CRITICAL ONE-ARM PROBABILITY FOR THE METRIC
GAUSSIAN FREE FIELD IN LOW DIMENSIONS

Alexander Drewitz!, Alexis Prévost? and Pierre-Francois Rodriguez?

Abstract

We investigate the bond percolation model on transient weighted graphs G induced by the
excursion sets of the Gaussian free field on the corresponding metric graph. Under the sole
assumption that its sign clusters do not percolate, we derive an extension of Lupu’s formula
for the two-point function at criticality. We then focus on the low-dimensional case 0 < v < §,
where o governs the polynomial volume growth of G and v the decay rate of the Green’s
function on G. In particular, this includes the benchmark case G = Z3, for which a = 3 and
v =a—2 = 1. We prove under these assumptions that the critical one-arm probability decays
with distance R like R~ 2, up to multiplicative constants.
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1 Introduction

The bond percolation problem induced by the excursion sets of the Gaussian free field on metric
graphs has recently attracted considerable attention. This model is a variant of a percolation
model introduced by Lebowitz and Saleur [15], see also [2] for first rigorous results, and more
recently re-initiated in [21], which concerns percolation of excursion sets of the Gaussian free
field on (transient) graphs. The variant is obtained by taking scaling limits along each edge,
thereby replacing the original graph by its metric version, following an idea of Lupu [16]. Both
discrete and metric models, along with others (including, notably, the vacant set of random
interlacements), are expected to belong to the same universality class [4], characterized by a
continuous transition with scaling near the critical point [9]. The continuous structure of the
metric graph leads to a degree of integrability of the model. This has prompted significant
progress in transient setups, see [5, 9, 7, 16, 23, 3, 11, 7|, some of which concerns — remarkably
— the challenging low dimensions, below the mean-field regime.

In this article we focus on the above percolation model, which is defined as follows. Let
G = (G, ) be a weighted graph, with countably infinite vertex set G and symmetric weights
Azy = Ayz = 0, such that the graph with vertex set G and edge set {{z,y} : Az, > 0} is
connected and locally finite. The weights give rise to the continuous time Markov chain X on G
with generator Lf(x) = i 2yei Aoy (f(y)—f(2)), for suitable f : G — R, where Ay = 3, Ay
This Markov chain is referred to as the random walk on G. For x € G we write P, for its canonical
law when started in x. We assume that X is transient, which is a condition on G. The set G
is endowed with a metric d(-,-). For many cases of interest, one can afford to simply choose
d = dgy, the graph distance on G, i.e. dg;(x,y) = 1 if and only if A\, , > 0 (extended to a geodesic
distance on G); we refer to [6] for an extensive discussion of settings which may require different
choices of d.

In the sequel, the metric graph, or cable system, G associated to G will play an important
role. It is obtained by replacing all edges {x,y} by one-dimensional closed intervals of length
(2A2,5) "1, glued through their endpoints; see [16, 7] for precise definitions. The chain X naturally
extends to a Markov process on G with continuous trajectories. Its canonical law is denoted by
ng = P, when starting at = € gN A set K QN is said to be bounded if K n G is a bounded (or
equivalently, finite) set.

Attached to the above setup is the random field ¢ = () the mean zero Gaussian free

N xeg’
field on G, with canonical law PY = P. The percolation problem we are interested in is obtained
by considering excursion sets of ¢ above varying height a € R. Let 0 denote an arbitrary point
in G and consider, for a € R, abbreviating {¢ > a} = {x € G : ¢, > a},

(1.1) K the connected component of 0 in {¢ > a}

(with £* = F if po < a), and the percolation function

(1.2) 0o(a) "L P(K® is bounded), aeR.

In view of (1.2), one defines the critical parameter associated to this percolation model as
(1.3) ax = ax(G) =inf{a e R: Oy(a) = 1}.

One knows, either by adapting a soft (indirect) argument of [2| or by a (direct) argument involving
interlacements and an appropriate isomorphism theorem, that a, > 0 for any transient G. We
will always assume that

(1.4) 00(0) = 1,



which is a generic property, see (2.3) below. In particular, (1.4) implies that a, = 0. The
regime a > 0(= ay) will be referred to as subcritical and (1.3) implies that the probability for
{¢ = a} to contain an unbounded cluster (anywhere) vanishes for such a. On the other hand,
this probability is strictly positive when a < 0, which constitutes the supercritical regime.

The fact that (1.4) holds follows in practice from the fact that the capacity observable cap(kK°)
is finite a.s. on any transient graph G (see (2.1) for the definition of cap(-)). In fact, rather more
is true on graphs that satisfy (1.4). Indeed [9, Corollary 1.3] implies in this case that

(1.5) P(cap(K") > t) = 712 as t — 0.

The precise asymptotics (1.5) will play an important role in the sequel.

We now focus on the one-arm probability for this percolation problem at criticality. For
open or closed U,V < 5, we denote by {U < V} the event that U and V are connected by a
continuous path in 5, with a superscript A when the connection occurs in A G. Our main
interest is in the quantity

dif' ]P)(O {<50_>0>} 63(07 R)) (1:1) ]P)(’CO N aB(OuR) 7 ®)7

(1.6) ()
where B(0, R) refers to the closed ball of radius R around 0 in G, see Section 2 for the precise
definition, and 0B denotes the topological boundary of B < G.

The quantitative study of ¥ involves further assumptions on G = (G, \). We will often work
under the ellipticity assumption

(po) Azy/Ae = c1, forall z,y e G st. Ay y >0,

for some ¢; € (0, 1) (the terminology (pg)-condition is borrowed from [13]). We will also typically
require the graph to be a-Ahlfors regular, i.e. there exist a positive exponent « and ¢, ¢ € (0, 00)
such that the volume growth condition

(V) cR* < \(B(x,R)) < /R* forallzeGand R > 1,

is satisfied. Furthermore we impose that there exist constants ¢,¢’ € (0,00) and an exponent
v € (0,00) such that the Green’s function g on G satisfies

(G,) c< g(x,z) < and cd(z,y)™" < g(x,y) < dd(z,y)™ forallax #yed.

