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Abstract

Suppose you have one unit of stock, currently worth 1, which you must sell before time T . The Optional
Sampling Theorem tells us that whatever stopping time we choose to sell, the expected discounted value we
get when we sell will be 1. Suppose however that we are able to see a units of time into the future, and base
our stopping rule on that; we should be able to do better than expected value 1. But how much better can
we do? And how would we exploit the additional information? The optimal solution to this problem will
never be found, but in this paper we establish remarkably close bounds on the value of the problem, and we
derive a fairly simple exercise rule that manages to extract most of the value of foresight.
c⃝ 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

What is the value of foresight in a financial market? This is a question that intrigued Larry
Shepp and seems an interesting question in the context of insider trading; if we could know one
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minute in advance what the price of a stock was going to do, what would we be prepared to pay
for that information? Of course, it is rather fanciful to imagine that we could possibly be told
the price of the stock at some time in the future, but we might imagine a situation where some
market participants received information only after a delay, which would confer the same kind
of advantage on those who got the information earlier. In a modern financial market, any such
differences would be measured in microseconds, a timescale on which conventional models of
stock prices could not be trusted, but one of the first observations of this paper is that the value of
foresight can be equivalently interpreted in terms of the value of a fixed-window lookback option;
at a time of your choosing, you may sell the stock for the best price which the stock achieved
in the previous a units of time. This transforms the question into an American option pricing
problem, but not one that is possible to solve in closed form, since the state variable at time t is
the entire history of the stock from time t −a to time t—a path-valued state. Moreover, even if we
were to discretize time, the state vector will be high dimensional, so existing numerical methods
will struggle to cope. Nevertheless, recent developments allow good progress to be made on the
question, as we shall see.

To begin with, we set some notation. We shall take the sample space to be the path space
C(R+,R) with canonical process W , Wiener measure P and the usual P-augmentation (Ft ) of
the canonical filtration of W . We denote by T the class of all (Ft )-stopping times. We fix some
a > 0 which represents the foresight available to the insider. The insider may choose to stop at
any stopping time of the larger filtration (F ′

t ) ≡ (Ft+a); we denote the set of all (F ′
t )-stopping

times by T ′.

At an abstract level, this set-up can be considered an example of grossissement—the
enlargement of filtrations. This theory was developed from the late 1970s on, starting with
the works of Barlow [6], Jeulin & Yor [25–27], and further developed by others including
Yoeurp [35], and by Itô’s extension of the stochastic integral (see [23]). The topic has since
continued to flourish, most recently in the works of [1,2,11], and [16], primarily because of its
natural connection with insider trading. Varied formulations of the insider trader’s advantage over
other agents in a financial market are addressed in [3,5,8,12,17,19–21,24,28,29], and [30], among
others. It has to be understood that the theory of enlargement of filtrations is not a universal
theory; results are only established for particular classes of enlargement, such as filtrations
enlarged with an honest time, or filtrations with an initial enlargement. The results proved say that
if the enlargement has one of these particular structural forms, then any (Ft )-local martingale is
a (F ′

t )-semimartingale, and the semimartingale decomposition is then identified. The following
proposition shows that none of these general results can be applied to the problem we consider
here.

Proposition 1.1. The process W is not a semimartingale in the filtration (F ′
t ).

Proof. Consider the simple integrands

Hn
t ≡ n−1/2

n
j=1

sgn(∆n
j ) I{( j−1)a<nt≤ ja}, (1)

where

∆n
j ≡ W ( ja/n)− W (( j − 1)a/n). (2)
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The processes Hn are left-continuous, bounded, and (F ′
t )-previsible; indeed, Hn

t is measurable
on F ′

0 ≡ Fa . Now consider the (elementary) stochastic integral

Hn
· W = n−1/2

n
j=1

|∆n
j | = n−1

n
j=1

√
n|∆n

j |. (3)

The random variables
√

n∆n
j are independent zero-mean Gaussians with common variance a.

