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In 1926, G. Udny Yule ([29]) considered the following problem: given a sequence of pairs of random variables
{𝑋𝑘 ,𝑌𝑘 } (𝑘 = 1,2, . . . , 𝑛), and letting 𝑋𝑖 = 𝑆𝑖 and 𝑌𝑖 = 𝑆′

𝑖
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𝑖
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Yule empirically observed the distribution of this statistic to be heavily dispersed and frequently large in absolute
value, leading him to call it “nonsense correlation.” This unexpected finding led to his formulation of two concrete
questions, each of which would remain open for more than ninety years: (i) Find (analytically) the variance of 𝜌𝑛
as 𝑛→∞ and (ii): Find (analytically) the higher order moments and the density of 𝜌𝑛 as 𝑛→∞. In 2017, Ernst,
Shepp and Wyner [12] considered the empirical correlation coefficient
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of two independent Wiener processes 𝑊1,𝑊2, the limit to which 𝜌𝑛 converges weakly, as was first shown by the
author of [19]. Using tools from integral equation theory, Ernst, Shepp and Wyner [12] closed question (i) by
explicitly calculating the second moment of 𝜌 to be .240522. This paper adopts a completely different approach
to the same question, rooted in an earlier literature on the laws of quadratic functionals of Gaussian diffusions (in
particular, [7,22]). This allows us to develop an Itô-formula approach from which we calculate expressions for the
Laplace transform of 𝜌, leading to expressions for the moments which we evaluate up to order 16, thereby closing
question (ii). This leads, for the first time, to an approximation to the density of Yule’s nonsense correlation.
The broad applicability of this approach is demonstrated by answering the corresponding questions when the pair
of independent Brownian motions is replaced by a pair of correlated Brownian motions, or by two independent
Ornstein-Uhlenbeck processes, or by two independent Brownian bridges. We conclude by extending the definition
of 𝜌 to the time interval [0,𝑇] for any 𝑇 > 0 and prove a Central Limit Theorem for the case of two independent
Ornstein-Uhlenbeck processes.
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1. Introduction

Given a sequence of pairs of random variables {𝑋𝑘 ,𝑌𝑘} (𝑘 = 1,2, . . . , 𝑛), how can we measure the
strength of the dependence of 𝑋 and 𝑌? The classical Pearson correlation coefficient addresses this
question in the case when the sequence (𝑋𝑘 ,𝑌𝑘)𝑛𝑘=1 is an IID sequence, but when blindly calculated for
sequences which are not IID, as arise (for example) when the sequence (𝑋𝑘 ,𝑌𝑘)𝑛𝑘=1 is a random walk
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or other time series, the resulting statistic is meaningless. Letting 𝑋𝑖 = 𝑆𝑖 and 𝑌𝑖 = 𝑆′
𝑖
, where 𝑆𝑖 and

𝑆′
𝑖

are the partial sums of two independent random walks, Yule [29] considered the distribution of the
empirical correlation coefficient
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which he found to be both heavily dispersed and frequently large in absolute value. This led Yule to call
this distribution “nonsense correlation” and to formulate two concrete questions about its distribution,
each of which would remain open for more than ninety years:

1. Find (analytically) the variance of 𝜌𝑛 as 𝑛→∞;
2. Find (analytically) the higher order moments and the density of 𝜌𝑛 as 𝑛→∞.

Ernst, Shepp and Wyner [12] refer to this “nonsense correlation” as “volatile” correlation since its
distribution is both heavily dispersed and is frequently large in absolute value.

Despite the prominence of Yule’s 1926 paper, his findings would remain “isolated” from the litera-
ture until 1986 (see [1]), when the authors of [15] and [19] confirmed many of the empirical claims of
“spurious regression” made by the authors of [14]. In particular, [19] provided a mathematical solution
to the problem of spurious regression among integrated time series by demonstrating that statistical
t-ratio and F-ratio tests diverge with the sample size, thereby explaining the observed ‘statistical sig-
nificance’ in such regressions. In later work ([20]), the same author provided an explanation of such
spurious regressions in terms of orthonormal representations of the Karhunen Loève type.

In 2017, Ernst, Shepp and Wyner [12] considered the empirical correlation coefficient

𝜌 :=
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of two independent Wiener processes 𝑊1,𝑊2, the limit to which 𝜌𝑛 converges weakly, as originally
shown in [19]. Using tools from integral equation theory, Ernst, Shepp and Wyner [12] closed Ques-
tion 1 by explicitly calculating the second moment of 𝜌 to be .240522. The present paper adopts a
completely different approach to the question, rooted in an earlier literature on the laws of quadratic
functionals of Gaussian diffusions (in particular, [7,22]). This allows us to develop an Itô-formula ap-
proach from which we calculate expressions for the Laplace transform of 𝜌, leading to expressions
for the moments which we evaluate up to order 16, thereby closing Question 2. This leads, for the
first time, to an approximation to the density of Yule’s nonsense correlation. The broad applicability
of this approach is demonstrated by answering the corresponding questions when the pair of indepen-
dent Brownian motions is replaced by a pair of correlated Brownian motions, or by two independent
Ornstein-Uhlenbeck (OU) processes, or by two independent Brownian bridges. We conclude by ex-
tending the definition of 𝜌 to the time interval [0,𝑇] for any 𝑇 > 0 and prove a Central Limit Theorem
for the case of two independent Ornstein-Uhlenbeck processes. Indeed, this closes all previously open
problems raised in Section 3.3 of [12].

We proceed with some necessary notation. Let (𝑋𝑡 )0≤𝑡≤𝑇 be some process with values in R𝑑 , de-
fined over a fixed time interval [0,𝑇]. Define the random variables

𝑋̄ := 𝑇−1
∫ 𝑇

0
𝑋𝑠 𝑑𝑠, 𝑌 :=

∫ 𝑇

0
(𝑋𝑠 − 𝑋̄) (𝑋𝑠 − 𝑋̄)𝑇 𝑑𝑠, (1)
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with values in R𝑑 and M𝑑 respectively, where M𝑑 is the space of 𝑑 × 𝑑 real matrices. Let 𝑌𝑖 𝑗 be the
(𝑖, 𝑗)-th entry of the matrix 𝑌 . In the case 𝑑 = 2, when 𝑋 is a two-dimensional Wiener process, Yule’s
nonsense correlation can be expressed as

𝜌 :=
𝑌12√

𝑌11
√
𝑌22

. (2)

Scaling properties of Brownian motion show that the law of 𝜌 does not depend on the choice of 𝑇 > 0.
Ernst, Shepp and Wyner [12] explicitly calculated the second moment of Yule’s nonsense correlation.
However, their methodology did not successfully extend to explicitly calculating higher order moments
of 𝜌.

The key vision of [12] was to calculate Laplace transform of the trivariate object formed of the three
quadratic/bilinear forms of 𝑊 , and to express that transform using Fredholm integral equations. In the
present work, we rely instead on the characterization of the moment generating function of the random
vector (𝑌11,𝑌12,𝑌22). This approach inherits from an older and well-developed literature, on the laws
of quadratic functionals of Brownian motion. There is a fine survey ([8]) which presents the state of
the subject as it was in 1997. A range of techniques is available to characterize the laws of quadratic
functionals of Brownian motion, including:

1. eigenfunction expansions — see, for example, [4,5,12,13,17,18];
2. identifying the covariance of the Gaussian process as the Green function of a symmetrizable

Markov process — see, for example, [5,10];
3. stochastic Fubini relations — see, for example, [7,8];
4. Itô’s formula — see [22].

