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• Idea of the lectures is to provide a relatively advanced-level course that builds up on the existing introductory-

level fluid dynamics courses. The lectures target an audience of upper-level undergraduate students, graduate

students, and postdocs.

•Main topics:

(1) Introduction

(2) Governing equations

(3) Geostrophic dynamics

(4) Quasigeostrophic theory

(5) Ekman layer

(6) Rossby waves

(7) Linear instabilities

(8) Ageostrophic motions

(9) Transport phenomena

(10) Nonlinear dynamics and wave-mean flow interactions

• Suggested textbooks:

(1) Introduction to geophysical fluid dynamics (Cushman-Roisin);

(2) Fundamentals of geophysical fluid dynamics (McWilliams);

(3) Geophysical fluid dynamics (Pedlosky);

(4) Atmospheric and oceanic fluid dynamics (Vallis);

(5) Essentials of atmospheric and oceanic dynamics (Vallis).



Motivations

• Main motivation for the recent rapid development of Geophysical Fluid Dynamics (GFD) is advancing our

knowledge about the following very important, challenging and multidisciplinary research lines:

— Earth system modelling,

— Predictive understanding of climate variability (emerging new science!),

— Forecast of various natural phenomena (e.g., weather),

— Natural hazards, environmental protection, natural resources, etc.

What is GFD?

•Most of GFD is about dynamics of stratified and turbulent fluids on giant rotating planets (spheres).

— On smaller scales GFD becomes classical fluid dynamics with geophysical applications.

— Other planets and some astrophysical fluids (e.g., stars, galaxies) are also included in GFD.

• GFD combines applied math and theoretical physics.

It is about mathematical representation and physical interpretation of geophysical fluid motions.

•Mathematics of GFD is heavily computational, even relative to other branches of fluid dynamics (e.g., modelling

of the ocean circulation and atmospheric clouds are the largest computational problems in the history of science).

— This is because lab experiments (i.e., analog simulations) can properly address only tiny fraction of interesting

questions (e.g., small-scale waves, convection, microphysics).

• In geophysics theoretical advances are often GFD-based rather than experiment-based, because obtaining field

measurements is very complicated, difficult, expensive and often impossible.

Let’s overview some geophysical phenomena of interest...



An image of the Earth from space:

• Earth’s atmosphere

and oceans are the

main but not the only

target of GFD



This is not an image of the Earth from space...

...but a visualized solution of the mathematical equations!



• Atmospheric cyclones and anticyclones shape up midlatitude weather.

This cyclone is naturally visualized by clouds:

•Modelling atmospheric clouds is notoriously difficult multi-scale problem with phase transi-

tions and chemistry involved.



• Tropical cyclones (hurricanes and typhoons) are a coupled ocean-atmosphere phenomenon.

These are powerful storm systems characterized by low-pressure center, strong winds, heavy

rain, and numerous thunderstorms.

Hurricane Katrina approaching New Orleans:



• Ocean-atmosphere coupling: Ocean and atmosphere exchange momentum, heat, water, radi-

ation, aerosols, and greenhouse gases.

Ocean-atmosphere interface is a very complex two-sided boundary layer:



Ocean currents are full of transient mesoscale eddies:

• Mesoscale (synoptic) oceanic eddies — also called “oceanic weather” — are dynamically

similar to atmospheric cyclones and anticyclones; however, they are smaller, slower and more

numerous.

•Modelling mesoscale eddies and their large-scale effects is very important (and challenging),

because predictive skills of climate models crucially depend on their accurate representation.



Submesoscale eddies around island... ...and around the Gulf Stream

• Submesoscale motions are geostrophically and hydrostatically unbalanced, which means that

they are less affected by the rotation and stratification than mesoscale eddies.

• Many submesoscale processes are steered by coasts and topography (e.g., coastal currents,

upwellings, tidal mixing, lee waves).

• Turbulence operates on all scales down to millimeters, but on smaller scales effects of plane-

tary rotation and density stratification weaken, and GFD turns into classical fluid dynamics.



Breaking surface

gravity wave

•GFD deals with many types of waves operating on lengthscales from centimeters to thousands

of kilometers.

• Breaking internal gravity waves are very important for vertical mixing shaping up stratifica-

tions of geophysical fluids.



Evolution of a tsunami predicted by high-accuracy shallow-water modelling:

• Tsunami is specific type of surface gravity waves: long, fast and energetic. Tsunami running

on coasts creates extreme danger.



• GFD is involved in problems with formation and propagation of ice.

⇐= Flowing glacier

Formation of marine ice =⇒



Erupting volcano

Eyjafjallajokull

spewes ashes to

be transported

over large

distances...

• GFD provides basis for modelling turbulent material transport of various substances and

chemicals in atmospheres and oceans.



Chlorophyll

concentration

on the sea surface

• Biogeochemical modelling links GFD with population biology and involves solving for con-

centrations of hundreds of mutually interacting species feeding on light, nutrients and each

other.



• GFD applies to atmospheres of other planets.

Circulation of the Jupiter’s weather layer:

Images of Jupiter from the Cassini

and Voyager missions

•Weather layer of Jupiter is characterized by multiple, alternating zonal jets, long-lived coher-

ent vortices (e.g., Great Red Spot), waves and turbulence.



• Towards the poles jovian turbulence changes its character, as the jets fade out and give way

to vortex crystals.

• Many physical processes shape this circulation up: thermal convection, flow instabilities,

energy cascades, planetary surf zones, transport barriers, etc.

Similar jets exist on other planets, including the Earth... And not only on the planets!



Convection clouds on Jupiter (science fiction art by Andrew Stewart):

• Some theories argue that alternating jets on giant gas planets are driven by deep convective

plumes that feed upscale cascade of energy.



What are the other planets where alternating zonal jets also exist?

• Brown dwarfs are substellar objects

about Jupiter size but 50 times denser

• Earth’s atmosphere has only a few jets, for good

physical reasons.

• Earth’s ocean has hundreds of (recently discovered) weak jets.



• MagnetoHydroDynamics (MHD) naturally extends the realm of GFD to modelling the Sun

and other stars.

Beautiful example of coronal plasma rain on the Sun:



• GFD also deals with space weather and violent winds.

Spectacular aurora (borealis)

during polar night:

Powerful tornado emerges from a funnel cloud:



• GFD also deals with atmospheric electricity and motion of floating objects.

Drifting iceberg near Antarctic:

Multiple lightnings strike in a tropical thunderstorm:

And there are many other geophysical phenomena in the need of science explorers!



• Representation of fluid flows

Let’s consider a flow consisting of infinitesimal fluid particles.

Each particle is characterized by its position r and velocity

u vectors, which are connected by the kinematic equation:

dr(t)

dt
=
∂r(a, t)

∂t
= u(r, t) , r(a, 0) = a

• Trajectory (pathline) of an individual fluid particle is “recording”

of the path of this particle over some time interval. Instantaneous direction of the trajectory is determined by the

corresponding instantaneous streamline.

• Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the flow

u = (u, v, w). Streamline shows the direction a fluid element will travel in at any moment of time.

A parametric representation of just one streamline (here s is coordinate along the streamline) at some moment in

time is Xs(xs, ys, zs) :

dXs

ds
× u(xs, ys, zs) = 0 =⇒ i

(

w
∂ys
∂s
− v∂zs

∂s

)

− j
(

w
∂xs
∂s
− u∂zs

∂s

)

+ k
(

v
∂xs
∂s
− u∂ys

∂s

)

= 0

=⇒ dxs
u

=
dys
v

=
dzs
w

For 2D and non-divergent flows the velocity streamfunction can be used to plot streamlines:

u = −∇×ψ , ψ = (0, 0, ψ) , u = (u, v, 0) =⇒ u = −∂ψ
∂y

, v =
∂ψ

∂x

Note, that u·∇ψ = 0, hence, velocity vector u always points along the isolines of ψ(x, y), implying that these

isolines are indeed the streamlines.

• Streakline is the collection of points of all the fluid particles that have passed continuously through a particular

spatial point in the past. Dye steadily injected into the fluid at a fixed point extends along a streakline.

Note: if flow is stationary, that is ∂/∂t ≡ 0, then streamlines, streaklines and trajectories coincide.

• Timeline (material line) is the line formed by a set of fluid particles that were marked at the same time, creating

a line or a curve that is displaced in time as the particles move.



• Lagrangian framework: Point of view such that fluid is described by following fluid particles. Interpolation

problem; not optimal use of information, because evolving particles will always nonuniformly cover the fluid

area.

• Eulerian framework: Point of view such that fluid is described at fixed positions in space. Nonlinearity

problem.



GOVERNING EQUATIONS

Complexity: These equations are sufficient for finding a solution but are too complicated to solve; they are useful

only as a starting point for GFD analysis.

Art of modelling: Typically the governing equations are approximated analytically and, then, solved approximately

(by analytical or numerical methods); one should always keep track of all main assumptions and approximations.

• Continuity equation (conservation of mass)

Let us take the Eulerian view and consider a fixed infinitesimal cubic volume of fluid and flow of mass through

its surface: the mass budget must state conservation of mass.

∂ρ

∂t
+∇·(ρu) = 0 or

Dρ

Dt
= −ρ∇·u ;

D

Dt
=

∂

∂t
+ u·∇ ←− materialderivative



Note: if fluid is incompressible (i.e., ρ = const), then the continuity equation is reduced to

∇·u = 0 ,

which is its incompressible form.

•Material derivative

This is one of the most important concepts in fluid mechanics.

When operating on X, it gives the rate of change of X with time following the fluid element and subject to a

space-time dependent velocity field.

Material derivative is the fundamental link between the Eulerian [∂/∂t+ u·∇] and Lagrangian [D/Dt] descrip-

tions of changes in the fluid.

The way to see that the material derivative describes the rate of change of any property F (t, x, y, z) following a

fluid particle is by applying (i) the chain rule of differentiation and (ii) definition of velocity as the rate of change

of particle position:

DF (t, x, y, z)

Dt
=
∂F

∂t
+
∂F

∂x

∂x

∂t
+
∂F

∂y

∂y

∂t
+
∂F

∂z

∂z

∂t
=
∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
=
∂F

∂t
+ u·∇F

Tendency term ∂X/∂t represents the rate of change of X at a point which is fixed in space (and occupied by

different fluid particles at different times). Changes of X are observed by a stand-still observer.

Advection term u·∇X represents changes of X due to movement with velocity u, which is the flow supply of

X to the fixed reference point. Additional advective changes of X are experienced by an observer swimming

with velocity u, even when the field of X is steady.



•Material tracer equation

For any material (e.g., chemicals, aerosols, gases) tracer concentration τ (amount per unit mass), via similar to

the continuity equation budgeting, the governing evolution equation for composition is:

∂(ρτ)

∂t
+∇·(ρτu) = ρS(τ) ,

where S(τ) stands for all non-conservative sources and sinks of τ (boundary sources, molecular diffusion, reac-

tion rate, etc.).

Turbulent tracer diffusion is generally added to S(τ) and represented by ∇·(κ∇τ), where κ is diffusivity (tensor)

coefficient.



•Momentum equation

Consider the Newton’s Second Law in a fixed frame of reference, for an infinitesimal cubic volume of fluid δV,
and for some force F acting on the unit volume:

D

Dt
(ρuδV ) = F δV =⇒ u

D

Dt
(ρδV ) + ρδV

D

Dt
u = F δV =⇒ Du

Dt
=

1

ρ
F ,

where the first term of the second equation is zero, because mass of the fluid element remains constant (i.e., we

do not consider relativistic effects). Let us now consider different forces.

Pressure force arises thermodynamically (due to internal motion of molecules) from the pressure p(x, y, z) that

acts perpendicularly on 6 faces of the infinitesimal cubic volume δV. Hence, the pressure force component in x
is

Fx δV = [p(x, y, z)− p(x+ δx, y, z)] δy δz = −∂p
∂x

δV =⇒ Fx = −
∂p

∂x
=⇒ F = −∇p

Frictional force (due to internal motion of molecules and tangential stresses acting on 6 faces of the infinitesimal

cubic volume) is typically approximated as ν∇2u, where ν is the kinematic viscosity.

Body force Fb is typically represented by gravity (e.g., downward Fb = −g ) and electromagnetic (e.g., on the

Sun) forces.

Coriolis force is one of pseudo-forces that appear only in rotating (i.e., non-inertial!) frames of reference, which

are characterized by the rotation rate given by the angular velocity vector Ω :

Fc = −2Ω×u

(a) It acts to deflect a fluid particle at right angle to its motion; note, that only moving particles are affected.

(b) It doesn’t do work on a particle, because it is perpendicular to the particle velocity.

(c) Think about motion of tossed ball on a rotating carousel, or about Foucault pendulum. Watch some YouTube

movies about the Coriolis force.

(d) Physics of the Coriolis force: particle on a rotating sphere is deflected because of the conservation of angular

momentum. When moving to smaller/larger latitudinal circle, the particle should be accelerated/decelerated in

the latitudinal direction to conserve its angular momentum.



(e) Because of the deflecting force, moving particles will go around inertial circles that become smaller towards

the planetary poles.

(f) Coriolis force is zero on the equator and acts in the opposite directions in the planetary hemispheres.

To summarize, the (vector) momentum equation is:

Du

Dt
+ 2Ω×u = −1

ρ
∇p+ ν∇2u+ Fb

Note, that in GFD the Coriolis force is traditionally kept on the lhs of the momentum equation, to remind that it

is a pseudo-force.



• Derivation of pseudo-forces in rotating coordinate system

Rates of change of general vector B in the inertial (fixed) and rotating (with Ω) frames of reference (indicated by

i and r, respectively) are related as:

[dB

dt

]

i
=

[dB

dt

]

r
+Ω×B

Apply this relationship to r and ur and obtain

[dr

dt

]

i
≡ ui = ur +Ω×r , (∗)

[dur

dt

]

i
=

[dur

dt

]

r
+Ω×ur . (∗∗)

However, we need acceleration of ui in the inertial frame and expressed completely in terms of ur and in the

rotating frame.

Let’s (a) differentiate (∗) with respect to time, and in the inertial frame of reference; and (b) substitute [dur/dt]i
from (∗∗) :

[dui

dt

]

i
=

[dur

dt

]

r
+Ω×ur +

dΩ

dt
×r+Ω×

[dr

dt

]

i

Now, we again substitute [dr/dt]i from (∗) :

dΩ

dt
= 0 =⇒

[dui

dt

]

i
=

[dur

dt

]

r
+ 2Ω×ur +Ω×(Ω×r)

The term disappearing due to the constant rate of rotation is the (minus) Euler force.

The last term is the (minus) centrifugal force, which acts both on moving and standing particles. It acts a bit like

gravity but in the opposite direction, hence, it can be incorporated in the gravity force field and “be forgotten”.



• Equation of state

ρ = ρ(p, T, τn)

relates pressure p to the state variables — density ρ, temperature T, and chemical tracer concentrations τn,

where n = 1, 2, ... is the tracer index.

All the state variables are related to matter; therefore, the equation of state is a constitutive equation.

(a) Equations of state are often phenomenological and very different for different geophysical fluids (note, that

the other equations are universal).

(b) The most important τn are humidity (i.e., water vapor concentration) in the atmosphere and salinity (i.e.,

concentration of diluted salt mix) in the ocean.

(c) Equation of state brings in temperature, which has to be determined thermodynamically [not part of these

lectures!] from internal energy (i.e., energy needed to create the system), entropy (thermal energy not available

for work), and chemical potentials corresponding to τn (energy that can be available from changes of τn ).

(d) Example of equation of state (for sea water) involves empirically fitted coefficients of thermal expansion α,
saline contraction β, and compressibility γ, which are all empirically determined functions of the state variables:

dρ

ρ
=

1

ρ

( ∂ρ

∂T

)

S,p
dT +

1

ρ

( ∂ρ

∂S

)

T,p
dS +

1

ρ

(∂ρ

∂p

)

T,S
dp = −α dT + β dS + γ dp

• Thermodynamic equation is just one more way of writing the first law of thermodynamics, which is an ex-

pression of the conservation of total energy. (Recall that the second law is about “arrow of time”: direction of

processes in isolated systems is such that the entropy only increases; in simple words, the heat doesn’t go from

cold to hot objects.)

The thermodynamic equation can be written for T (i.e., DT/Dt = ... ), but in GFD it is more convenient to

write it for ρ :

Dρ

Dt
− 1

cs2
Dp

Dt
= Q(ρ) ,

where cs is speed of sound, and Q(ρ) is source term (both concepts have complicated expressions in terms of

the state variables).



To summarize, we obtained (assuming one material tracer) the following COMPLETE SET OF GOVERNING

EQUATIONS:

∂ρ

∂t
+∇·(ρu) = 0 (1)

Du

Dt
+ 2Ω×u = −1

ρ
∇p+ ν∇2u+ Fb (2)

ρ = ρ(p, T, τ) (3)

∂(ρτ)

∂t
+∇·(ρτu) = ρS(τ) (4)

Dρ

Dt
− 1

cs2
Dp

Dt
= Q(ρ) (5)

(a) Momentum equation is for the flow velocity vector, hence, it can be written as 3 equations for the (scalar)

velocity components.

(b) We ended up with 7 equations and 7 unknowns (for single tracer concentration): u, v, w, p, ρ, T, τ.

(c) These equations (or their approximations) are to be solved subject to some boundary and initial conditions.

(d) These equations are too difficult to solve not only analytically but even numerically.

(e) One remaining step that makes these equations even more difficult, is to rewrite them in the spherical coordi-

nates which are natural for planetary fluid motions on.



• Spherical coordinates are natural for GFD: longitude λ, latitude θ

and altitude r.

