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We consider the Brownian “spider,” a construct introduced in Dubins and Schwarz (1988) and in Barlow
and Pitman (1989). In this note, the author proves the “spider” bounds by using the dynamic programming
strategy of guessing the optimal reward function and subsequently establishing its optimality by proving
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1. Introduction

In this note, we consider the Brownian “spider”, a process
also known as the “Walsh” Brownian motion, due to [1,4]. The
Brownian spider is constructed as a set of n > 1 half-lines, or
“ribs”, meeting at a common point, O. A Brownian motion on
a spider starting at zero may be constructed from a standard
reflecting Brownian motion (|W;|, t > 0) by assigning an integer
i€ {1,...,n} uniformly and independently to each excursion
which is then transferred to an excursion on rib i (here, i should
be interpreted as the index of the rib on which the next excursion
occurs). It is helpful to think about the Brownian spider as a
bivariate process; the first coordinate of the process is reflecting
Brownian motion and the second coordinate of the process is the
rib index. Formally, we define the Brownian spider process Z; as

Zi = (IW¢l,R)), t=>0 (1)

where |W;| is reflected Brownian motion and R; is the rib on
which the process is located at time t. |W;| can be decomposed
into excursions away from 0 with endpoints ¢ s.t. [W, | = 0. R;
is constant between t; and ty,; for all i, and R, =i means the
excursion occurs on the rib i. We define the supremum of reflected
Brownian motion on each rib as

Si(t) = sup |Wil,
(t: Re=i}

t>0,i=1,...,n.
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Below is a sample path realization of the Brownian spider for
n = 3 (see Fig. 1). We use W;(t) to denote the process on the rib i:

W) = {'ng' A @

In an attempt to understand the unboundedness of Brownian
motion on the spider up to time t, a natural question to ask
is: what is E[) 7, Si(t)]? However, Lester Dubins (personal
communication with Larry Shepp) asked a different question.
Dubins wished to design a stopping time to maximize the coverage
of Brownian motion on the spider for a given expected time. That
is, he wished to find
CGoi= sup E[Si(z)+---+S(0)], (3)

{r: E[r]=1}
where the supremum is calculated over all stopping times of mean
one. Equivalently, Dubins wished to calculate the smallest C = C,
such that for every stopping time t the following inequality holds

E[Si(7) + S2(7) + -+ + Sn(D)] < Gy E[7]. (4)
(note that for any stopping time 7, E[S;(7)] scales with /7). The
left side of Eq. (4) is the mean total measure of space visited on the
spider up to time t.

For n = 0, we, somewhat inconsistently, define Cy in a similar
way for ordinary Brownian motion without a reflecting barrier at
zero. We seek the smallest constant C, for which the one-sided
maximum satisfies

]E[ max W(‘L’)] < GvE][T]. (5)

{0<t<r}
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Fig. 1. A sample path realization of the Brownian spider for n = 3.

In this note, we will prove that the optimal bounds C, =
Jn+ 1, forn = 0,1, 2. Without further delay, the author notes
that the solution of the optimal bounds for n = 0, 1, 2 is not new.
The cases n = 0, 1 were solved by [4], and the case n = 1 was
also independently solved by [9] by a different method. The n =
2 case was recently resolved by [3]. What is new, however, is
the dynamic programming strategy the author employs to find
the bounds C, for n = 0, 1, 2, which he believes to be the most
tractable approach for solving for C, for all n (despite much effort
by many researchers, this problem remains open). The behavior of
C, forlarge nis interesting because when n = oo, the total measure
of space visited on the spider up to time t > 0 is also infinite. This
is because it is the total variation of a Brownian motion on [0, t]
because at each return to the node, a fresh rib is chosen.

Larry Shepp saw dynamic programming to be the root of all
optimal control problems. In general, there are two strategies that
can be used to solve a dynamic programming problem.

(A) Guess a candidate for an optimal strategy, calculate the reward
function for the strategy, then prove its excessiveness.

(B) Guess the optimal reward function and establish its optimality
by proving its excessiveness.