The first of these techniques is historically the first; using it to deliver a simple closed-form solution
depends on spotting a simpler form for an infinite expansion. The second works well if we can see a
Markov process whose Green function is the covariance of the Gaussian process of interest. The third
again requires an insight to transform the problem of interest into a simpler equivalent. The fourth,
much less often exploited, deals conclusively with settings where the Gaussian process arises as the
solution of a linear stochastic differential equation (SDE); this is the approach we use in the present
paper.

Section 5 studies the asymptotic properties of 𝜌 as 𝑇 →∞. The tools used in this section are more
straightforward, and the results of this section do not rely on the new techniques introduced in Section
2 and Section 3. For this discussion, we will write 𝑋 (𝑇),𝑌 (𝑇) in place of 𝑋,𝑌 defined at (1) and 𝜌(𝑇)
in place of 𝜌 defined at (2) to emphasize their dependence on the time horizon 𝑇 . In the case of Wiener
processes, by the property of self-similarity, it is straightforward to show that 𝜌(1) and 𝜌(𝑇) have
the same distribution. But for Gaussian processes which are not self-similar, 𝜌(𝑇) will depend on the
value of 𝑇 . Section 5 investigates this statistic’s asymptotic behavior as 𝑇 →∞. The key result is given
by Theorem 5.2, which proves that, in the case of two independent Ornstein-Uhlenbeck processes,√
𝑇𝜌(𝑇) converges in distribution as 𝑇 →∞ to a zero-mean Gaussian.
To summarize then, the main contributions of this paper are, in order of importance:

1. We explicitly calculate all moments of Yule’s nonsense correlation (up to order 16). This is only
possible due to Proposition 1, in which the moments of 𝜌 are given within explicit expressions
involving partial derivatives of a trivariate Laplace transform. With these moments in hand, we
provide the first density approximation to Yule’s nonsense correlation. This closes the final long-
standing open question on the distribution of Yule’s nonsense correlation from Yule’s 1926 paper
([29]).
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2. We develop the most general version Theorem 2.1 of the ‘mechanical’ Itô-formula approach of
[22], and show how it provides straightforward proofs of all the results of this paper.

3. We find the asymptotic behavior of 𝜌(𝑇) for the case of independent OU processes. We shall
see that the variance of

√
𝑇𝜌(𝑇) shrinks to zero as the mean reversion parameter tends towards

infinity. This shows that the empirical correlation coefficient may be viewed as “sensible” for
testing independence of pairs of OU processes.

2. Quadratic functionals of Gaussian diffusions

We shall use the notation S𝑑+ for the space of strictly positive-definite symmetric 𝑑×𝑑 matrices, with the
canonical ordering 𝐴 ≥ 𝐵 meaning that 𝐴 − 𝐵 is non-negative definite. The notation 𝑎 · 𝑏 for 𝑎, 𝑏 ∈ R𝑑

denotes the scalar product of the two vectors. An “overdot” denotes the derivative with respect to 𝑡. In
this manuscript, we shall use 𝑋𝑡 and 𝑋 (𝑡) interchangeably. The main result is the following.

Theorem 2.1. Suppose that 𝜎 : [0,𝑇] ↦→M𝑑 is a bounded measurable function, and that 𝑋 solves

𝑑𝑋𝑡 = 𝜎𝑡𝑑𝑊𝑡 , (3)

where 𝑊 is 𝑑-dimensional Brownian motion. We write Σ𝑡 = 𝜎𝑡𝜎
⊤
𝑡 . Suppose also that 𝑄 : [0,𝑇] → S𝑑+

and 𝑧 : [0,𝑇] → R𝑑 are bounded measurable functions such that 𝑄−1 is also bounded. Define

ℓ(𝑡) :=
1
2
𝑋 (𝑡) ·𝑄(𝑡)𝑋 (𝑡) + 𝑧(𝑡) · 𝑋 (𝑡), (4)

𝐹 (𝑡, 𝑥) := 𝐸

[
exp

{
−
∫ 𝑇

𝑡

ℓ(𝑠)𝑑𝑠 − ℓ(𝑇)
} ���� 𝑋 (𝑡) = 𝑥

]
. (5)

Then 𝐹 (𝑡, 𝑥) is given explicitly as

𝐹 (𝑡, 𝑥) = exp
(
−1

2
𝑥 ·𝑉 (𝑡)𝑥 − 𝑏(𝑡) · 𝑥 − 𝛾(𝑡)

)
, (6)

where 𝑉, 𝑏, 𝛾 are obtained as the unique solutions to the system of ordinary differential equations
(ODEs)

¤𝑉 =𝑉Σ𝑉 −𝑄, (7)

¤𝑏 =𝑉Σ𝑏 − 𝑧, (8)

2 ¤𝛾 = 𝑏⊤Σ𝑏 − tr (𝑉Σ), (9)

subject to the boundary conditions 𝑉 (𝑇) =𝑄(𝑇), 𝑏(𝑇) = 𝑧(𝑇), 𝛾(𝑇) = 0.

Proof. (i) Notice that ℓ is bounded below by − 1
2 𝑧 · 𝑄−1𝑧, which by hypothesis is bounded below by

some constant. Therefore 𝐹 defined by (5) is bounded.

(ii) The ODE (7) has a unique solution up to possible explosion, as the coefficients are locally Lipschitz.
We claim that this solution remains positive-definite for 𝑡 ≤ 𝑇 . Since 𝑄(𝑇) ∈ S𝑑+ , it has to be that there
exists some 𝜀 > 0 such that 𝑉 (𝑡) ∈ S𝑑+ for all 𝑡 ∈ [𝑇 − 𝜀,𝑇]. If 𝑉 does not remain positive definite, then
there exists some non-zero 𝑤 ∈ R𝑑 and a greatest 𝑡∗ ≤ 𝑇 − 𝜀 < 𝑇 such that 𝑤 · 𝑉 (𝑡∗)𝑤 ≤ 0. But we



Yule’s “nonsense correlation”: moments and density 5

see from (7) that 𝑤 · ¤𝑉 (𝑡∗)𝑤 ≤ −𝑤 · 𝑄(𝑡∗)𝑤 < 0, contradicting the definition of 𝑡∗. Hence 𝑉 remains
positive-definite all the way back to possible explosion. However, we have that

𝑉 (𝑡) =𝑄(𝑇) +
∫ 𝑇

𝑡

{𝑄(𝑠) −𝑉 (𝑠)Σ(𝑠)𝑉 (𝑠) } 𝑑𝑠 ≤ 𝑄(𝑇) +
∫ 𝑇

𝑡

𝑄(𝑠) 𝑑𝑠.

So by hypothesis 𝑉 is bounded above and no explosion happens. Since 𝑉 is continuous on [0,𝑇]
and positive-definite everywhere, it follows that 𝑉 is uniformly positive-definite on [0,𝑇], that is, 𝑉−1

remains bounded.
It now follows easily that 𝑏 and 𝛾 defined by (8) and (9) are unique, continuous and bounded.

(iii) Now define the process

𝑍𝑡 =
1
2 𝑋𝑡 ·𝑉𝑡𝑋𝑡 + 𝑏𝑡 · 𝑋𝑡 + 𝛾𝑡 , (10)

and develop

𝑑𝑍𝑡 = (𝑉𝑡𝑋𝑡 + 𝑏𝑡 , 𝜎𝑡 𝑑𝑊𝑡 𝑑𝑡) + 1
2 tr (𝑉𝑡Σ𝑡 )𝑑𝑡 +

{
1
2 𝑋𝑡 · ¤𝑉𝑡𝑋𝑡 + ¤𝑏𝑡𝑋𝑡 + ¤𝛾𝑡

}
𝑑𝑡,

𝑑⟨𝑍⟩𝑡 = (𝑉𝑡𝑋𝑡 + 𝑏𝑡 ) · Σ𝑡 (𝑉𝑡𝑋𝑡 + 𝑏𝑡 )𝑑𝑡.

