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Abstract

We investigate the bond percolation model on transient weighted graphs G induced by the
excursion sets of the Gaussian free field on the corresponding metric graph. We assume
that balls in G have polynomial volume growth with growth exponent α and that the
Green’s function for the random walk on G exhibits a power law decay with exponent
ν, in the regime 1 ď ν ď α

2 . In particular, this includes the cases of G “ Z3, for which
ν “ 1, and G “ Z4, for which ν “ α

2 “ 2. For all such graphs, we determine the
leading-order asymptotic behavior for the critical one-arm probability, which we prove
decays with distance R like R´ ν

2 `op1q. Our results are in fact more precise and yield
logarithmic corrections when ν ą 1 as well as corrections of order log logR when ν “ 1.
We further obtain very sharp upper bounds on truncated two-point functions close to
criticality, which are new when ν ą 1 and essentially optimal when ν “ 1. This extends
previous results from [16].
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1 Introduction

Percolation models exhibit intriguing behavior at and near their critical point, which is noto-
riously difficult to describe rigorously. Among many quantities of interest, one which plays a
central role in this article is the ‘one-arm’ probability to connect a point to distance R ě 1.
For Bernoulli site percolation on the two-dimensional triangular lattice, this observable was
famously shown [33, 44] to decay polynomially in R at criticality as R´ 5

48
`op1q. On Zd for suffi-

ciently high dimension d (namely, d ě 11) the decay is known to be of order R´2 independently
of d [31, 24, 28, 6], a manifestation of mean-field behavior; see also [29] concerning spread-out
models, for which this regime has been proven to extend to all d ą 6. In intermediate dimensions
d “ 3, 4, . . . however, the mere decay of the critical one-arm probability in itself is an outstanding
open problem.

Recently, a bond percolation model with long-range correlations involving the Gaussian free
field, which belongs to a different universality class than Bernoulli percolation, has led to signifi-
cant advances on questions of the above type, notably in the challenging intermediate dimensions
[11, 16, 15, 37, 51, 8]. We summarize these below; see also [39, 30, 2, 38, 12] for related results,
including in dimension two. One focus of the present article is the one-arm decay of this model
at criticality in intermediate dimensions. Another central quantity of interest is the truncated
two-point function near criticality, for which we derive very sharp upper bounds. Together, these
results have important ramifications concerning the behavior of critical and near-critical cluster
volumes. Moreover, in the special case of Z3, they refine rather drastically recent results of [26],
which concern a different (but related) model. Indeed, the quantitative two-point estimates we
derive witness rotational invariance at the correlation length scale.

Our results hold under certain mild conditions on the base graph, which originate in [27],
see also [13] in the context of percolation for the Gaussian free field, and are not specific to
Euclidean lattices. We consider G “ pG,λq a transient weighted graph, connected and locally
finite. We assume controlled weights, that is λx,y{λx ě c for some constant c ą 0, which entails
uniform ellipticity for the random walk on G, see for instance [4, Definition 1.2, p.3]. We further
impose two natural conditions on the growth of balls and the decay of the Green’s function for
the random walk on G. Namely, there exist a positive exponent α and c, C P p0,8q such that
the volume growth condition

(Vα) crα ď λpBpx, rqq ď Crα for all x P G and r ě 1,

is satisfied, where Bpx, rq refers to the discrete ball of radius r around x P G in a given metric
d on G, and λ denotes the measure induced via the point masses λx

def.
“

ř

y„x λx,y for x P G.
Moreover, there exist an exponent ν ą 0 and constants c, C P p0,8q such that

c ď gpx, xq ď C and cdpx, yq´ν ď gpx, yq ď Cdpx, yq´ν for all x ‰ y P G.(Gν)

As explained around [16, (1.18)], in case d “ dgr, where dgr is the graph distance on G, these
conditions imply that 0 ă ν ď α´2. We assume from now on that these bounds on ν are satisfied.
An emblematic example of graphs satisfying these conditions are the Euclidean lattices G “ Zα

for integer α ě 3 endowed with unit weights λx,y “ 1t|x´y| “ 1u, x, y P G; here, | ¨ | denotes the
Euclidean distance, and this setting fits the above setup with ν “ α´2. In this case ν ranges over
the integer values t1, 2, . . . u, but intermediate values are also attainable, see [3], and also [13] for
concrete examples, including for instance fractal graphs of intermediate dimension. Although
the examples mentioned above often entail additional symmetry, no assumptions beyond (Vα)
and (Gν) (along with controlled weights) are required, in particular no transitivity assumption
needs to be imposed.
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Let φ denote the mean zero Gaussian free field on G with canonical law P. The excursion
sets tx P G : φx ě au for varying parameter a P R, lead to a natural site percolation model on
G, and have been extensively studied, see e.g. [7, 43, 18, 48, 14, 26, 19, 40]. A variation with
improved integrability properties is obtained by considering instead the bond percolation model
which is obtained by retaining each edge tx, yu in G independently with probability

(1.1) 1 ´ expt´2λx,ypφx ´ aq`pφy ´ aq`u, a P R,

conditionally on φ, where t` “ maxtt, 0u for t P R. We assume P to be suitably extended
to carry this additional randomness. An edge is called open if it has been retained. Let Eěa

denote the set of open edges of G obtained in this way. In view of (1.1), by a straightforward
coupling involving uniform random variables, one sees that Eěa is decreasing in a, thus rendering
the phase transition for the percolation problem pEěaqaPR well-defined. What lurks behind the
choice of the bond disorder (1.1) is an extension of φ to the metric graph rG Ą G, comprising G
along with one-dimensional cables joining neighboring vertices in G. The percolation problem for
pEěaqaPR is equivalent to the percolation problem for excursion sets of the continuous extension
of φ to rG; see Section 2 for details.

One knows as a consequence of [15, Theorem 1.1(1)] and Lemma 3.4(2) therein (which implies
in view of (Gν) that the condition (Cap) appearing in [15] holds on G) that the percolation model
pEěaqaPR has a non-trivial phase transition on any graph G satisfying the above requirements,
that the critical height is a “ 0 regardless of the particular choice of G, and furthermore that the
order parameter of the transition (i.e. the probability of a point to belong to an infinite cluster
in Eěa) is a continuous function of a.

Our first result concerns the critical ‘one-arm’ events tx Ø Bpx,Rqcu, which refer to the
existence of a path in Eě0 connecting 0 and Bpx,Rqc “ GzBpx,Rq. To date, the best available
bounds on the critical one-arm probability Ppx Ø Bpx,Rqcq are as follows. By [16, (1.22)–(1.23)],
one knows that for all ν ą 0, x P G and R ě 1, and some c, C P p0,8q (see the end of this
introduction regarding our convention with constants),

P
`

x Ø Bpx,Rqc
˘

ě cR´ ν
2 ,(1.2)

and

P
`

x Ø Bpx,Rqc
˘

ď C

$

’

’

&

’

’

%

R´ ν
2 , if ν ă 1

`

R
logR

˘´ 1
2 , if ν “ 1

R´ 1
2 , if ν ą 1

.(1.3)

The bounds (1.2)–(1.3) were first derived in [11] for G “ Zα, with α “ ν ` 2pě 3q, via different
methods. Later on, in the general graph setting of [16], they were seen to follow immediately
from a comparison between the radius and capacity observables for the cluster of a point, using
that the latter is integrable, see [16, Cor. 1.3]; in fact, the proof of (1.2)–(1.3) does not even
require the assumption (Vα). The bounds (1.2)–(1.3) thus express little more than the fact that
the cluster of x reaching distance R can be anything from a line to the full box. When ν ă 1,
the two are indistinguishable to leading order in N when measured in terms of their capacity,
but discrepancies start to arise when ν ě 1, which corresponds to dimension three and higher on
Euclidean lattices. In the mean-field regime of Zα for any integer α ą 6, it was recently proved
in [8] that P

`

x Ø Bpx,Rqc
˘

— R´2; see also [51] for more results valid in high dimensions.
The mismatch between (1.2) and (1.3) for ν ě 1 warrants further investigation, in particular

in the regime of ‘intermediate’ dimensions, e.g. for integer α with 3 ď α ď 6 on Zα, which is the
object of our first main result. From here on, we impose the standing assumption

(1.4) 1 ď ν ď
α

2
.
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In particular, (1.4) includes the cases G “ Zα, α P t3, 4u, with unit weights, for which ν “

α ´ 2pď α
2 q, but also e.g. certain fractal graphs as will be mentioned below. Our first result is

an improved upper bound on the one-arm probability at criticality.

Theorem 1.1. There exists C P p0,8q such that for all x P G and R ě 3,

P
`

x Ø Bpx,Rqc
˘

ď CqpRqR´ ν
2 ,(1.5)

where

(1.6) qpRq “

$

’

&

’

%

log logR, if ν “ 1,

plogRq
1
2

pν´1qplog logRqν , if 1 ă ν ă α
2 ,

plogRqνplog logRqν , if ν “ α
2 .

In particular, for the critical one-arm exponent one has that

(1.7)
1

ρ
def.
“ ´ lim

RÑ8

logPpx Ø Bpx,Rqcq

logR
“

ν

2
.

