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Abstract This paper provides a numerical method for solving a class of Itô stochas-
tic delay differential equations (SDDEs). The method’s novelty is its use of the
spectral collocation approach using Legendre polynomials for solving SDDEs. We
prove that the method is strongly convergent in L2 and proceed to demonstrate its
computational efficiency and superior accuracy.
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1 Introduction and motivation

A delay differential equation (DDE) is a type of differential equation in which the
time derivatives at the present time depend on both the solution and the derivatives
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at previous points in time [25, pp. 440–441]. In the present work, we focus on the
following differential equation of neutral type{

x′(t) = f (t, x(t), x(t−τ1), · · · , x(t−τn), x
′(t−σ1), · · · , x′(t−σm)), t ≥ t0,

x(t) = ϕ(t), t ≤ t0,

(1)
where the quantities τi ≥ 0, 1 ≤ i ≤ n and σj ≥ 0, 1 ≤ j ≤ m model the “delays”
and where ϕ(t) is a function of initial history. The delays may be either constants or
functions. Note that the coefficient on the right-hand side of (1) depends not only on
delayed values of the solution x, but also on derivatives of the delayed values of the
solution of x.

Ordinary DDEs are often used in lieu of non-delayed partial differential equa-
tions ([13]). The former are commonly solved in a stepwise fashion via the “method
of steps” (see [33] for more comprehensive background on this method). When
modeling systems with stochastic variables, stochastic delay differential equations
(SDDEs) are often employed ([6, 9]). SDDEs have several applications in applied sci-
ences. A compelling example from financial mathematics involves the use of SDDEs
to model delays in commodity markets attributed to transportation and production
([9]). The advantage of modeling a system via SDDEs is that SDDEs are often
more suitable stochastic models than their instantaneous counterparts for modeling
phenomena that display time lags ([5, 6]). Several applications to option pricing in
markets with memory have been provided in [3], since delays naturally arise with
financial instruments such as Asian options or lookback options.

The general form of the stochastic version of (1) as an Itô SDDE is a stochastic
differential equation ([8, 32]){

dx(t) = f (t, x(t), x(t − τ))dt + g(t, x(t), x(t − τ))dW(t), t ≥ t0,

x(t) = ϕ(t), t ∈ [−τ, t0], (2)

where f : R+ ×Rm ×Rm → Rm denotes the drift term and g : R+ ×Rm ×Rm →
Rm×d is the diffusion term. W(t) is a d-dimensional standard Wiener process, which
is a vector-valued stochastic process

W(t) = (W1(t), W2(t), . . . ,Wd(t)), (3)

with components Wi(t) independent and standard one-dimensional Wiener pro-
cesses. It is assumed that E∥ϕ∥2 < ∞ and that the functions f and g are measurable
and satisfy both Lipschitz and linear growth bound conditions in x.

The present paper develops a Legendre collocation method to solve a specific class
of SDDEs. This particular class, given explicitly in [32] and motivated by [8, p.2], is{

dx(t) = f (t, x(t), x(t − τ))dt + g(x(t))dW(t), t ∈ [0, T ],
x(t) = ϕ(t), t ∈ [−τ, 0], (4)

where 0 < T < ∞. The class of SDDEs given in (4) is amenable to the Lamperti
transformation ([18]), which will be discussed in Section 2.

Analytic solutions of SDDEs are often intractable, making numerically efficient
schemes requisite. Existing numerical methods for solving SDDEs primarily rely on
stochastic Taylor expansions (see [5, 34]). As the convergence order increases, the
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complexity of implementing numerical algorithms also increases. This is because one
must compute more partial derivatives of the drift and diffusion functions ([8]).

