
The Annals of Statistics
2017, Vol. 45, No. 4, 1789–1809
DOI: 10.1214/16-AOS1509
© Institute of Mathematical Statistics, 2017

YULE’S “NONSENSE CORRELATION” SOLVED!

BY PHILIP A. ERNST∗, LARRY A. SHEPP†,1 AND ABRAHAM J. WYNER†

Rice University∗ and University of Pennsylvania†

In this paper, we resolve a longstanding open statistical problem. The
problem is to mathematically prove Yule’s 1926 empirical finding of “non-
sense correlation” [J. Roy. Statist. Soc. 89 (1926) 1–63], which we do by
analytically determining the second moment of the empirical correlation co-
efficient

θ :=
∫ 1
0 W1(t)W2(t) dt − ∫ 1

0 W1(t) dt
∫ 1
0 W2(t) dt√∫ 1

0 W2
1 (t) dt − (

∫ 1
0 W1(t) dt)2

√∫ 1
0 W2

2 (t) dt − (
∫ 1
0 W2(t) dt)2

,

of two independent Wiener processes, W1,W2. Using tools from Fredholm
integral equation theory, we successfully calculate the second moment of θ to
obtain a value for the standard deviation of θ of nearly 0.5. The “nonsense”
correlation, which we call “volatile” correlation, is volatile in the sense that
its distribution is heavily dispersed and is frequently large in absolute value.
It is induced because each Wiener process is “self-correlated” in time. This
is because a Wiener process is an integral of pure noise, and thus its values
at different time points are correlated. In addition to providing an explicit
formula for the second moment of θ , we offer implicit formulas for higher
moments of θ .

1. Introduction. A fundamental yet crucial question for practitioners of
statistics is the following: given a sequence of pairs of random variables {Xk,Yk}
(k = 1,2, . . . , n), how can we measure the strength of the dependence of X and Y ?
The classical Pearson correlation coefficient offers a solution that is standard and
often powerful. It is also widely used even in situations where little is known about
its empirical properties, for example, when the sequence of random variables are
not identically distributed or independent. The Pearson correlation is often calcu-
lated between two time series. Practitioners have developed many “rules of thumb”
to help interpret these values (i.e., a correlation greater than 0.9 is generally un-
derstood to be large). Such correlations can be difficult to interpret [16]. It is well
known that a “spurious” correlation will be observed when two time series are
themselves dependent on an unobserved third time series.

However, it is less well known to some practitioners that one may observe
“volatile” correlation in independent time series. The correlation is volatile in the
sense that its distribution is heavily dispersed and is frequently large in absolute
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value. Yule observed this empirically and, in his 1926 seminal paper [16], called
it “nonsense” correlation, asserting that “we sometimes obtain between quanti-
ties varying with time (time-variables) quite high correlations to which we cannot
attach any physical significance whatever, although under the ordinary test the
correlation would be held to be certainly significant.” Yet Yule’s empirical finding
remained “isolated” from the literature until 1986 (see [1]), when the authors of [6]
and [12] confirmed many of the empirical claims of “spurious regression” made
by the authors of [5]. In particular, [12] provided a mathematical solution to the
problem of spurious regression among integrated time series by demonstrating that
statistical t-ratio and F-ratio tests diverge with the sample size, thereby explaining
the observed ‘statistical significance’ in such regressions. In later work [13], the
same author provided an explanation of such spurious regressions in terms of or-
thonormal representations of the Karhunen Loève type.

Throughout this work, we will use the word “volatile” in lieu of “nonsense.” We
emphasize that volatile correlation is distinctly different from “spurious” correla-
tion, as the latter refers to a third time series, whereas the former does not. Despite
Yule’s empirical findings, it is often (erroneously) assumed that a large correlation
between such pairs must have a cause (see [10]) when they definitionally do not.
Suppose, for example, that Xi = Si and Yi = S′

i where Si and S′
i are the partial

sums of two independent random walks. The empirical correlation is defined in
the usual way as

(1.1) θn =
∑n

i=1 SiS
′
i − 1

n
(
∑n

i=1 Si)(
∑n

i=1 S′
i )√∑n

i=1 S2
i − 1

n
(
∑n

i=1 Si)2
√∑n

i=1(S
′
i )

2 − 1
n
(
∑n

i=1 S′
i )

2
.

Nevertheless, it is sometimes (erroneously) assumed that for large enough n these
correlations should be small. Indeed, large values are quite probable. The his-
togram of the empirical correlation of independent random walks is widely dis-
persed over nearly the entire range. This was recently mentioned by [11], which
presents (using n = 149) a critique of efforts to reconstruct the earth’s historical
temperatures using correlated time series. We reproduce the histogram here as Fig-
ure 1, with n = 10,000.

The histogram reports that the middle 95% of the observed correlation coeffi-
cients fall in the interval [−0.83,0.83]. The lesson to be learned from Figure 1
is that correlation is not always a useful statistic; in the case of two independent
random walks, the observed correlation coefficient has a very different distribution
than that of the nominal t-distribution.