Now consider the process

𝑀 (𝑡) = exp
(
− 1

2

∫ 𝑡

0
ℓ(𝑠) 𝑑𝑠 − 𝑍 (𝑡)

)
. (11)

Notice that 𝑀 is bounded, because ℓ is bounded below, and so is 𝑍 since we have proved that 𝑉−1, 𝑏
and 𝛾 are all bounded on [0,𝑇]. Developing 𝑀 using Itô’s formula, with the symbol � denoting that
the two sides of the equation differ by a local martingale and omitting explicit appearance of the time
parameter, we obtain

𝑑𝑀𝑡

𝑀𝑡

= −𝑑𝑍𝑡 + 1
2𝑑⟨𝑍⟩𝑡 − 1

2 𝑋𝑡 ·𝑄𝑡𝑋𝑡𝑑𝑡 − 𝑧𝑡 · 𝑋𝑡𝑑𝑡

�
{
− 1

2 tr (𝑉𝑡Σ𝑡 ) − 1
2 𝑋𝑡 · ¤𝑉𝑡𝑋𝑡 − ¤𝑏𝑡𝑋𝑡 − ¤𝛾𝑡 +

+ 1
2 (𝑉𝑡𝑋𝑡 + 𝑏𝑡 ) · Σ𝑡 (𝑉𝑡𝑋𝑡 + 𝑏𝑡 ) − 1

2 𝑋𝑡 ·𝑄𝑡𝑋𝑡 − 𝑧𝑡 · 𝑋𝑡

}
𝑑𝑡

= 0

because of (7), (8) and (9). Thus 𝑀 is a local martingale, which is also bounded on [0,𝑇] because of
the boundedness assumptions. Thus 𝑀 is a bounded martingale, and the result follows.

Remark 1. Theorem 2.1 is in part inspired by Rogers and Shi ([22, Lemma 1]), which exhibits (in the
simplest possible setting) the general principle that expectations of exponentials of quadratic function-
als of Gaussians will be exponential-quadratic. The statement of the lemma is recalled next.

Lemma 2.2. [22, Lemma 1] Let 𝑋 be a Gaussian random vector in R𝑑 with mean 0 and covariance
𝑉 , and let 𝑆 be a non-negative definite symmetric matrix. Then, for any 𝑎 ∈ R𝑑 ,
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𝐸

[
exp

{
−1

2
(𝑋 + 𝑎)𝑇𝑆(𝑋 + 𝑎)

}]
= det(𝐼 + 𝑆𝑉)−

1
2 exp

{
−1

2
𝑎𝑇 (𝐼 + 𝑆𝑉)−1𝑆𝑎.

}
Theorem 2.1 extends easily to the situation where 𝑋 is the solution of a linear SDE.

Theorem 2.3. Suppose that 𝜎, 𝐵 : [0,𝑇] ↦→M𝑑 and 𝛿 : [0,𝑇] ↦→ R𝑑 are bounded measurable func-
tions, and that 𝑋 solves

𝑑𝑋𝑡 = 𝜎𝑡 𝑑𝑊𝑡 + (𝐵𝑡𝑋𝑡 + 𝛿𝑡 ) 𝑑𝑡. (12)

Suppose that 𝑄 : [0,𝑇] → S𝑑+ and 𝑧 : [0,𝑇] → R𝑑 are bounded measurable functions such that 𝑄−1 is
also bounded, and suppose that ℓ and 𝐹 are defined as before at (4), (5). Then 𝐹 (𝑡, 𝑥) is given explicitly
as

𝐹 (𝑡, 𝑥) = exp
(
−1

2
𝑥 ·𝑉 (𝑡)𝑥 − 𝑏(𝑡) · 𝑥 − 𝛾(𝑡)

)
, (13)

where 𝑉, 𝑏, 𝛾 are obtained as the unique solutions to the system of ODEs,

¤𝑉 =𝑉Σ𝑉 − (𝑉𝐵 + 𝐵⊤𝑉) −𝑄, (14)

¤𝑏 = (𝑉Σ − 𝐵⊤)𝑏 −𝑉𝛿 − 𝑧, (15)

2 ¤𝛾 = 𝑏⊤Σ𝑏 − tr (𝑉Σ) − 𝛿⊤𝑏, (16)

subject to the boundary conditions 𝑉 (𝑇) =𝑄(𝑇), 𝑏(𝑇) = 𝑧(𝑇), 𝛾(𝑇) = 0.

Proof. The coefficients of the SDE (12) are globally Lipschitz, so it is a standard result (see, for
example, [23] Theorem V.11.2) that the SDE has a unique strong solution. If we now set

𝑋𝑡 = 𝐴𝑡𝑋𝑡 + 𝑐𝑡 , (17)

where 𝐴 and 𝑐 solve

¤𝐴𝑡 + 𝐴𝑡𝐵𝑡 = 0, 𝐴(0) = 𝐼, (18)

¤𝑐𝑡 + 𝐴𝑡𝛿𝑡 = 0, 𝑐(0) = 0, (19)

then a few simple calculations show that

𝑑𝑋̃𝑡 = 𝐴𝑡𝜎𝑡 𝑑𝑊𝑡 ,

and Theorem 2.1 applies. The equations (14), (15) and (16) are easily checked to be the analogs of (7),
(8) and (9) respectively.

Remark 2. We will want to apply Theorem 2.1 to situations where 𝑄(𝑇) = 0. This is a simple limiting
case of the problem where we take 𝑄(𝑇) = 𝜀𝐼 and let 𝜀 ↓ 0. In a little more detail, we let 𝑉 𝜀 , 𝑏𝜀 , 𝛾𝜀

denote the solution to (14)-(16) with boundary condition 𝑄(𝑇) = 𝜀𝐼, and we write

𝑞𝜀
𝑡 : 𝑥 ↦→ 1

2𝑥 ·𝑉 𝜀 (𝑡)𝑥 + 𝑏𝜀 (𝑡) · 𝑥 + 𝛾𝜀 (𝑡), (20)
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for the quadratic form − log𝐹 (𝑡, 𝑥). Evidently 𝑞𝜀
𝑡 (𝑥) is decreasing in 𝜀 for each 𝑥 and 𝑡, and from this

it follows easily that limits of 𝑉 𝜀 (𝑡), 𝑏𝜀 (𝑡), 𝛾𝜀 (𝑡) exist for each 𝑡 and determine 𝐹 for the limit case
when 𝑄(𝑇) = 0.

Remark 3. Theorem 2.3 is a special case of the Feynman-Kac formula; the fact that the process 𝑀

defined in (11) is a martingale is equivalent to the Feynman-Kac formula, and is valid for any additive
functional ℓ of the diffusion 𝑋 . However, without the special linear form of the SDE for 𝑋 and the
quadratic form of the additive functional ℓ it is rare that any explicit solution can be found for 𝐹.

Remark 4. If 𝜎 is constant, we may assume that 𝜎 = 𝐼, the identity matrix. To see this, let 𝑋̂𝑡 =

Σ
−1/2
𝑡 𝑋𝑡 , and note that the diffusion process 𝑋̂ solves the linear SDE

𝑑𝑋̂𝑡 = (Σ−1/2
𝑡 𝐵𝑡Σ

1/2
𝑡 𝑋̂𝑡 + Σ

−1/2
𝑡 𝛿𝑡 )𝑑𝑡 + 𝑑𝑊𝑡 .