By the Weak Law of Large Numbers, Hn
· W converges in probability to E |Wa | as n → ∞. But

the Dellacherie–Bichteler theorem (see, for example, Theorem IV.16.4 in [34]) says that W is a
semimartingale if and only if whenever a sequence Hn of bounded previsible simple processes
tends uniformly to zero, then the simple stochastic integrals Hn

· W tend to zero in probability.
We conclude that W is not an (F ′

t )-semimartingale. �

The message from Proposition 1.1 is that none of the results from enlargement of filtrations
will help us here – the problem addressed is concrete, challenging, and not amenable to general
theory – which is why it appealed to Larry Shepp.

So what are we able to do? To begin with, applying the methods of [33], we obtain
remarkably tight upper and lower bounds on the value of foresight. This methodology is based
on simulations, so there is no simple interpretation of the exercise rule which arises. However,
in Section 3 we develop simple and transparent rules based on heuristic arguments which we are
then able to compare with the bounds from Section 2; the resulting (explicit) rules essentially
achieve the lower bound which comes from the simulation approach of [33] applied in Section 2.

Preliminaries.
To start with, we set out some notation and make various standardizations of the question. There
is a fixed time horizon T > a > 0 by which time the investor must have sold the stock. The
stock price process S will be the solution to an SDE

d St = St (σdWt + µt dt)I{t≤T }, S0 = 1, (4)

where µ is a bounded (Ft )-previsible process, and σ > 0 is a constant. Notice that St = ST for
all t ≥ T , and where necessary we make the convention that St = 1 for t < 0. It is immediate
from the definitions that τ ′

∈ T ′ if and only if τ ′
+ a ∈ T . We let Q denote the pricing measure,

given in terms of the Cameron–Martin–Girsanov martingale

dΛt =
1
σ

Λt (r − µt ) dWt , Λ0 = 1, (5)

by

d Q

d P


Ft

= Λt . (6)

What is the time-0 value of stopping at τ ′
∈ T ′? The obvious immediate answer to this

question is just E Q
[exp(−rτ ′)Sτ ′ ], but is it clear that there is no issue arising from the fact that

Sτ ′ is not Fτ ′ -measurable? We can see that this is in fact correct by the following argument. At
time τ ′, the investor receives Sτ ′ which he can then place in the bank account for a units of time,
so that at (Ft )-stopping time τ = τ ′

+ a he has era Sτ ′ = era Sτ−a . This random variable is
Fτ -measurable, so the time-0 value of it is just given by the usual expression,

E Q
[e−rτ era Sτ−a] = E Q

[e−rτ ′

Sτ ′ ],
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as expected. So what we find is that the time-0 value of stopping at τ ′
∈ T ′ is the Q-expectation

of the discounted value of the stock at the time of exercise. We may as well therefore work
with the discounted stock, and work in the pricing measure Q. Equivalently, we may (and shall)
assume for simplicity that

r = µ = 0. (7)

Since the choice of σ amounts to the choice of a time unit, we may and shall assume that

σ = 1. (8)

Our model for the asset dynamics is therefore

St = exp


Wt −
1
2

t


≡ exp(X t ), (9)

where X is the drifting Brownian motion

X t = Wt + ct, (10)

with the special value1 c = −
1
2 . Notice that we have by convention fixed S0 = 1.

What we want to understand then is

v(a) ≡ sup
τ ′∈T ′, 0≤τ ′≤T

E[ Sτ ′ ] ≡ sup
τ∈T , a≤τ≤T +a

E[ Sτ−a ]. (11)

It is clear that v will be increasing, and v(0) = 1, but our aim is to determine as accurately as
possible what v(a) is, and to identify a good approximation to the optimal stopping time. The
first item of business, dealt with in Section 2, is to show that the value v can be alternatively
expressed as

v(a) = sup
τ∈T , 0≤τ≤T

E[ Zτ ], (12)

where2

Z t ≡ sup{Su : t − a ≤ u ≤ t}. (13)

In other words, the value v(a) is the value of an American fixed-window lookback option.

2. Foresight as lookback

Recalling the convention that Su = 1 for u < 0, and Su = ST for u ≥ T , we have a simple
proposition.