Condition (G,) alone implies (1.4); see |7, Lemma 3.4(2) and Corollary 3.3(1)]. Moreover, when
d = dg is the graph distance, the above requirements necessarily imply that (0 <)v < o — 2,
see [1], and in particular that o > 2. We will always assume that this is the case. Examples of
graphs satisfying the above conditions include the square lattice Z% for any integer o > 3, for
which v = a — 2, as well as various fractal and Cayley graphs [6]. An example with non-integer
values of «,v is the graphical Sierpinski carpet in « dimensions; see [6, Remark 3.10,2)|, for
which 1 < v < 2 when o = 4. More generally, for any value of o and v as before there exists a
graph satisfying the previous conditions [1].

We can now formulate our main result. The constants ¢, C, etc. below may depend implicitly
on v and «, and the other constants appearing in (po), (V,) and (G,).

Theorem 1.1. If G satisfies (po), (Vo) and (G,) with 0 <v < 5, one has

(1.7) cR™2 <(R) < CR™2, forall R > 1.



The function v has enjoyed a flurry of recent activity. We now briefly survey previous results.
The lower bound in (1.7) is known for all v > 0, see Corollary 1.3 and (1.22)—(1.23) in [9]; see
also [5] in the case of Z%, for (integer) a = 3. The article [9] also contains the matching upper
bounds when v < 1, so the crux of Theorem 1.1 is the upper bound in (1.7) in the regime
when v > 1. In the special case of Z3 (with unit weights), corresponding to v = 1, the upper
bound ¥ (R) < Cy/log(R)R™/? is derived in [5]. For Z%, a > 4, the same bound holds without
logarithmic pre-factor and is derived in the same reference. As observed in [9, (1.22)—(1.23)]
these bounds hold more generally for v = 1, resp. v > 1, and are straightforward consequences of
the tail asymptotics (1.5) of the cluster capacity observable. The results of |9, 8] in fact strongly
indicate that the lower bound in (1.7) is sharp below mean-field regime; see [9, Table 1].

More recently, as forecast in [23], it was proved in [3] that cR™? < ¥(R) < CR™? on the
lattice when a > 6 (expectedly the upper-critical dimension based on a formula of Lupu, to
which we return below). Even more recently, the upper bounds on 1 were improved in low
dimensions. Namely, in [8], it is shown that 1(R) < Cloglog(R)**R~2 when v = 1 and
¥(R) <log(R)R™2 foralll < v < 5. The result of Theorem 1.7 thus provides up to constant
upper bounds in the regime 1 < v < § and in particular for v = 1 (e.g. on Z* with unit weights).

Theorem 1.1 is proved by first obtaining a generalization of Lupu’s two-point formula [16],
see (2.7). This formula is presented in Section 2, see Proposition 2.1, and is of independent
interest. It is then used to significantly refine our earlier approach of [8|, which roughly consisted
in making rigorous that the cluster X° must hit large loops (in the equivalent loop soup picture
of the problem) in low dimensions. In fact we will prove the following result, which is effectively
a stronger version of Theorem 1.1; we abbreviate B = B(0, R) in the following.

Theorem 1.2. Under the assumptions of Theorem 1.1, for all R > 1 and s < ¢, one has

1

(1.8) P(K° n 0B # &, cap(K” n B) < sR") < R™% exp (—es™v).

The proof of Theorem 1.2 appears in Section 3. Theorem 1.1 is readily obtained from Theo-
rem 1.2, as we now explain.

Proof of Theorem 1.1. Fix s > 0 such that the conclusions of Theorem 1.2 hold. In view of (1.6),
one has that

Y(R) <P(KY n 0B # &, cap(K® n B) < sR”) + P(cap(K?) > sR"),

and the upper bound in (1.7) follows by combining (1.8) and (1.5). As explained above, the
lower bound in (1.7) is known [9]. O

The results of Theorem 1.1 can be fruitfully combined with earlier works [8, 18, 9, 12] to
exhibit the scaling behavior of various important observables away from the critical point. This
effectively boils down to the fact that one can now afford to set ¢(-) = C' when v < § in various
contexts; see for instance [8, (1.6)] or [9, (6.1)].

We give two examples of this. First, combining Theorem 1.1 and [8, (1.15)] (see also (1.6)
therein), one now knows that for all @ # 0, if v < § and if d = dg, is the graph distance on G,
one has

(1.9) cla|=%*2 < E[IK1{]K| < c0}] < Clal~¥+2,

where |K?| denotes the cardinality of % n G. For our second example we specialize to the case
of G = 73, with unit weights. Then as a consequence of Theorem 1.1 and [8, Corollary 1.3, one



has the following: there exists ¢ € (0,00) and for all n € (0, 1), there exists C' = C(n) € (0,0)
such that for all e € 5%, a € R with |a] < ¢, and all A > C,

7o (0, [MeD _ m A
og() <18 <73f<o, [Afe])) < 50T Mgy

where ¢ = |a|72. In depending only on ), the bounds (1.10) give striking evidence of the
presumed rotational invariance in the scaling limit at criticality.

™

6

(1.10) (I+n)

Note. During the writing of this article we learned that Zhenhao Cai and Jian Ding obtain the
result of Theorem 1.1 on Z3 independently, including higher-dimensional Euclidean lattices.

2 A generalization of Lupu’s formula

In this section we derive a key identity that generalizes a result of [16]; see Remark 2.2, 2) below.
We will actually later use this formula on certain subgraphs of G instead of directly on G , see the
proof of Lemma 3.2, which have a positive killing measure. Accordingly, throughout this section,
we work within the framework of general transient weighted graphs G = (G, A\, k) with killing
measure k, thus extending the setup of Section 1. Contrary to the rest of this article, the results
of this section actually hold without the conditions (pg), (V4) and (G,), but in Proposition 2.1
below we will still assume that (1.4) is satisfied.

