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Abstract

We investigate the bond percolation model on transient weighted graphs G induced by the
excursion sets of the Gaussian free field on the corresponding metric graph. Under the sole
assumption that its sign clusters do not percolate, we derive an extension of Lupu’s formula
for the two-point function at criticality. We then focus on the low-dimensional case 0 ă ν ă α

2 ,
where α governs the polynomial volume growth of G and ν the decay rate of the Green’s
function on G. In particular, this includes the benchmark case G “ Z3, for which α “ 3 and
ν “ α´ 2 “ 1. We prove under these assumptions that the critical one-arm probability decays
with distance R like R´ ν

2 , up to multiplicative constants.
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1 Introduction

The bond percolation problem induced by the excursion sets of the Gaussian free field on metric
graphs has recently attracted considerable attention. This model is a variant of a percolation
model introduced by Lebowitz and Saleur [15], see also [2] for first rigorous results, and more
recently re-initiated in [21], which concerns percolation of excursion sets of the Gaussian free
field on (transient) graphs. The variant is obtained by taking scaling limits along each edge,
thereby replacing the original graph by its metric version, following an idea of Lupu [16]. Both
discrete and metric models, along with others (including, notably, the vacant set of random
interlacements), are expected to belong to the same universality class [4], characterized by a
continuous transition with scaling near the critical point [9]. The continuous structure of the
metric graph leads to a degree of integrability of the model. This has prompted significant
progress in transient setups, see [5, 9, 7, 16, 23, 3, 11, 7], some of which concerns – remarkably
– the challenging low dimensions, below the mean-field regime.

In this article we focus on the above percolation model, which is defined as follows. Let
G “ pG,λq be a weighted graph, with countably infinite vertex set G and symmetric weights
λx,y “ λy,x ě 0, such that the graph with vertex set G and edge set ttx, yu : λx,y ą 0u is
connected and locally finite. The weights give rise to the continuous time Markov chain X on G
with generator Lfpxq “ 1

λx

ř

yPG λx,ypfpyq´fpxqq, for suitable f : GÑ R, where λx “
ř

y„x λx,y.
This Markov chain is referred to as the random walk on G. For x P G we write Px for its canonical
law when started in x. We assume that X is transient, which is a condition on G. The set G
is endowed with a metric dp¨, ¨q. For many cases of interest, one can afford to simply choose
d “ dgr, the graph distance on G, i.e. dgrpx, yq “ 1 if and only if λx,y ą 0 (extended to a geodesic
distance on G); we refer to [6] for an extensive discussion of settings which may require different
choices of d.

In the sequel, the metric graph, or cable system, rG associated to G will play an important
role. It is obtained by replacing all edges tx, yu by one-dimensional closed intervals of length
p2λx,yq

´1, glued through their endpoints; see [16, 7] for precise definitions. The chainX naturally
extends to a Markov process on rG with continuous trajectories. Its canonical law is denoted by
P

rG
x “ Px when starting at x P rG. A set K Ă rG is said to be bounded if K XG is a bounded (or

equivalently, finite) set.
Attached to the above setup is the random field ϕ “ pϕxqxP rG , the mean zero Gaussian free

field on rG, with canonical law P rG “ P. The percolation problem we are interested in is obtained
by considering excursion sets of ϕ above varying height a P R. Let 0 denote an arbitrary point
in rG and consider, for a P R, abbreviating tϕ ě au “ tx P rG : ϕx ě au,

Ka def.
“ the connected component of 0 in tϕ ě au(1.1)

(with Ka “ H if ϕ0 ă a), and the percolation function

(1.2) θ0paq
def.
“ PpKa is boundedq, a P R.

In view of (1.2), one defines the critical parameter associated to this percolation model as

(1.3) a˚ “ a˚pGq “ infta P R : θ0paq “ 1u.

One knows, either by adapting a soft (indirect) argument of [2] or by a (direct) argument involving
interlacements and an appropriate isomorphism theorem, that a˚ ě 0 for any transient G. We
will always assume that

(1.4) θ0p0q “ 1,
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which is a generic property, see (2.3) below. In particular, (1.4) implies that a˚ “ 0. The
regime a ą 0p“ a˚q will be referred to as subcritical and (1.3) implies that the probability for
tϕ ě au to contain an unbounded cluster (anywhere) vanishes for such a. On the other hand,
this probability is strictly positive when a ă 0, which constitutes the supercritical regime.

The fact that (1.4) holds follows in practice from the fact that the capacity observable cappK0q

is finite a.s. on any transient graph G (see (2.1) for the definition of capp¨q). In fact, rather more
is true on graphs that satisfy (1.4). Indeed [9, Corollary 1.3] implies in this case that

(1.5) P
`

cappK0q ą t
˘

— t´1{2 as tÑ8.

The precise asymptotics (1.5) will play an important role in the sequel.
We now focus on the one-arm probability for this percolation problem at criticality. For

open or closed U, V Ă rG, we denote by tU Ø V u the event that U and V are connected by a
continuous path in rG, with a superscript A when the connection occurs in A Ă rG. Our main
interest is in the quantity

(1.6) ψpRq
def.
“ P

`

0
tϕą0u
ÐÑ BBp0, Rq

˘ (1.1)
“ P

`

K0 X BBp0, Rq ‰ H
˘

,

where Bp0, Rq refers to the closed ball of radius R around 0 in rG, see Section 2 for the precise
definition, and BB denotes the topological boundary of B Ă rG.

The quantitative study of ψ involves further assumptions on G “ pG,λq. We will often work
under the ellipticity assumption

λx,y{λx ě c1, for all x, y P G s.t. λx,y ą 0,(p0)

for some c1 P p0, 1q (the terminology (p0)-condition is borrowed from [13]). We will also typically
require the graph to be α-Ahlfors regular, i.e. there exist a positive exponent α and c, c1 P p0,8q
such that the volume growth condition

(Vα) cRα ď λpBpx,Rqq ď c1Rα for all x P G and R ě 1,

is satisfied. Furthermore we impose that there exist constants c, c1 P p0,8q and an exponent
ν P p0,8q such that the Green’s function g on G satisfies

c ď gpx, xq ď c1 and cdpx, yq´ν ď gpx, yq ď c1dpx, yq´ν for all x ‰ y P G.(Gν)

Condition (Gν) alone implies (1.4); see [7, Lemma 3.4(2) and Corollary 3.3(1)]. Moreover, when
d “ dgr is the graph distance, the above requirements necessarily imply that p0 ăqν ď α ´ 2,
see [1], and in particular that α ą 2. We will always assume that this is the case. Examples of
graphs satisfying the above conditions include the square lattice Zα for any integer α ě 3, for
which ν “ α´ 2, as well as various fractal and Cayley graphs [6]. An example with non-integer
values of α, ν is the graphical Sierpinski carpet in α dimensions; see [6, Remark 3.10,2)], for
which 1 ă ν ă 2 when α “ 4. More generally, for any value of α and ν as before there exists a
graph satisfying the previous conditions [1].

