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1. Introduction

Roughening processes arise in nonequilibrium systems due to
the presence of different mechanisms acting on multiple time and
length scales and are typically characterized by a time-fluctuating
“rough” interface whose dynamics are described in terms of a
stochastic partial differential equation (SPDE). Examples are found
in a broad range of different applications, including surface growth
dynamics such as e.g. surface erosion by ion sputtering pro-
cesses [1,2], film deposition in electrochemistry [3,4], or by other
methods [5,6], fluid flow in porous media [7-9], fracture dynam-
ics [10] and thin film dynamics [11-15], to name but a few. Not
surprisingly, understanding the dynamics of the fluctuating inter-
face in terms of its roughening properties, which often exhibit
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scale-invariant universal features and long-range spatiotempo-
ral correlations, has become an important problem in statistical
physics which has received considerable attention over the last
decades [16]. In addition, the ability of controlling not only the
dynamics of the surface roughness (e.g. its growth rate) but also
its convergence towards a desired saturated value has recently re-
ceived an increased interest due to its applicability in a wide spec-
trum of natural phenomena and technological applications.

Here we present a generic linear control methodology for
controlling the surface roughness, i.e., the variance of the solution,
of nonlinear SPDEs which we exemplify with the stochastic
Kuramoto-Sivashinsky (sKS) equation. The starting point is to split
the original SPDE into a stochastic linear part and a deterministic
nonlinear part, and to apply existing control methodologies [17,18]
to the nonlinear deterministic part. Our control strategy is based
on two steps: first, stabilize the zero solution of the deterministic
system and, second, control the second moment of the solution
of the stochastic linear equation (e.g. a measure of the surface
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roughness) to evolve towards any desired value. By considering
either periodic or point actuated controls, our results show that
the second moment of the solution grows in time according to a
power-law with a well-defined growth exponent until it saturates
to the prescribed value we wish to achieve.

It is important to note that other control strategies have
been proposed previously for controlling the surface roughness
and other quantities of interest, such as the film porosity and
film thickness in various linear dissipative models, including
the stochastic heat equation, the linear sKS equation, and the
Edwards-Wilkinson (EW) equation; see e.g. [5,6,19-25]. However,
it should also be emphasized that most of these works involve
the use of nonlinear feedback controls which change the dynamics
of the system and require knowledge of the nonlinearity at all
times, something that may be difficult to achieve. We believe
that our framework offers several distinct advantages since the
controls we derive and use are linear functions of the solution
which do not affect the overall dynamics of the system and also
decrease the computational cost. Another recent study is Ref. [26]
which considered a deterministic version of the KS equation,
and presented a numerical study of the effects of the use of ion
bombardment which varies periodically in time on the patterns
induced by the ion beams on an amorphous material. In particular,
this study found that rocking the material sample about an axis
orthogonal to the surface normal and the incident ion beam, which
corresponds to making the coefficients of the KS equation periodic
in time, can lead to suppression of spatiotemporal chaos.

The work presented in this paper is motivated by earlier re-
search carried out by our group: on one hand, the study of noise
induced stabilization for the KS equation [27,28] and, on the other
hand, the study of optimal and feedback control methodologies for
the KS equation and related equations that are used in the model-
ing of falling liquid films [17,18,29]. It was shown in [27,28] that
an appropriately chosen noise can be used in order to suppress lin-
ear instabilities in the KS equation, close to the instability thresh-
old. Furthermore, it was shown in [17,18] that nontrivial steady
states and unstable traveling wave solutions of the deterministic
KS equation can be stabilized using appropriate optimal and feed-
back control methodologies. In addition, similar feedback control
methodologies can be used in order to stabilize unstable solutions
of related PDEs used in the modeling of falling liquid films, such
the Benney and weighted-residuals equations.

The rest of the paper is structured as follows. Section 2 intro-
duces the sKS equation and discusses means to characterize the
roughening process of its solution. In Section 3 we outline the gen-
eral linear control methodology which is applied to the case of peri-
odic controls in Section 4, and point actuated controls in Section 5.
A summary and conclusions are offered in Section 6.

2. The stochastic Kuramoto-Sivashinsky (sKS) equation

Consider the sKS equation:
— Uy — Uty + 0 (X, 1), (1)

normalized to 27 domains (x € [0,2n]) withv = Qm/L)* >
0, where L is the size of the system, with periodic boundary
conditions (PBCs) and initial condition u(x,0) = ¢(x). £(x,t)
denotes Gaussian mean-zero spatiotemporal noise, which is taken
to be white in time, and whose strength is controlled by the
parameter o':

[Ex DEX, ) =9(x —x)s(t — 1), (2)

where §.(x — x’) represents its spatial correlation function. We can,
in principle, consider the control problem for SPDEs of the form (1)
driven by noise that is colored in both space and time. Such a

Ur = —Vlxxxx

noise can be described using a linear SPDE (Ornstein-Uhlenbeck
process) [30].

The noise term can be expressed in terms of its Fourier
components as:

Ex.0) = Y qWi)e", (3)

k=—00

where W, (t) is a Gaussian white noise in time and the coefficients
gy are the eigenfunctions of the covariance operator of the noise.
For example, if 4(x — x') = &(x — x’) (which corresponds to
space-time white noise), we have g = 1. For the noise to be
real-valued, we require that the coefficients g, verify q_, = gx.
Proofs of existence and uniqueness of solutions to Eq. (1) can be
found in [31,32], for example. The behavior of Eq. (1) as a function
of the noise strength, and for particular choices of the coefficients
{qx} has been analyzed in detail in [27,28]. In particular, it was
shown that sKS solutions undergo several state transitions as the
noise strength increases, including critical on-off intermittency
and stabilized states.