We first introduce some more notation and recall a few known facts, and refer for instance
to [7, Section 2| for more details in this setup. To construct G on graphs with a positive killing
measure, in addition to the closed intervals between edges, we also add for each x € G with
Kz > 0 an interval of length 1/(2k,) starting at z, which is closed at x and open on the other
side of the interval. Recall that G, the vertex set of G, is endowed with a metric d. We write
B(z, R) for the subset of the corresponding metric graph G obtained as the union of all closed
intervals between two vertices which are both in the closed ball {y € G : d(z,y) < R} of radius
R > 0 around z € G, and all half-open intervals starting at a vertex in the previous ball and with
positive killing measure. We write 0B(x, R) for the set of all the vertices y in B(z, R) such that
there is an edge starting in y not included in B(z, R). Recall that 0 denotes an arbitrary point in
G, which is for instance the origin of the lattice in case G = Z®, and abbreviate B(R) = B(0, R)
and 0B(R) = 0B(0, R).

A set K < G is bounded if K n G is a bounded (or equivalently, finite) set, and compact if
it is closed, for the natural geodesic distance which assigns length 1 to each edge, and bounded.
We also denote by 0K the topological boundary of a set K < G for this distance. Note that any
half-open interval in G starting in x with s, > 0 is bounded but not compact.

Recall that the random walk X on G naturally extendsN to a Markov process on (j with

~

continuous trajectories. Its canonical law is denoted by PY = P, when starting at z € G.
We denote by gg = gy for closed U c G the Green’s function killed on the set U, that is
gu(z,y) = Ex[ly(Hy)], where Hy = inf{t > 0 : X; € U} and (éy(t))yeé,tzo is the family of
local times associated to X. If z,y € G and U < G, then gy (x,y) is just equal to )\;1 times the
average number of time the discrete time random walk on G started in x visits y before entering

U. Moreover, we abbreviate gy(z) = gy(x,z) for all x € G, and define the capacity of a finite
set K < G by

(2.1) cap(K) = capg(K) et Z ex(z), where e (z) = A\ Pp(Hi = 0),
zeK

and Hy is the return time to K , that is the first time after its first jump that the random
walk on G hits K. One can extend the definition (2.1) to closed sets K < G with finitely many



connected components, see [7, (2.20) and (2.27)], and if K is also compact, then the equilibrium
measure ex is then supported on the finite set K. Therefore, in the particular case 0K < G,
the capacity of K is simply equal to the capacity of K given by (2.1). One of the main interests
of the capacity is that by [22, (1.57)], which can easily be extended to infinite graphs and to the
metric graph, for all compact sets K < G with finitely many connected components, one has

(2.2) P,(Hg < o) = y;Kg(:U, y)ex (y) for all z € G.

The Gaussian free field ¢ = (‘Pw)xeﬁ with canonical law P9 = P is the mean zero centered
Gaussian field with covariance function g(-,-). As to the genericity of the condition (1.4), one
knows for instance that

if cap(K') = oo for all infinite and connected set K < G, or if

(2:3) G is a vertex-transitive graph (with unit weights), then it satisfies (1.4),

see Theorem 1.1,(1) and Corollary 1.2 in [7]; see also [19, Proposition 8.1| for examples of graphs
not verifying (1.4). We can now state the announced formula. Recall that gy(z) = gy(z,x)
denotes the on-diagonal Green’s function killed on U < G and below U is often the origin or its
cluster K? in {¢ > 0} as defined in (1.1).

Proposition 2.1. For any weighted graph G = (G, \, k) satisfying (1.4), allz € G and 0 < t <
g0y (x), one has

(2.4) IP’(g{O} (x) — gxo(x) = t) = %arctan (f}%)

Before delving into the proof, we make a few comments that shed some light on (2.4).

Remark 2.2. 1) (Alternative formulations). Formula (2.4) can be equivalently recast as fol-
lows. For all x € G and all s € (9(z) — gqoy(), g()], applying (2.4) with t = s — (g(x) —
goy(x)), which satisfies 0 <t < g40 () as required, one finds that

(2.5) P(g(lU) — gxo (;p) = 8) (2:4) %arctan < g(fg??é))))

- %arcsin <\/tg(g)((i ?(0,:02)

here, the first equality in the second line follows using the trigonometric identity arctan(%) =
o

arcsin( \/W) valid for all o, 5 > 0, and the last equality follows upon observing that

t=s—(9(z)—g{0} (%))

_ %arcsin ( J fg’(?));

t=s—(g(z)—g{0} (%))

g(x) — gy (z) = Pp(Ho < 0)g(0,z) = gg)(’g))Q. Another alternative formulation of (2.4),
which will be useful in the proof of Lemma 3.2 below, can be obtained from the following
alternative description of the quantity appearing on the left-hand side of (2.4), which is

an easy consequence of the strong Markov property at time Hyo: on the event K° # 7,
(2.6) g{o} (x) — gxo (m) = Ex [g{o} (XHKO,IE)].{H]CO < H{O} }]

2) (Lupu’s formula). Applying (2.5) with s = g(z) and observing that gio(z) > 0 with
equality if and only if = € K°, one immediately deduces that



thus recovering [16, Proposition 5.2], see also Proposition 2.1 therein; the discrepancy with
[16, display (5.1)], where the pre-factor is %, is owed to the fact that the latter deals with
connection via a loop cluster, and the (independent) cost to have sign(¢g) = 1 produces
the extra factor £. We also refer to [17, Corollary 1] for formulas related to (2.4) on finite
graphs, involving differences of effective resistances.

Proposition 2.1 can be proved in several ways. Here we use an approach that combines the
integrability of the cluster capacity observable and Doob transforms, see [19] in the context of
metric graphs, and also [20].