Thus, in comparison with (1.2)–(1.3), Theorem 1.1 yields an improvement in the discrepancy
between upper and lower bounds: first for ν “ 1, we obtain an improvement of the upper bound
from a factor of logpRq

1
2 to log logR; this applies in particular to the lattice Z3; see Remark 4.4

for more details. Even more distinctively, in the regime 1 ă ν ď α
2 , Theorem 1.1 implies that

the polynomial lower bound (1.2) is in fact sharp up to logarithmic factors. For instance Z4

corresponds to the case ν “ α
2 “ 2; an example with 1 ă ν ă α

2 is the graphical Sierpinski
carpet in α “ 4 dimensions; see [5] and [13, Remark 3.10,2)]. This sharpness up to logarithmic
factors implies that the limit in (1.7) exists and defines a critical one-arm exponent. There is
however no specific reason to believe that the upper bounds we derive are sharp up to constants.
In fact we prove slightly more than (1.6). For instance, in case ν “ 1, the proof yields (1.5) with
qpRq “ plog logRq

2
3

`ε for any ε ą 0; see (4.19) for best available bounds in all cases.
The improvement from (1.3) to (1.5)–(1.6) is a matter of showing that the cluster of x is

sufficiently ‘thick’ when measured in terms of capacity. This ‘capacity thickening’ is due to the
underlying presence of random walk-like objects within this cluster, whose capacity is particularly
large under the assumption (1.4). We will return to this below. As mentioned above, on Zα for
(integer) α ą 6, it was proved in [8] that ρ “ 1{2, and noting that 2{ν “ 1{2 exactly when α “ 6
(and hence ν “ 4), we conjecture that (1.7) remains true on Zα for α P t5, 6u.

Theorem 1.1 has further important consequences, which we now discuss. Indeed, this is
because our improved bounds for qp¨q from (1.5) and (1.6) feed into the expressions for the
lower bound on the near-critical one-arm probability and two-point function obtained in [16,
Proposition 6.1 and (8.3)]. We detail this in the latter case. For each a P R and x, y P G, let

(1.8) τ tra px, yq “ τ tra py, xq
def.
“ P

`

x Ø y in Eěa, x Ü 8 in Eěa
˘

denote the truncated two-point function, where ‘x Ø y in A’ means that there is a path of
edges in A from x to y. Then, under the additional hypothesis that d “ dgr one obtains the
following: there exist constants c, C1 P p0,8q such that for all a P R with |a| ď c and all x, y P G

with dpx, yq ě C1|a|´2qpa´1q logpqpa´1qq when ν “ 1, and with dpx, yq ě C1|a|´
2
ν qpa´1q when

1 ă ν ă α
2 , one has

(1.9) τ tra px, yq ě τ tr0 px, yq

$

’

&

’

%

exp
!

´
C1|a|2dpx, yq

logp|a|2dpx, yqq

)

, if ν “ 1,

exp
!

´ C1|a|
2
ν dpx, yq log

`

|a|
2
ν dpx, yq

˘ν´1
)

, if 1 ă ν ă α
2 .
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We refer to the end of Section 5 for the short derivation of these bounds, which follow from
Theorem 1.1 in combination with [16, (8.3)]. Note, however, that when ν “ α

2 , one cannot im-
prove on the bound of [16, Theorem 1.7], for reasons explained in [16, Remark 8.1,1)]. Regarding
the one-arm probability, [16, Proposition 6.1] combined with Theorem 1.1 yields the exact same
lower bounds as in (1.9), but with τ tra px, yq and τ tr0 px, yq replaced by the near-critical and critical
one-arm probabilities, as well as dpx, yq replaced by the radius r.

Our second main result Theorem 1.2 yields an upper bound on the truncated two-point
function τ tra px, yq from (1.8), thereby assessing the sharpness of the lower bound (1.9) (up to log
corrections when ν ą 1), as well as the resulting lower bound on the correlation length, cf. the
discussion around (1.12) below. In order to put this into context, we recall that the to date best
upper bound was proved in [16, Theorem 1.4]: there exists c1 ą 0 such that for all a P R and
x, y P G,

(1.10) τ tra px, yq ď τ tr0 px, yq

$

’

&

’

%

exp
!

´
c1|a|2dpx, yq

logpdpx, yqq _ 1

)

, if ν “ 1,

exp
␣

´ c1|a|2dpx, yq
(

, if ν ą 1;

see also [11, Theorem 4] for a similar result in the case G “ Zα, albeit without prefactor τ tr0 px, yq.
To be precise, (1.10) only requires G to have controlled weights and to satisfy (Gν). Let us also
remark here that in the case ν ă 1, one already has matching upper and lower bounds, see [16,
Theorem 1.4], by which logpτ tra px, yq{τ tr0 px, yqq behaves like ´p|a|

2
ν dpx, yqqν . Our second main

result improves the bound (1.10) in the regime of parameters 1 ď ν ď α
2 from (1.4).

Theorem 1.2. There exist c2, C2 P p0,8q such that for all a P R and x, y P G,

(1.11) τ tra px, yq ď C2τ
tr
0 px, yq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

exp
!

´
c2|a|2dpx, yq

logp|a|2dpx, yqq _ 1

)

, if ν “ 1,

exp
␣

´ c2|a|
2
ν dpx, yq

(

, if 1 ă ν ă α
2 ,

exp
!

´
c2|a|

2
ν dpx, yq

logp|a|´1q _ 1

)

, if ν “ α
2 .

In view of Theorem 1.2, the bounds (1.9) and (1.11) now exactly match up to constants when
ν “ 1, and match up to logarithmic correction in |a|

2
ν dpx, yq when 1 ă ν ă α

2 . We believe that
our upper bound (1.11) is sharp, that is one can remove the term logp|a|

2
ν dpx, yqqν´1 in (1.9);

we hope to return to this elsewhere. More importantly, as opposed to (1.10), the upper bounds
in (1.11) are functions of |a|

2
ν dpx, yq for all 1 ď ν ă α

2 . Thus, combining (1.9), (1.11), and [16,
Theorem 1.7] for the lower bound when ν “ α

2 , and defining

(1.12) ξ ” ξpaq
def.
“ |a|´

2
ν (with ξp0q

def.
“ 8),

this entails that ξ is the length scale after which the ratio τ tr
a {τ tr

0 starts to decay to zero rapidly
(with corrections of order logpξq when ν “ α

2 ). In particular, it follows that the critical exponent
νc associated to the correlation length is equal to 2

ν for all 1 ď ν ď α
2 , which extends the results

from [16, (1.28)]. Let us also emphasize that, contrary to (1.10) or the bounds in case ν ă 1
mentioned below (1.10) (cf. also the disconnection results of [48]), the upper bounds in (1.11)
have a functional dependence on the parameter a which is not Gaussian (not even when ν “ 1).

When G “ Z3 (with unit weights), following ideas from [26], see also [41] for related results,
one can actually strengthen this even more and (almost) match the constants C1 from (1.9) and
c2 from (1.11). More precisely, denoting by S2 the two-dimensional unit sphere, and abbreviating
for each x P R3 by rxs the vertex closest to x in Z3 (with some arbitrary choice if x is equidistant
to two or more vertices of Z3), the following result is proved at the end of Section 5.
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Corollary 1.3. Let G “ Z3. There exists c P p0,8q and for all η P p0, 1q, there exists C “

Cpηq P p0,8q such that for all e P S2, a P R with |a| ď c, and all λ ě C,

(1.13) ´
π

6
p1 ` ηq

λ

logpλq
´ C log log ξ ď log

ˆ

τ tra p0, rλξesq

τ tr0 p0, rλξesq

˙

ď ´
π

6
p1 ´ ηq

λ

logpλq
.

The expected rotational invariance at criticality is manifested in (1.13) by the fact that the
bounds obtained are functions of λ alone (with log log corrections) and do not depend on the
choice of e P S2. For the related (but harder) model where one considers excursion sets of the
discrete free field [7, 43], bounds witnessing a degree of rotational invariance similar to (1.13)
were derived in [26], but only asymptotically in the limit λ Ñ 8 for fixed parameter a. We refer
to [44, 23] and references therein for rotational invariance results at criticality when α “ 2.

Summing the bounds (1.9) and (1.11) over all y P G, one also obtains bounds on the average
volume of a (bounded) cluster at level a ‰ 0, and one can furthermore deduce from Theorem 1.1
bounds on the tail of the volume of the critical cluster. This generalizes results from [16, Corol-
lary 1.5 and 1.6] for ν ď 1 to the regime 1 ă ν ă α

2 , with improved logarithmic corrections when
ν “ 1. Let |K| denote the cardinality of a set K Ă G.

Corollary 1.4. There exist c, C P p0,8q such that for all x P G and n ě 1, denoting by Ka the
open cluster of x at level a, under the assumption (1.4) on ν and α and with qp¨q as in (1.6),

(1.14) Pp|K0| ě nq ď Cn´ ν
2α´ν qpnq.

Moreover, for all a ‰ 0, if ν ă α
2 and d “ dgr, one has

(1.15) c|a|´
2α
ν

`2 expt´Cqpξqu ď Er|Ka|1t|Ka| ă 8us ď C|a|´
2α
ν

`2,

and if ν ă 3 is additionally fulfilled, then

(1.16) γ
def.
“ ´ lim

aÑ0

logEr|Ka|1t|Ka| ă 8us

log |a|
“

2α

ν
´ 2.

