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ABSTRACT

The problem of periodic homogenization for advection—diffusion equations is considered in
this thesis. We study the problem for velocity field which consist of two parts, a spatiotem-
porally dependent mean flow and a periodically fluctuating part. Under the assumption of
scale separation between the characteristic length and time scales of the mean flow and the
fluctuations we derive an effective equation which governs the evolution of the passive scalar
field at the length and time scales of the mean flow. We are mostly interested in under-
standing the effect of the mean flow upon the homogenized transport of the passive scalar
field.

We show rigorously that for mean flows which are either weak or equal in strength with
the fluctuations the effective equation is an advection—diffusion equation with an effective
diffusion tensor which is computed through the solution of an auxiliary partial differential
equation with periodic boundary conditions, the cell problem. We show that the structure
of the cell problem depends on the temporal period of oscillations of the fluctuations in the
velocity field. A very efficient algorithm of the solution of the cell problem is also developed.

For weak mean flows and in the absence of slow modulations in the fluctuations the
effective diffusion tensor is constant, independent of the mean flow. When fluctuations and
mean flow are of equal strength the effective diffusion tensor is a function of space and
time, with values depending upon the mean flow as well as the slow modulations in the
fluctuations. When the mean flow is stronger than the fluctuations one cannot in general
obtain an effective equation which is independent of the fast variables. In this regime greater
variability of the effective diffusivity can occur, depending upon the specific properties of the
mean flow: from no enhacement in the diffusivity to the appearence of resonant enhanced
diffusion phenomena that boost the diffusivity far above its bare molecular value. The
problem is studied through a combination of formal asymptotic analysis of the cell problem,
numerical experiments and rigorous analysis using the method of two—scale convergence.

The symmetry properties of the effective diffusion tensor are also studied. Necessary
and sufficient conditions for the symmetry of the effective diffusivity are derived for steady
velocity fields and the dependence of the antisymmetric part of the diffusivity on the Peclet

number is analyzed. Numerical examples for both steady and and time dependent velocity

viii



field are also presented.
Finally, we propose a systematic way of studying higher order homogenization using
the method of two—scale convergence. Our technique enables us to rigorously obtain higher

order effective equations in cases where the multiple scales technique breaks down.
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CHAPTER 1
STATEMENT OF THE PROBLEM AND REVIEW OF THE

LITERATURE

1.1 Introduction

A problem of great practical and theoretical interest is that of the transport of physical
entities in fluids. Examples include temperature, potential vorticity, salinity in the ocean
and pollutants in the environment. In many instances, such as the transport of ozone in
the stratosphere, the transport of nutrients in the ocean or the concentration of dyes used
in visualizing flows, it is reasonable to assume that the physical entity that we consider
does not affect its fluid environment. In this case, and under the additional assumption
that inertial effects can be neglected, it is called a passive tracer and its concentration
a passive scalar field. The problem of understanding the evolution of passive tracers is of
great interest in various fields of science and engineering, such as astrophysics (in particular in
connection with the effectiveness of mixing produced by internal waves in the sun) [23, 60, 93],
transport of contaminants in saturated porous media [15, 18, 43, 51, 61, 64|, plasma physics
26, 82, 107], transport in arrays of steady or time dependent convection cells [102, 104, 105],
fully developed turbulence [68] and ocean/atmosphere science [31, 50].

Passive tracers are being transported in two ways: ordinary molecular diffusion as well
as passive advection by their fluid environment. Consequently, the evolution of the passive

scalar field is governed by the following initial value problem:

0T (x,t)

o +u-VT(x,t) = kAT (x,t) + f(x,t) in R? x (0, 00) (1.1a)

T(x,t=0) = Ty(x) on R?, (1.1Db)

where k is the molecular diffusivity, f(x,t) is an external pumping field and u(x,t) is

the velocity field of the fluid in which the passive tracer is immersed and which will always



taken to be incompressible, V - u = 0. In principle, the velocity field should be obtained
from the solution of a more complex system of equations. For example, when considering
the transport of pollutants in the atmosphere, the evolution of the velocity field is governed

by the Navier-Stokes equations:

du(x, t)

5 +u(x,t) - Vu(x,t) = —Vp(x,t) + vAT(x, t) + F(x,t) (1.2a)

V-u(x,t) =0, (1.2b)

where v is the viscosity, p(x,t) is the pressure field and F(x,t) is an external force. On the
other hand, the velocity field in heterogeneous porous media is determined by Darcy’s law

[101]:

u(x) = —K(x)Vp(x) (1.3a)

V-u=0, (1.3b)

where K is the permeability tensor and p(x) is the pressure field.

Ideally, one would hope to obtain an explicit representation of the velocity field through
the solution of either (1.2) or (1.3), together with the appropriate initial and boundary
conditions, and then use this velocity field in (1.1) to solve for the passive scalar field.
However, this program is usually impossible to carry out in practice since it is very difficult
to obtain exact solutions for the equations governing the velocity field.

Moreover, fluid flows of geophysical and astrophysical interest are usually very complex,
being active on a continuum of length and time scales [82]. Consequently, even if a detailed
description of the velocity field could be had - based on either experimental measurements
or phenomenological theories- then the determination of the evolution of the passive scalar
would require the solution of a variable coefficients advection—diffusion equation. The fact
that the velocity field should contain a wide range of excited length and time scales would
impose severe restrictions on the grid size and consequently the time step for an efficient

numerical treatment of (1.1).



Moreover, this detailed information on the distribution of the passive scalar field even
if available would not be of much practical use. What is important is the description of
the evolution of the passive scalar field on large length and time scales, that is the scales of
observational interest. Consequently, a more practical reformulation of the original problem,
expressed through (1.1) and either (1.2) or (1.3), is as follows: first, we replace the equation
for the velocity field with

Vou(x,t) =0 (1.4a)

u(x, t) has prescribed statistical structure (1.4b)
and the goal of solving the advection—diffusion equation (1.1) with

Describe the evolution of T'(x,t) at long times and large scales,

so that it "averages” over the small scale statistical structure of u(x,t) (1.5)

The term statistics in (1.4b) is used in a broad sense. By this we mean that, instead of
considering velocity fields that are exact solutions of the fluid equations, we would like to
consider simplifying models for the small scale fluctuations in the velocity field that are
realistic enough so that they incorporate some of the real physical properties of the flow in
the problem under investigation, yet they are simple enough so that they render equation
(1.1) amenable to analysis and computations.

In the remaining of this introductory chapter we present some background material
relevant to the problem that we shall study in this work. We first discuss in some detail
the problem of transport of passive tracers in the ocean and atmosphere, which is the major
motivation for the undertaking of this project. This physical problem will provide us with
the motivation for the types of velocity fields that we shall consider as well for the type
of issues that we would like to address. We shall also give a brief review of the literature
on the problem of periodic homogenization for advection—diffusion equations, in particular
in connection to the effect of the mean flow and the symmetry properties of the effective
diffusivity tensor. We also discuss about approaches to this problem other than the method

of homogenization. We close this chapter with a brief presentation of new results contained



in this thesis and an overview of the contents of the chapters of this manuscript.

1.2 Transport of Passive Tracers in the Ocean and Atmosphere

We are particularly interested in problems related to the transport of passive tracers in
the atmosphere and ocean. As examples we mention the transport of ozone in the atmosphere
(55, 90, 91, 92] and the transport of pollutants or nutrients in the ocean [21, 46, 49, 50, 66, 81,
116]. Apart from the great practical importance of understanding the transport of passive
tracers in the ocean, this problem is also very interesting for modelling purposes: since many
tracers can be measured in the real ocean, they provide a useful means to evaluate the
fidelity of ocean model simulations [50]. In connection to this, we hope that the study of
the transport of passive tracers may also be useful for the understanding of the transport of
active tracers, such as salinity in the ocean and moisture in the atmosphere.

The evolution of a passive tracer in the ocean and the atmosphere is influenced by
both the mean flow, active at the scales of observational interest, as well as the mesoscale
eddies, active at smaller scales. Decomposing the velocity field into the mean flow and the

eddy field, u =V + v, (1.1) becomes:

OT (x, 1)

P +(V +v)-VT(x,t) = kAT (x,t) in R? x (0, 00) (1.6a)

T(x,t=0) = Ty(x) on RY, (1.6b)

where for simplicity we have assumed that there are not any external sources or sinks.
Moreover, we assume that the domain in the ocean/atmosphere in which we consider the
problem is large enough so that we can neglect the boundary conditions and pose the problem
in the whole space.
Even with today’s computer resources, most ocean components of climate models use
a coarse resolution that does not resolve ocean eddies [46]. This is due to computational
speed as well as limited observational data. Consequently, the effect of the eddy field on the
large scale behavior of the passive scalar has to be modelled in a satisfactory way. This is

the problem of parametrization.



To be more precise, by taking an appropriately defined average of (1.6) we obtain:

T)(x,1)

5 + V- V(T)(x,t) = kA(T)(x,t) = V- F in R? x (0, 00) (1.7a)

(T)(x,t =0) = Ty(x) on R (1.7b)
where the eddy flux F is defined as:
F=(T) (1.8)

Thus, the problem reduces to expressing the eddy flux as a functional of the average field
(T):

F =F(T)) (1.9)

The traditional approach to this type of problems is to model the effect of mesoscale eddies,
or more generally of turbulent fluid motion, as standard Fickian diffusion [69]. Thus, we

assume that (1.9) can be written as:
F=-K"-V(T) (1.10)

where IC* ia a constant symmetric second order tensor, usually taken to be a multiple of the
identity tensor, the effective diffusivity tensor. Substituting (1.10) into (1.7) we obtain an

equation for the average passive scalar field (T'):

O(T)(x, 1)

5 + V- V(T)(x,t) = kA(T)(x,t) + V- (K* - V(T)(x,t)) in R x (0,00) (1.11a)

T(x,t =0) = Ty(x) on R’ (1.11b)

This parametrization essentially suggests that the only effect of the eddy field is to enhance
the diffusion of the passive scalar field, as measured at the length and time scales of the mean

flow. Thus, the problem of obtaining a coarse grained description for the evolution of the



passive tracers reduces to the determination of the coefficients in K£*. This is usually done
through either ad hoc phenomenological assumptions such as mixing length arguments ([112)]
and references therein), or through fitting with observations, i.e. matching the distribution
of known tracers for given mean flows [55, 90, 92].

However, it has been well documented in the atmosphere and ocean science literature
that this simple parametrization is not adequate in most instances, especially in connection
with tracer transports in the stratosphere as well as the ocean [46, 55, 81, 90, 91, 92]. In
particular, both observational and numerical model studies have suggested that tracers are
advected over large scales by a velocity different from the mean velocity. Moreover, the
effective diffusivity tensor K* should be spatially inhomogeneous.

These issues can be resolved in principle by introducing a space-time dependent ef-
fective diffusivity tensor K*(x,¢). The common practice is to decompose K*(x,t) in the

following way:
K*(x,t) = S(x,t) + A(x,t) (1.12)
where S and A are the symmetric and antisymmetric parts, respectively:

1
8= 5(Ki; +K5) (1.13a)

1 * *
Aij = §(Kij - }Cji) (1.13b)

This decomposition is natural since the symmetric and antisymmetric parts of the effective
diffusion tensor represent, as we shall discuss, physically different phenomena. Using now

equation (1.12) in (1.6) we obtain:

or
—<8t> + (V+U+U% - V(T)
B oNTy .,
= KA<T> +Swm in R% x (0, OO) (114&)

T(x,t=0) =Ty(x) on R?, (1.14b)



where

U'=-V.8, U'=-V-A (1.15)

According to this parametrization the average field (T') is being advected by an effective
velocity which consists of the three parts, the mean flow, the velocity U® due to the symmetric
part of I* and the velocity U* due to the antisymmetric part of I*. Various terms have
been used for the latter; for example, bolus velocity [23] or eddy-induced transport velocity
[46]. The relationship of U® and U to the Stokes drift in the case where the eddy flux is
due to wave like structures has also been discussed [81].

From the above discussion we see that the antisymmetric part of the effective diffusivity
is purely advective in nature and does not induce additional dissipation. Moreover, the eddy
induced transport velocity is incompressible, V - U* = 0 and the antisymmetric tensor A
plays the role of the stream matriz [42] for this incompressible velocity field. On the other
hand, the symmetric part S is partly diffusive and partly convective in nature. Moreover,
the velocity due to the symmetric part U® is not solenoidal, neither is it potential in general
81, 91].

The relative strength of advection and diffusion due to the eddies depends on the
physical situation under investigation. For example, in [55] and the references therein it
has been argued that the eddy fluxes due to planetary scale waves are primarily advective
rather than diffusive in nature. However, in general neither advection nor diffusion may be
neglected a priori [92].

Since the parametrization based on the introduction of a space-time dependent non-
symmetric effective diffusion tensor seems to be compatible with some observations and
numerical simulations, it is important to be able to derive such a coarse-grained description
for the evolution of the passive scalar field in a systematic and, as far as possible, rigorous
way. Various attempts have been made towards this direction. The effect of mesoscale eddies
on the large scale evolution of passive tracers in the ocean has been effectively taken into
account through the Gent-McWilliams parametrization in [46], see also [49]. The validity of
this parametrization was tested in numerical simulations where ocean data were also used.
It has also been justified for small amplitude eddy motions in [81, 92]. Methods based on

the Lagrangian formulation of the equation that governs the evolution of the passive scalar



Mean Flow Eddy Field
Length Scale L=10°m ¢ =10°m
Time Scale T=10"s T=10%s
Velocity U~rT~102ms?t | v/ ~0v ~10 ms!
Stream Function | ¥ ~ @L ~ 10* m2s™! | ¢/ ~ 4/l ~ 10* m?s~!

Table 1.1: Orders of magnitude for mean flow and eddy field

have also been used, [4, 81, 90].

In this work we shall try to derive this parametrization for simple classes of model flows
using a different approach, namely the method of periodic homogenization. The simplified
model for the velocity field that we shall consider will enable us to study the problem in a

systematic way. The goals of this program are:

1. Derive rigorously the advection—diffusion equation that governs the evolution of a

passive tracer at length and time scales comparable to those of the mean flow.
2. Compute the effective diffusivity tensor in an efficient and easily implementable way.

3. Study the properties of the effective diffusivity and in particular of its antisymmetric
part. More specifically, understand the effect of both the mean flow and of the eddy
field on the structure of C*.

As a motivation of the approach that we shall take, let us consider a simplified model
for the transport of a passive tracer in the ocean. Neglecting the effects of stratification as
well as of turbulence at small scales, we can decompose the velocity field into the mean flow
and the mesoscale eddies. In Table 1.1, which is taken from [32], we present typical orders
of magnitudes for the length scales, time scales and strengths of the mean flow and the eddy

field. From this table two interesting conclusions can be drawn:

1. There is a clear separation of length and time scales between the mean flow and the

eddy field, § ~ £ ~ Z ~ 107

2. The magnitude of the fluctuating part of the velocity field is greater than or comparable

to the magnitude of the mean flow.

The fact of scale separation suggests that multiscale techniques could be applied in order

to derive an equation for the evolution of the passive scalar field at length and time scales



comparable to those of the mean flow. Moreover, it suggests that this multiscale method
should include the effects both of the mean flow as well as of the eddy field, taking into
account that the fluctuations are comparable to or stronger than the mean flow. Assuming
that the mesoscale field can be adequately modelled as having a periodic structure, for
example steady periodic solutions of the Navier Stokes equations that were used in [84] or
oscillatory shear flows that were considered in [21, 66, 116], it seems that one could approach
this problem using the tools of periodic homogenization. Needless to say, the assumption
of periodicity is an oversimplification and should be thought of as the first step towards the
study of the problem for more realistic velocity fields. Before embarking on this project,
let us review the method, in particular as it applies to advection—diffusion equations with

oscillating velocity fields.

1.3 Homogenization Theory for Advection—Diffusion Equations

with Periodic Incompressible Velocity Fields
1.3.1 Introduction

In this section we introduce the method of homogenization, in particular as it applies
to the problem under investigation. After a general discussion we focus on homogenization
for advection—diffusion equations. We wish to review the known results on several issues:
the derivation of the homogenized equations in the absence of mean flow, the asymptotic
behavior of the effective diffusivity tensor with respect to the nondimensional parameters of
the problem, the effect of the mean flow on the homogenized equation and the symmetry
properties of the effective diffusivity.

The method of homogenization is a powerful method for obtaining effective equations
and computing effective parameters in problems where phenomena occur at various well-
seperated length and time scales. Thus, under the assumption of scale separation it enables
us in principle to study the effect of fluctuations upon the macroscopic behavior of various
physical systems. It has been applied with great success to a variety of problems, such as
the theory of composite materials [9, 37, 100], the flow in porous media [29, 56],[54, ch. 5],
turbulent diffusion [69] and turbulent combustion [71, 72].

From a mathematical point of view, homogenization theory is concerned with the effects

of high frequency oscillations in the coefficients upon solutions of partial differential equations
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[40, p. 218]. In order to understand this issue, methods of varying degree of sophistication
have been developed: formal multiple scale expansions [14], the method of oscillating test
functions [14], two-scale convergence [1, 2, 83], and the perturbed test functions approach
[39]. As general references for the theory of periodic homogenization we mention the books

[14, 28, 58, 99].

1.3.2 Periodic Homogenization for Advection—Diffusion Equations

Let us now focus on the problem of periodic homogenization for the initial value prob-
lem (1.1). We consider incompressible velocity fields which consist of a superposition of a
mean flow V and a periodic fluctuating part v with mean zero. The mean flow varies on
length and time scales L, T whereas the fluctuating part varies on scales £, 7:

+viE 4 (1.16)

x t
u=V( 0T

T
We assume that there is a clear scale separation between the length and time scales of the

mean flow and the fluctuations:

l T
— 1, = 1 1.1
7 <<l 5<< (1.17)

We also assume that the initial data in (1.1) are slowly varying, at a length scale comparable

to that of the mean flow. Under these assumptions equation (1.1) becomes:

8T7§;’ t) + (V(%’ %) + v(%, ;)) -VT(x,t) = kAT(x,t) in R? x (0, 00) (1.18a)

T@szzTM?(mRﬂ (1.18b)

The goal of homogenization theory is to obtain an effective equation that describes the

evolution of the passive scalar field at length and time scales comparable to those of the
mean flow. We briefly review earlier work on this problem.

A simpler version of this problem that has attracted much attention over the last twenty

years is the one in which the mean flow is absent. In this setting the velocity field consists only

of an incompressible zero mean periodic component v. Building upon earlier work [14, 87



11

it was shown in [77], see also [16, 69, 76, 98] that at length and time scales large compared
to those of the velocity field the passive scalar field satisfies a diffusion equation with the
diffusivity being always enhanced beyond its molecular value. The enhancement in the
diffusivity is computed through the solution of an auxiliary partial differential equation with
periodic boundary conditions, the cell problem. Thus, for mean zero periodic incompressible
fields the parametrization (1.10) is justified.

The derivation of the homogenized equation and of the cell problem are valid for all
mean zero incompressible velocity fields under mild regularity conditions without any further
assumptions. In particular, the homogenized equation is uniformly valid for all values of the
molecular diffusion x and the temporal period of oscillations 7 of the velocity field.! However,
the effective diffusivity tensor does depend on these parameters: K* = K*(k, 7). Expressing

this in terms of the appropriate nondimensional parameters of the problem we have:
K* = K*(S, Pe) (1.19)

where Pe is the Peclet number that measures the relative strength of fluid advection as
compared with molecular diffusion and S is the Strouhal number which measures the ratio
of the characteristic velocity sweeping time to the period of its oscillation [17]. Precise
definitions and discussion will be given in the next chapter.

The study of the dependence of the effective diffusivity on the nondimensional param-
eters of the problem has been the subject of many studies. This is a particularly interesting
question since for most realistic flows the Peclet number is very large. To this end, a com-
plete theory based on Stieltjes integral representation formulas for the effective diffusivity
as well as variational principles was developed by Avellanada and Majda for steady velocity
fields [6, 7], see also [41] for variational principles. The integral representation formulas were
also extended to time dependent flows in [8]. Based on these representation formulas it was
shown that the effective diffusivity in each direction is an increasing function of the Peclet
number, for fixed Strouhal number. Moreover, upper and lower bounds on the enhancement

in the diffusivity were obtained:

C1(S) < é-K*-é < 0y(5) Pe, (1.20)

1To be more precise, the homogenization theorem holds in the parameter range § << S, Pe << % where
S, Pe are the Strouhal and Peclet numbers, respectively, and § the parameter measuring the scale separation
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where é denotes a unit vector in R? and (' is a constant independent of the Peclet number.
The concepts of maximally enhanced diffusion, when the effective diffusivity scales like Pe?
and minimally enhanced diffusion, when K* is bounded by a constant independent of the
Peclet number where introduced. It was shown that the asymptotic behavior of the effective
diffusivity with respect to the Peclet number depends upon the topological properties of the
velocity field. For example, it was shown that the effective diffusivity for steady cellular flows
in two dimensions scales like v/ Pe for large Peclet numbers, whereas for two dimensional shear
flows it scales like Pe? in the direction of the shear and like C' in the orthogonal direction,
[52]. Necessary and sufficient conditions for maximally and minimally enhanced diffusion
for time dependent velocity fields were derived by Mezic et al. in [80] using techniques from

ergodic theory and dynamical systems.