Proof of Prop. 2.1. As explained in |7, Remark 2.2|, one can replace any graph with a posi-
tive killing measure by a graph with zero killing measure such that the diffusions on the two
corresponding metric graphs coincide, and thus the corresponding Gaussian free fields as well.
Throughout the proof, we will thus assume for simplicity w.l.o.g. that the killing measure on G
is equal to zero. We will prove (2.5), from which (2.4) follows by reverting the arguments of
Remark 2.2. 1). If x = 0 then gy () = 0 and there is nothing to show. We assume henceforth
that = # 0. We write N N
Go < G\(x},

which is naturally viewed as the metric graph associated to the graph G, obtained from G = (G, \)

by removing x from the vertex set G, retaining the same weights \, . for y, z € G\{z} and adding

a killing measure k, = A\, for each y € G such that A\, > 0. The half-open interval of length
1 1 5

3 = 22,5 O the metric graph G, for y ~ x is identified with the closed interval between z and

y in G, from which we removed x. Note that the diffusion on éx then has the same law as the
diffusion on G killed on hitting z. By the Markov property for the field one can decompose ¢
under P = PY as

(2.8) p. =Y. + pzh()

(the equality in (2.8) defines the field 1), where ¢, = 0, (wy)yeg} has law sz, is independent of
gz and

(2.9) hy) = P,(H, < ®), yeg.

The function A in (2.9) is harmonic on G, in the sense of [19, Definition 5.1], see also (5.2) and
(5.3) therein, and we can thus consider the Doob transform QNZCL of G, by h. By definition, this is
the metric graph associated to the graph with same vertex set as G, but modified weights )\Z’Z =
h(y)h(z)Ay,> and killing measure HZ = h(y)ky. There is a natural isomorphism ¢ : Gs — GI,

which acts as identity map on the vertices of G, and otherwise stretches the cables ‘harmonically’,
see [19, (5.4)].

~ ~Sh ~
The diffusion on G?, with law PL‘CE;), y € G,, can be identified with the image under ¢ of a time-

change of X under Py(jx, specified as follows. If (P;)¢>0 denotes the semigroup of the diffusion X
on Gy (with law P9) then the time-changed process in question has semigroup h=1'P;(h-), see

h ~
[19, (5.7)]. In more concrete terms, the law Pbg(z), y € Gz, can be viewed up to time-change as the

image under ¢ of the law of X under Pyg“c conditionally on X being killed, see [19, Lemma 5.7],
that is the law of (X¢)o<t<m, under the measure Pyg( | Hy < 0).

The following result is key. The assumption of connectedness could be weakened but will be
sufficient for our purposes.



Lemma 2.3. For compact connected K < G, and h as given by (2.9),
1 1

gr(r)  g(x)

The proof of Lemma 2.3 appears below in the present section. Observe now that for arbitrary
0 < s < g(z), the occurrence of the event {s < g(x) — gxo(z) < g(x)} implies that gxo(z) > 0,
whence z ¢ K°, i.e. K is contained in G (and furthermore compact). Thus, Lemma 2.3 applies
on this event with the choice K = K (recall that K° is bounded P-a.s. under (1.4)), yielding
that

(2.10) capgy (1)) =

P(s < g(x) — gxo(x) < g(x)) = ]P’(ig(xl)_s < Tcol(x) < )
(2.10) 1 1 0

The probability involving the capacity appearing in (2.11) can be explicitly computed, as we
now explain. To do so, we use (2.8) to view K = K(p) = K**Ozh(')(z/z) and condition on ;.
Recall that 1 is independent of Pz under P(= Pg) and has law P% . Now, importantly, by [19,
veGa under P9 . In
particular, this implies that for all ¢ € R, the set ¢(K~**() (1)) has the same law under P9 as K
under P9 . Hence, all in all the probability in the second line of (2.11) can be recast as

(2.11)

(5.9)] applied with G, in place of G, (ﬂ)y)yeg has the same law as (h(y)g,y))

+2

(2.12) < capg;, (K™% < oo) e 9@ dt,

L P (s
2mg(z) ) oo g@)—s g(w)
where the integral over ¢ corresponds to averaging over .. The merit of the rewrite (2.12) is
that the cluster of 0 is now at constant height —t, cf. (2.11). Moreover, the following holds.

Lemma 2.4. The distribution of the random variable capéh(K_t)l{capgh (K™ € (0,00)} under

P9 has density given by
1 _t2u

(& 1 h(0)2
2mu ugﬁégg)—l { g{z}<°>}

with respect to Lebesgue measure.
Lemma 2.4 is proved at the end of this section. Feeding the above density into (2.12), applying

Fubini and evaluating the Gaussian integral over ¢ using that

_tu_ ¢ 1 27
2 20 dt = . = u > 0,

1 0
v/ 27mg(x) J_oo ‘ - \2mg(x) u+tg(@)t Jug(z) + 1

it follows in combination with (2.11) that for all s € (0, g(x)),

w0 h(0
(2.13) P(s < g(z) — gxo(z) < g(x)) = J © du,
o 2muy [ (ug) (0) — h(0)*)(ug () + 1)
where we abbreviated a = (m - rlx)) % g}{l(}zo)
Before proceeding, we first collect the following two useful identities, which follow immediately
by the (strong) Markov property for the diffusion on G: for all x € G, recalling A from (2.9) and

that gy (z) = gu(x,x) for U < G with g = gy, one readily obtains that

The remainder of the proof is computational.

(2.14) 9(0,z) = h(0)g(xz) and

(2.15) 9423 (0) = g(0) — h(0)g(z,0) "=" g(0) — h(0)*g(x).



