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What is the problem that you are trying to
solve?

Objective

We wish to build the first demonstrably correct statistical tests for
testing independence (or dependence) of pairs of paths of
stochastic processes. As part of a broad effort, we will focus on
tests to detect independence for the following pairs of paths of
Gaussian processes: Wiener processes, Ornstein-Uhlenbeck (OU)
processes, fractional Ornstein-Uhlenbeck (fOU), and fractional
Brownian motion (fBm).
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Why is it important?

A fundamental statistical question

The mathematical importance of our work emerges via a
fundamental yet crucial question for practitioners of statistics:
given a pair of sequences of random variables {Xk ,Yk}
(k = 1, 2, . . . , n), how can we measure the strength of the
dependence of the sequences X and the sequence Y ?

An often misleading statistic

The classical Pearson correlation coefficient offers a solution that is
standard and often powerful. However, it is also widely used even
in situations where little is known about its empirical properties,
e.g. when the sequence of random variables are not identically
distributed or independent. The Pearson correlation is often
calculated between two time series.
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After ninety years, we finally have
mathematical proof that it is misleading!

Let (Xk)k and (Yk)k be two independent random walks (partial
sums of two independent sets of i.i.d. variables). The empirical
correlation is defined as

θn =

∑n
k=1 XkYk − 1

n (
∑n

k=1 Xk)(
∑n

k=1 Yk)√∑n
k=1 X

2
k −

1
n (
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k=1 Xk)2
√∑n

k=1 Y
2
k −

1
n (
∑n

k=1 Yk)2
.

(1)
The recent work of Ernst, Shepp, Wyner (The Annals of Statistics,
2017) closes a 90-year old open problem posed by Udny Yule
(Yule, 1926) regarding the dispersion of so-called “nonsense”
correlation. The work shows that statistical tests based on Pearson
correlation using partial sums of random variables are indeed
mathematically erroneous.
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Yule’s “nonsense correlation”

Let us quickly review the work of Ernst, Shepp, and Wyner (2017)
Yule’s “Nonsense Correlation” Solved! The Annals of Statistics,
45: 1789-1809. The problem is to mathematically prove Yule’s
1926 empirical finding of “nonsense correlation.”

Yule (1926)

“We sometimes obtain between quantities varying with time
(time-variables) quite high correlations to which we cannot attach
any physical significance whatever, although under the ordinary
test the correlation would be held to be certainly ‘significant’. The
occurrence of such ‘nonsense correlations’ makes one mistrust the
serious arguments that are sometimes put forward on the basis of
correlations between time series.” (Journal of the Royal Statistical
Society, 89(1)).
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What Phenomena Was Yule Addressing?

Two DISTINCT but often confused phenomena.

“Spurious correlation”: Correlation observed when two time series
are themselves dependent on an unobserved third time series.

“Nonsense correlation”: Correlation observed between two
independent time series without any regard to a third time series.
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Formal Mathematical Setup of the Problem

Consider two sequences of i.i.d. random variables, X ≡ {Xn}n∈N
and Y ≡ {Yn}n∈N with finite variances. Let Sn = X1 + ...+ Xn

and Tn = Y1 + ...+ Yn. Consider the following statistic:

θ
(1)
n =

∑n
i=1 SiTi − 1

n

∑n
i=1 Si

∑n
j=1 Tj√∑n

i=1 S
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i −
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n (
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i=1 Si )
2
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i −

1
n (
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i=1 Ti )2
.
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“Nonsense Correlation”
“Nonsense correlation”: Correlation observed between two
independent time series, without any regard to a third time series.

Figure: Yule (1926): 600 correlations between samples of 10 observations
from from two independent and identically distributed random walks.

Is σ ≈ .5????
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A Simulation: “Volatile” Correlation
In lieu of “nonsense correlation,” Ed George conceived of the term
“volatile” correlation; the correlation is “volatile” in the sense that
its distribution is heavily dispersed and is frequently large in
absolute value.