For instance, (1.16) applies when G is the four-dimensional Sierpinski carpet, see [13, Re-
mark 3.10,1)] as to why. The bound (1.14) can be deduced from Theorem 1.1 similarly as [16,
Corollary 1.6], and it in particular implies that the critical exponent δ (defined in such a way that
n´1{δ controls the tail in (1.14)) is smaller than or equal to 2α

ν ´ 1 when it exists. The bound
(1.15) can be deduced from [16, (8.3)] and (1.11) similarly as [16, Corollary 1.5], and (1.16)
follows readily noting that qpξq{ logpξq Ñ 0 as ξ Ñ 8 when ν ă 3 ^ α

2 , see (1.6). If ν “ α
2 , one

can still bound the average near-critical volume in (1.15) from above by C|a|´
2α
ν

`2 logp|a|´1qα´ν ,
and hence γ ě 2α

ν ´ 2 when it exists, but we cannot prove a matching lower bound anymore
since there is no bound similar to (1.9) currently available in this regime.

We now comment on the proofs. A key role in deriving the upper bounds in Theorems 1.1
and 1.2 is played by a certain obstacle set O with ‘good’ properties, introduced in its general form
in the paragraph leading to Lemma 2.1 below. The relevant obstacle set O, which is a carefully
chosen part of Eěa, is different in each proof and described below. Incidentally, obstacle sets with
similar visibility requirements on the random walk (cf. Lemma 2.1 below and [21, (1.9)]) were key
in deriving the ‘near-critical’ couplings for finite range interlacements, which were instrumental
in the recent proof of sharpness for the vacant set of random interlacements [20, 21, 22], another
model with a similar correlation structure as pEěaqaPR. The interlacement set will also play a
role in this article, as explained below.

For the purpose of proving Theorem 1.1, the obstacle set O will be made up of a selection
of ‘big’ loops stemming from a loop soup at critical intensity, see (4.22); these big loops are
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hard to avoid for the cluster of the origin, and when hit ensure that the latter is sufficiently
‘fat’ when measured in terms of its capacity. The pertinence of the loops stems from the metric
version of Le Jan’s isomorphism [36, 37]. A key input, see Proposition 4.1, is a sufficiently strong
quantitative control guaranteeing the presence of big loops. This estimate is the main driving
force of the proof.

For the purposes of proving Theorem 1.2, the relevant obstacle set O comprises pieces of
interlacement trajectories in Iu, with u “ a2

2 and a as appearing in Theorem 1.2. Interlacements
enter by means of Sznitman’s isomorphism theorem [49]. They appear when a ‰ 0 and witness
the emergence of an infinite cluster. Within the proof, interlacements allow, together with a
version of Lupu’s formula involving killing on O, to control the two-point function when O is
‘good’; see in particular (5.2) and Corollary 2.2. A key input to control the goodness features
of O that eventually give rise to the precise bounds in (1.2) comes via state-of-the-art coarse-
graining techniques, quantitative in both the parameter a and the relevant spatial scales, which
were developed and progressively refined in [48, 26, 1, 42], the last of which will be applied here.

We now briefly comment on the relevance of the condition (1.4). In the proofs of both
Theorems 1.1 and 1.2, the obstacle set O is composed of random walk-type objects, either
comprising big loops or pieces of interlacement trajectories. Consequently, whenever a cluster of
large radius intersects O at a vertex x P G, its capacity in the vicinity of x is not only larger
than the capacity of a line (as needed to satisfy the large radius constraint), but also than the
capacity of a random walk. Whenever ν ě 1, the capacity of the latter is typically much larger
than the capacity of a line, see e.g. [13, Lemmas 4.4 and A.1]. This boosts the capacity of this
cluster upon intersection with O. Furthermore, when ν ď α

2 , the capacity of a random walk in a
ball is typically close to the capacity of this ball, and hence any cluster with large radius locally
resembles a ball if measured in terms of capacity whenever it intersects O. This key random
walk input explains our standing assumption (1.4).

We now describe the organization of this article. Section 2 introduces the framework, some
notation and the important notion of (good) obstacle set O. Section 3 gathers preliminary
estimates on the loop measure for certain sets of interest, at the level of generality needed for
the present article. In combination with the notion of obstacle set developed in Section 2, these
estimates are used in the proof of Theorem 1.1, which is presented in Section 4. The proofs of
Theorem 1.2, Corollary 1.3 and (1.9) are given in Section 5.

Throughout this article we always tacitly assume that (1.4) holds. All constants belong to
p0,8q and may implicitly depend on ν and α in the sequel (as well as on the constants from (Vα),
(Gν) and the ellipticity condition on controlled weights), but not on the choice of base point 0 in
(2.1) below, which is arbitrary. Any further dependence on parameters will be stated explicitly.
Numbered constants c1, C1, . . . are fixed once they first appear, whereas the constants c and C
may change from place to place. It will be convenient to abbreviate

(1.17) b1 “

#

1, if ν “ 1,

0, else,
and b2 “

#

1, if α “ 2ν,

0, else.

2 Preliminaries

In this section we collect a small amount of notation and gather a useful preliminary result on
the connectivity function for the free field in the presence of a certain obstacle (set) O Ă G on
which the random walk is killed, see Corollary 2.2. The obstacle set has certain good properties,
which make it hard for the random walk to avoid, see Lemma 2.1. The related results will play
an important role for the proofs of both Theorems 1.1 and 1.2.
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We start by discussing a few consequences of our setup from Section 1, see above (Vα). In
the sequel, in order to simplify notations, we typically consider

(2.1) 0, an arbitrary point in G

and abbreviate Br “ Bp0, rq. All results hold uniformly in the choice of 0. Similarly as in
[13, Lemma 6.1], we introduce under our assumptions on G (note in particular that controlled
weights, see above (Vα), corresponds to the condition denoted by pp0q in [13, Section 2]) the
approximate renormalized lattice ΛpLq with the properties that there is a constant C3 ă 8 such
that for all x P G, L ě 1 and N ě 1:

(2.2)
0 P ΛpLq,

ď

yPΛpLq

Bpy, Lq “ G, the balls Bpy, L2 q, y P ΛpLq, are disjoint,

and |ΛpLq X Bpx, LNq| ď C3N
α.

The asserted disjointness follow from an inspection of the proof of [13, Lemma 6.1]. We call
π “ pxiq1ďiďM a path in ΛpLq from 0 to A Ă G if x1 “ 0, xM P A, xi P ΛpLq for all 1 ď i ď M ,
and for each 1 ď i ď M ´ 1, there exist x P Bpxi, Lq and y P Bpxi`1, Lq such that x and y are
neighbors in G.

We write X “ pXtqtě0 for the diffusion on the cable system (or metric graph) rG associated
to G and Z “ pZnqně0 for the discrete skeleton of the trace of X on G, see [15, Section 2.1] for
details. Furthermore, we denote by Px, x P rG, the canonical law of X with X0 “ x. If x P G,
the law of Z under Px is that of the discrete time simple random walk on the weighted graph
G “ pG,λq. For all U Ă rG open and x, y P rG, we denote by gU px, yq the Green’s function of
X killed outside U between x and y, and abbreviate gpx, yq “ g

rGpx, yq. When x, y P G, then
gpx, yq simply corresponds to the Green’s function associated to the walk Z. For U Ă G we
write HU “ HU pZq “ inftn ě 0 : Zn P Uu for the entrance time in U and TU “ HGzU for the
exit time of Z from U . We also denote by eU the equilibrium measure of a finite set U Ă G and
by cappUq its capacity, which satisfies

(2.3) PxpHU ă 8q “
ÿ

yPG

gpx, yqeU pyq for all x P G;

this identity immediately follows from a last exit decomposition for the walk, cf. [47, (1.57)] for
the finite graph setting. One further knows, see e.g. [16, (5.7)], that uniformly in x P G and
R ě 1,

(2.4) cRν ď cappBpx,Rqq ď CRν .

Under the standing assumptions on G (see Section 1), one also has that the following elliptic
Harnack inequality holds. On account of [13, (3.3)] (cf. also references therein), such that for all
ζ ě C4, x P G, R ě 1, and h : G Ñ r0,8q which are L-harmonic in Bpx, ζRq,

(2.5) sup
yPBpx,Rq

hpyq ď c3 inf
yPBpx,Rq

hpyq.

We now introduce the obstacles that will play a role in the sequel. We call a set O Ă G a
pL,R, n, κq-good (or simply good when the parameters are clear from the context) obstacle if for
each path π in ΛpLq from 0 to Bc

R, there exists a set A Ă rangepπ X BRq with |A| ě n such that
cappO XBpy, Lqq ě κ for all y P A. Recall our convention regarding constants c, C from the end
of the previous section.
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Lemma 2.1. There exists a constant C5 P p0,8q such that for all κ, L ě 1, R ě L, integer
n ě 1, x P Bc

R`C5L
, and for any pL,R, n, κq-good obstacle set O, one has

P0 pHx ă HOq ď Cdpx,BR`C5Lq´ν exp
!

´
cκn

Lν

)

.

Proof. By a slight generalization of (2.3), see for instance [42, (2.17)], there exist constants
C6 ă 8 and c4 ą 0 such that for any y P G with cappO X Bpy, Lqq ě κ, we have

(2.6) Pz

`

HO ă TBpy,C6Lq

˘

ě
c4κ

Lν
for all z P Bpy, Lq.

Let us introduce recursively a random sequence of vertices y1, . . . , yM depending on Z under P0

as follows: yi is the first vertex y P ΛpLq X BR visited by BpZk, Lq, k P N, (with an arbitrary
rule for splitting ties), and such that

• cappBpy, Lq X Oq ě κ, and

• Bpy, Lq X Bpyj , C6Lq “ H for all j ď i ´ 1.