Material derivative for a scalar quantity φ in spherical coordinates is:

D

Dt
=
∂φ

∂t
+

u

r cos θ

∂φ

∂λ
+
v

r

∂φ

∂θ
+ w

∂φ

∂r
,

where the flow velocity in terms of the corresponding unit vectors is:

u = iu + jv + kw , (u, v, w) ≡
(

r cos θ
Dλ

Dt
, r

Dθ

Dt
,
Dr

Dt

)

Vector analysis provides differential operators in spherical coordinates

acting on a field given by either vector B = iBλ + jBθ + kBr

or scalar φ :

∇ ·B =
1

cos θ

[ 1

r

∂Bλ

∂λ
+

1

r

∂(Bθ cos θ)

∂θ
+

cos θ

r2
∂(r2Br)

∂r

]

,

∇×B =
1

r2 cos θ

∣

∣

∣

∣

∣

∣

i r cos θ j r k

∂/∂λ ∂/∂θ ∂/∂r

Bλr cos θ Bθr Br

∣

∣

∣

∣

∣

∣

,

∇2B = ∇(∇·B)−∇×(∇×B) ,

∇φ = i
1

r cos θ

∂φ

∂λ
+ j

1

r

∂φ

∂θ
+ k

∂φ

∂r
,

∇2φ ≡ ∇·∇φ =
1

r2 cos θ

[ 1

cos θ

∂2φ

∂λ2
+

∂

∂θ

(

cos θ
∂φ

∂θ

)

+ cos θ
∂

∂r

(

r2
∂φ

∂r

)]

.

(a) Writing down material derivative in spherical coordinates is a bit problematic, because directions of the unit

vectors i, j, k change when fluid element changes its location; therefore, material derivatives of the unit vectors

are not zeros. Note, that this doesn’t happen in Cartesian coordinates.

(b) Note that θ can be chosen to be polar rather than latitudinal angle; then, coefficients in some of the above

formulas will change.

(c) GFD also uses terrain-following sigma coordinates or space-time varying Lagrangian coordinates.



•Material derivative in spherical coordinates:

Du

Dt
=

Du

Dt
i+
Dv

Dt
j+
Dw

Dt
k+u

Di

Dt
+v

Dj

Dt
+w

Dk

Dt
=

Du

Dt
i+
Dv

Dt
j+
Dw

Dt
k +Ωflow×u , (∗)

where Ωflow is angular velocity (relative

to the centre of Earth) of the unit vector

corresponding to the moving element of

the fluid flow:

Di

Dt
= Ωflow × i ,

Dj

Dt
= Ωflow × j ,

Dk

Dt
= Ωflow × k .

Let’s find Ωflow by moving fluid particle in the direction of each unit vector and observing whether this motion

generates any rotation. It is easy to see that motion in the direction of i makes Ω||, motion in the direction of j

makes Ω⊥, and motion in the direction of k produces no rotation. Note (see left Figure), that Ω|| is a rotation

around the Earth’s rotation axis, and it can be written as: Ω|| = Ω|| (j cos θ + k sin θ). This rotation rate comes

only from a zonally (i.e., along latitude) moving fluid element, and it can be estimated as the following:

uδt = r cos θδλ → Ω|| ≡
δλ

δt
=

u

r cos θ
=⇒ Ω|| =

u

r cos θ
(j cos θ+k sin θ) = j

u

r
+k

u tan θ

r
.

Note: the rotation rate vector in the perpendicular to Ω direction is aligned with i and given by

Ω⊥ = −i v
r

=⇒ Ωflow = Ω⊥ +Ω|| = −i
v

r
+ j

u

r
+ k

u tan θ

r
=⇒

Di

Dt
= Ωflow × i =

u

r cos θ
(j sin θ − k cos θ) ,

Dj

Dt
= −i u

r
tan θ − k

v

r
,

Dk

Dt
= i

u

r
+ j

v

r

(∗) =⇒ Du

Dt
= i

(Du

Dt
− uv tan θ

r
+
uw

r

)

+ j
(Dv

Dt
− u2 tan θ

r
+
vw

r

)

+ k
(Dw

Dt
− u2 + v2

r

)

The additional quadratic (in terms of velocity components) terms are called metric terms.



• Coriolis force in spherical coordinates also needs to be written in terms of the unit vectors.

The planetary angular velocity vector is always orthogonal to the unit vector i (see Figure on previous page):

Ω = (0, Ωy, Ωz) = (0, Ωcos θ, Ω sin θ)

However, the Coriolis force projects on all the unit vectors:

2Ω×u =

∣

∣

∣

∣

∣

∣

i j k

0 2Ω cos θ 2Ω sin θ
u v w

∣

∣

∣

∣

∣

∣

= i (2Ωw cos θ − 2Ωv sin θ) + j 2Ωu sin θ − k 2Ωu cos θ .

By combining the metric and Coriolis terms, we obtain the spherical-coordinates governing equations (other

equations are treated similarly):

Du

Dt
−
(

2Ω +
u

r cos θ

)

(v sin θ − w cos θ) = − 1

ρr cos θ

∂p

∂λ
,

Dv

Dt
+
wv

r
+
(

2Ω +
u

r cos θ

)

u sin θ = − 1

ρr

∂p

∂θ
,

Dw

Dt
− u2 + v2

r
− 2Ω u cos θ = −1

ρ

∂p

∂r
− g ,

∂ρ

∂t
+

1

r cos θ

∂(uρ)

∂λ
+

1

r cos θ

∂(vρ cos θ)

∂θ
+

1

r2
∂(r2wρ)

∂r
= 0 .

Metric terms are relatively small on the surface of a large planet (r → R0) and, therefore, can be neglected for

many process studies;

Note, that the gravity acceleration −g was included; viscous term can be also trivially added.



• Local Cartesian approximation

Both for mathematical simplicity and process studies, the governing equations can be written locally for a plane

tangent to the planetary surface. Then, the momentum equations become:

Du

Dt
+2 (Ω cos θw−Ω sin θv) = −1

ρ

∂p

∂x
,

Dv

Dt
+2 (Ω sin θu) = −1

ρ

∂p

∂y
,

Dw

Dt
+2 (−Ωcos θu) = −1

ρ

∂p

∂z
−g ,

and they can be simplified by neglecting some components of the Coriolis force:

(a) Neglect Coriolis force in the vertical momentum equation, because its effect (upward/downward deflection of

fluid particles, also known as Eotvos effect, which can be also interpreted as change of weight of zonally moving

fluid element), is small.

(b) Neglect vertical velocity in the zonal momentum equation, because the corresponding component of the Cori-

olis force is small relative to the other one (vertical velocity components are often small relative to the horizontal

ones).

Next, we introduce the Coriolis parameter, which is a nonlinear function of latitude: f ≡ 2Ωz = 2Ω sin θ. The

following approximations are often made in GFD:

(a) f -plane approximation: f = f0 (constant).

(b) Planetary sphericity is accounted for by β-plane approximation: f(y) = f0 + βy, where β is gradient of

planetary vorticity.

With the above inputs, the resulting local Cartesian equations are:

Du

Dt
− fv = −1

ρ

∂p

∂x
,

Dv

Dt
+ fu = −1

ρ

∂p

∂y
,

Dw

Dt
= −1

ρ

∂p

∂z
− g , Dρ

Dt
+ ρ∇·u = 0

These equations are to be combined with the other equations (thermodynamic, material tracer, constitutive) also

written in the local Cartesian coordinates. Even this system of equations is too difficult to solve. In order to

simplify it further, we have to focus on specific classes of fluid motions. Our main focus will be on stratified

incompressible flows.



• Stratification

Let’s think about density fields in terms of their decomposition into (a) time-dependent dynamic anomalies

(primed) due to fluid motion and (b) background static fields:

ρ(t, x, y, z) = ρ0 + ρ(z) + ρ′(t, x, y, z) = ρs(z) + ρ′(t, x, y, z)

Later on static density will be represented in terms of stacked isopycnal (i.e., constant-density) and fluid layers,

and dynamic density anomalies will be described by vertical deformations of these layers.

Pressure field can be also treated in terms of static and dynamic components:

p(t, x, y, z) = ps(z) + p′(t, x, y, z) .

We will use symbols [δρ′] and [δp′] to describe the corresponding dynamic scales.

With this concept of fluid stratification, we are ready to make one more important approximation (below) that will

affect both thermodynamic and vertical momentum equations.



• Boussinesq approximation

It is used routinely for oceans and sometimes for atmospheres, and it invokes the following assumptions:

(1) Fluid incompressibility: cs=∞,
(2) Small variations of static density: ρ(z)≪ ρ0 =⇒ only ρ(z) is neglected but not its vertical derivative.

(3) Anelastic approximation (used for atmospheres) is when ρ(z) is not neglected.

Boussinesq approximation affects thermodynamic equation and vertical momentum equation.

Thermodynamic Boussinesq equation (Dρ/Dt = Qρ)

It is written for dynamic buoyancy anomaly b and invokes static buoyancy b :

D(b+ b)

Dt
= Qb , b(t, x, y, z) ≡ −g ρ

′

ρ0
b(z) ≡ −g ρ

ρ0
(∗)

where Qb is source term proportional to Q(ρ). Equation (∗) is often written as

Db

Dt
+N2(z)w = Qb , N2(z) ≡ db

dz
(∗∗)

Buoyancy frequency N measures strength of the static (background) stratification in terms of its vertical deriva-

tive, in accord with assumption (2).

NOTE: Primitive equations are often used in practice as approximation to (∗∗), which in the realistic general

circulation models is replaced by separate material transport equations for thermodynamic variables, and, then,

the buoyancy is found diagnostically from the equation of state:

DT

Dt
= QT ,

DS

Dt
= QS , b = b(T, S, z)



Vertical momentum Boussinesq equation

It is written for pressure anomaly p′ (without static pressure part):

p = ps+p
′ , ρ = ρs+ρ

′ , −∂ps
∂z

= ρsg (static balance) ,
Dw

Dt
= −1

ρ

∂p

∂z
−g (momentum)

Let’s keep the static part for a while and rewrite the last equation in the Boussinesq approximation:

=⇒ (ρs + ρ′)
Dw

Dt
= −∂(ps + p′)

∂z
− (ρs + ρ′) g =⇒ ρ0

Dw

Dt
= −∂p

′

∂z
− ρ′ g

=⇒ Dw

Dt
= − 1

ρ0

∂p′

∂z
+ b

Note, that in the vertical acceleration term ρs + ρ′ is replaced by ρ0, in accord with approximation (2).

Horizontal momentum equations are treated similarly.

To summarize, the Boussinesq system of equations is (we drop primes, from now on, keeping in mind that p
indicates dynamic pressure anomaly):

Du

Dt
− fv = − 1

ρ0

∂p

∂x
,

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
,

Dw

Dt
= − 1

ρ0

∂p

∂z
+ b ,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 ,

Db

Dt
+N2w = Qb



• Hydrostatic approximation

For many fluid flows vertical acceleration is small relative to gravity acceleration, and gravity force is balanced

by the vertical component of pressure gradient (we’ll revisit this approximation more formally):

Dw

Dt
= −1

ρ

∂p

∂z
− g =⇒ ∂p

∂z
= −ρg

Hydrostatic Boussinesq approximation is commonly used for many GFD phenomena.

• Buoyancy frequency

N(z) has clear physical meaning. In a continuously stratified fluid consider density difference δρ between a

fluid particle adiabatically lifted by δz and surrounding fluid ρs(z). Motion of the particle is determined by the

buoyancy (Archimedes) force F and the Newton’s second law:

δρ = ρparticle − ρs(z + δz) = ρs(z)− ρs(z + δz) = −∂ρs
∂z

δz → F = −g δρ = g
∂ρs
∂z

δz

→ ρs
∂2δz

∂t2
= g

∂ρs
∂z

δz → δz̈ +N2δz = 0

(a) If N2 > 0, then fluid is statically stable (negative N2 describes unstable stratification prone to convective

instability), and the particle will oscillate around its resting position with frequency N(z) (typical periods of

oscillations are 10− 100 minutes in the ocean, and about 10 times shorter in the atmosphere).

(b) In the atmosphere, which is significantly non-Boussinesq, one should take into account how density of the

lifted particle changes due to the local change of pressure. Then, N2 is reformulated with potential density ρθ,

rather than density itself.



• Rotation-dominated flows are in the focus of GFD. Such flows are slow, in the sense that they have advective

time scales longer than the planetary rotation period: L/U ≫ f−1.
Given typical observed flow speeds in the atmosphere (Ua ∼ 1−10 m/s) and ocean (Uo ∼ 0.1Ua), the length

scales of rotation-dominated flows are La ≫ 100−1000 km and Lo ≫ 10−100 km. Motions on these scales

constitute most of the weather and strongly influence climate and climate variability.

Rotation-dominated flows tend to be hydrostatic (to be shown later).

Later on, we will use asymptotic analysis to focus on these scales and filter out less important faster and smaller-

scale motions.

• Thin-layered framework describes fluid in terms of stacked, vertically thin but horizontally vast layers of fluid

with slightly different densities (increasing downwards) — this is rather typical situation in GFD.

Let’s introduce physical scales: L and H are horizontal and vertical length scales, respectively, such that

L≫ H; then, U and W are horizontal and vertical velocity scales, respectively, such that U ≫ W. From now

on, we’ll focus mostly on motions with such scales.

Thin-layered flows tend to be hydrostatic (to be shown later).

Later on, we will formulate models that describe fluid in terms of properly scaled, vertically thin but horizontally

vast fluid layers.



Summary

We considered the following sequence of simplified approximations:

Governing Equations (spherical coordinates) → Local Cartesian → Boussinesq → Hydro-

static Boussinesq.

Lost by going Local Cartesian: some effects of rotation and sphericity.

Lost by going Boussinesq: compressible motions (i.e., acoustics, shocks, bubbles), strong stratifications (e.g.,

inner Jupiter).

Lost by going Hydrostatic Boussinesq: large vertical accelerations (e.g., convection, breaking gravity waves,

Kelvin-Helmholtz instability, density currents, double diffusion, tornadoes).

In what follows we consider the simplest relevant thin-layered model, which is locally Cartesian, Boussinesq and

hydrostatic, and try to focus on its rotation-dominated flow component...



BALANCED DYNAMICS

• Shallow-water model

This is our starting point that describes motion

of a horizontal fluid layer with variable thickness,

h(t, x, y). Density is a constant ρ0 and vertical

acceleration is neglected (hydrostatic approximation),

hence:

∂p

∂z
= −ρ0g → p(t, x, y, z) = ρ0g [h(t, x, y)− z] ,

where we took into account that p = 0 at z = h(t, x, y).

Note, that horizontal pressure gradient is independent of z; hence,

u and v are also independent of z, that is, fluid moves in columns.

In local Cartesian coordinates the horizontal momentum equations are:

Du

Dt
− fv = − 1

ρ0

∂p

∂x
= −g ∂h

∂x
,

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
= −g ∂h

∂y
,

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

Continuity equation is needed to close the system, so let us

derive it from the first principles. Recall that horizontal velocity

does not depend on z and consider mass budget of a fluid column.

The horizontal mass convergence (see earlier derivation of the

continuity equation) into a fixed-radius fluid column is by

application of the divergence theorem:

M = −
∫

S

ρ0 u·dS = −
∮

ρ0hu·n dl = −
∫

A

∇·(ρ0hu) dA ,

and this must be balanced by the local increase of the mass due to increasing height of fluid column:

M =
d

dt

∫

ρ0 dV =
d

dt

∫

A

ρ0h dA =

∫

A

ρ0
∂h

∂t
dA =⇒ ∂h

∂t
= −∇·(hu) =⇒ Dh

Dt
+ h∇·u = 0



(a) Note that the above shallow-water continuity equation can be obtained from the original one by transformation

ρ→ h, hence, h can be treated as density of compressible fluid.

(b) It can be also obtained by integrating 3D incompressible continuity equation ∇·u + ∂w/∂z = 0, which

yields vertical velocity component linear in z, and by using kinematic boundary conditions (see later): w(h) =
Dh/Dt, w(0) = 0.

Relative vorticity of 2D flow is defined as:

ζ =
[

∇×u
]

z
=
∂v

∂x
− ∂u

∂y
,

where ζ > 0 is counterclockwise cyclonic motion, and ζ < 0 is clockwise anticyclonic motion.

Note that relative vorticity describes rotation of fluid particles, rather than circular motions of fluid that can be

irrotational.

• Vorticity equation is obtained by taking curl of the momentum (vector) equation (i.e., taking y-derivative of

the first equation and subtracting it from the x-derivative of the second equation). Remember to differentiate

advection term of the material derivative; note that curl of the pressure gradient term is automatically zero.

The resulting vorticity equation is:

Dζ

Dt
+
[∂u

∂x
+
∂v

∂y

]

(ζ + f) + v
df

dy
= 0

By using velocity divergence from the shallow-water continuity equation we obtain single material conservation

equation:

Dζ

Dt
−1

h
(ζ+f)

Dh

Dt
+v

df

dy
= 0 =⇒ 1

h

D(ζ + f)

Dt
− 1

h2
(ζ+f)

Dh

Dt
= 0 =⇒ D

Dt

[ζ + f

h

]

= 0 .



• Potential vorticity (PV) material conservation law:

Dq

Dt
= 0 , q ≡ ζ + f

h

(a) This is very powerful statement that reduces dynamical description of fluid motion to solving for evolution of

materially conserved, scalar quantity. Analogy with electric charge and field: PV can be viewed as active tracer

that changes its own, induced velocity field.

(b) For each fluid column, conservation of PV constrains and mutually connects changes of ζ, f(y), and h,
where changes of the latter can be interpreted as stretching/squeezing of moving fluid columns.