REMARK 1.1. It should be noted that the statistic which uses the actual ran-
dom variables, Xk,X

′
k instead of their partial sums,

∑k
j=1 Xj,

∑k
j=1 X′

j does
not produce volatile correlation. Indeed, as n → ∞, if the random variables,
Xk,X

′
k, k = 1, . . . are i.i.d. sequences, independent of each other, with positive
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FIG. 1. Simulated empirical correlation of partial sums of two independent random walks with
n = 10,000.

finite variances, then

θ ′
n =

1
n

∑n
k=1 XkX

′
k − ( 1

n

∑n
k=1 Xk)(

1
n

∑n
k=1 X′

k)

(
√

1
n

∑n
k=1 X2

k − ( 1
n

∑n
k=1 Xk)2)(

√
1
n

∑n
k=1 X2

k − ( 1
n

∑n
k=1 Xk)2)

is easily seen to tend to zero (by the law of large numbers). This shows that the
volatile correlation is a consequence of using the partial sums in place of the vari-
ables themselves. The reason that the partial sums are self-correlated (and thereby
induce large correlation) seems related to the arcsine law. The history of Sparre An-
dersen’s major combinatorial contribution to the proof of the arcsine law (see [4])
raises the question of whether a formula for discrete sequences of partial sums can
be derived by combinatorial methods employing cyclic permutations. This would
be very elegant, and would greatly simplify earlier works of Erdős and Kac (see
[3]), but seems unlikely.

In lieu of considering the volatile correlation between two independent random
walks, we consider the continuous analog, namely that of two independent Wiener
processes. Although it would be ideal to find the full analytical distribution of
the empirical correlation between two independent Wiener processes, finding the
second moment itself suffices as formal confirmation of Yule’s “nonsense” corre-
lation. But such evidence, until now, has remained elusive.

Formally, let Wi(t),0 ≤ t ≤ 1, i = 1,2 denote two independent Wiener pro-
cesses on [0,1]. We analytically find the second moment of the empirical correla-
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TABLE 1
Moments of θ obtained from 10,000 Monte Carlo iterations

E[θ0] E[θ1] E[θ2] E[θ3] E[θ4] E[θ5]
1 −0.00116634 0.235057 −0.000524066 0.109276 −0.000283548

E[θ6] E[θ7] E[θ8] E[θ9] E[θ10]
0.0609591 −0.00016797 0.0378654 −0.000105611 0.0251693

tion between W1(t) and W2(t), where the empirical correlation is defined as

(1.2) θ =
∫ 1

0 W1(t)W2(t) dt − ∫ 1
0 W1(t) dt

∫ 1
0 W2(t) dt√∫ 1

0 W 2
1 (t) dt − (

∫ 1
0 W1(t) dt)2

√∫ 1
0 W 2

2 (t) dt − (
∫ 1

0 W2(t) dt)2
,

the limit to which θn converges weakly, as originally shown in [12]. Using tools
from integral equation theory, we successfully calculate the second moment of
θ to obtain a value for the standard deviation of θ of nearly 0.5. This volatile
correlation is induced because each Wiener process is “self-correlated” in time.
This is because a Wiener process is an integral of pure noise and thus its values at
different time points are correlated. The correct intuition for the occurrence of this
phenomenon is that a Wiener process self-correlated, and thus volatile correlation
is indeed induced between the independent Wiener processes.

Of course, it is rather simple to simulate the distribution of θ . We do so below
using a simple Monte Carlo routine. The result of averaging 10,000 simple Monte
Carlo iterations of the first ten moments of θ can be found above in Table 1. The
initial validity of the Monte Carlo can be justified by noting that the odd moments
should all be zero, since θ is symmetric. The impact of this problem for practi-
tioners of statistical inference, however, renders it most deserving an analytical
solution, and this serves as our paper’s primary motivation.

The structure of the paper is as follows. In Section 2, we present results needed
for obtaining the distribution of θ . In Section 3, we provide implicit formulas for
all moments of θ . Most significantly, we explicitly obtain the following expression
for the variance of θ by comparing coefficients of z2, which we show (in Proposi-
tion 3.4) are given by the following double integral:∫ ∞

0
du1

∫ u1

0

√
u1u2

sinhu1 sinhu2

u1u2

u1 + u2

×
( 1

u2
1
(1 − u1

sinhu1
coshu1) − 1

u2
2
(1 − u2

sinhu2
coshu2)

u1 − u2

)
du2.

Although it is not possible to calculate the double integral above in elementary
terms, it has removable singularities and shockingly converges very nicely at all
points where any of u1, u2 or u1 − u2 vanishes.
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2. A few results needed for obtaining the distribution of θ . In Section 2.1,
we rewrite θ in an alternate form that will be useful in Section 3. The alternate
form involves stochastic integrals rather than integrals of a Wiener process itself.
In Section 2.2, we introduce the function F , which is well suited to calculating the
moments of θ . Furthermore, we explicitly calculate F .

2.1. Rewriting θ . Magnus [9] gave the moments of the ratio of a pair of
quadratic forms in normal variables. Our work gives a method for the correlation
coefficient which is a ratio involving three quadratic forms of normal variables as
well as square roots. The three-form problem solved here requires a new method.
We begin this task by rewriting θ .

Recall the definition of empirical correlation written in equation (1.2). Noting
that mi := ∫ 1

0 Wi(t) dt, i = 1,2 are the empirical mean values, we rewrite θ as

(2.1) θ =
∫ 1

0 (W1(t) − m1)(W2(t) − m2) dt√∫ 1
0 (W1(t) − m1)2 dt

√∫ 1
0 (W2(t) − m2)2 dt

.

From equation (2.1), it is easy to see, by Cauchy–Schwarz, that −1 ≤ θ ≤ 1.