We stop the recursion the first time M “ MpL,R,O, κq after which such a vertex y as described
before does not exist. Since O is a pL,R, n, κq-good obstacle, there are at least n ´ 1 different
vertices y P ΛpLq X BR such that Z hits Bpy, Lq and cappO X Bpy, Lqq ě κ. One can easily
deduce from (2.2) that there exists c ą 0 such that M ě cn almost surely. Let us denote by Hi

the first time Z hits Bpyi, Lq, and by Ti the first time Z exits Bpyi, C6Lq after Hi. Choosing C5

large enough we then have

P0pHx ă HOq ď P0

´

O X tZk, Hi ď k ă Tiu “ H @ 1 ď i ď rcns, Trcns ď Hx ă 8

¯

ď

´

1 ´
c4κ

Lν

¯cn
¨ Cdpx,BR`C5Lq´ν ;

(2.7)

here, the last inequality is obtained as follows: we first apply the strong Markov property of Z at
time Trcns combined with (Gν), and noting that we have dpx, ZTrcns

q ě dpx,BR`CLq, in order to
obtain the second factor in the last line of the right-hand side of (2.7). We then apply the strong
Markov property recursively at times Hrcns´i, 0 ď i ď rcns ´ 1, together with the bound (2.6).
Using the inequality 1 ´ t ď e´t for all t ě 0 we obtain the first factor and can conclude.

We now discuss a consequence of the above result for the Gaussian free field, which is tailored
to our later purposes. Extending the definition from Section 1, we write φ from here on to denote
the Gaussian free field on the metric graph rG and continue to write P for its canonical law. More
generally, for U Ă rG open, we denote by PU the law under which pφxqxPU is a Gaussian free field
on U , that is a centered Gaussian field with covariance gU px, yq, x, y P rG; we refer to [37] and
[15] for further details regarding the cable system Gaussian free field. We further write ‘x Ø y
in A’ if there is a continuous path in A Ă rG from x to y, which is consistent with the notation
introduced below (1.8) when identifying edges with their respective cables in rG.

We now present a consequence of Lemma 2.1 and [37, Proposition 5.2], which is one of the
key observations for the proofs of Theorems 1.1 and 1.2.

Corollary 2.2. For all κ, L ě 1, R ě L, n P N, x P GzBR`C5L, U Ă rG open such that
O def.

“ G X U c is a pL,R, n, κq-good obstacle, we have

PU

`

0 Ø x in ty P U : φy ě 0u
˘

ď Cdpx,BR`C5Lq´ν exp
!

´
cκn

Lν

)

.
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Proof. If 0 P O or x P O the statement is trivial. Otherwise, by the symmetry of the Gaussian
free field and [37, Proposition 5.2] for the graph G with infinite killing on O we have

(2.8) PU

`

0 Ø x in ty P U : φy ě 0u
˘

“
1

π
arcsin

´ gU p0, xq
a

gU p0, 0qgU px, xq

¯

.

Using the inequality arcsinptq ď πt{2 for all t P r0, 1s, the right-hand side is upper bounded by

gU p0, xq

2
a

gU p0, 0qgU px, xq
.

Now note that gU p0, xq “ gU px, xqP0pHx ă HU cq and gU p0, xq “ gU p0, 0qPxpH0 ă HU cq. Com-
bining this with the fact that P0pHx ă HU cq ď P0pHx ă HOq and that

PxpH0 ă HU cq ď PxpH0 ă HOq “ λ0P0pHx ă HOq{λx ď CP0pHx ă HOq,

which is due to [47, (1.23)] and [13, (2.10)], one deduces that the right-hand side of (2.8) is
bounded by CP0pHx ă HOq. The conclusion now follows using Lemma 2.1.

3 Markovian loops

We now collect some useful properties concerning Markovian loop soups, as introduced for in-
stance in [35, 34, 36, 37]. These properties will then be used in the next section to prove
Theorem 1.1. Indeed, the upper bound (1.5) relies on a profound link between the Gaussian free
field and a Poisson cloud of Markovian loops, which we now recall. The (rooted) loop soup L of
parameter 1

2 is a Poisson point process of (bounded, continuous and rooted) loops on rG under Q
having intensity measure αµ, with α “ 1

2 and a measure µ, which we proceed to introduce. The
measure µ acts on the space of rooted loops, i.e. of continuous trajectories γ : r0, T s Ñ rG satis-
fying γp0q “ γpT q, for some T “ T pγq P p0,8q called the duration of the loop. More precisely,
we define

(3.1) µp ¨ q
def.
“

ż

rG
dmpxq

ż 8

0

dt

t
qtpx, xqP t

x,xp ¨ q,

where P t
x,xp ¨ q is the time t bridge probability measure for the diffusion X on rG (introduced

above (2.3)), m is the natural Lebesgue measure on rG, which assigns length 1{p2λx,yq to the
cable joining x and y, and qt is the transition density of X relative to m; see [25, Section 2] and
[37, Section 2], where it is denoted by rL1{2, for details.

If U Ă rG is an open subset, the loop soup LU is obtained by retaining only the loops in L
whose range is contained in U . The restriction property of L (see [25, Theorem 6.1], or also [47,
Proposition 3.6] in the discrete setting) asserts that

(3.2) LU has law QU ,

where QU now denotes the law of the metric graph loop soup with underlying graph U, that is
with infinite killing on U c. The loop soup L induces clusters in rG as follows. Two continuous
loops belong to the same cluster if there exists a finite sequence of loops starting and ending with
the two loops of interest, and such that the ranges of any two consecutive loops in the sequence
intersect. Clusters of loops are connected components obtained in this way using loops in the
support of L. We will take advantage of the following link relating the loop soup L to the free
field φ under P. Considering

(3.3) C “ CpLq, the trace on rG of the cluster of loops (in L) containing 0,

9



one knows (see for instance [37, Proposition 2.1] for a proof, which relies on an isomorphism of
Le Jan, see [36, Theorem 13]) that

(3.4) the cluster of 0 in tx P rG : |φx| ą 0u has the same law under P as C under Q.

Further notice that by [15, Lemma 4.1], if φ0 ą 0 then the closure of the cluster of 0 in tx P rG :
|φx| ą 0u is almost surely equal to the cluster of 0 in tx P rG : φx ě 0u, whose intersection with
G has the same law as the cluster of 0 in Eě0, see below (1.1), as explained around [16, (1.6)].
Combined with (3.4), this explains the relevance of L in our context.

We proceed to gather specific features of the latter that will be beneficial for us. To this
effect it is convenient to consider the discrete time loop soup pL on G induced by L, which is
obtained by considering the trace on G of all continuous loops in the support of L intersecting
G, and only retaining non-trivial loops, i.e. any loop visiting more than one vertex of G. As
explained in [37, Section 2], combined with the same proof as in the finite setting of [47, (3.17)],
the intensity measure of pL can be described as follows. To any rooted loop γ on rG visiting at
least two vertices of G, one associates N “ Npγq the number of times (ě 2) γ jumps to another
vertex in G, and the corresponding discrete skeleton Z0 “ Z0pγq,...,Zn “ Znpγq “ Z0. Then for
all n ě 2 and x0, . . . , xn´1 P G,

(3.5) µpN “ n,Z0 “ x0, . . . Zn´1 “ xn´1q “
1

n

ź

0ďiăn

λxi,xi`1

λxi

, (with xn “ x0).

We now collect several useful properties of the measure µ in (3.1). In the special case of Zα,
α ě 3 integer (with unit weights), results of this kind have appeared in [9, Section 2]. These
relied in the case α “ 4 on intersection results of [32] for two random walks. With hopefully
obvious notation, we write K

γ
ÐÑ U to denote the property that the loop γ intersects both K

and U , for K,U Ă G.

Lemma 3.1 (0 ă ν ď α
2 ). For all ζ ě C, R ě 1, x P G, and K Ă Bpx,Rq,

µ
`

K
γ

ÐÑ Bpx, ζRqc
˘

ď C ¨ cappKqpζRq´ν ,(3.6)

µ
`

K
γ

ÐÑ Bpx, ζRqc, cappγq ě c ¨ Rν logpRq´b2
˘

ě c ¨ cappKqpζRq´ν ,(3.7)

where, with a slight abuse of notation cappγq “ capprangepγq X Gq.

Proof. We start by showing (3.6). Abbreviate B “ Bpx, ζRq and write Z “ Zpγq for the discrete
skeleton of the loop γ. Let R0 “ HK “ inftn ě 0 : Zn P Ku, with the convention inf H “ 8,
and for k ě 0, let Dk`1 “ Rk ` TB ˝ θRk

, where we recall the notation TB “ HBc , when Rk ă 8

and Dk “ 8 otherwise, and Rk`1 “ Dk`1 `HK ˝ θDk`1
(possibly infinite). The random variable

κ “ κpγq “ |tk ě 1 : Rk ď Npγqu|, which denotes the number of times γ returns to K, is
always positive (and finite) on the event appearing on the left-hand side of (3.6). Thus, using
(3.5), decomposing over the value of κ and re-rooting the (discrete, rooted) loop Z at ZRi , where
i P t1, . . . , ku is chosen uniformly at random, which produces a factor n

k , one obtains that

(3.8) µ
`

K
γ

ÐÑ Bpx, ζRqc
˘

“
ÿ

kě1

1

k

ÿ

yPBK

PypRk ă 8, ZRk
“ yq,

with BK denoting the interior boundary of the set K. For k ě 1, one has for all y P Bpx,Rq,
applying the Markov property at time Dk´1 and noting that for z P K the function u ÞÑ PupR1 ă
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8, ZR1 “ zq is harmonic in B,

PypRk ă 8, ZRk
“ zq

“
ÿ

uPBK

PypRk´1 ă 8, ZRk´1
“ uqPupR1 ă 8, ZR1 “ zq

(2.5)
ď

ÿ

uPBK

PypRk´1 ă 8, ZRk´1
“ uqc3PxpR1 ă 8, ZR1 “ zq

ď c3PypRk´1 ă 8qPxpR1 ă 8, ZR1 “ zq.