We now consider the regime of s(< g(z)) such that - Tlx) > h(o); (soa=——~+— — 1

9(90) s g(@)—s  g(x)
n (2.13)), or equivalently that

2 2 2
(216) s> h(0) g(m)2 (2.14),(2.15) g(0, )
9z} (0) + h(0)%g(z) 9(0)
where the penultimate equality is obtained by last-exit decomposition and the last one by the
Markov property. Notice that, except for the terminal value s = g(x), which we will deal with
separately at the end, the regime of parameters s(< g(z)) satisfying (2.16) coincides precisely

with the one above (2.5). For such values of s, and with the help of the substitution

_ 9(0,z)?
9(7)2g(0)v? — g(0,2)%g(x)

one recasts the integral in (2.13) with the help of (2.14) and (2.15) to obtain that

= P,(Ho < 0)g(0,z) = g(z) — g{0}(®),

(o z>
_ _lfve@ms 1
IP’(S < g(z) — gxo(x) < g(:n)) =] om i dov
(2.17) V9(0)9(@)

= i(arcsin (%) — arcsin (%))

forlgll ie [g(go(’g))z,g(x)). To deduce (2.5), consider now the case s = gg)(’(f))Q, for which (2.17)
yields that

x 2 . X
P(g(go(ivo)) < g(z) — gro(z) < g(z)) =1 — % - %arcsm (7%237);@))'

Finally, observe that the random variable g(x) — gxo(z) is non-negative and its distribution has
an atom at 0 of weight 3 (since g(z) — gxo(z) = 0 if and only if ¢y < 0, which has probability
1). In combination with the fact that P(0 < g(z) — gxo(z) < %) = 0, it thus follows from

the previous display upon rearranging terms that

1 . g0,z
(218)  P(g(@) — geo(a) > 9(a) ( = Plo(a) - gol@) = 9(@)) = - avesin (—L2L_),

m 9(0)g(x)
Plugging (2.18) into (2.17) yields (2.5). This completes the proof of Proposition 2.1 under the
assumption that both Lemmas 2.3 and 2.4 hold. O

We now supply the:

Proof of Lemma 2.3. We will assume that 0K < G\{z}, the vertex set of G;. In this case 0(¢(K))
and 0K can be naturally identified. The general case can be reduced to this one by exploiting
network equivalence, adding vertices to G, (and G?) corresponding to the boundary points of K
(and ¢(K)); see |7, Section 2.2| for further details. Recall the definition of the graph Gh from
below (2.9), and notice that by [19, (5.3)] its weight function /\h( = K+ Zz~y y.» can be

recast as )\h(y) = h(y )2)\y, where A, is the original weight function on G, Wthh coincides with
that of G outside the point x. In light of this, and using the concrete characterization of the law

Pg described above Lemma 2.3, one obtains that

cangy (LK) = ) Ny P = N W) POy > H|H, < )
yeoK yedK
(2.19) o - n
2N RN P (x> Hy) = Y h(y)APS (I, > Hie, Xprye = ),
yeoK yeo K



where the last step uses the reversibility of the walk under A\. Now, with (Xn)nzo denoting the

discrete skeleton of X (under PE ) on G, which has the law of the random walk on G = (G, \),
decomposing when Xy = z and on the event { Hx < o0} according to the time of the last visit
to x prior to entering K, one finds that

PJ(Hk <90, Xu, =)
(2.20) ZPQ(Xk¢Kk<nX 2, X £ 7,1 < z<HK—nHK<ooXHK—y>

n=0

= gK(ZL'))\xPQCg(HK < }NIMXHK = y),

where the last line follows by an application of the simple Markov property for X at time n (recall

that g (x) = gx(z,x)). Feeding (2.20) into (2.19), and using that h(y) = ;(’g) it follows from

a reasoning similar to (2.6) that

capgy, (¢ = 9@y o _ ) = 9@) —gx(2)
gy I = Sy (e = % X =) ’

from which (2.10) is immediate. O

We now provide the remaining:

Proof of Lemma 2.4. On the event ¢, > 0, the cluster of 0 in {y € G: Yy = 0} is included in

K9 under ]P’QN, and since 1 is independent of ¢, one deduces from (1.4) on G that (1.4) is also
satisfied on G, by writing

9~ 1pYs (K°(¢p) is bounded) = IP)QN(ICO(z/J) is bounded, ¢, = 0)
> Pg(KO(w) is bounded, ¢, = 0) = 27'6,(0) (L4 21

where the pemultimate step follows by symmetry, see |7, Lemma 4.3]. One readily deduces that
the free field under P9 has bounded sign clusters a.s, hence capgn (K1) has an explicit law

given by |7, Theorem 3.7| (see also [19, Theorem 5.5]) for all £ < 0. For ¢t > 0, it follows from
[7, (3.17)] that capgg(lC_t) on the event &F # K~ is compact has the same law as capgn (K') on

the event K! # ¥. As we now explain, for ¢t > 0 and under P9 , Kt is actually compact if and
only if cap(K %) < oo. Indeed any compact set has finite capacity by construction. On the other
hand by the isomorphism (Isom’) from |7, p.283|, which is in force in view of Theorem 1.1,2)
and (3.14) therein, K~ has either the same law as K" if K does not intersect a trajectory in wy,,
and otherwise stochastically dominates a trajectory in wy,, where wy, is the interlacement process

at level u = t2/2 on gh By the description of the law of P appearing above the statement of
Lemma 2.3, random interlacement trajectories on gh a.s. have images via ¢ which contain the
interval between z and y in G for some y ~ x, that is the half-open interval starting at y in QZZ,
and thus have infinite capacity on G" in view of [7, (2.32)]. Since K is a.s. compact on G",
deduce that if X~ is non-compact, then it stochastically dominates a trajectory in w,,, and thus
has a.s. infinite capacity.

Overall we have that for each ¢ € R, the density with respect to Lebesgue measure of
capg, (K™% on the event 0 < capg, (K~!) < oo is given by [7, (3.7)] on the graph G”. This

density depends on QNQ only through gg~h(0) = 9gn (0,0), where ggn denotes the Green’s function

of the diffusion on G”. But as 9 (0) = h(0)~2g4,3(0) by [19, (B.1)], applying [7, (3.8) and (3.10)]
gives the claim. ’ O



3 Proof of Theorem 1.2

Throughout this section, we always tacitly work under the assumption that G = (G, \) satisfies
(Po), (Vo) and (G,) with 0 < v < §; see Section 1. Note that one could also consider the case
v = 5, but the strategy below would in its present form not lead to any significant improvement
over the results of [8]. The symbols ¢,C,... are used for numerical constants (in (0,00)) that
can change from place to place. Their dependence on any parameter other than v and «, as well
as the other constants appearing in our conditions (po), (V) and (G,), will appear explicitly in
our notation. In the sequel, we abbreviate B(L) = B(0,L) ¢ G and for all L > 1 introduce the
set B(L) o B(L) as

— . def. 2 € G : any continuous path 7 = (xt)e=0 < G
(3.1) B(L) = with 29 = 2 and d(0, ;) — oo intersects B(L)
1—00

In words, B(L) is the set of points which are entirely ‘surrounded’ by B(L). For R > 1, & > 0
and 0 < 2a < b <1, we let

(3.2) % “ sup {t >0: forall s<t,

P(ICO A 0B(R) # @, cap(K® A A%Y) < s((b— a)R)”) <R~

SN
m\
™
»
|
N
——

where A%’b denotes the ‘annulus’
(3.3) A% B((1 = a)R\B((1 — b)R).