(c) PV inversion problem: Under certain conditions (e.g., when flow is rotation-dominated and hydrostatic) flow

solution can be determined entirely from evolving PV. For example, when h = H = const the inversion is trivial.

(d) The above PV conservation law can be derived for many layers and continuous stratification.

(e) More general formulation of PV is referred to as Ertel PV :

q = −g (ζ + f) ∂θ/∂p ,

where θ is potential density.



• Rossby number is ratio of scalings for material derivative (i.e., horizontal acceleration) and Coriolis forcing:

ǫ =
U 2/L

fU
=

U

fL

For rotation-dominated motions: ǫ≪ 1 .
More conventional notation for Rossby number is Ro, but we’ll use ǫ to emphasize its smallness and apply the

small-ǫ asymptotic expansion.

Given smallness of ǫ, we can expand the governing equations in terms of the geostrophic (leading-order terms)

and ageostrophic (ǫ-order terms) motions:

u = ug + ǫua + o(ǫ2) , p′ = p′g + ǫ p′a + o(ǫ2) , ρ′ = ρ′g + ǫ ρ′a + o(ǫ2) .

• Rossby number expansion

The goal is to be able to predict strong geostrophic motions — this requires taking into account weak ageostrophic

motions. Let’s consider β-plane, focus on relatively slow mesoscale motions, and express velocity scale via ǫ:

T =
L

U
=

L

ǫf0L
=

1

ǫf0
, L/R0 ∼ ǫ =⇒ [βy] ∼ f0

R0
L ∼ ǫf0 .

Consider ǫ-expansion of the horizontal momentum equations:

Dug
Dt
− f0 (vg + ǫva)− βy vg + ǫ2[...] = − 1

ρ0

∂pg
∂x

− ǫ

ρ0

∂pa
∂x

Dvg
Dt

+ f0 (ug + ǫua) + βy ug + ǫ2[...] = − 1

ρ0

∂pg
∂y

− ǫ

ρ0

∂pa
∂y

ǫf0U f0U ǫf0U ǫ2f0U [p′]/(ρ0L) ǫ [p′]/(ρ0L)

Note that Coriolis force can be balanced only by pressure gradient term — this is called geostrophic balance.



• Geostrophic balance

It is obtained from the horizontal

momentum equations at the leading order:

f0vg =
1

ρ0

∂pg
∂x

, f0ug = −
1

ρ0

∂pg
∂y

(a) Proper scaling for pressure must be

[p′] ∼ ρ0f0UL .

(b) Counterintuitive dynamics: Induced local pressure anomaly results in a circular flow around it, rather than in

a classical fluid flow response along the pressure gradient.

(c) It follows from the geostrophic balance that ug is nondivergent:
∂ug
∂x

+
∂vg
∂y

= 0 (see later that wg = 0 ).

(d) Geostrophic flow is 2D and nondivergent, hence, it can be described by a velocity streamfunction; note that

pressure in the geostrophic balance acts as streamfunction in disguise!

(e) Geostrophic balance is diagnostic rather than prognostic equation, hence, it can not be used for predictions of

any temporal evolution. Therefore, the next order of the ǫ-expansion is needed to determine the flow evolution

(see later).

(f) Geostrophically balanced flows are also hydrostatically balanced (see next).



• Hydrostatic balance

Vertical acceleration is typically small for large-scale geophysical motions, because they are thin-layered and

rotation-dominated. Let’s prove this formally:

Dw

Dt
= − 1

ρs + ρg

∂(ps + pg)

∂z
− g , Dw

Dt
∼ 0 ,

∂ps
∂z

= −ρsg

=⇒ ∂pg
∂z

= −ρgg (∗)

Use the corresponding scalings

W =UH/L, T =L/U, [p′]=ρ0f0UL, U = ǫf0L

to identify the validity bound for the leading-order hydrostatic balance:

Dw

Dt
≪ 1

ρ0

∂pg
∂z

=⇒ HU 2

L2
≪ ρ0f0UL

ρ0H
=⇒ ǫ

(H

L

)2

≪ 1

If the last inequality is true, then vertical acceleration can be neglected — this situation of hydrostatic balance

routinely happens for large-scale geophysical flows.



• Scaling for geostrophic density anomaly

From the hydrostatic balance for geostrophic flow and the geostrophic scaling for pressure [p′], we find scaling

for geostrophic dynamic density anomaly ρg :

[ρg] ≡ [ρ′] ∼ [p′]

gH
=
ρ0f0UL

gH
= ρ0 ǫ

f 2
0L

2

gH
= ρ0 ǫ F ,

where F is Froude number (it can be also written as ratio of characteristic flow velocity to the fastest wave

velocity):

F ≡ f 2
0L

2

gH
=

( L

Ld

)2

, Ld ≡
√
gH

f0
∼ O(104 km) ,

and Ld is the external deformation length scale.

For many geophysical scales of interest: F ≪ 1, therefore, it is safe to assume that

F ∼ ǫ =⇒ [ρg] = ρ0 ǫ
2

Thus, ubiquitous and powerful, double-balanced (geostrophic and hydrostatic) motions correspond to nearly flat

isopycnals.



• Continuity equation for ageostrophic flow

Let’s now turn attention to the continuity equation and also expand it in terms of small ǫ:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 , ρ = ρs+ρg, u = ug+ǫ ua, v = vg+ǫ va, w = wg+ǫ wa →

∂ρg
∂t

+(ρs+ρg)
(∂ug
∂x

+
∂vg
∂y

)

+ug
∂ρg
∂x

+vg
∂ρg
∂y

+ǫρs

(∂ua
∂x

+
∂va
∂y

)

+ǫ2 [...]+
∂

∂z
(wgρs+ǫwaρs+wgρg+ǫwaρg) = 0

Use
∂ug
∂x

+
∂vg
∂y

= 0 and ρg ∼ ǫ2 to obtain at the leading order:

∂(wgρs)

∂z
= 0 −→ wg ρs = const

Because of the BCs, somewhere in the water column wg(z) has to be zero

=⇒ wg = 0 , w = ǫ wa, [w] =W = ǫ U
H

L

At the next order of the small-ǫ expansion we recover the continuity equation for ageostrophic flow component:

∂(waρs)

∂z
+ ρs

(∂ua
∂x

+
∂va
∂y

)

= 0 .

Let’s keep this in mind and use it in the derivation of geostrophic vorticity equation.



• Geostrophic (absolute) vorticity equation

It is obtained by going to the next order of ǫ in the shallow-water momentum equations:

Dgug
Dt
−(ǫf0va+vgβy) = −ǫ

1

ρs

∂pa
∂x

,
Dgvg
Dt

+(ǫf0ua+ugβy) = −ǫ
1

ρs

∂pa
∂y

,
Dg

Dt
≡ ∂

∂t
+ug

∂

∂x
+vg

∂

∂y
.

(i) Take curl of the above equations (i.e., subtract y-derivative of the first equation from x-derivative of the second

equation) and mind complexity of the material derivative;

(ii) Use nondivergence of the geostrophic velocity;

(iii) Use continuity equation for ageostrophic flow to replace horizontal ageostrophic velocity divergence.

Thus, we obtain the geostrophic vorticity equation:

Dgζg
Dt

+ βvg =
Dg

Dt
[ζg + βy] = ǫ

f0
ρs

∂(ρswa)

∂z
, ζg ≡

∂vg
∂x
− ∂ug

∂y

(a) This looks almost as PV material conservation law, but unfortunately it is not the one, because of the rhs term.

Can the rhs be absorbed under the material derivative, so that PV conservation law is recovered?

(b) Evolution of absolute vorticity ζg+βy is determined by divergence of the vertical mass flux due to tiny vertical

velocity. This is physical process of squeezing or stretching isopycnals; it is the form drag mechanism (discussed

below).

(c) If ρs is constant within a layer (i.e., thin-layered framework), then, it cancels out from the rhs, and we are left

with the vertical component of velocity divergence.

(d) Note that, although vertical velocity is tiny, its divergence is at the leading order of the absolute vorticity

equation. Can this divergence be determined from the leading-order geostrophic fields?

(e) Yes! Quasigeostrophic theory expresses this divergence in terms of vertical movement of isopycnals, then,

it relates this movement to geostrophic (dynamic) pressure, which turns to be geostrophic streamfunction in

disguise.

(f) On the other hand, evolution of absolute vorticity produces squeezing and stretching deformations, which

induce motions in the neighbouring isopycnal layers.



• Form drag

This is horizontal pressure-gradient force due to varying isopycnal-layer thickness. In turn, isopycnal variations

can arise due to vertical squeezing and stretching.

Geostrophic motions are very efficient in terms of redistributing horizontal momentum vertically, through the form

drag mechanism.

Let’s consider a constant-density fluid layer confined by two interfaces, h1(x) and h2(x), and periodic in zonal

direction with period L ; let’s also assume that situation is 2D (homogeneous in meridional direction).

Zonal pressure-gradient force acting on a volume of fluid is obtained by integration over the domain:

Fx = −
1

L

∫ L

0

∫ h1

h2

∂p

∂x
dx dz = − 1

L

∫ L

0

[∂p

∂x
z
]h1

h2

dx = −h1
∂p1
∂x

+ h2
∂p2
∂x

= p1
∂h1
∂x
− p2

∂h2
∂x

,

where p1 and p2 are pressures on the interfaces; ∂p/∂x does not depend on vertical position within a layer;

and the overbar denotes zonal averaging. Note, that for x-derivatives zonal averaging is zero due to the function

periodicity.

Note that force Fx acting on fluid is zero, if both boundaries are flat. This statement can be reversed: if isopy-

cnal boundaries of a fluid layer are deformed (e.g., by squeezing or stretching), the layer can be accelerated or

decelerated by the corresponding form drag pressure force.

Thus, if a geostrophic motion in some isopycnal layer squeezes or stretches it, the underlying layer is also de-

formed, and the resulting pressure-gradient force accelerates fluid in the underlying layer.



QUASIGEOSTROPHIC THEORY

• Two-layer shallow-water model

This is a natural extension of the single-layer shallow-water

model. It illuminates effects of isopycnal deformations on

the geostrophic vorticity. This model can be straightforwardly

extended to many isopycnal (i.e., constant-density) layers,

thus, producing the family of isopycnal models.

The model assumes geostrophic and hydrostatic balances,

and usual Boussinesq treatment of density:

∆ρ ≡ ρ2 − ρ1 ≪ ρ1, ρ2 , ρ1 ≈ ρ2 ≈ ρ .

All notations are introduced on the Figure.

The layer thicknesses and pressures consist of the static and dynamic components:

h1(t, x, y) = H1 +H2 + η1(t, x, y) , h2(t, x, y) = H2 + η2(t, x, y) ,

p1 = ρ1g(H1 +H2 − z) + p′1(t, x, y) , p2 = ρ1gH1 + ρ2g(H2 − z) + p′2(t, x, y) ,

Here, the shallow-water dynamic pressure anomalies are independent of z, as we have seen, and the static pres-

sures were obtained as the following.

Let’s integrate out static pressure in the top layer:

P1 = −
∫ z

0

ρgdz = −ρ2gH2 − ρ1g(z −H2) + C1

Since P1(z = H1 +H2) = 0, we obtain C1 = ρ1gH1 + ρ2gH2 and find:

P1 = ρ1g(H1 +H2 − z) .
Similarly, in the deep layer:

P2 = −
∫ z

0

ρ2gdz = −ρ2gz + C2

Since P2(z = H2) = P1(z = H2), we obtain C2 = ρ1gH1 + ρ2gH2 and find:

P2 = ρ1gH1 + ρ2g(H2 − z)



• Continuity boundary condition for pressure

This is just a component of the continuity boundary condition for stress tensor (sometimes, this involves surface

tension). Here, it allows to relate dynamic pressure anomalies and isopycnal deformations.

In the two-layer model this boundary condition is equivalent to saying that:

(a) pressure at the upper surface must be zero (more generally, it must be equal to the atmospheric pressure),

(b) pressure on the internal interface must be continuous, i.e., p1 = p2 = P.

Note, that in the absence of motion (p′1 = p′2 = 0) both of these conditions are automatically satisfied for the

static pressure component:

p1|z=H1+H2
= 0 , p1|z=H2

= p2|z=H2
= ρ1gH1 .

In the presence of motion, the upper-surface pressure continuity statement p1|z=η1+H1+H2
= 0 translates into

p′1(t, x, y) = ρ1gη1(t, x, y) .

On the internal interface, the pressure continuity statement is:

P = p1|z=η2+H2
= ρ1g(H1 − η2) + p′1 , P = p2|z=η2+H2

= ρ1gH1 − ρ2gη2 + p′2

=⇒ p′2(t, x, y) = p′1(t, x, y) + g∆ρ η2(t, x, y)

Thus, by using expression for the upper-layer pressure, we obtain:

p′2(t, x, y) = ρ1gη1(t, x, y) + g∆ρ η2(t, x, y) .



• Geostrophy

It always appears at the leading order of small-ǫ expansion and links horizontal velocities and slopes of the

isopycnals (i.e., isopycnal interfaces), which correspond here to the upper and deep layers:

−f0v1 = −g
∂η1
∂x

, f0u1 = −g
∂η1
∂y

;

−f0v2 = −g
ρ1
ρ2

∂η1
∂x
− g ∆ρ

ρ2

∂η2
∂x

, f0u2 = −g
ρ1
ρ2

∂η1
∂y
− g ∆ρ

ρ2

∂η2
∂y

Next, we recall that ρ1 ≈ ρ2 ≈ ρ (Boussinesq argument) and introduce the reduced gravity parameter:

g′ ≡ g∆ρ/ρ .

This allows us to simplify the second-layer geostrophic equations:

−f0v2 = −g
∂η1
∂x
− g′ ∂η2

∂x
, f0u2 = −g

∂η1
∂y
− g′ ∂η2

∂y
.



• Geostrophic vorticity equations

Now, let’s take a look at the full system of the two-layer shallow-water equations:

Du1
Dt
− fv1 = −g

∂η1
∂x

,
Dv1
Dt

+ fu1 = −g
∂η1
∂y

,
∂(h1 − h2)

∂t
+∇·((h1−h2)u1) = 0 ,

Du2
Dt
− fv2 = −g

∂η1
∂x
− g′∂η2

∂x
,

Dv2
Dt

+ fu2 = −g
∂η1
∂y
− g′∂η2

∂y
,

∂h2
∂t

+∇·(h2u2) = 0 .

At the leading order the momentum equations are geostrophic, as we have argued.

At the ǫ-order, we can formulate the layer-wise vorticity equations with the additional rhs terms responsible for

vertical deformations. For this purpose:

(a) Expand the momentum equations in terms of ǫ,

(b) take curl of the momentum equations (∂(2)/∂x− ∂(1)/∂y),
(c) replace divergence of the horizontal ageostrophic velocity (ua, va) with the vertical divergence of wa.

The resulting geostrophic vorticity equations are:

Dnζn
Dt

+ βvn = f0
∂wn

∂z
,

Dn

Dt
=

∂

∂t
+ un

∂

∂x
+ vn

∂

∂y
, ζn ≡

∂vn
∂x
− ∂un

∂y
, n = 1, 2

Within each layer horizontal velocity does not depend on z, therefore, vertical integrations of the vorticity equa-

tions across each layer yield (here, we assume nearly flat isopycnals everywhere by replacing actual layer depths

with the constants:

h1 − h2 ≈ H1 , h2 ≈ H2 ,

on the left-hand sides, thus obtaining the depth-integrated geostrophic vorticity equations:

H1

(D1ζ1
Dt

+ βv1

)

= f0
(

w1(h1)− w1(h2)
)

, H2

(D2ζ2
Dt

+ βv2

)

= f0w2(h2) , (∗)

Here we extended the assumption of nearly flat isopycnals to everywhere, beyond the scale of motions.

Note, that in (∗) we took w2(bottom) = 0, but this is true only for the flat bottom (along topographic slopes

vertical velocity can be non-zero, as only normal-to-boundary velocity component vanishes).



• Vertical movement of isopycnals in terms of pressure

This step can be worked out and essentially closes the equations.

For that we use kinematic boundary condition, which comes from considering fluid elements on a fluid interface

or surface, such that the vertical coordinates of these elements are given by z = h(t, x, y).
Next, let’s consider function F (t, x, y, z) = h(t, x, y) − z, and acknowledge, that it is always zero for a fluid

elements sitting on the interface or surface; hence, its material derivative is zero:

DF

Dt
= 0 =

Dh

Dt
− w ∂z

∂z
→ w =

Dh

Dt

By combining the kinematic boundary condition with the Boussinesq argument (ρ1≈ρ2≈ρ), we obtain:

wn(hn) =
Dnhn
Dt

=
Dnηn
Dt

=⇒ w1(h1) =
1

ρg

D1p
′
1

Dt
, w1,2(h2) =

1

∆ρg

D1,2(p
′
2 − p′1)
Dt

(∗∗)

Pressure is streamfunction in disguise.

In each layer geostrophic velocity streamfunction is linearly related to dynamic pressure anomaly, as follows from

the geostrophic momentum balance:

f0vn =
1

ρ

∂p′n
∂x

, f0un = −1
ρ

∂p′n
∂y

=⇒ ψn =
1

f0ρ
p′n , un = −∂ψn

∂y
, vn =

∂ψn

∂x
(∗∗∗)

Relative vorticity ζ is always conveniently expressed in terms of ψ :

ζ =
∂v

∂x
− ∂u

∂y
= ∇2ψ

Let’s now combine (∗), (∗∗) and (∗ ∗ ∗) to obtain the fully closed equations predicting evolution of the leading-

order streamfunction...