Proposition 2.1. With τ denoting a generic (Ft )-stopping time,

v(a) ≡ sup
a≤τ≤T +a

E[ Sτ−a ] = sup
0≤τ≤T

E[ Zτ ], (14)

where Z t ≡ sup{Su : t − a ≤ u ≤ t}.

1 Later on, we shall derive expressions for various probabilities and expectations associated with X , and it turns out to
be notationally cleaner to work with a general drift, which is why we write X as (10).

2 . . . using the convention that Su = 1 for u < 0, and Su = ST for u ≥ T . . .
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Proof. Because Su = ST for all u ≥ T , it is clear that Z t ≤ Z t∧T . Therefore, for any stopping
time τ such that a ≤ τ ≤ T + a, we have

Sτ−a ≤ Zτ ≤ Zτ∧T .

Therefore

v(a) ≡ sup
a≤τ≤T +a

E[ Sτ−a ] ≤ sup
0≤τ≤T

E[ Zτ ]. (15)

For the reverse inequality, suppose that τ is a stopping time, 0 ≤ τ ≤ T , and define a new
random time τ̃ by

τ̃ = inf{u ≥ τ ∨ a : Su−a = Zτ }. (16)

Clearly τ ∨ a ≤ τ̃ ≤ τ + a. We claim that τ̃ is a stopping time, as follows:

{τ̃ ≤ v} = {for some u ∈ [τ ∨ a, v], Su−a = Zτ }

= {τ ∨ a ≤ v} ∩ {for some u ∈ [(τ ∨ a) ∧ v, v], Su−a = Zτ∧v }

∈ Fv,

since the event {∃u ∈ [(τ ∨ a) ∧ v, v], Su−a = Zτ∧v} is Fv-measurable, as is (τ ∨ a) ∧ v. Now
we see that

Zτ = Sτ̃−a, (17)

and therefore

E[ Zτ ] = E[ Sτ̃−a ] ≤ sup
a≤τ≤T +a

E[ Sτ−a ], (18)

since a ≤ τ̃ ≤ T + a. Since 0 ≤ τ ≤ T was any stopping time, we deduce that

sup
0≤τ≤T

E[ Zτ ] ≤ sup
a≤τ≤T +a

E[ Sτ−a ], (19)

and the proof is complete. �

The importance of Proposition 2.1 is that it turns the problem of calculating the value of
foresight into the calculation of an American fixed-window lookback option. By discretizing
the time, we shall instead calculate numerically the value of a Bermudan fixed-window lookback
option. Of course, we need to account for the difference between American and Bermudan prices,
but this is in essence a solved problem; see Broadie, Glasserman & Kou [10].

So we shall take the standardized asset dynamics (9), fix some time horizon T > 0 which is
subdivided into NT steps of length h = T/NT , and consider the problem of bounding

vh(a) ≡ sup
0≤τh≤T

E[ Z (h)τh
], (20)

where τh is a stopping time taking values in the set hZ+, and

Z (h)t = max{Skh : t − a ≤ kh ≤ t}. (21)

Since this discretization is now fixed for the rest of the section, we shall drop the appearance of h
in the notation and refer to Z for Z (h), v for vh , τ for τh . We are now exclusively considering the
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optimal stopping of a functional of a discrete-time Markov process. A moment’s thought shows
that the process Z is not Markov, but the process

xt = (St−mh, . . . , St ) (t ∈ hZ+) (22)

is Markovian (where mh = a), and the payoff process Z is simply a function of the Markov
process x :

Z t = g(xt ), (23)

where g(x) ≡ max{x0, . . . , xm} is the largest component of the (m + 1)-vector x . We use the
approach of [33], which is a combination of several techniques developed over the last twenty or
so years, and in summary consists of the four steps:

• pretend that the stopping reward process Z is itself Markovian, and by discretizing Z onto
a suitably-chosen finite set of values estimate the transition probabilities of this finite state
Markov chain by simulation (this is the approach of Barraquand & Martineau [7]);

• solve the optimal stopping problem for this finite state Markov chain by dynamic program-
ming;

• use the solution to generate a stopping rule whose performance is evaluated by simulation;
• use the dual characterization of the value of the problem (see [4,18,32]) to find a hedging

martingale.