The main ingredient of our proof is the following recursive formula for t%’ba.

Proposition 3.1. There exist co > 0 and ¢ > 0 such that with t = TR cyr OTE has
1 —v
(34) ti—ébZC(aaV/\log (ﬁ) ), fOT GZZRZ]_, CR_1<26L<I)<1 and 2d<€<a/4
tp v

Proposition 3.1 readily implies our main result, as we explain first.

Proof of Theorem 1.2. Defining recursively logy(R) = R and logy,((R) = log(log,(R)) v 1, we
let

1
=— andb.=—"f 11k=>=0.
" logi(R) M T loge (R)

We take a = agy1, b = bg11, d = ar and e = by in Proposition 3.1, and one can verify that the
assumptions therein are satisfied for R > C, which can be assumed w.l.o.g. since cap(K?) > ¢

whenever K% # ¢J. Then, abbreviating uj, = 1/2%’“’“ and recalling that o > 1 (in fact o > 2; see
below (G,)), we have by (3.4) that

(3.5) upt1 < C1(log(uy) v logy 1 (R))™ for all k > 0 such that logy,(R) = 2,

for some constant C; < co. Note that on the event K% n 0B(R) # (&, it follows from |6, (2.8)]
that K n B((1 — b)R)¢ # & for R > C, and if  is the closest vertex to 0 in that set, then
x € B((1 —ap)R) for R large enough. Hence A}?’bo NnK°nG # @&, and so cap(K° n A?;?’bo) >
inf,eq g(z)~! = ¢ by (G,). Therefore, t%o’bo > R7" for R > C, which implies up < R”, and one
easily deduces from this and (3.5) inductively in k that

u < 2C1avlog,(R)* for all k > 0 such that logy(R) = Co,
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for some large enough constant Cy € (0,0). Hence if we denote by k = k(R) the largest k such
that log,(R) = Ca, we deduce that up < 2C1avexp(Cs), that is tb’“’a’“ > c¢. Since by —ag = ¢
by definition, we obtain (1.8) after a change of variable for s, up to replacing 0B(R) appearing
therein by dB(R). To conclude, it is enough to prove that E(R) c B(CR) for a large enough
constant C' and to perform a change of variable for R in (1.8). The inclusion can be proved using
(2.2) to deduce that for all z € B(R), one has

1=P,(H < ) < cap(B(R)) su ,r) < CRY( inf d(z _V,
(Hpim) <) < cap(B(R) sup g(yra) < CR( i d@.v)

where the last inequality follows from (G, ) and [6, (3.11)]. O

We now turn to the proof of Proposition 3.1, which relies on the formula (2.4) applied to
suitable metric graphs 5 K C QN that we now introduce. We consider K < G a finite set of vertices
and define G as the (only) unbounded connected component of C:\K . Note that Gx can be
identified with the metric graph associated to the graph Gx having vertex set the unique infinite
connected component of G\ K, the same weights as G between vertices, and killing measure equal
to Ay, for all y in that infinite component which have a neighbor x in K, and zero everywhere
else. We refer to the beginning of the proof of Proposition 2.3 for a similar construction. In
particular, this identification of G K entails that the diffusion on G x is well-defined and it is simply
the diffusion on G killed when hitting K. Moreover, the graph Gg fits the setup of Section 2,
and we can thus define a Gaussian free field on g 'k with canonical law IF’gK Obberve that, in the
notation of Section 2 (see above (2.1)), this free field has covariance ggK (x,y) = gK(:n, y), for all

T,y € gK

Applying the formula (2.4) on the metric graph G yields the following result.
Lemma 3.2. There exists C3 € [1,00) such that for all values of R > 1, cR™' < a < 1/4,
K c AGR/Q =l B((1—-a/2)R) ,2d <e<a/4, andt >0,

PIX (cap(K° ~ A%E) > t((e — d)R)") < CREt™2d % exp(Ca™®) inf  Py(H, < Hg).
(3.6) PY (cap(K® n A%S) > t((e —d)R)") FtTrd7zexp(Ca™®) inf  Po(Ho < Hi)

The proof of Lemma 3.2 will involve the following random walk estimate, which we show
separately first. This relies on the following facts concerning the geometry of G = (G, \) under
our standing assumptions (pp), (V) and (G,). Similarly as in [6, Lemma 6.1], see also [8, (2.2)],
we introduce under the above assumptions on G the approximate renormalized lattice A(L) for
L > 1 having the following properties. There exists a constant Cy € (0,00) such that for all
reGand L,N =1

Uyeaqr) Bly, L) = G,
(3.7) the balls B(y, ), y € A(L), are disjoint,
|A(L) n B(z, LN)| < C4N°.

We will use the lattices A(-) several times in the sequel. We further say that 7 = (x;);<z, is a
path in A(L) if z; € A(L) for all i < L, and for each i < L, there exists x € B(x;, L) n G and
y € B(xiy1, L) n G such that x and y are neighbors in G.