We briefly survey related literature. In 2010, the authors of [29] proposed “an
efficient Legendre-Gauss collocation method for solving nonlinear delay differential
equations with variable delay.” The authors showed that their method has high-order
accuracy and can be implemented in a stable and efficient manner. The approach
relies on using shifted Legendre polynomials to obtain a discrete system. The solu-
tions are then obtained via a stable approach by determining the unknown coefficients
of the collocation scheme. In 2015, the authors of [32] presented a Chebyshev spec-
tral method for solving a class of SDDEs. They discussed the application of an
interpolation polynomial “interpolated by choosing the first kind of Chebyshev-
Gauss-Lobatto points” ([32]). Their work considers the Lamperti transformation.
Like [32], we also arrive at a more stable form of the SDDE using the Lamperti
transformation. However, unlike [32], we then construct the differentiation matrix
corresponding to Legendre collocation nodes.

In addition to the SDDE literature, the present work is motivated by the SDE
literature, and in particular, the recent work of [27]. The authors of [27] consider a
collocation solution of SDEs without delays. The present work provides an extension
to SDDEs. Further, and to the best of our knowledge, we are the first to offer formal
convergence analysis for the collocation-type methods in the SDDE setting given in (4).

Our proposed algorithm for solving SDDEs differs from the aforementioned
works of [29] and [32] in several respects. Firstly, we provide an algorithm which
solves Itô SDDEs in matrix notation, which makes the problem more tractable and
also requires less computational effort. Secondly, our method is explicit, whereas the
method presented in [29] is implicit. Thirdly, our proposed algorithm is strongly con-
vergent in L2 (there is no convergence discussion provided in [27] and [32]). Finally,
our Legendre collocation algorithm is computationally faster and more accurate than
the Chebyshev-type method proposed in [32].

The remainder of this work is structured as follows. Section 2 discusses the
strengths of the Lamperti transformation and shows how to construct the corre-
sponding differentiation matrices of Legendre nodes. Section 3 gives the proposed
Legendre collocation method for solving the class of SDDEs given in (4). Section 4
proves that our method is strongly convergent in L2. Section 5 compares the applica-
bility and efficiency of our Legendre collocation scheme with well-known discretized
schemes in the literature. Section 6 offers a conclusion and an outline for future
research.

2 Legendre collocation method and Lamperti transformation

Consider a standard probability space (�,Ft , P ). The filtration Ft≥0 is assumed to
be complete and right-continuous.

Consider a grid of n+1 points, {t0, t1, . . . , tn}. Usually, this set of nodes is consid-
ered to be equally spaced; however, polynomials of high degree along with an equally
spaced grid may pose non-trivial difficulties [12, p. 29]. One well-studied example
of these difficulties is the Runge phenomenon.
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We wish to obtain acceptable accuracy with as few nodes as possible. To this end,
we consider the Legendre polynomials on the shifted interval [0, T ]. On the interval
[−1, 1], the Legendre polynomials Ln(x) ([27] and [30, pp. 304–305]) are solutions
to the following Legendre ordinary differential equation(

1 − x2
)

y′′ − 2xy′ + n(n + 1)y = 0, (5)

with orthogonality ∫ 1

−1
Lm(x)Ln(x)dx = 0, (6)

for m ̸= n.
If the function f (x) belongs to a Lipschitz class of order greater than or equal

to 1/2 on [−1, 1], then, it has the following uniformly convergent Legendre series
expansion

f (x) =
∞∑

n=0

anLn(x), (7)

where

an =
(

n + 1
2

)∫ 1

−1
f (x)Ln(x)dx, n = 0, 1, · · · . (8)

Furthermore, if f , f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and
∥f (k)∥T = Vk < ∞ for some k > 1, then for each n > k + 1 (see [28]), there is the
error bound

|f (x)−fn(x)| ≤ Vk

(k − 1)
(
n− 1

2

) (
n− 3

2

)
· · ·
(
n− 2k−3

2

)√ π

2(n−k)
, x ∈ [−1, 1],

(9)
where ∥ · ∥T is the Chebyshev-weighted seminorm and

fn(x) =
n∑

j=0

ajLj (x). (10)

(For further background on Legendre orthogonal polynomials, we refer the reader to
[11, pp. 35–38]).

The approach for solving the class of SDDEs in (4) with Legendre collocation
points is to choose a finite-dimensional space of candidate solutions (via Legen-
dre polynomials) and the corresponding number of points in the domain, commonly
referred to as “collocation points.” We then use the Lamperti transformation ([18]) to
transfigure the original SDDE into an SDDE with constant diffusion coefficient.

