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� Idea of the lecturesis to provide a relatively advanced-level course that builds up on the existing introductory-
level �uid dynamics courses. The lectures target an audience of upper-level undergraduate students, graduate
students, and postdocs.

� Main topics:

(1) Introduction

(2) Governing equations

(3) Geostrophic dynamics

(4) Quasigeostrophic theory

(5) Ekman layer

(6) Rossby waves

(7) Linear instabilities

(8) Ageostrophic motions

(9) Transport phenomena

(10)Nonlinear dynamics and wave-mean �ow interactions

� Suggested textbooks:

(1) Introduction to geophysical �uid dynamics(Cushman-Roisin);

(2) Fundamentals of geophysical �uid dynamics(McWilliams);

(3) Geophysical �uid dynamics(Pedlosky);

(4) Atmospheric and oceanic �uid dynamics(Vallis);

(5) Essentials of atmospheric and oceanic dynamics(Vallis).



Motivations

� Main motivation for the recent rapid development ofGeophysical Fluid Dynamics(GFD) is advancing our
knowledge about the following very important, challengingand multidisciplinary research lines:

— Earth system modelling,

— Predictive understanding of climate variability(emerging new science!),

— Forecast of various natural phenomena(e.g., weather),

— Natural hazards, environmental protection, natural resources, etc.

What is GFD?

� Most of GFD is about dynamics ofstrati�ed andturbulent�uids on giantrotating planets (spheres).

— On smaller scales GFD becomes classical �uid dynamics withgeophysical applications.

— Other planets and some astrophysical �uids (e.g., stars, galaxies) are also included in GFD.

� GFD combines applied math and theoretical physics.
It is aboutmathematical representationandphysical interpretationof geophysical �uid motions.

� Mathematics of GFD isheavily computational, even relative to other branches of �uid dynamics (e.g., modelling
of the ocean circulation and atmospheric clouds are the largest computational problems in the history of science).

— This is because lab experiments (i.e., analog simulations) can properly address only tiny fraction of interesting
questions (e.g., small-scale waves, convection, microphysics).

� In geophysics theoretical advances are often GFD-based rather than experiment-based, because obtaining�eld
measurementsis very complicated, dif�cult, expensive and often impossible.

Let's overview some geophysical phenomena of interest...



An image of the Earth from space:

� Earth'satmosphere
andoceansare the
main but not the only
target of GFD



This is not an image of the Earth from space...

...but a visualized solution of the mathematical equations!



� Atmosphericcyclonesandanticyclonesshape up midlatitude weather.

This cyclone is naturally visualized by clouds:

� Modellingatmospheric cloudsis notoriously dif�cult multi-scale problem with phase transi-
tions and chemistry involved.



� Tropical cyclones(hurricanes and typhoons) are a coupled ocean-atmosphere phenomenon.
These are powerful storm systems characterized by low-pressure center, strong winds, heavy
rain, and numerous thunderstorms.

Hurricane Katrina approaching New Orleans:



� Ocean-atmosphere coupling: Ocean and atmosphere exchange momentum, heat, water, radi-
ation, aerosols, and greenhouse gases.

Ocean-atmosphere interface is a very complex two-sided boundary layer:



Ocean currents are full of transient mesoscale eddies:

� Mesoscale (synoptic) oceanic eddies— also called “oceanic weather” — are dynamically
similar to atmospheric cyclones and anticyclones; however, they are smaller, slower and more
numerous.

� Modelling mesoscale eddies and their large-scale effects is very important (and challenging),
because predictive skills of climate models crucially depend on their accurate representation.



Submesoscale eddies around island... ...and around the Gulf Stream

� Submesoscale motionsare geostrophically and hydrostatically unbalanced, which means that
they are less affected by the rotation and strati�cation than mesoscale eddies.

� Many submesoscale processes are steered by coasts and topography (e.g., coastal currents,
upwellings, tidal mixing, lee waves).

� Turbulence operates on all scales down to millimeters, but on smaller scales effects of plane-
tary rotation and density strati�cation weaken, and GFD turns into classical �uid dynamics.



Breaking surface
gravity wave

� GFD deals with many types of waves operating on lengthscalesfrom centimeters to thousands
of kilometers.

� Breakinginternal gravity wavesare very important for vertical mixing shaping up strati�ca-
tions of geophysical �uids.



Evolution of a tsunami predicted by high-accuracy shallow-water modelling:

� Tsunamiis speci�c type of surface gravity waves: long, fast and energetic. Tsunami running
on coasts creates extreme danger.



� GFD is involved in problems with formation and propagation of ice.

( = Flowing glacier

Formation of marine ice =)



Erupting volcano
Eyjafjallajokull
spewes ashes to
be transported
over large
distances...

� GFD provides basis for modellingturbulent material transportof various substances and
chemicals in atmospheres and oceans.



Chlorophyll
concentration
on the sea surface

� Biogeochemical modellinglinks GFD with population biology and involves solving for con-
centrations of hundreds of mutually interacting species feeding on light, nutrients and each
other.



� GFD applies toatmospheres of other planets.

Circulation of the Jupiter's weather layer:

Images of Jupiter from the Cassini
and Voyager missions

� Weather layer of Jupiter is characterized by multiple, alternating zonal jets, long-lived coher-
ent vortices (e.g., Great Red Spot), waves and turbulence.



� Towards the poles jovian turbulence changes its character,as the jets fade out and give way
to vortex crystals.

� Many physical processes shape this circulation up: thermalconvection, �ow instabilities,
energy cascades, planetary surf zones, transport barriers, etc.

Similar jets exist on other planets, including the Earth...And not only on the planets!



Convection clouds on Jupiter (science �ction art by Andrew Stewart):

� Some theories argue that alternating jets on giant gas planets are driven by deep convective
plumes that feed upscale cascade of energy.



What are the other planets where alternating zonal jets alsoexist?

� Brown dwarfsare substellar objects
about Jupiter size but 50 times denser

� Earth's atmosphere has only a few jets, for good
physical reasons.

� Earth's ocean has hundreds of (recently discovered) weak jets.



� MagnetoHydroDynamics (MHD)naturally extends the realm of GFD to modelling the Sun
and other stars.

Beautiful example of coronal plasma rain on the Sun:



� GFD also deals withspace weatherandviolent winds.

Spectacular aurora (borealis)
during polar night:

Powerful tornado emerges from a funnel cloud:



� GFD also deals withatmospheric electricityandmotion of �oating objects.

Drifting iceberg near Antarctic:

Multiple lightnings strike in a tropical thunderstorm:

And there are many other geophysical phenomena in the need ofscience explorers!



� Representation of �uid �ows

Let's consider a �ow consisting ofin�nitesimal �uid particles.
Each particle is characterized by its positionr and velocity
u vectors, which are connected by thekinematic equation:

dr (t)
dt

=
@r(a; t)

@t
= u(r ; t) ; r (a; 0) = a

� Trajectory(pathline) of an individual �uid particle is “recording”
of the path of this particle over some time interval. Instantaneous direction of the trajectory is determined by the
corresponding instantaneous streamline.

� Streamlinesare a family of curves that are instantaneously tangent to the velocity vector of the �ow
u = ( u; v; w): Streamline shows the direction a �uid element will travel inat any moment of time.

A parametric representation of just one streamline (heres is coordinate along the streamline) at some moment in
time is X s(xs; ys; zs) :
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For 2D and non-divergent�ows the velocity streamfunctioncan be used to plot streamlines:
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Note, thatu �r  = 0; hence, velocity vectoru always points along the isolines of (x; y); implying that these
isolines are indeed the streamlines.

� Streaklineis the collection of points of all the �uid particles that have passed continuously through a particular
spatial point in the past. Dye steadily injected into the �uid at a �xed point extends along a streakline.

Note: if �ow is stationary, that is @=@t� 0; then streamlines, streaklines and trajectories coincide.

� Timeline (material line)is the line formed by a set of �uid particles that were marked at the same time, creating
a line or a curve that is displaced in time as the particles move.



� Lagrangian framework: Point of view such that �uid is describedby following �uid particles. Interpolation
problem; not optimal use of information, because evolving particles will always nonuniformly cover the �uid
area.

� Eulerian framework : Point of view such that �uid is describedat �xed positions in space. Nonlinearity
problem.



GOVERNING EQUATIONS

Complexity: These equations are suf�cient for �nding a solution but aretoo complicated to solve; they are useful
only as a starting point for GFD analysis.

Art of modelling: Typically the governing equations areapproximatedanalytically and, then,solved approximately
(by analytical or numerical methods); one should always keep track of all main assumptions and approximations.

� Continuity equation (conservation of mass)

Let us take the Eulerian view and consider a �xed in�nitesimal cubic volume of �uid and �ow of mass through
its surface: the mass budget must state conservation of mass.
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+ r� (� u) = 0 or
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D
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+ u �r  � material derivative



Note: if �uid is incompressible (i.e.,� = const); then the continuity equation is reduced to

r� u = 0 ;

which is itsincompressible form.

� Material derivative

This is one of the most important concepts in �uid mechanics.
When operating onX; it gives therate of change ofX with time following the �uid elementand subject to a
space-time dependent velocity �eld.

Material derivative is the fundamental link between the Eulerian [@=@t+ u�r ] and Lagrangian[D=Dt ] descrip-
tions of changes in the �uid.

The way to see that the material derivative describes the rate of change of any propertyF (t; x; y; z) following a
�uid particle is by applying (i) the chain rule of differentiation and (ii) de�nition of velocity as the rate of change
of particle position:
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Tendency term@X=@trepresents the rate of change ofX at a point which is �xed in space (and occupied by
different �uid particles at different times). Changes ofX are observed by a stand-still observer.

Advection termu �r X represents changes ofX due to movement with velocityu; which is the �ow supply of
X to the �xed reference point. Additional advective changes of X are experienced by an observer swimming
with velocity u; even when the �eld ofX is steady.



� Material tracer equation

For any material (e.g., chemicals, aerosols, gases)tracer concentration� (amount per unit mass), via similar to
the continuity equation budgeting, the governing evolution equation for composition is:

@(�� )
@t

+ r� (�� u) = � S (� ) ;

where S(� ) stands for all non-conservative sources and sinks of� (boundary sources, molecular diffusion, reac-
tion rate, etc.).
Turbulent tracer diffusion is generally added toS(� ) and represented byr� (� r � ); where � is diffusivity (tensor)
coef�cient.



� Momentum equation

Consider the Newton's Second Law in a �xed frame of reference, for an in�nitesimal cubic volume of �uid �V;
and for some forceF acting on the unit volume:
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where the �rst term of the second equation is zero, because mass of the �uid element remains constant (i.e., we
do not consider relativistic effects). Let us now consider different forces.

Pressure forcearises thermodynamically (due to internal motion of molecules) from the pressurep(x; y; z) that
acts perpendicularly on 6 faces of the in�nitesimal cubic volume �V: Hence, the pressure force component inx
is

Fx �V = [ p(x; y; z) � p(x + �x; y; z )] �y �z = �
@p
@x

�V =) Fx = �
@p
@x

=) F = �r p

Frictional force(due to internal motion of molecules and tangential stresses acting on 6 faces of the in�nitesimal
cubic volume) is typically approximated as� r 2u; where � is thekinematic viscosity.

Body forceFb is typically represented bygravity (e.g., downwardFb = � g ) and electromagnetic (e.g., on the
Sun) forces.

Coriolis forceis one ofpseudo-forcesthat appear only in rotating (i.e., non-inertial!) frames of reference, which
are characterized by the rotation rate given by the angular velocity vector 
 :

Fc = � 2
 � u

(a) It acts to de�ect a �uid particle at right angle to its motion; note, that only moving particles are affected.

(b) It doesn't do work on a particle, because it is perpendicular to the particle velocity.

(c) Think about motion of tossed ball on a rotating carousel,or about Foucault pendulum. Watch some YouTube
movies about the Coriolis force.

(d) Physics of the Coriolis force: particle on a rotating sphere is de�ected because of the conservation of angular
momentum. When moving to smaller/larger latitudinal circle, the particle should be accelerated/decelerated in
the latitudinal direction to conserve its angular momentum.



(e) Because of the de�ecting force, moving particles will goaround inertial circles that become smaller towards
the planetary poles.

(f) Coriolis force is zero on the equator and acts in the opposite directions in the planetary hemispheres.

To summarize, the (vector) momentum equation is:
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r p + � r 2u + Fb

Note, that in GFD the Coriolis force is traditionally kept onthe lhs of the momentum equation, to remind that it
is a pseudo-force.



� Derivation of pseudo-forces in rotating coordinate system

Rates of change of general vectorB in the inertial (�xed) and rotating (with
 ) frames of reference (indicated by
i andr , respectively) are related as:
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However, we need acceleration ofu i in the inertial frame and expressed completely in terms ofu r and in the
rotating frame.
Let's (a) differentiate(� ) with respect to time, and in the inertial frame of reference;and (b) substitute[du r =dt]i
from (�� ) :
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Now, we again substitute[dr=dt]i from (� ) :
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The term disappearing due to the constant rate of rotation isthe (minus)Euler force.
The last term is the (minus)centrifugal force, which acts both on moving and standing particles. It acts a bit like
gravity but in the opposite direction, hence, it can be incorporated in the gravity force �eld and “be forgotten”.



� Equation of state

� = � (p; T; �n)

relates pressurep to thestate variables— density �; temperatureT; and chemical tracer concentrations� n;
where n = 1; 2; ::: is the tracer index.
All the state variables are related to matter; therefore, the equation of state is aconstitutive equation.

(a) Equations of state are often phenomenological and very different for different geophysical �uids (note, that
the other equations are universal).

(b) The most important� n are humidity (i.e., water vapor concentration) in the atmosphere andsalinity (i.e.,
concentration of diluted salt mix) in the ocean.

(c) Equation of state brings intemperature, which has to be determinedthermodynamically[not part of these
lectures!] frominternal energy(i.e., energy needed to create the system),entropy(thermal energy not available
for work), andchemical potentialscorresponding to� n (energy that can be available from changes of� n ).

(d) Example of equation of state (for sea water) involves empirically �tted coef�cients of thermal expansion�;
saline contraction�; andcompressibility; which are all empirically determined functions of the statevariables:
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� Thermodynamic equation is just one more way of writing the�rst law of thermodynamics, which is an ex-
pression of the conservation of total energy. (Recall that the second law is about “arrow of time”: direction of
processes in isolated systems is such that the entropy only increases; in simple words, the heat doesn't go from
cold to hot objects.)
The thermodynamic equation can be written forT (i.e., DT=Dt = ::: ), but in GFD it is more convenient to
write it for � :
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where cs is speed of sound, and Q(� ) is source term(both concepts have complicated expressions in terms of
the state variables).



