' is smooth. In fact, if we define another normed space

N} = {K polymer activity : HKH’h’Tj(X) < oo}, (B.2)
hn

K|l - Gi(X *1< Y prK . ) B.3

K[ 7, () wzﬁg* (X, 0) Sup | (@)ln,; (x,0) (B.3)

then the pointwise limit satisfies F' € /\/J’ Now suppose |\F||h7Tj(X) = +o00. Then for each M > 0,
there exists ¢y € RX" and Ny € Z such that

Nyogpy

h n
S D F a1, (5 ) > MGH(X, 010) (B.4)

n=0

But 30 B D (Fy — Fr1)(001) Iy (xaon) < 27G5(X, o) for each k so if we set M >
L+ ||#1][n1;(x)» this gives a contradiction. This proves || F|[51;x) < oo.

Finally, we have to prove Fj, — F as k — oo in the [ - || 7,;x) norm. To see this, let
Fj = F, — F, and notice that (F})y is still Cauchy in the || - Hh7Tj (x) norm. Suppose F}, does not
converge to 0 as k — oo. By scaling and taking a subsequence if necessary, this means there is
¢ € RX" such that

[e.e]

[ —
> TP Ek(on)lln, 7 (x 00) = G (X, k). (B.5)

n=0
But also since || D" F (¢, K)ln,1;(x,0) — 0 as k — oo, up to a subsequence, there exist sequences
(Nk)k>07 (Mk)k>() such that Ny < My < Niy1 and

My pn P
Z FHDTLFk((pk)Hn,Tj(X,@k) > ng(X, ©k) (B.6)
Tl:Nk ’
hn neE ]. X*
Y. D@l g < 36X ) forall p € RY (B.7)
neN\[Ny, Mg]

But this implies ||(Fy — Fk+1)(g0k+1)||h’Tj(X’(pk+1) > £G;(X, ¢r11) which contradicts that Fy, is a
Cauchy sequence. Therefore Fy, — F as k — oo. O

C Fourier transform of the standard bump function

In the proof of Lemma[3.8] the decay rate of the Fourier transform of the standard bump function
Kk was used. Since we were unable to locate a reference, we include the elementary proof here.

1
Proposition C.1. Define k(z) = e -4 15.1/5 for € R and &(p) to be its Fourier transform.
Then k(p) = O(e"p‘l/Q).

Proof. Letting 7(z) = k(x/2) = 6_1/(1_m2)1|$‘<1, it is sufficient to prove 7(p) = O(e_|2p‘1/2). One

. 1
has 7(p) = f(_l 1 e "7 1=22dg. Since 7 is analytic and bounded on the rectangle S = {z € C :
Re(z) € (—1,1), Im(z) € (—2,2)}, one may write alternatively

7(p) = / e 1-22dz = 2Re [/ e -2z (C.1)

I_ur'y Iy
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where 'y = {£1+ (F1+ i)t € C:t € (0,1]} (with orientations as appropriate). Without loss of

generality, take p > 0. Then change of parameter v = (%)_1\/21)(1 — 2) gives
2 —1 — 7
G(p) := / e TP, = le_ip_}l/ \/ﬁe_‘/ﬁlﬁ(wv D=9G70) gy (C.2)
r. V2p 0

T

where g(x) = To—gy- Since g(%\%v} is bounded uniformly on v € [0,2,/p), there is C' > 0 such
that

2\/5 N
Gp)| < 23]5 / VE+ gy < GV (©3)
0

utilising v + vl > 2.

Index of notation
The following list defines the model.

e L./ M,N: (integer) parameters determining the volume of the two-dimensional discrete
torus Ay. The side length of Ay is LY and L = ¢M for sufficiently large ¢ and M. / is
determined in Section [5.2] while M is chosen only in Section [§ N is arbitrarily large and
tends to oco.

e J: finite-range distribution, subset of Z¢, with associated quantities p J,vg,G J as in Sec-

tion [3.11

e [3: the temperature, chosen 8 > fy(J) for fy(J) determined in Section Related quantities
include B and SBgee. et is the effective temperature in the scaling limit defined by ({8.5))
and Sfee is a crude lower bound on [y given by (|1.8)).

e ¢ > 0: (integer) index of Fourier modes of an even periodic function.

e 0, ¢ (¢, ...: (Gaussian) fields on Ay. The notation ¢ + ( etc. typically refers to ¢ being
currently integrated over while retaining ¢ as a parameter.

e 0f = f(x) — f(=o), similarly d¢p,...: increment of a function at a point xg € Ay.

The following notations show up in the proof of the main theorem, in relation with the
renormalisation group.

e C(s,m?): modification of the Green’s function (—A;)~! after O-range part () extraction,
mass (m?) regularisation and stiffness (s) renormalisation. See Section [3.1|for the definition
and related objects.

I';, F%N , tnQn: decomposed convariances of C(s,m?), defined in Section

Bj, Pj, P S;j: set of j-blocks, j-polymers, connected j-polymers and small set polymers
introduced in Section 411

X, Comp,(X), X*: operations on polymer X € P; defined in Section

N;(X), Nj, QJK , ng set of polymer functions (functions that depend on polymer X and
field ¢ € RA). A;(X) and N are given in Definition QJK is given in Definition
and ng is given in Definition Functions in Q}K and €2;

restrictions.

/ are required to satisfy strong

91



K(X),F(X),...: typical polymer activity (at scale j > 0), element of A/; (Definition [5.1]).

”'Hn,Tj(X,go)a H‘Hh,Tj(X,cp)a H'Hh,Tj(Xy H'Hh,Tj: (semi-)norms on polymer activities at scale j
with associated radius of convergence h, large field regulator G; and large set regulator A
as in Section One may also consult the end of Section Remark Definition

and Lemma [7.4] for choices of parameters in the definition of the norms.
Locp, Locg p: localisation operators (Definition [6.4)).

Tay,,, Rem,, and their averages Tay,,, Rem,: Taylor expansion and remainder of a polymer

F to order n about point 0 (Section .

®;,1: the renormalisation group map with coordinates (€j41,Uj+1,/Kj41), defined in Sec-
tion (Definitions . Calligraphic notation £,U, K etc. refers to an actual map (on a
suitable function space), roman notation e.g. E,U, K, ... (possibly with subscripts j) to a
point in such a space; for instance in writing ICj41(Uj, K;) we mean evaluate the map ;41
at point (Uj, K;). Lj41: linear part, M;;1: non-linear part of ;41 (Theorem [7.7)).

One may also see Section [1.6] for further notation.
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