The Lamperti transformation is given by

y(t) = l(x(t)) =
∫ x(t)

z

1
g(u)

du, (11)

where z lies in the state space of x(t) and the integral is a deterministic Riemann-
Stieltjes integral. It is important to note that the Lamperti transformation y(t) =
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l (x(t)) often reduces the numerical instability of the simulation processes in the path-
wise sense [15, 27]. Following such a procedure leads to the corresponding SDDE
version of (4) as

dy(t) = f (t, y(t), y(t − τ))dt + dW(t), (12)

with initial condition

y(0) = l(x(0)) =
∫ ϕ(0)

z

1
g(u)

du, (13)

where

f (t, y(t), y(t − τ)) = f (t, l−1(y(t)), l−1(y(t − τ)))

g(l−1(y(t)))
− 1

2
gx(l

−1(y(t))). (14)

In Section 3, we construct the Legendre spectral collocation method for the SDDE
given in (12). The orthogonal basis allows the problem to be reduced to a system of
linear or nonlinear equations.

3 Method of solution

We begin by considering differentiation matrices. Given the Legendre set of col-
location nodes {t0, t1, . . . , tn} in the interval [0, T ], the corresponding Legendre
differentiation matrix may be constructed. Once the weights (here, denoted by dij )
used to approximate the m-th derivatives (of u) at each grid point are determined,
they may be evaluated as [12, chapter 3]

u
(m)
j =

m∑
j=0

d
(m)
ij uj . (15)

Sometimes, a few coefficients are different from zero (i.e., for each node i, those
n + 1 nodes that belong to its stencil). The right hand-side of the (15) is

u(m) ≃ D(m)u, (16)

where D(m) is the differentiation matrix [26]. The formulation in (16) enables us to
build a rapid numerical method.

In the present work, we only require the simplest case (m = 1) in producing the
differentiation matrices based on the Legendre nodes. Upon implementation of this
procedure, orthogonal Legendre polynomials of degree n−1 are considered including
n − 1 real zeros in the shifted interval [0, T ]. Then, to build a non-equidistant grid of
n + 1 nodes, the boundary nodes are considered as the first and the last points.

Generally speaking, the differentiation matrices are singular [10, p. 479]. The
SDDEs are initial value problems and the value of the exact solution at the initial
time is given. For this reason, if t0 is fixed to be zero in the initial SDDE, the first col-
umn and row of the differentiation matrices have no effect (multiplication by zeros).
Henceforth, we consider the differentiation matrix D̄ by removing the first row and
column of D(1), which is non-singular. If the initial value is not zero, then it can be
incorporated into the SDDE by a transformation, resulting in a SDDE with an initial
value of zero.
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The differentiation matrices constructed in this spectral approach are all dense
since the unique interpolation polynomial of degree n (the highest order possible)
passes through all n + 1 Legendre collocation points.

The differentiation matrices are built with the collocation points. As an exam-
ple, considering five Legendre nodes, {0, 0.1127016653792583, 0.5, 0.88729833
46207417, 1} in the time interval [0, 1], gives the differentiation matrix

D5×5 =


−13. 14.7883 −2.66667 1.87836 −1.

−5.32379 3.87298 2.06559 −1.29099 0.67621
1.5 −3.22749 0 3.22749 −1.5

−0.67621 1.29099 −2.06559 −3.87298 5.32379
1. −1.87836 2.66667 −14.7883 13.

 . (17)

We proceed to write the SDDE in (12) in the following non-canonical form [20, pp.
152–153]

d

dt
y(t) = f (t, y(t), y(t − τ)) + d

dt
W(t). (18)

Replacing the operator d
dt

with the Legendre differentiation matrix (for finding the
strong solution) yields

D̄y(t) = f (t, y(t), y(t − τ)) + D̄W(t), (19)

which further simplifies to

y − D̄−1f − W = 0, (20)

where W is the vector of Wiener increments. The formulation in (20) is always a
linear or nonlinear system of algebraic equations with dimension n × n, when there
are n + 1 collocation points in the time interval.