To summarize, we obtained (assuming one material tracer) the followingCOMPLETE SET OF GOVERNING
EQUATIONS:

@�
@t

+ r� (� u) = 0 (1)

Du
Dt

+ 2 
 � u = �
1
�

r p + � r 2u + Fb (2)

� = � (p; T; � ) (3)
@(�� )

@t
+ r� (�� u) = � S (� ) (4)

D�
Dt

�
1

cs
2

Dp
Dt

= Q(� ) (5)

(a) Momentum equation is for the �ow velocity vector, hence,it can be written as 3 equations for the (scalar)
velocity components.

(b) We ended up with 7 equations and 7 unknowns (for single tracer concentration):u; v; w; p; �; T; �:

(c) These equations (or their approximations) are to be solved subject to someboundary and initial conditions.

(d) These equations are too dif�cult to solve not only analytically but even numerically.

(e) One remaining step that makes these equations even more dif�cult, is to rewrite them in the spherical coordi-
nates which are natural for planetary �uid motions on.



� Spherical coordinatesare natural for GFD: longitude�; latitude �
and altituder:

Material derivative for a scalar quantity� in spherical coordinates is:
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where the �ow velocity in terms of the corresponding unit vectors is:
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Vector analysis provides differential operators in spherical coordinates
acting on a �eld given by either vectorB = i B � + j B � + k B r
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(a) Writing down material derivative in spherical coordinates is a bit problematic, because directions of the unit
vectors i; j ; k change when �uid element changes its location; therefore,material derivatives of the unit vectors
are not zeros. Note, that this doesn't happen in Cartesian coordinates.

(b) Note that � can be chosen to bepolar rather than latitudinal angle; then, coef�cients in some ofthe above
formulas will change.

(c) GFD also uses terrain-followingsigma coordinatesor space-time varyingLagrangian coordinates.



� Material derivative in spherical coordinates:
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where 
 f low is angular velocity (relative
to the centre of Earth) of the unit vector
corresponding to the moving element of
the �uid �ow:
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Let's �nd 
 f low by moving �uid particle in the direction of each unit vector and observing whether this motion
generates any rotation. It is easy to see that motion in the direction of i makes
 jj ; motion in the direction ofj
makes
 ? ; and motion in the direction ofk produces no rotation. Note (see left Figure), that
 jj is a rotation
around the Earth's rotation axis, and it can be written as:
 jj = 
 jj (j cos� + k sin� ): This rotation rate comes
only from a zonally (i.e., along latitude) moving �uid element, and it can be estimated as the following:
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Note: the rotation rate vector in the perpendicular to
 direction is aligned withi and given by
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The additional quadratic (in terms of velocity components)terms are calledmetric terms.



� Coriolis force in spherical coordinatesalso needs to be written in terms of the unit vectors.
The planetary angular velocity vector is always orthogonalto the unit vectori (see Figure on previous page):
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However, the Coriolis force projects on all the unit vectors:
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By combining the metric and Coriolis terms, we obtain the spherical-coordinates governing equations (other
equations are treated similarly):
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Metric terms are relatively small on the surface of a large planet (r ! R0) and, therefore, can be neglected for
many process studies;
Note, that the gravity acceleration� g was included; viscous term can be also trivially added.



� Local Cartesian approximation

Both for mathematical simplicity and process studies, the governing equations can be written locally for aplane
tangent to the planetary surface. Then, the momentum equations become:
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and they can be simpli�ed by neglecting some components of the Coriolis force:

(a) Neglect Coriolis force in the vertical momentum equation, because its effect (upward/downward de�ection of
�uid particles, also known asEotvos effect, which can be also interpreted as change of weight of zonallymoving
�uid element), is small.

(b) Neglect vertical velocity in the zonal momentum equation, because the corresponding component of the Cori-
olis force is small relative to the other one (vertical velocity components are often small relative to the horizontal
ones).

Next, we introduce theCoriolis parameter, which is a nonlinear function of latitude:f � 2
 z = 2
 sin �: The
following approximations are often made in GFD:

(a) f -plane approximation: f = f 0 (constant).

(b) Planetary sphericity is accounted for by� -plane approximation: f (y) = f 0 + �y; where � is gradient of
planetary vorticity.

With the above inputs, the resultinglocal Cartesian equationsare:
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These equations are to be combined with the other equations (thermodynamic, material tracer, constitutive) also
written in the local Cartesian coordinates. Even this system of equations is too dif�cult to solve. In order to
simplify it further, we have to focus on speci�c classes of �uid motions. Our main focus will be onstrati�ed
incompressible �ows.



� Strati�cation

Let's think about density �elds in terms of their decomposition into (a) time-dependentdynamic anomalies
(primed) due to �uid motion and (b) backgroundstatic �elds:

� (t; x; y; z) = � 0 + � (z) + � 0(t; x; y; z) = � s(z) + � 0(t; x; y; z)

Later on static density will be represented in terms of stacked isopycnal (i.e., constant-density) and �uid layers,
and dynamic density anomalies will be described by verticaldeformations of these layers.

Pressure �eld can be also treated in terms of static and dynamic components:

p(t; x; y; z) = ps(z) + p0(t; x; y; z) :

We will use symbols[�� 0] and [�p 0] to describe the corresponding dynamic scales.

With this concept of �uid strati�cation, we are ready to makeone more important approximation (below) that will
affect both thermodynamic and vertical momentum equations.



� Boussinesq approximation

It is used routinely for oceans and sometimes for atmospheres, and it invokes the following assumptions:

(1) Fluid incompressibility: cs = 1 ;

(2) Small variations of static density: � (z) � � 0 =) only � (z) is neglected butnot its vertical derivative.

(3) Anelastic approximation(used for atmospheres) is when� (z) is not neglected.

Boussinesq approximation affects thermodynamic equationand vertical momentum equation.

Thermodynamic Boussinesq equation(D�=Dt = Q� )

It is written fordynamic buoyancy anomalyb and invokesstatic buoyancyb :

D(b+ b)
Dt

= Qb ; b(t; x; y; z) � � g
� 0

� 0
b(z) � � g

�
� 0

(� )

where Qb is source term proportional toQ(� ): Equation (� ) is often written as

Db
Dt

+ N 2(z) w = Qb ; N 2(z) �
db
dz

(�� )

Buoyancy frequencyN measures strength of the static (background) strati�cation in terms of its vertical deriva-
tive, in accord with assumption (2).

NOTE: Primitive equationsare often used in practice as approximation to(�� ); which in the realistic general
circulation models is replaced by separate material transport equations for thermodynamic variables, and, then,
the buoyancy is found diagnostically from the equation of state:

DT
Dt

= QT ;
DS
Dt

= QS ; b= b(T; S; z)



Vertical momentum Boussinesq equation

It is written forpressure anomalyp0 (without static pressure part):

p = ps + p0; � = � s + � 0; �
@ps
@z

= � sg (static balance) ;
Dw
Dt

= �
1
�

@p
@z

� g (momentum)

Let's keep the static part for a while and rewrite the last equation in the Boussinesq approximation:

=) (� s + � 0)
Dw
Dt

= �
@(ps + p0)

@z
� (� s + � 0) g =) � 0

Dw
Dt

= �
@p0

@z
� � 0g

=)
Dw
Dt

= �
1
� 0

@p0

@z
+ b

Note, that in the vertical acceleration term� s + � 0 is replaced by� 0; in accord with approximation (2).
Horizontal momentum equations are treated similarly.

To summarize, theBoussinesq system of equationsis (we drop primes, from now on, keeping in mind thatp
indicates dynamic pressure anomaly):

Du
Dt

� fv = �
1
� 0

@p
@x

;
Dv
Dt

+ fu = �
1
� 0

@p
@y

;
Dw
Dt

= �
1
� 0

@p
@z

+ b ;

@u
@x

+
@v
@y

+
@w
@z

= 0 ;
Db
Dt

+ N 2w = Qb



� Hydrostatic approximation

For many �uid �ows vertical acceleration is small relative to gravity acceleration, and gravity force is balanced
by the vertical component of pressure gradient (we'll revisit this approximation more formally):

Dw
Dt

= �
1
�

@p
@z

� g =)
@p
@z

= � �g

Hydrostatic Boussinesq approximationis commonly used for many GFD phenomena.

� Buoyancy frequency

N (z) has clear physical meaning. In a continuously strati�ed �uid consider density difference�� between a
�uid particle adiabatically lifted by�z and surrounding �uid� s(z): Motion of the particle is determined by the
buoyancy (Archimedes) forceF and the Newton's second law:

�� = � particle � � s(z + �z ) = � s(z) � � s(z + �z ) = �
@�s
@z

�z ! F = � g �� = g
@�s
@z

�z

! � s
@2�z
@t2

= g
@�s
@z

�z ! � •z + N 2�z = 0

(a) If N 2 > 0; then �uid is statically stable(negative N 2 describes unstable strati�cation prone to convective
instability), and the particle will oscillate around its resting position with frequencyN (z) (typical periods of
oscillations are10� 100minutes in the ocean, and about 10 times shorter in the atmosphere).

(b) In the atmosphere, which is signi�cantly non-Boussinesq, one should take into account how density of the
lifted particle changes due to the local change of pressure.Then, N 2 is reformulated withpotential density� � ;
rather than density itself.



� Rotation-dominated �ows are in the focus of GFD. Such �ows are slow, in the sense that they have advective
time scales longer than the planetary rotation period:L=U � f � 1:
Given typical observed �ow speeds in the atmosphere (Ua � 1� 10m/s) and ocean (Uo � 0:1Ua), the length
scales of rotation-dominated �ows areLa � 100� 1000km and Lo � 10� 100km. Motions on these scales
constitute most of the weather and strongly in�uence climate and climate variability.
Rotation-dominated �ows tend to be hydrostatic (to be shownlater).
Later on, we will use asymptotic analysis to focus on these scales and �lter out less important faster and smaller-
scale motions.

� Thin-layered framework describes �uid in terms of stacked, vertically thin but horizontally vast layers of �uid
with slightly different densities (increasing downwards)— this is rather typical situation in GFD.
Let's introduce physical scales:L and H are horizontal and vertical length scales, respectively, such that
L � H ; then, U and W are horizontal and vertical velocity scales, respectively, such thatU � W: From now
on, we'll focus mostly on motions with such scales.
Thin-layered �ows tend to be hydrostatic (to be shown later).
Later on, we will formulate models that describe �uid in terms of properly scaled, vertically thin but horizontally
vast �uid layers.



Summary

We considered the following sequence of simpli�ed approximations:

Governing Equations (spherical coordinates) ! Local Cartesian ! Boussinesq ! Hydro-
static Boussinesq.

Lost by goingLocal Cartesian: some effects of rotation and sphericity.

Lost by goingBoussinesq: compressible motions (i.e., acoustics, shocks, bubbles), strong strati�cations (e.g.,
inner Jupiter).

Lost by goingHydrostatic Boussinesq: large vertical accelerations (e.g., convection, breaking gravity waves,
Kelvin-Helmholtz instability, density currents, double diffusion, tornadoes).

In what follows we consider the simplest relevant thin-layered model, which is locally Cartesian, Boussinesq and
hydrostatic, and try to focus on its rotation-dominated �owcomponent...



BALANCED DYNAMICS

� Shallow-water model

This is our starting point that describes motion
of a horizontal �uid layer with variable thickness,
h(t; x; y ): Density is a constant� 0 and vertical
acceleration is neglected (hydrostatic approximation),
hence:

@p
@z

= � � 0g ! p(t; x; y; z) = � 0g[h(t; x; y ) � z] ;

where we took into account thatp = 0 at z = h(t; x; y ):
Note, that horizontal pressure gradient is independent ofz; hence,
u and v are also independent ofz; that is,�uid moves in columns.

In local Cartesian coordinates the horizontal momentum equations are:

Du
Dt

� fv = �
1
� 0

@p
@x

= � g
@h
@x

;
Dv
Dt

+ fu = �
1
� 0

@p
@y

= � g
@h
@y

;

where
D
Dt

=
@
@t

+ u
@

@x
+ v

@
@y

:

Continuity equation is needed to close the system, so let us
derive it from the �rst principles. Recall that horizontal velocity
does not depend onz and consider mass budget of a �uid column.
Thehorizontalmass convergence (see earlier derivation of the
continuity equation) into a �xed-radius �uid column is by
application of the divergence theorem:

M = �
Z

S
� 0 u �dS = �

I
� 0h u �n dl = �

Z

A
r� (� 0h u) dA ;

and this must be balanced by the local increase of the mass dueto increasing height of �uid column:

M =
d
dt

Z
� 0 dV =

d
dt

Z

A
� 0h dA =

Z

A
� 0

@h
@t

dA =)
@h
@t

= �r� (hu) =)
Dh
Dt

+ hr� u = 0



(a) Note that the aboveshallow-water continuity equationcan be obtained from the original one by transformation
� ! h; hence,h can be treated as density of compressible �uid.

(b) It can be also obtained by integrating 3D incompressiblecontinuity equationr � u + @w=@z= 0; which
yields vertical velocity component linear inz; and by using kinematic boundary conditions (see later):w(h) =
Dh=Dt; w (0) = 0 :

Relative vorticityof 2D �ow is de�ned as:

� =
�
r� u

�
z =

@v
@x

�
@u
@y

;

where � > 0 is counterclockwisecyclonicmotion, and� < 0 is clockwiseanticyclonicmotion.
Note that relative vorticity describes rotation of �uid particles, rather than circular motions of �uid that can be
irrotational.

� Vorticity equation is obtained by taking curl of the momentum (vector) equation(i.e., taking y-derivative of
the �rst equation and subtracting it from thex-derivative of the second equation). Remember to differentiate
advection term of the material derivative; note that curl ofthe pressure gradient term is automatically zero.
The resultingvorticity equationis:

D�
Dt

+
h@u
@x

+
@v
@y

i
(� + f ) + v

df
dy

= 0

By using velocity divergence from the shallow-water continuity equation we obtain single material conservation
equation:

D�
Dt

�
1
h

(� + f )
Dh
Dt

+ v
df
dy

= 0 =)
1
h

D(� + f )
Dt

�
1
h2

(� + f )
Dh
Dt

= 0 =)
D
Dt

h� + f
h

i
= 0 :



� Potential vorticity (PV) material conservation law:

Dq
Dt

= 0 ; q �
� + f

h

(a) This is very powerful statement that reduces dynamical description of �uid motion to solving for evolution of
materially conserved,scalarquantity. Analogy with electric charge and �eld: PV can be viewed as active tracer
that changes its own, induced velocity �eld.