• Two-layer quasigeostrophic (QG) potential vorticity (PV) model

D1ζ1
Dt

+ βv1 −
f 2
0

gH1

( ρ

∆ρ

D1

Dt
(ψ1 − ψ2) +

D1ψ1

Dt

)

= 0 ,

D2ζ2
Dt

+ βv2 − f 2
0

gH2

ρ

∆ρ

D2

Dt
(ψ2 − ψ1) = 0

(a) Note that ∆ρ ≪ ρ, therefore the last term of the first equation is neglected (i.e., the rigid-lid approximation

is taken; it states that the surface elevation is much smaller than the internal interface displacement).

(b) Familiar reduced gravity is g′ ≡ g∆ρ/ρ, and stratification parameters are defined as

S1 =
f 2
0

g′H1
, S2 =

f 2
0

g′H2
.

(c) Dimensionally, [S1] ∼ [S2] ∼ L−2 → QG (i.e., double-balanced) motion of stratified fluid operates on the

internal deformation scales:

R1 = 1/
√

S1 , R2 = 1/
√

S2 ,

which are O(100km) in the ocean and about 10 times larger in the atmosphere.

Note: Rn ≪ Ld=
√
gH/f0, because g′ ≪ g.

With the above information taken into account, we obtain the final set of two-layer QG PV equations:

D1

Dt

[

∇2ψ1 − S1 (ψ1 − ψ2)
]

+ βv1 = 0 ,
D2

Dt

[

∇2ψ2 − S2 (ψ2 − ψ1)
]

+ βv2 = 0

Potential vorticity anomalies are defined as:

q1 = ∇2ψ1 − S1 (ψ1 − ψ2), q2 = ∇2ψ2 − S2 (ψ2 − ψ1)

Note: These expressions for the PV anomalies can be obtained by linearization of the full shallow-water PV

(without proof).



• Potential vorticity (PV) material conservation law.

(Absolute) PV is defined as

Π1 = q1 + f = q1 + f0 + βy, Π2 = q2 + f = q2 + f0 + βy .

(a) PV is materially conserved quantity:

DnΠn

Dt
=
∂Πn

∂t
+
∂ψn

∂x

∂Πn

∂y
− ∂ψn

∂y

∂Πn

∂x
= 0 , n = 1, 2

(b) PV can be considered as a “charge” advected by the flow; but this is active charge, as it defines the flow itself.

(c) PV inversion brings in intrinsic and important spatial nonlocality of the velocity field around “elementary

charge” of PV:

Π1 = ∇2ψ1 − S1 (ψ1 − ψ2) + βy + f0 , Π2 = ∇2ψ2 − S2 (ψ2 − ψ1) + βy + f0

(d) PV consists of of relative vorticity, density anomaly (resulting from isopycnal displacement), and planetary

vorticity.

• Continuous stratification yields (without derivation) similar PV conservation law and PV inversion formula

for the geostrophic fields:

ψ =
1

f0ρ
p′ , u = −∂ψ

∂y
, v =

∂ψ

∂x
, ρ = −ρ0f0

g

∂ψ

∂z
, N2(z) = − g

ρs

dρs
dz

∂Π

∂t
+
∂ψ

∂x

∂Π

∂y
− ∂ψ

∂y

∂Π

∂x
= 0 , Π = ∇2ψ + f 2

0

∂

∂z

( 1

N2(z)

∂ψ

∂z

)

+ f0 + βy

Note, that density anomalies are now described by vertical derivative of velocity streamfunction, rather than by

deformation of interface η that is related to (vertical) difference between the streamfunction values above and

below it.



• Boundary conditions for QG equations.

(a) On lateral solid boundaries there is always no-normal-flow condition: ψ = C(t).

(b) The other lateral boundary conditions can be periodic, double-periodic,

no-slip:

∂ψ

∂n
= 0 ,

free-slip:

∂2ψ

∂n2
= 0 ,

partial-slip:

∂2ψ

∂n2
+

1

α

∂ψ

∂n
= 0 ,

where derivatives are normal to the surface.

(c) There are also integral constraints on mass and momentum.

For example, one can require that basin-averaged density anomaly integrates to zero in each layer:
∫∫

ρ dx dy = 0 →
∫∫

∂ψ

∂z
dx dy = 0 .

• Ageostrophic circulation (of the ǫ-order) can be obtained with further efforts, and even diagnostically.

For example, vertical ageostrophic velocity is equal to material derivative of pressure, which is known from QG

solution:

w1(h1) =
1

ρg

D1p
′
1

Dt
, w1(h2) =

1

∆ρg

D1(p
′
2 − p′1)
Dt



Summary about QG PV models

(a) Midlatitude theory: QG framework does not work at the equator, where f = 0.

(b) Vertical control: Nearly horizontal geostrophic motions are determined by vertical stratification, vertical com-

ponent of ζ, and vertical isopycnal stretching.

(c) Four main assumptions that have been made:

(i) Rossby number ǫ is small (hence, the expansion focuses on mesoscales);

(ii) β-plane approximation and small meridional variations of Coriolis parameter;

(iii) isopycnals are nearly flat ([δρ′] ∼ ǫFρ0 ∼ ǫ2ρ0) everywhere;

(iv) hydrostatic Boussinesq balance.



• Planetary-geostrophic equations (extra material)

This is another asymptotic model that can be similarly derived for small-Rossby-number motions on scales that

are much larger than internal deformation scale R and for large meridional variations of Coriolis parameter.

Let’s start from the full shallow-water equations,

Du

Dt
− fv = −g ∂h

∂x
,

Dv

Dt
+ fu = −g ∂h

∂y
,

Dh

Dt
+ h∇·u = 0 ,

and consider very large scales: F = L2/R2 ∼ ǫ−1 ≫ 1.

Let’s assume that, for large scales of motion, fluid height variations ( [δρ′] ∼ ǫFρ0 ) are as large as the mean

height of fluid:

h = H (1 + ǫFη) = H (1 + η).

Asymptotic expansions u = u0 + ǫu1 + ... , and η = η0 + ǫη1 + ... yield:

ǫ
[∂u0
∂t

+ u0 ·∇u0 − fv1
]

− fv0 = −gH
∂η0
∂x
− ǫgH ∂η1

∂x
+O(ǫ2) , ................ ,

ǫF
[∂η0
∂t

+ u0 ·∇η0
]

+ (1 + ǫFη0)∇·u0 = 0 .

Thus, only geostrophic balance is retained in the momentum equation, and all terms are retained in the continuity

equation, and the resulting set of equations is:

−fv = −g ∂h
∂x

, fu = −g ∂h
∂y

,
Dh

Dt
+ h∇·u = 0



⇐= Vortex street behind obstacle

Meandering oceanic current =⇒



⇐= Observed atmospheric PV

Atmospheric

PV from a

model =⇒



Solutions of

geostrophic

turbulence

(PV snapshots)



EKMAN LAYERS

• Ekman surface boundary layer

Boundary layers are governed by physical processes very

different from those in the interior. Non-geostrophic effects

at the free-surface or rigid-bottom boundary layers are

responsible for transferring momentum from wind stress or

bottom stress to the interior (large-scale) geostrophic currents.

Let’s consider Ekman layer below the ocean surface:

(a) Horizontal momentum is transferred down by the vertical

turbulent flux (its exact form is unknown due to complexity of

many physical processes involved), which is commonly modelled

by vertical viscosity (i.e., diffusion of momentum) with constant

turbulent viscosity coefficient:

w′
∂u′

∂z
= Av

∂2u

∂z2
,

where overbar and prime indicate the time mean and fluctuating flow components, respectively.

Note that vertical viscosity must be balanced by some other term containing velocity, because momentum diffu-

sion creates flow velocity, and at the leading order only Coriolis force contains velocity.

(b) Consider boundary layer correction, so that u = ug + uE in the thin layer with depth hE :

−f0(vg + vE) = −
1

ρ0

∂pg
∂x

+ Av
∂2uE
∂z2

, f0(ug + uE) = −
1

ρ0

∂pg
∂y

+ Av
∂2vE
∂z2

.

The Ekman balance is

−f0vE = Av
∂2uE
∂z2

, f0uE = Av
∂2vE
∂z2

(∗)

To make the viscous term important in the balance, the Ekman layer thickness must be hE ∼ [Av/f0]
1/2, therefore,

let’s define:

hE = [2Av/f0]
1/2 .



Typical values of hE are ∼ 1 km in the atmosphere and ∼ 50 m in the ocean.

(c) If Ekman number,

Ek ≡
(hE
H

)2

=
2Av

f0H2
,

is small, i.e., Ek ≪ 1, then, the boundary layer correction can be matched to the interior geostrophic solution.

(d) Boundary conditions for the Ekman flow correction

are: zero at the bottom of the boundary layer and wind

stress condition at the upper ocean surface:

Av
∂uE
∂z

=
1

ρ0
τx , Av

∂vE
∂z

=
1

ρ0
τ y (∗∗)

Let’s look for solution of (∗) and (∗∗) in the form:

uE = ez/hE

[

C1 cos
( z

hE

)

+ C2 sin
( z

hE

)]

,

vE = ez/hE

[

C3 cos
( z

hE

)

+ C4 sin
( z

hE

)]

,

and obtain the Ekman spiral solution:

uE =

√
2

ρ0f0hE
ez/hE

[

τx cos
( z

hE
− π

4

)

− τ y sin
( z

hE
− π

4

)]

,

vE =

√
2

ρ0f0hE
ez/hE

[

τx sin
( z

hE
− π

4

)

+ τ y cos
( z

hE
− π

4

)]

.



• Ekman pumping

Vertically integrated, horizontal Ekman transport UE=
∫

uE dz can be divergent. It satisfies:

−f0VE = Av

[∂uE
∂z

∣

∣

∣

top
− ∂uE

∂z

∣

∣

∣

bottom

]

=
1

ρ0
τx ,

f0UE = Av

[∂vE
∂z

∣

∣

∣

top
− ∂vE

∂z

∣

∣

∣

bottom

]

=
1

ρ0
τ y .

The bottom stress terms vanish due to the exponential decay of the boundary layer solution. In order to obtain

vertical Ekman velocity at the bottom of the Ekman layer, let’s integrate the continuity equation:

−(wE

∣

∣

∣

top
− wE

∣

∣

∣

bottom
) = w

∣

∣

∣

bottom
≡ wE =

∂UE

∂x
+
∂VE
∂y

+
∂

∂x

∫

ug dz +
∂

∂y

∫

vg dz .

Recall the non-divergence of the geostrophic velocity and use the above-derived integrated Ekman transport com-

ponents to obtain

wE =
∂UE

∂x
+
∂VE
∂y

+

∫

(∂ug
∂x

+
∂vg
∂y

)

dz =
∂UE

∂x
+
∂VE
∂y

=
1

f0ρ0
∇×τ

Thus, the Ekman pumping (i.e., vertical velocity at the bottom of the boundary layer) wE can be found directly

from the wind curl:

wE =
1

f0ρ0
∇×τ .

Conclusion: Ekman pumping provides external forcing for the interior geostrophic motions by vertically squeez-

ing or stretching isopycnal layers; it can be viewed as transmission of an external stress into the geostrophic-flow

forcing.

• Ekman bottom boundary layer can be solved for in a similar way (see Practical Problems).



ROSSBY WAVES

• In broad sense, Rossby wave is inertial wave propagating on the background PV gradient. First discovered in

the Earth’s atmosphere.



• Oceanic Rossby waves are more difficult to observe. Initially they were detected from in situ measurements,

but nowdays they are observed from satellite altimetry.

• Dynamic sea surface height anomalies

seen on the Figure propagate to the west.

They are surface manifestations of

baroclinic Rossby waves.

• To what extent these transient flow

anomalies can be characterized as waves

rather than isolated coherent vortices

remains unclear.



⇐= Visualization of oceanic eddies/waves

by virtual tracer

Flow speed from a high resolution

computation shows many eddies/waves =⇒

Many properties of the flow fluctuations

can be interpreted in terms of linear

Rossby waves.



• General properties of waves

(a) Waves provide interaction mechanism which is both long-range and fast relative to flow advection.

(b) Waves are observed as periodic propagating (or standing) patterns, e.g.,

ψ = Re{A exp[i(kx+ ly +mz − ωt+ φ)]} ,
which is characterized by amplitude, wavenumbers, frequency, and phase.

Wavevector is defined as the ordered set of wavenumbers: K=(k, l,m).

(c) Dispersion relation comes from the dynamics and relates frequency and wavenumbers, and, thus, yields phase

speeds and group velocity.

(d) Phase speeds along the axes of coordinates are rates at which intersections of the phase lines with each axis

propagate along this axis:

C(x)
p =

ω

k
, C(y)

p =
ω

l
, C(z)

p =
ω

m
;

these speeds do not form a vector (note that phase speed along an axis increases with decreasing projection of K

on this axis).

(e) Fundamental phase speed Cp = ω/K, where K = |K|, is defined along the wavevector. This is natural,

because waves described by complex exponential functions have instantaneous phase lines perpendicular to K.
Fundamental phase velocity (vector) is defined as

Cp =
ω

|K|
K

|K| =
ω

K2
K .

(f) Group velocity (vector) is defined as

Cg =
(∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)

.

(g) Propagation directions: phase propagates in the direction of K; energy (hence, information!) propagates at

some angle to K.

(h) If frequency ω = ω(x, y, z) is spatially inhomogeneous, then trajectory traced by the group velocity is called

ray, and the path of waves is found by ray tracing methods.



•Mechanism of Rossby waves

Consider the simplest 1.5-layer (a.k.a. the equivalent barotropic) QG PV model, which is obtained by considering

H2 →∞ in the two-layer QG PV model:

∂Π

∂t
+
∂ψ

∂x

∂Π

∂y
− ∂ψ

∂y

∂Π

∂x
= 0 , Π = ∇2ψ − 1

R2
ψ + βy ,

where R−2 = S1 is the stratification parameter written in terms of the inverse length scale parameter R.

By introducing the Jacobian operator J(A,B) = AxBy − AyBx, the corresponding equivalent barotropic equa-

tion can be written as

∂

∂t

(

∇2ψ − 1

R2
ψ
)

+ J
(

ψ,∇2ψ − 1

R2
ψ
)

+ β
∂ψ

∂x
= 0 . (∗)

Note, that in the limit R→∞ the dynamics becomes purely 2D and deformations of the layer thickness become

infinitesimal; this is equivalent to g′ →∞.

We are interested in small-amplitude flow disturbances

around the state of rest; the corresponding linearized

equation (∗) is

∂

∂t

(

∇2ψ − 1

R2
ψ
)

+ β
∂ψ

∂x
= 0

→ ψ ∼ ei(kx+ly−ωt) →

−iω
(

− k2 − l2 − 1

R2

)

+ iβk = 0

Thus, the resulting Rossby waves dispersion relation is:

ω =
−βk

k2 + l2 + R−2
.

Plot dispersion relation, discuss zonal, phase and group speeds...

Consider a timeline in the fluid at rest, then, perturb it (see Figure): the resulting westward propagation of Rossby

waves is due to the β-effect and material PV conservation.



• Energy equation

Multiply the equivalent-barotropic equation by −ψ and use the following identity,

−ψ∇2∂ψ

∂t
=

∂

∂t

(∇ψ)2
2
−∇·ψ∇∂ψ

∂t
,

to obtain the (mechanical) energy equation:

∂E

∂t
+∇·S = 0 , E =

1

2

[(∂ψ

∂x

)2

+
(∂ψ

∂y

)2]

+
1

2R2
ψ2 , S = −

(

ψ
∂2ψ

∂x∂t
+
β

2
ψ2, ψ

∂2ψ

∂y∂t

)

,

where E is energy density, consisting of the kinetic (first term) and potential (second term) components; and S

is energy flux (vector).

(a) It can be shown (see Practical Problems), that the mean energy 〈E〉 of a wave packet propagates according to:

∂〈E〉
∂t

+Cg ·∇〈E〉 = 0 ,

where Cg is the Rossby waves group velocity.

This is a general statement, which is true for other types of waves.

(b) The energy equation for the corresponding nonlinear equivalent-barotropic equation is derived similarly; its

energy flux vector is:

S = −
(

ψ
∂2ψ

∂x∂t
+
β

2
ψ2 +

ψ2

2
∇2∂ψ

∂y
, ψ

∂2ψ

∂y∂t
− ψ2

2
∇2∂ψ

∂x

)

,

and note that it contains additional cubic terms.

(c) Similar equations can be derived for multi-layer QG PV models and not only for the state of rest but also for

situations with background flows.



• Background-flow effects

Consider small-amplitude flow disturbances around some steady background flow given by its streamfunction

Ψ(x, y, z). What happens with the underlying dispersion relation and, hence, with the waves?

To simplify the problem, let’s stay with the (equivalent barotropic) 1.5-layer QG PV model, and let’s consider

some uniform, zonal background flow Ψ = −Uy, and substitute it into the dynamics and obtain:

ψ → −Uy + ψ, Π→
(

β +
U

R2

)

y +∇2ψ − 1

R2
ψ .

The linearized dynamics becomes:

( ∂

∂t
+ U

∂

∂x

)(

∇2ψ − 1

R2
ψ
)

+
∂ψ

∂x

(

β +
U

R2

)

= 0

hence, the dispersion relation becomes:

→ ψ ∼ ei(kx+ly−ωt) =⇒ ω = kU − k (β + UR−2)

k2 + l2 + R−2

(a) In the dispersion relation, the first term kU is the Doppler shift, which is due to advection of wave by the

background flow;

(b) The second term contains effect of the altered background PV; note, that background flows can alter PV in

complicated ways. Bottom topography also alters the background PV (not considered here).

(c) There are also corresponding changes in the group velocity Cg ;

(d) Complicated 2D and 3D background flows profoundly influence Rossby waves properties, but the correspond-

ing dispersion relations are difficult to obtain; normal modes rather than Fourier harmonics are to be considered

and found numerically;

(e) The underlying background flow can be nonstationary, in principle, but the linear-waves problem becomes

nearly intractable.