In (20), the function f (t, y(t), y(t − τ)) determines whether the final algebraic
system for path-wise approximations are linear or nonlinear. If the discretized system
of algebraic equations is linear, then linear solvers (such as LU-based decompo-
sitions) which are quite good for dense systems might be applied. Otherwise, a
nonlinear solver such as Newton’s method may solve the nonlinear system ([1]).

In numerical implementations, the vector y consisting of n entries is calculated
via the algebraic system of (20). The inverse of the Lamperti transformation is x =
l−1(y), which is the final strong solution (in the path-wise sense) of (4).

Although the discussion given above is done for the one-dimensional SDDEs for
the sake of simplicity in notations only, the use of the method for system of SDDEs
is quite straightforward by applying the transform (11) for each equation in a sys-
tem of SDDEs. When an SDE is a d-dimensional system and the time interval is
discretized into n partitions, the resulting algebraic system from the Legendre collo-
cation method for SDDEs has dimension (dn)× (dn). We illustrate this at the end of
Section 5.

Furthermore, according to [19], an expansion of the drift term in (18)
f (t, y(t), y(t − τ)) “in powers of τ using a Taylor expansion around y(t) is valid to
quadratic order in τ .” When following and imposing such an expansion to transform
a SDDE into a SDE, it is requisite to collect all terms of order

√
dt and dt [19, p.
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181]. This approach is useful when tackling a system of SDDEs in which the delay
is small.

4 Convergence analysis

The solution of a discretized problem converges to the solution of a continuous prob-
lem as the size of the mesh approaches zero. Correspondingly, convergence depends
on the number of grid points (denoted by n) and grid spacing. In our method, the
number of grid points in the discretization process (constructing the differentiation
matrix) is inversely proportional to the grid spacing. We first recall a few definitions
and then prove in Theorem 1 that our method is strongly convergent in L2.

Consider a random variable X with distribution fX and finite expectation. Suppose
p ≥ 2 and denote Lp(�, H) the collection of all strongly measurable, pth integrable
H -valued random variables. Lp(�,H) is a Banach space with

∥V ∥Lp(�,H) := (E[∥V ∥p])1/p (21)

for each V ∈ Lp(�, H). We will henceforth work with the space L2(�, H).
An R-valued stochastic process

y(t) : [−τ, T ] × 8 → R, (22)

is called a “strong solution” of the systems of equations in (4) if it is a measurable
sample-continuous process such that y(t)|[0,T ] is (Ft )0≤t≤T -adapted, f and g are
continuous functions, and y satisfies the system of equations in (4) almost surely with
initial condition y(t) = ϕ(t) for t ∈ [−τ, 0]. A solution y(t) is considered path-wise
unique if indistinguishable from any other solution y(t).

Definition 1 (Grönwall’s inequality [2]) Let ξ, ϖ ∈ [t0, T ] → R satisfy the
following relation

0 ≤ ξ(t) ≤ ϖ(t) + L

∫ t

t0

ξ(s)ds, (23)

for any t ∈ [t0, T ], where L > 0. Then,

ξ(t) ≤ ϖ(t) + L

∫ t

t0

exp (L(t − s))ϖ(s)ds. (24)

Definition 2 The sequence {yn} converges to y in L2 if for each n, E(∥yn∥2) < ∞
and E(∥yn − y∥2) → 0 as n → ∞ [17, p. 39].

Let ∥ · ∥ be the L2 norm and

en(t) = y(t) − yn(t) (25)

be an error function of the (path-wise) approximate solution yn(t) to the exact solu-
tion y(t) (in the strong sense [24, p.74]). The subscript n refers to the number of
collocation points in the integration interval. Note that en is Ft n-measurable since
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both y(t), yn(t) are Ft n-measurable random variables and that (E[∥en∥2])1/2 is the
L2 norm of (25) [5].

Theorem 1 Let y(t) be the exact solution and yn(t) be the Legendre spectral
collocation approximate solution of (18). Let us further assume 1–5 below.