(b) For each �uid column, conservation of PV constrains and mutually connects changes of�; f (y); and h;
where changes of the latter can be interpreted as stretching/squeezing of moving �uid columns.

(c) PV inversion problem: Under certain conditions (e.g., when �ow is rotation-dominated and hydrostatic) �ow
solution can be determined entirely from evolving PV. For example, whenh = H = const the inversion is trivial.

(d) The above PV conservation law can be derived for many layers and continuous strati�cation.

(e) More general formulation of PV is referred to asErtel PV:

q = � g(� + f ) @�=@p ;

where � is potential density.



� Rossby numberis ratio of scalings for material derivative (i.e., horizontal acceleration) and Coriolis forcing:

� =
U2=L
fU

=
U
fL

For rotation-dominated motions:� � 1 :
More conventional notation for Rossby number isRo; but we'll use � to emphasize its smallness and apply the
small-� asymptotic expansion.

Given smallness of�; we can expand the governing equations in terms of thegeostrophic(leading-order terms)
andageostrophic(� -order terms) motions:

u = ug + � ua + o(� 2) ; p0= p0
g + � p0

a + o(� 2) ; � 0 = � 0
g + � � 0

a + o(� 2) :

� Rossby number expansion

The goal is to be able to predict strong geostrophic motions —this requires taking into account weak ageostrophic
motions. Let's consider� -plane, focus on relatively slowmesoscale motions, and express velocity scale via� :

T =
L
U

=
L

�f 0L
=

1
�f 0

; L=R0 � � =) [�y ] �
f 0

R0
L � �f 0 :

Consider� -expansion of the horizontal momentum equations:

Dug

Dt
� f 0 (vg + �v a) � �y v g + � 2[:::] = �

1
� 0

@pg
@x

�
�
� 0

@pa
@x

Dvg

Dt
+ f 0 (ug + �u a) + �y u g + � 2[:::] = �

1
� 0

@pg
@y

�
�
� 0

@pa
@y

�f 0U f 0U �f 0U �2f 0U [p0]=(� 0L) � [p0]=(� 0L)

Note that Coriolis force can be balanced only by pressure gradient term — this is calledgeostrophic balance.



� Geostrophic balance

It is obtained from the horizontal
momentum equations at the leading order:

f 0vg =
1
� 0

@pg
@x

; f 0ug = �
1
� 0

@pg
@y

(a) Proper scaling for pressure must be

[p0] � � 0f 0UL :

(b) Counterintuitive dynamics: Induced local pressure anomaly results in a circular �ow around it, rather than in
a classical �uid �ow response along the pressure gradient.

(c) It follows from the geostrophic balance thatug is nondivergent:
@ug
@x

+
@vg
@y

= 0 (see later thatwg = 0 ).

(d) Geostrophic �ow is 2D and nondivergent, hence, it can be described by a velocity streamfunction; note that
pressure in the geostrophic balance acts as streamfunctionin disguise!

(e) Geostrophic balance is diagnostic rather than prognostic equation, hence, it can not be used for predictions of
any temporal evolution. Therefore, the next order of the� -expansion is needed to determine the �ow evolution
(see later).

(f) Geostrophically balanced �ows are also hydrostatically balanced (see next).



� Hydrostatic balance

Vertical acceleration is typically small for large-scale geophysical motions, because they are thin-layered and
rotation-dominated. Let's prove this formally:

Dw
Dt

= �
1

� s + � g

@(ps + pg)
@z

� g ;
Dw
Dt

� 0;
@ps
@z

= � � sg

=)
@pg
@z

= � � gg (� )

Use the corresponding scalings

W = UH=L; T = L=U; [p0]= � 0f 0UL; U = �f 0L

to identify thevalidity boundfor the leading-order hydrostatic balance:

Dw
Dt

�
1
� 0

@pg
@z

=)
HU 2

L2
�

� 0f 0UL
� 0H

=) �
� H

L

� 2
� 1

If the last inequality is true, then vertical acceleration can be neglected — this situation ofhydrostatic balance
routinely happens for large-scale geophysical �ows.



� Scaling for geostrophic density anomaly

From the hydrostatic balance for geostrophic �ow and the geostrophic scaling for pressure[p0]; we �nd scaling
for geostrophic dynamic density anomaly� g :

[� g] � [� 0] �
[p0]
gH

=
� 0f 0UL

gH
= � 0 �

f 2
0L2

gH
= � 0 � F ;

where F is Froude number(it can be also written as ratio of characteristic �ow velocity to the fastest wave
velocity):

F �
f 2

0L2

gH
=

� L
Ld

� 2
; Ld �

p
gH
f 0

� O(104 km) ;

and Ld is theexternal deformation length scale.

For many geophysical scales of interest:F � 1; therefore, it is safe to assume that

F � � =) [� g] = � 0 � 2

Thus, ubiquitous and powerful, double-balanced (geostrophic and hydrostatic) motions correspond tonearly �at
isopycnals.



� Continuity equation for ageostrophic �ow

Let's now turn attention to the continuity equation and alsoexpand it in terms of small� :

@�
@t

+
@(�u )

@x
+

@(�v )
@y

+
@(�w )

@z
= 0 ; � = � s+ � g; u = ug+ � u a; v = vg+ � v a; w = wg+ � w a !

@�g
@t

+( � s+ � g)
� @ug

@x
+

@vg
@y

�
+ ug

@�g
@x

+ vg
@�g
@y

+ �� s

� @ua
@x

+
@va
@y

�
+ � 2 [:::]+

@
@z

(wg� s+ �w a� s+ wg� g+ �w a� g) = 0

Use
@ug
@x

+
@vg
@y

= 0 and � g � � 2 to obtain at the leading order:

@(wg� s)
@z

= 0 �! wg � s = const

Because of the BCs, somewhere in the water columnwg(z) has to be zero

=) wg = 0 ; w = � w a; [w] = W = � U
H
L

At the next order of the small-� expansion we recover thecontinuity equation for ageostrophic �owcomponent:

@(wa� s)
@z

+ � s

� @ua
@x

+
@va
@y

�
= 0 :

Let's keep this in mind and use it in the derivation of geostrophic vorticity equation.



� Geostrophic (absolute) vorticity equation

It is obtained by going to the next order of� in the shallow-water momentum equations:

Dgug

Dt
� (�f 0va+ vg�y ) = � �

1
� s

@pa
@x

;
Dgvg

Dt
+( �f 0ua+ ug�y ) = � �

1
� s

@pa
@y

;
Dg

Dt
�

@
@t

+ ug
@

@x
+ vg

@
@y

:

(i) Take curl of the above equations (i.e., subtracty-derivative of the �rst equation fromx-derivative of the second
equation) and mind complexity of the material derivative;

(ii) Use nondivergence of the geostrophic velocity;

(iii) Use continuity equation for ageostrophic �ow to replace horizontal ageostrophic velocity divergence.

Thus, we obtain thegeostrophic vorticity equation:

Dg� g

Dt
+ �v g =

Dg

Dt
[� g + �y ] = �

f 0

� s

@(� swa)
@z

; � g �
@vg
@x

�
@ug
@y

(a) This looks almost as PV material conservation law, but unfortunately it is not the one, because of the rhs term.
Can the rhs be absorbed under the material derivative, so that PV conservation law is recovered?

(b) Evolution of absolute vorticity� g+ �y is determined bydivergence of the vertical mass �uxdue to tiny vertical
velocity. This is physical process ofsqueezing or stretching isopycnals; it is theform dragmechanism (discussed
below).

(c) If � s is constant within a layer (i.e., thin-layered framework),then, it cancels out from the rhs, and we are left
with the vertical component of velocity divergence.

(d) Note that, although vertical velocity is tiny, its divergence is at the leading order of the absolute vorticity
equation. Can this divergence be determined from the leading-order geostrophic �elds?

(e) Yes! Quasigeostrophic theoryexpresses this divergence in terms of vertical movement of isopycnals, then,
it relates this movement to geostrophic (dynamic) pressure, which turns to be geostrophic streamfunction in
disguise.

(f) On the other hand, evolution of absolute vorticity produces squeezing and stretching deformations, which
induce motions in the neighbouring isopycnal layers.



� Form drag

This is horizontal pressure-gradient force due to varying isopycnal-layer thickness. In turn, isopycnal variations
can arise due to vertical squeezing and stretching.

Geostrophic motions are very ef�cient in terms of redistributing horizontal momentum vertically, through the form
drag mechanism.

Let's consider a constant-density �uid layer con�ned by twointerfaces,h1(x) and h2(x); and periodic in zonal
direction with periodL ; let's also assume that situation is 2D (homogeneous in meridional direction).

Zonal pressure-gradient force acting on a volume of �uid is obtained by integration over the domain:

Fx = �
1
L

Z L

0

Z h1

h2

@p
@x

dx dz = �
1
L

Z L

0

h@p
@x

z
i h1

h2

dx = � h1
@p1
@x

+ h2
@p2
@x

= p1
@h1
@x

� p2
@h2
@x

;

where p1 and p2 are pressures on the interfaces;@p=@xdoes not depend on vertical position within a layer;
and the overbar denoteszonal averaging. Note, that forx-derivatives zonal averaging is zero due to the function
periodicity.

Note that forceFx acting on �uid is zero, if both boundaries are �at. This statement can be reversed: if isopy-
cnal boundaries of a �uid layer are deformed (e.g., by squeezing or stretching), the layer can be accelerated or
decelerated by the correspondingform dragpressure force.

Thus, if a geostrophic motion in some isopycnal layer squeezes or stretches it, the underlying layer is also de-
formed, and the resulting pressure-gradient force accelerates �uid in the underlying layer.



QUASIGEOSTROPHIC THEORY

� Two-layer shallow-water model

This is a natural extension of the single-layer shallow-water
model. It illuminates effects of isopycnal deformations on
the geostrophic vorticity. This model can be straightforwardly
extended to many isopycnal (i.e., constant-density) layers,
thus, producing the family ofisopycnal models.

The model assumes geostrophic and hydrostatic balances,
and usual Boussinesq treatment of density:

� � � � 2 � � 1 � � 1; � 2 ; � 1 � � 2 � � :

All notations are introduced on the Figure.
The layer thicknesses and pressures consist of thestaticanddynamiccomponents:

h1(t; x; y ) = H1 + H2 + � 1(t; x; y ) ; h2(t; x; y ) = H2 + � 2(t; x; y ) ;

p1 = � 1g(H1 + H2 � z) + p0
1(t; x; y ) ; p2 = � 1gH1 + � 2g(H2 � z) + p0

2(t; x; y ) ;

Here, the shallow-water dynamic pressure anomalies are independent ofz; as we have seen, and the static pres-
sures were obtained as the following.
Let's integrate out static pressure in the top layer:

P1 = �
Z z

0
�gdz = � � 2gH2 � � 1g(z � H2) + C1

Since P1(z = H1 + H2) = 0 ; we obtainC1 = � 1gH1 + � 2gH2 and �nd:

P1 = � 1g(H1 + H2 � z) :

Similarly, in the deep layer:

P2 = �
Z z

0
� 2gdz = � � 2gz+ C2

Since P2(z = H2) = P1(z = H2); we obtainC2 = � 1gH1 + � 2gH2 and �nd:

P2 = � 1gH1 + � 2g(H2 � z)



� Continuity boundary condition for pressure

This is just a component of the continuity boundary condition for stress tensor (sometimes, this involves surface
tension). Here, it allows to relate dynamic pressure anomalies and isopycnal deformations.

In the two-layer model this boundary condition is equivalent to saying that:
(a) pressure at the upper surface must be zero (more generally, it must be equal to the atmospheric pressure),
(b) pressure on the internal interface must be continuous, i.e., p1 = p2 = P:

Note, that in the absence of motion(p0
1 = p0

2 = 0) both of these conditions are automatically satis�ed for the
static pressure component:

p1jz= H1+ H2 = 0 ; p1jz= H2 = p2jz= H2 = � 1gH1 :

In the presence of motion, the upper-surface pressure continuity statementp1jz= � 1+H1+H2 = 0 translates into

p0
1(t; x; y ) = � 1g� 1(t; x; y ) :

On the internal interface, the pressure continuity statement is:

P = p1jz= � 2+ H2 = � 1g(H1 � � 2) + p0
1 ; P = p2jz= � 2+ H2 = � 1gH1 � � 2g� 2 + p0

2

=) p0
2(t; x; y ) = p0

1(t; x; y ) + g� � � 2(t; x; y )

Thus, by using expression for the upper-layer pressure, we obtain:

p0
2(t; x; y ) = � 1g� 1(t; x; y ) + g� � � 2(t; x; y ) :



� Geostrophy

It always appears at the leading order of small-� expansion and links horizontal velocities and slopes of the
isopycnals (i.e., isopycnal interfaces), which correspond here to the upper and deep layers:

� f 0v1 = � g
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� 2
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Next, we recall that� 1 � � 2 � � (Boussinesq argument) and introduce thereduced gravityparameter:

g0 � g � �=� :

This allows us to simplify the second-layer geostrophic equations:

� f 0v2 = � g
@�1
@x

� g0@�2
@x

; f 0u2 = � g
@�1
@y

� g0@�2
@y

:



� Geostrophic vorticity equations

Now, let's take a look at the full system of thetwo-layer shallow-water equations:

Du1

Dt
� fv 1 = � g

@�1
@x

;
Dv1

Dt
+ fu 1 = � g

@�1
@y

;
@(h1 � h2)

@t
+ r� ((h1 � h2)u1) = 0 ;
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Dt
� fv 2 = � g
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� g0@�2
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;
Dv2

Dt
+ fu 2 = � g

@�1
@y

� g0@�2
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;
@h2
@t

+ r� (h2u2) = 0 :

At the leading order the momentum equations are geostrophic, as we have argued.
At the � -order, we can formulate the layer-wise vorticity equations with the additional rhs terms responsible for
vertical deformations. For this purpose:
(a) Expand the momentum equations in terms of�;
(b) take curl of the momentum equations(@(2)=@x� @(1)=@y);
(c) replace divergence of the horizontal ageostrophic velocity (ua; va) with the vertical divergence ofwa:

The resulting geostrophic vorticity equations are:
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; n = 1; 2

Within each layer horizontal velocity does not depend onz; therefore, vertical integrations of the vorticity equa-
tions across each layer yield (here, we assume nearly �at isopycnals everywhere by replacing actual layer depths
with the constants:

h1 � h2 � H1 ; h2 � H2 ;

on the left-hand sides, thus obtaining thedepth-integrated geostrophic vorticity equations:

H1

� D1� 1

Dt
+ �v 1

�
= f 0

�
w1(h1) � w1(h2)

�
; H2

� D2� 2

Dt
+ �v 2

�
= f 0 w2(h2) ; (� )

Here we extended the assumption of nearly �at isopycnals to everywhere, beyond the scale of motions.
Note, that in(� ) we took w2(bottom) = 0 ; but this is true only for the �at bottom (along topographic slopes
vertical velocity can be non-zero, as only normal-to-boundary velocity component vanishes).