The method is fully explained in [33], and illustrated with examples, so there is no need to
discuss it further here, except to highlight one point, which is used in various places in [33] and
is needed here. Suppose that (Mt )t≥0 is any strictly positive martingale, M0 = 1. Then we may
equivalently express the value

v(a) ≡ sup
0≤τ≤T

E[ Zτ ]

= sup
0≤τ≤T

E[ Mτ (Zτ /Mτ ) ]

= sup
0≤τ≤T

Ẽ[ Zτ /Mτ ], (24)

where the probability P̃ equivalent to P is defined by using the likelihood-ratio martingale M :

d P̃

d P


Ft

= Mt . (25)

In the present application, it is natural to use Mt = St as the change-of-measure martingale, and
the effect of this is to change the Brownian motion W into a Brownian motion with drift 1. Thus
when we do simulations, we simulate a Brownian motion with drift 1 in place of W , and the
stopping reward process is changed to Z t/St . This is a good thing to do, because the value of
Z t will be close to St , so the binning procedure of the Barraquand–Martineau approach should
achieve a lot better accuracy than we would get without this measure transformation. Moreover,
after the change of measure the stopping rule depends on (Z t/St , t) instead of (St , t), which is
more sensible and resembles the stopping rule we will propose below. We do indeed find that the
accuracy is substantially improved by doing this change of measure; the results are reported in
Table 1.
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Table 1
Upper and lower bounds of supτ<T E[Zτ ] from simulation using method of [33] with h = 1/2500, NT = 250. ‘SE’
is the standard error, in basis points (1e−4). Simulation parameters: number of bins = 200, number of samples per
bin = 200, lower-bound simulation = 50,000, upper-bound simulation = 10,000, sub-simulation per step = 50.

a/h Lower SE (low) Upper SE (up) Gap (%)

1 1.054 0.43 1.055 0.53 0.09
2 1.074 0.62 1.076 0.77 0.18
3 1.088 0.73 1.092 0.90 0.37
4 1.100 0.83 1.104 1.0 0.37
5 1.109 0.95 1.114 1.1 0.45
6 1.117 1.0 1.123 1.2 0.53
7 1.123 1.1 1.131 1.2 0.71
8 1.129 1.2 1.137 1.3 0.70
9 1.135 1.3 1.144 1.4 0.79

10 1.140 1.4 1.149 1.4 0.78
11 1.144 1.4 1.154 1.5 0.87
12 1.149 1.5 1.159 1.6 0.86
13 1.152 1.6 1.164 1.7 1.03
14 1.156 1.6 1.168 1.7 1.03
15 1.159 1.7 1.172 1.8 1.11
16 1.163 1.8 1.175 1.8 1.02
17 1.166 1.8 1.179 1.9 1.10
18 1.168 1.9 1.182 1.8 1.18
19 1.171 1.9 1.185 1.9 1.18
20 1.174 2.0 1.188 1.9 1.18

3. Explicit stopping rules

As was stated earlier, the stopping rules which are derived in Section 2 are the output of a
simulation; they have no particular structure or interpretation, and a different simulation run will
generate a different stopping rule. The methodology of [33] is generic, and works just the same
for essentially any Markov process, and any stopping function of the process, but we may hope to
improve in individual applications by exploiting the specific structure of that application, which
is what we shall do here.