PROPOSITION 2.1. We have the equality

(2.2) θ = X1,2√
X1,1X2,2

,

where

(2.3) Xi,j =
∫ 1

0

∫ 1

0

(
min(s1, s2) − s1s2

)
dWi(s1) dWj (s2).

PROOF. It is clear that

θ = Y1,2√
Y1,1Y2,2

,

where

(2.4) Y1,2 = Y2,1 =
∫ 1

0
W1(t)W2(t) dt −

∫ 1

0
W1(s) ds

∫ 1

0
W2(t) dt

and

(2.5) Yi,i =
∫ 1

0
W 2

i (t) dt −
(∫ 1

0
Wi(t) dt

)2
, i = 1,2.

We must show that

Yi,j = Xi,j for i, j ∈ {1,2}.
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By the fundamental theorem of calculus,

Xi,j =
∫ 1

0
dWi(s1)

∫ 1

0
dWj(s2)

∫ min(s1,s2)

0
dt

(2.6)

−
∫ 1

0
dWi(s1)

∫ 1

0
dWj(s2)

∫ s1

0
ds

∫ s2

0
dt.

To simplify the right-hand side of equation (2.6), we change variables and integrate
over the equivalent regions. The right-hand side of equation (2.6) becomes

(2.7)
∫ 1

0
dt

∫ 1

t
dWi(s1)

∫ 1

t
dWj (s2) −

∫ 1

0
ds

∫ 1

s
dWi(s1)

∫ 1

0
dt

∫ 1

t
dWj (s2).

Rearranging, we obtain

Xi,j =
∫ 1

0

(
Wi(1) − Wi(t)

)(
Wj(1) − Wj(t)

)
dt

−
∫ 1

0

(
Wi(1) − Wi(s)

)
ds

∫ 1

0

(
Wj(1) − Wj(t)

)
dt

=
∫ 1

0
Wi(t)Wj (t) dt −

∫ 1

0
Wi(s) ds

∫ 1

0
Wj(t) dt = Yi,j . �

2.2. Defining and calculating F . We define for |a| ≤ 1, βi ≥ 0, i = 1,2, the
integral

(2.8) F(β1, β2, a) = E
[
eaβ1β2X1,2− β2

1
2 X1,1− β2

2
2 X2,2

]
,

where the Xi,j are as defined in equation (2.3). Under the above conditions, the
expectation is finite and thus F is well defined. This is because X1,2 = θ

√
X1,1X2,2

and |θ | ≤ 1 so the exponent is at most

(2.9) −1

2
(β1

√
X1,1 − β2

√
X2,2)

2 ≤ 0.

Thus, the expectand is bounded by unity, and so, for this range, F(β1, β2, a) ≤ 1.

2.2.1. The functions M , K , TM and TK . Motivated by the definition of Xi,j

in equation (2.3), we define M by

(2.10) M(s1, s2) = min(s1, s2) − s1s2, s1, s2 ∈ [0,1],
which is the covariance of pinned Wiener process on [0,1].

For i1, i2 ∈ {1,2} and s1, s2 ∈ [0,1], we define the kernel function Ki1,i2 by

(2.11) Ki,i(s1, s2) = −β2
i M(s1, s2)

and

K1,2(s1, s2) = K2,1(s1, s2) = aβ1β2M(s1, s2).
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Let

K =
[
K1,1 K1,2
K2,1 K2,2

]
.

M gives rise to a linear transformation TM : L2[0,1] → L2[0,1] given by

(2.12) TM(g)(s2) =
∫ 1

0
M(s1, s2)g(s1) ds1,

where g ∈ L2[0,1]. If 	f (s) and 	g(s) are elements of (L2[0,1])2, then their inner
product is defined as ∫ 1

0
	f (s) · 	g(s) ds.

It is straightforward to check that TM is a self-adjoint, positive-definite and con-
tinuous linear transformation.

Let M2×2 refer to 2 × 2 matrices with entries in L2([0,1] × [0,1]). We define
(L2[0,1])2 = L2[0,1] × L2[0,1] and note that an element of (L2[0,1])2 is an or-
dered pair of maps from [0,1] to R. If G is any element of M2×2(L

2([0,1] ×
[0,1])), G gives rise to a linear transformation TG : (L2[0,1])2 → (L2[0,1])2

given by

(2.13) TG(	g)(s2) =
∫ 1

0
G(s1, s2)	g(s1) ds1

for 	g ∈ (L2[0,1])2. In particular, K gives rise to TK via the above definition. It is
straightforward to check that TK is a self-adjoint, positive-definite and continuous
linear transformation.

2.2.2. The calculation. The goal of this section is to prove Theorem 2.1 below.

THEOREM 2.1.

(2.14) F(β1, β2, a) = 1√
sinh c+

c+
sinh c−

c−
,

where

(2.15) c± = c±(β1, β2, a) =

√√√√(β2
1 + β2

2 ) ±
√

(β2
1 − β2

2 )2 + 4a2β2
1β2

2

2
.

The proof of Theorem 2.1 has two parts. First, we show (in Proposition 2.4) that
F can be expressed in terms of the Fredholm determinant det(I − TK), where TK

was defined in equation (2.13). Second, we compute this determinant (in Propo-
sition 2.6) by calculating the eigenvalues of TK . To begin, we write F in terms
of K .
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PROPOSITION 2.2. We have

(2.16) F(β1, β2, a) = E
[
e

1
2

∑2
i1=1

∑2
i2=1

∫ 1
0

∫ 1
0 Ki1,i2 (s1,s2) dWi1 (s1) dWi2 (s2)

]
.