We can now formulate our main result. The constants c, C, etc. below may depend implicitly
on ν and α, and the other constants appearing in (p0), (Vα) and (Gν).

Theorem 1.1. If G satisfies (p0), (Vα) and (Gν) with 0 ă ν ă α
2 , one has

(1.7) cR´
ν
2 ď ψpRq ď CR´

ν
2 , for all R ě 1.
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The function ψ has enjoyed a flurry of recent activity. We now briefly survey previous results.
The lower bound in (1.7) is known for all ν ą 0, see Corollary 1.3 and (1.22)–(1.23) in [9]; see
also [5] in the case of Zα, for (integer) α ě 3. The article [9] also contains the matching upper
bounds when ν ă 1, so the crux of Theorem 1.1 is the upper bound in (1.7) in the regime
when ν ě 1. In the special case of Z3 (with unit weights), corresponding to ν “ 1, the upper
bound ψpRq ď C

a

logpRqR´1{2 is derived in [5]. For Zα, α ě 4, the same bound holds without
logarithmic pre-factor and is derived in the same reference. As observed in [9, (1.22)–(1.23)]
these bounds hold more generally for ν “ 1, resp. ν ą 1, and are straightforward consequences of
the tail asymptotics (1.5) of the cluster capacity observable. The results of [9, 8] in fact strongly
indicate that the lower bound in (1.7) is sharp below mean-field regime; see [9, Table 1].

More recently, as forecast in [23], it was proved in [3] that cR´2 ď ψpRq ď CR´2 on the
lattice when α ą 6 (expectedly the upper-critical dimension based on a formula of Lupu, to
which we return below). Even more recently, the upper bounds on ψ were improved in low
dimensions. Namely, in [8], it is shown that ψpRq ď Clog logpRq2{3R´1{2 when ν “ 1 and
ψpRq ď logpRqCR´ν{2 for all 1 ď ν ď α

2 . The result of Theorem 1.7 thus provides up to constant
upper bounds in the regime 1 ď ν ă α

2 and in particular for ν “ 1 (e.g. on Z3 with unit weights).

Theorem 1.1 is proved by first obtaining a generalization of Lupu’s two-point formula [16],
see (2.7). This formula is presented in Section 2, see Proposition 2.1, and is of independent
interest. It is then used to significantly refine our earlier approach of [8], which roughly consisted
in making rigorous that the cluster K0 must hit large loops (in the equivalent loop soup picture
of the problem) in low dimensions. In fact we will prove the following result, which is effectively
a stronger version of Theorem 1.1; we abbreviate B “ Bp0, Rq in the following.

Theorem 1.2. Under the assumptions of Theorem 1.1, for all R ě 1 and s ď c, one has

P
`

K0 X BB ‰ H, cappK0 XBq ď sRν
˘

ď R´
ν
2 exp

`

´ cs´
1
ν

˘

.(1.8)

The proof of Theorem 1.2 appears in Section 3. Theorem 1.1 is readily obtained from Theo-
rem 1.2, as we now explain.

Proof of Theorem 1.1. Fix s ą 0 such that the conclusions of Theorem 1.2 hold. In view of (1.6),
one has that

ψpRq ď P
`

K0 X BB ‰ H, cappK0 XBq ď sRν
˘

` P
`

cappK0q ą sRν
˘

,

and the upper bound in (1.7) follows by combining (1.8) and (1.5). As explained above, the
lower bound in (1.7) is known [9].

The results of Theorem 1.1 can be fruitfully combined with earlier works [8, 18, 9, 12] to
exhibit the scaling behavior of various important observables away from the critical point. This
effectively boils down to the fact that one can now afford to set qp¨q “ C when ν ă α

2 in various
contexts; see for instance [8, (1.6)] or [9, (6.1)].

We give two examples of this. First, combining Theorem 1.1 and [8, (1.15)] (see also (1.6)
therein), one now knows that for all a ‰ 0, if ν ă α

2 and if d “ dgr is the graph distance on G,
one has

(1.9) c|a|´
2α
ν
`2 ď Er|Ka|1t|Ka| ă 8us ď C|a|´

2α
ν
`2,

where |Ka| denotes the cardinality of Ka XG. For our second example we specialize to the case
of G “ Z3, with unit weights. Then as a consequence of Theorem 1.1 and [8, Corollary 1.3], one
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has the following: there exists c P p0,8q and for all η P p0, 1q, there exists C “ Cpηq P p0,8q
such that for all e P S2, a P R with |a| ď c, and all λ ě C,

(1.10) ´
π

6
p1` ηq

λ

logpλq
ď log

ˆ

τ tr
a p0, rλξesq

τ tr
0 p0, rλξesq

˙

ď ´
π

6
p1´ ηq

λ

logpλq
,

where ξ “ |a|´2. In depending only on λ, the bounds (1.10) give striking evidence of the
presumed rotational invariance in the scaling limit at criticality.

Note. During the writing of this article we learned that Zhenhao Cai and Jian Ding obtain the
result of Theorem 1.1 on Z3 independently, including higher-dimensional Euclidean lattices.

2 A generalization of Lupu’s formula

In this section we derive a key identity that generalizes a result of [16]; see Remark 2.2, 2) below.
We will actually later use this formula on certain subgraphs of rG instead of directly on rG, see the
proof of Lemma 3.2, which have a positive killing measure. Accordingly, throughout this section,
we work within the framework of general transient weighted graphs G “ pG,λ, κq with killing
measure κ, thus extending the setup of Section 1. Contrary to the rest of this article, the results
of this section actually hold without the conditions (p0), (Vα) and (Gν), but in Proposition 2.1
below we will still assume that (1.4) is satisfied.

We first introduce some more notation and recall a few known facts, and refer for instance
to [7, Section 2] for more details in this setup. To construct rG on graphs with a positive killing
measure, in addition to the closed intervals between edges, we also add for each x P G with
κx ą 0 an interval of length 1{p2κxq starting at x, which is closed at x and open on the other
side of the interval. Recall that G, the vertex set of G, is endowed with a metric d. We write
Bpx,Rq for the subset of the corresponding metric graph rG obtained as the union of all closed
intervals between two vertices which are both in the closed ball ty P G : dpx, yq ď Ru of radius
R ě 0 around x P G, and all half-open intervals starting at a vertex in the previous ball and with
positive killing measure. We write BBpx,Rq for the set of all the vertices y in Bpx,Rq such that
there is an edge starting in y not included in Bpx,Rq. Recall that 0 denotes an arbitrary point in
rG, which is for instance the origin of the lattice in case G “ Zα, and abbreviate BpRq “ Bp0, Rq
and BBpRq “ BBp0, Rq.