1. f and g are sufficiently smooth with uniformly bounded derivatives.
2. For every T and n, there are positive constants λ1, . . . , λ4 depending only on T

and n such that for all 0 ≤ t ≤ T , we have

|f (θ, α) − f (ϑ, β)| ≤ λ1|θ − ϑ | + λ2|α − β| (26)

and

|g(θ, α) − g(ϑ, β)| ≤ λ3|θ − ϑ | + λ4|α − β|, (27)

for all α, β, ϑ, θ ∈ R,
3. The coefficients satisfy the linear growth conditions

|f (ϱ, σ )|2 ≤ A1(1 + |ϱ|2 + |σ |2) (28)

and also

|g(ϱ, σ )|2 ≤ A2(1 + |ϱ|2 + |σ |2), (29)

for constants A1, A2 ≥ 0,
4. E(∥y(t)∥2) < ∞.
5. The function ϕ(t) is Hölder-continuous with exponent γ [5, p. 318].

Then, yn(t) converges to y(t) in L2.

Proof After employing the Lamperti transformation, we can express yn(t) in the
differential form

dyn(t) = f̄ (t, yn(t), yn(t − τ))dt + dWn(t), (30)

wherein Wn(t) is an n-component vector of Wiener increments. The corresponding
integral form is

yn(t) = y(0) +
∫ t

0
f̄ (s, yn(s), yn(s − τ))ds +

∫ t

0
dWn(s). (31)

We now employ logic in the spirit of [4, 14, 21]. Using the error function en(t) =
y(t) − yn(t), (31), and the following exact solution

y(t) = y(0) +
∫ t

0
f̄ (s, y(s), y(s − τ))ds +

∫ t

0
dW(s), (32)

we obtain

en(t) =
∫ t

0
[f̄ (s, y(s), y(s−τ))−f̄ (s, yn(s), yn(s−τ))]ds +

∫ t

0
[dW(s)−dWn(s)].

(33)
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Applying the expectation operator yields

E[∥en(t)∥2] ≤ 2E

[∥∥∥∥∫ t

0
f̄ (s, y(s), y(s − τ)) − f̄ (s, yn(s), yn(s − τ))ds

∥∥∥∥2
]

+2E

[∥∥∥∥∫ t

0
(dW(s) − dWn(s))

∥∥∥∥2
]

,

(34)
which follows from the inequality (a + b)2 ≤ 2a2 + 2b2. Further, applying the Itô
isometry [24, p.26] and the Hölder’s inequality, we have

E[∥en(t)∥2] ≤ 2η

(∫ t

0
E[∥∥f̄ (s, y(s), y(s − τ)) − f̄ (s, yn(s), yn(s − τ))

∥∥2]ds

)
+2ηE

[
∥W(t) − Wn(t)∥2

]
,

(35)
wherein η is a positive constant. From the Lipschitz condition in (26), we obtain

E[∥f (θ, α) − f (ϑ, β)∥2] +E[∥g(θ, α) − g(ϑ, β)∥2]
≤ 4λ2

(
E[∥θ − ϑ∥2] + E[∥α − β∥2]

)
,

(36)

where λ is a positive constant and subsequently

E[∥en(t)∥2] ≤ 8ηλ2
∫ t

0

(
E[∥en(s)∥2] + E[∥en(s − τ)∥2]

)
ds

+2ηE
[
∥eW

n (t)∥2
]
,

(37)

where
eW
n (t) = W(t) − Wn(t). (38)

Applying Grönwall’s inequality on the right side of the inequality in (37) with ξ(s) =(
E[∥en(s)∥2] + E[∥en(s − τ)∥2]), we obtain

E[∥en(t)∥2] ≤ 2ηE
[
∥eW

n (t)∥2
]

+16ηλ2L

∫ t

0
exp(L(t − s))E[∥eW

n (s)∥2]ds.
(39)

Here, L is a positive suitable constant. Letting n → ∞, we obtain

E[∥en(t)∥2] → 0. (40)

This proves that our method is strongly convergent in L2.