Lemma 3.3. For all R>1, a > cR™" and 2d < e < a/4, one has

3.8 Py,(H, < H A2 > cexp(—Ca *)R™Y, forallye A%® and x € 0B C3R).
(3.8) R
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Proof. Let y e A%e N G, then by definition, see (3.1) and (3.3), there is a nearest-neighbor path
T = (2;)ieny © G such that z1 =y, z; ¢ B((1—¢€)R) for all i > 1, and x; — © as i — o0.
Applying the identity (2.2) in a manner similar to [18, (2.17)| for instance, one finds that there
exist constants cz € (0,1/24) and ¢4 > 0 such that

(3.9) P, (HB(’U,CQ,CLR) < HB(U’GR/S)C) > ¢4 for all u,v € G with d(u,v) < 3czaR.

Let y; = y and for each k > 1, define recursively yr41 as the first vertex in A(csaR) such that
B(yk+1,c3aR) is visited by 7 after last exiting B(yk, csaR). We denote by p the smallest integer
q > 1 such that y, € B((M + 1)R), for some constant M > 1 that we will fix later. By (3.7)
and [6, (2.8)], we have d(u, yr+1) < 3czaR for all u € B(yg,csaR) and any 1 <k <p—1 as long

as aR > c. In particular, for each 1 < k < p — 1, noting that B(yx41,aR/8) c (A%z)c since
e < a/4, it follows from (3.9) that the diffusion starting in any point u € B(y, csaR) will reach
B(yg+1,csaR) before hitting A%ﬂ with probability at least ¢4. Noting that yx € B((M + 1)R)
for all 1 < k < p implies p < C(M/a)® by (3.7), using a chaining argument, we deduce that for
all y € A%e NG,

P, (HaB(MR) < HA%Q) > exp(—C(M/a)®).

Let x € 0B(MR), then by the strong Markov property at time Hyp(yrr) We have

Py(Hy < H,u2) > exp(—=C(M/a)*) inf  Py(Hy < H,uz2).
y(He < Hygs) > exp(=C(M/[a)") ok PulHe < Hygp)

The last probability is bounded from below by
Py(H, < ©0) = Py(H a2 < @) sup Py(Hy <) >cM "R —CM >R,
R

a/2
veAy

where the last inequality follows from (G,), (2.2) and [6, (2.8)]. Fixing M = C3 for a large
enough constant Cs, the last two equations yield that for x as above, (3.8) holds. ]

The proof of Lemma 3.2 utilizes the above result in combination with Proposition 2.1.

Proof of Lemma 3.2. Let z € 0B(C3R). Denoting by cap,(K’) the capacity of a set K’ < G
for the diffusion on G killed on AQR/Q, we have by the definition of the capacity in (2.1) that
cap,(K') = cap(K’). Hence, if K’ c A%e has finitely many connected components, is compact,
and cap(K') = t((e — d)R)", we have by (2.2) applied on the graph with infinite killing on AQR/Q

that, with P, = P9,
(3.10) P, (HK/ < HA;/Z) > c-cap(K') Zlenlg/ P, (HZ < HA%Q) > cd” exp(—Ca” )t

where the last inequality follows from (3.8), invariance by time reversal, and the inequality

d < e —d. Recall now that g9% denotes the Green’s function on the metric graph G introduced
above Lemma 3.2. On the event cap(K" n Af,l%’e) > t((e — d)R)", which implies in particular that
K° # &, by (2.6) applied to G, one finds that

g (@) — g (x) = Ex [ (X, @) 1{Hxo < Hicoq0y}]
> cBu|Pxy |, (He < Hyge) Hyo, pie < Hygo) |
R
> cd” exp(—2Ca “)tR™",

where we combined (3.8) and (3.10) in the last inequality. The inequality (3.6) now follows
from (2.4), applied on the graph Gg, and the inequalities arctan(t) < ¢ valid for all ¢ > 0,
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99%(0,x) = P§*(H, < w0)g%%(z) < CPY(H, < Hg) and 9% (z),g9%(0) > ¢ by (G,) and [6,
(2.10)]. To apply (2.4), note that Gx satisfies the first condition in (2.3), and hence (1.4) as well.
The former is true since the Green’s function killed on K is smaller than the Green function on
G by definition, see (2.1), which one combines with (G,) and |7, Lemma 3.4,(2)]. O

When K = ¢, (3.6) can be seen in view of (G,) as a direct consequence of (1.5), since
the event on the left-hand side of (3.6) implies cap(K°) > t(dR)”. However, when K is large,
Py(H; < Hg) can decrease significantly faster than R~ for x € 0B(C3R), see [8, Lemma 2.1],
and the formula (3.6) becomes in a sense stronger than (1.5). We refer to (3.18) and below as to
where this improvement is needed, and combining this with ideas from |8, Section 4] we obtain
the following result.

Lemma 3.4. There exists cs > 0 such that for all R>1, cR"' <2a<b<1,2d <e < a/4 and
s,t >0

(3.11) P(cap(lCO A A%Y) < s((b—a)R)”, cap(K® A A%) > t((e — d)R)”)

1

< CR 5t 3d°% exp (C’a_o‘ — 053_5).

Proof. We use the isomorphism [14, 16] with the loop soup £ on G at intensity 1 /2 on the metric
graph G , which we now review. We refer to [16] for a detailed construction, and only recall here
that £ is a Poisson point process of Markovian loops on QN, that is defined under an auxiliary
probability Q. Moreover, if C is defined as the empty set with probability 1/2, or otherwise
denotes the cluster of 0 in £, that is the set of points in G which are connected to 0 using a finite
number of loops in £, then

(3.12) c ' ko,

We will work under Q using the identification (3.12) throughout the proof. The isomorphism
(3.12) holds not only on G under the conditions listed below (pg), but actually for any weighted
transient graph even with a positive killing measure, and in particular on the graph Gx introduced
above Lemma 3.2, for any finite set K < G.

Let £P8 = £ be obtained from £ = 2. 0y, by retaining only big (macroscopic) loops in the
annulus Agb, i.e. loops 7; whose range satisfies cap(range(y;)) > s((b — a)R)” and for which
range(y;) < A‘;%’b. Then on the event cap(C n A%’b) < s((b — a)R)”, and by the isomorphism
(3.12), K° has the same law as the cluster of 0 for the loop soup £\£P8. Let us denote by O the
intersection with G' of all the loops in £P8. Using the restriction property for the loop soup [10,
Theorem 6.1] and the isomorphism (3.12) on the graph Go, noting also that £ and £\L# are
independent by defining properties of Poisson point processes, one deduces that

Ebig)

< pYo (cap(lCO A AL > t((e — d)R)”).