1.3.3 The Effect of Mean Flow

The difficulty in extending the homogenization theorem to the case where a spatiotem-
porally dependent mean flow is present lies on the fact that the time scales associated with
transport and diffusion processes are different. Thus, at the diffusion time scale (precise
definitions will be given at the next chapter) at which the homogenization theorem that
we desribed in the previous paragraphs is valid, the transport due to the mean flow is an
O(%) quantity, 0 being the parameter measuring the scale separation. Thus, an asymptotic
treatment of this problem based on multiple scale expansions requires an extension of the ho-
mogenization method to the case where effective equations should contain terms of different
orders of magnitude.

This difficulty was circumvented in [97] for steady velocity fields and constant mean
flows by keeping the troublesome %V-V term together with the O(1) terms in the expansion.
The effective equation was later justified using the maximum principle, see also [86]. A
different approach was taken in [70, 74|, see also [58, ch. 2|, [59]. In these works, the
aforementioned difficulty was removed by studying the problem in a frame comoving with
the mean flow, i.e. by introducing mean Lagrangian coordinates. It was shown that in the
homogenized equation expressed in mean Lagrangian coordinates is a diffusion equation with
the diffusivity being always enhanced.

The presence of a constant mean flow, apart from inducing an O(%) advection term in

the effective equation, when expressed in Eulerian coordinates, has a profound effect on the
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properties of the effective diffusivity, since now, apart from the nondimensional parameters,

it also depends on the mean flow:
K* = K*(S, Pe, V) (1.21)

The quantitive study of the dependence of the effective diffusivity on the mean flow was
first given by Koch et al. in [64] and later rigorously justified, in a more general framework,
by Majda and Mclaughlin for steady two dimensional incompressible velocity fields in [70].
Relevant work was also done by Bhattacharya et al. in [15] and by Mauri in [74]. The
surprising result of these studies is that the presence of a constant mean flow has a dramatic
effect on the asymptotic behavior of K as Pe — oo. Roughly speaking, mean flows with
rationally related components lead to maximally enhanced diffusion in all directions other
than the one perpendicular to themselves. In this direction the diffusion will be minimally
enhanced. This result holds for most velocity fields, with the exception of shear flows aligned
perpendicularly to the mean flow and with flows with only low number nonzero Fourier
modes such as the Childress-Soward flow. On the contrary, mean flows with irrational ratios
lead, provided some technical conditions are satisfied, to minimally enhanced diffusion in all
directions for flows with no stagnation points. The aforementioned rigorous results, valid at
the limit Pe — oo, where shown to be present at finite Peclet numbers through numerical
simulations of the cell problem [70]. Without discussing the technical details of the proofs of
the above results, we mention that they crucially rely on the ergodic properties of the flow
generated by the velocity field on the two-dimensional unit torus T2. Naturally, the ergodic
properties of the velocity field play a very important role in the study of the homogenization
of transport equations, i.e. the case of infinite Peclet number, [36, 57, 108]. Let us also
remark that a similar phenomenon was reported by Golden et al. in [47] for potential flows
when the potential has two characteristic wavelengths: the effective diffusivity depends on
whether the ratio of the wavelengths is rational or irrational.

The above analysis concerning the effect of a constant mean flow to the effective diffu-
sivity for steady two dimensional velocity fields was extended to the case of spatiotemporal
flows in various ways. Resonant enhanced diffusion due to synchronization between the con-
stant mean flow and the temporal oscillations of the flow for two dimensional nonsteady

shear flows was shown to occur by Majda and Kramer in [69]. This phenomenon was also
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demonstrated by Castiglione et al. in [24] through numerical simulations for random shear
flows.

The effect of rapidly fluctuating temporal mean winds on the effective diffusivity was
studied by Bonn and McLaughlin in [17]. They considered velocity fields of the form u =
V + A(t/7) + v(x/l) with the aim of understanding the extend to which the presence of
rapidly fluctuating mean winds alters the sensitive dependence of K* on V as it is predicted
from the steady theory 2 .Through asymptotic analysis of the cell problem they showed
that at the limit S — oo, for fixed Pe, the steady problem is retrieved, whereas for at the
limit S — 0 the effective diffusion coefficients are represented by an average over the steady
geometry. Numerical experiments were also performed and a non-monotonic dependence
of the diffusion coefficients on the Peclet number was reported at certain regimes of the
parameter space.

The results reported so far exhibit the very complicated, nonlinear, dependence of the
effective diffusivity on the mean flow. However, they do not provide us with a complete
description to the problem since they are restricted to constant mean flows. It is important
to extend these results to nontrivial, space-time dependent mean flows. A first step towards
this direction was taken by Majda and Kramer in [69], see also [72]. In these works a
nontrivial mean flow which is O(§) weak compared to the fluctuations was introduced. The
fact that the mean flow is weak compared to the fluctuations ensures that at the diffusion
time scale the advection due to the mean flow and the enhanced diffusion due to the rapid
oscillations of the velocity field are of the same order of magnitude, so the homogenization
theorem can be easily extended to this problem. It was shown that the effective equation is
an advection—diffusion equation with the advection being governed by the mean flow alone
and the effective diffusivity being constant, independent of the mean flow.

The presence of a spatiotemporally dependent mean flow which is of the same order
of magnitude as the fluctuations was studied by Mazzino in [75] and by Castiglione et al.
in [24]. Using formal multiple scale expansions, an effective equation was obtained, together
with the cell problem. Now the mean flow enters into the cell problem, as in the case of
constant mean flow, and consequently the effective diffusivity is a function of both space and

time and depends on the local properties of the mean flow. These equations were then used

2We emphasize the fact that in the framework that we shall develop in this work A(t/7) will not be

considered a rapidly fluctuating mean wind but, rather, a part of the fluctuating component of the velocity
field
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to study the effect of the mean flow on the effective correlation times of turbulent transport
in [75]. Unfortunately, the homogenized equation that was derived in these papers is not
correct, since it consists of an advection—diffusion equation in which the advection term
due to the mean flow is of the same order of magnitude as the enhanced diffusion. We have
already remarked that, since the time scales of advection and diffusion are different, it is not
possible to find a rescaling in time where the effects of diffusion and advection due to the
mean flow are balanced. We shall discuss this issue in the next chapter.

A more careful study of this problem was conducted by Majda and Souganidis in [72].
They showed rigorously that at the time scale defined from advection due to the mean flow,
to leading order the fluctuations in the velocity field have no effect on the homogenized
transport: the passive scalar field is transported due to the mean flow alone. In particular,
the small scale inhomogeneities of the velocity field do not influence the effective transport
of the passive scalar.

A related problem for solute transport in porous media was investigated by Bourgeat,
Jurak and Piatnitski in [18]. The authors argued that, since the steady velocity field is due,
according to Darcy’s law (1.3), to the presence of a pressure gradient, it is not realistic to
neglect the presence of a non trivial mean flow. They studied the initial-boundary value
problem for an advection—diffusion equation with the velocity field satisfies Darcy’s law on
a strip in R%. By performing a careful study of the boundary layers as well the initial layer
and using interior Holder estimates and the maximum principle the authors were able to
obtain the complete asymptotic expansion for the passive scalar field as well as the velocity
field. They then used this expansion to obtain an effective advection—diffusion equation,
with a spatially dependent effective diffusivity which is O(§) weak compared to the advection
due to the mean flow.

Bhattacharya in [12, 13] considered steady periodic mean flows. Thus, he studied
the homogenization problem for velocity fields of the form (1.16), with both V(dx) and
v(x) being periodic with the same period. He then studied the asymptotic behavior of the
solutions to the advection—diffusion equation (1.14) at long time scales. He showed that at
the diffusion time scale of the mean flow the passive scalar field satisfies an effective diffusion
equation and the diffusivity is always enhanced. He also studied the behavior of the passive
scalar field at long time scales which are small compared to the mean flow diffusion time

and showed that the passive scalar field goes through a non diffusive behavior, prior to the
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final phase which is described by the effective diffusion equation. We emphasize that this
is problem is different than the one we shall consider in this work, since it is restricted to

periodic mean flows. It is closely related to the method of reiterated homogenization [3].

1.3.4 Symmetry Properties of the Effective Diffusivity Tensor

The investigation that we presented so far in this section was concerned with the
properties of the symmetric part of the effective diffusivity. The reason why the symmetry
properties of the effective diffusivity have not been studied in depth is that, for constant
effective diffusivities, the antisymmetric part has no influence on the large scale, long time
evolution of the passive scalar field. Indeed, the right hand side of the effective equation

(1.11) can be rewritten as:

d d
O (1 0T)\ _ . OXT)

ij=1
d
. 9UT)
= Zsymm(lCij)amam (1.22)
ij=1 v

However, as discussed above in section 1.2, when the velocity field consists of a spatiotempo-
rally dependent mean flow with periodic fluctuations, the resulting effective diffusivity is a
function of both space and time, and the antisymmetric part contributes to the effective drift
( equations (1.14) and (1.15)). Therefore, it is important to study the symmetry properties
of IC*. Here we comment on relevant studies by other investigators.

Koch and Brady in [62] studied the symmetry properties of the effective diffusivity in
anistropic porous media. They formally showed that the antisymmetric part of the effective
diffusivity results from anisotropic porous media that lack a center of reflectional symmetry.
It was also argued that the presence of an antisymmetric part is related to the breaking of the
Onsager reciprocal relations of non-equilibrium thermodynamics [34]. The same conclusion
was also presented by Moffatt in [82]. Based on physical reasoning Koch and Brady also
argued that the antisymmetric part of K* scales like Pe? for small values of the Peclet number
and like Pe for large values of Pe, independently of the properties of the mean flow. We
emphasize that this conclusion, which was derived formally in [62], is in contrast with the
behavior of the symmetric part, whose scaling for large values of the Peclet number depends

very sensitively upon the presence and the properties of the mean flow.
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Sufficient conditions that ensure the symmetry of the effective diffusivity for two di-
mensional steady velocity fields were derived by Fannjiang and Papanicolaou in [41]. They
proved that a sufficient condition for the effective diffusivity to be symmetric is that it is
independent of the sign of the stream function. Based on this observation they derived a
set of sufficient conditions that the stream function should satisfy in order for the effective
diffusivity to be symmetric. Namely, if the stream function possesses either a translational
antisymmetry with respect to a vector, reflectional antisymmetry with respect to a vector
or rotational antisymmetry with respect to a point, then the resulting effective diffusivity
is symmetric. However, they mentioned that the general necessary and sufficient conditions
that ensure the symmetry of K* are not known (their findings will be presented in more
detail in chapter 4).

In this section we have focused upon the aspects of the work on periodic homogenization
for advection—diffusion equations that form the basis for the results that we shall present
in the following chapters. However, the problem of effective diffusivity for rapidly oscillating
velocity fields has been approached through a variety of different techniques. In the next
section we shall present some of the relevant results that were obtained through different

approaches.

1.4 Alternative Approaches, Experimental Results
1.4.1 Introduction

Since the problem of the transport of passive tracers in incompressible fluids is of such
fundamental importance in various areas of science and engineering, it is natural that it
has been approached through various techniques, apart from the method of homogenization.
Therefore, it is necessary to review the pertinent results that were obtained through different
methods and compare them to the predictions of homogenization theory. This is particularly
important since the method of homogenization is an asymptotic theory which is valid in
principle at the limit of infinite scale separation. Moreover, the asymptotic analysis of the
effective diffusivity with respect to the Peclet number involves another limiting procedure
and one would like get some confidence on the applicability of the results that were predicted
in the previous section for small but finite § ( the parameter which measures scale separation)
and large but finite values of the Peclet number.

In this section we shall present results that were obtained with different methods and
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are relevant for the issues that were discussed in the previous section: First the the fact that
the behavior of the passive scalar field for long but finite times and large, finite scales is
diffusive and the fact that the diffusivity is always enhanced. Second, the fact that the effec-
tive diffusion tensor depends sensitively on the mean flow, in particular in connection to the
the asymptotic behavior of the effective diffusivity with respect to the non dimensional pa-
rameters of the problem. Third, the possibility for resonant enhanced diffusion. Fourth, the
symmetry properties of the effective diffusivity and finally the validity of the homogenization
theorem in the presence of a mean flow which is stronger than the fluctuations.

Of course, there is a vast literature on the subject and we do not make any attempt for
a complete overview of all the existing literature. For general considerations related to the
problem of turbulent diffusion we refer to the review paper by Majda and Kramer [69]. We
shall only try to describe very briefly work relevant to the problem of transport of passive
tracers in periodic incompressible velocity fields. First, we shall comment on the Taylor
dispersion theory and its extensions by Brenner and coworkers. Then we shall mention some
exact solutions of (1.1) for simplified flow geometries which result on the explicit computation
of the effective diffusivity. We shall also describe results from boundary layer analysis for
steady flows, in particular in connection with the scaling of the effective diffusivity with
respect to the Peclet number. We shall also present some experimental results related to
the transport of tracers in convection cells which show agreement with the predictions of
homogenization theory. We shall also present an alternative, Lagrangian, definition of the
effective diffusivity and mention works on the computation of the effective diffusivity through
Monte Carlo simulations. We shall close this section by discussing briefly the problem of

diffusive approximation of the motion of particles in random velocity fields.

1.4.2 Taylor-Aris Dispersion, Exact Solutions, Boundary Layer Techniques
Based on the pioneering work of G. I. Taylor on dispersion in cylindrical capillaries
[109, 110, 111] and using the method of moments introduced by Aris in [5|, Brenner devel-
oped a theory for dispersion in spatially periodic porous media in [22]. This work was later
extended in various ways by Koch, Brady and coworkers [61, 62, 63]. Despite the different
methodology the predictions of Brenner’s theory are the same as those of homogenization
theory for steady flows. In particular, diffusion is always enhanced and the computation

of the enhancement in the diffusivity reduces to the solution of the cell problem that was
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obtained from homogenization theory. Mauri and Rubinstein in [97] showed that homog-
enization theory reduces to the Taylor-Aris theory for the special case of porous media
composed of parallel straight tubes 3.

It is in general impossible to derive explicit solutions for the initial value problem (1.1)
for general periodic flows. This can be accomplished only under simplifying assumptions
upon the geometry of the flow, in particular for shear flow geometries. For example, for
oscillatory two dimensional shear flows the advection—diffusion equation (1.1) is exactly
solvable. The exact solution was obtained by Zeldovich in [117]. Similar calculations were
performed by Kullenberg in [66] and by Young, Rhines and Garrett in [116]. The enhanced
diffusion at long times computed through these exact solutions is exactly the one predicted
from homogenization theory. In the case of shear flow geometries the cell problem is also
exactly solvable [69] and the comparison between the predictions of the two approaches is
immediate.

The effective diffusivity for steady cellular flows has also been studied through the
application of elaborate matched asymptotic expansions to the advection—diffusion equation
by various authors. The investigations of Childress in [26], Shraiman in [102], Rosenbluth
et al. in [96] and Soward in [106] led to the conlusion that the effective diffusivity at the

limit of large Peclet number has the form K* = a Pe'/?

Z. The value of the prefactor a was
also computed. This result is in complete accordance with the predictions of homogenization
theory that were obtained through rigorous analysis of the cell problem [41, 52].

The boundary layer techniques were later applied to flows with more complex geome-
tries consisting of a combination of open channels and vortices by Childress and Soward in
127, 107]. The results reported in [27] are in agreement with the predictions of Majda and
McLaughlin which is based on rigorous analysis and numerical solution of the cell problem
[70]. Moreover, through boundary layer analysis Childress and Soward were able to prove
in [107] the sensitive dependence of the effective diffusivity on the mean flow under the

additional assumption that the mean flow be weak compared to the fluctuations.

The studies of Shraiman [102] and Ronsebluth et al. [96] as well as those of Sagues

3Despite the fact that homogenization theory and Brenner’s theory produce the same result, homoge-
nization theory has a number of advantages: first its predictions can be rigorously justified; second it can be
extended to cover much more general situations; for example, we can consider velocity fields with many scales
and introduce nonlinear reaction terms, whereas Brenner’s method is more problem—dependent; third, it
enables us to obtain a complete asymptotic expansion for the passive scalar field in which the higher order
coefficients are obtained through the solution of additional cell problems.
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and Horsthemke [98] and McCarty and Horsthemke [76] that were mentioned in the previous
section were directly influenced from the problem of diffusive transport in two dimensional
Rayleigh-Benard convection cells [25, ch. 2|. This problem was studied experimentally by
Solomon and Gollub in [105]. The results of their experiments showed that the passive tracers
that they utilized behave diffusively after a transient time. Moreover, the enhancement in
the diffusivity that they measured is in qualitative agreement with the predictions of the
homogenization theory of a wide range of Peclet numbers.

Solomon and Gollub also performed experiments with passive tracers in time dependent
Rayleigh-Benard cells. The very interesting result was that the enhancement of the diffusivity
is several orders of magnitude larger than the one they measured for steady cells. They
attributed this great enhancement to chaotic advection*. The difference in the effective
transport between steady and time dependent cellular flows was exhibited through numerical
solution of the corresponding cell problem by Biferale et al. in [16]. A more rigorous
explanation for this phenomenon can be given through the theory of maximally enhanced

diffusion for time dependent flows that was developed by Mezic et al. in [80].

1.4.3 Lagrangian Effective Diffusivity, Monte Carlo Simulations

The theoretical investigations that we have been discussing so far are based on the
analysis of the initial value problem for the advection—diffusion equation (1.1) which governs
the evolution of the concentration of the passive scalar. The method of homogenization as
we presented it so far, as well as the boundary layer techniques that we mentioned in this
section are based on the Fulerian definition of the effective diffusivity as the average flux due
to a given concentration gradient [64]. However, an alternative description of the problem
is possible through the study of the motion of a single tracer particle which is transported
due to the incompressible velocity field u(x, t) and diffused due to the molecular diffusion .

The equations of motion for a tracer particle located initially at x, are:

dX(t) = V2 AW (t) +u(X(t), 1) dt (1.23a)

4Due to the incompressibility of the velocity field the system of ODEs x = v is a Hamiltonian system
with the stream function being the Hamiltonian. A steady two-dimensional flow leads to a one dimensional
autonomous Hamiltonian system which is completely integrable. On the other hand, time dependent two
dimensional flows lead to nonautonomous one dimensional Hamiltonian systems which are not in general
integrable and can exhibit chaotic behavior.
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X(t = 0) = xq (1.23b)

This is a system of stochastic differential equations. W (t) represents the d-dimensional
Brownian motion [85, ch. 2]. The advection—diffusion equation, with §-concentrated initial
data at xg, governs the transition probability density for the tracer particle which was initially
located at x = xq [45, ch. 3].

Using now (1.23) we can introduce an alternative definition of the effective diffusivity
based on the statistics of tracer particles for long times. The Lagrangian effective diffusivity
is defined as the time rate of change of the mean squared displacement of the tracer particle

at long times:

K3 = lim 5 ((X(1) — x0) ® (X(1) — x0))w (1.24)

where ® denotes the tensor product and ()i denotes averaging over the statistics of the
Brownian motion. In terms of the transition probability density the Lagrangian effective

diffusivity can be expressed as:

K = lim — / (x — x0) ® (x — x0) T(x, 1)da (1.25)
t—oo 21 Jpa

The Lagrangian effective diffusivity is obviously symmetric, in contrast with the Eulerian
effective diffusivity which is in general nonsymmetric. Indeed, it was argued in [62] that
K} is equal to the symmetric part of the Eulerian effective diffusivity £*. Consequently, an
analysis based on formula (1.24) cannot be helpful when studying the antisymmetric part
of the effective diffusivity. However, the Lagrangian definition (1.24) can be used to test
the predictions of homogenization theory at finite times and to estimate the transient time
before the diffusive behavior predicted from homogenization theory takes hold .

The stochastic differential equations can be solved exactly for simplified flow geome-
tries, in particular for two dimensional shear flows. Explicit computation of the statistics of
the tracer particle by McLaughlin in [78], see also [69], showed complete agreement between
the Lagrangian effective diffusivity and the Eulerian one predicted from homogenization the-
ory. Moreover, it showed that the transient time before the asymptotic diffusive behavior is
of the order of magnitude of the cell diffusion time, the time it takes for a tracer particle to

diffuse through a period cell due to the molecular diffusion k.
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More complicated flow geometries require the numerical solution of the equations of
motion and computation of the relevant statistics. This can be accomplished through Monte-
Carlo simulations of (1.23). These simulations were performed, for example, by Rosenbluth
et al. in [96] for cellular flows, Crisanti et al. in [30] for the three dimensional ABC flow.
Explicit comparisons between the effective diffusivity computed through the solution of cell
problem and through Monte Carlo simulations were performed by Biferale et al. in [16] for a
variety of steady and time dependent mean zero periodic incompressible flows. It was found
that there is an excellent agreement between the results predicted form these two methods.
McLaughlin in [78] showed that the sensitive dependence of the effective diffusivity upon
the mean flow is not an artifact of the method of homogenized averaging. Monte Carlo
simulations for two dimensional steady velocity fields in the presence of a constant mean
flow clearly showed the sensitive dependence of the effective diffusivity on the ratio of the
two components of the mean flow at finite times and for finite Peclet numbers.