• Two-layer Rossby waves

Let us consider the two-layer QG PV equations linearized around the state of rest:

∂

∂t

[

∇2ψ1 −
1

R2
1

(ψ1 − ψ2)
]

+ β
∂ψ1

∂x
= 0 ,

∂

∂t

[

∇2ψ2 −
1

R2
2

(ψ2 − ψ1)
]

+ β
∂ψ2

∂x
= 0 ,

where

R2
1 =

g′H1

f 2
0

, R2
2 =

g′H2

f 2
0

.

Diagonalization of the dynamics: the governing equations can be decoupled from each other by a linear transfor-

mation of variables from streamfunctions of the layers to streamfunctions of the vertical modes. The diagonalizing

layers-to-modes transformation and its inverse (modes-to-layers) transformation are linear operations.

In the two-layer model context, the barotropic mode φ1 and the first baroclinic mode φ2 are defined as:

φ1 ≡ ψ1
H1

H1 +H2
+ ψ2

H2

H1 +H2
, φ2 ≡ ψ1 − ψ2 .

These modes represent distinct (i.e., governed by different dispersion relations) families of Rossby waves, which

are referred to as barotropic and baroclinic, respectively:

∂

∂t
∇2φ1 + β

∂φ1
∂x

= 0 → ω1 = −
βk

k2 + l2

∂

∂t

[

∇2φ2 −
1

R2
D

φ2

]

+ β
∂φ2
∂x

= 0 → ω2 = −
βk

k2 + l2 +R−2D

where (important) parameter RD is referred to as the first baroclinic Rossby radius of deformation:

RD ≡
[ 1

R2
1

+
1

R2
2

]−1/2
.

Note, that RD depends on stratification and Coriolis parameter; in the ocean it varies from 200 km near equator

to 2 km in the Arctic; in the atmosphere it is about 1000 km.



Purely barotropic mode can be written in terms of layers as:

ψ1 = ψ2 = φ1 ,

therefore, it is vertically uniform and actually describes vertically averaged flow.

(a) Barotropic waves are fast (typical periods are several days in the ocean and 10 times faster in the atmo-

sphere); their dispersion relation does not depend on stratification.

(b) Barotropic waves do not involve isopycnal deformations corresponding to density (heat) anomalies, hence,

they are thermodynamically neutral.

Purely baroclinic mode can be written in terms of layers as:

ψ1 = φ2
H2

H1 +H2
, ψ2 = −φ2

H1

H1 +H2
→ ψ2 = −

H1

H2
ψ1 ,

therefore, it changes sign vertically, and its vertical integral iz sero.

(a) Baroclinic waves are slow (typical periods are several months in the ocean and 10 times faster in the atmo-

sphere); they can be viewed as propagating anomalies of the pycnocline (thermocline), because the streamfunction

has large vertical derivative (hence, there is large density anomaly).

(b) Baroclinic waves are thermodynamically active.



• Continuously stratified Rossby waves

Continuously stratified model is a natural extension

of the isopycnal model with infinitely large number

of layers.

The corresponding linearized QG PV dynamics is

(without proof):

∂

∂t

[

∇2ψ +
f 2
0

ρs

∂

∂z

( ρs
N2(z)

∂ψ

∂z

)]

+ β
∂ψ

∂x
= 0

→ ψ ∼ Φ(z) ei(kx+ly−ωt) →

f 2
0

ρs

d

dz

( ρs
N2(z)

dΦ(z)

dz

)

=
(

k2 + l2 +
kβ

ω

)

Φ(z) ≡ λΦ(z) (∗)

Boundary conditions at the top and bottom are to be specified, e.g., by imposing zero density anomalies:

ρ ∼ dΦ(z)

dz

∣

∣

∣

z=0,−H
= 0 . (∗∗)

Combination of (∗) and (∗∗) is an eigenvalue problem that can be solved for discrete spectrum of eigenvalues

and eigenmodes.

(a) Eigenvalues λn yield dispersion relations ωn = ωn(k, l), and the corresponding eigenmodes φn(z) are the

vertical normal modes, like the familiar barotropic and first baroclinic modes in the two-layer case.

(b) The Figure illustrates the first, second and third baroclinic modes for realistic ocean stratification.

(c) The corresponding n-th baroclinic Rossby radius R
(n)
D ≡ λ

−1/2
n characterizes horizontal length scale of the

n-th vertical mode. The higher is the mode, the slower and more oscillatory in vertical it is.

(d) The (zeroth) barotropic mode has R
(0)
D =∞ and λ0 = 0.

(e) The first Rossby deformation radius R
(1)
D is the most important fundamental length scale of geostrophic tur-

bulence; it sets length scale of mesoscale (synoptic) eddies.



LINEAR INSTABILITIES

• Linear stability analysis is the first step towards understanding turbulent flows. Sometimes it can predict some

patterns and properties of flow fluctuations.

CONVECTIVE ROLLS CONVECTIVE PLUME

SUPERNOVA REMNANTS

These Figures illustrate different regimes of thermal convection.

Linear stability analysis is very useful for simple flows

(e.g., convective rolls), somewhat useful for intermediate-complexity

flows (convective plumes), and completely useless in highly

developed turbulence.

• Small-amplitude behaviours can be predicted by linear stability

analysis very well, and some of the linear predictions carry on to

turbulent flows.

• Nonlinear effects become increasingly more important in more

complex turbulent flows.



Shear instability occurs on

flows with sheared velocity

Eventually, there is nonlinear

evolution leading to substantial

stirring and eventual molecular

mixing of material and vorticity



Instabilities of jet streams

Developed instabilities of idealized jet

Tropical instability waves



• Barotropic instability

This is horizontal-shear instability of (geophysical) flows.

Let us find a necessary condition for this instability in the context of the equivalent barotropic (i.e., 1.5-layer QG

PV) model configured in a zonal channel (−L < y < +L) and linearized around some zonally uniform and

meridionally sheared background flow U(y) :

( ∂

∂t
+ U(y)

∂

∂x

) [

∇2ψ − 1

R2
ψ
]

+
∂ψ

∂x

dΠ

dy
= 0 ,

dΠ

dy
= β − d2U

dy2
+
U

R2
,

where Π is the background PV.

Consider usual wave solution with meridional amplitude function φ(y) :

ψ ∼ φ(y) eik(x−ct), c = cr + i
ωi

k

=⇒ (U − c)
(

− k2φ+ φyy −
1

R2
φ
)

+ φ
(

β − Uyy +
U

R2

)

= 0

=⇒ φyy − φ
(

k2 +
1

R2

)

+ φ
dΠ/dy

U − c = 0 .

Multiply the last equation by (complex conjugated) φ∗, integrate it in y, using the simple identity,

φ∗φyy =
∂

∂y

(

φ∗φy
)

− φ∗yφy .

Take into account that integral of y-derivative is zero, because of the no-flow-through BCs on the channel sides:

φ(−L) = φ(L) = 0 .

The resulting integrated equation,
∫ L

−L

(
∣

∣

∣

dφ

dy

∣

∣

∣

2

+ |φ|2
(

k2 +
1

R2

))

dy −
∫ L

−L
|φ|2 dΠ/dy

U − c dy = 0 ,

can be written so, that its first integral [...] is real, and the second integral is complex, so that:

→ [...] + i
ωi

k

∫ L

−L
|φ|2 dΠ/dy

|U − c|2 dy = 0 .



If the last integral is non-zero, then, necessarily: ωi=0, and the normal mode φ(y) is neutral; this results in the

following theorem.

Necessary condition for barotropic instability states that ωi can be nonzero (hence, instability has to occur for

ωi > 0), only if the above integral is zero, hence, ONLY IF the background PV gradient dΠ/dy changes sign

somewhere in the domain.

Note: this is equivalent to existence of inflection point in the velocity profile in the case of β = 0 and pure 2D

dynamics.

The necessary condition is also true for non-zonal parallel flows.



• Baroclinic instability

This is vertical-shear instability of geophysical flows.

Let us find a necessary condition for this instability in the context of continuously stratified QG PV model in

a zonal channel. In a channel with vertically and meridionally sheared but zonally uniform background flow

U(y, z), let us find the background PV Π and its meridional gradient:

Π = βy − ∂U

∂y
− ∂

∂z

[ f 2
0

N2

∂

∂z

∫

U(y, z) dy
]

,
∂Π

∂y
= β − ∂2U

∂y2
− ∂

∂z

[ f 2
0

N2

∂U

∂z

]

,

The linearized around the background flow material conservation law for the total PV is:

( ∂

∂t
+ U(y, z)

∂

∂x

) [

∇2ψ +
∂

∂z

( f 2
0

N2

∂ψ

∂z

)]

+
∂ψ

∂x

∂Π

∂y
= 0 (∗)

We need BCs at the bottom and top of the fluid, because of the involved vertical derivatives. Let us recall the

kinematic BC and take into account that material particle at the surface (or bottom) always stays at the surface

(bottom); also, its density is conserved because of the involved Boussinesq approximation.

Conservation of density (sum of dynamic density anomaly and background density) on material particles can be

written as (first, in the full form; then, in the linearized form):

Dg ρ

Dt
=
Dg (ρg + ρb)

Dt
= 0

=⇒ ∂ρg
∂t

+
∂ρb
∂t

+ (U + u)
∂ρg
∂x

+ (U + u)
∂ρb
∂x

+ v
∂(ρb + ρg)

∂y
+ w

∂(ρb + ρg)

∂z
= 0 .

By linearizing out the quadratic terms and taking into account that the background density is stationary and x-

independent, we obtain linearized conservation of density (i.e., linearized thermodynamic equation for Boussinesq

fluid):

∂ρg
∂t

+ U
∂ρg
∂x

+ v
∂ρb
∂y

+ w
∂ρb
∂z

= 0 .

Consider this equation on the bottom and top rigid boundaries, hence w = 0 and obtain the vertical BCs:

∂ρg
∂t

+ U
∂ρg
∂x

+ v
∂ρb
∂y

= 0 at z = 0, H .



Then, in the continuously stratified fluid with background flow, this statement translates into:

ρg = −
ρ0f0
g

∂ψ

∂z
, ρb = −

ρ0f0
g

∂

∂z

∫

(−U)dy

=⇒ ∂2ψ

∂t∂z
+ U

∂2ψ

∂x∂z
− ∂ψ

∂x

∂U

∂z
= 0 (∗∗)

With the wave solution ψ ∼ φ(y, z) eik(x−ct), the linearized PV equation (∗) and the vertical BCs (∗∗) become:

∂2φ

∂y2
+

∂

∂z

( f 2
0

N2

∂φ

∂z

)

− k2φ+
1

U − c
∂Π

∂y
φ = 0 ; (U − c) ∂φ

∂z
− ∂U

∂z
φ = 0 at z = 0, H

Let’s multiply the above equation by φ∗ and integrate over z and y. Vertical integration of the second term

involves the boundary conditions:

∫ H

0

∂

∂z

( f 2
0

N2

∂φ

∂z

)

φ∗ dz = −
∫ H

0

f 2
0

N2

1

2

∂|φ|2
∂z

dz +
[ f 2

0

N2

∂φ

∂z
φ∗
]H

0
= .....+

[ f 2
0

N2

∂U

∂z

|φ|2
U − c

]H

0

Taking the above into account, full integration of the φ∗-multiplied equation for φ yields the following imaginary

part equal to zero:

ωi

k

∫ L

−L

(

∫ H

0

∂Π

∂y

|φ|2
|U − c|2 dz +

[ f 2
0

N2

∂U

∂z

|φ|2
|U − c|2

]H

0

)

dy = 0

In the common situation:
∂U

∂z
= 0 at z = 0, H =⇒ a necessary condition for baroclinic instability is that

∂Π(y, z)

∂y
changes sign at some depth.

NOTE: in practice, vertical change of the PV gradient sign always indicates baroclinic instability.



• Eady model

This is classical, continuously stratified model of baroclinic instability in atmosphere (Eric Eady was a PhD

graduate from Imperial College in 1949).

Eady model assumes:

(i) f -plane (β = 0),

(ii) linear stratification: N(z) = const,
(iii) constant vertical shear: U(z) = U0 z/H,

(iv) rigid boundaries at z = 0, H.

NOTE: Background PV is zero, hence, the necessary condition for baroclinic instability is satisfied.

The linearized continuously stratified QG PV equation and boundary conditions are:

( ∂

∂t
+
zU0

H

∂

∂x

) [

∇2ψ +
f 2
0

N2

∂2ψ

∂z2

]

= 0 ;
∂2ψ

∂t∂z
+
zU0

H

∂2ψ

∂x∂z
− U0

H

∂ψ

∂x
= 0 at z = 0, H .

Let us look for the wave-like solution ψ ∼ φ(z) ei(k(x−ct)+ly) in the horizontal plane to obtain the vertical-structure

equation and the corresponding vertical BCs:

(zU0

H
− c

) [ f 2
0

N2

d2φ

dz2
− (k2 + l2)φ

]

= 0 ;
(zU0

H
− c

) dφ

dz
− U0

H
φ = 0 at z = 0, H (∗)

For c 6= U0
z

H
, we obtain linear ODE with characteristic vertical scale H/µ :

H2 d
2φ

dz2
− µ2 φ = 0 , µ ≡ NH

f0

√

k2 + l2 = R
(1)
D

√

k2 + l2 .

Look for solution of the above ODE in the exponential form:

φ(z) = A cosh(µz/H) + B sinh(µz/H) ,

substitute it in the top and bottom BCs (∗) and obtain pair of linear equations for A and B that yield:

B = −A U0

µc
, c2 − U0c+ U 2

0

(1

µ
cothµ− 1

µ2

)

= 0



=⇒ c =
U0

2
± U0

µ

[(µ

2
− coth

µ

2

)(µ

2
− tanh

µ

2

)]1/2

The second bracket under the square root is always positive, hence, the normal modes grow (ωi > 0) when the

first bracket becomes negative; that is, if µ satisfies:

µ

2
< coth

µ

2

which is the region to the left of the dashed curve (see Figure below).

(a) The maximum instability growth rate occurs at µ=1.61, and it is estimated to be 0.31U0/R
(1)
D . Its inverse is

Eady time scale.

(b) For any k the most unstable wave has l=0; and this wave is characterized by kcrit =1.6/R
(1)
D . This yields

Eady length scale Lcrit≈4R
(1)
D .

NOTE: Eady time and length scales are consistent with the observed synoptic scale variability.

(c) Eady solution can be interpreted as a pair of phase-locked edge waves (see Figure).

(d) Assumptions of the Eady model are quite unrealistic, as well as the absense of PV gradients; nevertheless it is

a good starting point for analyses and one of the classical models illustrating the baroclinic instability mechanism.

Later on we will discuss the baroclinic instability mechanism in more detail and from the physical perspective...



Figure illustrating Eady’s solution in terms of its growth rate and the phase-locked edge waves:

upper: φ

middle: ρ = ∂φ/∂z

bottom: v = ∂φ/∂x

• Phillips model is the other classical model of the baroclinic instability mechanism.

It describes two-layer fluid with uniform background zonal velocities U1 and U2, and with the β-effect (see

Problem Sheet). In this situation background PV gradient is nonzero, thus, making the set-up more realistic. New

outcomes from solving this problem are:

(a) Stabilizing effect of β: Phillips model has critical shear, U1−U2 ∼ βR2
D.

(b) Westward flows are less stable: If the upper layer is thinner than the deep layer (ocean-like situation), then the

eastward critical shear is larger than the westward one.



•Mechanism of baroclinic instability

Baroclinic instability, illustrated by the Eady and

Phillips models, feeds geostrophic turbulence

(i.e., synoptic scale variability in the atmosphere

and dynamically similar mesoscale eddies in the ocean),

therefore, it is fundamentally important.

(a) Available potential energy (APE) is part of potential

energy that can be released as a result of complete

isopycnal flattening.

Baroclinic instability converts APE of large-scale

background flow into eddy kinetic energy (EKE).

Figure: Consider a fluid particle, initially positioned at A, that migrates to either B or C . If it moves along levels

of constant pressure (in QG: streamfunction), then no work is done on the particle =⇒ full mechanical energy

of the particle remains unchanged. However, its APE can be converted into EKE, and the other way around.

(b) Consider the following exchanges of fluid particles:

A←→ B leads to accumulation of APE (the heavier particle goes “up”, and the lighter particle goes “down”),

A←→ C leads, on the opposite, to release of APE.

That is, if α > γ (steep tilt of isopycnals, relative to tilt of pressure isolines), then APE is released into EKE.

This is situation of the positive baroclinicity:

∇p×∇ρ > 0 ,

which implies that the above vector product points out of the Figure, i.e., in the positive zonal direction.

This situation routinely happens in geophysical fluids because of the prevailing thermal winds.



• Thermal wind

This common situation is a consequence of the double — geostrophic and hydrostatic — balance:

−f0v = − 1

ρ0

∂p

∂x
, f0u = − 1

ρ0

∂p

∂y
,

∂p

∂z
= −ρg

=⇒ ∂u

∂z
=

g

ρ0f0

∂ρ

∂y
,

∂v

∂z
= − g

ρ0f0

∂ρ

∂x

Consider typical atmospheric thermal wind situation with ∂p/∂z < 0 and u > 0; and prove that it is baroclini-

cally unstable (i.e., corresponds to positive baroclinicity):

∂u

∂z
> 0 and u > 0 =⇒ ∂p

∂y
< 0 and

∂ρ

∂y
> 0

=⇒ ∇p×∇ρ = ∂p

∂y

∂ρ

∂z
− ∂p

∂z

∂ρ

∂y
> 0 .