The quadratic nonlinearity in Eq. (1) is typically referred to as a
Burgers nonlinearity. We note that an alternative version of Eq. (1)

is found by making the change of variable u = —h,, giving rise to
1

hy = —vhyow — hxx + E(hx)z +on(x,t), (4)

where & (x, t) = 0yn(x, t). The main effect of this transformation

is to change the dynamics of the average uy(t) = ﬁ 02” u(x, t)dx

of the solution. Indeed, Eq. (1) with PBCs preserves the value of ug
whereas as a consequence of the nonlinear term (h,)?, Eq. (4) does

not conserve the mass hyo(t) = ﬁ 02” h(x, t) dx. Both equations
have received a lot of attention over the last decades, with Eq. (1)
more appropriate in mass-conserved systems such as the dynamics
of thin liquid films [28,11-15], and Eq. (4) relevant in modeling
surface growth processes such as surface erosion by ion sputtering
processes [3,4,1,2,33,22,34]. It is also worth mentioning that the
quadratic nonlinearity appearing in Eq. (4) is the same as that in

the Kardar-Parisi-Zhang (KPZ) equation [35,36]

he = oy + %(h,az +anx o). (5)

In fact extensive work indicates that Eqgs. (4) and (5) are
asymptotically equivalent, something referred to as the “Yakhot
conjecture” [37-39]. Throughout the remainder of this study we
will refer to Eq. (1) as the sKS equation with Burgers nonlinearity
and Eq. (4) as the sKS equation with KPZ nonlinearity.

2.1. Surface roughening

An important feature of systems involving dynamics of rough
surfaces is that one often observes the emergence of scale
invariance both in time and space, i.e., the statistical properties of
quantities of interest are described in terms of algebraic functions
of the form f(t) ~ t# or g(x) ~ x%, where « and B are referred to
as scaling exponents. An example of this is the surface roughness,
or variance of u(x, t), which is defined as

2
r(t) = \/1/ [u(x, t) — up(t)]* dx. (6)
2 0

We remark that uy may or may not depend on time, depending on
whether we consider the Burgers or the KPZ nonlinearities. Usually
the above quantity grows in time until it reaches a saturated
regime, in which the fluctuations become statistically independent
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of time and are scale-invariant up to some typical length scale of
the system, say ¢. This behavior can be expressed as:

#ifr <« ¢,
re ift > t,

where (...) denotes average over different realizations, § is the
so-called growth exponent [16], and t; and r; are the saturation
time and saturated roughness value, respectively, which depend
on the length scale ¢;. In particular, at a given time t < t;, the
correlation of these fluctuations is on a spatial length scale which
grows in time as £, ~ t'/?, Therefore, saturation occurs whenever
L. = £ from which we find r; ~ £¢ with @ = pz. In this
context, the exponents « and z are the roughness and dynamic
exponents, respectively, and their particular values determine the
type of universality class [40]. For example, it is known that the
long-time behavior of the KPZ equation (5), is characterized by the
KPZ universality class with « = 1/2 and z = 3/2, while its linear
version, which is referred to as the EW equation, is characterized
by the EW universality class with « = 1/2 and z = 2 [16,41,42,
36].

Alternatively, the solution u(x, t) can also be written in terms
of its Fourier representation

u(x, ) =Y d(t)e™, (8)

keZ

(r() ~ { (7)

where i (t) are the Fourier components. By making use of
Parseval’s identity, we can compute the expected value of r(t)? as
follows:

r©?) =Y

keZ

= DStk 0) — (luo(®F). )

keZ

i (©)[°) = {luo(©) )

where we have defined the power spectral density S(k,t) =
<]ﬁ,<(t)|2>. Therefore, if we can control the Fourier coefficients of
the solution u, we can control the surface roughness to evolve to a

desired target value ry, i.e. lim;_./{r(t)2) = rq. In the following,
we propose a control methodology precisely for this purpose.

3. Linear feedback control methodology

The methodology to control the roughness of the sKS solution
consists of two main steps. First, using a standard trick from the
theory of semilinear parabolic SPDEs, see e.g. [32], we define w to
be the solution of the linear sKS equation:

Wy = —VWxxxx — Wxx +0& (X, 1), (10)

and write the full solution u of Eq. (1) asu = w + v, so that v
satisfies

VUt = —VUgxx — Uxx — Uy — (VW) — WWy. (11)

The important point here is to note that Eq. (11) is now a
deterministic PDE with random coefficients and so we are in
a position where we can apply the methodology for nonlinear
deterministic PDEs we have developed in previous works [17,18],
to stabilize its zero solution—something possible as long as w
and its first derivative are bounded in an appropriate sense (see
Section 4.2 for a justification of this point). We therefore introduce
the controlled equation for v:

U = —VUgx — Uxx — DUy — (VW) — Wy

h
+ ) D), (12)

n=—Iy

where my = 1+ 2 (withl; = [1//v]) is the number of controls,
and bget (x) are the control actuator functions. Here we use [x] to
denote the integer part of x.

Once the zero solution of the equation for v has been stabilized,
the second step is to control the roughness of the solution by
applying appropriate controls to the linear SPDE (10) for w so that
the solution is driven towards the desired surface roughness ry.
In the following, we apply this methodology to the sKS equation,
Eq. (1) or (4), by choosing two different types of controls, namely
periodic controls, when the controls are applied throughout the
whole domain and point actuated ones, when the control force is
applied in a finite number of positions in the domain.