Figure: Consider Si and Ti to be two independent symmetric random
walks. The histogram reports the empirical correlation of partial sums of
two independent symmetric random walks with n = 10, 000 for each

random walk, calculated by θ
(2)
n . The simulation is repeated 10,000 times.
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Simulation Data

The histogram reports that the middle 95% of the observed
correlation coefficients fall in the interval [-.83, .83]. The lesson to
be learned is that Pearson correlation is not always a useful
statistic; in the case of two independent random walks, the
observed correlation coefficient has a very different distribution
than the nominal t-distribution. This was recently brought to light
by McShane and Wyner (2011) in Annals of Applied Statistics,
critique of efforts to reconstruct the earth’s historical temperatures
using correlated time series. Providing solid mathematical
justification for avoiding these types of methodological errors
is a major motivation for our work!
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Moments of θ- A Simulation

The result of averaging 10,000 simple Monte Carlo iterations of
the first ten moments of θ can be found below in Table 1.

E
[
θ0
]

E
[
θ1
]

E
[
θ2
]

E
[
θ3
]

E
[
θ4
]

E
[
θ5
]

1 -.00116634 .235057 -.000524066 .109276 -.000283548
E
[
θ6
]

E
[
θ7
]

E
[
θ8
]

E
[
θ9
]

E
[
θ10
]

.0609591 -.00016797 .0378654 -.000105611 .0251693

Table: Moments of θ obtained from 10,000 Monte Carlo iterations.

Note that odd moments should all be zero, since θ is symmetric.
But recall that the goal of our work is to analytically compute the
moments...a question that remained open since 1926!
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Back to Statistics: The Statistic θ
(2)
n

Consider two sequences of i.i.d. random variables, X ≡ {Xn}n∈N
and Y ≡ {Yn}n∈N with finite variances. Let Sn = X1 + ...+ Xn

and Tn = Y1 + ...+ Yn. Consider the following statistic:

θ
(2)
n =

1
n

∑n
i=1 XiYi − 1
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1
n
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1
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)(√
1
n
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i=1 Y

2
i − ( 1n

∑n
i=1 Yi )2

)
It is easy to see that when X and Y are independent, θ

(2)
n → 0

almost surely (by the law of large numbers). Thus, θ
(2)
n could (at

least in principle) be used to test the independence of the two
sequences.
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The Statistic θ
(1)
n

θ
(1)
n =
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i=1 SiTi − 1
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The same is NOT the case for θ
(1)
n . When X and Y are

independent, θ
(1)
n is asymptotically non-zero. This is because the

partial sums Sn and Sm are are dependent while only Xn and Xm

are independent. Thus, the two statistics θ
(1)
n and θ

(2)
n are only

formally similar but with different natures.
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A Formal Setup

Let W1(t) and W2(t) denote two independent Wiener processes on
the interval [0,1]. We will prove Yule’s phenomenon by analytically
determine the second moment of the empirical correlation
coefficient, the latter which is given by the following statistic:

θ :=

∫ 1

0
W1(t)W2(t)dt −

∫ 1

0
W1(t)dt

∫ 1

0
W2(t)dt√∫ 1

0
W 2

1 (t)dt −
(∫ 1

0
W1(t)dt

)2√∫ 1

0
W 2

2 (t)dt −
(∫ 1

0
W2(t)dt

)2 , (2)

NOTE that θ is the continuous time analog of θ
(1)
n , which we recall

as

θ
(2)
n =

∑n
i=1 SiTi − 1

n
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i=1 Si
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j=1 Tj√∑n

i=1 S
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i −
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n (
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2
√∑n

i=1 T
2
i −

1
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It was shown in Phillips (1986) that θ
(1)
n converges weakly to θ.
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Vision for Proof of Yule’s “Nonsense
Correlation” and Preview of Main Result

Part 1: Rewrite θ in an alternate form that involves stochastic
integrals.
Part 2: We will introduce the function F , which is well suited to
calculating the moments of θ. We will proceed to explicitly
calculate F . This part uses tools from classical functional anaylsis,
Mercer’s theorem, etc.
Part 3: We will eventually obtain the variance of θ as
∫ ∞

0
du1

∫ u1

0

√
u1u2

sinh u1sinh u2

u1u2

u1 + u2


1
u2
1

(
1− u1

sinhu1
cosh u1

)
− 1

u2
2

(
1− u2

sinh u2
cosh u2

)
u1 − u2

 du2.