We work in terms of the log price X t = Wt + ct , and use the notations

X̄ t ≡ sup
0≤u≤t

Xu, X̄[t−a,t] ≡ sup
t−a≤u≤t

Xu ≡ log Z t . (26)

The first time we may need to consider stopping is the stopping time

τ0 ≡ inf{ t : X̄[t−a,t] = X t−a }, (27)

because up until that time we have X t−a < X̄[t−a,t], so it will be suboptimal to exercise—waiting
a little longer may improve, and will not make the reward less. But at time τ0, continuation means
we have to let go of the good value Xτ0−a in the hope of doing better in the future, and we may in
fact do worse. Whether we should optimally continue will depend on the entire path of X from
τ0 − a to τ0, but we will simplify to consider only rules where continuation is decided by the
value of Xτ0 − Xτ0−a ; if this is higher than some threshold q < 0 we shall continue, otherwise
we stop.
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An important observation is the fact that

X̄[τ0−a,τ0] = X̄τ0 . (28)

We prove this by contradiction. Suppose X̄[τ0−a,τ0] ≠ X̄τ0 , which implies X̄τ0 = Xm for some
m ∈ [0, τ0 − a). Since X̄m is the maximum till τ0, it must be greater than X t for t ∈ (m,m + a].
However, this means m = τ0, which gives the contradiction. Therefore we have

τ0 = inf{ t : X̄ t = X t−a }. (29)

Now it is clear that the choice of threshold value q will depend on the time to go when we
have to make the stop/continue decision, and this makes complete solution of the problem much
more complicated. So what we shall do is to propose a modified problem, where the time by
which we must sell is not a fixed time T but an independent random time α ∼ exp(η) for some
η > 0. This gives us a renewal property that allows us to make progress, and obtain explicit
expressions. When it comes to converting the solution to the modified problem into an exercise
rule for the original problem, what we do is set the threshold according to the value of η which
makes the expectation of α equal to the time to go. The point is that the problem considered with
an exponential lifetime can be solved completely by excursion theory, whereas the problem with
a fixed lifetime cannot.

For this modified problem, let us define a stopping rule R(q) depending on the chosen
threshold as follows:

(i) Wait until τ0 ∧ α;
(ii) If α < τ0, stop and receive Zα = exp(X̄α);

(iii.a) If τ0 < α and Xτ0 − X̄τ0 < q , stop and receive Zτ0 = exp(X̄τ0);
(iii.b) If τ0 < α and Xτ0 − X̄τ0 > q , forget and continue.

In the final eventuality (iii.b), ‘forget and continue’ means that we wipe away the whole path of
X in the time interval [0, τ0), keeping only the value Xτ0 , and restart the rule from that point. If
the value of this strategy is K , then we have the identity

K = E[ exp(X̄α) : α < τ0] + E[ exp(X̄τ0) : τ0 < α, Xτ0 − X̄τ0 < q ]

+ K E[ exp(Xτ0) : τ0 < α, Xτ0 − X̄τ0 > q ]. (30)

It is therefore apparent that we can evaluate this particular stopping rule provided we can find
explicit expressions for

A0 = E[ exp(X̄α) : α < τ0 ], (31)

A−(q) = E[ exp(X̄τ0) : τ0 < α, Xτ0 − X̄τ0 < q ], (32)

A+(q) = E[ exp(Xτ0) : τ0 < α, Xτ0 − X̄τ0 > q ]. (33)

If ϕ denotes the density of the standard N (0, 1) distribution, and Φ denotes its distribution
function, we have the following result.

Proposition 3.1. For q < 0, denote

β =


c2 + 2η, (34)

νa =
2

√
a
ϕ(c

√
a)− 2c Φ(−c

√
a), (35)
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να = 2β

Φ(β

√
a)−

1
2


− 2c


Φ


c
√

a

−

1
2


+

2
√

a


ϕ(β

√
a)− ϕ(c

√
a)


,

ν ≡ νa + να =
2

√
a
ϕ(β

√
a)+ 2βΦ(β

√
a)− c − β, (36)

ψ0(q) = e−ηa


2
√

a
ϕ((q − ca)/

√
a)− 2c Φ((q − ca)/

√
a)


, (37)

ψ1(q) = e


c+ 1

2 −η


a


2
√

a


ϕ(c̄

√
a)− ϕ((q − c̄a)/

√
a)


+ 2c̄


Φ(c̄

√
a)− Φ(−(q − c̄a)/

√
a)