A set K Ă rG is bounded if K X G is a bounded (or equivalently, finite) set, and compact if
it is closed, for the natural geodesic distance which assigns length 1 to each edge, and bounded.
We also denote by BK the topological boundary of a set K Ă rG for this distance. Note that any
half-open interval in rG starting in x with κx ą 0 is bounded but not compact.

Recall that the random walk X on G naturally extends to a Markov process on rG with
continuous trajectories. Its canonical law is denoted by P

rG
x “ Px when starting at x P rG.

We denote by g
rG
U “ gU for closed U Ă rG the Green’s function killed on the set U , that is

gU px, yq “ Exr`ypHU qs, where HU “ inftt ě 0 : Xt P Uu and p`yptqqyP rG,tě0
is the family of

local times associated to X. If x, y P G and U Ă G, then gU px, yq is just equal to λ´1
y times the

average number of time the discrete time random walk on G started in x visits y before entering
U . Moreover, we abbreviate gU pxq “ gU px, xq for all x P rG, and define the capacity of a finite
set K Ă G by

cappKq “ cap
rGpKq

def.
“

ÿ

xPK

eKpxq, where eKpxq
def.
“ λxPxp rHK “ 8q,(2.1)

and rHK is the return time to K, that is the first time after its first jump that the random
walk on G hits K. One can extend the definition (2.1) to closed sets K Ă rG with finitely many
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connected components, see [7, (2.20) and (2.27)], and if K is also compact, then the equilibrium
measure eK is then supported on the finite set BK. Therefore, in the particular case BK Ă G,
the capacity of K is simply equal to the capacity of BK given by (2.1). One of the main interests
of the capacity is that by [22, (1.57)], which can easily be extended to infinite graphs and to the
metric graph, for all compact sets K Ă rG with finitely many connected components, one has

PxpHK ă 8q “
ÿ

yPBK

gpx, yqeKpyq for all x P rG.(2.2)

The Gaussian free field ϕ “ pϕxqxP rG with canonical law P rG “ P is the mean zero centered
Gaussian field with covariance function gp¨, ¨q. As to the genericity of the condition (1.4), one
knows for instance that

(2.3) if cappKq “ 8 for all infinite and connected set K Ă G, or if
G is a vertex-transitive graph (with unit weights), then it satisfies (1.4),

see Theorem 1.1,(1) and Corollary 1.2 in [7]; see also [19, Proposition 8.1] for examples of graphs
not verifying (1.4). We can now state the announced formula. Recall that gU pxq “ gU px, xq
denotes the on-diagonal Green’s function killed on U Ă rG and below U is often the origin or its
cluster K0 in tϕ ě 0u as defined in (1.1).

Proposition 2.1. For any weighted graph G “ pG,λ, κq satisfying (1.4), all x P G and 0 ă t ď
gt0upxq, one has

(2.4) P
`

gt0upxq ´ gK0pxq ě t
˘

“
1

π
arctan

ˆ

gp0, xq
a

tgp0q

˙

.

Before delving into the proof, we make a few comments that shed some light on (2.4).

Remark 2.2. 1) (Alternative formulations). Formula (2.4) can be equivalently recast as fol-
lows. For all x P G and all s P pgpxq ´ gt0upxq, gpxqs, applying (2.4) with t “ s ´ pgpxq ´
gt0upxqq, which satisfies 0 ă t ď gt0upxq as required, one finds that

(2.5) P
`

gpxq ´ gK0pxq ě s
˘ (2.4)
“

1

π
arctan

ˆ

gp0, xq
a

tgp0q

˙ˇ

ˇ

ˇ

ˇ

t“s´pgpxq´gt0upxqq

“
1

π
arcsin

ˆ

gp0, xq
a

tgp0q ` gp0, xq2

˙ˇ

ˇ

ˇ

ˇ

t“s´pgpxq´gt0upxqq

“
1

π
arcsin

ˆ

gp0, xq
a

sgp0q

˙

;

here, the first equality in the second line follows using the trigonometric identity arctanpαβ q “
arcsinp α?

β2`α2
q valid for all α, β ą 0, and the last equality follows upon observing that

gpxq ´ gt0upxq “ PxpH0 ă 8qgp0, xq “
gp0,xq2

gp0q . Another alternative formulation of (2.4),
which will be useful in the proof of Lemma 3.2 below, can be obtained from the following
alternative description of the quantity appearing on the left-hand side of (2.4), which is
an easy consequence of the strong Markov property at time HK0 : on the event K0 ‰ H,

gt0upxq ´ gK0pxq “ Ex
“

gt0upXHK0 , xq1tHK0 ă Ht0uu
‰

.(2.6)

2) (Lupu’s formula). Applying (2.5) with s “ gpxq and observing that gK0pxq ě 0 with
equality if and only if x P K0, one immediately deduces that

(2.7) P
`

0
tϕą0u
ÐÑ x

˘

“ P
`

x P K0
˘

“
1

π
arcsin

ˆ

gp0, xq
a

gpxqgp0q

˙

,
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thus recovering [16, Proposition 5.2], see also Proposition 2.1 therein; the discrepancy with
[16, display (5.1)], where the pre-factor is 2

π , is owed to the fact that the latter deals with
connection via a loop cluster, and the (independent) cost to have signpϕ0q “ 1 produces
the extra factor 1

2 . We also refer to [17, Corollary 1] for formulas related to (2.4) on finite
graphs, involving differences of effective resistances.

Proposition 2.1 can be proved in several ways. Here we use an approach that combines the
integrability of the cluster capacity observable and Doob transforms, see [19] in the context of
metric graphs, and also [20].

Proof of Prop. 2.1. As explained in [7, Remark 2.2], one can replace any graph with a posi-
tive killing measure by a graph with zero killing measure such that the diffusions on the two
corresponding metric graphs coincide, and thus the corresponding Gaussian free fields as well.
Throughout the proof, we will thus assume for simplicity w.l.o.g. that the killing measure on G
is equal to zero. We will prove (2.5), from which (2.4) follows by reverting the arguments of
Remark 2.2. 1). If x “ 0 then gt0upxq “ 0 and there is nothing to show. We assume henceforth
that x ‰ 0. We write

rGx
def.
“ rGztxu,

which is naturally viewed as the metric graph associated to the graph Gx obtained from G “ pG,λq
by removing x from the vertex set G, retaining the same weights λy,z for y, z P Gztxu and adding
a killing measure κy “ λy,x for each y P G such that λy,x ą 0. The half-open interval of length

1
2κy

“ 1
2λy,x

on the metric graph rGx for y „ x is identified with the closed interval between x and

y in rG, from which we removed x. Note that the diffusion on rGx then has the same law as the
diffusion on rG killed on hitting x. By the Markov property for the field one can decompose ϕ
under P “ P rG as

(2.8) ϕ¨ “ ψ¨ ` ϕxhp¨q

(the equality in (2.8) defines the field ψ), where ψx “ 0, pψyqyP rGx has law P rGx , is independent of
ϕx and

(2.9) hpyq “ PypHx ă 8q, y P rG.