Although it is not possible to calculate the double integral above in
elementary terms, it has removable singularities and shockingly
converges very nicely at all points where any of u1, u2, or u1 − u2
vanishes. In addition to providing an explicit formula for the second
moment of θ, we offer implicit formulas for higher moments of θ.
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The Moments

After enormous efforts, we obtain the following theorem:

Theorem

E
[
θ2n
]
=
(2n
n

) 2n

22n

∞∑
r=n

∫ 1

0

(r − 1

n − 1

)
(1− v2)n−1v2(r−n)dv

∫ ∞
0

2S(u)T (u)sr (u)du,

(3)

where S(u) =
√

u
sinh u

and T (c) = 1
c
S′(c)
S(c)

.
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The second moment of θ

The proposition below gives an explicit formula for the second
moment of θ:

Proposition

The second moment of θ, corresponding to n = 1, can be
calculated explicitly as

∫ ∞

0
du1

∫ u1

0

√
u1u2

sinh u1sinh u2

u1u2

u1 + u2


1
u2
1

(
1− u1

sinhu1
coshu1

)
− 1

u2
2

(
1− u2

sinh u2
coshu2

)
u1 − u2

 du2.
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The final result

Using the above expression for the second moment of θ we
numerically obtain a value of .240522. Recall that the Monte Carlo
simulation in Table 1 reported a value of .235057. One must
proceed numerically to calculate higher order moments.
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How is it solved today, and what are the
limitations of current solutions?

The work of Ernst et al. (2017) analytically confirms that this
classical t-test is unsuitable for even the basic case of two i.i.d.
random walks. The only currently available test to interpret this
correlation is the classical Pearson correlation test, with a test
statistic t∗ given by t∗ := θn

√
n − 2/

√
1− (θn)2. There are of

course (mostly for discrete-time data) cross-covariance and
distance metrics, as well as copula methods, but none of these
methods are formulated for tests of independence of paths of
stochastic processes.
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Enter Larry Brown: Email exchanges in
October 2017 (with approximate

paraphrasing)

Larry: “Now that you’ve solved Yule, what about thinking
about a test that would do better.”
Philip: “Are there not such pathwise tests for inference for
pairs of stochastic processes?”
Larry: “I don’t think so... perhaps statistical inference and
stochastic processes have not quite met. I checked with a few
experts (who would know if such a question were indeed open)
and it seems open indeed. Check Horvath JMVA 2013 for a
start...”
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Horvath et al. (2013)

Horvath et. al (2013) tests for independence in a set of n
square-integrable random functions under a stationarity
assumption. It considers the finite-dimensional Box-Ljung-Pierce
approach and is based on sample auto-covariance functions. Under
the null hypothesis that the random functions are independent, the
auto-covariances’ L2

(
[0, 1]2

)
-norm for fixed “lags” h should be

close to 0 for all possible pairs of functions. The test statistic sums
over all lags up to h ≤ H(n).
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Horvath et al. (2013)

The alternative in Horvath et al. as in any infinite-dimensional
context, has to be quite specific, to avoid a low test power. As
n→∞, by tailoring H (n), the authors show asymptotic normality
of their test statistic under the null, and explosion under the
alternative, thus achieving high power.
This being said, Horvath et al. does not answer the critical
question of interest to us, since in the context of the
Pearson correlation questions for stochastic processes, one is
primarily interested in pairs of paths, i.e. the case n = 2.
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What About A Common Sense Idea?