� Vertical movement of isopycnals in terms of pressure

This step can be worked out and essentially closes the equations.
For that we usekinematic boundary condition, which comes from considering �uid elements on a �uid interface
or surface, such that the vertical coordinates of these elements are given byz = h(t; x; y ):
Next, let's consider functionF (t; x; y; z) = h(t; x; y ) � z; and acknowledge, that it is always zero for a �uid
elements sitting on the interface or surface; hence, its material derivative is zero:

DF
Dt

= 0 =
Dh
Dt

� w
@z
@z

! w =
Dh
Dt

By combining the kinematic boundary condition with the Boussinesq argument(� 1 � � 2 � � ); we obtain:
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Pressure is streamfunction in disguise.

In each layer geostrophic velocity streamfunction is linearly related to dynamic pressure anomaly, as follows from
the geostrophic momentum balance:
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Relative vorticity� is always conveniently expressed in terms of :

� =
@v
@x

�
@u
@y

= r 2 

Let's now combine(� ); (�� ) and (� � � ) to obtain the fully closed equations predicting evolution of the leading-
order streamfunction...



� Two-layer quasigeostrophic (QG) potential vorticity (PV)model

D1� 1

Dt
+ �v 1 �

f 2
0

gH1

� �
� �

D1

Dt
( 1 �  2) +

D1 1

Dt

�
= 0 ;

D2� 2

Dt
+ �v 2 �

f 2
0

gH2

�
� �

D2

Dt
( 2 �  1) = 0

(a) Note that� � � �; therefore the last term of the �rst equation is neglected (i.e., therigid-lid approximation
is taken; it states that the surface elevation is much smaller than the internal interface displacement).

(b) Familiarreduced gravityis g0 � g� �=�; andstrati�cation parametersare de�ned as

S1 =
f 2

0

g0H1
; S2 =

f 2
0

g0H2
:

(c) Dimensionally, [S1] � [S2] � L � 2 ! QG (i.e., double-balanced) motion of strati�ed �uid operates on the
internal deformationscales:

R1 = 1=
p

S1 ; R2 = 1=
p

S2 ;

which areO(100km) in the ocean and about 10 times larger in the atmosphere.
Note: Rn � Ld =

p
gH=f0; becauseg0 � g:

With the above information taken into account, we obtain the�nal set of two-layer QG PV equations:

D1

Dt

�
r 2 1 � S1 ( 1 �  2)

�
+ �v 1 = 0 ;

D2

Dt

�
r 2 2 � S2 ( 2 �  1)

�
+ �v 2 = 0

Potential vorticity anomaliesare de�ned as:

q1 = r 2 1 � S1 ( 1 �  2); q2 = r 2 2 � S2 ( 2 �  1)

Note: These expressions for the PV anomalies can be obtainedby linearization of the full shallow-water PV
(without proof).



� Potential vorticity (PV) material conservation law.

(Absolute) PVis de�ned as

� 1 = q1 + f = q1 + f 0 + �y; � 2 = q2 + f = q2 + f 0 + �y :

(a) PV is materially conserved quantity:

Dn� n

Dt
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@� n
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@ n
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@y
�

@ n
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@� n

@x
= 0 ; n = 1; 2

(b) PV can be considered as a “charge” advected by the �ow; butthis isactivecharge, as it de�nes the �ow itself.

(c) PV inversionbrings in intrinsic and important spatial nonlocality of the velocity �eld around “elementary
charge” of PV:

� 1 = r 2 1 � S1 ( 1 �  2) + �y + f 0 ; � 2 = r 2 2 � S2 ( 2 �  1) + �y + f 0

(d) PV consists of of relative vorticity, density anomaly (resulting from isopycnal displacement), and planetary
vorticity.

� Continuous strati�cation yields (without derivation) similar PV conservation law and PV inversion formula
for the geostrophic �elds:
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Note, that density anomalies are now described by vertical derivative of velocity streamfunction, rather than by
deformation of interface� that is related to (vertical) difference between the streamfunction values above and
below it.



� Boundary conditions for QG equations.

(a) On lateral solid boundaries there is alwaysno-normal-�owcondition:  = C(t):

(b) The other lateral boundary conditions can beperiodic, double-periodic,
no-slip:

@ 
@n

= 0 ;

free-slip:

@2 
@n2

= 0 ;

partial-slip:

@2 
@n2

+
1
�

@ 
@n

= 0 ;

where derivatives are normal to the surface.

(c) There are alsointegral constraintson mass and momentum.
For example, one can require that basin-averaged density anomaly integrates to zero in each layer:

ZZ
� dx dy = 0 !

ZZ
@ 
@z

dx dy = 0 :

� Ageostrophic circulation (of the� -order) can be obtained with further efforts, and evendiagnostically.
For example, vertical ageostrophic velocity is equal to material derivative of pressure, which is known from QG
solution:

w1(h1) =
1
�g

D1p0
1

Dt
; w1(h2) =

1
� �g

D1(p0
2 � p0

1)
Dt



Summary about QG PV models

(a)Midlatitude theory: QG framework does not work at the equator, wheref = 0:

(b) Vertical control: Nearly horizontal geostrophic motions are determined by vertical strati�cation, vertical com-
ponent of� , and vertical isopycnal stretching.

(c) Four main assumptionsthat have been made:

(i) Rossby number� is small (hence, the expansion focuses on mesoscales);

(ii) � -plane approximation and small meridional variations of Coriolis parameter;

(iii) isopycnals are nearly �at([�� 0] � �F � 0 � � 2� 0) everywhere;

(iv) hydrostatic Boussinesq balance.



� Planetary-geostrophic equations(extra material)

This is another asymptotic model that can be similarly derived for small-Rossby-number motions on scales that
are much larger than internal deformation scaleR and for large meridional variations of Coriolis parameter.

Let's start from the full shallow-water equations,

Du
Dt

� fv = � g
@h
@x

;
Dv
Dt

+ fu = � g
@h
@y

;
Dh
Dt

+ hr� u = 0 ;

and consider very large scales:F = L2=R2 � � � 1 � 1:

Let's assume that, for large scales of motion, �uid height variations ([�� 0] � �F � 0 ) are as large as the mean
height of �uid:

h = H (1 + �F � ) = H (1 + � ):

Asymptotic expansionsu = u0 + � u1 + ::: ; and � = � 0 + �� 1 + ::: yield:

�
h@u0
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�F
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i
+ (1 + �F � 0)r� u0 = 0 :

Thus, only geostrophic balance is retained in the momentum equation, and all terms are retained in the continuity
equation, and the resulting set of equations is:

� fv = � g
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; fu = � g
@h
@y

;
Dh
Dt

+ hr� u = 0



( = Vortex street behind obstacle

Meandering oceanic current=)



( = Observed atmospheric PV

Atmospheric
PV from a
model =)



Solutions of
geostrophic
turbulence
(PV snapshots)



EKMAN LAYERS

� Ekman surface boundary layer

Boundary layers are governed by physical processes very
different from those in the interior. Non-geostrophic effects
at the free-surface or rigid-bottom boundary layers are
responsible for transferring momentum fromwind stressor
bottom stressto the interior (large-scale) geostrophic currents.

Let's considerEkman layerbelow the ocean surface:

(a) Horizontal momentum is transferred down by the vertical
turbulent �ux (its exact form is unknown due to complexity of
many physical processes involved), which is commonly modelled
by vertical viscosity(i.e., diffusion of momentum) with constant
turbulent viscosity coef�cient:

w0@u0

@z
= Av

@2u
@z2

;

where overbar and prime indicate the time mean and �uctuating �ow components, respectively.

Note that vertical viscosity must be balanced by some other term containing velocity, because momentum diffu-
sion creates �ow velocity, and at the leading order only Coriolis force contains velocity.

(b) Considerboundary layer correction, so thatu = ug + uE in the thin layer with depthhE :

� f 0(vg + vE ) = �
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+ Av
@2uE
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; f 0(ug + uE ) = �

1
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@2vE
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:

TheEkman balanceis

� f 0vE = Av
@2uE

@z2
; f 0uE = Av

@2vE

@z2
(� )

To make the viscous term important in the balance, theEkman layer thicknessmust behE � [Av=f0]1=2; therefore,
let's de�ne:

hE = [2Av=f0]1=2 :



Typical values ofhE are � 1 km in the atmosphere and� 50m in the ocean.

(c) If Ekman number,

Ek �
� hE

H

� 2
=

2Av

f 0H 2 ;

is small, i.e.,Ek � 1; then, the boundary layer correction can be matched to the interior geostrophic solution.

(d) Boundary conditionsfor the Ekman �ow correction
are: zero at the bottom of the boundary layer and wind
stress condition at the upper ocean surface:
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@vE
@z

=
1
� 0

� y (�� )

Let's look for solution of (� ) and (�� ) in the form:
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and obtain theEkman spiralsolution:
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� Ekman pumping

Vertically integrated, horizontalEkman transportU E =
R

uE dz can be divergent. It satis�es:
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The bottom stress terms vanish due to the exponential decay of the boundary layer solution. In order to obtain
vertical Ekman velocity at the bottom of the Ekman layer, let's integrate the continuity equation:
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Z
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Recall the non-divergence of the geostrophic velocity and use the above-derived integrated Ekman transport com-
ponents to obtain
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�
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@UE
@x

+
@VE
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=
1

f 0� 0
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Thus, theEkman pumping(i.e., vertical velocity at the bottom of the boundary layer) wE can be found directly
from the wind curl:

wE =
1

f 0� 0
r� � :

Conclusion: Ekman pumping provides external forcing for the interior geostrophic motions by vertically squeez-
ing or stretching isopycnal layers; it can be viewed as transmission of an external stress into the geostrophic-�ow
forcing.

� Ekman bottom boundary layer can be solved for in a similar way (see Practical Problems).



ROSSBY WAVES

� In broad sense,Rossby waveis inertial wave propagating on the background PV gradient.First discovered in
the Earth's atmosphere.



� OceanicRossby waves are more dif�cult to observe. Initially they were detected from in situ measurements,
but nowdays they are observed from satellite altimetry.

� Dynamic sea surface height anomalies
seen on the Figure propagate to the west.
They are surface manifestations of
baroclinic Rossby waves.

� To what extent these transient �ow
anomalies can be characterized as waves
rather than isolated coherent vortices
remains unclear.



( = Visualization of oceanic eddies/waves
by virtual tracer

Flow speed from a high resolution
computation shows many eddies/waves=)

Many properties of the �ow �uctuations
can be interpreted in terms of linear
Rossby waves.



� General properties of waves

(a) Waves provide interaction mechanism which is both long-range and fast relative to �ow advection.

(b) Waves are observed as periodic propagating (or standing) patterns, e.g.,

 = Ref A exp[i (kx + ly + mz � !t + � )]g ;

which is characterized byamplitude, wavenumbers, frequency, andphase.
Wavevectoris de�ned as the ordered set of wavenumbers:K =( k; l; m):

(c) Dispersion relationcomes from the dynamics and relates frequency and wavenumbers, and, thus, yields phase
speeds and group velocity.

(d) Phase speedsalong the axes of coordinates are rates at which intersections of the phase lines with each axis
propagate along this axis:

C(x)
p =

!
k

; C(y)
p =

!
l

; C(z)
p =

!
m

;

these speeds do not form a vector (note that phase speed alongan axis increases with decreasing projection ofK
on this axis).

(e) Fundamental phase speedCp = !=K; where K = jK j; is de�ned along the wavevector. This is natural,
because waves described by complex exponential functions have instantaneous phase lines perpendicular toK :
Fundamental phase velocity(vector) is de�ned as

Cp =
!

jK j
K
jK j

=
!

K 2 K :

(f) Group velocity(vector) is de�ned as

Cg =
� @!

@k
;

@!
@l

;
@!
@m

�
:

(g) Propagation directions: phase propagates in the direction ofK ; energy (hence, information!) propagates at
some angle toK :

(h) If frequency ! = ! (x; y; z) is spatially inhomogeneous, then trajectory traced by the group velocity is called
ray, and the path of waves is found byray tracingmethods.



� Mechanism of Rossby waves

Consider the simplest 1.5-layer (a.k.a. theequivalent barotropic) QG PV model, which is obtained by considering
H2 ! 1 in the two-layer QG PV model:
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= 0 ; � = r 2 �
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where R� 2 = S1 is the strati�cation parameter written in terms of the inverse length scale parameterR:
By introducing the Jacobian operatorJ (A; B ) = AxBy � AyBx ; the correspondingequivalent barotropic equa-
tion can be written as
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Note, that in the limitR ! 1 the dynamics becomes purely 2D and deformations of the layerthickness become
in�nitesimal; this is equivalent tog0 ! 1 :

We are interested insmall-amplitude�ow disturbances
around thestate of rest; the corresponding linearized
equation(� ) is
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Thus, the resultingRossby waves dispersion relationis:

! =
� �k

k2 + l2 + R� 2 :

Plot dispersion relation, discuss zonal, phase and group speeds...

Consider a timeline in the �uid at rest, then, perturb it (seeFigure): the resulting westward propagation of Rossby
waves is due to the� -effect and material PV conservation.



� Energy equation

Multiply the equivalent-barotropic equation by�  and use the following identity,
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to obtain the (mechanical)energy equation:
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where E is energy density, consisting of the kinetic (�rst term) and potential (second term) components; andS
is energy �ux(vector).

(a) It can be shown (see Practical Problems), that the mean energy hEi of a wave packet propagates according to:

@hEi
@t

+ Cg�rh E i = 0 ;

where Cg is the Rossby waves group velocity.
This is a general statement, which is true for other types of waves.

(b) The energy equation for the correspondingnonlinearequivalent-barotropic equation is derived similarly; its
energy �ux vector is:
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and note that it contains additional cubic terms.