Letting 𝑄̂ = Σ1/2𝑄Σ1/2 and 𝑧 = Σ1/2𝑧 we obtain

ℓ(𝑡) = 1
2
𝑋⊤ (𝑡)𝑄(𝑡)𝑋 (𝑡) + 𝑧⊤ (𝑡)𝑋 (𝑡) = 1

2
𝑋̂ (𝑡)⊤𝑄̂(𝑡) 𝑋̂ (𝑡) + 𝑧⊤ (𝑡) 𝑋̂ (𝑡),

and thus we can work with the process 𝑋̂ instead of 𝑋 . However, it seems simpler to provide the full
form of the solution for the SDE (12) rather than a reduced form which then requires a translation back
to the original problem.

Remark 5. Although Theorem 2.3 deals with the general case where 𝑄, 𝑧 are measurable functions, in
the remainder of this paper we only need invoke Theorem 2.3 for the special case where 𝑄 and 𝑧 are
constants. For this reason, we will sometimes use the alternative expanded notation

𝐹 (𝑡, 𝑥) := 𝐹 (𝑡, 𝑥;𝑄, 𝑧) (21)

when we want to make explicit the dependence of 𝐹 on the coefficients 𝑄 and 𝑧 appearing in ℓ.

3. Computing the moments of 𝝆

Henceforth, we deal exclusively with cases where

𝑑 = 2.

Recall the definition (1) of the 2 × 2 random matrix 𝑌 . Let 𝜙 be the moment generating function of the
joint distribution of (𝑌11,𝑌12,𝑌22), which can be expressed using quadratic functionals of 𝑋 as

𝜙(𝑆) := 𝐸
[
exp

{
− 1

2 (𝑠11𝑌11 + 2𝑠12𝑌12 + 𝑠22𝑌22)
}]

= 𝐸

[
exp

{
−1

2

∫ 𝑇

0
(𝑋 (𝑢) − 𝑋̄) · 𝑆(𝑋 (𝑢) − 𝑋̄)𝑑𝑢

}]
.

(22)

Here, 𝑆 is a 2 × 2 positive-definite symmetric matrix with entries denoted by 𝑠𝑖 𝑗 (𝑖, 𝑗 = 1,2). As we
shall show in the following proposition, the function 𝜙 is all we shall need to evaluate the moments of
𝜌.
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Proposition 1. Let 𝜌 be as given in (2) and 𝜙(𝑠11, 𝑠12, 𝑠22) = 𝜙(𝑆) be as given in (22). For 𝑘 =

0,1,2, . . . , we have

𝐸𝜌𝑘 =
(−1)𝑘

2𝑘Γ(𝑘/2)2

∫ ∞

0

∫ ∞

0
𝑠
𝑘/2−1
11 𝑠

𝑘/2−1
22

𝜕𝑘𝜙

𝜕𝑠𝑘12

(𝑠11,0, 𝑠22) 𝑑𝑠11 𝑑𝑠22. (23)

Proof. It is well known that the moments of a random variable can be obtained by differentiating the
moment generating function, given it exists ([2]). Now note that for any fixed nonnegative 𝑠11, 𝑠22, there
exists 𝜖 > 0 such that 𝑆 = [𝑠𝑖 𝑗 ] is positive semi-definite for any 𝑠12 ∈ [−𝜖, 𝜖] and thus 𝜙(𝑠11, 𝑠12, 𝑠22) ≤
1. Hence, the partial derivative with respect to 𝑠12 exists at 𝑠12 = 0. Applying Fubini’s Theorem we
obtain

(−1)𝑘 𝜕
𝑘𝜙

𝜕𝑠𝑘12

(𝑠11,0, 𝑠22) = 𝐸

[
𝑌 𝑘

12 exp
{
−1

2
(𝑠11𝑌11 + 𝑠22𝑌22

}]
.

Next, recall that by the definition of Gamma function, for any 𝛼 > 0,

𝑦−𝛼 =
1

Γ(𝛼)

∫ ∞

0
𝑡𝛼−1𝑒−𝑡 𝑦𝑑𝑡 =

1
2𝛼Γ(𝛼)

∫ ∞

0
𝑠𝛼−1𝑒−𝑠𝑦/2𝑑𝑠.

Since 𝜌𝑘 =𝑌 𝑘
12𝑌

−𝑘/2
11 𝑌

−𝑘/2
22 , we can apply the above formula to obtain (23) (by Tonelli’s Theorem, the

order of integration can always be exchanged).

Remark 6. The idea of using the moment generating function to compute negative moments or mo-
ments of the ratio of two random variables has been widely used in the literature. See [6,16,24].

So we see that the distribution of 𝜌 is determined by (22), from which moments can in principle be
derived using Proposition 1; but we need to get hold of the expression in (22). This is where Theorem
2.3 comes in. If 𝑋 is a solution of a linear SDE (12), starting at 𝑋0 = 0 to fix the discussion, and we set

𝑄(𝑡) = 𝑆, 𝑧(𝑡) = 𝑎 ∈ R2 ∀ 0 ≤ 𝑡 < 𝑇, 𝑄(𝑇) = 0, 𝑧(𝑇) = 0,

then Theorem 2.3 tells us how to compute

𝐹 (0,0; 𝑎) = 𝐸

[
exp

{
−
∫ 𝑇

0
{ 1

2 𝑋 (𝑢) · 𝑆𝑋 (𝑢) + 𝑎 · 𝑋 (𝑢)} 𝑑𝑢
}]

(24)

= exp(−𝛾(0; 𝑎)), (25)

where we have written 𝐹 (𝑡, 𝑥; 𝑎) and 𝛾(0; 𝑎) to emphasize dependence on 𝑎. If we now integrate over
𝑎 with a 𝑁 (0,𝑇−1𝑆) distribution the right-hand side of (24) becomes

𝐸

[
exp

{
−
∫ 𝑇

0

1
2 𝑋 (𝑢) · 𝑆𝑋 (𝑢) 𝑑𝑢 + 1

2𝑇 𝑋̄ · 𝑆𝑋̄
}]

= 𝜙(𝑆). (26)

The strategy now should be clear. In any particular application, we use Theorem 2.3 to obtain 𝛾(𝑡; 𝑎)
as explicitly as possible, and then we integrate (25) over 𝑎 to find 𝜙(𝑆).
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4. Examples

In this section we will carry out the program just outlined in four examples, and obtain remarkably
explicit expressions for everything we need.

In the first three examples, the two-dimensional diffusion process 𝑋 has two special properties:

(i) The law of (𝑅𝑋𝑡 )0≤𝑡≤1 is the same as the law of (𝑋𝑡 )0≤𝑡≤1 for any fixed rotation matrix 𝑅;
(ii) The two components of 𝑋 are independent.

Consequently, if we abbreviate 𝑋1 (𝑡) = 𝑥𝑡 , 𝑥 =
∫ 1

0 𝑥𝑠 𝑑𝑠, and define

𝜓(𝑣) = 𝐸

[
exp

{
− 1

2

∫ 1

0
𝑣(𝑥𝑢 − 𝑥)2𝑑𝑢

}]
, (27)

it follows that the function 𝜙(𝑆) defined at (22) simplifies to the product

𝜙(𝑆) = 𝜓(𝜃2
1) 𝜓(𝜃

2
2), (28)

where 𝜃2
1, 𝜃

2
2 are the eigenvalues of 𝑆. This observation simplifies the solution of the differential equa-

tions (14)-(16) considerably, reducing everything to a one-dimensional problem.
The final example, that of correlated Brownian motion, reduces to the Brownian example by a linear

transformation.