A “common-sense” idea would be to use the increments of W in
θn, since this would get us back to the case of i.i.d. data when
starting with true random walks. This idea defeats the purpose of
trying to exploit the fact that data is presented to us as a time
series or process path, and more importantly, it is not directly
applicable for any process other than the Wiener process.
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Long Memory!!

However, for processes with long memory such as fractional
Brownian motion (fBm) BH , passing to its increment process
(fractional Gaussian noise, or fGn) may present no advantage
whatsoever.
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Enter Larry Brown: Email exchanges in
December 2017 (with approximate

paraphrasing)

Larry: “Philip, you should start with moment based tests. But
for this you need to know the law of θ. You should know it for
every Gaussian process imaginable! Besides, this would solve
the remaining ninety year old open problem!
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A more general set-up achieved in Ernst,
L.C.G. Rogers, and Q. Zhou (2019)

For two continuous-time Gaussian processes X1(t),X2(t) on the
interval [0,T ], Pearson’s correlation statistic is

ρ(T ) =
Y12(T )√

Y11(T )Y22(T )
,

where the random variables Yij(T ) (i , j = 1, 2) are defined as

Yij(T ) =

∫ T

0
Xi (u)Xj(u)du − T X̄i X̄j , X̄i =

1

T

∫ T

0
Xi (u)du.
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First observation

ρ(T ) =
Y12(T )√

Y11(T )Y22(T )
.

ρ is the ratio of three (dependent) random variables. If we can
compute the joint moment generating function (MGF), then the
moments of ρ of any order can be evaluated (in principle).
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First observation

From MGF to moments

Let MZ (t) = E (etZ ) be the MGF of a random variable such that
MZ (t) exists in a neighborhood of zero. Then, for k = 1, 2, . . .

E [Z k ] = M
(k)
Z (0),

E [Z−k ] =
1

Γ(k)

∫ ∞
0

tb−1MZ (−t)dt.

The second equation follows from

zk

Γ(k)

∫ ∞
0

tk−1e−tzdt = 1.

So the formula for E [Z−k ] also applies to non-integer k!
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First observation

From MGF to moments

Let Z ,W be two random variables, where W ≥ 0, and

MZ ,W (t1, t2) = E [et1Z+t2W ]

be the (joint) MGF which exists in a neighborhood of 0. Then,

M
(k,0)
Z ,W (0,−t) = E [Z ke−tW ]

for k = 1, 2, . . . . For m > 0,

E

[
Z k

Wm

]
=

1

Γ(m)

∫ ∞
0

tm−1M
(k,0)
Z ,W (0,−t)dt.
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First observation

ρ(T ) =
Y12(T )√

Y11(T )Y22(T )
.

For our problem, define the MGF of (Y11,Y12,Y22) by

φ(S) = E

[
exp

{
−1

2
(s11Y11 + 2s12Y12 + s22Y22)

}]
= E

[
exp

{
−1

2

∫ T

0
(X (u)− X̄ )> S (X (u)− X̄ )du

}]
,

where X (t) = (X1(t),X2(t)), X̄ = (X̄1, X̄2) and S is a 2× 2
positive-definite matrix with entries sij .
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First observation

From MGF to moments

ρ(T ) =
Y12(T )√

Y11(T )Y22(T )
.

φ(S) = E

[
exp

{
−1

2
(s11Y11 + 2s12Y12 + s22Y22)

}]
.