(c) Similar equations can be derived for multi-layer QG PV models and not only for the state of rest but also for
situations with background �ows.



� Background-�ow effects

Consider small-amplitude �ow disturbancesaround some steady background �owgiven by its streamfunction
	( x; y; z): What happens with the underlying dispersion relation and, hence, with the waves?

To simplify the problem, let's stay with the (equivalent barotropic) 1.5-layer QG PV model, and let's consider
some uniform, zonal background �ow	 = � Uy; and substitute it into the dynamics and obtain:

 ! � Uy +  ; � !
�
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U
R2

�
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1
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 :

Thelinearized dynamicsbecomes:
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hence, thedispersion relationbecomes:

!  � ei (kx+ ly � !t ) =) ! = kU �
k (� + UR� 2)
k2 + l2 + R� 2

(a) In the dispersion relation, the �rst termkU is theDoppler shift, which is due to advection of wave by the
background �ow;

(b) The second term contains effect of thealtered background PV; note, that background �ows can alter PV in
complicated ways. Bottom topography also alters the background PV (not considered here).

(c) There are also corresponding changes in the group velocity Cg ;

(d) Complicated 2D and 3D background �ows profoundly in�uence Rossby waves properties, but the correspond-
ing dispersion relations are dif�cult to obtain; normal modes rather than Fourier harmonics are to be considered
and found numerically;

(e) The underlying background �ow can be nonstationary, in principle, but the linear-waves problem becomes
nearly intractable.



� Two-layer Rossby waves

Let us consider the two-layer QG PV equationslinearized around the state of rest:
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:

Diagonalization of the dynamics: the governing equations can be decoupled from each other bya linear transfor-
mation of variables from streamfunctions of the layers to streamfunctions of thevertical modes. The diagonalizing
layers-to-modes transformation and its inverse (modes-to-layers) transformation arelinear operations.
In the two-layer model context, thebarotropic mode� 1 and the�rst baroclinic mode � 2 are de�ned as:

� 1 �  1
H1

H1 + H2
+  2

H2

H1 + H2
; � 2 �  1 �  2 :

These modes represent distinct (i.e., governed by different dispersion relations) families of Rossby waves, which
are referred to asbarotropicandbaroclinic, respectively:

@
@t

r 2� 1 + �
@�1
@x

= 0 ! ! 1 = �
�k

k2 + l2

@
@t

h
r 2� 2 �

1
R2

D
� 2

i
+ �

@�2
@x

= 0 ! ! 2 = �
�k

k2 + l2 + R� 2
D

where (important) parameterRD is referred to as the�rst baroclinic Rossby radius of deformation:

RD �
h 1
R2

1
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1
R2

2

i � 1=2
:

Note, thatRD depends on strati�cation and Coriolis parameter; in the ocean it varies from 200 km near equator
to 2 km in the Arctic; in the atmosphere it is about 1000 km.



Purely barotropic modecan be written in terms of layers as:

 1 =  2 = � 1 ;

therefore, it is vertically uniform and actually describesvertically averaged �ow.
(a) Barotropic waves arefast (typical periods are several days in the ocean and 10 times faster in the atmo-

sphere); their dispersion relation does not depend on strati�cation.
(b) Barotropic waves do not involve isopycnal deformationscorresponding to density (heat) anomalies, hence,

they arethermodynamically neutral.

Purely baroclinic modecan be written in terms of layers as:

 1 = � 2
H2

H1 + H2
;  2 = � � 2

H1

H1 + H2
!  2 = �

H1

H2
 1 ;

therefore, it changes sign vertically, and its vertical integral iz sero.
(a) Baroclinic waves areslow(typical periods are several months in the ocean and 10 timesfaster in the atmo-

sphere); they can be viewed as propagating anomalies of the pycnocline (thermocline), because the streamfunction
has large vertical derivative (hence, there is large density anomaly).

(b) Baroclinic waves arethermodynamically active.



� Continuously strati�ed Rossby waves

Continuously strati�ed modelis a natural extension
of the isopycnal model with in�nitely large number
of layers.
The corresponding linearized QG PV dynamics is
(without proof):
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Boundary conditions at the top and bottom are to be speci�ed,e.g., by imposing zero density anomalies:

� �
d�( z)

dz

�
�
�
z=0 ;� H

= 0 : (�� )

Combination of (� ) and (�� ) is aneigenvalue problemthat can be solved fordiscrete spectrum of eigenvalues
and eigenmodes.

(a) Eigenvalues� n yield dispersion relations! n = ! n(k; l ); and the corresponding eigenmodes� n(z) are the
vertical normal modes, like the familiar barotropic and �rst baroclinic modes in the two-layer case.

(b) The Figure illustrates the �rst, second and third baroclinic modes for realistic ocean strati�cation.

(c) The correspondingn-th baroclinic Rossby radiusR(n)
D � � � 1=2

n characterizes horizontal length scale of the
n-th vertical mode. The higher is the mode, the slower and moreoscillatory in vertical it is.

(d) The (zeroth) barotropic mode hasR(0)
D = 1 and � 0 = 0:

(e) The�rst Rossby deformation radiusR(1)
D is the most important fundamental length scale of geostrophic tur-

bulence; it sets length scale of mesoscale (synoptic) eddies.



LINEAR INSTABILITIES

� Linear stability analysisis the �rst step towards understanding turbulent �ows. Sometimes it can predict some
patterns and properties of �ow �uctuations.

CONVECTIVE ROLLS CONVECTIVE PLUME

SUPERNOVA REMNANTS
These Figures illustrate different regimes of thermal convection.
Linear stability analysis is very useful for simple �ows
(e.g., convective rolls), somewhat useful for intermediate-complexity
�ows (convective plumes), and completely useless in highly
developed turbulence.

� Small-amplitude behaviourscan be predicted by linear stability
analysis very well, and some of the linear predictions carryon to
turbulent �ows.

� Nonlinear effectsbecome increasingly more important in more
complex turbulent �ows.



Shear instability occurs on
�ows with sheared velocity

Eventually, there is nonlinear
evolution leading to substantial
stirring and eventual molecular
mixing of material and vorticity



Instabilities of jet streams

Developed instabilities of idealized jet

Tropical instability waves



� Barotropic instability

This ishorizontal-shear instabilityof (geophysical) �ows.

Let us �nd anecessary conditionfor this instability in the context of the equivalent barotropic (i.e., 1.5-layer QG
PV) model con�gured in a zonal channel(� L < y < + L) and linearized around some zonally uniform and
meridionally sheared background �owU(y) :
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U
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where � is the background PV.

Consider usual wave solution with meridional amplitude function � (y) :

 � � (y) eik (x� ct); c = cr + i
! i
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Multiply the last equation by (complex conjugated)� � ; integrate it iny; using the simple identity,

� � � yy =
@
@y

�
� � � y

�
� � �

y� y :

Take into account that integral ofy-derivative is zero, because of the no-�ow-through BCs on the channel sides:

� (� L) = � (L) = 0 :

The resulting integrated equation,
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can be written so, that its �rst integral[:::] is real, and the second integral is complex, so that:

! [:::] + i
! i

k

Z L

� L
j� j2

d� =dy
jU � cj2

dy = 0 :



If the last integral is non-zero, then,necessarily: ! i =0; and the normal mode� (y) is neutral; this results in the
following theorem.

Necessary condition for barotropic instabilitystates that! i can be nonzero (hence, instability has to occur for
! i > 0); only if the above integral is zero, hence,ONLY IF the background PV gradientd� =dy changes sign
somewhere in the domain.

Note: this is equivalent to existence of in�ection point in the velocity pro�le in the case of� = 0 and pure 2D
dynamics.
The necessary condition is also true for non-zonal parallel�ows.



� Baroclinic instability

This isvertical-shear instabilityof geophysical �ows.

Let us �nd a necessary conditionfor this instability in the context of continuously strati�ed QG PV model in
a zonal channel. In a channel with vertically and meridionally sheared but zonally uniform background �ow
U(y; z); let us �nd the background PV� and its meridional gradient:
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The linearized around the background �ow material conservation law for the total PV is:
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We need BCs at the bottom and top of the �uid, because of the involved vertical derivatives. Let us recall the
kinematic BC and take into account that material particle atthe surface (or bottom) always stays at the surface
(bottom); also, its density is conserved because of the involved Boussinesq approximation.

Conservation of density (sum of dynamic density anomaly andbackground density) on material particles can be
written as (�rst, in the full form; then, in thelinearizedform):

Dg �
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=
Dg (� g + � b)

Dt
= 0
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By linearizing out the quadratic terms and taking into account that the background density is stationary andx-
independent, we obtainlinearized conservation of density(i.e., linearized thermodynamic equation for Boussinesq
�uid):
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Consider this equation on the bottom and top rigid boundaries, hencew = 0 and obtain the vertical BCs:
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Then, in the continuously strati�ed �uid with background �ow, this statement translates into:
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With the wave solution � � (y; z) eik (x� ct); the linearized PV equation(� ) and the vertical BCs(�� ) become:
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Let's multiply the above equation by� � and integrate overz and y: Vertical integration of the second term
involves the boundary conditions:
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Taking the above into account, full integration of the� � -multiplied equation for� yields the following imaginary
part equal to zero:
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In the common situation:
@U
@z

= 0 at z = 0; H =) a necessary condition for baroclinic instabilityis that

@�( y; z)
@y

changes sign at some depth.

NOTE: in practice, vertical change of the PV gradient sign always indicates baroclinic instability.



� Eady model

This is classical, continuously strati�ed model of baroclinic instability in atmosphere (Eric Eady was a PhD
graduate from Imperial College in 1949).

Eady modelassumes:

(i) f -plane (� = 0) ;
(ii) linear strati�cation: N (z) = const;
(iii) constant vertical shear:U(z) = U0 z=H;
(iv) rigid boundaries atz = 0; H:

NOTE: Background PV is zero, hence, the necessary condition for baroclinic instability is satis�ed.

The linearized continuously strati�ed QG PV equation and boundary conditions are:
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Let us look for the wave-like solution � � (z) ei (k(x� ct)+ ly) in the horizontal plane to obtain the vertical-structure
equation and the corresponding vertical BCs:
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For c 6= U0
z
H

; we obtain linear ODE with characteristic vertical scaleH=� :
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p
k2 + l2 :

Look for solution of the above ODE in the exponential form:

� (z) = A cosh(�z=H ) + B sinh(�z=H ) ;

substitute it in the top and bottom BCs(� ) and obtain pair of linear equations forA and B that yield:
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The second bracket under the square root is always positive,hence, the normal modes grow(! i > 0) when the
�rst bracket becomes negative; that is, if� satis�es:

�
2

< coth
�
2

which is the region to the left of the dashed curve (see Figurebelow).

(a) The maximum instability growth rate occurs at� =1:61; and it is estimated to be0:31U0=R(1)
D : Its inverse is

Eady time scale.

(b) For any k the most unstable wave hasl = 0; and this wave is characterized bykcrit = 1:6=R(1)
D : This yields

Eady length scaleL crit � 4R(1)
D :

NOTE: Eady time and length scales are consistent with the observed synoptic scale variability.

(c) Eady solution can be interpreted as a pair ofphase-locked edge waves(see Figure).

(d) Assumptions of the Eady model are quite unrealistic, as well as the absense of PV gradients; nevertheless it is
a good starting point for analyses and one of the classical models illustrating the baroclinic instability mechanism.

Later on we will discuss the baroclinic instability mechanism in more detail and from the physical perspective...



Figure illustrating Eady's solution in terms of its growth rate and the phase-locked edge waves:

upper: �

middle: � = @�=@z

bottom: v = @�=@x

� Phillips model is the other classical model of the baroclinic instability mechanism.
It describes two-layer �uid with uniform background zonal velocities U1 and U2; and with the� -effect (see
Problem Sheet). In this situation background PV gradient isnonzero, thus, making the set-up more realistic. New
outcomes from solving this problem are:

(a)Stabilizing effect of� : Phillips model hascritical shear, U1� U2 � �R 2
D :

(b) Westward �ows are less stable: If the upper layer is thinner than the deep layer (ocean-like situation), then the
eastward critical shear is larger than the westward one.



� Mechanism of baroclinic instability

Baroclinic instability, illustrated by theEadyand
Phillips models, feeds geostrophic turbulence
(i.e., synoptic scale variability in the atmosphere
and dynamically similar mesoscale eddies in the ocean),
therefore, it is fundamentally important.

(a)Available potential energy (APE)is part of potential
energy that can be released as a result of complete
isopycnal �attening.
Baroclinic instability converts APE of large-scale
background �ow into eddy kinetic energy (EKE).

Figure: Consider a �uid particle, initially positioned atA, that migrates to eitherB or C. If it moves along levels
of constant pressure (in QG: streamfunction), then no work is done on the particle=) full mechanical energy
of the particle remains unchanged. However, its APE can be converted into EKE, and the other way around.

(b) Consider the following exchanges of �uid particles:

A  ! B leads toaccumulation of APE(the heavier particle goes “up”, and the lighter particle goes “down”),

A  ! C leads, on the opposite, torelease of APE.

That is, if � >  (steep tilt of isopycnals, relative to tilt of pressure isolines), then APE is released into EKE.
This is situation of thepositive baroclinicity:

r p�r � > 0 ;

which implies that the above vector product points out of theFigure, i.e., in the positive zonal direction.
This situation routinely happens in geophysical �uids because of the prevailingthermal winds.



� Thermal wind

This common situation is a consequence of the double — geostrophic and hydrostatic — balance:
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Consider typical atmospheric thermal wind situation with@p=@z <0 and u > 0; and prove that it is baroclini-
cally unstable (i.e., corresponds to positive baroclinicity):
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Thus, positive baroclinicity implies baroclinic instability of the most common geophysical �ows.



� Energetics of barotropically and baroclinically unstable�ows

Can we quantify amounts of APE and KE transferred from an unstable �ow to the growing perturbations?

In the continuously strati�ed QG PV model, the kinetic and available potential energy densities of �ow perturba-
tions are:
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Consider the continuously strati�ed QG PV equation linearized around some background zonal �owU(y; z) :
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Theenergy equationis obtained by multiplying(� ) with �  and, then, by mathematical manipulation (see the
QG energetics):
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Vertical energy �uxis in square brackets on the rhs, and it is due to the form drag arising from isopycnal defor-
mations.

Horizontal energy �ux:
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Integration of (�� ) over the domain removes both horizontal and vertical �ux divergences, and yields thetotal
energy equation:
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The pair ofenergy conversion termson the rhs of(� � � ) has clear physical interpretations...