PROOF. This follows from plugging in the definition of Ki1,i2 from equations
(2.11) and (2.12) and comparing it to the definition of F given in equation (2.8).

�

Since TK is self-adjoint and positive-definite, there exists a (countable) or-
thonormal basis of (L2[0,1])2 consisting of eigenvectors 	φn(n ∈ N) for TK . As
a matter of notation, we write

	φn =
[
φn(1, s1)

φn(2, s1)

]
.

We let αn be the corresponding eigenvalues.

PROPOSITION 2.3. For i1, i2 ∈ {1,2}, s1, s2 ∈ [0,1], we have

(2.17) Ki1,i2(s1, s2) =
∞∑

n=1

αnφn(i1, s1)φn(i2, s2).

PROOF. Let Gn(s1, s2) = 	φn
	φT
n ∈ M2×2(L

2([0,1] × [0,1])). The proposition
is equivalent to the equation K = ∑∞

n=1 αnGn. Thus, we need only show that

(2.18) TK =
∞∑

n=1

αnTGn.

Since the vectors 	φn form a basis for (L2[0,1])2, it suffices to check both sides of
equation (2.18) on an arbitrary basis element 	φm.

By definition, the left-hand side of equation (2.18) applied to 	φm yields αm
	φm

(note that 	φm is chosen among the eigenvectors for TK , that is, it is one of the 	φn).
So it suffices to show that

TGn(
	φm) = δm,n

	φm.

We calculate

TGn(
	φm) =

∫ 1

0

[
φn(1, s2)

φn(2, s2)

][
φn(1, s1)

φn(2, s1)

]T [
φm(1, s1)

φm(2, s1)

]
ds1

=
[
φn(1, s2)

φn(2, s2)

]∫ 1

0
	φn · 	φm ds1.

Since 	φn and 	φm are orthonormal,

TGn(
	φm) =

[
φn(1, s2)

φn(2, s2)

]
δm,n = δm,n

	φm.

The proof is now complete. �
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PROPOSITION 2.4. F(β1, β2, a) = (det(I − TK))−1/2 := ∏
n(1 − αn)

−1/2.

PROOF. By substituting equation (2.17) into equation (2.16), we obtain

(2.19) F(β1, β2, a) = ∏
n

E
[
e

1
2 (

∑2
i=1 αn

∫ 1
0 φn(i,si ) dW(si))

2]
.

Letting ξi be real numbers, the right-hand side of equation (2.19) is equal to∏
n(1 − αn)

−1/2. �

Now, we proceed to calculate the eigenvalues of TK . We do this by “guessing”
the eigenvectors. Because the entries in K are scalar multiples of each other, we
guess that the eigenvectors are of separable form:

(2.20) 	φ(s) =
[
ξ1φ(s)

ξ2φ(s)

]
, s ∈ [0,1],

where φ(s) ∈ L2[0,1] is an eigenvector of TM and ξi are real numbers. It can be
easily shown that these “guessed” eigenvectors span the entire (L2[0,1])2.

It is straightforward to verify that the functions ψn(t) := √
2 sin(πnt) for n ≥ 1

and t ∈ [0,1] form an orthonormal basis of L2[0,1] consisting of eigenvectors for
TM . The eigenvalue λn corresponding to ψn can be calculated to be 1

π2n2 , that is,

TMψn(t) = 1

π2n2 ψn(t).

We find that
[ ξ1φ(s)

ξ2φ(s)

]
is an eigenvector of TK with eigenvalue α if and only if

(2.21) −β2
1ξ1 + aβ1β2ξ2 = α

λn

ξ1

and

(2.22) aβ1β2ξ1 − β2
2ξ2 = α

λn

ξ2.

PROPOSITION 2.5. For each eigenvalue λn of TM , there are two correspond-
ing eigenvalues γ ±

n of TK , where

γ ±
n = λn

−(β2
1 + β2

2 ) ±
√

(β2
1 − β2

2 )2 + 4a2β2
1β2

2

2
.

PROOF. To find the eigenvalues, we solve equations (2.21) and (2.22) for αn.
We can view the system of equations (2.21) and (2.22) as the system A	v = λ	v,
where

A =
[

−β2
1 aβ1β2

aβ1β2 −β2
2

]
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and

	v =
[
ξ1
ξ2

]

and

λ = α

λn

.

The solutions for α are λn multiplied by the eigenvalues of A. Calculating the
eigenvalues of A finishes the proposition. �

PROPOSITION 2.6. If αn,n ≥ 1 is the list of eigenvalues for TK , then
∞∏

n=1

(1 − αn) = sinh c+

c+
sinh c−

c− ,

where c± is as defined in equation (2.15).

PROOF. First, note that the set {αn,n ≥ 1} is the same as the set {γ ±
n , n ≥ 1}.