The function h in (2.9) is harmonic on rGx in the sense of [19, Definition 5.1], see also (5.2) and
(5.3) therein, and we can thus consider the Doob transform rGhx of rGx by h. By definition, this is
the metric graph associated to the graph with same vertex set as Gx but modified weights λhy,z “
hpyqhpzqλy,z and killing measure κhy “ hpyqκy. There is a natural isomorphism ι : rGx Ñ rGhx ,
which acts as identity map on the vertices of Gx and otherwise stretches the cables ‘harmonically’,
see [19, (5.4)].

The diffusion on rGhx , with law P
rGhx
ιpyq, y P rGx, can be identified with the image under ι of a time-

change of X under P rGx
y , specified as follows. If pPtqtě0 denotes the semigroup of the diffusion X

on rGx (with law P
rGx
¨ ) then the time-changed process in question has semigroup h´1Ptph¨q, see

[19, (5.7)]. In more concrete terms, the law P
rGhx
ιpyq, y P rGx, can be viewed up to time-change as the

image under ι of the law of X under P rGx
y conditionally on X being killed, see [19, Lemma 5.7],

that is the law of pXtq0ďtăHx under the measure P rG
y p ¨ |Hx ă 8q.

The following result is key. The assumption of connectedness could be weakened but will be
sufficient for our purposes.
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Lemma 2.3. For compact connected K Ă rGx and h as given by (2.9),

(2.10) cap
rGhx
pιpKqq “

1

gKpxq
´

1

gpxq
.

The proof of Lemma 2.3 appears below in the present section. Observe now that for arbitrary
0 ă s ă gpxq, the occurrence of the event ts ă gpxq ´ gK0pxq ă gpxqu implies that gK0pxq ą 0,
whence x R K0, i.e. K0 is contained in rGx (and furthermore compact). Thus, Lemma 2.3 applies
on this event with the choice K “ K0 (recall that K0 is bounded P-a.s. under (1.4)), yielding
that

P
`

s ă gpxq ´ gK0pxq ă gpxq
˘

“ P
`

1
gpxq´s ă

1
gK0 pxq

ă 8
˘

(2.10)
“ P

´

1
gpxq´s ´

1
gpxq ă cap

rGhx
pιpK0qq ă 8

¯

.
(2.11)

The probability involving the capacity appearing in (2.11) can be explicitly computed, as we
now explain. To do so, we use (2.8) to view K0 “ K0pϕq “ K´ϕxhp¨qpψq and condition on ϕx.
Recall that ψ is independent of ϕx under Pp“ P rGq and has law P rGx . Now, importantly, by [19,
(5.9)] applied with rGx in place of rG, pψyqyP rGx has the same law as phpyqϕιpyqqyP rGx under P rGhx . In

particular, this implies that for all t P R, the set ιpK´thp¨qpψqq has the same law under P rG as K´t

under P rGhx . Hence, all in all the probability in the second line of (2.11) can be recast as

(2.12)
1

a

2πgpxq

ż 8

´8

P rGhx
´

1
gpxq´s ´

1
gpxq ă cap

rGhx
pK´tq ă 8

¯

e
´ t2

2gpxq dt,

where the integral over t corresponds to averaging over ϕx. The merit of the rewrite (2.12) is
that the cluster of 0 is now at constant height ´t, cf. (2.11). Moreover, the following holds.

Lemma 2.4. The distribution of the random variable cap
rGhx
pK´tq1tcap

rGhx
pK´tq P p0,8qu under

P rGhx has density given by
1

2πu
b

u
gtxup0q

hp0q2
´ 1

e´
t2u
2 1 

uě hp0q2

gtxup0q

(

with respect to Lebesgue measure.

Lemma 2.4 is proved at the end of this section. Feeding the above density into (2.12), applying
Fubini and evaluating the Gaussian integral over t using that

1
a

2πgpxq

ż 8

´8

e
´ t2u

2
´ t2

2gpxq dt “
1

a

2πgpxq
¨

d

2π

u` gpxq´1
“

1
a

ugpxq ` 1
, u ą 0,

it follows in combination with (2.11) that for all s P p0, gpxqq,

(2.13) P
`

s ă gpxq ´ gK0pxq ă gpxq
˘

“

ż 8

α

hp0q

2πu
b

pugtxup0q ´ hp0q2qpugpxq ` 1q
du,

where we abbreviated α “ p 1
gpxq´s ´

1
gpxqq_

hp0q2

gtxup0q
. The remainder of the proof is computational.

Before proceeding, we first collect the following two useful identities, which follow immediately
by the (strong) Markov property for the diffusion on rG: for all x P rG, recalling h from (2.9) and
that gU pxq “ gU px, xq for U Ă rG with g “ gH, one readily obtains that

gp0, xq “ hp0qgpxq and(2.14)

gtxup0q “ gp0q ´ hp0qgpx, 0q
(2.14)
“ gp0q ´ hp0q2gpxq.(2.15)
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We now consider the regime of spă gpxqq such that 1
gpxq´s ´

1
gpxq ě

hp0q2

gtxup0q
(so α “ 1

gpxq´s ´
1

gpxq

in (2.13)), or equivalently that

(2.16) s ě
hp0q2gpxq2

gtxup0q ` hp0q2gpxq

(2.14),(2.15)
“

gp0, xq2

gp0q
“ PxpH0 ă 8qgp0, xq “ gpxq ´ gt0upxq,

where the penultimate equality is obtained by last-exit decomposition and the last one by the
Markov property. Notice that, except for the terminal value s “ gpxq, which we will deal with
separately at the end, the regime of parameters spă gpxqq satisfying (2.16) coincides precisely
with the one above (2.5). For such values of s, and with the help of the substitution

u “
gp0, xq2

gpxq2gp0qv2 ´ gp0, xq2gpxq

one recasts the integral in (2.13) with the help of (2.14) and (2.15) to obtain that

P
`

s ă gpxq ´ gK0pxq ă gpxq
˘

“
1

π

ż
gp0,xq?
gp0qs

gp0,xq?
gp0qgpxq

1
?