4. Periodic controls
4.1. Derivation of the controlled equation

From Eq. (12), we write
v £) =Y D) €, (13)
keZ

and take the inner product with the basis functions e** to obtain

. ll

D = (—vk* + k) i + ge(v, w) + Y bEFE (D), (14)
n:—l1

with k € Z and a dot denoting a time derivative. We have intro-

duced b%' = 02” b, (x)e**dx, and note that g are functions of the
coefficients of v and w.
Next we define the following vectors and matrices. We denote

the vector z° = [z,_ 2., 22,17, where 2%, = [v_j, - vo --- v,]'
are the coefficients of the (slow) unstable modes, and z' =
[ v_,1_1]T and z¥, = [vi41 ]T are the coefficients of the
(fast) stable modes. We also take G = [--- gy ---]F, Fd
T
[réster - o]
d
A. 0 0 B
A=|0 A, 0| and B™ =|B¥|,
0 0 Ay e
where
A =diag(---, (b + D' + (L + %),
Ay = diag(0, —(—=I)*v + (—=h)?, ... —ljv + ),
Agy = diag(—(l; + D*v + (L + 1)%,..),
and
det __ det ' o de[,s'
B =168 e o by |
bde[ . det,c
Ll (-hL-1) h(=hL—-1)
~p.d d
bfltl*’l o b’leill
Bl =1 .,
d d
_bdet . det
=lhi(h+1) L +1)
det det
B = | DS 2 0 i

With these definitions we rewrite the infinite system of ordinary
differential equations (ODEs) (14) as

7¥ = Az + G + BYFe, (15)
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The key point now is to note that if there exists a matrix K% such
that all the eigenvalues of the matrix A, + B%#K%! have negative
real part, then the controls given by

S0 = K2, = Kl @,

~ Zun)> (16)
where K% is the nth row of K%, stabilize the zero solution of
Eq. (12) (see [17,18] for previously derived methodologies for
deterministic systems). The proof of this follows the same type
of Lyapunov argument as for the deterministic KS equation and
is justified as long as we have nice bounds on w, something we
will demonstrate below. It should be emphasized that in Eq. (15)
we have suppressed the influence of the nonlinearity on the SPDE
without assuming knowledge of its value at all times and without
changing the fundamental dynamics, in contrast to previous
work [5,6].

The next step is to control the stochastic linear equation for
w such that the value of the second moment evolves towards a
desired target. To this end we write

wix, £) = Y iy (t)e™, (17)

keZ

and take the inner product with the basis functions to obtain the
following infinite system of ODEs for the Fourier coefficients

wo = &,
X N 18
B = (—vk* + ) + & (18)

Here k € Z — {0}, & = 02” £(x, t)dx, and & = fozn £(x, t)e* dx.
The solution to system (18) is

t
do(t) = f(0) + / Eot) dt,
0

t (19)
ﬁ)k(t) — e(—vk4+k2)tﬁ)k(0)+/ E(_Uk4+k2)(t_s)$k(s) dS,
0
and it easily follows that
2
((6)?) = g (1= e 20Ky 7. (20)

2(—vk* + k2)
We observe that in this case the expected surface roughness
depends only on the eigenvalues of the linear operator £ =
—vdy — d2; these can be controlled using feedback control to direct
the evolution towards the desired value of surface roughness ry.
Hence we introduce the controlled equation for w,

b
W= VW — W+ Y DS + o8 (x D), (21)
n=—Ip,n#0

where m, = 2l is the number of controls (I, needs to be
larger than or equal to the number of unstable modes and will
be specified later), and we choose the functions b;“”d(x) = o™,
We also notice that we do not need to control the eigenvalue
corresponding to the constant eigenfunction (k = 0), since it does
not contribute to the surface roughness.

By truncating the system into N modes (with N sufficiently large
so that the contribution from higher modes can be neglected) and
taking inner products with the basis functions, we arrive at

ﬁ)O = 'i:O’
Wi = (—vk* + k)i 4+ 1 + &, k= —b, ..., b,
Wy = (—vk* + k) iy + &, (22)
N N
k:_i,...,_lz_1,12"—1,...,5.

Remark 1. Animportant point to note is that because of the choice
of periodic functions for b;““d , the system (22) is decoupled. In fact,

with such a choice of actuator functions, the matrix B/ is the

identity matrix, and Bl are zero matrices. As will be shown in
Section 5, this is not the case for point actuated controls.

The surface roughness for m, = 2I, controls is therefore given
by

N/2
(r®) = (5 (o)
k=—N72,k0
Iy —h—-1 N/2
= 2 (wo)+ 3 ({@o)+ > (@o).
k=—Ip,k#0 k=—N/2 k=l +1

If we denote the desired surface roughness as rd2 = lim¢_ o <r2(t)),
we obtain

P N = o2 |qul?
= ). - 2 2 2ok + k)
k=T k40 k=—N/2
N/2 2(4 12
o °|qx
D S
k= +1 2(—vk* + k)
2 /) 2 N/2 P
o g 2 g
=-—— “to -—
D vl D

(7)
where we have used the fact that the coefficients g are real with

q_r = qk (see Eq. (3)). The chosen eigenvalues for the controlled
modes are Ay, and we take them to be A, = A for all k to arrive at

V)
o2 ) |qil?
k=1
A= (23)
2 2

(rd) = (r7)
To control the surface roughness we therefore define the controls
fkm”d such that the new eigenvalues satisfy the following relation

Fm = (A + vk* — K2) . (24)

Finally, putting Eqs. (12) and (21) together, yields the controlled
equation for the full solution u

U = — Vg — Uxxy — Ully + & (X, 1)

I b
+ Y BER O+ Y B o). (25)

n=—I n=—I

4.2. Proof of applicability of the control methodology

Our aim here is to prove that the solution v can indeed be
controlled to zero even though Eq. (12) has random coefficients,
i.e. the terms (vw), and ww,. We will show that by adopting a
similar argument as used for the proof of existence and uniqueness
of solutions of the sKS equation [32], we can apply a Lyapunov-type
argument as in the deterministic KS equation [18].

We use (24) to write the solution of Eq. (21) as

t
w(t) = eMw(x, 0) + o / e*=9dg (s),
0

where A = —(vA?> — A + F),A = —09? and F is an operator
discretized as

0 0 0
F=|0 diagin—vk*+k* 0

0 0 0



S.N. Gomes et al. / Physica D 348 (2017) 33-43 37

10™" 10° 10’ 10
t

107" 10° 10’ 10°
t

Fig. 1. Squared value of the surface roughness of the solutions to the sKS equation with Burgers nonlinearity (left) and the KPZ nonlinearity (right) for v = 0.05,0 = 0.5 and
different values of the desired surface roughness, ranging from 1 to 10, and 20. The dashed lines show the value of the uncontrolled roughness, and the straight dashed-line

corresponds to a guide-to-eye line with slope 0.85.