Thus,
∞∏

n=1

(1 − αn) =
∞∏

n=1

(
1 − γ +

n

)(
1 − γ −

n

)
(2.23)

=
∞∏

n=1

(
1 − (z+)2

π2n2

) ∞∏
n=1

(
1 − (z−)2

π2n2

)
= sin(z+)

z+
sin(z−)

z− ,

where

(2.24) z± =

√√√√−(β2
1 + β2

2 ) ±
√

(β2
1 − β2

2 )2 + 4a2β2
1β2

2

2
. �

The final equality in equation (2.23) follows from the following product formula
(see [2]):

(2.25)
sin(z)

z
=

∞∏
n=1

(
1 − z2

π2n2

)
.

Note that for any complex number z,

sin(z)

z
= sinh(−iz)

−iz
.

Since z± are purely imaginary, we observe z± = ic∓ and the c∓ are nonnegative
real. In particular, since c∓ = −iz±, we have that

sin(z+)

z+
sin(z−)

z− = sinh(−iz+)

−iz+
sinh(−iz−)

−iz− = sinh c+

c+
sinh c−

c− .

This completes the proof.
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PROOF OF THEOREM 2.1. The proof immediately follows from combining
Proposition 2.4 and Proposition 2.6. �

REMARK 2.1. Both of c± are nonnegative if |a| ≤ 1, but if

(2.26) |a| ≥
√√√√1 + 2(β2

1 + β2
2 )π2 + π4

4β2
1β2

2

then F(β1, β2, a) = ∞ since the term involving c− vanishes as c− becomes imag-
inary and the term in the denominator becomes sin(−π) = 0. However, we will
only need F(β1, β2, a) for |a| < 1 to obtain the distribution of θ .

3. Obtaining the integral equation for the moment generating function
of θ . In this section, we derive a formula for the moments of θ . Our strategy
is to use integral equations to derive the distribution of θ . The methods we employ
draw inspiration from some related ideas and approaches in earlier works of [7, 8,
14, 15].

3.1. The form for the moments of θ . In this chapter, we will generally de-
note derivatives with subscripts. However, we will sometimes denote derivatives
of functions of three arguments with respect to the third argument by primes rather
than subscripts because it is more natural for Theorem 3.1 below. For example,

Fi(β1, β2, z) = ∂

∂βi

F (β1, β2, z), i = 1,2;

F3(β1, β2, z) = F ′(β1, β2, z) = ∂

∂z
F (β1, β2, z).

The goal of Section 3.1 is to prove the following.

THEOREM 3.1. The moments of θ , where θ is defined in equation (1.2), satisfy
∞∑

n=1

z2n

2n
E

[
θ2n](n!)222n

(2n)! =
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2
zF ′(β1, β2, z).

We first introduce the function G = G(γ1, γ2, a), given by

(3.1) G =
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2
V̄ ,

where V̄ is defined as

F(β1, β2, a) − F

(√
γ1β1, β2,

a√
γ1

)

− F

(
β1,

√
γ2β2,

a√
γ2

)
+ F

(√
γ1β1,

√
γ2β2,

a√
γ1γ2

)
.
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REMARK 3.1. Note that if γi ≥ 1, βi ≥ 0, i = 1,2 and |a| < 1, the quantities

F

(√
γ1β1, β2,

a√
γ1

)
, F

(
β1,

√
γ2β2,

a√
γ2

)
,

F

(√
γ1β1,

√
γ2β2,

a√
γ1γ2

)

are finite and well defined. One can (with some algebra) show that the right-hand
side of equation (3.1) converges, and thus G is also well defined.

PROPOSITION 3.1. Under the conditions of Remark 3.1, the expression

∂2G(γ1, γ2, a)

∂γ1∂γ2

is simultaneously equal to

(3.2)
∫ ∞

0
dβ1

∫ ∞
0

dβ2
β1β2

4
E

[
eaβ1β2θ e−γ1

β2
1
2 e−γ2

β2
2
2

]
and

(3.3)
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2

∂2

∂γ1∂γ2
F

(√
γ1β1,

√
γ2β2,

a√
γ1γ2

)
.

PROOF. Plugging in the definition of F from equation (2.8), equation (3.1)
can be rewritten as

G(γ1, γ2, a) =
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2
E

[
eaβ1β2X1,2

(
e− β2

1 X1,1
2 − e− γ1β2

1 X1,1
2

)

× (
e− β2

2 X2,2
2 − e− γ2β2

2 X2,2
2

)]
.

The second integrand of the above equation is everywhere positive and if we take
the expectation outside the integrals, then for each fixed ω ∈ � [the probability
space where Wi(s,ω) are defined], we can replace βi by βi√

Xi,i (ω)
, i = 1,2. We

then rewrite G(γ1, γ2, a) as follows:

G(γ1, γ2, a) = E

[∫ ∞
0

dβ1

β1

∫ ∞
0

dβ2

β2
eaβ1β2θ(ω)(e− β2

1
2 − e− γ1β2

1
2

)(
e− β2

2
2 − e− γ2β2

2
2

)]
.

Putting the expectation back inside the integral, we obtain

G(γ1, γ2, a) =
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2
E

[
eaβ1β2θ

](
e− β2

1
2 − e− γ1β2

1
2

)
(3.4)

× (
e− β2

2
2 − e− γ2β2

2
2

)
.
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Recall the corollary of Fubini’s theorem that states that integration and differ-
entiation with respect to a parameter can be interchanged if the integral of the dif-
ferentiated integrand converges absolutely. One can show this is true in equation
(3.4) for |a| < 1. Thus, for |a| < 1, we obtain

∂2G(γ1, γ2, a)

∂γ1∂γ2
=

∫ ∞
0

dβ1

∫ ∞
0

dβ2
β1β2

4
E

[
eaβ1β2θ

]
e−γ1

β2
1
2 e−γ2

β2
2
2 .