We also mention that probabilistic arguments based on the analysis of (1.23) can be
used in order to prove the homogenization theorem. This approach was taken by a variety

of authors, for example Lions et al. [14, ch. 3|, Bhattacharya [11] and Pardoux [88].

1.4.4 Motion of Particles in Random Velocity Fields

From the above discussion it is clear that the method of periodic homogenization is a
very efficient and accurate way of describing the evolution of passive scalar fields at finite long
times and large scales. Moreover, comparison with experimental results in convection cells
[104, 105] as well as in flow in porous media [43] justify, at least qualitatively, the theoretical
predictions concerning the dependence of the effective diffusivity upon the nondimensional
parameters of the problem. The assumption of periodicity simplifies the mathematical anal-
ysis of the problem, however some of its consequences are really unrealistic and should be
critically examined. In particular, the sensitive dependence of the effective diffusivity upon
the mean flow is strictly a consequence of the periodicity assumption. As we shall see in this
work this sensitive dependence becomes even more dramatic when the mean flow is stronger
than the fluctuations in which case the very structure of the homogenized equation depends
upon the ratio between the two components of the mean flow (restricting ourselves to the
two dimensional case). We juxtapose this surprising conclusion against a similar problem

where the fluctuations in the velocity field are random, as opposed to periodic.
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All of the works on periodic homogenization that we have referred to so far have been
concerned with velocity fields where the mean flow is either absent or, when present, at most
comparable in magnitude with the fluctuations. The case of mean flows that are stronger
than the fluctuations has not been, to our knowledge, considered within the framework of
periodic homogenization. We close this literature survey by reporting a relevant result in
the problem of diffusive approximation to the behavior of a particle trajectory in a random
velocity field that was studied in [59]. The authors considered the equations of motion (1.23)
for a tracer particle moving in an incompressible velocity field in the absence of molecular

diffusion. The velocity field consists of a constant mean flow perturbed by weak random

fluctuations:
dx(t
ax{t) _y 5v(x), (1.26a)
dt
x(t =0) =xg (1.26b)

The fluctuating part v(x) is a zero-mean stationary random field with rapidly decaying
correlation tensor.

They authors proved that for 6 small and ¢ large (i.e. t ~ §72) x(t) — Vi behaves like

a diffusion process. To be more precise, they proved that in relative coordinates comoving

with the mean flow and after a long time of order O(1/6?), the mean density

(055 €~ ) (1.27)

tends § — 0 to the limit density ¢(¢,¢) as § — 0. The limit density satisfies the constant

coefficients diffusion equation

0o B d 8%
ot Z]Z::I az'j(V)aCiacj in R% x (0, 00) (1.28)
5(t =0.¢) = ¢o(¢) on R? (1.28b)

The diffusion tensor a;;(V), which is spatially homogeneous, is given by the classical Kubo
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formula:

Clij(V) = /OOC RZJ(VS) ds (129&)

Riy(x) = (0,(x + y);(y) (1.290)

where R;;(z) denotes the correlation tensor of the velocity field and (-) denotes averaging
over the statistics of v. The assumption that the components of the correlation tensor
R;j(x) are rapidly decaying ensures that the integral in (1.29) is well defined. In the original
Eulerian coordinates this result can be stated as follows: For small, finite ¢ the mean density
(¢(t,z)) behaves like ¢ (t, z) that satisfies the equation

o

SV V= 5V (a(V)V) in R? x (0, o) (1.30a)

Yt =0,2) = ¢o(z) on R? (1.30b)

We emphasize that the above result requires that the fluctuations in the velocity field be
random. In order for the long time behavior of particles moving in a periodic velocity
field to be diffusive, the presence of nonzero molecular diffusion is necessary. Two important
conclusions can be drawn from the the above result: First, the effective diffusivity a;; depends
on the mean flow. On the other hand, the structure of the effective equation is independent
of the detailed properties of the mean flow, provided that it is nonzero. The analysis of
the similar problem for weak periodic fluctuations will exhibit a dramatic dependence of the

homogenized equation on the properties of the mean flow.

1.5 Overview of the Thesis

In this section we wish to present a brief overview of the new results that are included
in this thesis. The major contribution of this work is the rigorous derivation and systematic
study of the effective equation the governs the transport of a passive scalar field in a class
of incompressible model flows consisting of a superposition of a large—scale mean flow with

a small-scale periodic structure. It is shown that this effective equation is an advection—
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dominated advection—diffusion equation with an effective diffusion tensor which is computed
through the solution of the cell problem. We show that the structure of the effective equation
and of the cell problem are determined by the strength of the mean flow relative to the
fluctuations and the magnitude of the characteristic velocity sweeping time relative to the
period of oscillations.

The most interesting case is the one where the mean flow is of equal strength to the
fluctuations. We show that in this case the effective diffusion tensor is a function of space
and time whose values depend upon both the mean flow and the fluctuations.

In view of the importance of the eddy induced transport velocity on the transport of
passive tracers in the atmosphere and ocean we undertake a systematic study of the symmetry
properties of the effective diffusion tensor. We derive necessary and sufficient conditions for
the symmetry of K* for steady velocity fields and study the asymptotic behavior of the
antisymmetric part of * with respect to the Peclet number.

An efficient method for the numerical solution of the cell problem is also developed
based on a Fourier spectral method and the solution of the corresponding complex nonher-
mitian linear system of equations using an iterative method and preconditioning.

The homogenization theorem is also studied using the method of two—scale convergence.
This method has not been, to our knowledge, previously applied to problems of higher order
homogenization and we believe that our approach can be useful to a variety of homogenization

problems.

1.6 Organization of Chapters

The remainder of this work is distributed over four chapters. We briefly present their
contents. In chapter 2 we introduce the model for the velocity field that we shall study and
we nondimensionalize the advection—diffusion equation, identifying the relevant nondimen-
sional parameters of the problem. We also state and prove the homogenization theorem for
the case where the mean flow is weak compared to the fluctuations.

In chapter 3 we study the case where the mean flow is equal in strength to the fluctua-
tions. We prove the homogenization theorem for this case. Various numerical examples are
presented and their physical meaning is discussed. The case where the mean flow is stronger
than the fluctuations is also analyzed through numerical examples and formal asymptotics

of the cell problem. Finally, the numerical method that we use in order to solve the cell
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problem is discussed.

The study of the antisymmetric part of the effective diffusivity is presented in chapter
4. Necessary and sufficient conditions for I* to be symmetric are derived for steady velocity
fields, together with the asymptotic behavior of the antisymmetric part for large and small
Peclet numbers. Numerical examples for both steady and time dependent velocity fields are
also presented.

The method of two—scale convergence is introduced in chapter 5. We then apply the
method to the problem under investigation with particular emphasis to the case when the
mean flow is stronger than the fluctuations. A rigorous and systematic way for studying
higher order homogenization is presented. A discussion about the results of this work,
together with a presentation of various interesting problems that, we believe, can be studied
in the framework developed in this thesis are presented in chapter 6.

Finally, an alternative proof of the homogenization theorem using techniques from
semigroup theory, together with some properties of periodic incompressible velocity fields

that are being used in the main text are presented in the appendix.



CHAPTER 2
HOMOGENIZATION FOR WEAK MEAN FLOWS

2.1 Introduction

In this chapter we start our study of the problem of periodic homogenization for
advection—diffusion equations with mean flow. In section 2.2 we introduce the model ve-
locity field that we shall consider, nondimensionalize the advection—diffusion equations, and
identify the relevant nondimensional parameters. In section 2.3 we present the homogeniza-
tion theorem. We show that, while the effective equation has always the same structure
in the parameter range that we consider in this chapter, the structure of the cell problem
depends upon the period of temporal fluctuations. The derivation of the effective equations

is presented in section 2.4.

2.2 Scaling and Nondimensional Mixing Parameters

We start with the dimensional form of the advection—diffusion equation that governs

the evolution of the passive scalar field:

oT (x,t)

T +u-VT(x,t) = kAT (x,t) in R? x (0, c0) (2.1a)

T(x,t = 0) = Tj(x) on R, (2.1b)

where & is the molecular diffusivity and u is a smooth given velocity field. The velocity field
is incompressible (V - u = 0) and consists of a superposition of a mean flow V, varying at
large length and time scales, with periodic fluctuations v. With the mean flow we associate
characteristic length and time scales Lg, Ty. We also assume that Lg is characteristic length
scale of the initial conditions as well. The characteristic length and time scales of the periodic
fluctuations are identified to be the spatial and temporal periods L, and T}, respectively.

For simplicity we shall take the spatial period to be the same in all directions:
v(x,t+T1,) = v(x,t)

27
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v(x+ Lyéj, t) =v(x,t), j=1,...d,

where {é}?z1 denotes the unit vector in the jth coordinate direction. We also define the
magnitudes of the mean flow and the fluctuations using the maximum norm over the entire

space and time and the period cell, respectively:

Vo= max |V]|

z€RY, t€[0,00)
vy = max [v|
2€[0,Lpl4, t€[0,1]
furthermore, we assume that the periodic fluctuations have mean zero over the period cell:

: / /
V) = v(x,t)dxdt=0 2.2
W) Ty LY Jo,e,00 Jioma .t) 22)

Putting everything together, we can write the velocity field that we shall consider in the

following form:

)+ VI Tip> (2.3)

x t

u=WwVig. 7
0 0

where V', v/ are nondimensional vector functions. The periodic function v'(y, 7) has period
1 in time and in each spatial coordinate direction. We assume that there is a clear separation
of length and time scales between the fluctuations and the mean flow: L, << Lo, T, << Tj.

We express this scale separation by introducing two nondimensional parameters 9, n:

L, T,

=—, 0<<1, n<<1 (2.4)
To

We also introduce a nondimensional parameter a which measures the strength of the fluctu-
ations relative to that of the mean flow:

Vo
= — 2.5
“= 1 (2.5)

We emphasize that no assumption regarding the magnitude of a is made at this point.
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The velocity field (2.3) induces the following set of time scales, in addition to the

characteristic times Tp, T):

Lo L2
Ty =—, Tg:=— 2.6
1 7 K - (2.6a)
L L2
Tsw = _p7 Tk = -2 (26b)
Vo K

The large-scale sweeping time T;, measures the time needed for a particle moving with the
characteristic velocity of the mean flow Vj to travel the characteristic length Ly. The large-
scale diffusion time is defined as the time needed for a finely concentrated spot of the passive
scalar field to spread over the length scale Ly. Similar definitions hold for the small-scale
sweeping time Ty, and the cell diffusion time: 7.

Using now the time scales of the problem we can form various nondimensional quan-
tities. Following earlier work of Rubinstein and Mauri [74] concerning steady velocity fields
with a constant mean flow we shall define both local and global nondimensional quantities:

the local Peclet and the local Strouhal numbers:

T, T,
Pe =", §=2 2.7
€ Tew ) l Tp ) ( )
as well as their global counterparts:
Ty, Tis
Pe,=—, S,=— 2.8
eg ns ’ g TO ’ ( )

The global Strouhal number measures the ratio between the large scale sweeping time over
the characteristic time scale of the mean flow. The local Strouhal number is the ratio
between the characteristic velocity sweeping time to period time. The local Peclet number
measures the ratio between the cell diffusion time over the small-scale sweeping time; the
global Peclet number measures the ratio between the large-scale diffusion time over the
large-scale sweeping time.

A comment concerning the terminology is in order. The local Peclet number describes
the relative strength of advection due to the fluctuations v to molecular diffusion within

the period cell. Similarly, the local Strouhal describes how fast the fluctuating part of the
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velocity field oscillates in time, relative to the local time scales associated with the period
cell. Hence the term local. On the other hand, the global dimensionless numbers are defined
through the length and time scales of the mean flow, which define the scales of observational
interest. The term global seems appropriate.

Using the definitions of the time scales (2.6) we can express (2.7) and (2.8) in the form:

Vo Lp Lp
P p— S p— 2-9
T T T Ty (29)
and:
Vo Lo Lg
eg K ) g TO %7 ( )

Since we have already assumed a relationship between the two sets of length and time scales
in (2.4), the global and local dimensionless numbers are not independent. In fact, using the

definitions (2.9) and (2.10) as well as the definitions of a, § and 1 we get:

1
S, = 775—"&, Pe, = —Pe (2.11)

No assumption regarding the orders of magnitudes of {Pe;, S}, or equivalently {Pe,, S},
is made at this point. These two dimensionless numbers are enough to describe the physical
system under investigation. In other words, two systems whose evolution is described through
(2.1) and have the same Peclet and Strouhal numbers are dynamically equivalent, [10, pp.
211-216].

Now we are interested in obtaining an effective equation which governs the dynamics
of the passive scalar field at long times and large scales, namely the length and time scales
of the mean flow. For this purpose, it is convenient to nondimensionalize (2.1) with respect
to the characteristic length and time scales of the mean flow.

To this end, we introduce the primed nondimensional independent variables x’, ' and

the nondimensional velocity fields V', v/ introduced previously:
t Vv , _V

— Vi=— v
Tg VE) Vo

/

X '

X
— 2.12
= (212
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The new passive scalar field 7° and the new initial conditions 7§ are defined through
T(x,t) = T°(X, 1), Tin(x) = T5,(x) (2.13)

Inserting (2.12) into (2.1) and using (2.13) as well as the definition of Pe, and S, we obtain:

0T (x,t)

S ot

+ (V(X, t)+ av(%, E)) VT (x,t) = LAT(X, t) inR% x (0,00)  (2.14a)

n €g

T(x,t=0) = Tj(x) onR?, (2.14b)

where, for notational simplicity, the primes and circles have been dropped.

As has already been mentioned, we want to obtain effective equations at length scales
at least as large as those of the mean flow and time scales at least comparable to the large
scale eddy turnover time. Moreover, we want to ensure that the large scale properties of the

system are independent of the location of the small scale. Thus, we assume:
Sy~ O(1) (2.15)

We also need to make an assumption regarding the relative strength of advection and diffusion
at the local scale. A physically interesting case is to suppose that advection and diffusion

are of comparable strength at the local scale’:
Pe; ~ O(1) (2.16)

Using now (2.11) we can rewrite (2.13) using the O(1) nondimensional numbers Pe;, Sy:

T (x,t
& ét)

’

+ (V(x, t)+ av( )) -VT(x,t) = a—dAT(X, t) inR? x (0,00) (2.17a)

Pel

Sdlsl
|

T(x,t =0) = Ty(x) onR?, (2.17b)

5More precisely, we assume that the local Peclet number is independent of the parameter 4.
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The fluctuating part of the velocity field v(y,7) has period 1 in time and in each spatial

coordinate direction, with y = ¥, 7 = % The average over the rescaled periodicity cell

[0, 1]¢ x [0, 1] becomes:
() :=/ / ~dydr (2.18)
[0,1]¢ J]0,1]

We shall also have the occasion to use the spatial average, denoted by (-),, as well as the

temporal average (-),:

(hy = /[m]d- dy (2.19a)

{)r = /[071]- dr (2.19D)

The magnitude of the dimensionless parameters S;, Pe, can be determined from (2.11) and
depends on the relationship between 9, 77, a. In the rest of the paper we shall study the
effective equations that result from (2.17) under various assumptions on the relative strengths

of the parameters ¢, n, a.

2.3 Distinguished Limits

Apart from the Peclet and the Strouhal numbers, there are three, independent, di-
mensionless quantities that appear in (2.17): a, measuring the strength of the fluctuations
relative to the mean flow, ¢ measuring the separation of length scales and n measuring the
separation of time scales. Consequently, there are various different distinguished limits that
we can consider. In this work we shall make the assumption that both n and a depend upon

0. To this end, we assume that a, n have the form:
a=40" n=19" (2.20)

Under this assumption (2.17) becomes:

5o¢+1

0T (x,t)
ot

S, + (V(x, t)+5av(§,5t—7)) VT(x,t) = ——AT(x.t) inR% x (0,00) (2.21a)

€]
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T(x,t =0) = Ty(x) onR?, (2.21Db)

As we discussed in the first chapter, in the case of transport of passive tracers in the ocean the
mean flow is weaker or equal in strength to the mesoscale eddies. Consequently, the physically
relevant parameter range to consider is @ € [—1,0]. On the other hand, we shall not make any
a priori assumptions on the temporal oscillations. We simply take v > 0. Weaker mean flows,
alpha < —1, will not affect the homogenized equation. On the other hand, for mean flows
much stronger than the fluctuations, we expect that the turbulent diffusivity will be small
compared to the molecular diffusivity, except when resonant enhanced diffusion phenomena
occur. This problem will be studied numerically in the next chapter and rigorously in chapter
D.

As examples of specific choices of the parameters a,~ that have been studied in the
literature we mention the choice « = —1, v = 2: Now the magnitude of the mean flow is
O(d) compared to that of the fluctuations and this implies that the global Peclet number is
an O(1) quantity. Moreover, the choice v = 2, for @« = —1 implies that both the local and
global Strouhal numbers are O(1) quantities and thus no distinction between them needs
to be made. This problem was studied in [69], see also [72]. An alternative proof of the
homogenization theorem for this scaling based on semigroup theoretic arguments will be
presented in the appendix. The choice a = 0, v = 1 was partially studied in [24, 75].
However, the effective equations obtained in the paper are not correct, since they imply that
advection and diffusion are of the same order of magnitude at the macroscale. This choice
of parameters leads to an O(3) global Peclet number and advection dominates diffusion at
the macroscale.

In this chapter we shall study the regime o € (—1,0). We shall discuss the case where
the mean flow is of equal strength to the fluctuations in the next chapter. Alternative proofs
of the results using the method of two—scale convergence will be presented in the chapter
5.

Clearly, the strength of the diffusion relative to the advection by the mean flow at
the macroscale will depend on the global Peclet number. From (2.11) and the assumption
that the local Peclet number is an O(1) quantity, we see that Pe, will depend only upon
the exponent o and not on the separation of time scales which is controlled by . On the

other hand, v will determine the structure of the cell problem. In particular, there are three
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possible cell problems: one for v € (0,1 — a), a second for v = 1 — a and a third one for
v > 1—a. Let us remark that the critical value 7 = 1 — a corresponds to the case S; ~ O(1).

In this chapter we shall prove the following theorem:

THEOREM 2.1 Consider the initial value problem (2.21) where the mean flow and the
fluctuations are smooth and incompressible and the initial conditions are also smooth. As-
sume further that (v) = 0. Then ford sufficiently small there exists a constant C' independent

of 0 and ty such for any to > 0 the following estimates hold:

— t
||T — T||L°°((O,t0);L2(Rd)) S 5 (1 + S—0> C(Pel, Sg) (222&)
g
— l-a Sg to
||VT - VTHLQ((O,tO)XRd)) <46z Pe; ? + 1+ S_ C’(Pel, Sg) (222b)
g

where T satisfies the following equation:

T (x, 1) — oot
Y + V(x,t) - VT'(x,t) = Pe

Sy V- (K*-VT(x,t)) inR?x (0, +00) (2.23a)

T(x,t =0) = Tin(x) onR?, (2.23b)
The effective diffusion tensor K* is:

K = 0ij — Pei{vix;)
= 5ij + Kij-/ (224)
where x is the solution of the following cell problems:

1. Fory<l—a:

v-Vyx — Ayx = —(v —(v)y) (2.25)

Pe;
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2. v=1—-a:
ox 1
Sga + v Vyx — P—elAyX = —V (226)
Joy>1—a:
1
<V>7— . VyX — P—elAyX = —<V>T (227)

Before presenting the proof of this theorem let us make a few comments. First, we
observe that the effective diffusion tensor is constant, independent of the mean flow (as
will become clear from the derivation this is correct only to leading order: higher order
corrections to the effective diffusion tensor are space-time dependent with values depending
on the mean flow). Thus, the effect of the fluctuations to leading order is to enhance
dissipation at the macroscale, without affecting the velocity field with which the passive
tracers are advected at the length and time scales of the mean flow. There are two reasons
why the effective diffusion tensor is, to leading order, constant. First, the mean flow is
weak compared to the fluctuations. Second, we have assumed that the fluctuations are
independent of the large scale variables. If we were to study slowly modulated fluctuations
(as an example one can consider two dimensional shear flows with slowly varying amplitude,
v(x,t,y,7) = (f(z2,t)v1(y2,7),0)) then £* would be a function of space and time with
values depending on the modulations of the fluctuations. We shall address this issue in the
next chapter, together with the strong mean flow case.

Moreover, the effective diffusion tensor will not be symmetric in general. Since it is
constant only its symmetric part is relevant for the effective equation (2.23), see equation
(1.22) in chapter 1. Now, it is easy to show that the symmetric part of the enhancement in

the diffusivity can be expressed as [69, p. 252]:
symm(Ki;) = (Vyxi - Vyx;) (2.28)

which is positive semidefinite. Consequently, the dissipation is always enhanced.