We take G to be a trace class operator, so that it satisfies [32,
Assumption (3.1)]. Writing

_ —(vk*—k2 _
eMVES) =0 Y g I (g 6) Bi(s)e;,
j.kez

we have

E[w(t)] = eMw(x, 0) = 0,

t
(kK2 _
Bllu() ~ Elw@]f] = o? Y [ e 20K i
0

(26a)

j.kez
2
x |{ex, )",
") 214 12 21 12
_ Z o\ qxl i Z Ukl(Jsz :rj,
=, * i=r, 20k — k%)
(26b)
where we used (e, e;) = 0and fy = A + vk* — k2. Since we

are assuming that the covariance matrix G is such that assumption
(3.1) in [32] is satisfied, we have that w(t) € [?(0, 27r), the space
of mean zero L? functions, almost surely, for any time t. This also
means that there exists a continuous version of w [30] that we shall
consider from now on.

Now we define B(u, v) = uvy and b(u, v, w) = (B(u, v), w) =

f;” uvyw dx, which satisfy the following relations [32,43]:

Ib(uy, uz, uz)ll2 < llull2 [zl llusll 2

< cllurliz lAuz |l 2 l|usll 2, (27a)
b(u,u,u) =0, (27b)
1
b(uq, uz, up) = b(uy, up, uy) = —Eb(lh, uq, Up), (27¢)
b(uy, uz, u3) = —b(uy, uy, us) — b(uy, uz, uy). (27d)
and [32, Proposition (2.1)]:
1B, v)llpa-1y < cllAullzllvll2, (28a)
1Bz, v)lIp@a-1y < cllullzllAv|l2, (28b)
IB@, 2) lpa-1y < clizll, (28¢)
B 5 < . 2

S R L AR AR (28)
On the other hand, we notice that the existence of the matrix K9
implies that the operator «, such that AV = —VUyw — Uxx —

Yo, b Gofde (¢), satisfies

2w
/ vAv dx < —a|v]|3, (29)
0

for some positive constant a, which in turn depends on the
eigenvalues we choose for the controlled operator. Therefore,
multiplying Eq. (12) by v and integrating by parts yield

=0

1d ) ,
EE”U”LZ < —alvll;z = b(v, v, v)
—b(v, w,v) — b(v, w,v) —b(w, w, v)
1
= —a||v|?, + b(w, v, v) + b, v, w)
< —a|vll% + clwliz vl 2 lAv] 2

¢ 2 ¢ 2 2
+5||w||L2||AU||L2§— a—5||w||L2 vl

C
+cllAvll, + Ellwllfz, (30)

where we have used Young’s inequality and relations (27) and
(28). The term c||Av ||f2 can be controlled using sufficiently strong
controls and the last term on the right-hand-side is a constant
that depends on the desired surface roughness and which can
be controlled by choosing large enough eigenvalues. Therefore,
by choosing the controls such that a is large enough, ||v|% is a
Lyapunov function for this system and the zero solution ff)r the
controlled equation for v is stable.

4.3. Numerical results

We apply now the methodology outlined above with peri-
odic controls to the sKS with either the Burgers nonlinearity (Eq.
(1)) or the KPZ nonlinearity (Eq. (4)). For simplicity, we consider
white noise in both space and time (g = 1). All our numeri-
cal experiments are performed using spectral methods in space
and a second-order backward differentiation formula scheme in
time [44].

4.3.1. Controlling the roughening process

We solved Egs. (1)and (4) for v = 0.05and o = 0.5, controlling
its solutions towards various desired surface roughnesses ry. The
results are presented in Fig. 1. We observe that in both cases the
solution exhibits a power-law behavior at short times of the form
given by Eq. (7) until the solution saturates to the desired value
of the roughness. It is interesting to note that the exponent in all
cases is the same and with the value 8 ~ 0.43, independently of
the type of nonlinearity and desired surface roughness (note that
the exponent in Fig. 1 is &~ 0.85 = 2, since we are plotting
(r(t)?)). This becomes even clearer if time and surface roughness
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10
t/r(l]/ﬁ

Fig. 2. Surface roughness rescaled by the target value ry against the rescaled time
t/rdl/ﬂ for all cases shown in Fig. 1. The dashed line corresponds to a guide-to-eye
line with slope 0.43.

---v=10.06
—v = 0.07
v =0.05

10

2 3

10

Fig. 3. Controlled roughness with same target value r7 = 20 and different values
of v—the domain size increases as v decreases.

are rescaled by their saturation values, t; and rg, respectively. By
noting that rg ~ tsﬁ , Eq. (7) is rewritten as:

r(t B

r@®) [x ifx <1, (31)
T4 1 ifx>1,

where x = t/rd” P, Fig. 2 shows that all the different cases

presented in Fig. 1 collapse into a single curve which is given by
(31) with the universal value g ~ 0.43.

We also study the effect of changing the domain by varying the
parameter v. Fig. 3 shows the numerical results obtained when we
fix the target value r4 and change the parameter v. We observe that
changing the domain does not change the growth rate (yielding
the same growth exponent 8 & 0.43) but it does slightly affect
the final value of the roughness. An important point to note is that
since we are controlling the surface roughness of the solution r(t)
to be at a specified value rg, the saturated state in which the statis-
tical properties become stationary, is reached whenever r(t) = rg.
Therefore, the saturation time, and the long-time roughness value,
should not depend on the system size. Figs. 4 and 5 show typical
snapshots of the spatiotemporal evolution of the controls (left pan-
els) and the time evolution of their L?>-norm (right panels) for the
controlled sKS solution with Burgers nonlinearity with r3 = 20
and two values of the system size, namely v = 0.03 and v = 0.05
(see Fig. 3 for the corresponding surface roughness). We observe
that neither the norm of the controls nor their amplitudes increase
as a function of the system size.