(a)Reynolds-stress energy conversionterm can be written as integral of� u0v0@U
@y

; where primes remind that we
deal with the �ow �uctuations aroundU(y; z):
This conversion is positive (and associated with barotropic instability of horizontally sheared �ow), if theReynolds
stress u0v0 acts against the velocity shear (see left panel of Figure below), that is, u0v0 < 0: In this case the
background �ow feeds growing instabilities at the rate given by the energy conversion.

(b) Form-stress energy conversionterm involves theform stressv0� 0 .
The integrand can be rewritten using thethermal wind relationsand basic considerations about the vertical deriva-
tives:
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With this in mind, the integrand of the second integral can bemanipulated as the following:
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This conversion term is positive (and associated with baroclinic instability), if the form stress is negative:v0� 0:
This implies �attening of tilted isopycnals (right panel ofFigure below shows� v0� 0 and isopycnals; the situation
has negative density anomalies moving northward).

NOTE: Left �gure panel can be interpretted as �attening of the shear, and right panel — as �attening of the tilted
isopycnals (i.e., restrati�cation).



AGEOSTROPHIC MOTIONS

(a) Geostrophy �lters out all types of (relatively fast) waves, which are important for many geophysical processes.

(b) Geostrophy doesn't work near the equator (where:f = 0), because the Coriolis force becomes too small.

Let's consider, �rst,gravity wavesand, then,equatorial waves, that are both important ageostrophic �uid motions.

� Linearized shallow-water model

Let's consider a layer of �uid with constant density,f -plane approximation, and deviations of the free surface� :

@u
@t

� f 0v = � g
@�
@x

;
@v
@t

+ f 0u = � g
@�
@y

; p = � � 0g(z � � ) ;
@u
@x

+
@v
@y

+
@w
@z

= 0 :

The last equation can be vertically integrated, using the linearized kinematic boundary condition on the free
surface:
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alternatively this equation can be obtained by linearization of the shallow-water continuity equation.

Takecurl of the momentum equations, substitute the velocity divergence taken from(� ) into the Coriolis term
and obtain:
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Takedivergence of the momentum equations, substitute the velocity divergence taken from(� ) in the tendency
term and obtain:
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By differentiating (� � � ) with respect to time and by substituting vorticity from(�� ); we obtain:
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Let's integrate this equation in time and choose the integration constant so, that� = 0 is a solution.



The resultingfree-surface evolution equationis also known as theKlein-Gordon equation:
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This equation needs lateral boundary conditions, which areto be obtained from the velocity boundary conditions.

Velocity-component equations. Take theu-momentum equation, differentiate it with respect to time,and add it
to thev-momentum equation multiplied byf 0 ; similarly, take time derivative of thev-momentum equation and
subtract from it theu-momentum equation multiplied byf 0 :
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Boundary conditions of some sort are needed. Let's considersolid boundary atx =0 (ocean west coast). On the
boundary:u = 0; therefore, thefree-surface boundary conditionis:
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Let's now look for thewave solutions � = ~� (x) ei (ly � !t ) of (� � �� ) with the above BC:
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The BC provides important constrain, whereas the main equation can be written as:
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where thedispersion relation,
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supports solutions that inx are either oscillatory (imaginary� ) or decaying (real� ).
Let's consider them separately.



� Poincare (inertial-gravity) waves

These are theoscillatory solutions:

� = ik ; ~� = A coskx + B sinkx ; x = 0 : A = B
k!
lf 0

; ! 2 = f 2
0 + c2

0 (k2 + l2)

(a) Dispersion relation of these dispersive waves can be visualized by hyperboloid with the cut-off frequencyf 0:

(b) These arevery fast surface gravity waves. For wavelength� 1000km and H � 5 km, the phase speed
is c0 =

p
gH � 300m s� 1 (compare this tsunami-like speed to the slow speed� 0:2 m s� 1 for the oceanic

baroclinic Rossby wave).

(c) In thelong-wave limit: ! = f 0:
These waves are called theinertial oscillations; they are characterized by circular motions (see Problem Sheet).

(d) In theshort-wave limit, the effects of rotation vanish, and these are common (nondispersive)non-rotating
shallow-water surface gravitywaves (note their difference from the deep-ocean waves considered in the Problem
Sheet!).

(e) Poincare waves areisotropic: their propagation properties are the same in any direction(in the �at-bottom
f -plane case that we considered).



� Kelvin waves

These are theexponentially decayingsolutions (i.e.,edge waves); here, on the western
(eastern) boundary they correspond to different signs ofk (let's take k > 0) :

� = k (= � k) :
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!
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Note that the BC connectsk with l and allows to get rid of it.

In the northern hemisphere, positivek at the western wall impliesC(y)
p = !=l < 0;

hence the Kelvin wave propagates to the south. Thus, the meridional phase speed is
northward at the eastern wall and southward at the western wall, that is, the coast
is always to the right of the Kelvin wave propagation direction.
Note, thatf 0 changes sign in the southern hemisphere, and this modi�es the Kelvin wave so, that it has the coast
always to the left (see Figure).

With (� ) used to get rid ofk; theKelvin wave dispersion relationbecomes:
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Its �rst root, ! = � f 0; is just another class ofinertial oscillations.

Its second root corresponds to the (nondispersive)Kelvin wave, which exponentially decays away from the bound-
ary:
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Substitute this into the rhs of the normal-to-boundary velocity equation, and discover that this velocity component
is zeroeverywhere:
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because at the boundary it is always true thatu(t; 0; y) = 0 : Note, that this equation has oscillatory solutions, but
they are not allowed by the boundary condition.



Because of(� ); the along-wall velocity component of the Kelvin wave turns out to be in the geostrophic balance:

@u
@t

� f 0 v = � g
@�
@x

=) � f 0 v = � g
@�
@x

;

hence, Kelvin wave is aboundary-trapped hybrid wavethat is simultaneouslyageostrophic(gravity) andgeostrophic.

(a) There are Kelvin waves running around islands (in the proper direction); they are often phase-locked to tides.

(b) Kelvin waves can be further subdivided into the barotropic and baroclinic vertical modes.



� Geostrophic adjustment

This is a powerful and ubiquitous process, in which �uid frominitially unbalanced state evolves toward a state of
geostrophic balance, by radiating gravity waves.

Let's focus on thelinearized shallow-waterdynamics, which contains both geostrophically balanced and unbal-
anced motions:
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and consider a manifestly unbalanced initial state: discontinuity in free-surface height.
In non-rotating �ow any initial disturbance will be radiated away by the gravity waves, characterized by phase
speedc0 =

p
gH; and the �nal state will be thestate of rest. In rotating �uid there is geostrophic balance that

can trap the �uid in it, because it has absolutely no time dependence!

Effect of rotationis crucial for geostrophic adjustment, because:

(a) PV conservation provides a powerful constraint on the �uid evolution;

(b) There is fully adjusted steady state which is not the state of rest.

Let's start with the corresponding PV description of the dynamics:
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@t

+ u �r � = 0 ; � =
� + f 0

h
=

� + f 0

H + �
=

(� + f 0)=H
1 + �=H

;

andlinearize both PV and its conservation law:
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�
H

;
@q
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= 0

where q is the linearized PV anomaly. Note thatq remains locally unchanged.



Let's consider a discontinuity in �uid height:

� (x; 0) = + � 0 ; x < 0 ; � (x; 0) = � � 0 ; x > 0:

The initial distribution of the linearized PV anomaly is:

q(x; y; 0) = � f 0
� 0

H
; x < 0 ; q(x; y; 0) = + f 0

� 0

H
; x > 0:

During thegeostrophic adjustment process, the height discontinuity will become smeared out into a slope by
radiating gravity waves; through the geostrophic balance this slope must maintain a geostrophic �ow current that
will necessarily emerge during the adjustment.
First, let's introduce the �nal-state geostrophic �ow streamfunction:

f 0u = � g
@�
@y

; f 0v = g
@�
@x

! 	 �
g�
f 0

:

Since PV is conserved on the �uid particles, the particles are only redistributed along they-axis (this is based on
physical reasoning; alternative argument comes from the symmetry of the problem). The �nal steady state is the
solution of the equation described by monotonically changing 	 � � and sharp jet concentrated along this slope:

� � f 0
�
H

= q(x; y) =)
�

r 2�
1

R2
D

�
	 = q(x; y) ; RD =

p
gH
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H
sign(x)

=) 	 = �
g� 0
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(1 � e� x=RD ) ; x > 0 ; 	 = +

g� 0

f 0
(1 � e+ x=RD ) ; x < 0

=) u = 0 ; v = �
g� 0

f 0RD
e�j xj=RD ; � =

f 0

g
	

(a) PV constrains adjustment within the deformation radiusfrom the initial disturbance.

(b) Excessive initial energy (which can be estimated; see Problem Sheet) is radiated away by gravity waves.
The underlying processes which transfer energy from (initially) unbalanced �ows to gravity waves remain poorly
understood.



� Equatorial waves

These are special class of linear waves populating equatorial zones.
Let's assume theequatorial � -plane and, with the goal to derive single equation for the meridional velocity
component, write down the momentum, continuity, and PV equations (and recall thatc0=

p
gH):
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Add up (� ) and (�� ); and use(� � � ) and (� � �� ) to get rid of � :
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Substitute � =
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@yto obtain themeridional-velocity equation:
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Let's look for the wave solution:v = ~v(y) ei (kx� !t )
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Solutions of the inhomogeneous ODE(� ) are symmetric around the equator and given by the set ofHermite
polynomialsHn , which multiply the steeply decaying exponential:

~vn(y) = An Hn

� y
Leq

�
exp

h
�

1
2

� y
Leq

� 2i
;

where Leq =
p

c0=� is called theequatorial barotropic radius of deformation( � 3000km; the equatorial
baroclinic deformation radii are much shorter and can be obtained by considering a multi-layer problem and
projecting it on the vertical modes).

One can obtain thedispersion relationby recalling the following recurrence relations for the Hermite polynomials:

H 0
n = 2nH n� 1 ; H 0

n� 1 = 2yHn� 1 � Hn ;

and by consideringvn = Hn exp[� y2=2] :

v0
n = ( H 0

n � yHn) e� y2=2 = (2 nH n� 1 � yHn) e� y2=2 ;

v00
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�
2nH 0
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n � y(2nH n� 1 � yHn)

�
e� y2=2 = � (2n + 1 � y2)Hn e� y2=2

=) v00
n + (2 n + 1 � y2) vn = 0 (�� )



Now, let's consider(� ) and nondimensionalizey by Leq :
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By comparing the last equation with(�� ); we obtain the resultingdispersion relation for equatorial waves:
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�
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�k
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0

Let's now analyze this dispersion relation by considering its frequency limits and effects of lateral boundaries:

(a)Fast waves: if ! n is large, then:

! 2
n = c2

0

�
k2 +

(2n + 1)
L2

eq

�
:

This is identical to the dispersion relation for high-frequencyPoincare waves, if we take l =
p

2n + 1=Leq:

(b) Slow waves: if ! n is small, then:

! n = �
�k

k2 + (2 n + 1) =L2
eq

:

This is identical to the dispersion relation forRossby waves, if we take l =
p

2n + 1=Leq.

(c) Mixed Rossby-gravity (Yanai) wavecorresponds ton = 0: It behaves like Rossby/gravity wave for low/high
frequencies.

(d) Equatorial Kelvin waveis the edge wave for which equator plays role of solid bondary.
Let's take v = 0; and use(� ); (� � � ); and (� � �� ) :
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= 0 ; (?)
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From (?) we obtain the zonal-velocity equation and its canonicalD'Alembert solution:

@2u
@t2

� c2
0

@2u
@x2

= 0 ; u = A G � (x � c0t; y) + B G+ (x + c0t; y) ;

and notice, that this solution has to satisfy the PV constraint (??):
Substitute the D'Alembert solution in(??); introduce pair of propagating-wave variables� = x � c0t; and recall
that Leq=

p
c0=� :
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These equations have the following exponential solutions:

G� = A � e� 1
2 (y=Leq)2

F� (� ) ; G+ = A+ e
1
2 (y=Leq)2

F+ (� )

=) G� = A � e� 1
2 (y=Leq)2

F� (x � c0t) ; G+ = A+ e
1
2 (y=Leq)2

F+ (x + c0t)

Only G� remains �nite away from the equator, hence,A+ = 0:
Therefore,Kelvin wave is given byG� and propagates only to the east.



Vertical modes: In continuously strati�ed case, the �ow solution can be split in a set of vertical modes. Barotropic
and each baroclinic mode has its own Poincare, Rossby, Yanaiand Kelvin waves and dispersion relations.

Most famous phenomenon: Equatorial waves play key role in the global, climate-type, coupled ocean-atmosphere
oscillation referred to asEl Nino Southern Oscillation (ENSO). (see later).

Dispersion relation diagram
for equatorial waves



� Schematic of El Nino Southern Oscillation (ENSO) “delayed oscillator” mechanism

El Nino and La Nina occur interannually causing extreme �oods and droughts in many regions of the world.

� Normal state is perturbed;
weakening of trade winds

� “Warm” Kelvin wave
radiates to the east and “cold”
Rossby wave radiates to the
west (their basin-crossing
times are about 70 and 220
days).

� When Kelvin wave reaches
the boundary, it warms the
upper ocean and “El Nino”
phenomenon occurs.

� “Cold” Rossby wave
re�ects from the western
boundary as “cold” Kelvin
wave; then, it propagates to
the east, terminatesEl Nino,
and initiates “La Nina” event.



MATERIAL TRANSPORT PHENOMENA

� Stokes drift

This is a nonlinear phenomenon that illustrates
the difference betweenaverage Lagrangian velocity
(i.e., velocity estimated following �uid particles)
andaverage Eulerian velocity
(i.e., velocity estimated at �xed spatial positions).

Essential physics: Stokes drift may occur only when
the �ow is bothtime-dependentandspatially
inhomogeneous.

We will consider the text-book example of deep-water
linear gravity waves (see Figure and Problem Sheet) and derive theStokes drift velocity.

Lagrangian motion of a �uid particle is described by kinematic equation:

x = � (a; t) ;
@�
@t

= u(�; t ) ; � (a; 0) = a ;

where u is the Eulerian velocity (at a �xed position), and@�=@tis the Lagrangian velocity (found along the
particle trajectory).
Let's compare time averages (denoted by overlines) of thesevelocities and assume that they are not the same (i.e.,
time averages along a trajectory and at a point do not have to coincide):

uE = u(x; t) ; uL =
@�(a; t)

@t
= u(� (a; t); t) ! uS = uL � uE ;

where Stokes drift velocityuS is the difference between the Lagrangian and Eulerian average velocities.