1´ v2
dv

“
1

π

ˆ

arcsin
´

gp0,xq?
gp0qs

¯

´ arcsin
´

gp0,xq?
gp0qgpxq

¯

˙

(2.17)

for all s P rgp0,xq
2

gp0q , gpxqq. To deduce (2.5), consider now the case s “ gp0,xq2

gp0q , for which (2.17)
yields that

P
`gp0,xq2

gp0q ă gpxq ´ gK0pxq ă gpxq
˘

“ 1´ 1
2 ´

1
π arcsin

´

gp0,xq?
gp0qgpxq

¯

.

Finally, observe that the random variable gpxq ´ gK0pxq is non-negative and its distribution has
an atom at 0 of weight 1

2 (since gpxq ´ gK0pxq “ 0 if and only if ϕ0 ă 0, which has probability
1
2). In combination with the fact that P

`

0 ă gpxq ´ gK0pxq ď
gp0,xq2

gp0q

˘

“ 0, it thus follows from
the previous display upon rearranging terms that

(2.18) P
`

gpxq ´ gK0pxq ě gpxq
˘

´

“ P
`

gpxq ´ gK0pxq “ gpxq
˘

¯

“
1

π
arcsin

´ gp0, xq
a

gp0qgpxq

¯

.

Plugging (2.18) into (2.17) yields (2.5). This completes the proof of Proposition 2.1 under the
assumption that both Lemmas 2.3 and 2.4 hold.

We now supply the:

Proof of Lemma 2.3. We will assume that BK Ă Gztxu, the vertex set of Gx. In this case BpιpKqq
and BK can be naturally identified. The general case can be reduced to this one by exploiting
network equivalence, adding vertices to Gx (and Ghx) corresponding to the boundary points of K
(and ιpKq); see [7, Section 2.2] for further details. Recall the definition of the graph Ghx from
below (2.9), and notice that by [19, (5.3)] its weight function λhιpyq :“ κhy `

ř

z„y λ
h
y,z can be

recast as λhιpyq “ hpyq2λy, where λy is the original weight function on Gx, which coincides with
that of G outside the point x. In light of this, and using the concrete characterization of the law
P

rGhx
¨ described above Lemma 2.3, one obtains that

cap
rGhx
pιpKqq “

ÿ

yPBK

λhιpyqP
rGhx
ιpyqp

rHK “ 8q “
ÿ

yPBK

hpyq2λyP
rG
y p

rHK ą Hx|Hx ă 8q

(2.9)
“

ÿ

yPBK

hpyqλyP
rG
y p

rHK ą Hxq “
ÿ

yPBK

hpyqλxP
rG
x

`

rHx ą HK , XHK “ y
˘

,
(2.19)
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where the last step uses the reversibility of the walk under λ. Now, with p pXnqně0 denoting the
discrete skeleton of X (under P rG

x ) on G, which has the law of the random walk on G “ pG,λq,
decomposing when pX0 “ x and on the event tHK ă 8u according to the time of the last visit
to x prior to entering K, one finds that

P
rG
x

`

HK ă 8, XHK “ y
˘

“
ÿ

ně0

P
rG
x

´

pXk R K, k ă n, pXn “ x, pXn`i ‰ x, 1 ď i ă HK ´ n,HK ă 8, pXHK “ y
¯

“ gKpxqλxP
rG
x

`

HK ă rHx, XHK “ y
˘

,

(2.20)

where the last line follows by an application of the simple Markov property for pX at time n (recall
that gKpxq “ gKpx, xq). Feeding (2.20) into (2.19), and using that hpyq “ gpx,yq

gpxq , it follows from
a reasoning similar to (2.6) that

cap
rGhx
pιpKqq “

ÿ

yPBK

gpx, yq

gpxqgKpxq
P

rG
x

`

HK ă 8, XHK “ y
˘

“
gpxq ´ gKpxq

gpxqgKpxq
,

from which (2.10) is immediate.

We now provide the remaining:

Proof of Lemma 2.4. On the event ϕx ě 0, the cluster of 0 in ty P rG : ψy ě 0u is included in
K0 under P rG , and since ψ is independent of ϕx, one deduces from (1.4) on rG that (1.4) is also
satisfied on rGx by writing

2´1P rGxpK0pϕq is boundedq “ P rGpK0pψq is bounded, ϕx ě 0q

ě P rGpK0pϕq is bounded, ϕx ě 0q “ 2´1θ0p0q
(1.4)
“ 2´1,

where the pemultimate step follows by symmetry, see [7, Lemma 4.3]. One readily deduces that
the free field under P rGhx has bounded sign clusters a.s, hence cap

rGhx
pK´tq has an explicit law

given by [7, Theorem 3.7] (see also [19, Theorem 5.5]) for all t ď 0. For t ą 0, it follows from
[7, (3.17)] that cap

rGhx
pK´tq on the event H ‰ K´t is compact has the same law as cap

rGhx
pKtq on

the event Kt ‰ H. As we now explain, for t ą 0 and under P rGhx , K´t is actually compact if and
only if cappK´tq ă 8. Indeed any compact set has finite capacity by construction. On the other
hand by the isomorphism (Isom’) from [7, p.283], which is in force in view of Theorem 1.1,2)
and (3.14) therein, K´t has either the same law as K0 if K0 does not intersect a trajectory in ωu,
and otherwise stochastically dominates a trajectory in ωu, where ωu is the interlacement process
at level u “ t2{2 on rGhx . By the description of the law of P

rGhx
¨ appearing above the statement of

Lemma 2.3, random interlacement trajectories on rGhx a.s. have images via ι which contain the
interval between x and y in rG for some y „ x, that is the half-open interval starting at y in rGhx ,
and thus have infinite capacity on rGhx in view of [7, (2.32)]. Since K0 is a.s. compact on rGhx , we
deduce that if K´t is non-compact, then it stochastically dominates a trajectory in ωu, and thus
has a.s. infinite capacity.

Overall we have that for each t P R, the density with respect to Lebesgue measure of
cap

rGhx
pK´tq on the event 0 ă cap

rGhx
pK´tq ă 8 is given by [7, (3.7)] on the graph rGhx . This

density depends on rGhx only through g
rGhx
p0q “ g

rGhx
p0, 0q, where g

rGhx
denotes the Green’s function

of the diffusion on rGhx . But as g rGhx p0q “ hp0q´2gtxup0q by [19, (B.1)], applying [7, (3.8) and (3.10)]
gives the claim.
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3 Proof of Theorem 1.2

Throughout this section, we always tacitly work under the assumption that G “ pG,λq satisfies
(p0), (Vα) and (Gν) with 0 ă ν ă α

2 ; see Section 1. Note that one could also consider the case
ν “ α

2 , but the strategy below would in its present form not lead to any significant improvement
over the results of [8]. The symbols c, C, . . . are used for numerical constants (in p0,8q) that
can change from place to place. Their dependence on any parameter other than ν and α, as well
as the other constants appearing in our conditions (p0), (Vα) and (Gν), will appear explicitly in
our notation. In the sequel, we abbreviate BpLq “ Bp0, Lq Ă rG and for all L ě 1 introduce the
set BpLq Ą BpLq as

BpLq
def.
“

#

x P rG : any continuous path π “ pxtqtě0 Ă rG
with x0 “ x and dp0, xiq ÝÑ

iÑ8
8 intersects BpLq

+

.(3.1)

In words, BpLq is the set of points which are entirely ‘surrounded’ by BpLq. For R ě 1, ε ą 0
and 0 ă 2a ă b ď 1, we let

(3.2) ta,bR,ε
def.
“ sup

!

t ě 0 : for all s ď t,

P
´

K0 X BBpRq ‰ H, cappK0 X Aa,bR q ď sppb´ aqRqν
¯

ď R´
ν
2 e´εs

´ 1
ν
)

,

where Aa,bR denotes the ‘annulus’

(3.3) Aa,bR
def.
“ Bpp1´ aqRqzBpp1´ bqRq.