4.1. Brownian motion

For a standard one-dimensional Brownian motion 𝑥(𝑡), consider the function 𝐹 (𝑡, 𝑥; 𝜃2, 𝑧) where 𝜃 ≥ 0
and 𝑧 ∈ R. By Theorem 2.3, the solution has the following form (the subscript “Bm” is Brownian
motion)

𝐹Bm (𝑡, 𝑥; 𝜃2, 𝑧) = exp
{
− 1

2𝑉 (𝑡)𝑥2 − 𝑏(𝑡)𝑥 − 𝛾(𝑡)
}
,

which leads to the following system of ordinary differential equations

¤𝑉 −𝑉2 + 𝜃2 = 0,

¤𝑏 −𝑉𝑏 + 𝑧 = 0,

2 ¤𝛾 − 𝑏2 +𝑉 = 0.

Using the boundary condition 𝑉 (𝑇) = 0, we obtain

𝑉 (𝑡) = 𝜃 tanh 𝜃𝜏,

where 𝜏 = 𝑇 − 𝑡. Using the condition 𝑏(𝑇) = 0, one can show that the solution for 𝑏 is

𝑏(𝑡) = 𝑧

𝜃2𝑉 (𝑡) = 𝑧

𝜃
tanh 𝜃𝜏 .

Solving the third ODE, we obtain

2𝛾(𝑡) = log cosh 𝜃𝜏 + 𝑧2

𝜃3
(−𝜃𝜏 + tanh 𝜃𝜏) ,
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Table 1. Numerical values of the moments of Yule’s nonsense correlation for two independent Wiener processes
(𝑇 = 1).

𝑘 2 4 6 8
𝐸𝜌𝑘 0.240522 0.109177 0.060862 0.037788

𝑘 10 12 14 16
𝐸𝜌𝑘 0.025114 0.017504 0.012641 0.009385

and thus

𝐹 (0,0; 𝜃2, 𝑧) = exp
{
− 𝑧2

2𝜃3
(−𝜃𝑇 + tanh 𝜃𝑇) − 1

2
log cosh 𝜃𝑇

}
.

As at (26), we now mix this expression over 𝑧 ∼ 𝑁 (0, 𝜃2/𝑇) to discover that in this example the function
𝜓 (defined at (27)) takes the simple explicit form

𝜓Bm (𝜃2) =
(

𝜃𝑇

sinh 𝜃𝑇

)1/2

, (29)

which (after appropriate scaling), is identical to the relation in the third display on p.577 of [7], which
is in fact a special case of the result (3.10) on p. 251 of [5].

From (28) therefore, the moment generating function 𝜙(𝑆) is given by

𝜙Bm (𝑆) =
(

𝜃1𝜃2𝑇
2

sinh 𝜃1𝑇 sinh 𝜃2𝑇

)1/2

, (30)

where 𝜃2
1, 𝜃

2
2 are the eigenvalues of 𝑆. These eigenvalues are given in terms of the entries of 𝑆 as

𝜃2
𝑖 =

1
2

(
𝑠11 + 𝑠22 ±

√︃
(𝑠11 − 𝑠22)2 + 4𝑠2

12

)
, (31)

where 𝑠𝑖 𝑗 is the (𝑖, 𝑗)-th entry of 𝑆. We note that the formula in (30) is given in more generality in
formula (3.b) on page 578 of [7].

Consider 𝐸 (𝜌𝑘) for 𝑘 = 0,1,2, . . . . Note that for any 𝑘 , the expectation always exists since 𝜌 ∈
[−1,1]. Further, all the odd moments, i.e. 𝐸 (𝜌2𝑘+1), are zero by symmetry. To compute an even mo-
ment of 𝜌, we apply formula (23). For example, consider the second moment. Straightforward but
tedious calculations yield

𝐸𝜌2 =

∫ ∞

0

∫ 𝑣

0

𝑢𝑣
√
𝑢𝑣

(𝑣2 − 𝑢2)
√

sinh𝑢 sinh 𝑣

(
1

𝑢 tanh𝑢
− 1
𝑣 tanh 𝑣

− 1
𝑢2 + 1

𝑣2

)
𝑑𝑢 𝑑𝑣, (32)

where we have applied a change of variables, 𝑢 =
√
𝑠11, 𝑣 =

√
𝑠22. Note that this is exactly the same as

the formula provided in Ernst, Shepp and Wyner [12, Proposition 3.4].
For higher-order moments, the calculation of 𝜕𝑘𝜙/𝜕𝑠𝑘12 is extremely laborious. We use Mathe-

matica to perform symbolic high-order differentiation and then the two-dimensional numerical in-
tegration. The numerical results are summarized in Table 1. The choice of 𝑇 is irrelevant since the
distribution of 𝜌(𝑇) does not depend on 𝑇 .
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We proceed to use the numerical values of 𝐸 (𝜌𝑘) to approximate the probability density function of
𝜌, which we denote by 𝑓 . Consider a polynomial approximation

𝑓𝑘 (𝜌) = 𝑎𝑘,0 + 𝑎𝑘,1𝜌 + 𝑎𝑘,2𝜌
2 + · · · + 𝑎𝑘,𝑘𝜌

𝑘 .

The coefficients (𝑎𝑘,0, . . . , 𝑎𝑘,𝑘) can be computed by matching the first 𝑘 + 1 moments of 𝜌 (including
the zero moment which is always equal to 1). This is also known as the Legendre series expansion
of 𝑓 , which minimizes the integrated squared error among all polynomial approximants with degree
𝑘 ([3,21]). The rate of convergence depends on the modulus of continuity of 𝑓 (see, for example, Saxena
[25],Suetin [26],Wang [27],Wang and Xiang [28]); the theoretical properties of the latter are difficult
to investigate via the moment generating function 𝜙. Below we perform some numerical experiments
to show that this polynomial approximation strategy indeed provides an efficient solution to calculating
the distribution of 𝜌.

Recalling that 𝐸 (𝜌𝑘) = 0 for odd 𝑘 , we have, for for 𝑘 = 0,2,4, . . . , that 𝑓𝑘 = 𝑓𝑘+1. It thus suffices to
consider 𝑓𝑘 , for 𝑘 = 0,2,4, . . . . To determine whether the Legendre series expansion has “converged,”
a commonly used diagnostic is the quantity 𝜀𝑘 = sup𝜌∈ (−1,1) | 𝑓𝑘 (𝜌) − 𝑓𝑘−1 (𝜌) |, which needs to be
sufficiently small for the algorithm to stop. In the left panel of Figure 1, we show how 𝜀𝑘 changes with
𝑘 for two independent Wiener processes, from which we see that 𝜀𝑘 quickly tends to zero as 𝑘 increases.
The plot also suggests that 𝑓4 may give a reasonably good approximation to 𝑓 since 𝜀6 = | 𝑓6 − 𝑓4 |∞
is just about 0.01. Indeed, we observe that the overall shape of 𝑓4 is very similar to that of 𝑓12, but
𝑓4 is more rough. Below we give the expressions for 𝑓4, 𝑓6 and 𝑓8, which constitute the first density
approximations to Yule’s nonsense correlation, and thereby solves the second (and final) of the two
longstanding open questions raised by Yule’s 1926 paper ([29])!

𝑓4 (𝜌) = 0.59081 + 0.31001𝜌2 − 0.97075𝜌4,

𝑓6 (𝜌) = 0.60057 + 0.10518𝜌2 − 0.35627𝜌4 − 0.45062𝜌6,

𝑓8 (𝜌) = 0.61200 − 0.30638𝜌2 + 1.9073𝜌4 − 4.3742𝜌6 + 2.1019𝜌8.