Unlike [3], which employs strategy (A), our approach is that of
(B), and to the best of our knowledge, we are the first to do so.
In stochastic optimization, strategy (B) reduces to “guessing” the
right optimal control function. If one can guess the right function,
the supermartingale becomes a martingale, and It calculus takes
care of the rest. This approach appears prominently throughout
Shepp’s most seminal works, specifically on p.634 of [12], on p.207
of [10], p.1528 of [13], on p.335 of [7], and most recently, on p.422
of [8].

The organization of this note is as follows: In Section 2,
we formalize our guess for the optimal reward function. In
Section 3, we establish the optimality of this function by proving
its excessiveness, albeit only in the cases n = 0, 1, 2. We conclude
by arguing the viability of our strategy towards a solution of the
general problem.

2. Our guess of the optimal reward function

Let r = Ry be the index of the starting rib, x be a fixed distance
along the rib r, and C and M finite constants. In order to obtain
the least upper bound C,, we must solve a more general optimal
stopping problem. Let s, S5, ..., S, > 0 be the distances that have
already been covered on each of the respective ribs at time 0. For

every value of C > 0, and every choice of r and x such thatx < s,

and sy, ..., s, we must find the value of
Vx,r;81,...,5:;0)
= sup E{x .51, [51 (t) + -+ Sp(r) — Cr]. (6)
{t:E[r]<M}

The subscript of the expectation, {x, r, s1, ..., Sy}, denotes that
the process is currently at a distance x on rib r at time 0. By abuse
of notation, S;(t) denotes the furthest point covered on rib i up to
time 7. Note that we must find V(x, r; s1, ..., s;; C) not only for
x =0ands; = --- = s, = 0, but for every point of the spider
at x on every rib r as initial point, and every starting position for
si,i=1,...,n

In (6), the supremum is taken over bounded stopping times 7.
Even though we only need the case when the initial point is O
and whens; = 0, i = 1, ..., n, standard martingale methods of
solving optimal stopping problems do not work unless we can find
the formula V for every starting position (see, for example: [2,5,6,
11,15]).

We “guess” that\?(x, TSty en.,
properties:

(a) \7(O,r,s1,...,sn,C) does not depend on r (if x;=0,r
becomes irrelevant).
V(x rSi,...,S,C)=0atx=0Vr.

sp,C) =0atx=s,Vr.

sn, C) should have the following

%\

V(x,r,sl,...,
2;\
W Vx,r,s1,...,5,0)<C,0<x<s,r=1,...,n

-+ sy, forall0 < x < s, and

N
) \—' Q—‘m_

r= 1, Lo, n.
(f) If strict inequality holds in property (e),
s, C) = —C,0<x<s,.
Intuitively, at a stopping place, we are far from any boundary point
where an s would increase and thus we are willing to accept the
reward V(x,r,51,...,5,,C) =51+ -+ + 5.

1d% )
232V 1 sy,

3. Establishing the optimality of the reward function

Theorem 3.1. Ifwe have a function 1% satisfying properties (a)-(f) in
Section 2, then

VX, 1r,81,...,5n; C)zV(x,r,s1,...,sn,C). (7)
Proof. Consider the process
Y(t) =V (Z,8(t),0) —Ct, t>0 ®)

where S(t) = (51(t), ..., Sp(t)). Y(¢) is a continuous local super-
martingale at x = 0 by properties (a) and (b), at x = s, by property
(c),and at any x by property (d). For any bounded stopping time t, it
follows from the optional sampling theorem that E[Y (7)] < Y(0).
Property (e) gives us that for any bounded 7,

s} [S1(T) + -+ - + S (7) — C1]
2 Snn €). (9)

E{x,r,sL.N,
<V(xr,Ssq,...

From the definition of V in (6), we must have V < V.

We now consider the reverse inequality V > V. By property
(f), equality holds in the last argument for the “right ”. Although
this “right 7" does not always exist in such problems, it does
for our problem; the “right t” is the first entry time of the
underlying Markov process (Z, S) in the set where equality holds
n (e). Further, this “right t” is a particular stopping time that
is “approximable by uniformly bounded ones”. Larry Shepp used
the phrase “approximable by uniformly bounded ones” to denote
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that we can take the “right t”” at which the equality is attained,
approximate this “right =" with “right t” A n forn > 1, and
then proceed to pass to the limit for n. This is valid in our setting
since the “right t” has finite expectation. When property (f) holds,
and when equality holds in (d), Y will be a local martingale up to
the first entry of the underlying Markov process (Z, S) into the
set where equality holds in (e). Since the “right ” has a finite
expectation, we may invoke the standard form of Doob’s stopping
theorem for bounded stopping times, as in [ 14]. Thus,
Ex,r.s1,0n) [Si(z) +--- 4+ Sa(T) — C7]