Let's now consider a sinusoidal plane wave on the free surface of �uid: � = A cos(kx � !t ): The corresponding
interior �ow solution (see Problem Sheet) is given in terms of the velocity potential�; which is harmonic (i.e.,
r 2� = 0); and the corresponding (nonlinear) dispersion relation of the deep-water waves:

� = A
!
k

ekz sin(kx � !t ) ; ! 2 = gk :



Consider the horizontal� x and vertical � z components of the Lagrangian position vector� and write down La-
grangian velocity components:

@�x
@t

=
@�
@x

;
@�z
@t

=
@�
@z

:

The Lagrangian trajectory can be integrated near some pointx = ( x; z): Within the linear theory this yields:

� x = x +
Z

@�
@x

dt = x � A ekz sin(kx � !t ) ; � z = z +
Z

@�
@z

dt = z + A ekz cos(kx � !t ) :

The central idea is to calculate Lagrangian velocity on trajectory byTaylor-expanding the Eulerian velocity �eld
around the reference positionx: We focus only onx-direction (here, direction of the wave propagation):

uS = u(�; t ) � u(x; t) =
h
u(x; t) + ( � x � x)

@u(x; t)
@x

+ ( � z � z)
@u(x; t)

@z
+ :::

i
� u(x; t)

� (� x � x)
@2� (x; t)

@x2
+ (� z � z)

@2� (x; t)
@x@z

= :::

= [� A ekz sin(kx � !t )] [� !kA e kz sin(kx � !t )] + [A ekz cos(kx � !t )] [!kA e kz cos(kx � !t )]

= !kA 2e2kz[sin2(kx � !t ) + cos2(kx � !t )] = !kA 2e2kz :

By converting to the wave periods in time and space,T and � , respectively, the outcome is:

uS =
4� 2A2

�T
e4�z=� :

(a) Stokes drift speeduS is quadraticin terms of the wave amplitudeA:

(b) Stokes drift decaysexponentiallywith depth and inversely depends on the �ow periods.

(c) Darwin drift (permanent displacement of mass after the passage of a body through a �uid) is a related phe-
nomenon.

(d) Stokes drift accompanies all types of internal waves that displace isopycnals; therefore, it illustrates ubiquitous
“hidden” material transports.



� Homogeneous turbulent diffusion

This is a theory for describing dispersion of passive tracer(or Lagrangian particles) by spatially homogeneous,
stationary and isotropic turbulence.

Take C as passive tracer concentration, andu as turbulent velocity �eld.
Standard approach is to consider large-scale (coarse-grained) quantities: passive tracer concentrationC and ve-
locity �eld u ; so that the corresponding small-scale(turbulent) �uctuationsare C0 and u0:
Let's assume the completescale separationbetween the large and small scales, which here is:

C0= 0 ; u0= 0 ;

andcoarse-grainthe governing advection-diffusion tracer equation by taking its time average:

@C
@t

+ u �r C = molecular diffusion+ sources/sinks !
@(C + C0)

@t
+ ( u + u0) �r (C + C0) = :::

=)
@C
@t

+ u�r C = � u0�r C0+ :::

Can we �nd a simple mathematical model (also called: “parameterization”, “closure”) for the turbulent stress
term on the rhs?This is one of the frontier research directions not only in GFD but also in the whole Earth system
modelling!

Lagrangian point of view on turbulent diffusion.
For this purpose let's consider dispersion (i.e., spreading) of anensemble of Lagrangian particles. Concentration
of the particles is equivalent toC; and displacement of each particle from its initial positionis given by the
integral of its Lagrangian velocity:

x(t) � x(0) =
Z t

0
uL (t0) dt0

Standard functions characterizing evolution of the Lagrangian particles ensemble aresingle-particle dispersion
D(t) andLagrangian velocity autocorrelation functionR(� ) . These functions are obtained byensemble aver-
aging(i.e., over many �ow realizations), as indicated by angle brackets:

D(t) �


(x(t) � x(0))2� ; R(t � t0) �



uL (t) �uL (t0)

�
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These functions are mathematically connected with each other. Notice, that
Z t

0
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therefore:
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Next, recall the formula for differentiation under integral sign,

F (x) =
Z b(x)

a(x)
f (x; t ) dt =)

d
dx

F (x) = f (x; b(x)) b0(x) � f (x; a(x)) a0(x) +
Z b(x)

a(x)

@
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f (x; t ) dt ;

and �nd:

D(t) = 2
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0
(t � � ) R(� ) d� (�� )

Prove the above formula by differentiating it and, eventually, obtain (� ) :

dD
dt

= 2


u2�

�
(t � t) R(t) � 0 +

Z t

0
R(� ) d�

�

Asymptotic limits: Consider the short- and long-time limits ofD(t) by focusing on(� ) :

(a)Ballistic limit: t ! 0:
Then, � � 0; R(� ) � 1 =) D � t2

(b) Diffusive limit: t ! 1 :
IntroduceLagrangian decorrelation time: TL =

R1
0 R(� ) d�:

=)
dD
dt

�
�
�
1

= 2 TL


u2

�
=) D � t



In the diffusive limit the area occupied by particles (or passive tracer) grows linearly in time, as in the molecular
diffusion processwith theeddy diffusivityequal to:

� =


u2� TL

Let's prove the diffusion equation analogy by considering the one-dimensional diffusion equation and by focusing
on the mean-square displacement of the tracer concentration (it is equivalent to the single-particle dispersion!):

@C
@t

= �
@2C
@x2

; D(t) �
hZ 1

�1
x2 C dx

i h Z 1

�1
C dx

i � 1

Differentiate D(t) and replace tendency term by rhs of the diffusion equation:
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�1
x2 C dx = �

Z 1

�1
x2 @2C

@x2
dx = ( by parts) = 2 �

Z 1

�1
C dx = 2�

Thus, in the diffusion process analogy, the tracer-containing area grows linearly in time.

NOTE: the same diffusion process analogy in 2D and 3D cases yields 4� and 6� on the rhs, respectively.



NONLINEAR DYNAMICS AND WAVE-MEAN FLOW INTERACTIONS

Nonlinear �ow interactionsbecome fundamentally important when growing �ow instabilities reach signi�cant
amplitude and become �nite-amplitudenonlinear eddies and currents.

� Weakly nonlinear analysiscan predict slowly evolving amplitude of nearly monochromatic nonlinear waves
through derivation of anamplitude equation.

� Dynamical systemsframework (bifurcations, attractors, etc.) can be useful for describingtransition to turbu-
lence.

� Exact analytic solutionsof nonlinear �ows are known (e.g., solitary waves), but remain simple and exceptional.

� Statistical wave turbulenceframework (resonant triads, kinetic equations, etc.) can be useful, when the under-
lying linear dynamics is relatively simple and wave coherency is weak.

� Stochastic modellingof turbulence is an emerging �eld, but it is poorly constrained by physics.

� Computational modellingis presently the most useful (in terms of the new knowledge!)approach for theoretical
analysis of nonlinear �ows, but under the relaxed scienti�cstandards it can be intoxicating and detrimental.

Illustration: Stages of nonlinear evolution of the growinginstabilities in the Phillips model



Turbulence modellingis the process of construction and use of a model aiming to predict effects of broadly de�ned
spatio-temporally complex nonlinear �ow dynamics, which is referred to as �uid“turbulence”.

� Closure problem is a dream (or a modern alchemy?) to predictcoarse-grained �owevolution by expressing
important dynamical effects ofunresolved �ow featuresin terms of the coarse-grained �ow �elds.

Let's consider some velocity �eld consisting of coarse-grained (i.e., large-scale obtained by some spatio-temporal
�ltering) and �uctuation (i.e., small-scale) components:

u = u + u0; u0= 0 :

Let's assume the following toy dynamics:

(� )
du
dt

+ uu + Au = 0 !
du
dt

+ uu + Au = 0

To close the equation foru; let's obtain the equation foruu = u u + u0u0 by multiplying (� ) with u and by
coarse-graining:

1
2

duu
dt

+ uuu + Auu = 0

What are we going to do with the cubic term? An equation determining it will contain a quartic termuuuu; and
so on...
Let's imagine a magic“philosopher's stone”relationship that makes the closure:

uuuu = � uu uu + � uuu

Many theoreticians are looking for various “philosopher'sstone” relationships that will be laughed at a century
from now, but by doing this a great deal of physical knowledgeis obtained and many mathematical instruments
are developed.



� Reynolds Decomposition

Common example of coarse-graining, referred to asReynolds decomposition, is separation of a turbulent �ow into
the time-mean and �uctuation (i.e., “eddy”) components:

u(t; x) = u(x) + u0(t; x) ; p(t; x) = p(x) + p0(t; x) ; � (t; x) = � (x) + � 0(t; x) :

For example, let's apply the Reynolds decomposition to thex-momentum equation and, then, average this equation
over time (as denoted by overline):

@u
@t

+ u�r u = �
1
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@p
@x

� r� u0u0= �
1
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@p
@x

�
@
@x

u0u0�
@
@y

u0v0�
@
@z

u0w0:

The last group of terms is the �rst component of divergence ofthe nonlinearReynolds stress tensor:

T ij = u0
i u0

j :

(a) In the above example replace:u ! � and consider nonlinear stressu0� 0; which is referred to aseddy �uxof
�: Divergence of an eddy �ux can be interpreted as internally and nonlinearly generatededdy forcingexerted on
the dynamics of coarse-grained�:

(b) It is very tempting to assume that nonlinear stress can berelated to the corresponding time-mean (large-scale)
gradient, for example:

u0� 0= � �
@�
@x

:

This �ux-gradient assumptionis often callededdy diffusionor eddy viscosity(closure). Note, that this �ux-
gradient relation is exactly true for real viscous stress (but only in Newtonian �uids!) arising due to molecular
dynamics.

(c) The �ux-gradient assumption is common in models and theories, but it is often either inaccurate or fundamen-
tally wrong, because �uid dynamics is different from molecular dynamics.

(d) Turbulent QG PV dynamics can be also coarse-grained to yield diverging eddy �uxes, because� can stand
for PV. Since PV anomalies consist of the relative-vorticity and buoyancy parts, the PV eddy �uxu0q0 can be
straightforwardly split into the Reynolds stress (i.e., eddy vorticity �ux) and form stress (i.e., eddy buoyancy �ux)
components, which describe different physics.



� Parameterization of unresolved eddies

The above coarse-graining approach can be extendedbeyond the “Reynolds decomposition into the time mean and
�uctuations” by applying somegeneral decomposition(e.g., �ltering) of turbulent �elds into: (i) some large-scale
and slow component and (ii) the small-scale and fast residual eddies.
For example, let's consider the equivalent barotropic QG PVmodel with the eddy viscosity replacing the nonlinear
stresses:

� = r 2 �
1

R2  + �y ;
@�
@t

+
@ 
@x

@�
@y

�
@ 
@y

@�
@x

= � r 2� = � r 4 ;

here it is assumed that the model solves for the large-scale �ow, and theviscous term� r 4 represents the effects
of unresolved eddies.
How can we interpret thisviscosity parameter� ?

(a) Molecular viscosity of water is� 10� 6 m2 s� 1, but typical values of� used in geophysical models are 100–
1000 m2 s� 1. What do these numbers imply? Typical viscosities (in m2 s� 1): honey � 0:005; peanut butter
� 0:25; basaltic lava� 1000:
In simple words, oceans in modern computational models are made of basaltic lava rather than water...
(Similar analogy holds for the atmosphere; although kinematic viscosity is about 20 times larger in the air.)

(b)Reynolds numberRemeasures relative importance of nonlinear and viscous terms (Peclet numberPeis similar
but for a tracer diffusion term):

Re =
U2=L2

�U=L 3
=

UL
�

; Pe=
UL
�

NOTE: Modern general circulation models strive to achieve larger and largerRe (andPe) by progressively re-
solving smaller scales, and by employing better numerical algorithms and faster supercomputers.



� Triad interactions in turbulence

This is the main mechanism of nonlinear interactions that transfers energy between scales.

Let's consider a double-periodic domain with the followingforced and dissipative 2D dynamics:

@�
@t

+ J ( ; � ) = F + � r 2� ; � = r 2 : (� )

All �ow �elds can be expanded in Fourier series (summation isover all negative and positive wavenumbers):

 (x; y; t) =
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~ (k; t) ei kx ; � (x; y; t) =
X

k

~� (k; t) ei kx ;

where

k = ik1 + jk2 ; ~� = � K 2 ~ ; K 2 = k2
1 + k2

2 :

Substituting these Fourier expansions in(� ) yields:
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hX

p

p1
~ (p; t) ei px

i h X

q

q2
~� (q; t) ei qx

i
�

hX

p

p2
~ (p; t) ei px

i h X

q

q1
~� (q; t) ei qx

i

+
X

k

~F (k; t) ei kx + �
X

k

K 4 ~ (k; t) ei kx ;

where k; p and q are 2D wavevectors.

Wavevector evolution equationis obtained for each spectral coef�cient~ (k; t) by multiplying the last equation
with exp(� ikx ); by integrating over the domain, usingQ2 = q2

1 + q2
2; and by noting that the Fourier modes are

orthogonal:
Z

ei px ei qx dA = L2� (p + q) =)

@
@t

~ (k; t) =
X

p;q

� Q2

� K 2
(p1q2 � p2q1) � (p + q � k) ~ (p; t) ~ (q; t) +

1
� K 2

~F (k; t) � �K 2 ~ (k; t) (�� )



This equation(�� ) can be reformulated forevolution of the complex amplitudej ~ (k; t)j by multipling (�� ) with
the complex conjugate spectral coef�cient~ � (k; t):
Note, that there are as many equations(�� ) involved, as wavevectorsk considered.

Interaction coef�cientweighs the nonlinear term according to the dynamics, and it is nonzero only for the inter-
acting wavevector triads that must satisfy:p + q = k; because of the� -function involved.

Hermitian (conjugate) symmetryproperty (i.e., ~ is Hermitian function) states that

~ (k1; k2; t) = ~ � (� k1; � k2; t) ;

because is real function.