4.3.2. Changing the shape of the solution

It is important to emphasize that in addition to controlling the
roughness of the solution of the sKS equation, we can also change
its shape, something that could have ramifications in technological
applications such as materials processing. We quantify this by
considering the surface roughness of the solution to be its distance
to the desired state. If u(x) is the ultimate desired shape of the

solution, then the quantity we are trying to control now becomes

1 2
rt) =,/ — / (u(x, t) — t)? dx. (32)
2w 0
Using Parseval’s identity we compute the expected value of r (t)?
r®%) = > (®) —i?). (33)
keZ,k#0

To control the shape of the solution, we can therefore control
the solution of Eq. (12) for v to the desired shape rather than
controlling it to zero. This in turn implies the use of f,f”(t) =
K% (z, — %)) = K (24, —z% — z% ). We use the steady states of
the KS equation for a chosen value of v to define the desired shape
u. Results are shown in Fig. 6 for v = 0.5, where we can see that
the solution is fluctuating around the imposed shape.

5. Point actuated controls

We now consider controls that are point actuated and not
distributed throughout the whole domain, i.e. the functions b, (x)
are now given by b,(x) = §(x — x,), where §(x) is the Dirac
delta function. By repeating the same procedure as with periodic
controls, writingw = Y_,_, e and taking the inner product
with the eigenfunctions of the linear operator, £ = —vdg — 92, we
obtain the following infinite system of linear stochastic ODEs

m
Wo = & + Z bﬂfn,
. =t my (34)
Wi = (—vk* + k), + + Z bfu + &k, k#0,

n=1
where the coefficients bf; are defined from the functions b(x) =

8(x — x,) as before, b = [*" b,(x)e*dx. We can see that the
difference between the above system and the periodic controls
one given by (22), is that now the system is coupled. In fact the
coupling matrix is not symmetric, and most importantly, it does
not commute with its transpose. Therefore the solution does not
follow directly and we cannot easily write the second moment of
the coefficients as a function of the eigenvalues as in the previous
section. To obtain the controlled equation we thus need to apply a
different approach.

Let the controls F = [fi, ..., f] be such that F = Kw where w
is a vector containing the Fourier coefficients of w, and the matrix
K is to be determined. Since the equations are not decoupled we
cannot multiply by w and integrate to find directly the second
moment of the coefficients. However, we can make use of results
derived in [45] which provide simplified formulas for the first and
second moments of systems analogous to (34). Let = be the vector
8y = & and C = A+ BK where A = diag —vk* + k? and By, = bf,
so that we can write the truncated system (22) as

W = A + BK + & == Cid + &.

We also assume without loss of generality that m(0) = E(w(0)) =
0 and P(0) = E(@(0)®(0)") = 0. Then Theorem 4 in [45] states
that

m(t) = E(w(t)) =0 and

P(t) = E(Ow()") = HiF, + FH]

where F; and H; are the (1, 1) and (1, 3) blocks of the matrix e

where in the case of space-time white noise, M is
2

o2
C 0 —I 0
2
M=|0 0 0 o0f,
0 0 —CT o
00 0 O
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Fig.4. Left: Controls at different time steps. Right: L?-norm of the controls as a function of time. For both figures v = 0.05 and o = 0.5.
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Fig. 5. Left: Controls at different time steps. Right: L?-norm of the controls as a function of time. For both figures v = 0.03 and o = 0.5.

I is an appropriately sized identity matrix and the zeros stand for
zero matrices of appropriate size. We compute e and conclude
that

Fi=e",

and

o2 t? t3
H = — |:It +(C=CH=—+(@*-cc" + (CT)Z)—]
2 2 3!
o? t4
+ 7 [(C3 _ CZCT + C(CT)Z _ (CT)3)I _|_ . .] .

Since FiH = (H,F}))" and (H;F})" = H;F!, we have H;F| +
FiH] = 2H,F], from which we obtain

t? t3
P(t) = o? (It +(C+ cT)E + (C* +2cc™ + (7)) 3
l'4
+ (C* +3c*c" +3¢(C")* + (")) a
+ (c“ +4c3cT +6C2%(CcTH?

t5
+4C(C)’ + () 5 + - ) :

Remark 2. In the periodic case, the matrix C is diagonal, so CCT =
CT¢, and this is exactly the same as

o0

P(t)=0) (C+C")"

n=1

! t—r: (36)

In addition, when choosing the eigenvalues of C, we can ensure that
it is invertible and therefore C + C7 is also invertible, which gives

P(t) = —o2 (C+CT) 7" 4 02, (37)
soast — oo, P(t) > —o? (C + CT)_1 and

2 o’
r@®*) =uw®0) > Y. ~o (38)

keZ—{0}

where A are the chosen eigenvalues of C. Hence we recover the
same result as before.

It is important to note that the matrix C is not normal, i.e. it does
not commute with its transpose, and the eigenvalues of C + CT
do not satisfy the useful properties that allow us to obtain (30).
However, we are not interested in knowing the full matrix P(t),
but only its trace

t2
tr(P(t)) = tr <02 <It +(C+ CT)3

t3
2 T T\2
+ (C* +2cC +(C))5
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t
+ (C*+3c*cT +3¢(C")’ + (1)) il
+ <c4 +4C3CT +6C3(CT)?

t5
+4C(C* + (€Y 5 +>> (39)
By now making use of the linearity of the trace and its continuity

to pass it inside the infinite sum, we get

tZ
tr(P(t)) = o2 (tr(l)t +tr(C + CT)E

t3
2 T T2
+ tr (C* +2cc” + (€ )5
t4
1 (CP+3C°CT +3CC° + (1))
+tr (c“ +4C3¢T 4+ 6C3%(cT)?
tS
+4C(C’ + (DY) 5+ > : (40)
We also note that
tr (C* +2¢CT + (C")?) = tr (C* + " + C"C + (C1)?)