Using now the definition of the global Peclet number we can rewrite equation (2.23) in
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the form:

OT(x,t)

5 +V(x,1)- VT(x,t) = LV (K*V -T(x,t)) in R x (0. c0) (2.29a)

S,
g Pe,

T(x,t=0) = Tjn(x) on R? (2.29b)

with Pe, being an O(6**!) quantity. Thus, the effective equation is an advection dominated
advection—diffusion equation. Naturally, at the limit Pe, — oo, that is, for 6 — 0, the
effective equation is simply a transport equation.

The second interesting observation is that the structure of the cell problem depends
upon the magnitude of the local Strouhal number. For v < 1 — a the S; is an O(67), 0 >
0 quantity which means that the characteristic sweeping time is much smaller than the
temporal period. In this case, the temporal fluctuations are too slow and they don’t play
any role in the cell problem, which is an elliptic equation with the fast—time like variable 7
entering merely as a parameter.

When v = 1 — « the local Strouhal number is an O(1) quantity and the characteristic
velocity sweeping time is comparable to the period time. On the other hand, by assump-
tion, the local Peclet number is O(1) and advection and diffusion are of the same order of
magnitude at the microscale. Thus, in this case all three terms, time derivative with respect
to the fast time, local advection and local diffusion contribute to the cell problem. On the
other hand, when 7 > 1 — a the local Strouhal number is an O(677), ¢ > 0 quantity and
the characteristic sweeping time is larger than the time period. In this case the oscillations
at the microscale are too fast and the system cannot adjust to them instantaneously. This
is why in this regime the cell problem is an elliptic equation with the velocity fluctuations
replaced by their time averages.

In the next section we shall derive the effective equation (2.23) together with the cell
problems (2.25), (2.26) and (2.27). We shall also obtain the necessary estimates that justify
the validity of the effective equation.
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2.4 Derivation of the Effective Equations

In this section we shall derive the homogenized equations. In order to prove the ho-
mogenization theorem we shall need the following lemma, which is a direct consequence of
Fredholm’s theorem, [40, ch. 6]:

LEMMA 2.1 Let Ly denote the operator

0 1
£0::S—T+u(y,7')-vy A

) "~ Pe

y

where u(y, ) is a smooth, incompressible velocity field which is periodic in both y and T.

Further, let gy, T) be a smooth function which is periodic in both y,T. Then the equation

Lo f(y,7)=9(y, ) (2.30)

has a unique, up to a constant, solution if and only if g(y,T) has zero mean. Uniqueness
is ensured by requiring f(y,T) to have zero mean. In particular, the only solutions of the

homogeneous equation

Lo fly,7)=0 (2.31)

are constants.

We emphasize that the incompressibility of the velocity field is necessary for the above lemma
to hold.

In the subsequent analysis we shall also need to estimate the solution of parabolic
equations in terms of the inhomogeneous term and the initial conditions. We present the
result that we shall need in the following lemma. For background material on parabolic

partial differential equations we refer to the books [40, ch. 7], [44]

LEMMA 2.2 Consider the following parabolic initial value problem:

0T (x,t) o Xt ol
Sq — T (V(x7 t)+0 V(g, 5—7)> -VT(x,t) — 2

—AT(x,1) = 0 F(x, ) inR? x (0, c0)
l

(2.32a)
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T(x,t=0) =0 f(x) onR? (2.32b)

with F(x,t) € L®(R*; LA(RY)), f(x) € L*(RY) and the velocity fields V, v are smooth and

incompressible. Then for every to > 0 we have the following estimates:

t
Tl o sracey < 0 (1 n S) % (2.330)
g
t
IV T 20,00y xay < 872 \/Pez 14 SO) C (2.33b)

where C := max (|| F|| o (ot052@a)» |l 2@a)-

Proof: We multiply (2.32) by T, integrate over R? and integrate by parts and use the fact
that the solutions of (2.32) decay sufficiently rapidly at infinity and the incompressibility of
the velocity field to obtain the basic energy identity:

1d sita
S, §d—tllTl|i2(Rd) + e VT 220 = 8 (F.T) 12 (2.34)

Thus:
(F, T)LQ(Rd)

d
1Tl 1Tz = 5 1T e

||F||L2 k)| Tl L2, (2.35)

CQ|C>,Q(Q|<>1

on account of the Cauchy-Schwarz inequality. Integrating now in time we obtain:

T llan(®) < Tzt = 0) + o / 1E |2 (s

N

1)
< || fllz2mey + S, < to || F'|| Loe((0,10);22(R %)) (2.36)
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for t € (0, ty]. Consequently:

0
sup ||T||L2(Rd))(t) < 90 ||f||L2(Rd) + S—to ||F||L°°((O,t0);L2(Rd))
te(0,to] g

Lo
<9 (1 + S_> max (|| Pl ooz @ays [[fll2@e)  (2.37)
g

and estimate (2.33a) follows.

To get estimate (2.33b) we integrate the energy identity (2.34) in time to obtain:

gure rto to S S
e [ IVt = 6 [T e+ T (0) = 2T e ()

S
< Oto 1F o orsza@an 1Tl oo orz2@a + 51011 f172@a)

to S
< (14 &) 0Ol llmqoaen + 2 e
g

S to
< (241 + = 2 2.5
< (2+ +Sg)c (2.38)

Multiplying now (2.38) by ;fla and taking the square root of both sides we arrive at (2.33b).
The proof of the lemma is complete.

Now we are ready to prove the homogenization theorem. The plan will be to look for
a solution in the form of a multiple scales expansion. Using then lemma 1 we shall obtain
equations for the first two terms in the expansion. Then we shall obtain bounds for the
error caused by neglecting higher order terms in the expansion. Using these bounds we shall
estimate the difference between the solution 7'(x,t) to the original equation (2.21) and the
sum of the first two terms 7 and we shall justify that it is small, in the appropriate norm.
As we have already mentioned, in this chapter we are concerned with the parameter regime
a€ (—1,0), v >.

We shall use the notation:

L£=3, % + (V(x,t) + 0%v(

A (2.39)
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The initial value problem (2.21) can be written as © :

LOT(x,t) =0 in R x (0, 00) (2.40a)

To(x,t = 0) = Tjn(x) onRY, (2.40b)

According to the recipe of multiple scale expansions we shall treat the "slow” variables x, ¢

and the "fast” variables y := ¥, 7 := 5% as independent. The differential operators transform
as:
0 0 10
— — + —— 2.41
ot "o T sor (2.41a)
1
V — Vi + gvy (2.41b)

Using (2.41) we rewrite £° in the following form:

24
ot

o 10 X 1
= 5, (554 Fe ) H (VRO +0V(3, ) (Vat 375)

1+«
L= s, (V(x,t)+5av(§ t))-v " A

575_7 _Pel

51+a 2 1
- Ax T VX _A
Pel( £ 29,9+ 4 )

1 1 1 1
_ gl (V-Vy——A)+—V-Vy

I5vor ' ol-a Pe, Y) "6
+ 0 (v -Vx — Pielvxvy) + (Sg% +V. Vx) — (S;;IAX
= 517730 + &%Rl + %RQ + 0°R3 + Ry + 0*T' R, (2.42)
where:
Ro:= 95, 9 (2.43a)
ot

SIn this section, in order to emphasize the dependence of the solution of equation (2.21) on §, we shall
use the notation 7°(x, t) as opposed to T'(x,t) that we have been using in the previous section.
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Ri:=v(y,7)-Vy — P—elAy (2.43b)
Ry :=V(x,t)-Vy (2.43¢)
Rs:=v(y,7)-V iVV (2.43d)

3:= V(Y 7) Ve — 5V Vy :

0
Ry:= 5, ET: +V(x,t)-V, (2.43e)
1

R5 L= ——Ax (243f)

Pel

The structure of the multiple scales expansion depends upon the values of v and . We shall

present the detailed derivation for the simplest case, namely for a = —% andy=1—a= %
and then explain how to proceed with the other cases. Throughout the calculations that

follow we shall use both vector notation as well as the summation convention.

2.4.1 The Case aa = —
2.4.1.1 The Case v =

Nl N

In this case £° becomes

1 1 1 1
£§ = 5—§£0 + 551 + 5552 + £3 + 5§£4 (244)

where:

£0 L= Ro + Rl (245&)

,Cl L= RQ (245b)
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Ly:=TRs (2.45¢)
,Cg L= R4 (245d)
£4 L= R5 (2456)

Upon using (2.44) we write equation for (2.40) in the form:
1 1 1 1 S
5_§£0+5£1+52£2+£3+52£4 T°(x,t) =0 (2.46)
2

For these particular values of a and y it is enough to consider an expansion of the following

form:

T(s(xv t) ~ TO(Xv tv Yy, T) + 6% Tl(xv tv Yy, T) + 5T2(X7 tv Yy, T)
+ 0 Ty(x,ty, )+ P Tu(x,ty, T) + (2.47)

where the functions 7}, = 0,1,2,... are periodic in y and 7. We substitute (2.47) into
(2.46) and, by equating the coefficients of powers of § to 0 we obtain the following sequence

of equations:

O(6%): LoTy=0 (2.48)
OW0™"): Lo+ L,Ty=0 (2.48b)
O073): LoTo+LiTi+ Ly Ty =0 (2.48¢)

O(l) . ,C() Tg + £1 T2 -+ £2 T1 + ,Cg T() =0 (248d)
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(SIS

O((S )I £0T4+£1T3+£2T2+£3T1+£4T0:0 (2488)

Let us now analyze equations (2.48). We first observe that lemma 1 applied to the O(6 %)
equation gives that the first term in the expansion is independent of the fast variables:

To = To(x, t). Consequently, the action of £y to Ty gives zero:
LyTy=V-VyTy=0 (2.49)

Thus, the O(6~1) becomes Ly T} = 0 and we conclude that the second term in the expansion
is also independent of the fast variables, T} = Tj(x,t). Using now the fact that £, 7o = 0
the O(6~2) simplifies to:

LoTo+ LyTh =0 (2.50)
The solvability condition for this equation is immediately satisfied since

(L2 Ty) = ((V(y, T)-Vx — Pielvxvy) To(x,1))
= (v(y.7)) - VxTo(x,t) =0, (2.51)

on account of the assumption that the velocity field has mean zero over the periodicity cell.
We can solve (2.51) through separation of variables. To this end, we look for a solution in

the form
T2 (Xv tv Yy, 7—) - X(Xa ta Yy, T) ’ VXTO (X7 t) (252)

Substituting now (2.52) into (2.51) we obtain equations for the auxiliary vector function

x = {x}l, 7. It is the unique mean zero solutions of the cell problem:

‘CO X(Y7 7—) = _V(Y7 7_) (253)

"In the terminology of homogenization theory x is the corrector field.
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We proceed now with the analysis of the O(1) equation. The solvability condition reads:
<[,1 T2 + £2 T1 + £3 T0> =0 (254)

Since T7 is independent of the fast variables and v is incompressible the average of the second

term in the above equation vanishes. Thus, we have:

—(L1Ty) = —(V-Vy(x- V)
_ <%>%

N / 8yj 81’[

- 0 - <£3T0>

oT,
= 5, a—t‘) +V(x,t) - ViTo (2.55)

In the above calculation we have used the fact that, since x(y, 7) is periodic in y, the average
of its gradient is zero. Consequently, the equation for the first term in the expansion is a

transport equation:

0Ty

S5t

+ V(x,t)- VT, =0, (2.56)
together with the initial condition:

To(x.t) = Tin(x) (2.57)

This result was to be expected: Since the global Peclet number is an O(§~1~%) quantity, the
O(1) effect of V 4 §*v is that of transport due to the mean flow.

The equation for T3 becomes:

(9)(5 8To 8T1
LoTy=-V,——— —v— 2.58
053 J 8yj 31‘1 K al‘l ( )
We solve this equation through separation of variables:
8TO 8T1
Ts = t — ,T)—— 2.59
3 U(Xa 7Y7T) al'l + X(y; T) 3:(;1 ( )



with

Loo =—=V(xt)-Vyx(y,7)

We remark that o is a function of both the fast and the slow variables.

Now we study the O(¢ %) equation. The solvability condition reads:

(L1 Ts+ LoyTo+ LTy + L4To) =0
We shall treat each term in (2.61) separately. We have:
<£1 T3> = <V . Vy (X . Vle + o - VxT0)> =0

using the same argument as in (2.55). The second term in (2.61) gives:

2
1) = (Vv Y oV ) x VT
82TO 2 8Xl 82TO

(v Xl>8x]-83:l B P—el 8—y] O0x ;0
(v 1) 9°T,
i Xi axﬁxl

45

(2.60)

(2.61)

(2.62)

(2.63)

The third and fourth term in (2.61) are independent of the fast variables and they immedi-

ately give:
o0T;
(L Th) = S, 8—; +V(x,t) - ViTh
and
(LaTy) — ——— AT
440/ — Pel x40

Putting everything together we obtain the equation for 77 (x,t):

OTi(x, 1)

815 Pel

V1) - ViTi(x8) = —— Vi (T + K(x,1)) - ViTo(x. 1)) |

(2.64)

(2.65)

(2.66)
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together with the initial condition:
Ti(x,t=0)=0 (2.67)
The enhancement in the diffusivity is defined as:

Kij = —Pe; (vi x;) (2.68)

and the effective diffusivity is:
K =T+K (2.69)

We have already obtained the effective equations for the first two terms in the expan-
sion. However, in order to obtain the necessary estimates that will enable us to prove the

homogenization theorem we shall need to compute T;. We have:

LoTy = — (LiT5+ LT+ LTy + L4Th)
8Xl 8T1 80’[ (9T0 2 8)([ 82To
= V= —-Vi————— vy — (v; - 2.70
/ 8yj 8$l / 8yj 81’1 Uil <,UJ Xl> Pel 8y]’ 8@8%- ( )
We look for solutions of (2.70) in the form:
0%T, oTy 0Ty
T, t =Y, t — t — 2.71
4(X7 Y T) ¢Jl(Y7 T) 3@8@- + Ul(xa Y T) 81‘[ + pl(xa 'Y T) al'l ( 7 )

Substitution of (2.71) in (2.70) gives the equations that the auxiliary functions v;;, p; satisfy:

2 Oxi .
Lovj = —vixi+ (vjxi) + P—elﬁ—yj’ Jl=1,.,d (2.72a)
80'1
Lop = —Vj(x, t)a—(x,t,y,T), I=1...,d (2.72Db)
Yj

and o is given by the solution of equation (2.60). We note that the right hand sides of the
above equations have zero average and thus equations 2.72a and 2.72b have smooth and

unique, up to a constant, solutions. We ensure uniqueness by requiring the solutions to have
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ZEero average.
From the multiple scale expansion and the solvability conditions we obtained a solution

to original initial value problem (2.21) which has the form:

T(x,t) = To(x,t)+ 6% To(x,t) + 6 Tu(x, %%)
8 Ty(x t,%, )+ 0 Ti(x t,%,é) YT,
— Tl t) + BT )+ O ) 5
+ & wﬂmﬂ5i£a+mﬁiawﬂ%%+m(,aa)gg)
+ Torr(x,1), (2.73)

where Ty(x,t) and 71(x,t) are given by (2.56) and (2.66), respectively, together with the
corresponding initial conditions.

Our goal now is to show that T, is indeed small in the appropriate norm. We shall
accomplish this by obtaining a parabolic equation for T, and then applying lemma 2.2 to

this equation. To this end, we apply the operator £° to (2.73):

0="L0T° = LOTy(x,t)+ 67 LOTy(x, 1) + 0 L0 To(x, ¢t

(]
rolco 4~

X
757

| ~

+ 82 LOTy(x,t, )+

bl

?

S| MW o
(o9
"’|°°|H-?>?w

+ 2L Ty(x,t, )+ LT, (x,1) (2.74)

For the initial conditions we have:

1

X
Tin=Tf—0 = To(x,t)|t—o+ 02 T1(x,t)|s—0 + 6 Ta(x, 1, 5

)] e=0

)|t O+Ter7’(x t)|t =0

)li=o0

>
oles ~+

+ 0°Ty(x

- ﬂn + 5T2|t:0 + 55 T3|t:0 + 52 T4|t=0 + Terr|t=0 (275)
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From the above equations we obtain an initial value problem for T,

0T, — — (55 To+ 63 LOT, + 6 L5 Ty + 63 L0 Ty + 62 £° T4> (2.768)

Terr(X, t — 0) —_ — (5 T2|t:0 + 5% T3|t=0 + 52 T4|t:0> (276b)

Let us study each term in the right hand side of (2.76a) separately. We have:

)70

1 1 .1
= 90 2v. 2 2.
5 ok (2.77)

LT, = (53+5l

where equation (2.56) was used. The action of £° on T} gives:

1
LT = (L3+63v-V——207|T)
Pel
0°T, 1
— —AT . Sy 57_ . T —
Pel o <,UZ XJ>81’Z'8£EJ' - VoV !

(2.78)

In deriving (2.78) we used (2.66). Now we proceed with the next term. We have to use the

fact that x depends on x and ¢ through y = % and 7 = éi%:

1 1 T
LT = ((5—§£0 + 551 +0~ 252 + L3+ 5254) xi(y, T)—0> |y:§,T:LS
52

&vl
— 1 aTO 8T0 8)([
= Tog - (Loxa)l, :%’T:j§+5 i B 8y]|y__T fg
0T 2 0xy 02T, 82T,

77— (v — =) e+ Sy + V; L
o O10z; (vj X Pe Dy, |y73’775_% - gXl@xy@t * ”ch‘?:vlaarj |y*3”’a_%

1 1 0T
T ) [ (279

J 52

In computing £° Ty, we have to pay attention to the fact that o depends on both the fast



and the slow variables. We have:

49

1 (9T 8T 1 (9T 8)@ 8T0 80’[
5T = ! 0 _x t - ! x .t
LT 57 (8 (Loxz) + B2, —(Looy) |y, 5_% + (SVJ B2, ayj + Bz, 8% ly— $r=tr
Loy P (o 20 _ 2 0o
0x;0x; Xt Pe 0y, 81718% Pe; 0y;
i 9Ty v.@_i 00 )|
ox; |’ Or;  Pe 0x;0y; y:%’ﬁé_%
(92T0 80’[ 8T0 80’1 8T0 (92T0
RC L T T P et Pl AL v
82T1 0*T
* SgXl@mJ@t Vi Xl@x Ox; y=3 5 :fg
1 1 0Ty 1 0%T, 1 0Ty
+ 0 (_ﬁ&vl&vi Xe— E&L’l@x? o Pe 01, AXUZ) |y:%ﬁ:§ (2.80)
We compute now £ Tj:
1 (0T, 0T 0°T,
B _ 1 0 0
£ T4 - 5_% (8.Tl (‘CO Ul) a Z(CO pl) 8 la (£0 ¢Jl)) |y=%,T:6L%
i lv 8T1 80'1 8T0 8pl 82T0 8%1 |
) 81‘1 8yk 81’[ 3yk 8x18xj 8yk y= }‘; T:‘;L%
L L P (200 O dn 2 Pa
5% 0x;0x; vi i Pe; 0y; ox; Ui Ox;  Pe 0x;0y;
L O (20 O () Op 2 O
O0x;0x; ip= Pel 8% ox; j@xj Pe; 0x;0y;

3 .
+ (S, alaawgt v Sg%gﬁ v gz gi +V; m%
 nh o i
3

+ i (Sg%+v %8377:0@“) ly=2+ ;e
+ 5%(—%% o] — Pielg—i Aoy

3 4
ST LR T )

Now we are ready to compute the right hand side of (2.76a).