ZV(x,r,sl,...,sn,C) (10)

and one can optimize over T on both sides. The reverse inequality
V > V thus holds and thus V = V, completing the proof. O

If we can find the right 1% satisfying properties (a)-(f), we then
know that

6
A (C) =V (0,r,0,...,0; C):?”, (11)

where 6, is a number independent of C. V must be of the form %"
because a scaling argument allows us to reduce the problem to any
one value of C. This is because we will show that

Vxr,s1,...,85:0)

1
=EV(Cx,r, Csy,...,Csp; 1) (12)

Note that if we start at x = O and s; = --- = 0 then above form

for A, (C) is obtained. Let
S(r) £ 81(T) + -+ + Sp(7).

For any C and any 7, E[S(7t)] < A,(C) + CE[z]. If we specify
m = E[r] for any fixed stopping time 7, then we will obtain the
best upper bound by minimizing over C, which is

E[S(7)] < inf(% + Cm) .

The infimum is attained at C = ,/ %" and gives the bound G, =

2./0, for any n. Thus we need only find V (0; C) for any one value
of C.

3.1. Solution forn =0, 1,2

Corollary 3.2. G, = 1.

Proof. For n = 0, consider the function

Jr2
N 1
Vixs,C)=C — — .
(x,s,0) ((x S+2C> ) +s

We note that properties (a)—(f) hold, and so for x = s = 0, and for
anyC > 0

1
E[S;] ECE[T]+E. (13)

Minimizing over C, i.e., taking C = —1—, as above for any t, we

2JE[]’
obtain the inequality
E[S(D)] < VEI7] (14)
forallt,ie,Co=1. O

Corollary 3.3. C; = +/2.

Proof. For n = 1, the right Vis given by:

N 1 1
Vix,s,C = Cx? —, 0<x<s<—; 15
( ) +2C - - —2C (15)
1\" 2 1
\7x,s,C =C X—S+ — s, 0<x<s, s> —.
( ) (( +2c> ) + <x=< o

We use the above argument to see that Ay(C) = - and 6; = 3
andso C; = V2. O

Corollary 3.4. G, = /3.

Proof. Forn = 2, v is,fori £ jand s, +s; < %
V(x, 151,52, C)
Ci+s) | 3

—t e

We further simplify Eq. (16) as follows:

N 1 1\ 2
V(X,T,Sj,Sz,C):C((X—(si_zc>> )
Y
+C<<—x—<sj—zc>) ) + 51+ $2, (17)

where0 < x <s;,s1 + 5, > % We can use the above argument to
see that with V(0; C) = % we arrive at G = V3. O

=0 — Cx(si— ) + 0<x<s. (16)

4. n = 3 and beyond

At present, we possess a non-trivial but ultimately incomplete
strategy for addressing the case n = 3. Our strategy is to develop
the “correct” nonlinear Fredholm equation in order that we may
reduce the problem to that of a nonlinear integral recurrence.
Based on simulation approaches, we conjecture the following about
the constant:

Conjecture 4.1. The /n + 1 pattern for the spider constant does not
hold for n = 3.

Further, it is likely that the spider constant for n = 3 is not an
elementary number.

5. Final remarks

We are hopeful of a solution to the general n case for the Du-
bins spider and maintain that our proposed dynamic programming
approach constitutes the most tractable direction for solving the
problem, for the following reasons: (1) The use of linear program-
ming would be infeasible because the approximate linear program-
ming would be large and unwieldy, making accurate numerics
impossible. (2) Bellman’s dynamic programming method seems in-
tractable for the same reason as that of using linear programming.
(3) The more standard method of dynamic programming, namely
that of guessing a candidate for an optimal strategy, calculating the
reward function of the strategy, and proving its excessiveness (as
most recently done by [3]) was unsuccessful in obtaining the gen-
eral solution.
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