The main ingredient of our proof is the following recursive formula for ta,bR,ε.

Proposition 3.1. There exist c2 ą 0 and c ą 0 such that with t¨R “ t¨R,c2, one has

(3.4) ta,bR ě c
´

aαν ^ log
´ 1

td,eR _ d

¯´ν¯

, for all R ě 1, cR´1 ď 2a ă b ă 1 and 2d ă e ď a{4.

Proposition 3.1 readily implies our main result, as we explain first.

Proof of Theorem 1.2. Defining recursively log0pRq “ R and logk`1pRq “ logplogkpRqq _ 1, we
let

ak “
4

logkpRq
and bk “

1

logk`1pRq
for all k ě 0.

We take a “ ak`1, b “ bk`1, d “ ak and e “ bk in Proposition 3.1, and one can verify that the
assumptions therein are satisfied for R ě C, which can be assumed w.l.o.g. since cappK0q ě c

whenever K0 ‰ H. Then, abbreviating uk “ 1{tbk,akR and recalling that α ě 1 (in fact α ą 2; see
below (Gν)), we have by (3.4) that

(3.5) uk`1 ď C1

`

logpukq _ logk`1pRq
˘αν for all k ě 0 such that logk`2pRq ě 2,

for some constant C1 ă 8. Note that on the event K0 X BBpRq ‰ H, it follows from [6, (2.8)]
that K0 X Bpp1 ´ b0qRq

c ‰ H for R ě C, and if x is the closest vertex to 0 in that set, then
x P Bpp1´ a0qRq for R large enough. Hence Aa0,b0

R X K0 X G ‰ H, and so cappK0 X Aa0,b0
R q ě

infxPG gpxq
´1 ě c by (Gν). Therefore, ta0,b0

R ě R´ν for R ě C, which implies u0 ď Rν , and one
easily deduces from this and (3.5) inductively in k that

uk ď 2C1αν logkpRq
αν for all k ě 0 such that logkpRq ě C2,
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for some large enough constant C2 P p0,8q. Hence if we denote by k̄ “ k̄pRq the largest k such
that logkpRq ě C2, we deduce that uk̄ ď 2C1αν exppC2q, that is tbk̄,ak̄R ě c. Since bk̄ ´ ak̄ ě c
by definition, we obtain (1.8) after a change of variable for s, up to replacing BBpRq appearing
therein by BBpRq. To conclude, it is enough to prove that BpRq Ă BpCRq for a large enough
constant C and to perform a change of variable for R in (1.8). The inclusion can be proved using
(2.2) to deduce that for all x P BpRq, one has

1 “ PxpHBpRq ă 8q ď cappBpRqq sup
yPBpRq

gpy, xq ď CRν
´

inf
yPBpRq

dpx, yq
¯´ν

,

where the last inequality follows from (Gν) and [6, (3.11)].

We now turn to the proof of Proposition 3.1, which relies on the formula (2.4) applied to
suitable metric graphs rGK Ă rG that we now introduce. We consider K Ă G a finite set of vertices
and define rGK as the (only) unbounded connected component of rGzK. Note that rGK can be
identified with the metric graph associated to the graph GK having vertex set the unique infinite
connected component of GzK, the same weights as G between vertices, and killing measure equal
to λy,x for all y in that infinite component which have a neighbor x in K, and zero everywhere
else. We refer to the beginning of the proof of Proposition 2.3 for a similar construction. In
particular, this identification of rGK entails that the diffusion on rGK is well-defined and it is simply
the diffusion on rG killed when hitting K. Moreover, the graph GK fits the setup of Section 2,
and we can thus define a Gaussian free field on rGK with canonical law P rGK . Observe that, in the
notation of Section 2 (see above (2.1)), this free field has covariance g rGK px, yq “ g

rG
Kpx, yq, for all

x, y P rGK .
Applying the formula (2.4) on the metric graph rGK yields the following result.

Lemma 3.2. There exists C3 P r1,8q such that for all values of R ě 1, cR´1 ď a ă 1{4,
K Ă Aa{2R

def.
“ Bpp1´ a{2qRq , 2d ă e ď a{4, and t ą 0,

P rGK
`

cappK0 X Ad,eR q ě tppe´ dqRqν
˘

ď CR
ν
2 t´

1
2d´

ν
2 exppCa´αq inf

xPBBpC3Rq
P0pHx ă HKq.(3.6)

The proof of Lemma 3.2 will involve the following random walk estimate, which we show
separately first. This relies on the following facts concerning the geometry of G “ pG,λq under
our standing assumptions (p0), (Vα) and (Gν). Similarly as in [6, Lemma 6.1], see also [8, (2.2)],
we introduce under the above assumptions on G the approximate renormalized lattice ΛpLq for
L ě 1 having the following properties. There exists a constant C4 P p0,8q such that for all
x P G and L,N ě 1,

(3.7)

$

’

&

’

%

Ť

yPΛpLqBpy, Lq “ G,

the balls Bpy, L2 q, y P ΛpLq, are disjoint,
|ΛpLq XBpx, LNq| ď C4N

α.

We will use the lattices Λp¨q several times in the sequel. We further say that π “ pxiqiďL is a
path in ΛpLq if xi P ΛpLq for all i ď L, and for each i ă L, there exists x P Bpxi, Lq XG and
y P Bpxi`1, Lq XG such that x and y are neighbors in G.