Using the cell problems for
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the auxiliary functions x, o, ¥ we shall show that the right hand side of (2.76a) is an O(J)
quantity. In order to simplify the notation, we denote the right hand side of (2.76a) by RHS

and we write it in the following form:
RHS = —§ 2 Fy — Fy — 62 Fy — § Fy + 0(6) (2.82)

Only £3Ty and £° Ty contribute to the O(5~2) term:

r t 0T
Fi(x,t) = V(gaé—%)‘VT0+8—:E(;(£0X1)|y=§,T:

= (v(y,7)+ Lox)) |y:%7T:L3 - VT,
§2

— 0, (2.83)

_t_
3
§2

on account of the cell problem for x. £° Ty, £° Ty and £° Ty contribute to the O(1) term:

0Ty 0x; 0T 0Ty
Bx,t) = (v.-vr4+v,202x 2 .
h(x, 1) (V \Y% 1+V(9wl 9, + 2, (Loxz) + e l(£001)> |y:3’T:5_%

oT
v-VT + —1(50XZ)> [

( 53
aTO 8Xl 8T0
(V7 8Il ayj axl (ﬁ()o-l)) |y:%’T:6L%
: (2.84)

Now we consider the O(d %) term. As before, it is understood that we evaluate the expression

aty =% 7= JL% and we will not repeat it:
82T0 82TO 2 8)([
Fy(x,t) = —(viy; |
3(x,1) v XJ)@ 0T + 0x;0x; ( IXUT P 8y]>

0Ty 0oy 0T 0x; oT, Ty 0T,
+ V (8:@ 9, * o 8%) + (8@ (Loor) + o l(ﬁopz) P, ——— (Lo )

8T1 8)([ 8T0 aO'l
= Looi+V T Lop+ V2
8@( 001+ ]8 >+8xl( 0P+ ]8?;]')

82TO 2 aXl
92,0z, ([’0 ¢jl(y77') — (v Xj) +UiX1— ﬁ({?—yj>

— 0, (2.85)

where the cell problems for o, p and 1 have been used. The next term in (2.82) is the first
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nonzero term:

1 82T(] 82T(] 82T1 2 8)([
Bt = _P—eZATl S Ox;0t Vi 0x;0x; * 0x;0x; (Uj X P_eﬁ—yj)
L O (200 0Ty ([ O 2 Do
O 0r; \ 7 "7 Pe 0y, Ox; \ '0z;  Pe 0x;0y;
8T1 (90'1 3To 8pl 32T0 31/le
Vil s—5—+ —=— — 2.86
LG (8xl OYx + 0x; Oy + 0x;0z; Oyx, (2.86)

Since the two components of the velocity field as well as the initial conditions are assumed
to be smooth, the first two terms in the expansion T and 77 are smooth. Moreover, the
solutions of the cell problems are also smooth functions. Consequently, Fy(x,t) is a smooth,

bounded function. The initial value problem for T,,, becomes:

LT, = —6 Fy(x,t) in R? x (0, 00) (2.87a)

Tor(x,t=0) =35f(x) onR? (2.87h)

By applying now lemma 2 to the initial value problem (2.87) we obtain the estimates

t
||Terr||L°°((0,t0);L2(Rd)) S ) (1 + S—O) C (288&)
g
1 S t
VT err| | 22((0,t0) xR ) < 51\/Pel (?" +1+ §°) C (2.88b)

for every to > 0. Let us now define the function 7% := Ty +§ %Tl. From the above estimates
on 1., together with the triangle inequality, we can estimate the difference between T and

T, in the X := L>((0,t0); L?(R?)) norm, for sufficiently small §:

||5T2 + 5% T5+ & Ty + Terr||X
< O||Tal|x + 03 ||Ts||x + 82| Tu|x + || Torrl|
< Ci6+0(9) (2.89)

17° =T
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Combining now (2.56) and (2.66) we obtain an equation for T

Tl’(s 1 1 1
Sg% +V(x,t) - VT = 507V - (K*-VT") 4+ 0(57) in R? x (0,00)  (2.90a)
l
T (x,t = 0) = Tin(x) on R? (2.90b)

Neglecting now higher order terms we obtain the effective equation:

oT — 1
a + V(X, t) . VT = Pel

S, 53V - (KK* - VT) in R% x (0, 00) (2.91a)

T(x,t = 0) = Tjn(x) on R? (2.91Db)

Remark: From the above analysis we derived an effective advection—diffusion equation
with a constant effective diffusion tensor which is independent of the mean flow. The effect
of the mean flow upon the effective transport appears as a higher order effect. Thus, writing

T5 in the form:

TQ(Xa Ly, T) = X(Ya 7—) : VXTO(Xa t) + TO(X7 t) (292)
and augmenting the expansion (2.47) with the O(62) term T we obtain, from the solvability

condition of the O(d) equation, the following equation for T':

872 (X, t)

5 +V(x,1) - VTa(x,t) = =V - ((v@ x) - VTi(x,1)) = V- ({(v@ a)(x,t) - VIy(x,1)),

(2.93)

with zero initial conditions. Proceeding as before, we can obtain an equation for 729 :=
T(]‘l—(s%Tl +(ST21
1

2,0 1
or +V(x,t) - VI* = —§2 V- (K*- VT?%) + Lsv. (B(x,t) - VI*®) + 0(8) inR* x (0, 00)

J yp—
g ({% Pel Pel

(2.94a)
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T*(x,t = 0) = Tin(x) on R? (2.94b)

with ¥(x,t) = —(v ® o)(x,t). We emphasize that o depends on the macroscopic variables
x,t through the mean flow which appears on the right hand side of the cell problem for
o. Thus, we see that even weak mean flows, compared to the fluctuations, contribute to
the structure of the effective equations, to higher orders. Continuing with this process, one
can obtain higher order corrections that will involve higher order derivatives of the effective

passive scalar field. We shall not pursue this issue further.

2.4.1.2 The Case 7 < %

Now we wish to present the derivation of the effective equation as well as the cell
problem for v # 1 — . The presence of the operator 67 Ry will lead to terms of the form
5%’7720 T;, 7 =0,1,... and we need to augment the expansion (2.47) with additional terms
that will lead to well posed O(d %_7) equations. Consequently, we need to introduce terms of
the form §°7" Aj, j=0,1,.... One can check, however, that this expansion will again lead
to ill-posed equations unless more terms are introduced. The general form of the expansion

that we shall need has to be augmented with terms of the form:
62 YAy + 6% VA, £ 65 YA+ By + 8T IB 4+ 8" By + .. (2.95)

the functions A;, B;, i = 1,2, ... being functions of both the fast and the slow variables. A
discussion of a related problem is presented in [14, pp. 262—265]. For brevity of exposition
we shall omit the details and present the derivation of the homogenized equation for the case
where ~y takes integer values. In this case, no further modification of (2.47) is necessary.

Thus, we set v = 1. We shall further assume that the average of the velocity field over
the spatial period is zero, (v), = 0, the spatial average being defined in equation (2.19a).
This assumption is not necessary and we make it in order to simplify the calculations. At
the end of this subsection we shall describe briefly how to proceed when this assumption is
removed.

The equations (2.48) are still valid for the following differential operators:

,C() L= Rl (296&)
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Li:=Ro+Rs (2.96b)
Ly:=Rs (2.96¢)
Ly:=TRy (2.96d)
Ly:=TRs (2.96€)

The main difference from the previous case is that £y is now an elliptic, as opposed to
parabolic, operator and the fast time 7 enters merely as a parameter. Consequently, a
variant of the solvability condition given at lemma 1, valid for elliptic operators with periodic

boundary conditions has to be used. Namely, the inhomogeneous equation

Rif(y,7)=9(y,T) (2.97)

has a unique, up to a constant solution if and only if the average of g over the spatial period
is equal to zero: (g), = 0. Moreover, the only solutions to the homogeneous equation are
constants with respect to y but they can depend on 7.

With the above discussion in mind, we proceed to analyze the 0(5’%) equation. From
the solvability conditions we conclude that Tj is independent of y: Ty = To(x,t, 7). Hence,

the solvability condition for the O(671) equation becomes:

0Ty

%o =

0 (2.98)

from which we immediately deduce that Ty = Ty(x,t). Now the O(6~1) becomes Lo Ty = 0
and we conclude that the second term in the expansion is independent of y: 71 = Ti(x,t, 7).

The solvability condition for the 0(5’%) equation gives:

(L1 Ty + L2 Tp)y =0 (2.99)
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Consequently:

0Ty

%G =

—<V>y . VXTO =0
and we conclude that, 71 = T1(x,t). The equation for 75 becomes:
£0 T2 = —V- VXT() (2100)

We solve (2.100) through separation of variables. We look for a solution in the form (2.52)
and we obtain an equation for the corrector field x which is an elliptic equation in y with

periodic boundary conditions in which 7 enters as a parameter:

1
v-Vyx — =—Ayx =-V 2.101
yX Pe, yX ( )
We emphasize that equation (2.101) is well-posed because we have assumed that the spatial
average of the velocity field vanishes. We ensure uniqueness of solutions by requiring x to
have zero average over the spatial period cell.

We now analyze the O(1) equation. The solvability condition reads:

0 0
<(Sgﬂ +V(th)'vy> X - ViTy+v-V,T1 + (Sg_

5+ Vi) vx) To)y =0 (2.102)

Since x and v have zero average in space and x is periodic in space the first two terms in

the average vanish and we are left with:
0
Sy ET +V(x,t)-Vx | To =0 (2.103)

This is, as expected, a transport equation for Tp, together with the initial condition Ty(x,t =
0) = Ti,. We remark that the fact that we have set (x), = 0 is not necessary for this
derivation: We could take the average in time of the equation that results after averaging in
space.

We can now solve the equation for T5 through separation of variables and obtain (2.59).
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The cell problem for o reads:

Looi= Ve y.7) = 5,50 11, (2.104
J

We shall obtain an equation for 7 from the solvability condition for the 0(5%) equation:

0 2
{ (Sg 5. TVxt) vy) (x- VT +0o-VTj) + (V(y, T) - Vi — ﬁvxvy) X - VxTo
l
0 1
+ (Sg ET; +V(x,t) - Vx> Ty — P—eleT0>y =0 (2.105)

Consequently:

) 0
S, —(x - ViTi + o - VT) + (sg—

1
g 8’7’ 8t + V(X, t) . Vx) T1 = —AXTO — V . ((V x)nyTo)

Pel
(2.106)

We now take temporal average (which is defined in equation 2.19b) to obtain an inhomoge-

neous transport equation for 7;:

OMY) | v ) - VaTyx, 1) = —— ¥ - (T + K(x. 1)) ViTo(x. 1)) , (2.107)
ot Pel

together with the initial condition:
Ti(x,t) =0 (2.108)
The enhancement in the diffusivity is defined as:
Kij = —Pe; (v; x;), (2.109)
and the effective diffusivity is:

K*=T+K (2.110)

In the above derivation we have used the fact that in order to compute the total average we
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can first take the spatial average and then the temporal average:

() = (Ol = (C)rdy (2.111)

3

Proceeding now as in the case v = 3 we conclude that the homogenized equation is again

(2.23) with the same formulas for the effective diffusivity and the corrector field satisfying
the elliptic cell problem (2.101).

Let us now discuss what happens when (v), # 0. The O(6~2) and O(6%) equations
give us, as before, that Ty = Ty(x,t) and Ti(x,t, 7). However, the solvability condition for

the 0(5_%) equation gives:

oT
Sg 5—7'1 = —(v)y - VxTo

We solve this equation by setting Ty(x,t,7) = Th(x,t) 4+ T1(x,t,7) with
A 1 T
Ti(x,t,7) = — (—/ (V)y(9) ds) - VT (2.112)
Sg Jo
Now the equation for T5 becomes:
,C() T2 = —(V — <V>y) : VXT() (2113)
We solve this equation using separation of variables to obtain:
To(x,t,y,7) = x(x, t,y.,7) - VTo(x. t) + To(x, t,7) (2.114)
and the corrector field x satisfies the cell problem:

B = =V = (V),) (2.115)

V- Vyx -
Now the solvability condition for the O(1) equation gives an equation for Tg(x, t,7):

T 1

Symm = =(v)y - VaT1 = Vs ((S—g<v>y(7) /0 "), (s) ds) -VXTO) Y LTy (2.116)

The solvability condition for this equation gives the transport equation for Ty;. We remark
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that, since (v),(7) is a periodic function of 7, we have:
((vi)y(7) /OT(vj>y(s) ds); =0, i,57=1,...d (2.117)
Now we can solve for Tg to obtain:

To(x,t,7) = p(7) - ViT1 + Vy (Si (/OT(¢>y(s)ds) -VXTO) (2.118)

g

where p(7) := — (s%, Jo (vV)y(s) ds) and ¢(x,7) == v(x,7) ® p(T).

The equation for T3 becomes:

0 _
Lo == (5,554 V- Vyx ) - Vo = (v = () VoTs = V(6 = (6),) - Vi)
(2.119)
The solution of this equation is:

Ts(x,t,y,7) = - VyTy + X - VaL'1 + Vi (0 - ViTp) + Ta(x,t,7) (2.120)

And the corrector fields 1, o satisfy the following cell problems:

1 ox
1
Vyo - ——Dyo = (¢ - (@),) (2.121D)
Pel

We proceed with the O(d %) equation. The solvability condition for this equation gives us an
equation for Tg(x, t,7):
Ty

*or =

—<V X>y . VXTO — <V p>y . VXT() — p£3 VXTO — £3 Tl — £4 T() (2122)

Taking now the temporal average of this equation we obtain the equation (2.107) for T7.

Continuing now as in the previous cases we obtain the effective equation for T = Tj + & 2T
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2.4.1.3 The Case v > 2

. We now discuss the case when v > 1 — a. For brevity we shall restrict ourselves to

the case v = 2. The operator £’ takes the form:

1 1 1 1 1
L= SR+ gLot 5LuH 7Ly + Ly + 07 Ly (2.123)

where:

Ly:=Ta (2.124a)
L1:=TR, (2.124b)
Ly:=TRs (2.124c)
L3:=TRy (2.124d)
Ly:=TRs (2.124e)

Substituting now the expansion (2.47) into the equation £°7T° = 0 we obtain the following

sequence of equations:

06 %: RoTo=0 (2.125a)

0(5_1) . R() T2 + £0 T1 + £1 T(] =0 (21250)
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0(57%) . Ro T3 + ﬁ(] T2 + ﬁl T1 + £2 TO =0 (2125d)
O(l) . Ro T4 + ,C() T3 + £1 T2 + £2 T1 + ,63 TO =0 (21259)
0(5%) . R() T5 + EO T4 + ,Cl Tg + £2 T2 + ,Cg T1 + £4TO =0 (2125f)

From the O(67?) equation we get that T is independent of 7: Ty = Ty(x, ¢, 7). In order for
the O(0~2) to be well posed we need:

<£0 T())q— =0= <£0>7— To=0 (2126)

where

1

(Lo)r := (v(y,7))r - Vy — Paly (2.127)

Clearly, (2.127) is a uniformly elliptic operator and consequently (2.126) implies that To =
To(x,t). The 0(5’%) becomes Ry T} = 0 from which we deduce that T} = T} (x,t,y). Since
Ty is independent of y the O(67!) equation becomes:

RoTo+ LoT) =0 (2.128)

The analysis for this equation is the same as for the 0(5_%) and we conclude that 7} =
Ti(x,t) and Ty = Th(x,t,y).
The O(62) equation has a solution for Ty if and only if:

(LoTo+ L1Ty + L2 Tp)r =0 (2.129)
or:
(Lo)r To = —(v(y.7))r - VxTo (2.130)

The solution to this equation has the form (2.52) Ty(x,t,y) = x(y)-To(x, t), with x satisfying
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the following, cell problem:

A = —(v(y. 7)), (2.131)

VT Vax =

We remark that (2.131) is a well posed elliptic equation with periodic boundary conditions

since the spatial average of the right hand side is 0. Now we can express T3 in the form

T3(X7t7y:7—) = T3(XataY7T) +T3(X7t7Y) (2132)
with
~ 1 T
Ts(x,t,y,7) = —/ o(x,t,y,s)ds (2.133)
Sy Jo
where:
d)(xv tv Yy, 7—)) - _(‘CO T2 + 'CQ TO)
— —(v= () (Vyx —T)- VyT, (2.134)

Now we proceed with the O(1) equation. The solvability condition reads:
(LoTs5+ L1 To+ LTy + L3Th), =0 (2.135)
This is an elliptic equation for Tj:
(Lo)r Ty = —(Lo Ty + L1 To + Lo T1 + L3 To)r (2.136)
and it is well posed if and only if the spatial average of the right hand side is zero. We have:
(Lo Ty)r)y = (Lo Th)y)r =0 (2.137)

By interchanging the order of taking averages we also obtain that ((£;13).), = 0. Using
now the fact that T} is independent of the fast variables and that the spatiotemporal average

of the velocity of field vanishes we obtain ((L;71).), = 0. Thus, we obtain that in order for
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(2.136) to be well posed we should have:

dTy

51

+V(x,t)-VIy =0, (2.138)
which is, as expected, the transport equation for the first term in the expansion. We can now
solve (2.137) for Ty but since we won’t need this for the derivation of the equation for T} we
shall omit the details. Then, T} can be written as Ty(x,t,y,7) = T4(x, ty,7)+ Tu(x,t,y)
with:

1 T
T4(X./ t./ Yy, 7') = S_ / (»C() Tg + £1 T2 + ﬁg T1 + ﬁg To) dr (2139)
g9 J0

The O(87) equation can be solved for T provided that:

<£0 T4 + ,Cl T3 + [,2 T2 + ,Cg T1 + ,C4 T())T =0 (2140)
which leads to:
(Lo)r T4 = —(Ly T4 + L1 T5+ LoTo+ LT+ L4 Tp), =0 (2.141)

The solvability condition for (2.140) will give us the equation for 7}: by taking the spatial
average of the right hand side and interchanging the order of spatial and temporal averages
we obtain that ((£oTy)r)y = ((£1Ts),), = 0. We remark that in order to obtain this result
we don’t need the specific form of neither T3 nor T but only the fact that they are periodic
iny and 7.

The third term gives:
(L2 T2)r)y = V- ((vX) - VT) (2.142)

The last two terms are independent of the fast variables and consequently they are equal
to their average. Putting now everything together we obtain equation (2.66). The same
formulas for the effective diffusivity hold, the difference now being that the cell problem is

the elliptic equation (2.131).
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2.4.2 The Case a # —%./ vy=1-«

Before discussing the general case of a € (—1,0) let us review what has been accom-
plished so far. For a = —% we used a multiple scales expansion, treating fast and slow
variables as independent, in order to derive a sequence of equations for the various terms in
the expansion. We used the O(§717) and O(§?%) equations to show that the first two terms
in the expansion are indeed independent of the fast variables. We then used the solvability
conditions for the higher order equations to derive the effective equations as well as the cell
problems. We then used the higher order terms in the expansion in order to obtain the
necessary estimates that enabled us to prove the homogenization theorem.

The highest order equation that we had to study was the O(6'7*) equation from which
we obtained the effective equation for the second term in the expansion and the explicit
expression for the highest order term that we had to consider in order to obtain the necessary
estimates. Needles to say, the higher order equations that we neglected are not being satisfied,
since they involve terms in the expansion that have already been determined.

The structure of the expansion in the general case should be such that all equations
up to O(6'%) be well posed. We may also need to consider also higher order equations in
order to be able to obtain the error estimates. The general form of the expansion, for the

case a € (—1,0) with a # —L with I,m € N is:

p+1

k k k
T6 ~ Z 5n(1+a) B, + Zél—l—n(l—l—a) r, + ZéQ—l—n(l—l—a) A, + Zé(l—na) A, (2143)
n=0 n=0 n=0 n=1

with A,,, B,. I',, A, being functions of both the slow and the fast variables. The values of
the integers k, p depend upon the value of a. This will become more clear after we present
the equations of various orders. Our goal is to obtain an equation for the first two terms
By + 617 By. Substituting now (2.143) into (2.40) with £° given by (2.42) withy =1 — «

we obtain the following equations:

OV LB =0, n=1,...,k (2.144a)

O™ : L1By=0 (2.144b)
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O(én(1+a)+a) . EO T, + L1 Bn+1 + Ly B, = 07 n = 1,/ e k (2.144(3)
O): LoA1+LiTo+L3By=0 (2.144d)
O "™): LoApn+ L1 Ay =0, n=1,....p+1 (2.144e)

O™+ s Lo Ay + L1Tnia + Lol + L3 By + L4 By =0, n=1,... k (2.144f)

We see that the equations for A, decouple from the rest of the equations. This is nat-
ural since the number of A, terms that we shall need is different than the number of the
B,, I'y, A, terms. More specifically, as & — 0 we need to add more A,, terms. On the other
hand, the a — —1 limit requires more B, I',,, A, terms.

Let us now solve equations (2.144). The O(s~D+n+ha) terms imply that the the
functions B, are independent of the fast variables: B, = B,(x,t),n =1,...k. The O(§7})
equation is trivially satisfied. Since the functions B,, are independent of the fast variables

the O(6"1+)+) equations become:
LoTn+ Lo By =0 (2.145)

We solve these equations through separation of variables to obtain I, (x,t,y,7) = x(y,7)
VB, (x,t) where the corrector field x satisfies the cell problem (2.53).

The solvability condition for the O(d') equation gives the transport equation (2.56)
for By. Now we can solve for A; to obtain Ag(x,t,y,7) = a’(x,t,y,7) - VIo(x,t) where
o' satisfies the cell problem (2.60). We can then proceed to solve the O(§*1~™)) equations.
The final result is:

A1 (x,t,y,7) =" (x,t,y,7) - VAL(X,t,y,7T) (2.146a)

n

0
Loop = —Vi(x, ) =

—L(x,t,y,7), 1=1,...d 2.146b
gy, XY 1= L (2.146D)
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Now we are ready to solve the O(6™+1D(1+2)) equations. From the solvability conditions we

get the inhomogeneous transport equations for B,:

LDV V() = ¥ (24K ) V). @147

with Fij = —Pel <Ui Xj>

aXl 8BTH-I

2 8)@ 823n
LoA, =-V,— —lvixi—(vjx1) — =— = 2.148
0 T Oy; Oz (UJ xe = {vixi) Pey 8yj) 0x;0x; ( )
The solution of this equation is:
0*B 0B i1
A, (x,t, = Yy, T)——— + 0%(x, t nt 2.149
(X/ Y, 7—) ¢jl(y/ T) 8$181’j + 0 (Xv Y 7—) 8-Tl ( )

with 7 given by equation (2.72a).
Now we can obtain the effective equation (2.23) for T := By + § By. The higher order

terms can be used in order to obtain the necessary estimates.