(3.9)

By a straightforward induction argument, one finds that PypRk ă 8, ZRk
“ zq is bounded from

above by pc3PxpR1 ă 8qqk´1PxpR1 ă 8, ZRk
“ zq. We now choose z “ y, sum over y P BK and

plug the resulting estimate into (3.8). Consequently, using that PxpR1 ă 8q ď supzPBc PzpHK ă

8q, which is at most c ¨ cappKqpζRq´ν by a last-exit decomposition and (Gν), (in particular this
implies that c3PxpR1 ă 8q ď 1 ´ c for some c ą 0 upon possibly taking ζ ě C and hence the
convergence of the resulting geometric series in (3.8)), the bound (3.6) readily follows.

To deduce (3.7) one first observes, recalling the discussion that led to (3.8), that κpγq ě 1
on the event appearing on the left-hand side of (3.7) if γ is rooted in K. To obtain a lower
bound, one simply retains loops γ with κpγq “ 1, re-roots such loops similarly as above (3.8),
and requires the required capacity to be generated ‘on the way back’, i.e. after time D1 and
before exiting the ball of radius R around ZD1 (which occurs before hitting K if λ0 ą 2), to find
that for all t ě 1,

µ
´

K
γ

ÐÑ Bpx, ζRqc, cappγq ě
Rν

t logpRqb2

¯

ě inf
zPBoutB

Pz

´

HK ă 8, cap
`

Zr0,TBpz,Rqs

˘

ě
Rν

t logpRqb2

¯

,

(3.10)

where Zr0,ss “ tx P G : Zt “ x for some t P r0, ssu and BoutB “ tx P Bc : D y P B with y „ xu.
Applying the Markov property at time TBpz,Rq and noting that XTBpz,Rq

P Bpx, pζ ` CqRq for all
z P BoutB by [13, (2.8)], the probability in the second line of (3.10) is bounded from below by

inf
zPG

Pz

´

cap
`

Zr0,TBpz,Rqs

˘

ě
Rν

t logpRqb2

¯

¨ inf
z1PBpx,pζ`CqRq

Pz1pHK ă 8q.

Regarding the second factor, by a similar computation as above involving a last-exit decomposi-
tion and the lower bounds in (Gν), it is bounded from below by c ¨ cappKqpζRq´ν . With respect
to the first factor, observe that applying [16, Lemma 5.3] with K as appearing therein chosen as
K “ H and t “ C sufficiently large, one infers that the infimum over z is bounded away from
zero by c ą 0, whence (3.7) follows.

4 Critical one-arm probability

In this section we prove Theorem 1.1. We start with some preparation and consider the scales

(4.1) R “ C7pℓ ` 1qL, for ℓ, L ě 2,

with C7 to be chosen momentarily (see (4.4) below). Recall the approximate lattice ΛpLq from
the beginning of Section 2. We define Ak Ă ΛpLq for 1 ď k ď ℓ as

(4.2) Ak “
␣

x P ΛpLq : Bpx, Lq X BBC7kL ‰ H
(

,

11



and the associated ‘annulus’

(4.3) Ak “
ď

xPAk

Bpx, Lq pĂ Gq.

Henceforth, the constant C7 in (4.1) is fixed so that for all ℓ, L ě 2 and k, k1 P t1, . . . , ℓu,

(4.4) Ak Ă BR and dpAk,Ak1q ě |k ´ k1|L,

which is always possible by (4.2) and [13, (2.8)]. We now consider the continuous loop soup L of
intensity α “ 1

2 on rG with canonical law Q, see Section 3 for details, and in the sequel we refer
to as ‘loop’ any element in the support of its intensity measure. For given δ ą 0 and L ě 1, we
will call a loop small if

(4.5) cappγq ă δLν logpLq´b2 ,

and big otherwise. With this terminology, the point measures Lb
k for 1 ď k ď ℓ are defined as

follows. If L “
ř

i δγi refers to a generic realization, then

(4.6) Lb
k “

ÿ

i

δγi1
␣

γi is big and rangepγiq Ă rBpx, Lq for some x P Ak

(

,

where with hopefully obvious notation, rBpx, Lq Ă rG is obtained by adding all the cables between
neighboring vertices in Bpx, Lq. Recalling from (3.3) the cluster C of the origin in the loop soup
L, we consider the events

(4.7) Bk “

"

C X Bc
R ‰ H and C does not contain the

trace of any loop in the support of Lb
k

*

.

Note that (4.7) depends implicitly on the choice of parameters δ, ℓ and L (furthermore, Bk is
measurable since the restrictions in (4.5) and (4.6) induce measurable constraints). Intuitively,
the event Bk refers to an annulus in which certain big loops are avoided by C (which we think
of as being bad). Our interest will be in the quantity

(4.8) N “ Nδ,ℓ,L
def.
“

ÿ

1ďkďℓ

1Bk
.

The following result is key to the proof of Theorem 1.1. It asserts that large families of bad
annulis (i.e., k’s such that Bk occurs) are typically rare. Importantly, the quantitative error
bound is sufficiently sharp.

Proposition 4.1. For all integers ℓ, L ě 2, δ, ρ P p0, 12q such that L´c ď δ ď c5 logpℓq´ ν
α and

ρ logpρ´1q ď c6δ logpLq´b2, one has

(4.9) Q
`

N ě p1 ´ ρqℓ
˘

ď CpℓLqα exp

"

´
c7δℓ

logpLqb2

*

.

We will prove Proposition 4.1 further below and first show how to deduce Theorem 1.1 from
it. This involves an estimate on the capacity of the union of many big loops, such as the cluster
C on the complement of the event in (4.9). The following lemma gives a lower bound which is
not far from additive.

Lemma 4.2. For all integers ℓ, L ě 2, the following holds. Let I Ă t1, . . . , ℓu and assume that
Sk Ă Ak with cappSkq ě η for each k P I. Then, recalling b1 from (1.17), one has

(4.10) cap
´

ď

kPI

Sk

¯

ě c8|I|

´

Lν logp1 ` |I|q´b1 ^ inf
kPI

cappSkq

¯

.
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Proof. By a classical variational characterization of capacity, see for instance [47, Prop. 1.9] for
a proof on finite graphs, for any S Ă G one has that

(4.11) cappSq “

´

inf
µ

ÿ

x,yPG

µpxqgpx, yqµpyq

¯´1
,

where the infimum ranges over all probability measures µ supported on S. Consider the measure

(4.12) µpxq
def.
“

1

|I|

ÿ

kPI

ēSk
pxq, x P G,

where ēSk
“ eSk

{cappSkq denotes the normalized equilibrium measure, so µ is indeed a probability
measure supported on

Ť

kPI Sk. Evaluating the sum on the right-hand side of (4.11) at µ from
(4.12), and noting that for all x P Sk, y P Sj , 1 ď k ‰ j ď ℓ, the bound gpx, yq ď CdpAk,Ajq

´ν ď

CL´ν |j ´ k|´ν holds owing to (Gν) and (4.4), it follows that

cap
´

ď

kPI

Sk

¯´1
ď

1

|I|2

ÿ

k,jPI

ÿ

xPSk

ÿ

yPCj

ēSk
pxqgpx, yqēCj pyq

(2.3)
ď

1

|I|2

ÿ

kPI

1

cappSkq
`

2

|I|

|I|
ÿ

n“1

CpnLq´ν ,

from which (4.10) readily follows.

Using Proposition 4.1 and Lemma 4.2, we now give the proof of our first main result.

Proof of Theorem 1.1. On account of (3.4) and below, and since φ and ´φ have the same law
under P, one has that

(4.13) Pp0 Ø Bc
Rq “

1

2
QpC X Bc

R ‰ Hq.

As a consequence, it is sufficient to upper bound the quantity on the right-hand side of (4.13).
It is further sufficient to assume that R ě C, which will be tacitly supposed from here on. In
particular, no loss of generality is incurred by assuming that R is of the form (4.1) and by proving
the statement for a suitable choice of ℓ ą 1 (see (4.18) below) and all L ě C.