Some properties of the triad interactions:

(a)Redistribution of spectral energy density.
Suppose, there are initially only two Fourier
modes, with wavevectorsp and q; and with
the Fourier coef�cients~ (p; t) and ~ (q; t):
Due to the conjugate symmetry, these modes
must have their conjugate-symmetric
partners at� p and � q ; which are
described by the Fourier coef�cients
~ � (� p; t) and ~ � (� q; t); thus, the initial

combination of the “two modes” are actually the “four modes”organized in 2 conjugate-symmetric pairs. Non-
linear interactions involving the initial 2 pairs will generate 2 more pairs:

k = p + q ; l = � p � q ; m = p � q ; n = � p + q ;

and the subsequent nonlinear generation of the new wavevectors will continue to in�nity.

(b) Nonlinear triad interactions are calledlocal (k � p � q) or non-local (k � p � q); depending on the
differences between the involved scales (see Figure).

(c) Cascadesin turbulence are energy transfers between scales based onlocal interactions.



(d) Fourier spectral descriptionsare popular, because the modes are simple and orthogonal, and in spatially
homogeneous situations (only!) they even satisfy the linearized dynamics. Other spectral descriptions are possible
and can be even more useful.

(e)Fourier expansion in timeallows to talk about nonlinear interactions of individual waves rather than wavevec-
tors. If phases of these waves are approximately random, then the problem can be approached bywave turbulence
theory; if the phases are coherent, as typical in 2D turbulence, then people talk aboutcoherent structures.



� Homogeneous and stationary, non-rotating 3D turbulence.

This idealized turbulence is characterized byenergy transfersfrom the larger to smaller scales.
These transfers can involve both local and nonlocal interactions; however,forward energy cascadeis a popular
concept (conjecture) stating that energy is transferred only between similar scales (i.e., locally) and cascades from
larger to smaller scales.

Forward energy cascade assumes the following:
(a) At large length scales there is some energy input
(e.g., due to instabilities of large-scale �ow),
all dissipation happens on short length scales, and on
the intermediate length scales the turbulence is controlled
by conservation of energy.

(b) Dissipation acts on very short length scales, such that �uid motion is characterized byRe � 1. These are
scales on which cascading energy is drained out. Within the cascade energy input to each scale/wavenumber is
equal to energy output from it.

(c) Turbulence within the cascade is characterized byself-similarity, i.e., everything is structurally similar at each
scale/wavenumber.

Our goal is to connect the main ingredients:isotropic wavenumber, k; energy spectral density, E(k); andenergy
input rate, � and energy within a spectral interval isE(k)�k:

Involved physical dimensions are:

[k] =
1
L

; [E ] = LU 2 =
L3

T2 ; [� ] =
U2

T
=

L2

T3

Advectivevelocity scaleandtime scaleare:

vk = [ kE(k)]1=2 ;

� k = ( kvk)� 1 = [ k3E(k)]� 1=2 :



Kolmogorov “minus-�ve-thirds” law.
In the assumedinertial spectral rangethe kinetic energy is conserved; it is neither produced nor dissipated. Energy
input in and output from each spectral interval, on the one hand, is �; and, on the other hand, should scale with
vk and � k only:

� �
v2

k

� k
=

kE(k)
� k

= k5=2E(k)3=2 =) E(k) � � 2=3k� 5=3

The Kolmogorov law is robust, within� 2% deviations, but similarly argued predictions for the higher-order
moments deviate from statistical measurements because ofintermittencyassociated with relatively frequent large
velocities and the corresponding energy dissipation bursts.



Kolmogorov (dissipative) length scale.
This scaleL visc is the smallest scale in �uid mechanics.
It can be obtained by equating the advective time scale� k and theviscous time scale� visc = [ k2� ]� 1 (expressed
in terms of � and k ) for the corresponding isotropic wavenumberkvisc :

� k = k� 3=2 E � 1=2 � � � 1=3 k� 2=3 ! � k = � visc

=) kvisc � � 1=4 � � 3=4 =)
1

kvisc
� L visc � � � 1=4 � 3=4

Note, that this scaling is dominated by the viscosity dependence, therefore,L visc is often referred to as “dissipa-
tive” length scale. And equating the time scales is equivalent to assumingRe � 1:

(a) Alternatively, we can �nd this power law scaling forL visc from themethod of dimensional analysis:

kvisc � L � 1
visc � � � � � �

L2�

T3�

L2�

T �

=) 2� + 2� = � 1; 3� + � = 0 ! � =
1
4

; � = �
3
4

(b) Kolmogorov time scalecan be rewritten in terms of� :

� visc � � � 1=2 � 1=2 :

(c) Energy inpute rate� is often referred to as theaverage rate of dissipation of turbulence kinetic energy(per
unit mass).



� 2D homogeneous turbulence

This turbulence regime is controlled by conservation of notonly energy but alsoenstrophyZ = � 2; which is the
other useful quadratic scalar.
Consider the materially conserved enstrophy dynamics:

@
@t

� 2 = 2�
@�
@t

= � 2� u �r � = � u �r � 2 = �r� (u � 2) + � 2r� u ; (� )

where the second step involves the material conservation law for �: Integrate(� ) in space and take into account
that the rhs terms vanish, because we assume nondivergent �ow and periodic boundaries, i.e.,u�dS = 0; therefore:

@
@t

Z

A
� 2 dA =

Z

A

@
@t

� 2 dA = �
Z

A
r� (u � 2) dA = �

Z

S
u � 2 dS = 0

Therefore, there is globalconservation of enstrophy.

Homogeneous 2D turbulence is characterized by the following:

(a) Energy is transferred tolarger scales (hence,inverse energy cascadeconcept is valid) and ultimately removed
by some other physical processes; the Kolmogorov spectrumE(k) � k� 5=3 is preserved.

(b) Enstrophy is transferred tosmallerscales (i.e., there isforward enstrophy cascade) and ultimately removed by
viscous dissipation.

(c) Upscale energy transfer occurs often through2D vortex mergers.

(d) Downscaleenstrophy cascadeoccurs often through irreversible process ofstretching, �lamentation and stir-
ring of relative vorticity.

To obtain its spectral law, the enstrophy cascade can be treated similarly to the energy cascade. Let's assume that
enstrophy input rate� produces enstrophy that cascades through the inertial spectral range to the dissipation-
dominated scales.
Now, let's recall that the advective scales are

� k = k� 3=2E(k)� 1=2 ; vk = [ kE(k)]1=2



=) � �
� 2

k

� k
=

(k vk)2

� k
=

k3E(k)
� k

= k9=2E(k)3=2 =) E(k) � � 2=3k� 3 (�� )

Let's now use(�� ) to ged rid of E(k) , and take into account that thedissipative time scale for enstrophyis

� k = � � 1=3 :

Equate this to the viscous time scale to obtain thedissipative length scale for enstrophy:

� visc � [k2� ]� 1 = � � 1=3 ! kvisc � � 1=6� � 1=2 !
1

kvisc
� L visc � � � 1=6� 1=2

Instead of engaging into detailed analysis of 2D vortex
mergers, let's consider an alternative explanation of the
energy transfer to larger scales. Vorticity is conserved,
but it is also being stretched and �lamented (e.g.,
consider a circular patch of vorticity that evolves and
becomes elongated as a spaghetti). The corresponding
streamfunction is obtained by thevorticity inversion,
r 2 = �; therefore, its length scale will be controlled by
the elongated vorticity scale, hence, the streamfunction scale
will keep increasing. Therefore, the total kinetic energy will
become dominated by larger scales.



� Effects of rotation and strati�cation on 3D turbulence are such, that they suppress vertical motions, and,
therefore, create and maintainquasi-2D turbulence.

The� -effect or other horizontal inhomogeneities of backgroundPV make quasi-2D turbulenceanisotropic. Ex-
ample of anisotropic phenomenon is emergence ofmultiple alternating jets(e.g., zonal bands in the atmosphere
of Jupiter). Length scales controlling widths of the multiple jets areRhines scaleLR = ( U=� )1=2 (here, U is
characteristic eddy velocity scale) and baroclinic Rossbyradius RD :



( = When people researchhomogeneous 3D
turbulence, they usually deal with this kind
of solutions...

(shown are isolines of vertical relative vorticity component)

Turbulent convection (heavy �uid on the top)

There are many types of
inhomogeneous 3D turbulence,
characterized by some broken
spatial symmetries =)



( = 2D turbulence is characterized by interacting
and long-livedcoherent vortices

These vortices are materially conserved
relative vorticity extrema =)



Merger of two same-sign vortices(snapshots show different stages in time)

Chaotic advection of material tracer

In 2D turbulence:

� Inverse energy cascadeoccurs through mechanism
of vortex mergers.

� Forward enstrophy cascadeoccurs through mechanism
mechanism of irreversible�lamentation and stirring of
vorticity anomalies.



� Extra topic:Transformed Eulerian Mean (TEM)

This is a useful transformation of the equations of motion (for predominantly zonal eddying �ows, like atmo-
spheric storm track or oceanic Antarctic Circumpolar Current).

TEM framework:

(a) eliminates eddy �uxes in the thermodynamic equation,
(b) in a simple form collects all eddy �uxes in the zonal momentum equation,
(c) highlights the role of eddy PV �ux.

Let's start with thef -plane Boussinesq system of equations:

Du
Dt

� f 0v = �
1
� 0

@p
@x

+ F ;
Dv
Dt

+ f 0u = �
1
� 0

@p
@y

;
Dw
Dt

= �
1
� 0

@p
@z

� b ;

@u
@x

+
@v
@y

+
@w
@z

= 0 ;
Db
Dt

+ N 2w = Qb ;

Assume geostrophic and ageostrophic velocities, and focuson the� -order terms in the zonal-momentum and
thermodynamic equations:

@ug
@t

+ ug
@ug
@x

+ vg
@ug
@y

� f 0va = F ;
@b
@t

+ ug
@b
@x

+ vg
@b
@y

+ N 2wa = Qb :

These equations can be rewritten in the �ux divergence form:

@ug
@t

+
@ugug

@x
+

@vgug

@y
� f 0va = F ;

@b
@t

+
@ugb
@x

+
@vgb
@y

+ N 2wa = Qb :

Next, assume conceptual model of eddies evolving on zonallysymmetric mean �ow and feeding back on this
�ow. Separate eddies from the mean �ow by applying zonalx-averaging (denoted by overline;f 0= 0 ):

ug = ug(t; y; z) + u0
g(t; x; y; z) ; vg = v0

g(t; x; y; z) !
@ug

@t
= f 0va �

@
@y

u0
gv0

g + F (� )

Note, that zonal integration of any@(f lux )=@xterm yields zero, because of the zonal symmetry.
Similar decomposition of the buoyancy yields:

b= b(t; y; z) + b0(t; x; y; z) !
@b
@t

= � N 2wa �
@
@y

v0
gb0+ Qb (�� )



Equations(� ) and (�� ) arecoupled by the thermal wind relations. Because of this, effects of the eddy momentum
and heat �uxes cannot be clearly separated from each other — this is a fundamental nature of the geostrophic
turbulence.
Progress can be made by recognizing thatva and wa are related by mass conservation (i.e., non-divergent 2D
�eld). Hence, we can de�neageostrophic meridional streamfunction a; such that

va = �
@ a
@z

; wa =
@ a
@y

:

Meridional eddy buoyancy �ux can be easily incorporated in a; and we can de�ne theresidual mean meridional
streamfunction,

 � �  a +
1

N 2 v0
gb0 =) v � = �

@ �

@z
= va�

@
@z

� 1
N 2 v0

gb0
�

; w � =
@ �

@y
= wa+

@
@y

� 1
N 2 v0

gb0
�

;

that by construction describes non-divergent 2D �ow(v � ; w � ):

(a) Thus,  � combines the (ageostrophic)Eulerian meancirculation with theLagrangian eddy-inducedcircula-
tion; the latter motion is of the Stokes drift type.

(b) These circulations tend to compensate each other, hence, mean zonal �ow feels theirresidualeffect.

Invoking the de�nition of  � ; the momentum equation(� ) can be written as

@ug

@t
= f 0v � �

@
@y

u0
gv0

g +
@
@z

f 0

N 2
v0

gb0+ F = f 0v � + r yz �E + F ;

where we introduced theEliassen-Palm �ux:

E � (0 ; � u0
gv0

g ;
f 0

N 2
v0

gb0) :



Next, let's take into account that divergence of the Eliassen-Palm �ux is equivalent to geostrophic PV �ux:

r yz �E = v0
gq0

g

(see Problem Sheet), and obtain theTransformed Eulerian Mean (TEM) equations:

@ug

@t
= f 0v � + v0

gq0
g + F ;

@b
@t

= � N 2 w � + Qb ;
@v �

@y
+

@w �

@z
= 0 ; f 0

@ug

@z
= �

@b
@y

(� � � )

where the last equation is just the thermal wind balance.

Let's eliminate the left-hand sides from the �rst two equations by differentiating them with respect toz and y;
respectively. The outcome is equal by the last equation from(***), and the resulting diagnostic equation is

� f 2
0

@v�

@z
+ N 2 @w�

@y
= f 0

@
@z

v0
gq0

g + f 0
@F
@z

+
@Qb

@y
:

Now we can take into account de�nition of � and obtain the �nal diagnostic equation:

f 2
0

@2 �

@z2
+ N 2 @2 �

@y2
= f 0

@
@z

v0
gq0

g + f 0
@F
@z

+
@Qb

@y
(� � �� )

(a) If one knows the eddy PV �ux, the TEM equations allow to solve for the complete circulation pattern.
This can be done by solving the elliptic problem (****) for � ; at every time (step).

(b) Eddy PV �ux still has to be found dynamically, but the theory allows for many dynamical insights.

(c) The TEM framework can be extended to non-QG �ows.



� Non-Acceleration Theorem

It states that under certain conditions eddies (or waves) have no net effect on the zonally averaged �ow.
Let's prove this by considering zonally averaged QG PV equation (with a non-conservative rhsD ):

@q
@t

+
@v0q0

@y
= D ; q =

@2 
@y2

+
@
@z
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0

N 2
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@z

�
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Let's differentiate(@=@y) the QG PV equation:
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@t@y

h@2 
@y2

+
@
@z

� f 2
0

N 2
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@z

�i
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@2

@y2
v0q0+
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;

and recall that

v0q0= v0
gq0

g = r yz �E =)
h @2

@y2
+

@
@z

� f 2
0

N 2

@
@z

�i @u
@t

=
@2(r yz�E)

@y2
�

@D
@y

Theorem: If there is no eddy PV �ux (i.e., Eliassen-Palm �ux is non-divergent) in stationary and conservative
situation, then the �ow can not get accelerated(@u=@t= 0) ; because the ”Eulerian mean” and “eddy-induced”
circulations completely cancel each other.