 
, (38)

where c̄ ≡ 1 + c. Then:

A0 =
να + (1 − e−ηa)νa

ν − 1
, (39)

A−(q) =
ψ0(q)

ν − 1
, (40)

A+(q) =
ψ1(q)

ν − 1
. (41)

Proof. The process Yt ≡ X t − X̄ t is a diffusion taking values in the negative half-line, and
reflecting from zero. The process X̄ t is its local time at zero, and the path of Y can be decomposed
into a Poisson process of excursions, as Itô [22] explained. For a more extensive discussion of
excursion theory, in particular, the notion of marked excursion processes, see [31] or Chapter
VI.8 of [34].

The process X runs until τ0 ∧ α, which happens in the first excursion of Y which either lasts
at least a, or contains an η-mark. Let n denote the excursion measure, ζ denote the lifetime of
an excursion, Pc denote the law of X t = Wt + ct , and Hb denote the first time X hits b. The
excursion law can be characterized as the limit as ε ↓ 0 of the (rescaled) law of X started at
−ε < 0 run until it hits zero; see VI.50.20 in [34]. The rescaling required is to multiply by
n( f : inf f < −ϵ), and it is known that n( f : inf f < −ϵ) ∼ ϵ−1 (see VI.51.2 in [34]). We
therefore have

n(ζ > a) = lim
ε↓0

ε−1 Pc
[ H0 > a | X0 = −ε]

= lim
ε↓0

ε−1 Pc
[ X̄a < ε | X0 = 0]

= lim
ε↓0

ε−1


Φ

ε − ca
√

a


− e2cεΦ


−ε − ca

√
a

 
(42)

=
2

√
a
ϕ(c

√
a)− 2c Φ(−c

√
a), (43)

≡ νa,

where (42) is a standard result on Brownian motion; see, for example, [9]. By similar reasoning,

n(α < ζ < a) = lim
ε↓0

ε−1
 a

0
Pc

[H0 ∈ ds|X0 = −ε] (1 − e−ηs)
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= lim
ε↓0

ε−1
 a

0

εe−ε2/2s

√
2πs3

ecε−c2s/2(1 − e−ηs) ds

=

 a

0

e−c2s/2
√

2πs3
(1 − e−ηs) ds

= 2β

Φ(β

√
a)−

1
2


− 2c


Φ(c

√
a)−

1
2


+

2
√

a


ϕ(β

√
a)− ϕ(c

√
a)


≡ να (44)

where we recall that β ≡


c2 + 2η. The rate of excursions which either last at least a, or contain

an η-mark is

n(α ∧ a < ζ) = n(α < ζ < a)+ n(ζ > a) (45)

and this is simply the sum of the two expressions (43) and (44), which is therefore known
explicitly. Simple calculations confirm that it is the expression ν defined at (36). Let Ba be the
set of excursions for which a < α ∧ ζ , and let Bα be the set of excursions for which α < a ∧ ζ .
Clearly, n(Ba) = νae−ηa , and n(Ba ∪ Bα) = n(a ∧ α < ζ) = ν. The stopping time of interest
to us, τ0 ∧ α, occurs in the first excursion in Ba ∪ Bα . By Itô excursion theory, the distribution
of the local time X̄ at that moment will be exponential with rate ν = n(Ba ∪ Bα); and the
event that the excursion falls into Ba will be independent of the local time, with probability
n(Ba)/{n(Ba)+ n(Bα)}. To summarize:

• X̄τ0∧α ∼ exp( ν );
• P[ α < τ0 ] = { να + (1 − e−ηa)νa }/ν;
• P[ τ0 < α ] = νa e−ηa/ν;

and from this the expression (39) for A0 follows.
To deal with A±, we need to find the measure of excursions which get to time a without

killing, and which are in dy at time a. We use the reflection principle and the Cameron–Martin–
Girsanov theorem to derive

g(y)dy ≡ n(a < ζ ∧ α, Ya ∈ dy) (46)

= lim
ε↓0

ε−1 Pc
[ H0 ∧ α > a, Ya ∈ dy | Y0 = −ε ]