Finally, we compare our moment-based polynomial approximation with Monte Carlo estimates. We fix
𝑇 = 1 and discretize time using step size 10−4. The gray bars in the right panel of Figure 1 give the
histogram of 𝜌 from 107 replicates. The red curve is the 12th-order approximation 𝑓12, which agrees
very well with the empirical distribution. Note that the moment-based polynomial approximation is
much more efficient and accurate than the empirical density function obtained from sampling; the
latter has two sources of errors, one from Monte Carlo sampling and the other from time discretization.
From the plot, we see that the distribution of 𝜌 is heavily dispersed and frequently large in absolute
value, and that the density remains approximately constant for 𝜌 ∈ (−0.5,0.5).

We have only provided the numerical values of 𝐸 (𝜌𝑘) up to 𝑘 = 16. This has been done for two
reasons. Firstly, for practical purposes such density approximation, moments of even higher orders are
of much less interest. Secondly, the calculations of the derivative 𝜕𝑘𝜙/𝜕𝑠𝑘12 and the double integral
in (23) become extremely slow and require massive memory for 𝑘 ≥ 16.

4.2. Ornstein-Uhlenbeck process

Consider a one-dimensional Ornstein-Uhlenbeck (OU) process which starts from 𝑋 (0) = 0 and evolves
according to the following stochastic differential equation

𝑑𝑋𝑡 = −𝑟𝑋𝑡𝑑𝑡 + 𝑑𝑊𝑡 , 𝑟 ∈ (0,∞). (33)
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Figure 1: Moment-based polynomial approximations for the density function of 𝜌 for two independent
Wiener processes. 𝑓𝑘 denotes the approximant with degree 𝑘 . In the right-panel, the red curve corre-
sponds to 𝑓12. The gray bars represent the empirical frequencies from 107 Monte Carlo simulations.

By Theorem 2.3, the solution has the form

𝐹OU (𝑡, 𝑥; 𝜃2, 𝑧) = exp
{
−1

2
𝑉 (𝑡)𝑥2 − 𝑏(𝑡)𝑥 − 𝛾(𝑡)

}
,

which can be obtained by solving the following system of ODEs

¤𝑉 − 2𝑟𝑉 −𝑉2 + 𝜃2 = 0,

¤𝑏 − (𝑉 + 𝑟)𝑏 + 𝑧 = 0,

2 ¤𝛾 − 𝑏2 +𝑉 = 0.

Using 𝑉 (𝑇) = 0, we solve the first equation to obtain

𝑉 (𝑡) = 𝜃2

𝑟 + 𝜂 coth𝜂𝜏
,

where 𝜂 =
√
𝑟2 + 𝜃2 and 𝜏 = 𝑇 − 𝑡. The second differential equation is first-order linear, so it can be

solved explicitly; after some straightforward calculations we obtain

𝑏(𝑡) = 𝑧

𝑟 + 𝜂 coth𝜂𝜏

(
1 + 𝑟

𝜂
tanh

𝜂𝜏

2

)
.

Finally, solving the last differential equation yields

2𝛾(𝑡) = 𝑧2

𝜃2


(
1 + 𝑟

𝜂
tanh 𝜂𝜏

2

)2

𝑟 + 𝜂 coth𝜂𝜏
− 𝑟2

𝜂3 tanh
𝜂𝜏

2
− 𝜃2𝜏

𝜂2

 − 𝑟𝜏 + log
(
cosh𝜂𝜏 + 𝑟

𝜂
sinh𝜂𝜏

)
.
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Table 2. Numerical values of the second moment of the empirical correlation coefficient for two independent
Ornstein-Uhlenbeck processes with mean reversion parameter 𝑟 (𝑇 = 1).

𝑟 0.1 0.2 0.3 0.4 0.5 1
𝐸𝜌2 0.23209 0.22438 0.21734 0.21091 0.20504 0.18231

𝑟 2 5 10 20 50 100
𝐸𝜌2 0.15583 0.11454 0.07627 0.04404 0.01907 0.00971

Figure 2: Moment-based polynomial approximations for the density function of 𝜌. The gray bars rep-
resent the empirical frequencies from 107 Monte Carlo simulations.

Mixing over 𝑧 with a Gaussian law as before, and using tanh(𝑥/2) = coth 𝑥 − csch 𝑥, we obtain

𝜓OU (𝜃2; 𝑟) =
√
𝑇𝑒𝑟𝑇/2

{
𝜃2

𝜂4 [2𝑟 (cosh𝜂𝑇 − 1) + 𝜂 sinh𝜂𝑇] + 𝑟2𝑇

𝜂3 [𝜂 cosh𝜂𝑇 + 𝑟 sinh𝜂𝑇]
}−1/2

.

If we have two independent Ornstein-Uhlenbeck processes 𝑋1 (𝑡), 𝑋2 (𝑡) which both start at zero
and have common mean reversion parameter 𝑟, one can check that an orthogonal transformation of
𝑋 = (𝑋1, 𝑋2) leaves the joint distribution invariant. Indeed, the new two-dimensional process follows
exactly the same SDE. Hence, the moment generating function in this case can be computed by

𝜙OU (𝑆; 𝑟) = 𝜓OU (𝜃2
1; 𝑟)𝜓OU (𝜃2

2; 𝑟),

where 𝜃2
1, 𝜃

2
2 are the eigenvalues of 𝑆.

In Table 2 above we give the numerical values of 𝐸𝜌2 for independent Ornstein-Uhlenbeck processes
with mean reversion parameter 𝑟 (𝑇 = 1). Note that as 𝑟 →∞, the processes converge to constant zero
and thus 𝐸𝜌2 (the variance of 𝜌) goes to zero. Our numerical results show that 𝐸𝜌2 decreases slowly.

As in the case of independent Wiener processes, we can use a Legendre series expansion to approx-
imate the density function of 𝜌. For 𝑟 = 1, the result is shown in the first panel of Figure 2, from which
we see that the 12-th order approximation is very accurate.

4.3. Brownian bridge

For a more complicated example, consider a standard Brownian bridge (denoted by “B”) which satisfies
𝑋 (0) = 𝑋 (1) = 1. In this case, we must fix 𝑇 = 1 and let 𝜏 = 1 − 𝑡. The dynamics of 𝑋 (𝑡) can be descr
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ibed by (see for example [23] Theorem IV.40.3)

𝑑𝑋𝑡 = − 𝑋𝑡

1 − 𝑡
𝑑𝑡 + 𝑑𝑊𝑡 .

Though this SDE has the linear form, the drift coefficient −(1 − 𝑡)−1 explodes at 𝑡 = 1. Hence, it does
not satisfy the conditions required in Theorem 2.3. However, the singularity can easily be isolated, by
freezing everything at 𝑡 = 1− 𝜀 and applying Theorem 2.3 to that; we can then let 𝜀 ↓ 0 and we find the
instances of the ODEs (14)-(16) to be

¤𝑉 − 2𝑉/(1 − 𝑡) −𝑉2 + 𝜃2 = 0,

¤𝑏 − [𝑉 + (1 − 𝑡)−1]𝑏 + 𝑧 = 0,

2 ¤𝛾 − 𝑏2 +𝑉 = 0.

Solving the first differential equation with lim𝑡→1𝑉 (𝑡) = 0 yields

𝑉 (𝑡) = 𝜃𝜏 cosh 𝜃𝜏 − sinh 𝜃𝜏
𝜏 sinh 𝜃𝜏

.

One can check that lim𝑡→1 ¤𝑉 (𝑡) = −𝜃2/3. Similarly, the solution to the second ODE is given by

𝑏(𝑡) = 𝑧(cosh 𝜃𝜏 − 1)
𝜃 sinh 𝜃𝜏

.