Lemma 3.3. For all R ě 1, a ě cR´1 and 2d ă e ď a{4, one has

Py
`

Hx ă HAa{2R

˘

ě c expp´Ca´αqR´ν , for all y P Ad,eR and x P BBpC3Rq.(3.8)
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Proof. Let y P Ad,eR XG, then by definition, see (3.1) and (3.3), there is a nearest-neighbor path
π “ pxiqiPN Ă G such that x1 “ y, xi R Bpp1´ eqRq for all i ě 1, and xi Ñ 8 as i Ñ 8.
Applying the identity (2.2) in a manner similar to [18, (2.17)] for instance, one finds that there
exist constants c3 P p0, 1{24q and c4 ą 0 such that

(3.9) Pu
`

HBpv,c3aRq ă HBpv,aR{8qc
˘

ě c4 for all u, v P G with dpu, vq ď 3c3aR.

Let y1 “ y and for each k ě 1, define recursively yk`1 as the first vertex in Λpc3aRq such that
Bpyk`1, c3aRq is visited by π after last exiting Bpyk, c3aRq. We denote by p the smallest integer
q ě 1 such that yq P BppM ` 1qRq, for some constant M ě 1 that we will fix later. By (3.7)
and [6, (2.8)], we have dpu, yk`1q ď 3c3aR for all u P Bpyk, c3aRq and any 1 ď k ď p´ 1 as long
as aR ě c. In particular, for each 1 ď k ď p ´ 1, noting that Bpyk`1, aR{8q Ă pAa{2R qc since
e ď a{4, it follows from (3.9) that the diffusion starting in any point u P Bpyk, c3aRq will reach
Bpyk`1, c3aRq before hitting Aa{2R with probability at least c4. Noting that yk P BppM ` 1qRq
for all 1 ď k ď p implies p ď CpM{aqα by (3.7), using a chaining argument, we deduce that for
all y P Ad,eR XG,

Py
`

HBBpMRq ă HAa{2R

˘

ě expp´CpM{aqαq.

Let x P BBpMRq, then by the strong Markov property at time HBBpMRq we have

Py
`

Hx ă HAa{2R

˘

ě expp´CpM{aqαq inf
uPBBpMRq

Pu
`

Hx ă HAa{2R

˘

.

The last probability is bounded from below by

PupHx ă 8q ´ Pu
`

HAa{2R

ă 8
˘

sup
vPAa{2R

PvpHx ă 8q ě cM´νR´ν ´ CM´2νR´ν ,

where the last inequality follows from (Gν), (2.2) and [6, (2.8)]. Fixing M “ C3 for a large
enough constant C3, the last two equations yield that for x as above, (3.8) holds.

The proof of Lemma 3.2 utilizes the above result in combination with Proposition 2.1.

Proof of Lemma 3.2. Let x P BBpC3Rq. Denoting by capapK
1q the capacity of a set K 1 Ă rG

for the diffusion on rG killed on Aa{2R , we have by the definition of the capacity in (2.1) that
capapK

1q ě cappK 1q. Hence, if K 1 Ă Ad,eR has finitely many connected components, is compact,
and cappK 1q ě tppe´ dqRqν , we have by (2.2) applied on the graph with infinite killing on Aa{2R

that, with Px “ P
rG
x ,

Px
`

HK1 ă HAa{2R

˘

ě c ¨ cappK 1q inf
zPK1

Px
`

Hz ă HAa{2R

˘

ě cdν expp´Ca´αqt,(3.10)

where the last inequality follows from (3.8), invariance by time reversal, and the inequality
d ď e´d. Recall now that g rGK denotes the Green’s function on the metric graph rGK introduced
above Lemma 3.2. On the event cappK0XAd,eR q ě tppe´ dqRqν , which implies in particular that
K0 ‰ H, by (2.6) applied to rGK , one finds that

g
rGK
t0upxq ´ g

rGK
K0 pxq “ Ex

“

g
rGK
t0upXHK0 , xq1tHK0 ă HKYt0uu

‰

ě cEx

”

PXH
K0XAd,e

R

`

Hx ă HAa{2R

˘

1tHK0XAd,eR
ă HAa{2R

u

ı

ě cdν expp´2Ca´αqtR´ν ,

where we combined (3.8) and (3.10) in the last inequality. The inequality (3.6) now follows
from (2.4), applied on the graph GK , and the inequalities arctanptq ď t valid for all t ě 0,
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g
rGK p0, xq “ P

rGK
0 pHx ă 8qg

rGK pxq ď CP
rG

0 pHx ă HKq and g
rGK pxq, g

rGK p0q ě c by (Gν) and [6,
(2.10)]. To apply (2.4), note that GK satisfies the first condition in (2.3), and hence (1.4) as well.
The former is true since the Green’s function killed on K is smaller than the Green function on
G by definition, see (2.1), which one combines with (Gν) and [7, Lemma 3.4,(2)].

When K “ H, (3.6) can be seen in view of (Gν) as a direct consequence of (1.5), since
the event on the left-hand side of (3.6) implies cappK0q ě tpdRqν . However, when K is large,
P0pHx ă HKq can decrease significantly faster than R´ν for x P BBpC3Rq, see [8, Lemma 2.1],
and the formula (3.6) becomes in a sense stronger than (1.5). We refer to (3.18) and below as to
where this improvement is needed, and combining this with ideas from [8, Section 4] we obtain
the following result.

Lemma 3.4. There exists c5 ą 0 such that for all R ě 1, cR´1 ď 2a ă b ă 1, 2d ă e ď a{4 and
s, t ą 0

(3.11) P
´

cappK0 X Aa,bR q ď sppb´ aqRqν , cappK0 X Ad,eR q ě tppe´ dqRqν
¯

ď CR´
ν
2 t´

1
2d´

ν
2 exp

`

Ca´α ´ c5s
´ 1
ν

˘

.

Proof. We use the isomorphism [14, 16] with the loop soup L on rG at intensity 1{2 on the metric
graph rG, which we now review. We refer to [16] for a detailed construction, and only recall here
that L is a Poisson point process of Markovian loops on rG, that is defined under an auxiliary
probability Q. Moreover, if C is defined as the empty set with probability 1{2, or otherwise
denotes the cluster of 0 in L, that is the set of points in rG which are connected to 0 using a finite
number of loops in L, then

C law
“ K0.(3.12)

We will work under Q using the identification (3.12) throughout the proof. The isomorphism
(3.12) holds not only on G under the conditions listed below (p0), but actually for any weighted
transient graph even with a positive killing measure, and in particular on the graph GK introduced
above Lemma 3.2, for any finite set K Ă G.

Let Lbig Ă L be obtained from L “
ř

i δγi by retaining only big (macroscopic) loops in the
annulus Aa,bR , i.e. loops γi whose range satisfies capprangepγiqq ą sppb ´ aqRqν and for which
rangepγiq Ă Aa,bR . Then on the event cappC X Aa,bR q ď sppb ´ aqRqν , and by the isomorphism
(3.12), K0 has the same law as the cluster of 0 for the loop soup LzLbig. Let us denote by O the
intersection with G of all the loops in Lbig. Using the restriction property for the loop soup [10,
Theorem 6.1] and the isomorphism (3.12) on the graph GO, noting also that Lbig and LzLbig are
independent by defining properties of Poisson point processes, one deduces that

(3.13) Q
´

cappC X Aa,bR q ď sppb´ aqRqν , cappC X Ad,eR q ě tppe´ dqRqν
ˇ

ˇ

ˇ
Lbig

¯

ď P rGO
´

cappK0 X Ad,eR q ě tppe´ dqRqν
¯

.