As we now explain, for all ℓ ą 1, L ě C, δ P p0, cq and ρ P p0, 1q, with

(4.14) η “ c8ρℓL
ν
´ δ

logpLqb2
^

1

logp1 ` ρℓqb1

¯

(see Lemma 4.2 regarding c8), one has the inclusion

(4.15)
␣

C X Bc
R ‰ H, cappCq ă η

(

Ă tN ě p1 ´ ρqℓu

with the random variable N as in (4.8). To see this, suppose that tN ă p1 ´ ρqℓu. We now
argue that the intersection of this event with the one on the left-hand side of (4.15) is empty,
from which the desired inclusion in (4.15) follows. For this purpose, consider the (random) set
I “ tk : Bk does not occuru Ă t1, . . . , ℓu, so that

(4.16) |I| “ ℓ ´ N ą ρℓ

on the event tN ă p1 ´ ρqℓu. By definition of Bk in (4.7) and the defining property of big
loops, see (4.5), one has on the event tC X Bc

R ‰ Hu that C Ą
Ť

kPI Sk, where Sk Ă Ak
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comprises at least the range of one loop of capacity at least δLνplogLq´b2 for each k P I, whence
cappSkq ě δLνplogLq´b2 by monotonicity of the capacity. Applying Lemma 4.2, this yields that

cappCq ě c8pℓ ´ NqLν
`

pδ logpLq´b2q ^ logp1 ` ℓ ´ Nq´b1
˘

(4.16),(4.14)
ě η,

and (4.15) follows.
Using (4.13), (4.15), the tail bound QpcappCq ą tq ď Ct´1{2 (which holds by (3.4)) and [16,

Corollary 1.3], it follows from (4.9) that under the assumptions of Proposition 4.1,

Pp0 Ø Bc
Rq ď QpcappCq ě ηq ` QpN ě p1 ´ ρqℓq

ď C
`

η´1{2 ` pℓLqα exp
␣

´ c7 logpLq´b2δℓ
(˘

.
(4.17)

We now choose the parameters δ, ρ and ℓ so that they satisfy the assumptions of Proposition 4.1,
and that the second line of (4.17) is small. For γ P p0, 1q to be specified in a moment, let

δ “ c5plog ℓq´ν{α,

ρ “ γplogLq´b2plog logLq´pb2` ν
α

qplog log logLq´1`b2 ,

ℓ “ γ´1plogLq1`b2plog logLqν{α.

(4.18)

Observe that γ logp1{γq Ñ 0 as γ Ñ 0. Choosing γ small enough one can thus ensure that
ρ logp1{ρq ď c6δ logpLq´b2 for all L ě C, and hence by our choice of δ and ℓ, the assumptions
of Proposition 4.1 are satisfied upon possibly further increasing L. In particular, (4.17) is in
force and, possibly reducing the value of γ even further so that c7c5

γ ą α` ν
2 , the second term in

brackets in the second line of (4.17) is OpL´ν{2´εq for some ε ą 0 as L Ñ 8. In view of (4.14),
(4.17) and (4.18), this means that the term η´1{2 dominates, and one obtains from (4.14), noting
further that δ logpLq´b2 ě logp1 ` ρℓq´b1 if and only if ν “ 1, that for all L ě C,

Pp0 Ø Bc
Rq

ď Cplog log logLq
1´b2
2 plog logLq

b1`b2
2

`
p1`ν´b1qν

2α plogLq
ν´1`b2pν`1q

2 ¨ pℓLq´ ν
2 .

(4.19)

The claim now follows since one can safely replace L by ℓL inside the log and log log factors by
definition of ℓ in (4.18) and the exponents of log logR in (1.6) arise using that ν ă α{2 in the
second case and that α ě ν ` 2 “ 3 when ν “ 1.

We now prove Proposition 4.1.

Proof of Proposition 4.1. Recall the event Bk from (4.8), and for arbitrary D Ă t1, . . . , ℓu con-
sider the event BD “

Ş

kPD Bk. For all D Ă t1, . . . , ℓu with |D| ě p1 ´ ρqℓ, and δ, ℓ, L, ρ as
appearing in the statement, we will argue that if L´c ď δ ď pc5 logpℓq´ ν

α q,

(4.20) Q
`

BD

˘

ď CpℓLqα exp

"

´
cp1 ´ ρqδℓ

logpLqb2

*

.

Once this is shown, applying a union bound over subsets of t1, . . . , ℓu of cardinality rp1 ´ ρqℓs
and using the bound

`

ℓ
rp1´ρqℓs

˘

ď eCρ logp1{ρqℓ valid for all ρ P p0, 12q, which is a consequence of
Stirling’s formula, the bound (4.9) directly follows when ρ logpρ´1q ď c6δ logpLq´b2 for c6 small
enough.

We now prove (4.20). With Lb
k as in (4.6) let

(4.21) Lb
D “

ÿ

kPD

Lb
k.
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In words, Lb
D collects all the big loops contained in a box rBpx, Lq for some x P

Ť

kPD Ak. Upon
intersection with G, their union forms the set O, i.e., writing Lb

D “
ř

i δγi we define

(4.22) O def.
“ G X rIb

D, where rIb
D “

ď

i

rangepγiq.

Recall the notion of a good obstacle set from above Lemma 2.1. We first isolate the following
result.

Lemma 4.3. For ℓ, L ě 2, L´c ď δ ď c5 logpℓq´ ν
α , D Ă t1, . . . , ℓu with |D| ě ℓ

2 , R as in (4.1)
and κ “ δLνplogLq´b2 , letting G “ tO is a

`

L,R, |D|

2 , κ
˘

-good obstacle setu, one has

(4.23) QpGq ě 1 ´ exp
␣

´ cδ´α
ν |D|

(

.

We delay the proof of Lemma 4.3 for a few lines. Since the point measures Lb
k have disjoint

support as k varies, owing to (4.6), (4.3) and (4.4) the event BD can be recast in view of (4.7)
and (4.21) as

(4.24) BD “
␣

C X Bc
R ‰ H, C X rIb

D “ H
(

Ă
␣

0 Ø Bc
R in L

rGzrIb
D

(

(recall from above (3.2) that LU denotes the restriction of L to loops contained in U). One
issue with the event BD rendered visible by (4.24) is that L is not independent from rIb

D—in
particular, (3.2) is not directly applicable in this context with U “ rGzrIb

D. To deal with this
issue, we proceed as follows. Let qLb

D
law
“ Lb

D denote a copy independent of L defined under Q by
suitably enlarging the underlying probability space. Let L1 “ L ´ Lb

D and define

qL “ qLb
D ` L1.

Since L1 is independent from Lb
D and using the definition of qLb

D, one infers that qL law
“ L and that

qL and Lb
D are independent under Q. In particular, since rIb

D is plainly Lb
D-measurable in view of

(4.22), one obtains that

(4.25) qL and rIb
D are independent under Q.

Moreover, L
rGzrIb

D
ď L1 by definition of rIb

D and therefore L
rGzrIb

D
ď qL

rGzrIb
D

by monotonicity. Thus,

returning to (4.24), observing that the event G defined above (4.23) is rIb
D-measurable and that,

conditionally on rIb
D, the loop soup qL

rGzrIb
D

has law Q
rGzrIb

D
owing to (4.25) and the restriction

property (3.2), it follows that

(4.26) QpBD, Gq ď Q
`

0 Ø Bc
R in qL

rGzrIb
D
, G

˘

“ 2EQ“P
rGzrIb

D
p0 Ø Bc

Rq ¨ 1G
‰

,

where the last step also uses the formula (4.13) applied to rGzrIb
D instead of rG. Applying a union

bound over points on the boundary of GzBR connected to 0 on the right-hand side of (4.26)
and subsequently applying Corollary 2.2, which is in force on the event G, with the choices
n “ p1 ´ ρq ℓ

2 and κ as in Lemma 4.3, one deduces that

QpBD, Gq ď CpℓLqα exp

"

´
cp1 ´ ρqδℓ

logpLqb2

*

.

Together with the bound on QpGcq provided by Lemma 4.3, the upper bound (4.20) immediately
follows, which completes the proof.
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It remains to provide the proof of Lemma 4.3.

Proof of Lemma 4.3. The event G in question refers to the existence of a set A Ă rangepπXBRq

with |A| ě
|D|

2 for every path π in ΛpLq from 0 to Bc
R with the property that

(4.27) cap
`

rIb
D X Bpy, Lq

˘

ě δLν logpLq´b2 , y P A.

Let π be any such path. By definition of Ak in (4.2), the range of π intersects Ak for any k P D.
We pick one such point of intersection for every k P D, which defines the set A1. In view of (2.2)
and (4.1), applying a union bound over the possible choices for A1 yields a factor bounded by

(4.28) |BR X ΛpLq||D| ď eC logpℓq|D|.

As we now explain, it is enough to consider a fixed set A1 “ txk : k P Du with xk P Ak for all
k P D and to show for

(4.29) A
def.
“

␣

xk : rBpxk, Lq contains a big loop in L
(

that for δ ě L´c,

(4.30) Q
`

|A| ă
|D|

2

˘

ď e´cδ´ α
ν |D|.

Indeed the set A defined by (4.29) satisfies (4.27) by definition of rIb
D and of big loops, see (4.5),

and A has the required cardinality on the complement of the event in (4.30). Furthermore, for
δ ď c5 logpℓq´ ν

α , the entropy term (4.28) gets absorbed in the exponential from (4.30).
To show (4.30) one observes that the events Ek “ t rBpxk, Lq contains a big loop in Lu are

independent as k varies since the sets rBpxk, Lq are disjoint by construction; see (4.4). Hence |A|

dominates a binomial random variable with parameters |D| and p “ infk QpEkq. We will now
argue that for all δ P p0, 1q and δ ě L´c,

(4.31) p ě 1 ´ e´cδ´ α
ν .

Once this is shown, a union bound gives that Qp|A| ă nq ď 2np1 ´ pqn for n “ |D|{2 and (4.30)
follows for δ P p0, cq for some small enough constant c ą 0.