Though at first sight this might appear to have a singularity at 𝜏 = 0 it is in fact analytic. The solution
to the third differential equation is given by

2𝛾(𝑡) = 𝑧2

𝜃2

(
2(cosh 𝜃𝜏 − 1)

𝜃 sinh 𝜃𝜏
− 𝜏

)
+ log

sinh 𝜃𝜏
𝜃𝜏

.

One can also check that lim𝑡→1 𝛾(𝑡) = lim𝑡→1 ¤𝛾(𝑡) = 0. Using this, we have

𝐹B (𝑡, 𝑥; 𝜃2, 𝑧) = exp
{
−1

2
𝑉 (𝑡)𝑥2 − 𝑏(𝑡)𝑥 − 𝛾(𝑡)

}
.

Hence

𝐹B (0,0; 𝜃2, 𝑧) = exp {−𝛾(0)}

=

√︂
𝜃

sinh 𝜃
exp

{
− 𝑧2

2𝜃2

(
2(cosh 𝜃 − 1)

𝜃 sinh 𝜃
− 1

) }
.

Mixing over 𝑧 ∼ 𝑁 (0, 𝜃2) gives the one-dimensional generating function

𝜓B (𝜃2) = 𝜃

2 sinh(𝜃/2) ,

which matches the formula in the second display on p.577 of [7]. As in the case case of Ornstein-
Uhlenbeck processes, the moment generating function is 𝜙B (𝑆) = 𝜓B (𝜃2

1)𝜓B (𝜃2
2).

In Table 3 we provide the moments of 𝜌 for independent Brownian bridges. Comparing with Table 1,
we can see that 𝜌 has smaller variance for two Brownian bridges. Intuitively, this is because Brownian
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Table 3. Numerical values of the moments of the empirical correlation coefficient for two independent Brownian
bridges.

𝑘 2 4 6 8 10
𝐸𝜌𝑘 0.149001 0.047864 0.0201829 0.009876 0.005321

bridges are forced to fluctuate around zero more frequently than Brownian motions: a Brownian bridge
has to return to zero at 𝑡 = 1 but a Brownian motion is likely to make long excursions away from zero.
The second panel of Figure 2 shows the 12-th order polynomial approximation of the density function
of 𝜌.

4.4. Correlated Brownian motion

Let 𝑋1 (𝑡), 𝑋2 (𝑡) be two Brownian motions with constant correlation 𝑐, represented by the following
SDE

𝑑𝑋1 (𝑡) = 𝑑𝑊1 (𝑡), 𝑑𝑋2 (𝑡) = 𝑐𝑑𝑊1 (𝑡) +
√︁

1 − 𝑐2𝑑𝑊2 (𝑡).

To compute the moment generating function 𝜙(𝑆), we take the approach outlined in Remark 4.
Define a matrix 𝑀 as

𝑀 = 𝑀 (𝑐) =
[

1 0
−𝑐(1 − 𝑐2)−1/2 (1 − 𝑐2)−1/2

]
.

Then the process 𝑀𝑋 (𝑡) is a two-dimensional Brownian motion with independent coordinates. The
inverse of 𝑀 is

𝑀−1 = 𝑀−1 (𝑐) =
[
1 0

𝑐
√︁

1 − 𝑐2

]
.

We now transform the problem to the uncorrelated case by

𝜙cBm (𝑆) = 𝜙Bm ((𝑀−1)⊤𝑆𝑀−1),

where we use “cBm” to indicate that 𝑋 is a correlated two-dimensional Brownian motion. The solution
may be expressed as

𝜙cBm(𝑆; 𝑐) =
(

𝜆1𝜆2

sinh𝜆1 sinh𝜆2

)1/2

, (34)

where 𝜆2
1, 𝜆

2
2 are the eigenvalues of the matrix (𝑀−1)⊤𝑆𝑀−1. Straightforward calculations yield

𝜆2
𝑖 =

1
2

{
𝑠11 + 𝑠22 + 2𝑐𝑠12 ±

√︁
(𝑠11 − 𝑠22)2 + 4(𝑐𝑠11 + 𝑠12) (𝑐𝑠22 + 𝑠12)

}
.

In Table 4 we give the first and second moments of 𝜌 for two-dimensional correlated Brownian
motion with correlation coefficient 𝑐. Observe that 𝐸 (𝜌) is always slightly smaller than 𝑐 if 𝑐 ∈ (0,1).
The variance of 𝜌, computed as Var(𝜌) = 𝐸𝜌2 − (𝐸𝜌)2, is decreasing (as 𝑐 increases) but very slowly.
Indeed, the standard deviation of 𝜌 is 0.49 for 𝑐 = 0, 0.41 for 𝑐 = 0.5 and 0.25 for 𝑐 = 0.8. In Table 5 we
give high-order moments of 𝜌 for 𝑐 = 0.5. It is somewhat surprising that 𝐸 (𝜌𝑘) remains close to 0.1
even when 𝑘 = 10.
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Table 4. Numerical values of the moments of the empirical correlation coefficient for two correlated Brownian
motions with correlation coefficient 𝑐 (𝑇 = 1).

𝑐 0 0.1 0.2 0.3 0.4
𝐸𝜌 0 0.08873 0.17792 0.26804 0.35963
𝐸𝜌2 0.24052 0.24550 0.26061 0.28636 0.32368

Var(𝜌) 0.2405 0.2376 0.2290 0.2145 0.1943

𝑐 0.5 0.6 0.7 0.8 0.9
𝐸𝜌 0.45338 0.55004 0.65071 0.75698 0.87151
𝐸𝜌2 0.37407 0.43986 0.52477 0.63509 0.78298

Var(𝜌) 0.1685 0.1373 0.1013 0.0621 0.0235

Table 5. Numerical values of higher moments of the empirical correlation coefficient for two correlated Brownian
motions with correlation coefficient 𝑐 = 0.5 and 𝑇 = 1.

𝑘 1 2 3 4 5
𝐸𝜌𝑘 0.4534 0.3741 0.2603 0.2221 0.17137

𝑘 6 7 8 9 10
𝐸𝜌𝑘 0.1515 0.1253 0.1109 0.0948 0.0848

Approximating the density function of 𝜌 is more challenging than in the previous three examples
due to the slow decay of high-order moments of 𝜌 and the asymmetry of the density function of 𝜌.
In the last panel of Figure 2, we plot the 10-th order approximation for 𝑐 = 0.5, which agrees with
the empirical Monte Carlo estimates well, although there appears to be some slight difference near
the mode; the difference may be caused by the slow convergence of 𝑓𝑘 and/or the time discretization
scheme used in simulation.