= tr(C + C")>.
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Similarly we can prove that the terms multiplied by % are of the
form tr ((C 4+ C™)"~") and we finally obtain

t2 2 13
— 52 T e _—
tr(P(t)) = o (tr(l)t +C+C) o+ (c+c") 3

4 5
3t 4t
+ tr(C+C") I+tr(c+c ) §+) (41)
We proceed by assuming that C + CT is invertible, so that we can
multiply by I = (C+CT)~1(C+CT) and add and subtract pertinent
terms to obtain

tr(P(t)) = —o tr (C+ 7)™

+02tr<(C+CT)1Z(C+CT)n::). (42)

neN

Remark 3. This does not change the proof provided in Section 4.2,
it only changes the formula for the covariance so that the bounds
are still valid.

Remark 4. We emphasize that the following assumptions were
made here:

(a) C + CT needs to be invertible.

(b) In order for the surface roughness to converge to a finite value,
we require all of the eigenvalues of C 4+ CT to be negative, so
that the exponential part disappears.

5.1. Computation of the matrix K

In Eq. (42) we need to control the trace of D~! = (C 4+ CT)~!
and we can do that by prescribing the eigenvalues of D. Hence we
can control the surface roughness by finding a matrix K such that
the eigenvalues of

D=C+C"=A+BK+AT + BK)T
= 2A+BK +K"B", (43)

are a given set {uq, ..., uy}. Since we only wish to prescribe
the eigenvalues of D, rather than knowing all of its entries, we
can tackle this problem by using the information provided by the
characteristic polynomial, xp, of D. We know that

N N

xo@® =[J=pm)=> 0" > [[mt"™ (44)
i=1 k=0 JU1=k jel

where J is a subset of {1, ..., N}. Equivalently we can express xp

in terms of the sum over all its diagonal minors, i.e.,

N
=y (=D mt", (45)
k=0
where 7y, is the sum over all of the diagonal minors of size k of D.
This translates into a system of N nonlinear algebraic equations,

Nk = Z l_[Mj,

1=k jeJ

for the m x N entries of the matrix K—see [46] for details on the
solution to this problem. For the purposes of our study, we will
make use of a nonlinear solver (e.g., MATLAB's fsolve) to obtain the
matrix K. Given the structure of the matrix B and the fact that
the system is underdetermined, convergence is rather slow when
solving the problem directly. We overcome this by performing a
change of variables: we obtain the SVD decomposition of B by
finding matrices X and Y such that B = XBYT,and multiply Eq. (43)

by X" on the left and by X on the right. We then define K = YTKX,
A = XTAX and D = X" DX, so that we obtain the equation

D=2A+BK+K'B". (46)

This is of the same form as (43), but where the matrix Bis diagonal.
We find that this accelerates the convergence of the system
(for moderate values of N) and we were able to get satisfactory
numerical results, which we now present.

5.2. Numerical results

We apply the methodology presented in the previous section
with point actuated controls to the sKS with the Burgers
nonlinearity (Eq. (1)) (similar results are expected for the KPZ
nonlinearity (Eq. (4))). We solved Eq. (1) forv = 0.4 and o = 0.5.
For this value of v the linear operator has 3 unstable modes and we
apply m = 3 controls. We note that even though we do not need to
control the mode corresponding to the first moment of the solution
when using periodic controls, we benefit from doing so in this case,
since the matrix D would not be invertible if we allowed for a zero
eigenvalue. We consider either space-time white noise (q, = 1) or
colored noise with g = |k|~!, (which is chosen to decay at a fast
rate so that the system can be truncated at a smaller value of N)
and control the solution towards various desired values ry of the
surface roughness.

The results are depicted in Fig. 7 where we observe that the
solution still exhibits a power-law behavior with similar exponent
as in the periodic case (there we found 8 &~ 0.43) until it saturates
at the desired value of the surface roughness. It is noteworthy that
even though we obtained satisfactory results for the range of values
of rd2 selected in Fig. 7, further increase of r; does not lead to the
expected saturated results. This may be due to the relatively small
system truncation value N = 21 that was found necessary in order
to obtain convergence. Further work is required in this direction
but this is beyond the scope of the present study.

6. Conclusions

We have presented a generic methodology for controlling
the surface roughness of nonlinear SPDEs exemplified by the
sKS equation with either the Burgers nonlinearity or the KPZ
nonlinearity and using periodic or point actuated controls.

We have shown that with the appropriate choice of periodic
controls the solutions of these equations can be forced to have a
wide range of prescribed surface roughness values, defined to be
the distance of the solution to its mean value. We are also able to
force the solutions to a prescribed shape e.g. steady state solutions
of the deterministic KS equation. We find that the solution to the
controlled problem exhibits a power-law behavior with a universal
exponent 8 =~ 0.43, which is not affected by changes in the
length of the domain, and is found to be independent of the type of
nonlinearity of the sKS equation.

When using point actuated feedback controls, the problem
becomes considerably harder to solve due to the fact that the
resulting system of linear ODEs is not decoupled. This leads to
the need to solve a new matrix problem which is similar to a
matrix Lyapunov equation; to the best of our knowledge such
a problem has not been tackled before. The complexity of this
problem makes it harder to solve for a large system truncation
value N, but we have obtained satisfactory results when controlling
towards a range of surface roughness values for moderate N. This
is an interesting separate problem and our detailed results and
associated algorithm for its solution can be found in [46].

We believe that our framework offers several distinct advan-
tages over other approaches. First, the controls we derived are
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Fig. 7. Squared value of the surface roughness of the solutions to the sKS equation with Burgers nonlinearity for v = 0.04, 0 = 0.5 and different values of the desired
surface roughness, ranging from 2 to 6. Left: using space-time white noise; Right: using colored noise described by the coefficients q, = |k|~!. We applied m = 3 point

actuated controls, which were located at the positions x; = % X =T, X3 = 57”
linear functions of the solution u, and this in turn decreases the
computational cost of their determination. Second, our splitting
methodology allows us to deal with the nonlinear term directly
rather than including it in the controls, thus rendering the resulting
equation essentially linear and easier to handle.