Eρk =
(−1)k

2kΓ(k/2)2

∫ ∞
0

∫ ∞
0

s
k/2−1
11 s

k/2−1
22

∂kφ

∂sk12
(s11, 0, s22) ds11 ds22.
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Second observation

If we can compute

ψ(S , z) = E

[
exp

{
−1

2

∫ T

0
(X (u) + z)> S (X (u) + z)du

}]
, z ∈ R2,

then φ(S) can be obtained by

φ(S) = E

[
exp

{
−1

2

∫ T

0
(X (u)− X̄ )> S (X (u)− X̄ )du

}]
=

∫
R2

T (det S)1/2ψ(S , z)

2π
dz .
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Evaluating ψ(S , z)

Hence, we only need to figure out how to compute

ψ(S , z) = E

[
exp

{
−1

2

∫ T

0
(X (u) + z)> S (X (u) + z)du

}]
.

There are many existing results and tools for evaluating such
quadratic functionals of Gaussian processes, in particular
Donati-Martin and Yor (1997).
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Evaluating ψ(S , z)

ψ(S , z) = E

[
exp

{
−1

2

∫ T

0
(X (u) + z)> S (X (u) + z)du

}]
.

Reducing to one-dimensional problems

In particular, if

X1,X2 are independent,

for any rotation matrix R, the distribution of RX is the same as X ,

then the calculation of ψ(S , z) can be further reduced to that of
its one-dimensional counterparts.
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Wiener processes

If X1,X2 are two independent Wiener processes, then

φBm(S) =

(
θ1θ2T

2

sinh θ1T sinh θ2T

)1/2

,

from which we get the formula provided in Ernst et al. (2017).

Eρ2 =

∫ ∞
0

∫ v

0

uv
√
uv

(v 2 − u2)
√
sinh u sinh v

(
1

u tanh u
− 1

v tanh v
− 1

u2
+

1

v 2

)
du dv .
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Wiener processes

k 2 4 6 8
Eρk 0.240523 0.109177 0.060862 0.037788

k 10 12 14 16
Eρk 0.025114 0.017504 0.012641 0.009385

Table: Numerical values of the moments of Yule’s nonsense correlation
for two independent Wiener processes.
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Wiener processes

Figure: The 12th-order polynomial approximation to the probability
density function of ρ for two independent Wiener processes.
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Ornstein-Uhlenbeck processes

If X = (X1,X2) follows the stochastic differential equation

dX (t) = −rX (t)dt + dW (t), r ∈ (0,∞),

then,

φOU(S ; r) = g(θ21; r)g(θ22; r),

where θ21, θ
2
2 are the eigenvalues of S and

g(θ2) =
√
TerT/2

{
θ2

η4
[2r(cosh ηT − 1) + η sinh ηT ] +

r 2T

η3
[η cosh ηT + r sinh ηT ]

}−1/2

.
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Ornstein-Uhlenbeck processes

r 0.1 0.2 0.3 0.4 0.5 1
Eρ2 0.23209 0.22438 0.21734 0.21091 0.20504 0.18231

r 2 5 10 20 50 100
Eρ2 0.15583 0.11454 0.07627 0.04404 0.01907 0.00971

Table: Numerical values of the second moment of Yule’s nonsense
correlation for two independent Ornstein-Uhlenbeck processes with mean
reversion parameter r and T = 1.
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Brownian bridges

If X = (X1,X2) follows the stochastic differential equation

dX (t) = −X (t)

1− t
dt + dW (t), t ∈ [0, 1],

then

φBb(S) =
θ1θ2

4 sinh(θ1/2) sinh(θ2/2)
,

where θ21, θ
2
2 are the eigenvalues of S .

40 / 58
Statistical Inference for Paths of Stochastic Processes



Questions I, II Background Question III Questions IV, V Results Asymptotic Analysis Limitations Backup: Theory Slides

Brownian bridges

k 2 4 6 8
Eρk 0.149001 0.047864 0.0201829 0.009876

Table: Numerical values of the moments of Yule’s nonsense correlation
for two independent Brownian bridges.
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Correlated Brownian motions

Let X1(t), X2(t) be two Brownian motions with constant
correlation c , represented by the following SDE

dX1(t) = dW1(t), dX2(t) = cdW1(t) +
√

1− c2dW2(t).