On the other hand, using the definition of G from equation (3.1) directly, we obtain

∂2G(γ1, γ2, a)

∂γ1∂γ2
=

∫ ∞
0

dβ1

β1

∫ ∞
0

dβ2

β2

∂2

∂γ1∂γ2
F

(√
γ1β1,

√
γ2β2,

a√
γ1γ2

)
.

This completes the proof. �

Our next proposition gives our first expression for the moments of θ . We now
fix some notation. Let Fi denote the derivative with respect to the ith argument, as
follows:

Fi(β1, β2, z) = ∂

∂βi

F (β1, β2, z), i = 1,2;

F3(β1, β2, z) = F ′(β1, β2, z) = ∂

∂z
F (β1, β2, z).

PROPOSITION 3.2. We have
∞∑

n=0

z2n
E

[
θ2n](n!)222n

(2n)!

=
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2

(
z2F ′′(β1, β2, z) + zF ′(β1, β2, z) − zβ1F

′
1(β1, β2, z)

− zβ2F
′
2(β1, β2, z) + β1β2F12(β1, β2, z)

)
.

PROOF. Our strategy is to simplify expressions (3.2) and (3.3) and to set them
equal to each other using Proposition 3.1. We begin now by simplifying the expres-
sion in (3.2). We do this by expanding E[eaβ1β2θ ] as a power series and substitute
β2

i

2 with ui , i = 1,2 and do the integrals on ui , term-by-term, to obtain an ex-
pression involving the moments, μ2n = E[θ2n], of θ (note that the odd moments,
μ2n+1, n ≥ 0, vanish, by symmetry). Algebraic manipulation yields a simpler form
of the expression in (3.2), displayed below:

∞∑
n=0

a2n

(2n)!μ2n

1

4

∫ ∞
0

du1

∫ ∞
0

(2u1)
ne−γ1u1(2u2)

ne−γ1u2 du2

(3.5)

=
∞∑

n=0

(
a√
γ1γ2

)2n

μ2n

(n!)222n

(2n)!
1

4γ1γ2
.
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Thus, we see that the simplified form of expression (3.2) is 1
4γ1γ2

times a func-
tion of z = a√

γ1γ2
, and of course the expression (3.3) must also be of this form.

Applying the multivariate chain rule to the expression ∂2

∂γ1∂γ2
F(

√
γ1β1,

√
γ2β2,

a√
γ1γ2

) from expression (3.3) yields

∂

∂γ2

(
1

2

β1√
γ1

F1

(√
γ1β1,

√
γ2β2,

a√
γ1γ2

)

+ −a

2γ
3
2

1 γ
1
2

2

F3

(√
γ1β1,

√
γ2β2,

a√
γ1γ2

))

which in turn equals

β1β2

4
√

γ1γ2
F12 + −aβ1

4
√

(γ1)2(γ2)3
F13 + −aβ2

4
√

(γ1)3(γ2)2
F23

(3.6)

+ a

4
√

(γ1)3(γ2)3
F3 + a2

4γ 2
1 γ 2

2

F33.

Note that in expression (3.6), for the sake of brevity, we dropped the arguments

(3.7)
(√

γ1β1,
√

γ2β2,
a√
γ1γ2

)

of F and its derivatives. Substituting the right-hand side of expression (3.6) into
expression (3.3) and replacing βi by βi√

γi
, i = 1,2 and setting z = a√

γ1γ2
, we obtain

(3.8)
1

4γ1γ2

∫ ∞
0

dβ1

β1

∫ ∞
0

dβ2

β2

(
z2F ′′ + zF ′ − zβ1F

′
1 − zβ2F

′
2 + β1β2F12

)
.

The proposition now follows by equating expression (3.8) with the expression
in (3.5). �

The following proposition completes the proof of Theorem 3.1.

PROPOSITION 3.3. Equation (3.5) can be simplified to

(3.9)
∞∑

n=1

z2n

2n
E

[
θ2n](n!)222n

(2n)! =
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2
zF ′(β1, β2, z).

PROOF. We first consider the third, fourth and fifth terms in the integrand of
the right-hand side of the equation in the statement of Proposition 3.2. The third
and fourth terms give zero upon integration. For example, the fourth term is again
an exact differential in β2, so

(3.10)
∫ ∞

0
dβ2 −

∫ ∞
0

dβ1

β1
zF ′

2(β1, β2, z) = z

∫ ∞
0

dβ1

β1
F ′(β1,0, z) = 0
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because F(β1,0, z) = E[e− β2
2
2 X1,1], which is constant in z and so has a derivative

of zero with respect to z. The same argument holds for the third term. The fifth
term gives unity upon integration because the β1β2 terms in the numerator and
denominator cancel and the integrand becomes an exact differential, giving∫ ∞

0
dβ1

∫ ∞
0

dβ2F12(β1, β2, z) = −
∫ ∞

0
dβ1F1(β1,0, z) = F(0,0, z) = Ee0 = 1.

The sum of the first and second terms can be written as

(3.11) z2F ′′(β1, β2, z) + zF ′(β1, β2, z) = z
d

dz

(
zF ′(β1, β2, z)

)
.