To argue that (4.31) holds, we use Lemma 3.1. Let x P G. By (3.7) applied with ζ “ C to
K “ Bpx,C8δ

1{νLq for suitable choice of C8, we can ensure that

(4.32) Q
ˆ

Dγ P supppLq s.t. rangepγq X Bpx,C8δ
1{νLq ‰ H

and cappγq ě δLν logpδ1{νLq´b2

˙

ě c9

whenever δ1{νL ě 1. Requiring that δ ě L´c, one further ensures that logpδ1{νLq ě c logL (along
with δ1{νL ě 1), which effectively allows to remove the factor δ1{ν from the logarithm in (4.32).
Now, applying (3.6) with ζ a large enough constant, we can further ensure that with probability
at most c9

2 , a loop in supppLq will intersect both K and the complement of Bpx, ζC8δ
1{νLq.

Combining this with (4.32) yields that

(4.33) Q
ˆ

Dγ P supppLq s.t. rangepγq X Bpx,C8δ
1{νLq ‰ H,

rangepγq Ă Bpx, ζC8δ
1{νLq and cappγq ě δLν logpLq´b2

˙

ě
c9
2
.

One now considers for a given xk as above, the set rΛk “ Bpxk, Lq X Λp2ζC8δ
1{νLq, so that the

boxes Bpx, ζC8δ
1{νLq are disjoint as x varies in rΛk by (2.2), and forms the subset Λk Ă rΛk by

keeping only those points x such that Bpx, ζC8δ
1{νLq Ă Bpxk, Lq. By (2.2) and (Vα), |Λk| ě cδ´α

ν

and the events in (4.33) are independent as x varies in Λk by construction. The claim (4.31) now
follows, since the occurrence of at least one of these events already implies Ek.
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Remark 4.4. If one is only interested in proving (1.7), that is obtaining (1.5) for some subpoly-
nomial function q, the above proof of Theorem 1.1 can be simplified as follows. One replaces the
events Bk from (4.7) by a single event

B “ tC X Bc
R ‰ H, C X BR does not contain any big loopu,

where we recall the definition of big loops from below (4.5), and notice that by a similar reasoning
as in (4.17)

Pp0 Ø Bc
Rq ď PpBq ` PpC ě δLν logpLq´b2q ď PpBq ` Cδ´1{2L´ν{2 logpLqb2{2.

One can then define O as the set of vertices in BR hit by a big loop, show similarly as in
Lemma 4.3 that O is a pL,R, ℓ{2, κq-good obstacle with high probability, and hence proceeding
similarly as in (4.26) and below one deduces that PpBq ď pLℓqα expt´cδ logpLq´b2ℓu. Taking
δ “ c and ℓ “ logpLq1`b2 , it follows that

Pp0 Ø Bc
Rq ď CL´ν{2 logpLqb2{2 ď CR´ν{2 logpRqpν`b2pν`1qq{2

by (4.1). When ν ą 1 this simply corresponds to a higher log power in (1.6), but when ν “ 1, for
instance on Z3, one obtains qpRq “ logpRq1{2 instead of log logR in (1.6). Incidentally, this factor
logpRq1{2 on Z3 already appeared multiple times before, see [11, 16], and it can also be deduced
from [15, (1.9)], hence the interest of improving it to log logR. Intuitively, this improvement
comes from asking to meet many big loops in Proposition 4.1, whose union have a much bigger
capacity than a single loop by Lemma 4.2.

5 Bounds on the two-point function

In this section, we prove Theorem 1.2 and Corollary 1.3, and at the very end provide a short
derivation of (1.9). One important tool will be the random interlacements model, originally
introduced on Zd in [45] (cf. also [17] for an introduction to the model), extended to general
transient graphs in [50], and to the cable system in [37]. We refer for instance to [15, Section 2.5]
for a brief introduction of the model at the level of generality needed in the present context.

Under the probability P, we denote by rIu the closure of the interlacement set at level u ą 0

on rG, and by rVu def.
“ rGzrIu the corresponding vacant set on rG. We further abbreviate by Iu def.

“
rIu X G the (usual) interlacement set on G. With the notation introduced above Corollary 2.2,
conditionally on rIu, the measure P

rVu is the law of a Gaussian free field killed on rIu. The interest
of random interlacement in the study of the Gaussian free field is due to an isomorphism theorem
between the two objects, first observed in [46], and then improved in [37, 49, 15]. Our first result
is a useful consequence of this isomorphism combined with the restriction property (3.2) and the
loop soup isomorphism, in the (weak) form (3.4). For a P R, let rKa “ rKapφq Ă rG denote the
connected component of 0 (see (2.1)) in tx P rG : φx ě au.

Lemma 5.1. For each u ą 0, there exists a coupling of pφ, rVu, γq, with φ having law P, rVu a
vacant set with the same law as under P, and γ with law P

rVu conditionally on rVu, such that

rK
?
2u Ă tx P rVu : γx ě 0u.

Proof. By [15, Theorem 1.1 and Lemma 3.4,(2)], the isomorphism (Isom) on p.259 therein is
satisfied for any graph satisfying (Gν), such as G. Using the symmetry of the Gaussian free field,
one readily deduces from this isomorphism that

(5.1) rK
?
2u has the same law under P as rK01trK0 Ă rVuu under P b P,
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where A1tEu is the set which is equal to A if the event E occurs, and is equal to H otherwise.
By (3.4) and the symmetry of P under φ ÞÑ ´φ, the set rK0 is either empty with probability 1

2 ,
or has the same law as the cluster C of 0 in L under Q otherwise. Moreover, since rVu and L are
independent, it follows from (3.2) that, conditionally on rVu, the loops L

rVu which are entirely
contained in rVu have the same law as a loop soup under Q

rVu . Therefore, conditionally on rVu

the set rK
?
2u is stochastically dominated by a set which is either empty with probability 1

2 , or is
the cluster of 0 in a loop soup under Q

rVu otherwise (to see this, notice that whenever the latter
set is non-empty, the inclusion from (5.1) translates into the requirement that the cluster of 0 in
L

rVu is equal to the cluster of 0 in L). Using (3.4) but for the graph rG with infinite killing on rIu

and the symmetry of the Gaussian free field again, the claim follows.

As we detail below, one obtains from the first passage percolation upper bound in [42, Theo-
rem 5.4] that the set Iu is a pL,R, n, κq-good obstacle set (see above Lemma 2.1) with high prob-
ability for an appropriate choice of L, n, κ, and combining this with Corollary 2.2 and Lemma 5.1
we now deduce Theorem 1.2.

Proof of Theorem 1.2. The statement is trivial for a “ 0 and by [15, Lemma 4.3], we may assume
without loss of generality that a ą 0. Abbreviate u “ a2{2, let η P p0, 1q, and recall τ tr

a from
(1.8). For a ą 0 the truncation tx Ü 8 in Eěau has probability one, hence applying Lemma 5.1
we have that

(5.2) τ tr
a p0, xq “ τ tr?

2u
p0, xq ď E

”

P
rVu

`

0 Ø x in ty P rVu : φy ě 0u
˘

ı

.

To bound the right-hand side of (5.2), we use Corollary 2.2. Recall the notion of a good ob-
stacle set introduced above Lemma 2.1. By [42, (6.4)] (see also below [42, (2.22)] regarding the
function Gν appearing therein), which holds without the condition [42, (2.5)] for similar reasons
as explained in [42, Remark 6.6], there exist c, c10 ą 0 and C ă 8, depending on η, such that
letting L “ Cu´ 1

ν , n “ cRu
1
ν and κ “ u´1plogp 1

uq _ 1q´b2 , if u
1
νR ě C, then

(5.3) P
`

Iu is a pL,Rp1 ´ ηq, n, κq-good obstacle
˘

ě 1 ´ exp
!

´
c10u

1
νRp1 ´ ηq

logpu
1
νRp1 ´ ηqqb1

)

.

We now set R “ dp0, xq in what follows and first assume that u
1
ν dp0, xq ě C. Using that

dpx,BRp1´ηq`CLq ě pη{2qdpx, 0q if Ra
2
ν is large enough, that P

rVu

`

0 Ø x in ty P rVu : φy ě 0u
˘

ď

Cdp0, xq´ν P-a.s., and that τ tr0 p0, xq ě cdp0, xq´ν by (Gν) and [37, Proposition 5.2], combining
Corollary 2.2 (with Rp1 ´ ηq in place of R therein), (5.2) and (5.3) for η “ 1{2, one obtains
(1.11) when a

2
νR ě C by our choices of u, L, n and κ. Finally when a

2
νR ď C, one can easily

check that (1.11) remains valid by monotonicity of a ÞÑ τ tra p0, xq modulo adapting the constant
C2.

Proof of Corollary 1.3. Throughout this proof we assume that dpx, yq “ |x´y|2 is the Euclidian
distance on Z3, and similarly as before we can assume without loss of generality that a ą 0.
Furthermore, while ν “ 1 in the current setting, we still write ν for enhanced comparison with
the general setting of [16], to which we frequently refer in the sequel. For the upper bound, one
notices that the constant c10 from (5.3) can be taken equal to p1 ´ ηqπ{3 when Ru

1
ν is large

enough since by definition it is equal to p1´ηq times the constant c38 “ c4 from [42, Theorem 5.4],
and that c4 “ π{3 on Z3 by [42, (2.6)]. Noting that when λ is large enough, then (5.3) with the
choices R “ λξ “ λa´ 2

ν and u “ a2{2 constitutes the main contribution to the bound (1.11)
with R “ dpx, yq, one readily concludes the upper bound after a change of variable for η.
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For the lower bound, we follow a strategy similar to the proof of [16, (8.3)], which however
requires an adaptation to obtain the exact constant π{6 in (1.13), that we are now going to
detail. Let a ą 0, R “ λξ, hKYK1pxq “ PxpHKYK1 ă 8q for K,K 1 Ă rG and

ApK,K 1, aq “

!