5 Illustrative test problems

In this section, we examine the numerical precision of the new computational scheme
for SDDEs using Mathematica 10 [31] with machine precision arithmetic.1

1http://reference.wolfram.com/language/tutorial/MachinePrecisionNumbers.html.en
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For purposes of comparison, we employ Milstein’s method [22], henceforth
denoted as “MM,” and which is given by

xi+1 = xi + f (ti, xi, hi)1ti + g(ti, xi, hi)1wi

+1
2
g(ti, xi, hi)

∂g

∂x
(ti, xi, hi)

(
1w2

i − 1ti

)
.

(41)

Here,
1ti = ti+1 − ti, 1wi = wti+1 − wti , (42)

and hi includes the approximation for the time lag. We denote the Chebyshev method
for Itô SDDEs developed in [32] as “CM.” We denote our proposed Legendre col-
location scheme given in (20) by “LM.” The computer specifications are Microsoft
Windows 7 Intel(R), CPU 3.10GHz, 64-bit operating system, with 8GB of RAM.

Now, we consider an example from biological sciences and provide computational
results under varied parameter settings. It is commonly assumed that biological sys-
tems function in an environment with an overall noise rate modeled as βdW(t) 9
([8]). As in both [8, p.303] and [32, p.8], we consider a population x(t) and the
dyanmics of the SDDE below

dx(t) = [ax(t) + bx(t − 1)]dt

+[β1 + β2x(t) + β3x(t − 1)]dW(t), 0 ≤ t ≤ 1,

ϕ(t) = 1 + t, −1 ≤ t ≤ 0,

(43)

wherein W(t) is the standard Wiener process. Delays are common in various bio-
logical systems; the author of [19] writes that “delays arise from finite maturation
or division time of various cellular species, such as blood cell lines, or the synthesis
of various molecular species, as in the immunological system or genetic control sys-
tems.” Employing the method of steps, we calculate an explicit solution on the first
interval [0, 1]. We use ϕ(t) for −1 ≤ t ≤ 0 as an initial function and let β2 = β3 = 0.
This solution on 0 ≤ t ≤ 1 is given by

x(t) = exp(at)

(
1 + b

a2

)
− b

a
t − b

a2 + β1 exp(at)

∫ t

0
exp(−as)dW(s). (44)

We note that MM is very similar to Euler-Maruyama’s method (see [8]) since
the noise is additive and and both of the methods converge strongly with the same
convergence order, i.e., one. The methods can be compared in the strong sense using
the absolute errors e(T ) = ∥x(T ) − xn(T )∥ at the final temporal node T = 1.

In the simulation procedures, a high number of steps, i.e., 28, are used to simulate
the involved Wiener processes. Numerical results and comparison for different values
of a, b, and β1 are provided in Tables 1, 2, 3, 4, and 5. In Tables 1 and 2, the results
are given for the ODE case and the delayed ODE case, respectively. These tables
show that the LM method is overall more accurate than either the MM or CM method.
Tables 3–5 report the numerical comparisons for different cases of the SDDE given
in (43) over M = 500 paths. These tables too show that the LM method is overall
more accurate than either of the MM or CM method.

In Fig. 1, a sample solution corresponding to the path generated by fixing the
randomly generated numbers via SeedRandom[12345] is illustrated alongside the
LM numerical solution applying a = 0.1, b = 2, β1 = 1 (n = 128). The figure
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Table 1 Results of absolute error comparisons for a = 1, b = 0 and β1 = 0

n MM CM LM

2 0.468282 0.218282 0.218282

4 0.276876 0.000460046 0.0000278602

8 0.152497 4.64034 × 10−10 8.88178 × 10−16

16 0.0803533 7.10542 × 10−15 4.44089 × 10−16

Table 2 Results of absolute error comparisons for a = 0.5, b = 0.5, and β1 = 0

n MM CM LM

2 0.258664 0.0370729 0.0370729

4 0.140744 0.0000185607 3.35083 × 10−7

8 0.0736535 1.23367 × 10−12 0.