Thus, positive baroclinicity implies baroclinic instability of the most common geophysical flows.



• Energetics of barotropically and baroclinically unstable flows

Can we quantify amounts of APE and KE transferred from an unstable flow to the growing perturbations?

In the continuously stratified QG PV model, the kinetic and available potential energy densities of flow perturba-

tions are:

K(t, x, y, z) =
|∇ψ|2
2

, P (t, x, y, z) =
1

2

f 2
0

N2

(∂ψ

∂z

)2

Consider the continuously stratified QG PV equation linearized around some background zonal flow U(y, z) :

( ∂

∂t
+ U(y, z)

∂

∂x

) [

∇2ψ +
∂

∂z

( f 2
0

N2

∂ψ

∂z

)]

+
∂ψ

∂x

∂Π

∂y
= 0 (∗)

The energy equation is obtained by multiplying (∗) with −ψ and, then, by mathematical manipulation (see the

QG energetics):

∂

∂t
(K + P ) +∇·S− ∂

∂z

[

ψ
f 2
0

N2

( ∂

∂t
+ U

∂

∂x

) ∂ψ

∂z

]

=
∂ψ

∂x

∂ψ

∂y

∂U

∂y
+
∂ψ

∂x

∂ψ

∂z

f 2
0

N2

∂U

∂z
(∗∗)

Vertical energy flux is in square brackets on the rhs, and it is due to the form drag arising from isopycnal defor-

mations.

Horizontal energy flux:

S = −ψ
( ∂

∂t
+ U

∂

∂x

)

∇ψ +
[

− ∂Π

∂y

ψ2

2
+ U (K + P ) + ψ

∂ψ

∂y

∂U

∂y
+
f 2
0

N2
ψ
∂ψ

∂z

∂U

∂z
, 0

]

Integration of (∗∗) over the domain removes both horizontal and vertical flux divergences, and yields the total

energy equation:

∂

∂t

∫∫∫

(K + P ) dV =

∫∫∫

∂ψ

∂x

∂ψ

∂y

∂U

∂y
dV +

∫∫∫

∂ψ

∂x

∂ψ

∂z

f 2
0

N2

∂U

∂z
dV (∗ ∗ ∗)

The pair of energy conversion terms on the rhs of (∗ ∗ ∗) has clear physical interpretations...



(a) Reynolds-stress energy conversion term can be written as integral of −u′v′ ∂U
∂y

, where primes remind that we

deal with the flow fluctuations around U(y, z).
This conversion is positive (and associated with barotropic instability of horizontally sheared flow), if the Reynolds

stress u′v′ acts against the velocity shear (see left panel of Figure below), that is, u′v′ < 0. In this case the

background flow feeds growing instabilities at the rate given by the energy conversion.

(b) Form-stress energy conversion term involves the form stress v′ρ′ .

The integrand can be rewritten using the thermal wind relations and basic considerations about the vertical deriva-

tives:

∂ψ

∂z
= − ρ′g

ρ0f0
, N2 = − g

ρ0

dρ

dz
,

dρ

dz
< 0 .

With this in mind, the integrand of the second integral can be manipulated as the following:

v′
(

− ρ′g

ρ0f0

) f 2
0

N2

( g

ρ0f0

∂ρ

∂y

)

= v′ρ′
g

ρ0

[∂ρ

∂y

/dρ

dz

]

=
g

ρ0
v′ρ′ [−dz

dy
] =

g

ρ0
v′ρ′ [− tanα] ≈ g

ρ0
v′ρ′ [−α] ∼ −v′ρ′

This conversion term is positive (and associated with baroclinic instability), if the form stress is negative: v′ρ′.
This implies flattening of tilted isopycnals (right panel of Figure below shows −v′ρ′ and isopycnals; the situation

has negative density anomalies moving northward).

NOTE: Left figure panel can be interpretted as flattening of the shear, and right panel — as flattening of the tilted

isopycnals (i.e., restratification).



AGEOSTROPHIC MOTIONS

(a) Geostrophy filters out all types of (relatively fast) waves, which are important for many geophysical processes.

(b) Geostrophy doesn’t work near the equator (where: f = 0), because the Coriolis force becomes too small.

Let’s consider, first, gravity waves and, then, equatorial waves, that are both important ageostrophic fluid motions.

•Linearized shallow-water model

Let’s consider a layer of fluid with constant density, f -plane approximation, and deviations of the free surface η :

∂u

∂t
− f0v = −g ∂η

∂x
,

∂v

∂t
+ f0u = −g ∂η

∂y
, p = −ρ0g (z − η) ,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 .

The last equation can be vertically integrated, using the linearized kinematic boundary condition on the free

surface:

w(z = h) =
∂η

∂t
→ ∂η

∂t
+H

(∂u

∂x
+
∂v

∂y

)

= 0 ; (∗)

alternatively this equation can be obtained by linearization of the shallow-water continuity equation.

Take curl of the momentum equations, substitute the velocity divergence taken from (∗) into the Coriolis term

and obtain:

∂

∂t

(∂v

∂x
− ∂u

∂y

)

− f0
H

∂η

∂t
= 0 (∗∗)

Take divergence of the momentum equations, substitute the velocity divergence taken from (∗) in the tendency

term and obtain:

1

H

∂2η

∂t2
+ f0

(∂v

∂x
− ∂u

∂y

)

− g∇2η = 0 (∗ ∗ ∗)

By differentiating (∗ ∗ ∗) with respect to time and by substituting vorticity from (∗∗), we obtain:

∂

∂t

[

∇2η − 1

c20

∂2η

∂t2
− f 2

0

c20
η
]

= 0 , c20 ≡ gH

Let’s integrate this equation in time and choose the integration constant so, that η = 0 is a solution.



The resulting free-surface evolution equation is also known as the Klein-Gordon equation:

∇2η − 1

c20

∂2η

∂t2
− f 2

0

c20
η = 0 (∗ ∗ ∗∗)

This equation needs lateral boundary conditions, which are to be obtained from the velocity boundary conditions.

Velocity-component equations. Take the u-momentum equation, differentiate it with respect to time, and add it

to the v-momentum equation multiplied by f0 ; similarly, take time derivative of the v-momentum equation and

subtract from it the u-momentum equation multiplied by f0 :

∂2u

∂t2
+ f 2

0u = −g
( ∂2η

∂x∂t
+ f0

∂η

∂y

)

,
∂2v

∂t2
+ f 2

0 v = −g
( ∂2η

∂y∂t
− f0

∂η

∂x

)

.

Boundary conditions of some sort are needed. Let’s consider solid boundary at x=0 (ocean west coast). On the

boundary: u = 0, therefore, the free-surface boundary condition is:

∂2η

∂x∂t
+ f0

∂η

∂y
= 0 at x = 0 .

Let’s now look for the wave solutions η = η̃(x) ei(ly−ωt) of (∗ ∗ ∗∗) with the above BC:

d2η̃

dx2
+
[ω2

c20
− f 2

0

c20
− l2

]

η̃ = 0 , − ω
f0

dη̃

dx
(0) + l η̃(0) = 0 .

The BC provides important constrain, whereas the main equation can be written as:

d2η̃

dx2
= λ2η̃ =⇒ η̃ = e−λx

where the dispersion relation,

λ2 = −ω
2

c20
+
f 2
0

c20
+ l2 ,

supports solutions that in x are either oscillatory (imaginary λ) or decaying (real λ).

Let’s consider them separately.



• Poincare (inertial-gravity) waves

These are the oscillatory solutions:

λ = ik , η̃ = A cos kx+ B sin kx , x = 0 : A = B
kω

lf0
, ω2 = f 2

0 + c20 (k
2 + l2)

(a) Dispersion relation of these dispersive waves can be visualized by hyperboloid with the cut-off frequency f0.

(b) These are very fast surface gravity waves. For wavelength ∼ 1000 km and H ∼ 5 km, the phase speed

is c0 =
√
gH ∼ 300 m s−1 (compare this tsunami-like speed to the slow speed ∼ 0.2 m s−1 for the oceanic

baroclinic Rossby wave).

(c) In the long-wave limit: ω = f0.
These waves are called the inertial oscillations; they are characterized by circular motions (see Problem Sheet).

(d) In the short-wave limit, the effects of rotation vanish, and these are common (nondispersive) non-rotating

shallow-water surface gravity waves (note their difference from the deep-ocean waves considered in the Problem

Sheet!).

(e) Poincare waves are isotropic: their propagation properties are the same in any direction (in the flat-bottom

f -plane case that we considered).



• Kelvin waves

These are the exponentially decaying solutions (i.e., edge waves); here, on the western

(eastern) boundary they correspond to different signs of k (let’s take k > 0) :

λ = k (= −k) .

=⇒ η̃ = Ae−kx (= Aekx) , x = 0 : k = −f0l
ω

(

=
f0l

ω

)

(∗)

Note that the BC connects k with l and allows to get rid of it.

In the northern hemisphere, positive k at the western wall implies C
(y)
p = ω/l < 0,

hence the Kelvin wave propagates to the south. Thus, the meridional phase speed is

northward at the eastern wall and southward at the western wall, that is, the coast

is always to the right of the Kelvin wave propagation direction.

Note, that f0 changes sign in the southern hemisphere, and this modifies the Kelvin wave so, that it has the coast

always to the left (see Figure).

With (∗) used to get rid of k, the Kelvin wave dispersion relation becomes:

(ω2 − f 2
0 )

(

1− c20
ω2

l2
)

= 0 .

Its first root, ω = ±f0, is just another class of inertial oscillations.

Its second root corresponds to the (nondispersive) Kelvin wave, which exponentially decays away from the bound-

ary:

ω = ∓c0l , k = ±f0
c0

=⇒ η = Ae±xf0/c0 ei(ly∓c0lt)

Substitute this into the rhs of the normal-to-boundary velocity equation, and discover that this velocity component

is zero everywhere:

∂2u

∂t2
+f 2

0u = −g
( ∂2η

∂x∂t
+f0

∂η

∂y

)

= 0 → u = Aeif0t → A = 0 =⇒ u = 0 , (∗)

because at the boundary it is always true that u(t, 0, y) = 0. Note, that this equation has oscillatory solutions, but

they are not allowed by the boundary condition.



Because of (∗), the along-wall velocity component of the Kelvin wave turns out to be in the geostrophic balance:

∂u

∂t
− f0 v = −g ∂η

∂x
=⇒ −f0 v = −g ∂η

∂x
,

hence, Kelvin wave is a boundary-trapped hybrid wave that is simultaneously ageostrophic (gravity) and geostrophic.

(a) There are Kelvin waves running around islands (in the proper direction); they are often phase-locked to tides.

(b) Kelvin waves can be further subdivided into the barotropic and baroclinic vertical modes.



• Geostrophic adjustment

This is a powerful and ubiquitous process, in which fluid from initially unbalanced state evolves toward a state of

geostrophic balance, by radiating gravity waves.

Let’s focus on the linearized shallow-water dynamics, which contains both geostrophically balanced and unbal-

anced motions:

∂u

∂t
− f0v = −g ∂η

∂x
,

∂v

∂t
+ f0u = −g ∂η

∂y
,

∂η

∂t
+H

(∂u

∂x
+
∂v

∂y

)

= 0 ,

and consider a manifestly unbalanced initial state: discontinuity in free-surface height.

In non-rotating flow any initial disturbance will be radiated away by the gravity waves, characterized by phase

speed c0 =
√
gH, and the final state will be the state of rest. In rotating fluid there is geostrophic balance that

can trap the fluid in it, because it has absolutely no time dependence!

Effect of rotation is crucial for geostrophic adjustment, because:

(a) PV conservation provides a powerful constraint on the fluid evolution;

(b) There is fully adjusted steady state which is not the state of rest.

Let’s start with the corresponding PV description of the dynamics:

∂Π

∂t
+ u·∇Π = 0 , Π =

ζ + f0
h

=
ζ + f0
H + η

=
(ζ + f0)/H

1 + η/H
,

and linearize both PV and its conservation law:

ΠLIN ≈
1

H
(ζ + f0)

(

1− η

H

)

≈ 1

H

(

ζ + f0 −
f0η

H

)

=⇒ q = ζ − f0
η

H
,

∂q

∂t
= 0

where q is the linearized PV anomaly. Note that q remains locally unchanged.



Let’s consider a discontinuity in fluid height:

η(x, 0) = +η0 , x < 0 ; η(x, 0) = −η0 , x > 0 .

The initial distribution of the linearized PV anomaly is:

q(x, y, 0) = −f0
η0
H
, x < 0 ; q(x, y, 0) = +f0

η0
H
, x > 0 .

During the geostrophic adjustment process, the height discontinuity will become smeared out into a slope by

radiating gravity waves; through the geostrophic balance this slope must maintain a geostrophic flow current that

will necessarily emerge during the adjustment.

First, let’s introduce the final-state geostrophic flow streamfunction:

f0u = −g ∂η
∂y

, f0v = g
∂η

∂x
→ Ψ ≡ gη

f0
.

Since PV is conserved on the fluid particles, the particles are only redistributed along the y-axis (this is based on

physical reasoning; alternative argument comes from the symmetry of the problem). The final steady state is the

solution of the equation described by monotonically changing Ψ ∼ η and sharp jet concentrated along this slope:

ζ−f0
η

H
= q(x, y) =⇒

(

∇2− 1

R2
D

)

Ψ = q(x, y) , RD =

√
gH

f0
=⇒ ∂2Ψ

∂x2
− 1

R2
D

Ψ =
f0η0
H

sign(x)

=⇒ Ψ = −gη0
f0

(1− e−x/RD) , x > 0 ; Ψ = +
gη0
f0

(1− e+x/RD) , x < 0

=⇒ u = 0 , v = − gη0
f0RD

e−|x|/RD , η =
f0
g
Ψ

(a) PV constrains adjustment within the deformation radius from the initial disturbance.

(b) Excessive initial energy (which can be estimated; see Problem Sheet) is radiated away by gravity waves.

The underlying processes which transfer energy from (initially) unbalanced flows to gravity waves remain poorly

understood.



• Equatorial waves

These are special class of linear waves populating equatorial zones.

Let’s assume the equatorial β-plane and, with the goal to derive single equation for the meridional velocity

component, write down the momentum, continuity, and PV equations (and recall that c0=
√
gH):

∂u

∂t
−βyv = −g ∂η

∂x
×
[

− βy
c20

∂

∂t

]

→ −βy
c20

∂2u

∂t2
+
β2y2

c20

∂v

∂t
=
gβy

c20

∂2η

∂x∂t
=
βy

H

∂2η

∂x∂t
(∗)

∂v

∂t
+βyu = −g ∂η

∂y
×
[ 1

c20

∂2

∂t2

]

→ 1

c20

∂3v

∂t3
+
βy

c20

∂2u

∂t2
= − g

c20

∂3η

∂y∂t2
= − 1

H

∂3η

∂y∂t2
(∗∗)

∂η

∂t
+H

(∂u

∂x
+
∂v

∂y

)

= 0 ×
[

− 1

H

∂2

∂y∂t

]

→ − 1

H

∂3η

∂y∂t2
− ∂2

∂y∂t

(∂u

∂x
+
∂v

∂y

)

= 0 (∗∗∗)

∂

∂t

(

ζ− βy
H
η
)

+βv = 0 ×
[

− ∂

∂x

]

→ − ∂2

∂x∂t

(

ζ− βy
H
η
)

−β∂v
∂x

= 0 (∗∗∗∗)

Add up (∗) and (∗∗), and use (∗ ∗ ∗) and (∗ ∗ ∗∗) to get rid of η :

1

c20

∂3v

∂t3
+
β2y2

c20

∂v

∂t
=

∂2ζ

∂x∂t
+ β

∂v

∂x
+

∂2

∂y∂t

(∂u

∂x
+
∂v

∂y

)

Substitute ζ =
∂v

∂x
− ∂u

∂y
to obtain the meridional-velocity equation:

∂

∂t

[ 1

c20

(∂2v

∂t2
+ (βy)2 v

)

−∇2v
]

− β ∂v
∂x

= 0

Let’s look for the wave solution: v = ṽ(y) ei(kx−ωt)

=⇒ d2ṽ

dy2
+ ṽ

[ω2

c20
− k2 − (βy)2

c20
− βk

ω

]

= 0 (•)



Solutions of the inhomogeneous ODE (•) are symmetric around the equator and given by the set of Hermite

polynomials Hn , which multiply the steeply decaying exponential:

ṽn(y) = AnHn

( y

Leq

)

exp
[

− 1

2

( y

Leq

)2]

,

where Leq =
√

c0/β is called the equatorial barotropic radius of deformation (∼ 3000 km; the equatorial

baroclinic deformation radii are much shorter and can be obtained by considering a multi-layer problem and

projecting it on the vertical modes).

One can obtain the dispersion relation by recalling the following recurrence relations for the Hermite polynomials:

H ′n = 2nHn−1 , H ′n−1 = 2yHn−1 −Hn ,

and by considering vn = Hn exp[−y2/2] :

v′n = (H ′n − yHn) e
−y2/2 = (2nHn−1 − yHn) e

−y2/2 ,

v′′n =
(

2nH ′n−1 −Hn − yH ′n − y(2nHn−1 − yHn)
)

e−y
2/2 = −(2n+ 1− y2)Hn e

−y2/2

=⇒ v′′n + (2n+ 1− y2) vn = 0 (••)



Now, let’s consider (•) and nondimensionalize y by Leq :

L−2eq

d2ṽ

dy2
+ ṽ

[(ω2

c20
− k2 − βk

ω

)

− y2

L2
eq

]

= 0 =⇒ d2ṽ

dy2
+ ṽ

[

L2
eq

(ω2

c20
− k2 − βk

ω

)

− y2
]

= 0

By comparing the last equation with (••), we obtain the resulting dispersion relation for equatorial waves:

ω2
n = c20

(

k2 +
(2n+ 1)

L2
eq

)

+
βk

ωn
c20

Let’s now analyze this dispersion relation by considering its frequency limits and effects of lateral boundaries:

(a) Fast waves: if ωn is large, then:

ω2
n = c20

(

k2 +
(2n+ 1)

L2
eq

)

.