We may subtract unity from both sides of equation (3.5), divide by z and integrate
to obtain

(3.12)
∞∑

n=1

z2n

2n
E

[
θ2n](n!)222n

(2n)! =
∫ ∞

0

dβ1

β1

∫ ∞
0

dβ2

β2
zF ′(β1, β2, z).

This completes the proof. �

3.2. Isolating the moments. The goal of this section is to use Proposition 3.3
to extract the even moments of θ . We begin by defining the function S(u) as

S(u) =
√

u

sinhu
.

Recalling the definition of c± in equation (2.15), Theorem 2.1 says

F(β1, β2, z) = S
(
c+(β1, β2, z)

)
S
(
c−(β1, β2, z)

)
.

Differentiating with respect to z and multiplying z yields

z
d

dz
F (β1, β2, z) = zS′(c+)(

c+)′
S
(
c−) + zS

(
c+)

S′(c−)(
c−)′

(note that, as before, the prime notation denotes the derivative with respect to z).
For example, the derivative of c+ (with respect to z) is, after some algebraic ma-
nipulation, simplified as

1√
c+

zb2
1b

2
2√

(b2
1 − b2

2)
2 + 4z2b2

1b
2
2

.

Define the function T (c) as follows:

(3.13) T (c) = 1

c

S′(c)
S(c)

= 1

2c2

(
1 − c

sinh c
cosh c

)
.
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Then equation (3.12) becomes
∞∑

n=1

z2n

2n
E

[
θ2n](n!)222n

(2n)!
(3.14)

= z2
∫ ∞

0

∫ ∞
0

S
(
c+)

S
(
c−)(

T
(
c+) − T

(
c−)) β1β2 dβ1 dβ2√

(β2
1 − β2

2 )2 + 4β2
1β2

2z2
.

We simplify equation (3.14) by noting that we can break up the integrand by find-
ing two regions such that the integral is the same over each of them. Noting that
the integral is symmetric in (β1, β2), we simplify equation (3.14) as

∞∑
n=1

z2(n−1)

2n
E

[
θ2n](n!)222n

(2n)!
(3.15)

= 2
∫ ∞

0
dβ1

∫ β1

0
β1β2S

(
c+)

S
(
c−)T (c+) − T (c−)

(c+)2 − (c−)2 dβ2.

A change of variables will suffice to simplify equation (3.15). We proceed by
changing variables from (β1, β2) to (u1, u2), where, for fixed real z ∈ (0,1), we
set

(3.16) u1(β1, β2) = c+(β1, β2, z), u2(β1, β2) = c−(β1, β2, z).

The Jacobian of this transformation can be calculated as J = β2
1−β2

2
u2

1−u2
2

√
1 − z2, and

for further reference we note that β2
1 + β2

2 = u2
1 + u2

2 and β1β2
√

1 − z2 = u1u2,
as well as dβ1 dβ2 = 1

J
du1 du2. After bringing

√
1 − z2 to the left-hand side and

canceling a factor of u2
1 − u2

2, equation (3.15) becomes
√

1 − z2
∞∑

n=1

z2(n−1)

2n
E

[
θ2n](n!)222n

(2n)!
(3.17)

= 2
∫∫

U

u1u2S(u1)S(u2)(T (u1) − T (u2))√
(u2

1 − u2
2)

2 − z2(u2
1 + u2

2)
2

du1 du2.

Here, U is the region of (u1, u2) in which the quantity in the square root of equa-
tion (3.17) is positive, that is,

(3.18) U =
{
(u1, u2) : 0 ≤ u2 ≤ u1

√
1 − z

1 + z

}
.

To determine U , first note that the domain of integration in equation (3.15) is
bounded by β1 = β2 and β2 = 0 in the first quadrant. We make the following
change of variables: u1 = u

√
1 + v and u2 = u

√
1 − v. Noting that u1 ≥ u2, the

two boundaries become u2 = u1

√
1−z
1+z

and u2 = 0, which is the description of
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U in equation (3.18). The fact that β2 = 0 is equivalent to u2 = 0 follows from
β1β2 = u1u2

√
1 − z2 along with z ∈ (0,1), 0 ≤ u2 ≤ u1 and 0 ≤ β2 ≤ β1. The

fact that β1 = β2 is equivalent to u2 = u1

√
1−z
1+z

can be derived directly from the

formulas for c+ and c− in equation (2.15), with z in place of a in equation (2.15).
For 0 ≤ z < 1, equation (3.17) becomes

√
1 − z2

∞∑
n=1

z2(n−1)

2n
E

[
θ2n](n!)222n

(2n)!

=
∫ 1

z
dv(3.19)

×
∫ ∞

0

uS(u
√

1 + v)S(u
√

1 − v)(T (u
√

1 + v) − T (u
√

1 − v))√
v2 − z2

du.

We now seek to simplify equation (3.19). It is easy to check that the right-hand
side of equation (3.19) converges. Let us define g(v) as

g(v) =
∫ ∞

0
uS(u

√
1 + v)S(u

√
1 − v)T (u

√
1 + v)du

(3.20)
−

∫ ∞
0

uS(u
√

1 + v)S(u
√

1 − v)T (u
√

1 − v) du.