= lim
ε↓0

ε−1ec(y+ε)−c2a/2−ηa
{ ϕ((y + ε)/

√
a)− ϕ((y − ε)/

√
a) }dy/

√
a

=
−2y

a3/2 ϕ((y − ca)/
√

a) e−ηa dy. (47)

Straightforward calculations lead us to q

−∞

g(y) dy = e−ηa


2
√

a
ϕ((q − ca)/

√
a)− 2c Φ((q − ca)/

√
a)


,

≡ ψ0(q), 0

q
ey g(y) dy = e


c+ 1

2 −η


a


2
√

a


ϕ(c̄

√
a)− ϕ((q − c̄a)/

√
a)
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× 2c̄


Φ(c̄
√

a)− Φ(−(q − c̄a)/
√

a)
 
,

≡ ψ1(q).

Arguments similar to those used for A0 give us

A−(q) = E[ exp(X̄τ0) : τ0 < α, Xτ0 − X̄τ0 < q ] =
ψ0(q)
ν−1 ;

A+(q) = E[ exp(Xτ0) : τ0 < α, Xτ0 − X̄τ0 > q ] =
ψ1(q)
ν−1 .

These are the forms claimed in (40) and in (41). �

Now we can draw all the pieces together. Proposition 3.1 was a step on the way to evaluating
K , the value of the proposed strategy; we found K expressed in terms of A0, A−(q) and A+(q)
at (30), and it remains just to write the answer cleanly.

Theorem 3.2. The value of the rule R(q) is given by

K =
A0 + A−(q)

1 − A+(q)
=
να + (1 − e−ηa)νa + ψ0(q)

ν − 1 − ψ1(q)
. (48)

The denominator ν − 1 − ψ1(q) is always positive.

Proof. The expression (48) is a trivial arrangement of (30), so all that remains is to deal with the
final assertion. Using the fact that c = −

1
2 , we see that

ψ1(−∞) = ↑ limq↓−∞ ψ1(q) = e−ηa


2
√

a
ϕ(

√
a/2)− Φ(−

√
a/2)


,

is positive. Therefore

ν − 1 − ψ1(q) > ν − 1 − ψ1(−∞)

= νa + να − 1 − ψ1(−∞)

> νa − 1 − ψ1(−∞)

=
2

√
a
ϕ(

√
a/2)+ Φ(

√
a/2)− 1 − ψ1(−∞)

= (1 − e−ηa)


2

√
a
ϕ(

√
a/2)− Φ(−

√
a/2)


> 0. �

Using the stopping rule R(q).
Rule 1. How is the stopping rule R(q) analyzed in the preceding section relevant to the original
problem? Holding η fixed, there will be an optimal q∗

= q∗(η) which maximizes the value
K given by (48). Notice that as η ↑ ∞ we shall have q∗(η) ↑ 0; the larger the η, the less the
expected time remaining after τ0 and therefore the less likely one is to continue. If we fix η and let
a ↓ 0, we shall also have q∗(η) ↑ 0. This is so because when a = 0 the reward process Zτ∧T is
a martingale for any valid exercise rule τ , by the optimal sampling theorem. Fig. 1 characterizes
these relationships. Note that for small values of a we find the value of lookback behaves roughly
like

√
a. This is consistent with the findings of [8], and is entirely to be expected; when we stop

at time τ , we receive the current value (mean 1) plus the maximum of St − Sτ over t ∈ [τ−a, τ ],
and by the Brownian modulus of continuity this maximum varies as

√
a.
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Fig. 1. h = 1/2500 is the time interval. a/h is the number of steps that we can look back. (ηh)−1 is the expected number
of remaining steps. exp(−q∗(η)) can be interpreted as an estimate for the maximum expected reward, which must be
larger either if we can “look back” for more steps or if we have more time remaining.