This is identical to the dispersion relation for high-frequency Poincare waves, if we take l =
√
2n+ 1/Leq.

(b) Slow waves: if ωn is small, then:

ωn = − βk

k2 + (2n+ 1)/L2
eq

.

This is identical to the dispersion relation for Rossby waves, if we take l=
√
2n+ 1/Leq.

(c) Mixed Rossby-gravity (Yanai) wave corresponds to n = 0. It behaves like Rossby/gravity wave for low/high

frequencies.

(d) Equatorial Kelvin wave is the edge wave for which equator plays role of solid bondary.

Let’s take v = 0, and use (∗), (∗ ∗ ∗), and (∗ ∗ ∗∗) :

∂u

∂t
= −g ∂η

∂x
,

∂η

∂t
+H

∂u

∂x
= 0 , (⋆)

− ∂2u

∂t∂y
+ βy

∂u

∂x
= 0 (⋆⋆)



From (⋆) we obtain the zonal-velocity equation and its canonical D’Alembert solution:

∂2u

∂t2
− c20

∂2u

∂x2
= 0 , u = AG−(x− c0t, y) +BG+(x+ c0t, y) ,

and notice, that this solution has to satisfy the PV constraint (⋆⋆).

Substitute the D’Alembert solution in (⋆⋆), introduce pair of propagating-wave variables ξ = x± c0t, and recall

that Leq=
√

c0/β :

∂

∂ξ

(

− c0
∂G−
∂y
− βy G−

)

= 0 ,
∂

∂ξ

(

c0
∂G+

∂y
− βy G+

)

= 0

=⇒ −c0
∂G−
∂y
− βy G− = 0 , c0

∂G+

∂y
− βy G+ = 0

These equations have the following exponential solutions:

G− = A− e
− 1

2
(y/Leq)

2

F−(ξ) , G+ = A+ e
1

2
(y/Leq)

2

F+(ξ)

=⇒ G− = A− e
− 1

2
(y/Leq)

2

F−(x− c0t) , G+ = A+ e
1

2
(y/Leq)

2

F+(x+ c0t)

Only G− remains finite away from the equator, hence, A+ = 0.

Therefore, Kelvin wave is given by G− and propagates only to the east.



Vertical modes: In continuously stratified case, the flow solution can be split in a set of vertical modes. Barotropic

and each baroclinic mode has its own Poincare, Rossby, Yanai and Kelvin waves and dispersion relations.

Most famous phenomenon: Equatorial waves play key role in the global, climate-type, coupled ocean-atmosphere

oscillation referred to as El Nino Southern Oscillation (ENSO). (see later).

Dispersion relation diagram

for equatorial waves



• Schematic of El Nino Southern Oscillation (ENSO) “delayed oscillator” mechanism

El Nino and La Nina occur interannually causing extreme floods and droughts in many regions of the world.

• Normal state is perturbed;

weakening of trade winds

• “Warm” Kelvin wave

radiates to the east and “cold”

Rossby wave radiates to the

west (their basin-crossing

times are about 70 and 220

days).

•When Kelvin wave reaches

the boundary, it warms the

upper ocean and “El Nino”

phenomenon occurs.

• “Cold” Rossby wave

reflects from the western

boundary as “cold” Kelvin

wave; then, it propagates to

the east, terminates El Nino,

and initiates “La Nina” event.



MATERIAL TRANSPORT PHENOMENA

• Stokes drift

This is a nonlinear phenomenon that illustrates

the difference between average Lagrangian velocity

(i.e., velocity estimated following fluid particles)

and average Eulerian velocity

(i.e., velocity estimated at fixed spatial positions).

Essential physics: Stokes drift may occur only when

the flow is both time-dependent and spatially

inhomogeneous.

We will consider the text-book example of deep-water

linear gravity waves (see Figure and Problem Sheet) and derive the Stokes drift velocity.

Lagrangian motion of a fluid particle is described by kinematic equation:

x = ξ(a, t) ,
∂ξ

∂t
= u(ξ, t) , ξ(a, 0) = a ,

where u is the Eulerian velocity (at a fixed position), and ∂ξ/∂t is the Lagrangian velocity (found along the

particle trajectory).

Let’s compare time averages (denoted by overlines) of these velocities and assume that they are not the same (i.e.,

time averages along a trajectory and at a point do not have to coincide):

uE = u(x, t) , uL =
∂ξ(a, t)

∂t
= u(ξ(a, t), t) → uS = uL − uE ,

where Stokes drift velocity uS is the difference between the Lagrangian and Eulerian average velocities.

Let’s now consider a sinusoidal plane wave on the free surface of fluid: η = A cos(kx− ωt). The corresponding

interior flow solution (see Problem Sheet) is given in terms of the velocity potential φ, which is harmonic (i.e.,

∇2φ = 0); and the corresponding (nonlinear) dispersion relation of the deep-water waves:

φ = A
ω

k
ekz sin(kx− ωt) , ω2 = gk .



Consider the horizontal ξx and vertical ξz components of the Lagrangian position vector ξ and write down La-

grangian velocity components:

∂ξx
∂t

=
∂φ

∂x
,

∂ξz
∂t

=
∂φ

∂z
.

The Lagrangian trajectory can be integrated near some point x = (x, z). Within the linear theory this yields:

ξx = x+

∫

∂φ

∂x
dt = x−Aekz sin(kx− ωt) , ξz = z +

∫

∂φ

∂z
dt = z + Aekz cos(kx− ωt) .

The central idea is to calculate Lagrangian velocity on trajectory by Taylor-expanding the Eulerian velocity field

around the reference position x. We focus only on x-direction (here, direction of the wave propagation):

uS = u(ξ, t)− u(x, t) =
[

u(x, t) + (ξx − x)
∂u(x, t)

∂x
+ (ξz − z)

∂u(x, t)

∂z
+ ...

]

− u(x, t)

≈ (ξx − x)
∂2φ(x, t)

∂x2
+ (ξz − z)

∂2φ(x, t)

∂x∂z
= ...

= [−Aekz sin(kx− ωt)] [−ωkA ekz sin(kx− ωt)] + [Aekz cos(kx− ωt)] [ωkA ekz cos(kx− ωt)]
= ωkA2e2kz[sin2(kx− ωt) + cos2(kx− ωt)] = ωkA2e2kz .

By converting to the wave periods in time and space, T and λ , respectively, the outcome is:

uS =
4π2A2

λT
e4πz/λ .

(a) Stokes drift speed uS is quadratic in terms of the wave amplitude A.

(b) Stokes drift decays exponentially with depth and inversely depends on the flow periods.

(c) Darwin drift (permanent displacement of mass after the passage of a body through a fluid) is a related phe-

nomenon.

(d) Stokes drift accompanies all types of internal waves that displace isopycnals; therefore, it illustrates ubiquitous

“hidden” material transports.



• Homogeneous turbulent diffusion

This is a theory for describing dispersion of passive tracer (or Lagrangian particles) by spatially homogeneous,

stationary and isotropic turbulence.

Take C as passive tracer concentration, and u as turbulent velocity field.

Standard approach is to consider large-scale (coarse-grained) quantities: passive tracer concentration C and ve-

locity field u ; so that the corresponding small-scale (turbulent) fluctuations are C ′ and u′.
Let’s assume the complete scale separation between the large and small scales, which here is:

C ′ = 0 , u′ = 0 ,

and coarse-grain the governing advection-diffusion tracer equation by taking its time average:

∂C

∂t
+ u·∇C = molecular diffusion + sources/sinks → ∂(C + C ′)

∂t
+ (u+ u′)·∇(C + C ′) = ...

=⇒ ∂C

∂t
+ u·∇C = −u′ ·∇C ′ + ...

Can we find a simple mathematical model (also called: “parameterization”, “closure”) for the turbulent stress

term on the rhs? This is one of the frontier research directions not only in GFD but also in the whole Earth system

modelling!

Lagrangian point of view on turbulent diffusion.

For this purpose let’s consider dispersion (i.e., spreading) of an ensemble of Lagrangian particles. Concentration

of the particles is equivalent to C, and displacement of each particle from its initial position is given by the

integral of its Lagrangian velocity:

x(t)− x(0) =

∫ t

0

uL(t
′) dt′

Standard functions characterizing evolution of the Lagrangian particles ensemble are single-particle dispersion

D(t) and Lagrangian velocity autocorrelation function R(τ) . These functions are obtained by ensemble aver-

aging (i.e., over many flow realizations), as indicated by angle brackets:

D(t) ≡
〈

(x(t)− x(0))2
〉

, R(t− t′) ≡
〈

uL(t)·uL(t
′)
〉

〈

u2
〉



These functions are mathematically connected with each other. Notice, that
∫ t

0

R(t′ − t) dt′ =
〈

[

x(t′)− x(0)
]t

0

uL(t)

u2

〉

,

therefore:

d

dt
D(t) = 2

〈

[x(t)− x(0)]uL(t)
〉

= 2
〈

u2
〉

∫ t

0

R(t′ − t) dt′ = 2
〈

u2
〉

∫ 0

−t
R(τ) dτ = 2

〈

u2
〉

∫ t

0

R(τ) dτ .

=⇒ dD

dt
= 2

〈

u2
〉

∫ t

0

R(τ) dτ (∗)

Next, recall the formula for differentiation under integral sign,

F (x) =

∫ b(x)

a(x)

f(x, t) dt =⇒ d

dx
F (x) = f(x, b(x)) b′(x)− f(x, a(x)) a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt ,

and find:

D(t) = 2
〈

u2
〉

∫ t

0

(t− τ)R(τ) dτ (∗∗)

Prove the above formula by differentiating it and, eventually, obtain (∗) :

dD

dt
= 2

〈

u2
〉

(

(t− t)R(t)− 0 +

∫ t

0

R(τ) dτ
)

Asymptotic limits: Consider the short- and long-time limits of D(t) by focusing on (∗) :

(a) Ballistic limit: t→ 0.

Then, τ ≈ 0, R(τ) ≈ 1 =⇒ D ∼ t2

(b) Diffusive limit: t→∞.
Introduce Lagrangian decorrelation time: TL=

∫∞
0 R(τ) dτ.

=⇒ dD

dt

∣

∣

∣

∞
= 2TL

〈

u2
〉

=⇒ D ∼ t



In the diffusive limit the area occupied by particles (or passive tracer) grows linearly in time, as in the molecular

diffusion process with the eddy diffusivity equal to:

κ =
〈

u2
〉

TL

Let’s prove the diffusion equation analogy by considering the one-dimensional diffusion equation and by focusing

on the mean-square displacement of the tracer concentration (it is equivalent to the single-particle dispersion!):

∂C

∂t
= κ

∂2C

∂x2
, D(t) ≡

[

∫ ∞

−∞
x2C dx

] [

∫ ∞

−∞
C dx

]−1

Differentiate D(t) and replace tendency term by rhs of the diffusion equation:

∂D

∂t
∼ ∂

∂t

∫ ∞

−∞
x2C dx = κ

∫ ∞

−∞
x2
∂2C

∂x2
dx = (by parts) = 2κ

∫ ∞

−∞
C dx = 2κ

Thus, in the diffusion process analogy, the tracer-containing area grows linearly in time.

NOTE: the same diffusion process analogy in 2D and 3D cases yields 4κ and 6κ on the rhs, respectively.



NONLINEAR DYNAMICS AND WAVE-MEAN FLOW INTERACTIONS

Nonlinear flow interactions become fundamentally important when growing flow instabilities reach significant

amplitude and become finite-amplitude nonlinear eddies and currents.

• Weakly nonlinear analysis can predict slowly evolving amplitude of nearly monochromatic nonlinear waves

through derivation of an amplitude equation.

• Dynamical systems framework (bifurcations, attractors, etc.) can be useful for describing transition to turbu-

lence.

• Exact analytic solutions of nonlinear flows are known (e.g., solitary waves), but remain simple and exceptional.

• Statistical wave turbulence framework (resonant triads, kinetic equations, etc.) can be useful, when the under-

lying linear dynamics is relatively simple and wave coherency is weak.

• Stochastic modelling of turbulence is an emerging field, but it is poorly constrained by physics.

• Computational modelling is presently the most useful (in terms of the new knowledge!) approach for theoretical

analysis of nonlinear flows, but under the relaxed scientific standards it can be intoxicating and detrimental.

Illustration: Stages of nonlinear evolution of the growing instabilities in the Phillips model



Turbulence modelling is the process of construction and use of a model aiming to predict effects of broadly defined

spatio-temporally complex nonlinear flow dynamics, which is referred to as fluid “turbulence”.

• Closure problem is a dream (or a modern alchemy?) to predict coarse-grained flow evolution by expressing

important dynamical effects of unresolved flow features in terms of the coarse-grained flow fields.

Let’s consider some velocity field consisting of coarse-grained (i.e., large-scale obtained by some spatio-temporal

filtering) and fluctuation (i.e., small-scale) components:

u = u+ u′ , u′ = 0 .

Let’s assume the following toy dynamics:

(∗) du

dt
+ uu+ Au = 0 → du

dt
+ uu+Au = 0

To close the equation for u, let’s obtain the equation for uu = u u + u′u′ by multiplying (∗) with u and by

coarse-graining:

1

2

duu

dt
+ uuu+Auu = 0

What are we going to do with the cubic term? An equation determining it will contain a quartic term uuuu, and

so on...

Let’s imagine a magic “philosopher’s stone” relationship that makes the closure:

uuuu = αuuuu+ β uuu

Many theoreticians are looking for various “philosopher’s stone” relationships that will be laughed at a century

from now, but by doing this a great deal of physical knowledge is obtained and many mathematical instruments

are developed.



• Reynolds Decomposition

Common example of coarse-graining, referred to as Reynolds decomposition, is separation of a turbulent flow into

the time-mean and fluctuation (i.e., “eddy”) components:

u(t,x) = u(x) + u′(t,x) , p(t,x) = p(x) + p′(t,x) , ρ(t,x) = ρ(x) + ρ′(t,x) .

For example, let’s apply the Reynolds decomposition to the x-momentum equation and, then, average this equation

over time (as denoted by overline):

∂u

∂t
+ u·∇ u = −1

ρ

∂p

∂x
−∇·u′u′ = −1

ρ

∂p

∂x
− ∂

∂x
u′u′ − ∂

∂y
u′v′ − ∂

∂z
u′w′ .

The last group of terms is the first component of divergence of the nonlinear Reynolds stress tensor:

Tij = u′i u
′
j .

(a) In the above example replace: u→ φ and consider nonlinear stress u′φ′, which is referred to as eddy flux of

φ. Divergence of an eddy flux can be interpreted as internally and nonlinearly generated eddy forcing exerted on

the dynamics of coarse-grained φ.

(b) It is very tempting to assume that nonlinear stress can be related to the corresponding time-mean (large-scale)

gradient, for example:

u′φ′ = −ν ∂φ
∂x

.

This flux-gradient assumption is often called eddy diffusion or eddy viscosity (closure). Note, that this flux-

gradient relation is exactly true for real viscous stress (but only in Newtonian fluids!) arising due to molecular

dynamics.

(c) The flux-gradient assumption is common in models and theories, but it is often either inaccurate or fundamen-

tally wrong, because fluid dynamics is different from molecular dynamics.

(d) Turbulent QG PV dynamics can be also coarse-grained to yield diverging eddy fluxes, because φ can stand

for PV. Since PV anomalies consist of the relative-vorticity and buoyancy parts, the PV eddy flux u′q′ can be

straightforwardly split into the Reynolds stress (i.e., eddy vorticity flux) and form stress (i.e., eddy buoyancy flux)

components, which describe different physics.



• Parameterization of unresolved eddies

The above coarse-graining approach can be extended beyond the “Reynolds decomposition into the time mean and

fluctuations” by applying some general decomposition (e.g., filtering) of turbulent fields into: (i) some large-scale

and slow component and (ii) the small-scale and fast residual eddies.

For example, let’s consider the equivalent barotropic QG PV model with the eddy viscosity replacing the nonlinear

stresses:

Π = ∇2ψ − 1

R2
ψ + βy ,

∂Π

∂t
+
∂ψ

∂x

∂Π

∂y
− ∂ψ

∂y

∂Π

∂x
= ν∇2ζ = ν∇4ψ ,

here it is assumed that the model solves for the large-scale flow, and the viscous term ν∇4ψ represents the effects

of unresolved eddies.

How can we interpret this viscosity parameter ν ?

(a) Molecular viscosity of water is ∼ 10−6 m2 s−1, but typical values of ν used in geophysical models are 100–

1000 m2 s−1. What do these numbers imply? Typical viscosities (in m2 s−1): honey ∼ 0.005, peanut butter

∼ 0.25, basaltic lava ∼ 1000.

In simple words, oceans in modern computational models are made of basaltic lava rather than water...

(Similar analogy holds for the atmosphere; although kinematic viscosity is about 20 times larger in the air.)

(b) Reynolds numberRemeasures relative importance of nonlinear and viscous terms (Peclet number Pe is similar

but for a tracer diffusion term):

Re =
U 2/L2

νU/L3
=
UL

ν
, Pe =

UL

κ

NOTE: Modern general circulation models strive to achieve larger and larger Re (and Pe) by progressively re-

solving smaller scales, and by employing better numerical algorithms and faster supercomputers.



• Triad interactions in turbulence

This is the main mechanism of nonlinear interactions that transfers energy between scales.