By the definitions of S and T , and with some algebra, it can be shown that g(v)

is the difference of convergent integrals. We now make the substitution u → u√
1+v

in the first integral in equation (3.20) and the substitution u → u√
1−v

in the second
integral in equation (3.20). We then simplify the right-hand side of equation (3.19)
as

∫ 1

z

dv√
v2 − z2

∫ ∞
0

S(u)T (u)

[
u

1 + v
S

(
u

√
1 − v

1 + v

)
(3.21)

− u

1 − v
S

(
u

√
1 + v

1 − v

)]
du.

We now focus on the term in square brackets in the above expression. We write
its power series representation as

(3.22)
[

u

1 + v
S

(
u

√
1 − v

1 + v

)
− u

1 − v
S

(
u

√
1 + v

1 − v

)]
=

∞∑
r=1

sr(u)v2r−1,

for a sequence of functions sr(u), r ≥ 1, which are not easy to obtain. Note that
the right-hand side of equation (3.22) is analytic in v near v = 0 and is also odd
in v. Placing the right-hand side of equation (3.22) into expression (3.21), and
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interchanging integrals, expression (3.21) becomes

(3.23)
∞∑

r=1

∫ ∞
0

S(u)T (u)sr(u) du

∫ 1

z

v√
v2 − z2

v2(r−1) dv.

Substituting v2 = t2 + z2, and noting that v dv = t dt , the second integral in ex-
pression (3.23) becomes

∫ √
1−z2

0

(
z2 + t2)r−1

dt =
√

1 − z2
∫ 1

0

(
z2(

1 − v2) + v2)r−1
dv,

where we have substituted t = v
√

1 − z2. This is quite convenient since the factor√
1 − z2 cancels on both sides of equation (3.17). The final result is the slightly

simpler identity below:
∞∑

n=1

z2(n−1)

2n
E

[
θ2n](n!)222n

(2n)!
(3.24)

=
∞∑

r=1

r−1∑
k=0

z2k
∫ 1

0

(
r − 1

k

)(
1 − v2)k

v2(r−1−k) dv

∫ ∞
0

S(u)T (u)sr(u) du.

Comparing coefficients of powers of z gives the moments of the distribution of θ .
Collecting terms with k = n − 1, we can simplify equation (3.24) to obtain the
following theorem.

THEOREM 3.2.

E
[
θ2n] =

(
2n

n

)
2n

22n

∞∑
r=n

∫ 1

0

(
r − 1
n − 1

)(
1 − v2)n−1

v2(r−n) dv

(3.25)
×

∫ ∞
0

S(u)T (u)sr(u) du,

where the sr are implicitly determined by equation (3.22).

Proposition 3.4 below gives an even more explicit formula for the second mo-
ment of θ :

PROPOSITION 3.4. The second moment of θ , corresponding to n = 1, can be
calculated explicitly as∫ ∞

0
du1

∫ u1

0

√
u1u2

sinhu1 sinhu2

u1u2

u1 + u2

×
( 1

u2
1
(1 − u1

sinhu1
coshu1) − 1

u2
2
(1 − u2

sinhu2
coshu2)

u1 − u2

)
du2.
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PROOF. For the case n = 1, we simplify equation (3.25) as

(3.26) E
[
θ2] =

∫ ∞
0

S(u)T (u)du

∫ 1

0
v−1 dv

∞∑
r=1

v2r−1sr(u).

Placing the left-hand side of equation (3.22) into the above equality, we have E[θ2]
equals

∫ ∞
0

du

∫ 1

0
v−1S(u)T (u)

[
u

1 + v
S

(
u

√
1 − v

1 + v

)
(3.27)

− u

1 − v
S

(
u

√
1 + v

1 − v

)]
dv.

Making the transformation u → u
√

1 + v in the first term of the bracketed ex-
pression above and u → u

√
1 − v in the second term of the bracketed expression

above, expression (3.27) becomes∫ ∞
0

udu

∫ 1

0
v−1S(u

√
1 + v)S(u

√
1 − v)

(
T (u

√
1 + v) − T (u

√
1 − v)

)
dv.

We now make one final transformation. Let u1 = u
√

1 + v and let u2 = u
√

1 − v.

The Jacobian of this transformation is u√
1−v2

. Note that v = u2
1−u2

2
u2

1+u2
2
, and

√
1 − v2 =

u1u2
u2 . After making this transformation, we obtain a simpler form of expression

(3.27), which gives us an explicit formula for the second moment of θ :

(3.28) E
[
θ2] =

∫ ∞
0

du1

∫ u1

0

(
2u1u2

u1 + u2

)
S(u1)S(u2)

T (u1) − T (u2)

u1 − u2
du2.

Using the definitions of S and T , we arrive at our final expression for the second
moment of θ as∫ ∞

0
du1

∫ u1

0

√
u1u2

sinhu1 sinhu2

u1u2

u1 + u2

×
( 1

u2
1
(1 − u1

sinhu1
coshu1) − 1

u2
2
(1 − u2

sinhu2
coshu2)

u1 − u2

)
du2.

This completes the proof. �

Using the above expression for the second moment of θ , we numerically obtain
a value of 0.240522. Recall that the Monte Carlo simulation in Table 1 reported a
value of 0.235057.

REMARK 3.2. One must proceed numerically using equation (3.25) to calcu-
late higher order moments.
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3.3. Open problems. This work admits many potential extensions. Other
Gaussian processes should be treatable with our methods, for example, a pair of
Ornstein–Uhlenbeck processes or a pair of correlated Wiener processes. It would
be of particular interest to compare the variances of the correlation coefficient
amongst these cases.
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