CHAPTER 3
Strong Mean Flow

3.1 Introduction

In the previous chapter we discussed the nondimensionalization of the advection-
diffusion equation and we identified the relevant local and global nondimensional numbers.
We also derived the effective equation in the case where the mean flow is weak compared
to the fluctuations. We saw that, to leading order, the effective diffusion tensor is constant,
independent of the mean flow. The mean flow only determines the transport velocity at the
large length and time scales. As we discussed in the first chapter, this result is not consistent
with measurements and direct numerical simulations of passive tracers in the ocean and the
atmosphere.

In this chapter we shall derive the effective equations for mean flows which are equal
in strength with the fluctuations and explore the situation where the mean flow is stronger
than the fluctuations. In section 3.2 we shall present the homogenization theorem for the
strong mean flow case and make various comments. We shall see that in this case the
effective diffusion tensor is a function of space and time and that this results, apart from an
enhancement in the diffusivity, to an effective drift. In section 3.3 we compute the effective
diffusivity for two types of velocity fields and discuss their physical significance. The proof
of the homogenization theorem is presented in section 3.4.

An alternative approach to the problem of periodic homogenization for advection—
diffusion equations, namely the use of mean Lagrangian coordinates, is presented in section
3.5. The formalism developed in this section is the starting point of our asymptotic and
numerical study of the homogenization problem for mean flows which are stronger than the
fluctuations. This material is presented in section 3.6. Finally, we close this chapter in
section 3.7 with a description of the numerical method that we are using in order to solve

the cell problem .
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3.2 Statement of the Main Result

We pose the problem in a slightly different setting than the one used in the previous
chapter and consider the advection—diffusion equation (2.1) with a velocity field u active on
two length and time scales and periodic in the fast variables %, § The characteristic velocity
is denoted by V; and we identify the mean flow with the average of u over the period cell.
We also use the notation S, Pe for the nondimensional numbers with the understanding that
they are defined with respect to the spatial and temporal period of oscillations. Our goal

now is to derive an effective equation that governs the evolution of T'(x,t) for small §. We

have the following theorem:

THEOREM 3.1 Let T°(x,t) be the solution of

OT?(x,t) x t 5 J 5 o
S T + u(x,t, 5 g) VT (x,t) = ﬁAT (x,t) i R* x (0, 00) (3.1a)
T°(x,t = 0) = Tj(x) on R, (3.1b)

where u 1s incompressible and smooth and the initial conditions T, are also smooth. Further,

let V(x,t) := (u(x,t,%,%). Then, for every to > 0 and § sufficiently small there exists a

constant C', independent of 0, such that

t
1T° = T oo 0 101512 R aY) < 07 (1 + go) C(Pe, S) (3.2a)
S t
IVT? = VT | 2 o.t0) xr) < 5%\/Pe (5 +1+ §°) C(Pe, S) (3.2b)

where the average of TY T = (T*°) satisfies the following initial value problem:

OT(x,t)
ot

J

S +V(x,1)- VT(x,t) = EV S(K*(x,t)- VT (x,t) in R x (0,00) (3.3a)

T(x,t=0) = Tin(x) onR? (3.3b)
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where the effective diffusion tensor is:

}C;}(X, t) = 5@' + K:Z'j(X, t)

= 0 — Pe((ui — Vi) x;) (3.4)
and x = {Xj};l:l satisfies the cell problem:
ox 1
S E + ll(X, Ly, 7—) ’ VyX - ﬁA}’X = —(U(X, Ly, 7-) - V(Xa t)) (35)

where the spatial differential operators are with respect to the auxiliary variable y.

We remark that since our goal is to obtain a coarse grained description for the evolution of
the passive scalar field only the average of T is of interest to us.

The following corollary is an immediate consequence of the above theorem:

COROLLARY 3.1 Let T°(x,t) be the solution of (2.21) with a =0, v =1 and V, v being
smooth and incompressible velocity fields and Ty, is also smooth. Then for sufficiently small
§ there exists a constant C independent of § such that estimates (3.2) hold. T(x,t) satisfies
(3.3), the effective diffusion tensor is given by (3.4) and the cell problem is:

ox 1

So- T (V) +v(y, 7)) Vyx = 5o Byx = —v(y,7) (3.6)

That the case 7 = % corresponds to the case v =1 — a = 1 and the local Strouhal number
is an O(1) quantity. The cases v > 1 and v < 1 for o = 0 are similar to the cases discussed
in the previous chapter for weak mean flows and will not be discussed further. Since we
consider the case 7y = 1 —a = 1, both global and local Strouhal numbers are O(1) quantities
and no distinction between them need to be made.

The above result deserves various comments. First, we observe that the O(1) effect in
the effective equation is that of transport due to mean flow. The effect of the fluctuations
on the large scale properties of the passive scalar field is an O(9) correction. This was to
be expected, since the global Peclet number is an O(%) quantity and advection dominates.
However, we emphasize that it is important to keep the O(J) term in the effective equation:
letting 6 — 0 would lead one to conclude that the passive scalar field is advected by the

mean flow and that the fluctuations in the velocity field have no effect on the homogenized
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transport. This is in contrast to what has been observed in physical oceanography where
the tracers are advected by an effective transport velocity which is not equal to the mean
flow [46]. In this context the parameter d, taken to represent the scale separation between
mesoscale and large—scale structures, is a small but finite quantity, 6 ~ 107, [32]. Thus, it
is questionable whether the mathematical limit of infinite scale separation expressed through
0 — 0 is of real interest for the physical problem under investigation. Moreover, as we shall
see later, the effective drift resulting from the spatiotemporally dependent mean flow becomes
dominant near the regions in space—time where the mean flow vanishes. Thus, keeping the
O(9) term is important.

Moreover, we see that the effective diffusion tensor is now a function of space and time.
This spatiotemporal dependence of K*(x,t) is due to both the presence of a nontrivial mean
flow as well as of the slow modulations of the periodic fluctuations. This is a strikingly
different situation than the one in which the mean flow is either constant or weak compared
to the fluctuations and the fluctuations are independent of the macroscopic variables in
which case the effective diffusion tensor is constant and the effect of the fluctuations on the
effective transport is purely diffusive.

We write the effective equation in non-divergence form:

0T (x,t) 8 T(x,t) 8T 0T (x, 1)
o ot V1) VT(x, 1) ~ Pe JZIIC (9:6 0T PeZU 81’2
(3.7a)
T(x,t =0) =T (x), (3.7b)

d 0K} (xt)
j:1 am]’

where U; := — )

split the effective diffusion tensor into its symmetric part and antisymmetric part:

. We use the formalism that we introduced in chapter 1: we

K'=S§+ A (3.8)
where:

1 * *
Sij = 5(’@5 +K3) (3.9a)
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1 * *
Az’j = 5(’@'3’ - }Cji) (3‘9b)

It is easy to show [69, p. 252] that the symmetric parts can be rewritten in the form
Sij = 0ij + Pe(Vyxi - Vyx;). Consequently, S is positive definite: diffusion in always
enhanced.

Similarly, the effective drift can be decomposed into two parts, corresponding to the

divergence of the symmetric and the antisymmetric parts of IC*:
UP=-V-§ U'=-V-A (3.10)

The effective equation can be written in the form:

OT(x, 1) I NI R 07T (x, 1)
§— =+ (V(x 1) + 5- U+ 5-U") - VT(x, 1) = P—eijzdsw(x, t)m (3.11a)
T(x,t=0) = T;,(x), (3.11b)

The effective drift due to the antisymmetric part of the effective diffusivity tensor is

solenoidal:

d
— _Z . (3.12)

and thus V - U® = 0. In particular, for two dimensional flows we can write U? = V+ Ay,
with V4 = (8/0z9, —0/0x1) and Ay is the stream function of the eddy induced transport

velocity. In the general d—dimensional case A is the stream matriz of U®.
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On the other hand, U? consists of both a solenoidal and a potential part. A sufficient
condition for U® to be potential is for S to be of the form [81]:

General necessary and sufficient conditions that ensure that U? is potential can be obtained
by transforming S to its principal axes and studying the problem in this coordinate frame.
We shall not pursue this issue further.

From the above comments we conclude that an alternative form of the effective equation

1s:

OT(x,t) of f 1 0°T (x,t)
§ =+ Vx) - VT(x.1) = Pe, JZ_:I Sij(x,t) S, (3.14a)
T(x,t =0) = Tin(x), (3.14b)

with Ve/f(x,t) = V(x,t) + & U*(x,t) + 2 U%(x,t) and the global Peclet number Pe,
being an O(3) quantity.

From the above discussion it becomes apparent that the antisymmetric part of the
effective diffusion tensor is important for the effective transport of the passive scalar field.
The study of the symmetry properties of the effective diffusion tensor will be studied in the

next chapter.

3.3 Examples

In this section we exhibit the complicated dependence of the effective diffusivity on
the mean flow and the slowly modulated fluctuations for some simple examples. We start
with a two-dimensional example where the fluctuations have the form of a shear flow whose

amplitude depends on the macroscopic variables:

V(tha}IaT) - (f($2,t)v(y2,7'), 0) (315)
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The fluctuations are obviously incompressible. No specific form of the mean flow is assumed
at this point: V(x,t) = (Vi(x,t), Va(x,t)) with V - V = 0. Oscillatory shear velocity fields
have been used by various authors as simple models for internal waves or tidal currents in the
ocean [21, 66, 116]. The simplicity of the velocity field enables us to solve the cell problem
in closed form. From (3.15) it is clear that the second component of the corrector field x

vanishes. We solve the first cell problem by looking for solutions of the form:

X' =X (Y2, 75 w1, w0, 1) (3.16)

The macroscopic variables x1, zo, t enter as parameters. The cell problem becomes:

8X1 8X1 1 82X1
X ) s A S
S or +Valon, )8y2 Pe 0y3

—f(z2, ) v(y2, T) (3.17)

We assume that v(ys, 7) has the following Fourier representation:

v(y2,7) = Z D€ Ry HT) (3.18)
K2+ 0

We solve equation (3.17) using Fourier series. ! is:

f(l’z, t) Op e27ri(ky2+l7-)

1
X (Y2, 771, 22, t) = —Pe . (3.19)
kz;ﬁ Am2k? 4 2miPe (1S + k Va(x1, 22, 1))
The diffusivity is enhanced only along the é; direction:
K11(-T17'7:27t) = —Pe <va1>
L2 f2 A 160112

T A2kt 4+ Pe(1.S + k Va(z1, 29, 1))?

We observe that the enhancement in the diffusivity is independent of the Vi component of
the mean flow.
We consider now the following specific example. The fluctuations are taken to be of

the form:

v1(Y2, T @2, t) = 2f(x2,t) cos(2mT) cos(2mys) (3.21)



73

Now the enhancement in the diffusivity along the é; direction is:

— Pe? f2(xa,t) ( 1 1 >

Ki(z1,20,t) =

2 A2 + Pe?(S + Va(xq, 29, 1))? * A2 + Pe?(S + Va(x1, 29, 1))?
(3.22)
The only non vanishing component of the effective drift is:
s oK1
Ul (mlvm%t) = - 81‘1
_ pet fQ(xQ,t)a%(xl’m’t)( S+ Va(xy, 22, 1)
O0xy (472 4+ Pe?(S + Va(z1,29,1))?%)?
N S — Va(zy, 22, t)
(177 PEX(S + Valor, 2 D))
(3.23)

Taking now the mean flow to be a shear flow along the é; direction V = (0, Va(x1,t)) we see

that the effective drift V& has the form:

Ve (x,t) = (% Us (21, 29, 1), Vg(:El,t)> (3.24)
Taking 6 to be small but finite, for example § = 10! as is the case for the mesoscale eddies,
we see that Uy will be weak compared to Va. Despite this, the velocity V¢// with which the
passive scalar field is advected at the large scales is substantially different than the mean
flow in that a component in the é; direction appears. This specific example of shear layers
demonstrates the importance of keeping the O(9) term in the effective equation.

For our second example we choose a two—dimensional steady mean flow which is a
linear function of space and for the fluctuations we choose time dependent perturbations of

cellular flows. More specifically, the mean flow is:
V(x) =Ax (3.25)

where A € L(R?,R?). 8 The incompressibility of the flow implies that A is traceless:

Tr(A) = 0. One can show [65, ch. 1] that for a traceless matrix A in two dimensions there

8We are using the same notation as the one we used for the antisymmetric part of the effective diffusivity.
We hope that no confusion will appear.
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exists a rotation matrix O € SO(R?) such that O.A0~ = M, ,, with

1
- 5("40
1
_5( 0 ¥

Moo = (3.26)

where v, wy € R. In the examples that follow we shall take O = Z and, thus, identify A
with M, .,,. We shall also take «y, wy > 0.

The linear mean flow will enable us to experiment with different types of large scale
flows. In the examples that follow we shall consider mean flows in the form of shear, strain
and rotation.

For the fluctuations we choose time dependent perturbations of cellular flows [16]:

V(Y1 y2,t) = (v1,02)
= (cos(2mys) + sin(27ys) cos(2n7), cos(2my1) + sin(27yy) cos(277))
(3.27)

The time dependent perturbation destroys all regular islands and the Hamiltonian system
Z—‘Z = v(y, 7) exhibits irregular behavior.

We solve now the cell problem for the velocity field u(x,y,7) = Ax + v(y,7) in
the domain [—1,1] x [—1,1]. We fix Pe; = 10, S; = 1 and consider three different types
of mean flows: a pure strain v = 10, wy = 0, a pure rotation v = 0, wy = 10 and a
shear flow v = 5, wy = 10. We plot the effective diffusion tensor as a function of the
large—scale spatial variables x1, 5. Due to the symmetries of the fluctuations we have that
K11 = K29, K12 = K91 and consequently it is enough to plot only the components K11, Kio.
For the numerical solution of the cell problem we are using the algorithm presented in section
3.7.

The numerical results are presented in figure 3.1. From these plots we clearly see that
the effective diffusion tensor exhibits a complicated dependence on the properties of the
mean flow.

We emphasize that the numerical simulations were completed in a few minutes on a
sun workstation. Moreover, the velocity fields that we have considered, as well as other types

of periodically fluctuating velocity fields with very few non zero Fourier modes, have been

used by various authors as simple models for geophysical and astrophysical flows [20, 21,
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Figure 3.1: K(x) for rotation, strain and shear linear mean flows and Pe; =

10, S =1.
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60, 66, 116, 117]. We believe that, despite the simplicity of our model for the velocity field,
numerical computations of the effective diffusion tensor and the effective drift for simple

model flows might be of interest to the ocean/atmosphere science community.

3.4 Proof of the Homogenization Theorem

In this section we shall prove theorem 3.1. We shall derive and justify the effective
equation (3.3) using similar techniques to those of the previous chapter. The only new
feature is that in order to obtain the necessary estimates we have to build the initial layer
that it is created since the first two terms in the expansion satisfy the initial conditions of the
original problem only to O(d). Roughly speaking, we shall solve this problem by augmenting
the O(d) and O(6?) terms in the expansion with terms which satisfy the appropriate initial
conditions and decay exponentially fast away from the origin. Our discussion will be brief.
For a general discussion about the problem of initial and boundary layers in higher order
periodic homogenization we refer to the book [9] and the papers [18, 103].

We decompose the velocity field into its mean and fluctuating parts:

uxty.7) = V04Vt o) (329)

with V(x,t) = (u(x,t, 3, §)> Apart from the slow variables x,t we introduce the fast ones

y=3%T= % The differential operators transform as:

1 0 0o 10
Vs, T (3.29)

V= Vet o 9t T sor

For the parabolic differential operator which appears in equation (3.1) we have:

1
L= 53+(V+v)-V——A

ot Pe
= %Co + L1+ 0 Ly, (3-30)
where
0 1
Ly:=S—+(V+v)-Vy,——A, (3.31a)
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1

0

« 31b
= A (3.31b)

1
Lo = —ﬁAx (3.31¢)

We now look for an approximate solution of (3.1) in the form of a multiple scales expansion:
T(S(Xa t) ~ TO(X7 tv Yy, T) + 5T1(X7 tv Yy, 7—) + 52 TQ(Xv tv Yy, T) + ... (332)

where the functions 7;, i = 0,1,2,... are periodic in y and 7. We substitute (3.32) into
(3.1) and, by equating the coefficients of powers of § to 0 we obtain a sequence of equations

to be solved:

O Y : LoTo=0 (3.33a)
0(5) . £0 T2 + ,Cl T1 + [,2 T() = 0, (3330)

The O(67') equation gives, by lemma 2.1 in chapter 2, that Ty, = Ty(x, t), independent of
the fast variables. The solvability condition for the O(1) equation gives:

(L1Ty) =0, (3.34)

from which we obtain the equation for Tj ? :

T,
S%£+V@¢yvnza (3.35)

together with the initial condition Ty(x,t = 0) = T}, (x). This is, as expected, a transport

9When writing the effective equations we shall use the notation V as opposed to V.



78

equation. Using now (3.35) into the O(1) equation we obtain the equation for 77 (x,t):
LoT) = —v(x,t,y,7) ViTo(x,1) (3.36)
To proceed further, we decompose T1(x,t) into its fluctuating and mean part:
Ti(x,t,y,7) = x(x,t,y,7) - ViTp(x,t) + T1(x,1) (3.37)

where (x) = 0. Substituting now (3.37) into equation (3.36) we obtain the cell problem for
X:

'CO X(vavth) = _V(X7t7y77—)a (338)

Since the average of the right hand side of equation (3.38) vanishes and we have also set
(x) = 0, existence and uniqueness of solutions to (3.38) is ensured.
We now wish to obtain an equation for T;(x,t). We derive this equation from the

solvability condition for the O(d) equation:
(LT + LoTh) =0, (3.39)

from which, after some algebra, we obtain:

T (x, 1)

_ 1 _
5+ V(x,t) - VTi(x,t) = P—ev- (T +K(x,1)) - VTo(x,1)) (3.40)

together with homogeneous initial conditions T(x,t = 0) = 0. The enhancement in the

diffusivity is:
Kij (X, t) = —Pe <’UZ' Xj)v (341)

Now we can solve the O(9) equation for T5. We substitute (3.40) in the O(0) equation to
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obtain the equation for T5:

0 2 0q 1\ dT, oT, o [ 0T,
Loy = _8—%- (((Vy +v)x1 — Ea—yj + EK:JZ) 3—xl) - Ula—xl - Sa (Xlﬁ—a:l)
62To 8pﬂ 8)(1 8T0 871 82TO
— —_— | — —vy—=— - 42
pﬂaxj@xl (81'3 S 8t) 8xl Y 8wl SX[(?xl&t (3 )
where
ox 1
pit = (Vi +vj)xi — Qa—y; + 5K (3.43)

We introduce the auxiliary functions {1}, {6i}{_,, {o1}i_, that satisfy the following

higher order cell problems:

Lojy=—pu, jl=1..d (3.44a)

Opj ,Oxi
Loop=——L -8 I=1,.,d 3.44h
e e T (3.44b)
»C(] 9l = —SXl, [l = 1, ..,d (344C)

We note that since K;; = —Pe (v; x;) and (x;) = 0 the right hand sides of the above
equations have zero average and consequently equations (3.44) have smooth and unique,
up to a constant, solutions. We ensure uniqueness by requiring the solutions to have zero

average. T5 has the form:

To(x,t,y,7) = Yu(x,t,y, 7)8:1:180:6- + o(x,t,y, T)a—x(l) +xi(x,t,y, T)a—acll +6,(x,t,y, T)ﬁmlf;)t
j
(3.45)

Now we wish to estimate the error that we are doing by neglecting higher order terms. We

denote by T,,, the discrepancy between the first three terms in the multiple scales expansion
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and the solution T° of (3.1):

t
+ T, (3.46)

X t X
T(S(X: t) = TO(X7 t) + 5T1(X7 ta gv 5) + 52 TQ(thv 57 5)

Our goal is to obtain uniform estimates for the error term in (3.46). We shall accomplish
this by obtaining a parabolic equation for T,, and using energy estimates.