Let’s consider a double-periodic domain with the following forced and dissipative 2D dynamics:

∂ζ

∂t
+ J(ψ, ζ) = F + ν∇2ζ , ζ = ∇2ψ . (∗)

All flow fields can be expanded in Fourier series (summation is over all negative and positive wavenumbers):

ψ(x, y, t) =
∑

k

ψ̃(k, t) eikx , ζ(x, y, t) =
∑

k

ζ̃(k, t) eikx ,

where

k = ik1 + jk2 , ζ̃ = −K2ψ̃ , K2 = k21 + k22 .

Substituting these Fourier expansions in (∗) yields:

− ∂
∂t

∑

k

K2 ψ̃(k, t) eikx =
[

∑

p

p1ψ̃(p, t) e
ipx

] [

∑

q

q2ζ̃(q, t) e
iqx

]

−
[

∑

p

p2ψ̃(p, t) e
ipx

] [

∑

q

q1ζ̃(q, t) e
iqx

]

+
∑

k

F̃ (k, t) eikx + ν
∑

k

K4 ψ̃(k, t) eikx ,

where k, p and q are 2D wavevectors.

Wavevector evolution equation is obtained for each spectral coefficient ψ̃(k, t) by multiplying the last equation

with exp(−ikx), by integrating over the domain, using Q2 = q21 + q22, and by noting that the Fourier modes are

orthogonal:
∫

eipxeiqx dA = L2δ(p+ q) =⇒

∂

∂t
ψ̃(k, t) =

∑

p,q

−Q2

−K2
(p1q2 − p2q1) δ(p+ q− k) ψ̃(p, t) ψ̃(q, t) +

1

−K2
F̃ (k, t)− νK2ψ̃(k, t) (∗∗)



This equation (∗∗) can be reformulated for evolution of the complex amplitude |ψ̃(k, t)| by multipling (∗∗) with

the complex conjugate spectral coefficient ψ̃∗(k, t).
Note, that there are as many equations (∗∗) involved, as wavevectors k considered.

Interaction coefficient weighs the nonlinear term according to the dynamics, and it is nonzero only for the inter-

acting wavevector triads that must satisfy: p+ q = k, because of the δ-function involved.

Hermitian (conjugate) symmetry property (i.e., ψ̃ is Hermitian function) states that

ψ̃(k1, k2, t) = ψ̃∗(−k1,−k2, t) ,

because ψ is real function.

Some properties of the triad interactions:

(a) Redistribution of spectral energy density.

Suppose, there are initially only two Fourier

modes, with wavevectors p and q, and with

the Fourier coefficients ψ̃(p, t) and ψ̃(q, t).

Due to the conjugate symmetry, these modes

must have their conjugate-symmetric

partners at −p and −q , which are

described by the Fourier coefficients

ψ̃∗(−p, t) and ψ̃∗(−q, t); thus, the initial

combination of the “two modes” are actually the “four modes” organized in 2 conjugate-symmetric pairs. Non-

linear interactions involving the initial 2 pairs will generate 2 more pairs:

k = p+ q , l = −p− q , m = p− q , n = −p+ q ,

and the subsequent nonlinear generation of the new wavevectors will continue to infinity.

(b) Nonlinear triad interactions are called local (k ∼ p ∼ q) or non-local (k ∼ p ≪ q), depending on the

differences between the involved scales (see Figure).

(c) Cascades in turbulence are energy transfers between scales based on local interactions.



(d) Fourier spectral descriptions are popular, because the modes are simple and orthogonal, and in spatially

homogeneous situations (only!) they even satisfy the linearized dynamics. Other spectral descriptions are possible

and can be even more useful.

(e) Fourier expansion in time allows to talk about nonlinear interactions of individual waves rather than wavevec-

tors. If phases of these waves are approximately random, then the problem can be approached by wave turbulence

theory; if the phases are coherent, as typical in 2D turbulence, then people talk about coherent structures.



• Homogeneous and stationary, non-rotating 3D turbulence.

This idealized turbulence is characterized by energy transfers from the larger to smaller scales.

These transfers can involve both local and nonlocal interactions; however, forward energy cascade is a popular

concept (conjecture) stating that energy is transferred only between similar scales (i.e., locally) and cascades from

larger to smaller scales.

Forward energy cascade assumes the following:

(a) At large length scales there is some energy input

(e.g., due to instabilities of large-scale flow),

all dissipation happens on short length scales, and on

the intermediate length scales the turbulence is controlled

by conservation of energy.

(b) Dissipation acts on very short length scales, such that fluid motion is characterized by Re ≤ 1. These are

scales on which cascading energy is drained out. Within the cascade energy input to each scale/wavenumber is

equal to energy output from it.

(c) Turbulence within the cascade is characterized by self-similarity, i.e., everything is structurally similar at each

scale/wavenumber.

Our goal is to connect the main ingredients: isotropic wavenumber, k, energy spectral density, E(k), and energy

input rate, ǫ and energy within a spectral interval is E(k)δk.

Involved physical dimensions are:

[k] =
1

L
, [E] = LU 2 =

L3

T 2
, [ǫ] =

U 2

T
=
L2

T 3

Advective velocity scale and time scale are:

vk = [kE(k)]1/2 ,

τk = (kvk)
−1 = [k3E(k)]−1/2 .



Kolmogorov “minus-five-thirds” law.

In the assumed inertial spectral range the kinetic energy is conserved; it is neither produced nor dissipated. Energy

input in and output from each spectral interval, on the one hand, is ǫ, and, on the other hand, should scale with

vk and τk only:

ǫ ∼ v2k
τk

=
kE(k)

τk
= k5/2E(k)3/2 =⇒ E(k) ∼ ǫ2/3k−5/3

The Kolmogorov law is robust, within ±2% deviations, but similarly argued predictions for the higher-order

moments deviate from statistical measurements because of intermittency associated with relatively frequent large

velocities and the corresponding energy dissipation bursts.



Kolmogorov (dissipative) length scale.

This scale Lvisc is the smallest scale in fluid mechanics.

It can be obtained by equating the advective time scale τk and the viscous time scale τvisc = [k2ν]−1 (expressed

in terms of ǫ and k ) for the corresponding isotropic wavenumber kvisc :

τk = k−3/2E−1/2 ∼ ǫ−1/3 k−2/3 → τk = τvisc

=⇒ kvisc ∼ ǫ1/4 ν−3/4 =⇒ 1

kvisc
≡ Lvisc ∼ ǫ−1/4 ν3/4

Note, that this scaling is dominated by the viscosity dependence, therefore, Lvisc is often referred to as “dissipa-

tive” length scale. And equating the time scales is equivalent to assuming Re ∼ 1.

(a) Alternatively, we can find this power law scaling for Lvisc from the method of dimensional analysis:

kvisc ∼ L−1visc ∼ ǫα νβ ∼ L2α

T 3α

L2β

T β

=⇒ 2α+ 2β = −1 , 3α + β = 0 → α =
1

4
, β = −3

4

(b) Kolmogorov time scale can be rewritten in terms of ǫ :

τvisc ∼ ǫ−1/2 ν1/2 .

(c) Energy inpute rate ǫ is often referred to as the average rate of dissipation of turbulence kinetic energy (per

unit mass).



• 2D homogeneous turbulence

This turbulence regime is controlled by conservation of not only energy but also enstrophy Z = ζ2, which is the

other useful quadratic scalar.

Consider the materially conserved enstrophy dynamics:

∂

∂t
ζ2 = 2ζ

∂ζ

∂t
= −2ζ u·∇ζ = −u·∇ζ2 = −∇·(u ζ2) + ζ2∇·u , (∗)

where the second step involves the material conservation law for ζ. Integrate (∗) in space and take into account

that the rhs terms vanish, because we assume nondivergent flow and periodic boundaries, i.e., u·dS = 0, therefore:

∂

∂t

∫

A

ζ2 dA =

∫

A

∂

∂t
ζ2 dA = −

∫

A

∇·(u ζ2) dA = −
∫

S

u ζ2 dS = 0

Therefore, there is global conservation of enstrophy.

Homogeneous 2D turbulence is characterized by the following:

(a) Energy is transferred to larger scales (hence, inverse energy cascade concept is valid) and ultimately removed

by some other physical processes; the Kolmogorov spectrum E(k) ∼ k−5/3 is preserved.

(b) Enstrophy is transferred to smaller scales (i.e., there is forward enstrophy cascade) and ultimately removed by

viscous dissipation.

(c) Upscale energy transfer occurs often through 2D vortex mergers.

(d) Downscale enstrophy cascade occurs often through irreversible process of stretching, filamentation and stir-

ring of relative vorticity.

To obtain its spectral law, the enstrophy cascade can be treated similarly to the energy cascade. Let’s assume that

enstrophy input rate η produces enstrophy that cascades through the inertial spectral range to the dissipation-

dominated scales.

Now, let’s recall that the advective scales are

τk = k−3/2E(k)−1/2 , vk = [kE(k)]1/2



=⇒ η ∼ ζ2k
τk

=
(k vk)

2

τk
=
k3E(k)

τk
= k9/2E(k)3/2 =⇒ E(k) ∼ η2/3k−3 (∗∗)

Let’s now use (∗∗) to ged rid of E(k) , and take into account that the dissipative time scale for enstrophy is

τk = η−1/3 .

Equate this to the viscous time scale to obtain the dissipative length scale for enstrophy:

τvisc ∼ [k2ν]−1 = η−1/3 → kvisc ∼ η1/6ν−1/2 → 1

kvisc
≡ Lvisc ∼ η−1/6ν1/2

Instead of engaging into detailed analysis of 2D vortex

mergers, let’s consider an alternative explanation of the

energy transfer to larger scales. Vorticity is conserved,

but it is also being stretched and filamented (e.g.,

consider a circular patch of vorticity that evolves and

becomes elongated as a spaghetti). The corresponding

streamfunction is obtained by the vorticity inversion,

∇2ψ = ζ, therefore, its length scale will be controlled by

the elongated vorticity scale, hence, the streamfunction scale

will keep increasing. Therefore, the total kinetic energy will

become dominated by larger scales.



• Effects of rotation and stratification on 3D turbulence are such, that they suppress vertical motions, and,

therefore, create and maintain quasi-2D turbulence.

The β-effect or other horizontal inhomogeneities of background PV make quasi-2D turbulence anisotropic. Ex-

ample of anisotropic phenomenon is emergence of multiple alternating jets (e.g., zonal bands in the atmosphere

of Jupiter). Length scales controlling widths of the multiple jets are Rhines scale LR = (U/β)1/2 (here, U is

characteristic eddy velocity scale) and baroclinic Rossby radius RD.



⇐= When people research homogeneous 3D

turbulence, they usually deal with this kind

of solutions...

(shown are isolines of vertical relative vorticity component)

Turbulent convection (heavy fluid on the top)

There are many types of

inhomogeneous 3D turbulence,

characterized by some broken

spatial symmetries =⇒



⇐= 2D turbulence is characterized by interacting

and long-lived coherent vortices

These vortices are materially conserved

relative vorticity extrema =⇒



Merger of two same-sign vortices (snapshots show different stages in time)

Chaotic advection of material tracer

In 2D turbulence:

• Inverse energy cascade occurs through mechanism

of vortex mergers.

• Forward enstrophy cascade occurs through mechanism

mechanism of irreversible filamentation and stirring of

vorticity anomalies.



• Extra topic: Transformed Eulerian Mean (TEM)

This is a useful transformation of the equations of motion (for predominantly zonal eddying flows, like atmo-

spheric storm track or oceanic Antarctic Circumpolar Current).

TEM framework:

(a) eliminates eddy fluxes in the thermodynamic equation,

(b) in a simple form collects all eddy fluxes in the zonal momentum equation,

(c) highlights the role of eddy PV flux.

Let’s start with the f -plane Boussinesq system of equations:

Du

Dt
− f0v = − 1

ρ0

∂p

∂x
+ F ,

Dv

Dt
+ f0u = − 1

ρ0

∂p

∂y
,

Dw

Dt
= − 1

ρ0

∂p

∂z
− b ,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 ,

Db

Dt
+N2w = Qb ,

Assume geostrophic and ageostrophic velocities, and focus on the ǫ-order terms in the zonal-momentum and

thermodynamic equations:

∂ug
∂t

+ ug
∂ug
∂x

+ vg
∂ug
∂y
− f0va = F ,

∂b

∂t
+ ug

∂b

∂x
+ vg

∂b

∂y
+N2wa = Qb .

These equations can be rewritten in the flux divergence form:

∂ug
∂t

+
∂ugug
∂x

+
∂vgug
∂y

− f0va = F ,
∂b

∂t
+
∂ugb

∂x
+
∂vgb

∂y
+N2wa = Qb .

Next, assume conceptual model of eddies evolving on zonally symmetric mean flow and feeding back on this

flow. Separate eddies from the mean flow by applying zonal x-averaging (denoted by overline; f ′ = 0 ):

ug = ug(t, y, z) + u′g(t, x, y, z) , vg = v′g(t, x, y, z) → ∂ug
∂t

= f0va −
∂

∂y
u′gv

′
g + F (∗)

Note, that zonal integration of any ∂(flux)/∂x term yields zero, because of the zonal symmetry.

Similar decomposition of the buoyancy yields:

b = b(t, y, z) + b′(t, x, y, z) → ∂b

∂t
= −N2wa −

∂

∂y
v′gb
′ +Qb (∗∗)



Equations (∗) and (∗∗) are coupled by the thermal wind relations. Because of this, effects of the eddy momentum

and heat fluxes cannot be clearly separated from each other — this is a fundamental nature of the geostrophic

turbulence.

Progress can be made by recognizing that va and wa are related by mass conservation (i.e., non-divergent 2D

field). Hence, we can define ageostrophic meridional streamfunction ψa, such that

va = −
∂ψa

∂z
, wa =

∂ψa

∂y
.

Meridional eddy buoyancy flux can be easily incorporated in ψa, and we can define the residual mean meridional

streamfunction,

ψ∗ ≡ ψa +
1

N2
v′gb
′ =⇒ v ∗ = −∂ψ

∗

∂z
= va−

∂

∂z

( 1

N2
v′gb
′
)

, w ∗ =
∂ψ∗

∂y
= wa+

∂

∂y

( 1

N2
v′gb
′
)

,

that by construction describes non-divergent 2D flow (v ∗, w ∗).

(a) Thus, ψ∗ combines the (ageostrophic) Eulerian mean circulation with the Lagrangian eddy-induced circula-

tion; the latter motion is of the Stokes drift type.

(b) These circulations tend to compensate each other, hence, mean zonal flow feels their residual effect.

Invoking the definition of ψ∗, the momentum equation (∗) can be written as

∂ug
∂t

= f0v
∗ − ∂

∂y
u′gv

′
g +

∂

∂z

f0
N2

v′gb
′ + F = f0v

∗ +∇yz ·E+ F ,

where we introduced the Eliassen-Palm flux:

E ≡ (0 , −u′gv′g ,
f0
N2

v′gb
′ ) .



Next, let’s take into account that divergence of the Eliassen-Palm flux is equivalent to geostrophic PV flux:

∇yz ·E = v′gq
′
g

(see Problem Sheet), and obtain the Transformed Eulerian Mean (TEM) equations:

∂ug
∂t

= f0v
∗ + v′gq

′
g + F ,

∂b

∂t
= −N2w ∗ +Qb ,

∂v ∗

∂y
+
∂w ∗

∂z
= 0 , f0

∂ug
∂z

= −∂b
∂y

(∗ ∗ ∗)

where the last equation is just the thermal wind balance.

Let’s eliminate the left-hand sides from the first two equations by differentiating them with respect to z and y,
respectively. The outcome is equal by the last equation from (***), and the resulting diagnostic equation is

−f 2
0

∂v ∗

∂z
+N2 ∂w

∗

∂y
= f0

∂

∂z
v′gq
′
g + f0

∂F

∂z
+
∂Qb

∂y
.

Now we can take into account definition of ψ∗ and obtain the final diagnostic equation:

f 2
0

∂2ψ∗

∂z2
+N2 ∂

2ψ∗

∂y2
= f0

∂

∂z
v′gq
′
g + f0

∂F

∂z
+
∂Qb

∂y
(∗ ∗ ∗∗)

(a) If one knows the eddy PV flux, the TEM equations allow to solve for the complete circulation pattern.

This can be done by solving the elliptic problem (****) for ψ∗, at every time (step).

(b) Eddy PV flux still has to be found dynamically, but the theory allows for many dynamical insights.

(c) The TEM framework can be extended to non-QG flows.



• Non-Acceleration Theorem

It states that under certain conditions eddies (or waves) have no net effect on the zonally averaged flow.

Let’s prove this by considering zonally averaged QG PV equation (with a non-conservative rhs D ):

∂q

∂t
+
∂v′q′

∂y
= D , q =

∂2ψ

∂y2
+

∂

∂z

( f 2
0

N2

∂ψ

∂z

)

+ βy .

Let’s differentiate (∂/∂y) the QG PV equation:

∂2

∂t∂y

[∂2ψ

∂y2
+

∂

∂z

( f 2
0

N2

∂ψ

∂z

)]

= − ∂2

∂y2
v′q′ +

∂D

∂y
,

and recall that

v′q′ = v′gq
′
g = ∇yz ·E =⇒

[ ∂2

∂y2
+

∂

∂z

( f 2
0

N2

∂

∂z

)] ∂u

∂t
=
∂2(∇yz ·E)

∂y2
− ∂D

∂y

Theorem: If there is no eddy PV flux (i.e., Eliassen-Palm flux is non-divergent) in stationary and conservative

situation, then the flow can not get accelerated (∂u/∂t = 0), because the ”Eulerian mean” and “eddy-induced”

circulations completely cancel each other.