16 0.0377108 3.55271 × 10−15 0.

Table 3 Results of absolute error comparisons for a = 0.1, b = 2, and β1 = 1

n MM CM LM

2 0.475183 4.81090 × 10−2 4.81193 × 10−2

4 0.223064 1.60297 × 10−2 6.24754 × 10−3

8 0.114612 9.43396 × 10−4 7.99978 × 10−4

16 5.62998 × 10−2 3.39393 × 10−3 2.99805 × 10−3

32 2.79259 × 10−2 1.52520 × 10−3 1.38088 × 10−3

64 1.35799 × 10−2 1.26730 × 10−3 1.20033 × 10−3

128 6.45190 × 10−3 8.85651 × 10−4 8.63662 × 10−4

256 3.11027 × 10−3 7.00025 × 10−4 7.01795 × 10−4

Table 4 Results of absolute error comparisons for a = 0.01, b = 1, and β1 = 2

n MM CM LM

2 2.40221 × 10−1 7.83156 × 10−3 7.83448 × 10−3

4 1.16681 × 10−1 2.95138 × 10−3 1.21323 × 10−3

8 5.88136 × 10−2 1.54485 × 10−4 1.34849 × 10−4

16 2.91794 × 10−2 6.44773 × 10−4 5.78715 × 10−4

32 1.45386 × 10−2 2.86168 × 10−4 2.62367 × 10−4

64 7.19224 × 10−3 2.42455 × 10−4 2.31399 × 10−4

128 3.53203 × 10−3 1.67827 × 10−4 1.64194 × 10−4

256 1.74336 × 10−3 1.33146 × 10−4 1.33469 × 10−4
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Table 5 Results of absolute error comparisons for a = −0.001, b = 2, and β1 = 2

n MM CM LM

2 5.00804 × 10−1 8.20984 × 10−4 8.21285 × 10−4

4 2.50722 × 10−1 2.92190 × 10−4 1.20909 × 10−4

8 1.25308 × 10−1 1.50502 × 10−5 1.31956 × 10−5

16 6.26754 × 10−2 6.40767 × 10−5 5.76247 × 10−5

32 3.13424 × 10−2 2.83959 × 10−5 2.60753 × 10−5

64 1.56788 × 10−2 2.41157 × 10−5 2.30375 × 10−5

128 7.84575 × 10−3 1.66734 × 10−5 1.63190 × 10−5

256 3.92513 × 10−3 1.32338 × 10−5 1.32658 × 10−5

shows our computational method’s superiority in finding the strong solution of the
SDDEs.

The numerical stability of the schemes is also tested using time domains
and toward this goal, for the settings a = 0.5, b = 5, β1 = −10, and
SeedRandom[1234] using different numbers of computational nodes. As illus-
trated in Figs. 2 and 3, the proposed LM scheme for SDDEs provides stable and
accurate behavior even with very low number of nodes, and the results are stable
regardless of the working domain for time. Note that for larger intervals, smaller step
sizes are required for the EM and the MM, whereas our method remains convergent
and stable.

The Legendre collocation approach for deterministic DDEs produces the error
bound E(∥y(t) − yn(t)∥2) ∼ exp (−αn), α > 0, ([12, chapter 4]) where n is the
degree of the interpolating Legendre polynomial. Due to noise in the SDEE case, the

Fig. 1 The exact realization (blue) and the approximate solution (red) by LM for one sample path
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Fig. 2 Unstable convergence history of MM in a larger domain

exponential convergence rate cannot be observed by increasing the number of nodes.
For SDDEs, a low number of (shifted) Legendre zeros are sufficient to obtain results
with high accuracy.