Then the process MX (t) is a two-dimensional Brownian motion
with independent coordinates where

M = M(c) =

[
1 0

−c(1− c2)−1/2 (1− c2)−1/2

]
.

Hence,

φcBm(S) = φBm((M−1)>SM−1).
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Correlated Brownian motions

c 0 0.1 0.2 0.3 0.4
Eρ 0 0.08873 0.17792 0.26804 0.35963
Eρ2 0.24052 0.24550 0.26061 0.28636 0.32368

Var(ρ) 0.2405 0.2376 0.2290 0.2145 0.1943

c 0.5 0.6 0.7 0.8 0.9
Eρ 0.45338 0.55004 0.65071 0.75698 0.87151
Eρ2 0.37407 0.43986 0.52477 0.63509 0.78298

Var(ρ) 0.1685 0.1373 0.1013 0.0621 0.0235

Table: Numerical values of the moments of Yule’s nonsense correlation for
two correlated Brownian motions with correlation coefficient c (T = 1).
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Asymptotics of ρ(T )

In all previous examples, we have assumed T = 1.

What if we let T go to ∞?

Will the distribution of ρ(T ) change?

Will ρ(T ) goes to zero?
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Wiener processes

By the self-similarity of Wiener process, W (tT ) has the same
distribution as

√
TW̃ (t) where W̃ is another Wiener process. This

implies that the distribution of ρ(T ) does not depend on T .
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Ornstein-Uhlenbeck processes

Recall that an stationary OU processes with mean-reverting
parameter r > 0 has E [X (t)] = 0 and Var[X (t)] = 1/2r for every
t.

Central limit theorem for ρ(T )

For two independent OU processes with mean-reverting parameter
r > 0, we can prove that

√
Tρ(T )

D→ N

(
0,

1

2r

)
.
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Ornstein-Uhlenbeck processes

Central limit theorem for ρ(T )

Recall that ρ(T ) = Y12(T )/
√
Y11(T )Y22(T ). To prove the CLT,

Since Y11(T )/T → 1/2r a.s. by ergodic theorem, we only need to
show the weak convergence of Y12/

√
T . Recall

Y12(T ) =

∫ T

0
X1(u)X2(u)du − T X̄1(T )X̄1(T ).

Show that
√
T X̄1(T )X̄1(T ) converges to 0 in L2.

Show the normal convergence of T−1/2
∫ T

0
X1(u)X2(u)du by

computing its characteristic function.
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Limitations

The above methodology does not work when X is not a solution to
a linear SDE!
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A Strategy Going Forward: Joint work with
Frederi Viens, Michigan State University

Our proposed tests’ originality is their major departure from both
t-tests and tests based on asymptotic normality. We know that for
Wiener and fBm paths, the Pearson correlation θ’s distribution is
constant for increasing horizon T →∞, and is not in the least
related to a CLT (unlike the t-distribution!). We can use this
remarkable stationarity at the level of a test statistic to our
advantage! We will rely heavily on the theory of Wiener chaos
and the optimal fourth moment theorem of Nourdin and Peccati
(2015).
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Part 1

Proposition

We have the equality

θ =
X1,2√
X1,1X2,2

, (4)

where

Xi ,j =

∫ 1

0

∫ 1

0
(min(s1, s2)− s1s2) dWi (s1)dWj(s2), (5)

and where θ is, as before,

θ :=

∫ 1

0
W1(t)W2(t)dt −

∫ 1

0
W1(t)dt

∫ 1

0
W2(t)dt√∫ 1

0
W 2

1 (t)dt −
(∫ 1

0
W1(t)dt

)2√∫ 1

0
W 2

2 (t)dt −
(∫ 1

0
W2(t)dt

)2 .
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“Wishful Thinking” is Usually Working Behind
the Scenes

QUESTION: Why should I want the term min(s1, s2)− s1s2??

ANSWER: It is the covariance of a pinned Wiener process on [0,1].