Now recall how the stopping rule works; we let the process run until the stopping time

τ0 = inf{ t : X̄[t−a,t] = X t−a } = inf{ t : X̄ t = X t−a },

and at that moment we stop if and only if Yτ0 ≡ Xτ0 − X̄τ0 < q , else we forget and continue.
What value of q do we use? A natural choice is to take

q = q∗( (T − τ0)
−1 ). (49)

This is because at time τ0 there is time (T − τ0) still to go, and an exponential random variable
with rate (T − τ0)

−1 has this as its mean. The result of using this rule is shown in the left-hand
panel of Fig. 2. In this figure, h = 1/2500 can be thought of as one trading day; by using T = 0.1
we assume the option contract will expire in 250 trading days. We have assumed σ = 1, which
after rescaling amounts to an annual volatility of approximately 0.3. The dots (evaluated by
simulating 50,000 runs of the rule) are visibly close to (but below) the lower bound we obtained
by the Barraquand–Martineau technique of [33].
Rule 2. Can we do better than this? Indeed we can. Firstly, we observe that

K (q∗(η)) = exp(−q∗(η)). (50)

This is because when we arrive at time τ0, we have to choose between stopping and receiving
Sτ0−a , or continuing and receiving K (q∗(η)) · Sτ0 in expectation. Optimal behavior requires us
to continue if and only if

K (q∗(η)) · Sτ0 > Sτ0−a .

On the other hand, the rule R(q∗(η)) requires us to continue if and only if

Sτ0 > Sτ0−a . exp(q∗(η)).

Since q∗(η) was chosen optimally, (50) must therefore hold.
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Fig. 2. The simulation results with h = 1/2500 and NT = 250.

Table 2
E[Zτ ] estimates from simulation of Rules 1 and 2 with h = 1/2500
and NT = 250, averaged over 50,000 sample paths. Standard errors are
0.001 (to one significant figure) in all cases.

a/h Rule 1 Rule 2 Lower bound

1 1.055 1.054 1.054
2 1.073 1.073 1.074
3 1.086 1.087 1.088
4 1.096 1.098 1.100
5 1.104 1.107 1.109
6 1.112 1.116 1.117
7 1.119 1.121 1.123
8 1.126 1.128 1.129
9 1.131 1.134 1.135

10 1.136 1.139 1.140
11 1.139 1.143 1.144
12 1.145 1.148 1.149
13 1.148 1.153 1.152
14 1.152 1.155 1.156
15 1.155 1.160 1.159
16 1.158 1.163 1.163
17 1.160 1.165 1.166
18 1.164 1.168 1.168
19 1.168 1.172 1.171
20 1.170 1.174 1.174

Secondly, if a = T , then the value will just be the expectation of the overall maximum,
E exp(X̄T ). Routine but tedious calculations give

E[ exp(X̄a) ] = λ(a) ≡


2 +

a

2


Φ

√
a

2


+

√
aϕ

a

4


. (51)
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If we had arrived at time τ0 and it turns out that τ0 = T − a, then by forgetting and continuing
we will actually receive expected reward λ(a)Sτ0 , whereas if we used Rule 1 we would think we

were going to receive K (q∗(a−1)) · Sτ0 = e−q∗(a−1) Sτ0 . This suggests that we modify Rule 1,
replacing (49) by

q = q∗( (T − τ0)
−1 )− q∗(a−1)− log λ(a). (52)

By making this modification, the stop/continue decision we make in the event that T − τ0 = a
will be exactly correct.

Of course, the argument just presented is only a rough heuristic, but if we look at the right-
hand panel in Fig. 2 we see the results of using Rule 2 (see Table 2 for numerical values).
The dots are now essentially coincident with the lower bounds, which is very encouraging, and
argues for the use of Rule 2 rather than Rule 1. This rule is something which can be clearly
motivated and precisely specified, in contrast to the randomly-generated rules which come from
the Barraquand–Martineau technique in Section 2. One could continue to search for other explicit
rules which do even better, but such a study is beyond the scope of this paper.

4. Supplemental materials

The code for all simulations can be found on http://stat.rice.edu/˜pe6/blb.cpp. The pseudocode
is available on http://stat.rice.edu/˜pe6/Bermuda code.pdf.
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