We refer to [8, (4.26)] and above for a similar reasoning with more details. For a parameter δ ą 0
to be fixed later, let us introduce

L
def.
“ s

1
ν pb´ aqRδ´

1
ν and ` def.

“

Z

pb´ aqR

5L

^

´ 3 “

Z

1

5

ˆ

δ

s

˙
1
ν
^

´ 3,(3.14)

and note that the loops in Lbig then have capacity at least δLν by definition, and that we can
assume w.l.o.g. that `, L ě 1 if s ď c “ cpδq and δ ď c1, since otherwise (3.11) is either trivial
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or follows easily from the capacity bounds (1.5). Let us now denote by G the event that O is a
pL,R, `{2, δLνq-good obstacle set as defined above [8, Lemma 2.1]. That is, for any path π in ΛpLq
from 0 to BpRqc, there is A Ă rangepπXBpRqq such that |A| ě `{2 and cappBpy, LqXOq ě δLν

for all y P A. Combining (3.13) and (3.6) for K “ O, we obtain that

Q
´

cappC X Aa,bR q ď sppb´ aqRqν , cappC X Ad,eR q ě tppe´ dqRqν ,G
¯

ď inf
xPBBpC3Rq

CR
ν
2 t´

1
2d´

ν
2 exppCa´αqEQ“P0pHx ă HOq1tGu

‰

ď CR´
ν
2 t´

1
2d´

ν
2 exppCa´αq expp´cδ`q,

(3.15)

where the last inequality follows from [8, Lemma 2.1], up to assuming w.l.o.g. that L ď cR, that
is s ď c1 for some small enough constant c1 “ c1pδq.

It remains to control the probability on the left-hand side of (3.11) on the event Gc, which
relies on a reasoning similar to, but somewhat simpler than, [8, Lemma 2.3]. Let us denote by
P the set of tuples τ “ px1, . . . , x`q such that such that xi P ΛpLq and Bpxi, Lq Ă Aa,bR for all
1 ď i ď `, Bpxi, Lq X Bpxj , Lq “ H and xi`1 P Bpxi, 5Lq for all 1 ď i ă j ď `. Here ` and L
are as defined in (3.14). We write Dτ for the set of i P t1, . . . , `u such that there exists a loop in
Lbig whose range is included in Bpxi, Lq.

Let us now show that any path π in ΛpLq from 0 to BpRqc contains a tuple τ P P, in the sense
that rangepτq Ă rangepπq. We call π1 the subpath of π which starts just after π last visiting
Bpp1 ´ bqR ` Lq, and afterwards stops just before first leaving Bpp1 ´ aqR ´ Lq. Assuming
w.l.o.g. that pb ´ aqR ě cL, that is s ď c1, one can easily check by [6, (2.8)] that π1 is non-
empty. Let us now define recursively x1 as the first vertex in π1, and recursively xk`1 as the
first vertex in π1 visited after last exiting Bpxk, 2Lq, and denote by p the smallest integer k ě 1
such that π1 never exits Bpxk, 2Lq. Note that by [6, (2.8)], we have dpxk, xk`1q ď 5L for all
1 ď k ď ` whenever L ě C, and hence dpx1, xpq ď 5pL. Since moreover x1 P Bpp1´ bqR` 8Lq
and xp P Bpp1´ aqR´ 4Lqc for L ě C, we deduce that 5pL ě pb´ aqR´ 12L, and hence p ě `

in view of (3.14). Noting additionally that Bpxi, Lq Ă Aa,bR for all 1 ď i ď `, we thus obtain all
in all that τ “ px1, . . . , x`q P P.

By the previous paragraph and by definition of G, there exists on the event Gc a tuple
τ P P such that |Dτ | ď `{2. Moreover, for each τ “ px1, . . . , x`q P P, the events tD γi P
Lbig, rangepγiq Ă Bpxi, Lqu, 1 ď i ď `, are i.i.d. by properties of Poisson point process, and occur
with probability at least p “ ppδq which satisfies ppδq Ñ 1 as δ Ñ 0 by [8, (4.31)]. Since by (3.7)
we have |P| ď C`, we deduce by a union bound that

(3.16) Q
`

Gc
˘

ď C` sup
τPP

QpDτ q ď C`2`p1´ pq`{2 ď expp´c`q,

where the last inequality holds when δ “ c for a small enough constant c ą 0. Now, the tail
asymptotic (1.5) holds on the graph GO by application of [7, Theorem 1.1], since the first condition
in (2.3), and hence (1.4) as well, are satisfied on that graph by virtue of [7, Lemma 3.4,(2)]. It
thus follows from (1.5) on the graph GO and (3.13) that

(3.17) Q
`

cappC X Aa,bR q ď sppb´ aqRqν , cappC X Ad,eR q ě tppe´ dqRqν ,Gc
˘

ď EQ“P rGOpcappK0q ě tppe´ dqRqνq1tGcu
‰

ď Ct´
1
2 pe´ dq´

ν
2R´

ν
2 QpGcq.

Combining (3.12), (3.14), (3.15), (3.16) and (3.17) for δ “ c as before, assuming w.l.o.g. that
s ď c1, and recalling that e´ d ě d, the claim follows.

We are now ready to finish the:
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Proof of Proposition 3.1. Combining (3.2) with (3.11), we have, for all s ą 0 and t ď td,eR,ε,

(3.18) P
´

K0 X BBpRq ‰ H, cappK0 X Aa,bR q ď sppb´ aqRqν
¯

ď R´
ν
2 exp

`

´ εt´
1
ν

˘

` CR´
ν
2 t´

1
2d´

ν
2 exppCa´α ´ c5s

´ 1
ν

˘

.

We now take

ε “ c2
def.
“

c5

4
and t “ exp

`

´ c5s
´ 1
ν

˘

,

then if s ď cpaαν ^ logp1{dq´νq for some small enough constant c ą 0, one can bound the right-
hand side of (3.18) from above by R´ν{2 exp

`

´ εs´
1
ν

˘

. Noting that the condition t ď td,eR,ε for
the above choice of t is satisfied whenever s ď cν5 logptd,eR,εq

´ν , we conclude in view of (3.2) that
any s satisfying all previous requirements is upper bounded by ta,bR “ ta,bR,c2 , i.e., (3.4) holds.
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