We apply £? to (3.46) to obtain:

LT, = —LTy — 6 LTy — 6°L°T, (3.47a)
T,

Terr(x,t=0) = =0 Xl% t=0 — 6° Tali=o (3.47b)
xZ

We recall that the auxiliary functions x, 6, ¥, o are functions of both x, ¢ and %, g. Bearing

this in mind, we compute the right hand side of the above equation. We have:

B
LTy=v VT, — AT (3.48)

Now we want to compute the second term in the right hand side of (3.47a). We have:

1 1o _ _
—ATy+ =V - (K-VTp) +v- VT - %ATl (3.49)

LT, =
! Pe Pe

and:

dTy
(Loxi) |y:§;:§ B2,
8Xl 2 82Xl | 8T0
Ox;  Pedz;0y; Y=37=5 O,
2 8)([ 82TO 82TO
2oy O g
Pe 0y 2778 OOz Oxy0t

1) 8T0 aXl 82TO aSTO
= Pe \gp, N 25 S0 )| ele (350
Pe (85” X1+ 8£Ej 81’[8.Tj +Xi 8:6181‘3-8% |y—6 \T= ( )

ox
Sop +Vi+u)

(Vi +vi)x

+
TN TN & e
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Now we compute £°T,. We have:

0Ty oT; oT 0Ty
§ _ é § 0 § 1 § .
LT = (ﬁzbﬂa Bz -+ L% | +£ 8l+£918 lm)' x ot
+ LiTo+ 6 LT (3.51)

Putting the above equations together we get:

LT, = (.cm + LT, + L° (Xl gﬁ) + 52557’2)
— (it lyegny G
AL+ pﬂng“j o+ 2 ST (g ST
+ (Lo, + SXZ)SQY;)tﬂ — 62 F(x,t)
= -5 F(x,t) (3.52)
where
F(x,t) = Ple (A T, + ng Axi + 22?2 aijg;j + X %gzoax) + LiTy + 6 LTy
For the initial conditions we have:
f(x) = xl%h 0+ 0 Toli—s (3.53)

Since we have assumed that the velocity field as well as the initial conditions are smooth,
the solutions of (3.36) and (3.40) as well as of the cell problems are smooth and bounded.
Consequently, the functions F'(x,t), f(x,t) are also smooth and bounded. Thus, neglecting

higher order terms, T, satisfies the following initial value problem problem:

LT, = -6 F(x,t) (3.54a)

Torr(z,t =0) = =0 f(x) (3.54b)
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Now we can apply lemma 2.2 to the initial value problem (3.54) to estimate T,,,. However,
it is clear that the bound that we shall obtain is not sharp. The reason for this is that the
initial condition (3.54b) for T, is O(4) and not O(6?) that we need in order to be able to
obtain a sharper bound. Remembering that f(x) = Xl%h:o + 0(6) we see that in order to
solve this problem we have to augment the multiple scales expansion with terms that will
compensate for the O(d) term in (3.54b) and will vanish exponentially fast away from the
origin so that they will not introduce O(¢) terms in (3.54a). Following [18] we introduce the

following multiple scales expansion:

Ta(xv t) ~ TO(Xv t) + 5T1(Xa ta Yy, 7—) + 52 TQ(Xv tv Yy, 7_) +
+ ST, t,y, 7, ) + O Tat (%, t,y, 7, 7°) + . ... (3.55)

with Ti", Ti" being periodic in y and 7. We have also introduced the new time-like variable

7 = £ We remark that these two terms depend on £ in two ways and we have explicitly

taken this into account. Ty, T} satisfy equations (3.36) and (3.40), respectively and 75 is
given by formula (3.45). Substituting now the expansion (3.55) into equation (3.1) we obtain

equations for the terms Ty, Ty":

LT =0 (3.56a)
Tlin(x'/ t = 07 y: Ta T* = 0) = _X(X7 Y7 7—7 t = 0) ) VXETL(X)’ (356b)

and
LT =Ly T (3.57a)

: 0°T, oTy 3?1 0°T,
Ty (x, t = *=0)=— (v 0 - 5Tb
(%, 0,y,7,7 0) (%1 Dm0z, + 0y B, + oz, + l@x;@t) |t=o (3.57b)

where

0 0 1
Liy 1= S% + SE + (V(x,t) + v(x,t,y,7))- Vy — ﬁAY (3.58)
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We emphasize that the system of equations (3.56) is an initial value problem for T}". Using
now a variant of theorem 3 from [18, p. 13|, together with the fact that (x) = 0 we can

prove that there exist constants c;, co > 0 independent of x, ¢, y, 7, 7* such that:
T (x,t,y, 7, m°) < cre @7 (3.59)

We remark that we can solve the initial value problem (3.56) using separation of variables
and express the solution in the form T{"(x,t,y, 7, 7%) = X" (x,t,y, 7, 7*) - VxTin(x). We can
obtain similar results for Ti" but we shall not need this.

Going back to the initial value problem for T,,, we now have:

LT, = =62 F(x,t) (3.60a)

Torr(z,t = 0) = —6%f*(x) (3.60b)

’

with f* = Ts|i=¢. Using lemma 2.2 we obtain the estimates:

[Tl < 62 (1 4 %0) C (3.61a)

VTl < Pe(s%\/(g F14 %0) C (3.61D)

where the notation X = L>®((0,); L?(RY)) was used. We define now T%% = Ty + § T} and

use the triangle inequality to obtain:
|T° — T™||x < C4 62 (3.62)

We define now T as the average of T4 T = (T?). From the above analysis it follows that,
neglecting higher order terms, T satisfies the initial value problem (3.3). The proof of the

homogenization theorem 3.1 is now complete.
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3.5 Homogenization for Spatially Independent Mean Flow

From theorem (3.1) we know that for the model velocity field that we have been
studying in this chapter and at the length and time scales determined by the the mean
flow the behavior of the passive scalar field is described, to leading order with respect to
the small parameter 9, by a transport equation with the velocity field determined by the
mean flow alone. The diffusive correction, due to the fluctuations, is an O(§) correction to
transport due to the mean flow. This is to be expected since, in the framework that we have
developed, the global Peclet number is an O(%) quantity and consequently the behavior of
the passive scalar field at the length and time scales of the mean flow should be described
by an advection dominated advection—diffusion equation.

The analysis presented so far was performed in Eulerian coordinates. However, the fact
that to leading order the passive scalar is being transported by the mean flow suggests another
approach to the problem, namely to introduce appropriate coordinates that will enable us to
distinguish between the effect of the mean flow and the fluctuations in a transparent fashion.
We shall accomplish this by introducing mean Lagrangian coordinates, [65, ch. 3]. These
coordinates a are being defined through the mean flow map X(a(x,t),t) = x where X(c, t)

solves the equation:

dX(a,t) -
= V(X(a.1).1) (3.63a)
X(a,t=0) = « (3.63b)

By formally inverting the solution of this equation we obtain a reparametrization of space-
time (x, ) by the new set of variables (e, t). Using these coordinates we follow the motion
of a fluid element evolving under the mean flow alone. In these new coordinates the O(1)
effect of transport due to the mean flow is automatically taken into account and we are only
left with the effect of the fluctuations to the large scale evolution of the passive scalar field.

Let us now try to study the problem of homogenization in mean Lagrangian coor-
dinates. Since the effect of the mean flow is "hidden” in the transformation to the new

coordinate system, we want to study the problem at the time scale where the diffusion be-
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comes an O(1) phenomenon °. For this approach it is more convenient to nondimensionalize

with respect to the characteristic length and time scales of the fluctuations. We have:

a7 (x, 1)
ot

1

S + (éV(éx,nt) + v(x, t)) -VT(x,t) = 2 AT(x,t) (3.64a)

€

T(x,t = 0) = Tin(6x) (3.64D)

We shall assume that the local nondimensional parameters are O(1). Moreover, we shall
only consider the distinguished limit n = §2 1. We also consider the specific case where the
mean flow is a function only of time, V = V(). At the end of this section we shall make
some remarks concerning the general case.

The transformation to mean Lagrangian coordinates will be obtained by inverting the
solution to the system of ODEs (3.63) (with the difference that now V depends on ¢ through
T =0%1):

1 t
X(a,t) = a/V(52$)ds+oz
0

1 52t
= 5 i V(s)ds+ a (3.65)
We now define x = X(a, t) as well as:
N 1 62t
T(e,t) = T(W i V(s)ds+ a.t) (3.66)

The advection—diffusion equation for T'(cx, t) becomes:

~ 5%t
ACH) 1 V(s)ds + o) VaT (0 t) = —— AT 1) (3.67a)

o Ve, Per

10Tn Eulerian coordinates at the diffusive time scale advection due to the mean flow becomes O(%) and this
leads to a singularity in the multiple scale expansion. In the mean Lagrangian coordinates this singularity
disappears and we can obtain a homogenization theorem.

HWe expect to see only diffusive behavior in mean lagrangian coordinates and consequently the natural
scaling is t ~ 22 = 1 ~ 2. On the contrary, in Eulerian coordinates the first order effect is transport due
to the mean flow and the proper scaling ist ~x = n ~§
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T(a,t = 0) = To(dcv), (3.67h)

where the spatial derivatives in (3.67) are with respect to . Upon rescaling, « — d ¢, t —

6%t, we get:

T (a, . 1 .
Si———— 5 a52/ V(s ds+ 5 52))V T (o, t) = PelAaT (o, t) (3.68a)

T, t = 0) = Ty(cx) (3.68b)

We introduce the variables z = —& fot V(s)ds + <, 7 = &. The differential operators

transform as:

0 0 1 0
8— E + ?V( ) V. + ﬁa—T (3.69&)
1
Aw = Ao + 2V, Va + —A (3.69¢)
o o g zZVa 52 Z .

The multiple scales expansion has the form:
T’(e,t) = To(a,t,z,7) + 6T1 (e, t, 2, 7) + 6*To(ce, t,2,7) + . .. (3.70)

Performing now the standard calculations, we arrive at the effective equation:

&%= e Ve o(K* () VaT (e, 1)) (3.71)

The cell problem reads:

1 1
S = Ox ( V(t)+ v(z, t)> Vox — —Ax = —v(z,7), (3.72)
37‘ Pe;
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The effective diffusion tensor is defined to be:

. 1
Kij = dij — P—ez@i X;) (3.73)
12 Let us rewrite the homogenized equation in the original Eulerian coordinates for small,
finite 0. Upon performing the inverse transformation, from a to x, we obtain:
oT(x,t) 1 1

5 gV(t) VT(x,t) = — -V (K*)V -T(x,1)) (3.74)

S,
! Pel

The cell problem remains the same. Equation (3.74) is in accordance with our previous
findings: the global Peclet number is O(%) and the cell problem is given by equation (3.72).
The difference between equations (3.3) and (3.74) is that the later is valid at longer time
scales, O(3) compared to those of the former.

Remark It would be very interesting if we could apply the technique described in
this section to spatiotemporally dependent mean flows. However, the spatial dependence
of the mean flow distorts the spatial partial differential operators and breaks the periodic
dependence of the coefficients of equation (3.67) on the fast variables. To see this, let us

consider the case of a linear mean flow V = Ax. In this case the mean flow map is:
x = X(a,t) = Al (3.75)

and the passive scalar field in mean Lagrangian coordinates is T(a, t) = (e, t). Now the

advection—diffusion equation reads:

8T(a,t) —SAt_ [ SAL 7 1 —§ At —6ATt I
S, — +e v (e Ma, t)VaT (a,t) = P—elva . <e e VoI (c, t))
(3.76a)
T(o,t =0) = Ty(dax), (3.76b)

121t would be more natural do write the effective equation as Bfg?’t) = Va- (K*(t)- VaT(a,t)) and define

the effective diffusion tensor to be K} = S (PLel‘Sij — (v; xj)>. We shall not do this in order to be consistent

with the definition of the effective diffusion tensor and the effective equation that we have been using so far
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where A" denotes the transpose of A The rescaling o — 6 a, t — 6%t leads to the equation:

OT(a,t) 1 At gqr0 1 . 1 AL At ~
S 5 T3¢ sv(ets 5 52)vaT(a7t) = Pelva. <e vre e -VQT(a,t))
(3.77a)
T(a,t =0) = Ty(a), (3.77h)

In this case the spatial dependence of the mean flow has led to coefficients that are non
periodic functions of the variable %. Hence, the method of periodic homogenization does not
apply. It might be possible to prove that an effective diffusion equation does exist and to
obtain some estimates on the effective diffusion tensor through more sophisticated techniques
that are appropriate for non periodic homogenization problems such as H—convergence [28,
ch. 13], [35]. However, these methods will not enable us to obtain a cell problem and we will
not be able to compute the effective diffusion explicitly. We think though that the study of
the mixing and spreading properties of passive tracers in mean Lagrangian coordinates is a

very interesting problem and should be explored further.

3.6 The Case Where the Mean Flow is Stronger than the Fluctu-

ations

3.6.1 Introduction

In our work so far we have been studying mean flows that are either weak or of equal
strength compared to the fluctuations. This is natural since, as explained in section 1.2, this
is the most interesting case from the perspective of physical oceanography. On the other
hand, one could consider the problem of the motion of a particle in a velocity field which is
fluctuating weakly about its mean. In subsection 1.4.4 we discussed about a similar problem
with random fluctuations, as opposed to periodic. We saw there that the limiting behavior
of the concentration of the passive tracer is diffusive with an O(6?) global Peclet number.
The effective diffusion tensor is computed through the Kubo formula [69][pp. 294-296]. We
would like to see wether one could obtain a similar result for the case of periodic fluctuations.

To simplify matters, let us consider steady velocity fields and assume that the fluctu-

ations are O(d)-weak compared to the mean flow. Under these assumptions equation (2.21)
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becomes:

2

+ (V(x) + M(%)) VT (x,1) = ]f—elAT(x, ) in R% x (0, 00) (3.784)

0T (x,t)
ot

T(x,t =0) = Tj,(x) on RY (3.78b)

Unfortunately the method of multiple scales that we have been using so far is no longer
applicable. Indeed, by expanding the solution of (3.78) in a multiple scales expansion and
equating the coefficients of the various powers of § to zero we end up with equations of the

form:
V(x) - VyTp =0 (3.79)
and
V(x)- -V, T} = —v- VT (3.80)

From equation (3.79) we cannot conclude that the first term in the expansion is independent
of the fast variables since the equation is not in general well-posed. We shall study this
problem in chapter 5 using the method of two-scale convergence where we shall show that,
for a € (0,1), the first term in the expansion satisfies a transport equation. However, the
second term, from which we would hope to obtain a cell problem, is coupled with another
two terms in a system of three equations that involve both the fast and the slow scales. We
will not be able, in general, to decouple the system and obtain an effective equation for the
second term in the expansion, together with a cell problem. This situation is similar to the
one we are faced with when studying homogenization for transport equations [36, 57].

In this section we shall try to understand the problem in two dimensions for the special

case of a constant mean flow through a numerical and asymptotic analysis of the cell problem.
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3.6.2 Asymptotic Analysis of the Cell Problem

It will be more convenient for our purposes to use the formalism developed in the

previous paragraph. Our starting point is the cell problem (3.72):

1

P—elAyx =—v(y,7), (3.81)

Si g—f + (éV +v(y, t)) -Vyx —
We shall perform some formal asymptotic analysis of (3.81) treating a as a small parameter.
We reiterate that the following computations are only formal. They can be justified only a
posteriori from the numerical examples and the two-scale convergence arguments. We shall
also restrict ourselves to the study of the symmetric part of the effective diffusion tensor.
Similar results hold for the antisymmetric part.

We assume that the mean flow is strong enough so that we can neglect the fluctuating

part in the left hand side of (3.81):

ox 1 1
V-Vox — —A = — .82
St or  «a vX Pey yX v(y:7), (3:82)

Under this assumption the cell problem can be solved exactly. We assume that the fluctua-

tions have the following Fourier representation:

n,m,l
124+m2+4n2#0

vi= Y B et =12 (3.83)

The Fourier coefficients of the corrector field y are:

~7
/Unml .
B — . j=1,2 3.84
211 (Sll+§V1n+§V2m)+%(n2+m2) J (3.84)

~J _
Xn,m,l -

Straightforward computations give us the following expression for the diagonal components
of the effective diffusion tensor (we shall only be concerned with the enhancement K):

|ﬁib,m,l|2(n2 + m2)

Pe? (S;l+2Vin+ 212 m)2 + 472(n2 + m2)?’

ijZQPGZQ Z

124m24n2#£0

j=1,2 (3.85)

Now we want to study the limit of K;; as a — 0. We shall also assume that the fluctuations

that we consider have a finite number of nonzero Fourier modes: 9/ . # 0 iff {n,m,l} €
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T3, J? being a subset of Z? with a finite number of elements. We shall also use the notation
{n,m} € J? for the nonzero spatial Fourier modes. We make this assumption since we are
interested in comparing the predictions of the formal asymptotics to numerical experiments.

From (3.85) we see that there are two possible limiting behaviors, depending on the

properties of the mean flow:

1. nVi+mVa £ 0V {n*, m*} € J*
In this case every component of the sum in the right hand side of equation (3.85) tends

to zero, as a — 0, and consequently we have:

We see that in this case there is no enhancement in the diffusivity and that, in fact, the
fluctuations do not affect the large scale behavior of the passive scalar field. If we were
to remove the assumption that the velocity field has only a finite number of nonzero
Fourier modes this absence of resonance phenomena would occur when the ratio of the
two components of the mean flow is an irrational number. In chapter 5 we shall obtain

rigorously this result for a € (0,1).
2. 3{n*,m*} € J*: nVi+mVp=0
Now all components of the sum in (3.85) tend to 0 apart from the {n*, m*, [} ones:

Dy () 4 (m*)?)

—lim |
IC." =2 Pe?
woe Z Si12 Pej + Ar2((n)2 + (m)2)2°

j=1,2 (3.87)

The limiting effective diffusion tensor K;Z-m depends on both nondimensional numbers S, Pe;.
From equation (3.87) we can immediately compute the asymptotic behavior of Ki-?n with

respect to these two parameters:

lim K;Z.m =0, for fixed Pe, (3.88a)

S;—00

2, for fixed Pe, (3.88b)

. —lim Pel2 ]
lim C. E R
!

Sjne I T 2m2(n*)2 + (m*)2
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—lim *)2 *)2 f)j* . 2
Jim K o () ;2(”” Z' s L for fixed 5 (3.88¢)
!
Plim0 Kg@m =0, for fixed S (3.88d)
e —

One can think of this result as an example of resonant enhanced diffusion: the mean flow
interacts with the fluctuations in such a way that the diffusion is boosted far above its
molecular value. In this way, the effective diffusion tensor reaches a constant, nonzero value
which is independent of the mean flow.
From equation (3.85) we see that a different type of resonant enhanced diffusion is also
possible, for finite a: for values of {n*, m*, I*} € J such that
Syl + Lyipe + Ly — o (3.89)
a a
the {n*, m*, I*} term in the right hand side of (3.85) will attain its maximum value and the
diffusion will be greatly enhanced. We remark that this is a different type of resonance than
the one that occurs at the limit a — 0 and is related to synchronization between the mean
flow and the temporal oscillations of the fluctuations. This type of resonance was discussed
in [69, p. 268] and in [24]. It is possible that this type of resonances are related to the so
called accelerator modes that were used by Mezic et al. in [80] in their study of maximal
enhanced diffusion for time dependent flows. However we are not aware of any work that

justifies the connection between these two concepts.

3.6.3 Numerical Experiments

In this subsection we shall solve the cell problem numerically for two types of fluctuating
velocity fields and we shall compute the enhancement in the diffusivity as a function of the
relative strength of the mean flow. Moreover, we shall analyze the second type of resonance
phenomenon by solving the cell problem for various values of the local Strouhal number.

We choose to work with two types of two-dimensional time dependent fluctuations that

were used by Knobloch and Merryfield in [60]: oscillatory flows in the form of a standing



11

Kll

Standing waves, ratio 1, k —

vs |V| for various S
T T

Pe =10
o S<0.1
L |
s=1
107 E
s=10
107 3
107 4
S =100
10°F e
10°F E
S =1000
10’7 L L L T T T
10" 107 10° 10° 10* 10° 10° 10
VI
a. Standing waves, rational ratio
. Traveling waves, ratio 1, k —vs |V| for various S
10 : !

S<0.1

107 J

10°F

10°F

-5

10 "¢

Pe =10

10" L

Y

S =100

S =1000

10 10°
I\

c. Traveling waves,

10°

rational ratio

10

10

93

. Standing waves, irrational ratio, k —vs |V/| for various S
10 T T T T T T T
S<0.1
10 Pe =10
S=1
107°F
10 S=10
107
o
— S =100
N4
10°F
10°F
S = 1000
107F
10°E
10’9 - \72 \7] \n L \2 \3 \4
10 10 10 10 10 10 10 10

10
[\
Standing waves, irrational ratio

Traveling waves, irrational ratio, k —vs |V| for various S
T

S<0.1

o 5

10 10

VI

d. Traveling waves, irrational ratio

Figure 3.2: K as a function of the relative strength of the mean flow for standing
and traveling waves for Pe; = 10 and various Strouhal numbers.

wave:

V(ylv Y2, t) -

(v1,v2)

(sin(27y; ) cos(2mys) cos(27t), — cos(2my; ) sin(27mys) cos(27t))

(3.90)
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and a traveling wave

V(y17y27t) - (U17U2)
= (sin(27(yy —t)) cos(2mys), — cos(2m(y1 — t)) sin(27ys2))
(3.91)

[this is the nondimensional form of the fluctuating part of the velocity field].
We start with the standing waves. For strong mean flows the enhancement in the

diffusivity in the é; direction can be approximated by the formula:

K- 24 1 + 1
TR 1672 4 Pef (S + VI 4+ V22 1672 4 Pef(Sy + 1V — 1V2)2
1 1

)
(3.92)

1672 + Pe?(S; — 1V + 21/2)2 T Pe}(S; — 2V — Ly2)?