K Ø K 1 in
␣

x P rGzpK Y K 1q : φx ě ap1 ´ η ´ hKYK1pxqq
(

)

,

where K Ø K 1 in A means here that K Y K 1 Y A is a connected set in rG. Then similarly as in
[16, (6.17)], it follows from the Markov property of the Gaussian free field that for all s, t ą 0

(5.4) τ trp1´ηqap0, rResq ě E
“

1
␣

capprKa
sξq ě tξν , capprKa

sξpRqq ě tξν
(

PU
`

AprKa
sξ,

rKa
sξpRq, aq

˘‰

,

where rKa
sξ, respectively rKa

sξpRq, denotes the cluster of 0, respectively rRes, in tx P Bp0, sξq :

φx ě au, respectively tx P BprRes, sξq : φx ě au, and U “ rGzprKa
sξ Y rKa

sξpRqq. One can control
the first term in (5.4) by the FKG inequality and an adaptation of the proof of [16, Lemma 6.2],
which implies that there exists c11 ą 0 such that for all 0 ď a ď c,

(5.5) P
`

capprKa
sξq ě c11s

νξν , capprKa
sξpRqq ě c11s

νξν
˘

ě cξ´νqpξq´2 expt´Cqpξqu,

for some constants c “ cpsq ą 0 and C “ Cpsq ă 8. Let us now bound the probability on
the right-hand side of (5.4) when t “ c11s

ν . For M ě 1 to be chosen later, we abbreviate
ℓ “ Mξ logpR{ξqp2ν`1q{ν as in [16, (6.19)], write c12 for the constant which is equal to the
constant c13 from [16, Theorem 5.1], recall the definition of the balls rBpx, Lq Ă rG from below
(4.6), and denote by

(5.6) Lℓ
def.
“

r2R{ℓs
ď

i“0

rBprpiℓ{2qes, c12ℓq,

the set which corresponds to the one introduced in [16, (6.13)] (the set in (5.6) should not be
confused with the loop soup which plays no role here). Similarly as above [16, (8.2)], let

L1
ℓ
def.
“ Lℓ Y rBp0, σ1ℓq Y rBprRes, σ1ℓq,

L2
ℓ
def.
“ L1

ℓzp rBp0, σξq Y rBprRes, σξqq,

where σ1 ě c12 and σ ě s are constants we will fix later. For K Ă rBp0, sξq and K 1 Ă rBprRes, sξq,
abbreviating U “ rGzpK Y K 1q, let us also denote by Pa,ℓ

U the law of pφx ` ahℓpxqqxPU under PU ,
see above Corollary 2.2, where hℓpxq “ PxpHL2

ℓ
ă HKYK1q. Then, similarly as in [16, (6.17)], by

a change of measure one has that

(5.7) PU

`

ApK,K 1, aq
˘

ě Pa,ℓ
U

`

ApK,K 1, aq
˘

exp
!

´
a2capU pL2

ℓ q ` 1{e

2Pa,ℓ
U pApK,K 1, aqq

)

,

where capU pL2
ℓ q denotes the capacity of L2

ℓ associated to the diffusion X on rG killed on hitting
U c (see below[16, Corollary 5.2] for a rigorous definition). As we will soon explain, similarly as
in [16, (8.2)], uniformly in σ ě s, one can fix s “ spηq ě 1, σ1 ě c12 and M ě σ1 such that
for all K Ă rBp0, sξq, K 1 Ă rBprRes, sξq with cappKq ě c11s

νξν and cappK 1q ě c11s
νξν , still

abbreviating U “ rGzpK Y K 1q, if R{ξ ě C “ Cpσq then

(5.8) Pa,ℓ
U

`

ApK,K 1, aq
˘

ě 1 ´ η.

Moreover, proceeding similarly as in [16, (7.7) and (7.8)] one can fix σ “ σpsq large enough so
that

(5.9) capKYK1pL2
ℓ q ď cappLℓ X Z3q ` Cpsνξν ` pσ1qνℓνq ď

π

3
p1 ` ηq2

R

logp2Rℓ q
,
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where the last equality follows from [42, (2.24)] with n “ P “ r2R{ℓs ` 1 and N “ R therein,
and upon taking R ě Cξ for some constant C “ Cpη, σ1, s,Mq. Note that the constant C13 “ C4

appearing therein is equal to π{3 on Z3 by [42, (2.6)], and we refer to [26, Lemma 2.2] and [10,
Lemma 2.1] for similar statements proved directly on Z3. Combining (1.6), (5.4), (5.5), (5.7),
(5.8) and (5.9) and noting that logp2Rℓ q ě p1 ´ ηq logpλq if λ is large enough by our choice of R
and ℓ, one easily deduces the lower bound in (1.13) after a change of variable in η and a.

It remains to prove (5.8). By definition of Pa,ℓ
U and ApK,K 1, aq we have

Pa,ℓ
U

`

ApK,K 1, aq
˘

ě PU

`

K Ø K 1 in tx P U : φx ě ap1 ´ η ´ hKYK1pxqq ´ hℓpxqqu
˘

ě PU

`

K Ø K 1 in tx P L1
ℓ X U : φx ě ´ηau

˘(5.10)

since hKYK1pxq ` hℓpxq “ PxpHKYK1 ă 8q ` PxpHL2
ℓ

ă HKYK1q ě 1 for all x P L1
ℓ by definition

as long as σ1ℓ ą σξ, which holds as long as R{ξ is large enough, depending on σ, σ1. For σ1 and
M ě σ1 large enough, depending only on s and η, one can bound from below the last probability
in (5.10) by

p1 ´ η{2q
`

1 ´ expt´Ca2cappKqu
˘`

1 ´ expt´Ca2cappK 1qu
˘

for some constants c “ cpηq ą 0 and C “ Cpηq ă 8 using a reasoning similar to the proof of [16,
(8.2)]. Indeed, the proof essentially consists of defining three independent random interlacements,
each at level pηaq2{6, whose union is included in tφ ě ´ηau via the isomorphism theorem,
such that the following events occur: the first interlacement has a trajectory hitting K and
going to 8, the second interlacement has a trajectory hitting K 1 and going to 8, and the last
interlacement has a connected component in L1

ℓ X U which intersects both the first and second
interlacement. The probability of the intersection of the two first events can be bounded by
p1´expt´Ca2cappKquqp1´expt´Ca2cappK 1quq owing to [16, Lemma 7.2], and the last one can
be lower bounded by 1 ´ η{2 upon taking σ1 and M large enough; we refer to [16, (7.17),(7.20)]
for as to why and leave the details to the reader. The inequality (5.8) then follows readily when
cappKq ě c11s

νξν , cappK 1q ě c11s
νξν and s “ spηq is a sufficiently large constant.

Remark 5.2. As should be clear from (5.7), (5.9) and (5.10), see also [42, Proposition 3.2] for the
upper bound, the intuitive reason one is able to obtain the exact constant π{6 in Corollary 1.3
is that

(5.11) log
´τ tra p0, rResq

τ tr0 p0, rResq

¯

„ ´
a2cappLℓq

2

as R Ñ 8, where Lℓ is a ‘tube’ (see (5.6)) from 0 to Re of length R and width ℓ; and that by
[42, Lemma 2.1], see also [10, Lemma 2.1] for a similar statement directly on Z3,

cappLℓq „
πR

3 logpR{ℓq
„

πR

3 logpR{ξq

as long as ℓ is roughly of order ξ. One could similarly obtain an explicit constant for graphs
satisfying (Vα) and (Gν) with ν ď 1 as long as the function gpx, yqdpx, yq´ν converges as dpx, yq Ñ

8, see [42, (2.2) and Lemma 2.1]. However when ν ą 1, for instance on Zα, α ą 3, even
if (5.11) was true with ℓ of order ξ, one would not obtain the correct constant anymore as
cappLℓq — Rℓν´1, see [42, Lemma 2.1], and thus depends on the exact choice of the constant
ℓ{ξ, which is a priori not clear. Note that ℓ is actually of order ξ logpr{ξqC in the proof of (1.9),
hence the additional logarithmic factor therein.

We conclude with the brief:
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Proof of (1.9). We start with observing that [16, (8.3)] in combination with [42, Remark 6.5,4)]
entails that for our choices of parameters we have

(5.12) τ tr
a{Cpx, yq ě ξ´νqpξq´2 exp

!

´ Cqpξq ´
Cpdpx, yq{ξq

logpdpx, yq{ξqb

)

,

where q is as in Theorem 1.1, ξ as in (1.12), b “ 1 if ν “ 1, and b “ 1´ν for ν P p1, α{2q. Now due
to (Gν), we have that [37, Proposition 5.2] entails τ tr0 px, yq ď Cdpx, yq´ν , and we furthermore
note that the term qpξq´2 expt´Cqpξqu appearing in (5.12) is now negligible by Theorem 1.1
and our condition on dpx, yq; inequality (1.9) follows.
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