5. Asymptotics of 𝝆(𝑻) as 𝑻 →∞

We now extend the definition of the empirical correlation coefficient to the time interval [0,𝑇] for any
𝑇 > 0. In this context, the empirical correlation coefficient may be written as

𝜌(𝑇) :=
𝑌12 (𝑇)√︁

𝑌11 (𝑇)𝑌22 (𝑇)
, (35)

where the random variables 𝑌𝑖 𝑗 (𝑇) (𝑖, 𝑗 = 1,2) are defined as

𝑌𝑖 𝑗 (𝑇) :=
∫ 𝑇

0
𝑋𝑖 (𝑢)𝑋 𝑗 (𝑢)𝑑𝑢 −𝑇 𝑋̄𝑖 𝑋̄ 𝑗 , 𝑋̄𝑖 :=

1
𝑇

∫ 𝑇

0
𝑋𝑖 (𝑢)𝑑𝑢. (36)

The random variable 𝑋̄𝑖 is the time average of the process 𝑋𝑖 .
The fundamental reason that the statistic 𝜌(𝑇) has been called “nonsense correlation” is because, in

the case of two independent Wiener processes, its asymptotic distribution is heavily dispersed and fre-
quently large in absolute value, leading to high variance (.240522). Further, its asymptotic distribution
is very different than that of the nominal 𝑡-distribution. This begs the following question: might 𝜌(𝑇)
be useful for testing the independence of some other pair of Gaussian processes? In fact, the answer is
yes; 𝜌(𝑇) may be used to test independence of two Ornstein-Uhlenbeck processes. We shall prove this
claim by first showing a Strong Law result (Theorem 5.1), that for two independent Ornstein-Uhlenbeck
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processes, 𝜌(𝑇) converges almost surely to 0 as 𝑇 →∞. We next prove a Central Limit result (Theo-
rem 5.2), that

√
𝑇𝜌(𝑇) converges in distribution as 𝑇 →∞ to a zero-mean Gaussian with variance that

shrinks to zero as the mean reversion parameter tends towards infinity. Of course the Strong Law result
Theorem 5.1 is not needed to prove the Central Limit result Theorem 5.2, but as the proof is simple we
record it.

Theorem 5.1. For two independent Ornstein-Uhlenbeck processes, 𝑋1 (𝑡) and 𝑋2 (𝑡), which both follow
the SDE (33) with 𝑟 > 0, 𝜌(𝑇) converges almost surely to zero as 𝑇 →∞.

Proof. If 𝑋1 (0) and 𝑋2 (0) are both distributed according to the invariant 𝑁 (0,1/2𝑟) distribution of
the OU process (33), then the bivariate process (𝑋1, 𝑋2) is ergodic, so, by Birkhoff’s Ergodic Theorem,
time-averages converge almost surely to expectations. Thus (recalling (35) and (36)) we have

𝑋̄𝑖 → 𝐸 [𝑋𝑖 (0)] = 0 a.s. as 𝑇 →∞, 𝑖 = 1,2;

𝑇−1𝑌12 (𝑇) → 𝐸 [𝑋1 (0)𝑋2 (0)] = 0 a.s. as 𝑇 →∞;

𝑇−1𝑌𝑖𝑖 (𝑇) → 𝐸 [𝑋𝑖 (0)2] = (2𝑟)−1 a.s. as 𝑇 →∞, 𝑖 = 1,2.

Dividing the numerator and denominator of 𝜌(𝑇) defined at (35) by 𝑇 , it is immediate that 𝜌(𝑇) con-
verges almost surely to 0 if the initial distribution is the invariant distribution.

If the initial distribution is something else, then we still have these results by coupling with an
independent stationary copy of the OU process - see [23] Theorem V.54.5, which proves that the two
diffusions couple in finite time almost surely, so that the long-time averages have the same limits.

We now prove a central limit theorem for 𝜌(𝑇) as 𝑇 →∞. Two years after the first version of the
present paper appeared on arXiv ([11]), a paper by Douissi et al. ([9]) would study in detail the asymp-
totics of Yule’s nonsense correlation for two independent Ornstein-Uhlenbeck processes.

Theorem 5.2. For two independent Ornstein-Uhlenbeck processes, 𝑋1 (𝑡) and 𝑋2 (𝑡), which both follow
the SDE (33) with 𝑟 > 0, we have that

√
𝑇𝜌(𝑇) D→ 𝑁

(
0,

1
2𝑟

)
.

Proof. Firstly, as we proved in the previous result, we have

𝑌11 (𝑇)
𝑇

=
1
𝑇

∫ 𝑇

0
𝑋1 (𝑠)2𝑑𝑠 − 𝑋̄1 (𝑇)2

𝑎.𝑠.−→ 𝐸 [𝑋1 (0)2] = 1
2𝑟

.

We now need to obtain weak convergence of

𝑌12 (𝑇)√
𝑇

=

∫ 𝑇

0
𝑋1 (𝑠)𝑋2 (𝑠)

𝑑𝑠
√
𝑇
− 𝑇𝑋1 (𝑇)𝑋2 (𝑇)√

𝑇
. (37)

Let us first consider the second term of the right-hand side of the above equation. For simplicity, assume
𝑋1 (0) = 0 and then
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𝑋1 (𝑡) = 𝑒−𝑟𝑡
∫ 𝑡

0
𝑒𝑟𝑠𝑑𝑊𝑠 ,

so that

𝑇𝑋1 (𝑇) =
∫ 𝑇

0
𝑋1 (𝑡)𝑑𝑡 =

∫ 𝑇

0
𝑒−𝑟𝑡

∫ 𝑡

0
𝑒𝑟𝑠𝑑𝑊𝑠 𝑑𝑡

= 𝑟−1
∫ 𝑇

0
𝑒𝑟𝑠

(
−𝑒−𝑟𝑇 + 𝑒−𝑟𝑠

)
𝑑𝑊𝑠

= 𝑟−1
∫ 𝑇

0

(
1 − 𝑒−𝑟 (𝑇−𝑠)

)
𝑑𝑊𝑠 .

Hence

𝐸 [𝑋1 (𝑇)2] = 1
𝑟2𝑇2

∫ 𝑇

0

(
1 − 𝑒−𝑟 (𝑇−𝑠)

)2
𝑑𝑠 ≤ 1

𝑟2𝑇
,

and so

𝐸

[(√
𝑇𝑋1 (𝑇)𝑋2 (𝑇)

)2
]
≤ 1
𝑟4𝑇

→ 0.

Thus
√
𝑇𝑋1 (𝑇)𝑋2 (𝑇) converges in 𝐿2 to 0, and so we need now only consider the first term of the right-

hand side of equation (37). For 𝜃 ∈ R, let us evaluate the characteristic function by firstly conditioning
on 𝑋2:

𝐸 exp
{

𝑖𝜃
√
𝑇

∫ 𝑇

0
𝑋1 (𝑠)𝑋2 (𝑠) 𝑑𝑠

}
=𝐸 exp

{
𝑖𝜃
√
𝑇

∫ 𝑇

0
𝑒−𝑟𝑠𝑋2 (𝑠)

∫ 𝑠

0
𝑒𝑟𝑢𝑑𝑊1 (𝑢) 𝑑𝑠

}
=𝐸 exp

{
𝑖𝜃
√
𝑇

∫ 𝑇

0
𝑒𝑟𝑢

∫ 𝑇

𝑢

𝑒−𝑟𝑠𝑋2 (𝑠) 𝑑𝑠 𝑑𝑊1 (𝑢)
}

=𝐸 exp

{
− 𝜃2

2𝑇

∫ 𝑇

0

(∫ 𝑇

𝑢

𝑒−𝑟 (𝑠−𝑢)𝑋2 (𝑠)𝑑𝑠
)2

𝑑𝑢

}
.

Again by the ergodic theorem, we have

1
𝑇

∫ 𝑇

0

(∫ 𝑇

𝑢

𝑒−𝑟 (𝑠−𝑢)𝑋2 (𝑠)𝑑𝑠
)2

𝑑𝑢
𝑎.𝑠.−→ 𝐸

[(∫ ∞

0
𝑒−𝑟𝑠𝑋2 (𝑠)𝑑𝑠

)2
]
=

1
8𝑟3 .

We thus obtain
1
√
𝑇

∫ 𝑇

0
𝑋1 (𝑠)𝑋2 (𝑠)𝑑𝑠

D→ 𝑁

(
0,

1
8𝑟3

)
,

from which the stated result follows.
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