Figure: Pinned Wienier process on [0,1].

53 / 58
Statistical Inference for Paths of Stochastic Processes



Questions I, II Background Question III Questions IV, V Results Asymptotic Analysis Limitations Backup: Theory Slides

“Wishful Thinking” is Usually Working Behind
the Scenes

QUESTION: Why should I want the term min(s1, s2)− s1s2??
ANSWER: It is the covariance of a pinned Wiener process on [0,1].

Figure: Pinned Wienier process on [0,1].

53 / 58
Statistical Inference for Paths of Stochastic Processes



Questions I, II Background Question III Questions IV, V Results Asymptotic Analysis Limitations Backup: Theory Slides

Part 2: Defining and Calculating F

We will need to appeal to Mercer’s theorem, which gives a
representation of a symmetric positive-definite function on a square
as a sum of a convergent sequence of product functions.
We define for |a| ≤ 1, βi ≥ 0, i = 1, 2, the integral

F (β1, β2, a) = E
[
eaβ1β2X1,2−

β21
2 X1,1−

β22
2 X2,2

]
, (6)

where the Xi ,j are as defined in Equation (5). Under the above
conditions, the expectation is finite and thus F is well defined.
This is because X1,2 = θ

√
X1,1X2,2 and |θ| ≤ 1 so the exponent is

at most

−1

2

(
β1
√
X1,1 − β2

√
X2,2

)2
≤ 0. (7)

Thus the expectand is bounded by unity, and so, for this range,
F (β1, β2, a) ≤ 1.
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Key Theorem

Here is the key theorem.

Theorem

F (β1, β2, a) =
1√

sinh c+

c+
sinh c−

c−

, (8)

where

c± = c±(β1, β2, a) =

√√√√(β21 + β22)±
√

(β21 − β22)2 + 4a2β21β
2
2

2
.

(9)
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Intuition: the functions M and K
Motivated by the definition of Xi ,j in equation (5), which we recall
as:

Xi ,j =

∫ 1

0

∫ 1

0
(min(s1, s2)− s1s2) dWi (s1)dWj(s2). (10)

we define M by

M(s1, s2) = min(s1, s2)− s1s2, s1, s2 ∈ [0, 1], (11)

which is the covariance of pinned Brownian motion on [0, 1].For
i1, i2 ∈ {1, 2} and s1, s2 ∈ [0, 1], we define the kernel function Ki1,i2
by

Ki,i (s1, s2) = −β2
i M (s1, s2) (12)

and
K1,2(s1, s2) = K2,1(s1, s2) = aβ1β2M(s1, s2).

Let

K =

[
K1,1 K1,2

K2,1 K2,2

]
.
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Eigenvalues of TK

The eigenvalues of TK can be calculated in the form of 1
π2n2

. This
allows us to use the following product formula (Boas, 1954)

sin (z)

z
=
∞∏
n=1

(
1− z2

π2n2

)
. (13)

Note that for any complex number z ,

sin (z)

z
=

sinh (−iz)

−iz
.

Since z± are purely imaginary, we observe z± = ic∓ and the c∓

are nonnegative real. In particular, since c∓ = −iz±, we have that

sin (z+)

z+
sin (z−)

z−
=

sinh (−iz+)

−iz+
sinh (−iz−)

−iz−
=

sinh c+

c+
sinh c−

c−
.
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Part 3: Extracting the Moments

Denote

Fi (β1, β2, z) =
∂

∂βi
F (β1, β2, z), i = 1, 2;

F3(β1, β2, z) = F ′(β1, β2, z) =
∂

∂z
F (β1, β2, z).

The goal of this section is to prove the following:

Theorem

The moments of θ, where θ is defined in Equation (2), satisfy
∞∑
n=1

z2n

2n
E
[
θ2n
] (n!)222n

(2n)!
=

∫ ∞
0

dβ1
β1

∫ ∞
0

dβ2
β2

zF ′(β1, β2, z).
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