One interesting observation is that feedback control method-
ologies can be used, in principle, in order to accelerate the conver-
gence of infinite dimensional stochastic systems such as the sKS
and the KPZ equations to their steady state. This might prove to be
a useful computational tool when analyzing the equilibrium prop-
erties of such systems, e.g. calculating critical exponents, studying
their universality class, etc. Accelerating convergence to equilib-
rium and reducing variance by adding appropriate controls that
modify the dynamics while preserving the equilibrium states has
already been explored for Langevin-type samplers that are used
in molecular dynamics [47,48]. In addition, it would be interest-
ing to investigate how our methodology could be used to control
the kinetic roughening process of the system. In particular, our re-
sults show that the dynamics towards saturation is described in
terms of power laws. Whether we can control the values of the
associated scaling exponents during such scale-free behavior is
something that requires a systematic study of different stochastic
models by controlling them to evolve towards large values of the
surface roughness. We shall examine these and related issues for
the sKS and KPZ equations in future studies.

Acknowledgments

We are grateful to the anonymous reviewer for insightful
comments and valuable suggestions. We acknowledge financial
support from Imperial College London through a Roth Ph.D.
studentship, the Engineering and Physical Sciences Research
Council of the UK through Grants Nos. EP/H034587, EP/J009636,
EP/K041134, EP/L020564, EP/L024926, EP/L025159, EP/L027186,
and EP/K008595 and the European Research Council via Advanced
Grant No. 247031.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.physd.2017.02.011.

References

[1] A. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic
erosion for surface erosion via ion sputtering: Dynamical evolution from ripple
morphology to rough morphology, Phys. Rev. Lett. 75 (1995) 4464-4467.

[2] R.Cuerno, A.-L. Barabasi, Dynamic scaling of ion-sputtemaroon surfaces, Phys.
Rev. Lett. 74 (23) (1995) 4746-4749.

[3] J. Buceta, ]. Pastor, M.A. Rubio, FJ. de la Rubia, The stochastic Kuramoto-
Sivashinsky equation: a model for compact electrodeposition growth, Phys.
Lett. A 235 (1997) 464-468.

[4] J. Buceta, J. Pastor, M.A. Rubio, F.J. de la Rubia, Small scale properties of the
stochastic stabilized Kuramoto-Sivashinsky equation, Physica D 113 (1998)
166-171.

[5] G. Hu, G. Orkoulas, P.D. Christofides, Stochastic modeling and simultaneous
regulation of surface roughness and porosity in thin film deposition, Ind. Eng.
Chem. Res. 48 (2009) 6690-6700.

[6] G.Hu,Y.Lou, P.D. Christofides, Dynamic output feedback covariance control of
stochastic dissipative partial differential equations, Chem. Eng. Sci. 63 (2008)
4531-4542.

[7] M. Alava, M. Dubé, M. Rost, Imbibition in disordemaroon media, Adv. Phys. 53
(2) (2004) 83-175.

[8] J. Soriano, A. Mercier, R. Planet, A. Herndndez-Machado, M.A. Rodriguez,
J. Ortin, Anomalous roughening of viscous fluid fronts in spontaneous
imbibition, Phys. Rev. Lett. 95 (2005) 104501.

[9] M. Pradas, A. Hernandez-Machado, Intrinsic versus superrough anomalous
scaling in spontaneous imbibition, Phys. Rev. E 74 (2006) 041608.

[10] Eran Bouchbinder, Itamar Procaccia, Stéphane Santucci, Loic Vanel, Fracture
surfaces as multiscaling graphs, Phys. Rev. Lett. 96 (2006) 055509.

[11] S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M.G. Velarde, Falling Liquid Films,
Applied Mathematical Sciences, Vol. 176, Springer, 2012.

[12] J.A. Diez, A.G. Gonzélez, Metallic-thin-film instability with spatially correlated
thermal noise, Phys. Rev. E 93 (2016) 013120.

[13] S. Nesic, R. Cuerno, E. Moro, L. Kondic, Fully nonlinear dynamics of stochastic
thin-film dewetting, Phys. Rev. E 92 (2015) 061002(R).

[14] G. Griin, K. Mecke, M. Rauscher, Thin-film flow influenced by thermal noise,
J. Stat. Phys. 122 (6) (2006) 1261-1294.

[15] D. Blomker, C. Gugg, M. Raible, Thin-film growth models: roughness and
correlation functions, European J. Appl. Math. 13 (2002) 385-402.

[16] A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge
University Press, 1995.

[17] S.N.Gomes, D.T. Papageorgiou, G.A. Pavliotis, Stabilising nontrivial solutions of
the generalised Kuramoto-Sivashinsky equation using feedback and optimal
control, IMA J. Appl. Math. 82 (1) (2017) 158-194.

[18] S.N. Gomes, M. Pradas, S. Kalliadasis, D.T. Papageorgiou, G.A. Pavliotis,
Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear
systems, Phys. Rev. E 92 (2015) 022912.

[19] G. Hu, G. Orkoulas, P.D. Christofides, Modeling and control of film porosity in
thin film deposition, Chem. Eng. Sci. 64 (2009) 3668-3682.

[20] G. Hu, G. Orkoulas, P.D. Christofides, Regulation of film thickness, surface
roughness and porosity in thin film growth using deposition rate, Chem. Eng.
Sci. 64 (2009) 3903-3913.

[21] Y. Lou, P.D. Christofides, Feedback control of surface roughness in sputtering
processes using the stochastic Kuramoto-Sivashinsky equation, Comput.
Chem. Eng. 29 (2005) 741-759.

[22] Y. Lou, P.D. Christofides, Nonlinear feedback control of surface roughness using
a stochastic PDE: Design and application to a sputtering process, Ind. Eng.
Chem. Res. 45 (2006) 7177-7189.

[23] Y. Lou, G. Hu, P.D. Christofides, Model pmaroonictive control of nonlinear
stochastic partial differential equations with application to a sputtering
process, Process Syst. Eng. 54 (8) (2008) 2065-2081.