We now discuss the applicably of our method to systems of SDEs by considering
the following system of two-dimensional Itô SDEs given in [16]:

d

(
x(1)(t)

x(2(t)

)
=
(−3 1

1 −2

)(
x(1)(t)

x(2(t)

)
dt + 3

2

(
sin (x(1)(t))

sin (x(2)(t))

)
dW(t), (45)

where x(t) = (x(1)(t), x(2)(t))∗, 0 ≤ t ≤ 1 and x(0) = (x(1)(0), x(2)(0))∗ =
(1/2, 1/2)∗. For this system of SDEs, the Lamperti transformation (in the domain of
validity) is defined by

y(1)(t) = 2
3

ln

(
cot

(
1
4

)
tan

(
x(1)(t)

2

))
, (46)

Fig. 3 Stable convergence history of LM in a larger domain
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The inverse Lamperti transformation is given as

x(1)(t) = 2 tan−1

(
tan

(
1
4

)
exp

(
3y(1)(t)

2

))
. (47)

The Lamperti transformation for y(2)(t) and its inverse can be similarly constructed.
After applying the above Lamperti transformations, we obtain the following

nonlinear system of SDEs

dy(1)(t) = f 1(t, y
(1)(t), y(2)(t))dt + dW(t),

dy(2)(t) = f 2(t, y
(1)(t), y(2)(t))dt + dW(t),

(48)

wherein

f 1(t, y
(1)(t), y(2)(t)) = − 1

24 csc
(

2 tan−1
(

exp
(

3y(1)(t)
2

)
tan

(
1
4

)))
×
(

96 tan−1
(

exp
(

3y(1)(t)
2

)
tan

(
1
4

))
−32 tan−1

(
exp

(
3y(2)(t)

2

)
tan

(
1
4

))
+9 sin

(
4 tan−1

(
exp

(
3y(1)(t)

2

)
tan

(
1
4

))))
,

(49)

and

f 2(t, y
(1)(t), y(2)(t)) = − 1

24 csc
(

2 tan−1
(

exp
(

3y(2)(t)
2

)
tan

(
1
4

)))
×
(

64 tan−1
(

exp
(

3y(2)(t)
2

)
tan

(
1
4

))
−32 tan−1

(
exp

(
3y(1)(t)

2

)
tan

(
1
4

))
+9 sin

(
4 tan−1

(
exp

(
3y(2)(t)

2

)
tan

(
1
4

))))
.

(50)

As noted by [23], the Lamperti transformation removes the super-linearity in the
diffusion coefficient as long as the diffusion coefficient of the original SDE is strictly
positive on the domain. It can then be used to approximate the transformed process
with the backward Euler scheme. Further, as noted by [14], one can use the afore-
mentioned framework to obtain “strong convergence results for several SDEs with
non-Lipschitz coefficients” ([14]).

We now consider the SDDEs with non-global Lipschitz coefficients using our
proposed model by considering the Cox-Ingersoll-Ross (CIR) model (see [7, 23]).
The CIR model is

dx(t) = κ(θ − x(t))dt + σ
√

x(t)dW(t). (51)

The Feller condition
2κθ ≥ σ 2, (52)

guarantees that its solution is strictly positive when x(0) > 0. The classical dis-
cretization methods encounter with several difficulties in the simulation process of
such financial models (see [23]). To solve such SDEs using our Legendre collocation
scheme, we invoke the Lamperti transformation

y(t) = √
x(t), (53)
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and obtain the following Itô SDE [23]:

dy(t) = 1
2
κ

((
θ − σ 2

4κ

)
y(t)−1 − y(t)

)
dt + 1

2
σdW(t). (54)

Applying (20) to (54) yields a nonlinear system of algebraic equation for each
realization that can be solved like the backward Euler scheme on (54).

6 Summary

This work proposes the Legendre spectral collocation scheme to solve the class of
SDDEs given by the system of equations in (4). The Lamperti transformation enables
us to reduce the instability of the underlying problem.

Utilizing the Legendre collocation method, we construct the nth degree interpo-
lating polynomials to obtain the differentiation matrices. The convergence of the
proposed scheme is theoretically studied and the numerical results confirm both its
accuracy and its computationally efficient performance.

Our future research will concern applying some other general shifted orthog-
onal polynomials (or perhaps even non-orthogonal polynomials) for constructing
the corresponding differentiation matrices. In addition, we plan to explore com-
putational methods that may benefit from transformations other than the Lamperti
transformation.
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the quality of this work.
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