(3.13) Q(cap(C A ASY) < s((b—a)R)”, cap(C n ALY) = t((e — d)R)”

We refer to [8, (4.26)] and above for a similar reasoning with more details. For a parameter 6 > 0
to be fixed later, let us introduce

1
3.14 def. Lo \Re—3 def. [(b—a)R| o |1(6\¥]|
(3.14) L= sv(b—a)RO"v and £ T 3=z 3,

and note that the loops in £ then have capacity at least §L¥ by definition, and that we can
assume w.lo.g. that {,L > 1if s < ¢ = ¢(J) and § < ¢, since otherwise (3.11) is either trivial
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or follows easily from the capacity bounds (1.5). Let us now denote by G the event that O is a
(L, R,0/2,5L")-good obstacle set as defined above [8, Lemma 2.1]. That is, for any path = in A(L)
from 0 to B(R)¢, there is A c range(m n B(R)) such that |A| = ¢/2 and cap(B(y,L) n O) = 6L"
for all y € A. Combining (3.13) and (3.6) for K = O, we obtain that

Q(cap(C A AYY) < s((b— a)R), cap(C n A%) = t((e — d)R), G>

v 1 v
3.15 < inf CRzt 2d": Ca *EQ[Py(H, < Ho)1{G
(5.15 seableg T PO R Iy < HOpHGY]

<CR 5t 2d°5 exp(Ca™?) exp(—cdl),

where the last inequality follows from [8, Lemma 2.1], up to assuming w.l.o.g. that L < cR, that
is s < ¢ for some small enough constant ¢ = ¢/(9).

It remains to control the probability on the left-hand side of (3.11) on the event G¢, which
relies on a reasoning similar to, but somewhat simpler than, [8, Lemma 2.3]. Let us denote by
P the set of tuples 7 = (z1,...,x¢) such that such that z; € A(L) and B(z;, L) < A%’b for all
1<i<¥ B(z;,L) n B(zj,L) = & and zj41 € B(x;,5L) for all 1 < i < j < £. Here £ and L
are as defined in (3.14). We write D, for the set of i € {1,..., ¢} such that there exists a loop in
L whose range is included in B(z;, L).

Let us now show that any path 7 in A(L) from 0 to B(R) contains a tuple 7 € P, in the sense
that range(r) < range(w). We call ©’ the subpath of m which starts just after 7 last visiting
B((1 — b)R + L), and afterwards stops just before first leaving B((1 — a)R — L). Assuming
w.l.o.g. that (b — a)R > cL, that is s < ¢, one can easily check by [6, (2.8)] that 7’ is non-
empty. Let us now define recursively x; as the first vertex in 7/, and recursively xp,1 as the
first vertex in 7’ visited after last exiting B(xg,2L), and denote by p the smallest integer k > 1
such that 7" never exits B(xy,2L). Note that by [6, (2.8)], we have d(xy,zr+1) < 5L for all
1 < k < £ whenever L > C, and hence d(x1,z,) < 5pL. Since moreover x; € B((1 —b)R + 8L)
and z, € B((1 —a)R —4L) for L > C, we deduce that 5pL > (b — a)R — 12L, and hence p > ¢
in view of (3.14). Noting additionally that B(x;, L) < A%b for all 1 < i < ¢, we thus obtain all
in all that 7 = (z1,...,2¢) € P.

By the previous paragraph and by definition of G, there exists on the event G¢ a tuple
7 € P such that |D;| < ¢/2. Moreover, for each 7 = (z1,...,2¢) € P, the events {3v; €
£P8 range(v;) = B(x;, L)}, 1 < i </, are i.i.d. by properties of Poisson point process, and occur
with probability at least p = p(d) which satisfies p(§) — 1 as § — 0 by [8, (4.31)]. Since by (3.7)
we have |P| < Cf, we deduce by a union bound that

(3.16) Q(G®) < CfsupQ(D,) < C2(1 - p)"? < exp(—cl),
TEP

where the last inequality holds when § = ¢ for a small enough constant ¢ > 0. Now, the tail
asymptotic (1.5) holds on the graph Gp by application of [7, Theorem 1.1], since the first condition
in (2.3), and hence (1.4) as well, are satisfied on that graph by virtue of [7, Lemma 3.4,(2)|. It
thus follows from (1.5) on the graph Go and (3.13) that
(3.17)  Q(cap(C N A%") < s((b — a)R)”,cap(C n AF) = t((e — d)R)”, G°)

< EQ[PY (cap(K?) = t((e — d)R)")1{G*}] < Ct™2 (e — d)" 2 R"5Q(G®).

Combining (3.12), (3.14), (3.15), (3.16) and (3.17) for 6 = ¢ as before, assuming w.l.o.g. that
s < ¢, and recalling that e — d > d, the claim follows. ]

We are now ready to finish the:
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. .. . d,
Proof of Proposition 3.1. Combining (3.2) with (3.11), we have, for all s > 0 and ¢ < tRi,,

(3.18) IP’(/CO N 0B(R) # &, cap(K® n A%b) < s((b— a)R)”)

1

< R Zexp ( — 5t_%) L OR 5t 3d° % exp(Ca™ % — 053_5).

We now take

def. C5 _1
£=cy = Zandtzexp(—q,s v),

then if s < c¢(a® A log(1/d)™") for some small enough constant ¢ > 0, one can bound the right-
hand side of (3.18) from above by R~/2 exp (- ES_%). Noting that the condition ¢ < t%z for

the above choice of ¢ is satisfied whenever s < ¢ log(t%ee)_”, we conclude in view of (3.2) that

any s satisfying all previous requirements is upper bounded by t%b = t‘}lz’bcg, i.e., (3.4) holds. O
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