[24] Y.Lou, G.Hu, P.D. Christofides, Model predictive control of nonlinear stochastic
PDEs: Application to a sputtering process. American Control Conference 2009,
ACC’09, 2009.

[25] X.Zhang, G.Hu, G. Orkoulas, P.D. Christofides, Pmaroonictive control of surface
mean slope and roughness in a thin film deposition process, Chem. Eng. Sci. 65
(2010) 4720-4731.


http://dx.doi.org/10.1016/j.physd.2017.02.011
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref1
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref2
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref3
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref4
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref5
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref6
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref7
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref8
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref9
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref10
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref11
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref12
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref13
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref14
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref15
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref16
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref17
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref18
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref19
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref20
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref21
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref22
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref23
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref24
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref25

S.N. Gomes et al. / Physica D 348 (2017) 33-43 43

[26] M.P. Harrison, R.M. Bradley, Producing virtually defect-free nanoscale ripples
by ion bombardment of rocked solid surfaces, Phys. Rev. E 93 (2016)
040802(R).

[27] M. Pradas, D. Tseluiko, S. Kalliadasis, D.T. Papageorgiou, G.A. Pavliotis,
Noise induced state transitions, intermittency, and universality in the noisy
Kuramoto-Sivashinsky equation, Phys. Rev. Lett. 106 (2011) 060602.

[28] M. Pradas, G.A. Pavliotis, S. Kalliadasis, D.T. Papageorgiou, D. Tseluiko, Additive
noise effects in active nonlinear spatially extended systems, Eur. J. Appl. Math.
23(2012)563-591.

[29] A.B.Thompson, S.N. Gomes, G.A. Pavliotis, D.T. Papageorgiou, Stabilising falling
liquid film flows using feedback control, Phys. Fluids 28 (2016) 012107.

[30] G.Da Prato,J. Zabczyk, Stochastic Equations in Infinite Dimensions, second ed.,
Cambridge University Press, 2014.

[31] J. Duan, VJ. Ervin, On the stochastic Kuramoto-Sivashinsky equation,
Nonlinear Anal.-Theor. 44 (2001) 205-216.

[32] B. Ferrario, Invariant measures for a stochastic Kuramoto-Sivashinsky
equation, Stoch. Anal. Appl. 26 (2) (2008) 379-407.

[33] K.B. Lauritsen, R. Cuerno, H.A. Makse, Noisy Kuramoto-Sivashinsky equation
for an erosion model, Phys. Rev. E 54 (4) (1996) 3577-3580.

[34] M. Rost, J. Krug, Anisotropic Kuramoto-Sivashinsky equation for surface
growth and erosion, Phys. Rev. Lett. 75 (21) (1995) 3894-3897.

[35] M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys.
Rev. Lett. 56 (1986) 889-892.

[36] M. Hairer, Solving the KPZ equation, Ann. of Math. 178 (2) (2013) 559-664.

[37] V. Yakhot, Large-scale properties of unstable systems governed by the
Kuramoto-Sivashinksi equation, Phys. Rev. A 24 (1981) 642-644.

[38] I Procaccia, M.H. Jensen, V.S. L'vov, K. Sneppen, R. Zeitak, Surface roughening
and the long-wavelength properties of the Kuramoto-Sivashinsky equation,
Phys. Rev. A 46 (1992) 3220-3224.

[39] J. Elezgaray, G. Berkooz, P. Holmes, Large-scale statistics of the Kuramoto-
Sivashinsky equation: A wavelet-based approach, Phys. Rev. E 54 (1996)
224-230.

[40] J.Krug, Origins of scale invariance in growth processes, Adv. Phys. 46 (2) (1997)
139-282.

[41] M. Nicoli, R. Cuerno, M. Castro, Unstable nonlocal interface dynamics, Phys.
Rev. Lett. 102 (2009) 256102.

[42] 1. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random
Matrices: Theory Appl. 1(2012) 1130001.

[43] ].C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to
Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge
University Press, 2001.

[44] G. Akrivis, D.T. Papageorgiou, Y.-S. Smyrlis, Linearly implicit methods for a
semilinear parabolic system arising in two-phase flows, IMA J. Numer. Anal.
31(2011)299-321.

[45] ].C.Jimenez, Simplified formulas for the mean and variance of linear stochastic
differential equations, Appl. Math. Lett. 49 (2015) 12-19.

[46] S.N. Gomes, S.J. Tate, On the solution of a Lyapunov type matrix equation
arising in the control of stochastic partial differential equations, IMA J. Appl.
Math. (2016) (submited for publication).

[47] T. Lelievre, F. Nier, G.A. Pavliotis, Optimal non-reversible linear drift for the
convergence to equilibrium of a diffusion, J. Stat. Phys. 152 (2) (2013) 237-274.

[48] AB. Duncan, T. Lelievre, G.A. Pavliotis, Variance maroonuction using
nonreversible langevin samplers, ]. Stat. Phys. (2016).


http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref26
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref27
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref28
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref29
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref30
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref31
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref32
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref33
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref34
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref35
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref36
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref37
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref38
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref39
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref40
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref41
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref42
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref43
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref44
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref45
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref46
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref47
http://refhub.elsevier.com/S0167-2789(16)30156-7/sbref48

	Controlling roughening processes in the stochastic Kuramoto--Sivashinsky equation
	Introduction
	The stochastic Kuramoto--Sivashinsky (sKS) equation
	Surface roughening

	Linear feedback control methodology
	Periodic controls
	Derivation of the controlled equation
	Proof of applicability of the control methodology
	Numerical results
	Controlling the roughening process
	Changing the shape of the solution


	Point actuated controls
	Computation of the matrix  K 
	Numerical results

	Conclusions
	Acknowledgments
	Supplementary material
	References