From equation (3.92) we see that there are only two possible choices that lead to resonant
enhanced diffusion: either V; = V5 or V} = —V5. In either case the limiting enhancement as

a tends to zero is:

Pe? 1

Z=lim
el _
1 4 16m2 + PeiS?

(3.93)

Similar computations can be performed for the traveling waves. We have:

1 1

— Pe?
=7 2 1 1 - 2 1 1 (3.94)
2 \167 + Pef(S; — 21— TV2)2 7 1672 + Pef(S, — 1v1 + 1v2p2

11 —

As for the standing waves, there are only two choices of mean flows that lead to resonant

enhanced diffusion: either V; = V5 or V; = —V5. The limiting enhancement is:
—lim P 2 1
g = LA (3.95)

2 1672 + PeiS?

Now we compare between the predictions of the formal asymptotics and the numerical so-
lution of the cell problem. In figure 3.2 we plot IC;; as a function of the magnitude of the

mean flow [V| (that is, as a function of ) for fixed Pe; = 10 and for various choices of the
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Strouhal number. We make two choices for V! and V2. In figures 3.2.a and 3.2.c we choose
V1 = V2% =1, a choice which leads to resonant enhanced diffusion. In figures 3.2.b and 3.2.d
we choose V! =1, V% = ?{—g which, according to the foregoing computations, leads to a zero
enhancement in the diffusivity as |[V| — 0.

From figure 3.2 we see that ;1 depends upon | V| according to our theory: for |[V| <<
1 the enhancement in the diffusivity is independent of the mean flow. This corresponds to
the regime in which the mean flow is weaker than the fluctuations in which we already know
that the mean flow does not enter into the cell problem. After some transient interval for
which |V]| ~ O(1) and both mean flow and fluctuations contribute to the computation of
the effective diffusion tensor (in the sense that we have to retain both components of the
velocity field on the left hand side of the cell problem), we reach the asymptotic behavior
which is described by the results of this section. For values V! = V2 = 1 the effective
diffusion tensor reaches a constant value which is independent of the mean flow and is given
by formulas (3.93) and (3.95) for standing and traveling waves, respectively. On the contrary,
for the choice V1 =1, VZ = ?{—g K11 decreases as V], in accordance to the predictions of the
asymptotic theory.

We also observe the presence of resonant phenomena of the second type. These reso-

3

nances are very sharp for the choice V' = V? = 1. They are less sharp for V! = 1, V? = 2%,

however in this case we observe that secondary resonances of this type are also present.

3.6.4 Discussion

In this section we used formal asymptotics and numerics in order to study the problem
of homogenization of advection—diffusion equations with mean flow in the case where the
mean flow is stronger than the fluctuations. We saw that in this regime the structure of the
effective equation depends very sensitively on the properties of the mean flow. We emphasize
that the arguments of this section are only formal in nature and have to be justified. This
will be accomplished in chapter 5 using the method of two-scale convergence.

As we have already mentioned, the sensitive dependence of the effective diffusion tensor
on the specific properties of the mean flow is due to the fact that the fluctuations are taken to
be periodic. This sensitive dependence vanishes in the random setting. Indeed, according to
the results of Kesten and Papanicolaou [59] velocity fields of the form u = V + § v(x) where

V is constant and v is a random velocity field which is sufficiently mixing and has short range
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correlations lead, at long times and large scales, to an enhancement in the diffusivity which
is O(6%) and which depends on the mean flow. In the periodic setting resonant enhanced
diffusion leads to an O(d?) enhacement which is, however, independent of the mean flow.
Moreover, for velocity fields with a finite number of nonzero Fourier modes, the generic
situation is that of non resonance, since only a finite number of choices for V1, V2 € R

would lead to a non zero enhacement in the diffusivity.

3.7 Numerical Method

As we have already seen we can obtain exact solutions of the cell problem only for simple
flow geometries of the fluctuations, in particular for shear flows. For more complicated flow
geometries we had to solve the cell problem numerically. In this section we analyze the
numerical method that we are using. To ease the notation we shall describe the method for
two—dimensional time dependent flows.

We solve the cell problem using a Fourier spectral method [16, 17, 70]. The idea is that
since the cell problem is either an elliptic or parabolic equation with periodic coefficients and

periodic boundary conditions, we can expand its mean zero solution in a Fourier series:

Xj = Z X‘ZL,m,l(xl’ To, t)62m'(ny1+myg +I7) (396)
124m?2+4n2#£0

We note that, since we are looking for real valued solutions of the cell problem (3.6), we
have to require that ()Ad;’m’l(xl, Za. t))* = X{n’fmﬁl(xl, x9,t) where * stands for the complex
conjugate of x. Let us also remark that the macroscopic variables x1, xs, t enter into the
problem through the spatiotemporally dependent mean flow as parameters. Assuming that
the mean flow is smooth and that the fluctuations depend smoothly on z, xo, ¢ (which is
the case for all of the examples we considered in this chapter), the Fourier coefficients in
(3.96) depend continuously on the macroscopic variables.

Since the fluctuations in the velocity field are periodic, we can also expand them in
a Fourier series whose coefficients are functions of the macroscopic variables. Substituting
these expansions into the parabolic cell problem and using the orthogonality of the basis

functions of the Fourier expansion we finally arrive at an infinite, nonhermitian in general,
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linear system of equations:
A(xl,ig,t; Sl,Pel)X: b(xl,xg,t) (397)

A is the coefficient matrix and is a function of the mean flow, the fluctuations and the
nondimensional quantities Pe; and S;. X is the vector containing the Fourier coefficients of
the auxiliary function y; and b corresponds to the Fourier coefficients of the fluctuations.
We now have to address two issues. First, how to obtain solutions of (3.97) that are functions
of the macroscopic variables and second how to truncate (3.96) and obtain a finite system
of equations.

In order to solve the first problem, we discretize the domain in which we want to
calculate the effective diffusivities as well as the time interval that we are interested in. To
this end, we introduce a mesh 27 = nh, 3" = mh, t' = [ k where h and k are the step sizes
for the spatial and temporal discretizations, respectively. Thus, we have to solve a sequence
of cell problems, one at each point in space and time.

Now we discuss the second issue. We truncate (3.96) and consequently (3.97) as follows:
We start with only 5 Fourier modes. We solve the linear system of equations (details about

the solution procedure follow) and calculate the enhancement in the diffusivity K?j :
770 n ,.m n ,.m n ,.m
K:ij(xl y Lo 7tl) = _Pel </Ui(y17 Y2, T35 Ty, Xy, tl) X?(yl/ Y2, T; Ty, Ty 7tl)> (398)

We solve the problem again with 6 modes and compute K?j. We calculate the relative

difference of these two solutions for the first, say component of K:

=5 =6
Ky — K

err = |%| (3.99)

K

ij
where the superscipts refer to the number of Fourier modes that are being used. If the error
is smaller than a desired tolerance TOL we stop. If not, we continue the same procedure
until the relative error is smaller than T'OL:

Kn - —=n+1

|”K7n”| < TOL (3.100)

ij
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The value at the n+1 iteration is the enhacement in the diffusivity: K?j = K?j.

Since we will be dealing with fluctuating velocity fields with a few Fourier modes,
the resulting linear system will be sparse. Consequently, we can solve it efficiently by an
iterative method which is valid for complex, nonhermitian problems. We have chosen to
use the Bi-conjugate Gradient Stabilized method [113] with incomplete LU factorization
for preconditioning. Let us mention that since for the problems that we have studied the
coefficient matrix is well conditioned, any Krylov subspace iterative method for complex
nonhermitian problems will be sufficient. The efficiency of the numerical solution of the
linear system was virtually the same for all the methods that we tried. For the iterative
solver as well as the preconditioning routines we used the nag library routines.

A few remarks are in order. First, the problem, as it has been stated so far, not only
is it not well conditioned but it is actually singular, the matrix A4 having a zero eigenvalue.
This is due to the fact that we have excluded the coefficient Xé,o,o from (3.96), since we are
looking for solutions with zero average. However we can easily alleviate this difficulty by
including X%,o,o in the expansion and setting the coefficient in the matrix A that multiplies
X%,o,o equal to 1. Since the velocity field has also zero average, we will arrive at the trivial
equation 1 x Xé,o,o = 0. In this way we both ensure the well posedness of the system of
equations as well that the auxiliary functions will have zero average.

Moreover, preconditioning speeded up the computations enormously. In most cases
the approximate solution was obtained after one or two iterations. Without preconditioning,
convergence was achieved after hundreds of even thousands of iterations. On the other hand,
there is some computer time spent for the construction of the preconditioner but it is small
compared to the computer time spent when a great number of iterations was required. So,
preconditioning is important.

The numerical solution of the cell problem depends on the nondimensional parameters
of the problem as well as the relative strength of the fluctuations. As the Peclet number
increases the problem becomes more advection dominated and hence more difficult to solve.
On the other hand, as the mean flow becomes stronger compared to the fluctuations the
resulting linear system of equations becomes diagonally dominant and consequently easier
to solve.

In figure 3.3 we present the procedure for solving the cell problem in an algorithmic

fashion.
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Algorithm for solving the cell problem

Construct the system A(xy,zo,t; Si, Pe;) X = b(x1,29,t) through Fourier series expan-
sions.

Construct a mesh in [—X,00, Xinaz] X [—Xmazs Xmaz) X [0, Tinaa):
" =nh, a0 =mh,t' =1k
Nh:Xma;r7 Lk:Tma:r

forn=—N: N do
for m=—-N: N do

for/=0:L do
fori=5: FMAX do *
begin

1. Construct the system A;; (2%, 25, t'; S), Pey) X; = bi(z1, 22, 1)
2. Insert a 0 in the entry of A;; corresponding to )2600

3. Calculate the incomplete LU factorization of A.

4. Solve the linear system using BCGS.

5. Compute K;; using (3.98).

6. Calculate the error using

—i =i+l
K=K

err = | =

7. if err < tol then continue else go to *.

end

Figure 3.3: Algorithm for solving the cell problem




CHAPTER 4
STUDY OF THE ANTISYMMETRIC PART OF THE

EFFECTIVE DIFFUSION TENSOR

4.1 Introduction

As we have already discussed, the effective diffusion tensor is not in general symmetric.
Moreover, when K* is a function of space, which will be the case when a nontrivial mean flow
is present, the antisymmetric part of * becomes important since it results in an additional
incompressible effective drift. We discussed in chapter 1 about the relevance of this effective
drift to the problem of parametrization of passive tracers in the atmosphere and ocean.
Consequently it is important to study the properties of the antisymmetric part of K* in
detail.

In this chapter we shall derive some necessary and sufficient conditions that ensure the
symmetry of the effective diffusion tensor for steady velocity fields. We shall also study the
dependence of the antisymmetric part of * upon the Peclet number. Finally, we shall present
numerical examples for two types of velocity fields, one steady and one time dependent.

Before presenting our results, let us first review previous work on this problem. The
symmetry properties of the effective diffusion tensor that results from the method of ho-
mogenized averaging have been discussed, to my knowledge, only in two papers: Koch and
Brady in [62] and Fannjiang and Papanicolaou in [41]. In both papers the symmetry of the
effective diffusion tensor was related to some sort of ”parity invariance” of the velocity field.
Koch and Brady argued that an antisymmetric part of the effective diffusion tensor is present
only when the velocity field lacks a center of reflectional symmetry. More detailed sufficient
conditions were given by Fannjiang and Papanicolaou for steady two—dimensional velocity
fields. In particular, they derived the following sufficient conditions for the symmetry of C*
(¢(y) denotes the stream matrix associated with the fluctuations; we also denote by T? the

unit two—dimensional torus):
1. Translational antisymmetry of ¢: Ir : ¢(y +r1) = —9(y)Vy € T?

2. Reflectional antisymmetry of 1 with respect to an axis, for example the y, axis:

Yy, —y2) = —Y(y)Vy € T?

100
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3. 180°-Rotational antisymmetry of ¢ with respect to a point, for example the origin:

U(—y1, —12) = —¥(y)Vy € T?

The dependence of the antisymmetric part of the diffusion tensor with respect to the Peclet
number was discussed by Koch and Brady. They argued, based on numerical examples
and physical reasoning, that the antisymmetric part should scale like Pe?® for small Peclet
numbers and like Pe for large Peclet numbers.

We shall study the symmetry properties of the effective diffusion tensor by obtaining
an explicit expression for the solution of the steady cell problem as a Fourier expansion in the
orthonormal basis defined by the eigenfunctions of an appropriate compact, skew-symmetric
operator A". Using this formula we shall be able to relate the symmetry properties of the
effective diffusion tensor to the properties of the Fourier coefficients of the fluctuating part
of the velocity field with respect to the eigenfunctions of A”. From this expression we shall

also be able to study the dependence of the antisymmetric part of * on Pe.

4.2 Spectral Representation of the Antisymmetric Part of the Ef-

fective Diffusion Tensor

First we start with some general remarks. The cell problem for time dependent fluc-
tuations is:

oxu

% ar

1
(V4+v)-Vxyy——Axi=—-u, l=1...d (4.1)
Pel
The effective diffusion tensor is:
Kl = o — Pey (v xk) (4.2)

We multiply (4.1) by xx and integrate over the period cell. We perform the same calcula-
tion with the indices k and 1 interchanged. After an integration by parts we find that the

antisymmetric part of the effective diffusivity is:

1 — —
.Alk = E(Iclk_lckl)

— Palu (s%—x (V). le)> (4.3)
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Thus, the necessary and sufficient condition for the effective diffusion tensor to be symmetric
is:
oxi

(xk (SZE +(V+v)- le)> =0 (4.4)

For the case of steady velocity fields equations (4.3) and (4.4) become:
A = Pe; (xxg(V+v) - Vx1)) (4.5)
and
(x(V4v) - V) =0, (4.6)
respectively. As a simple example, consider that of a shear flow in two dimensions:

V(ylay2at) = (OvUQ(ylvt))v (47)

with V = 0. In this case we have x1(y1,¥2,t) = 0 and we immediately conclude from (4.3)
that A;2 = 0 (in fact, for shear flows the off-diagonal elements of the effective diffusion tensor
are equal to 0).

Now we restrict ourselves to steady velocity fields. We wish to express Aj; in terms of
the Fourier coefficients of the velocity field in an appropriate basis. In the next section we

shall show that A is given by the following formula:

~— Mn]m(ﬂl*nﬁkn)

3
A = Pei 1+ Pe2yi2

(4.8)

n=1
where {3, }°°, are the Fourier coefficients of A™! v; in the basis defined by the eigenfunctions
of a compact, skew-symmetric operator A" and {u, }2; are related to the eigenvalues of A"
and have the property that lim,_ . p, = 0. Precise definitions, together with the proof of
(4.8) will be given in the next section.

We can now use the above formula to draw several conclusions. First, we see that a
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necessary and sufficient condition for the effective diffusivity to be symmetric can be derived:

=t M5}, Bkn)
n=1 n

Of course, (4.9) is not very useful for determining whether a given velocity field gives rise to
a symmetric effective diffusion tensor since it requires knowledge of the complete spectrum
of A”. However, it might be possible to prove the validity of (4.9) by taking advantage of
the specific properties of the velocity fluctuations. For example, it is easy to show that for
velocity fields with the property v(—y) = —v(y) equation (4.9) is indeed satisfied. The
relationship between the antisymmetry properties of the velocity fluctuations and condition
(4.9) is yet to be explored.

Moreover, from (4.8) we can easily derive the asymptotic behavior of oy for large and

small values of the Peclet number:

Ay, ~ Pe} for Pe; — 0 (4.10)
and

A, ~ Pe; for Pe; — oo (4.11)

The asymptotic behavior of A for small Peclet numbers can also be derived through regular
perturbation theory of the cell problem. In order to study large Peclet number asymptotics
we need a more refined method such as the one we will present.

What is particularly interesting is that the asymptotic behavior of Ay, for large Pe;
is independent of the presence and properties of the mean flow. This result is in contrast
with the asymptotic behavior of the symmetric part which depends strongly upon the mean
flow [70]. As will become clear in the next section, the reason for this difference is that the
expression for Ay, is independent of the orthogonal projection of A~!v onto the null space
of the compact, skew—symmetric operator A" that we shall introduce in the next section.
On the other hand, the asymptotic behavior of the symmetric part of the effective diffusion
tensor depends exactly on this orthogonal projection which, in turn, depends sensitively on
the properties of the mean flow.

We also mention that formula (4.8) can be generalized to time-dependent velocity fields.
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In this case the operator A” := A7 (V +v)V that we shall use in the next section has to be
replaced by AY := S, A7'Z + A=V + v)V. A formula similar to (4.8) can be obtained,
with the Fourier coefficients being functions of the Strouhal number. Consequently, we can
reach the same conclusions as before, valid for fized Strouhal number. On the other hand,
this formula will not provide us with information concerning the dependence of Aj;. on the
Strouhal number. We shall study this problem through numerical simulations for a time

dependent velocity field later in this chapter.

4.3 Derivation of Formula (4.8)

The techniques that we shall use in this section are based upon earlier work of Bhat-
tacharya and coworkers, for example [13, 15]. A slightly different version of the method was
introduced by Avellanada and Majda in [6, 7]. Similar methods have also been used in the
context of the theory of composite materials [48]. For background on the spectral theory of
compact, skew—symmetric operators we refer to the books [94, 95].

We consider the cell problem for steady velocity fields:
—Pel(V+V)'VXl+AXl:P€lUl, l=1...d (4.12)

We want to rewrite (4.12) as an integral equation:. To this end, we apply the operator A™!

to both sides of the equation to obtain:
(Z — Pe; A%)xq = Pe; Ay, (4.13)
where 7 is the identity operator and
A" =AYV +v)V (4.14)

We introduce now the complex Hilbert space H! which consists of all functions in the Sobolev

space H'(T%) with mean zero:

H' = {f € H(T"); (f) =0} (4.15)
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We equip H! with the norm

A1 = VAV (4.16)

and the inner product

(f,91=(Vf-Vg") (4.17)

where ¢g* denotes the complex conjugate of g. One can show that the operator A" is compact
and skew-symmetric in H* [13, pp. 966-968].

Using now A" the enhancement in the diffusivity can be expressed as:

K = —Pez/ v X1 dy
Td
= —Peg AAflkaldy
Td

= Peg VA, - Vi dy

Td
= Per (A vp, i

= (Xk x1)1 — Per (A"Xk: X (4.18)
In the above derivation we have used the fact that yx, £ = 1...d are real. At the last step

the integral formulation of the cell problem was used. For the antisymmetric part of the

effective diffusivity we have:

Ay = %(sz — K1)
_ %Pel (A", X — (A”Xk x0)1)
— %Pel ((A”x1, x1)1 + (X, A"X0)1)
— Pe (A", v, (4.19)

where the skew—symmetry of A" and the reality of xx, & = 1...d were used. The neces-

sary and sufficient condition for the effective diffusivity to be symmetric (4.6) can now be
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expressed as:

(.Avxl, Xk)l =0 (4.20)

We shall use the spectral decomposition of A" in order to study A;;. Since A" is compact and
skew—symmetric, we know that it can be written in the form A" =i G, G being compact and
self-adjoint, [94, p. 200]. From the spectral theorem for compact, self-adjoint operators [94,
p. 203] we conclude that AY has eigenfunctions {¢, } with purely imaginary eigenvalues that
come in conjugate pairs and can be indexed as {%ipu, }"=° with the property lim,, o f, = 0.
Moreover, ¢_,, = ¢;.

The Hilbert space H! admits the decomposition
H' =N o N+ (4.21)

where A is the null space of A”. N'* is spanned by the eigenfunctions {¢,, ¢, }"=3°. Let us
now compute the expansion of x; with respect to this basis.

To begin, let A~1v; have the following representation:

Ay = (AT'w)n + Z(A_I’Ul; ®n)1 On
n#0

n=+oo

= (Ailvl)N+ Z ﬁlnd)na (422)
n#0

where (A=) is the projection of A=1y; onto the null space of AY and By, := (A7 vy, dn)1.

Similarly, for the corrector field x; we have:

n#0



From the cell problem we have:

(T = Per A%)x

:)\*

where A, xS

= ifln, Ap

coefficients of x;:

Consequently:

n —

107

= (Z—-PeA’) ((XI)N + > Kin ﬁbn)

n#0

= (un+ Z(l — PeiAn) Xin &n
n#0

— Pel <(A1’Ul)N + Zﬂln ¢n>

n#0

(4.24)

1,...,00. We obtain the following expressions for the

(X)) = Per (A )y (4.25a)
~ ﬁln
n=2F 4.25b
Xl 1— Pel/\ ( )
xi=Per | (A w)y + ) S — (4.26)
1— Pel)\n
n#0
A'xi = Pe;y  —" Anfn (4.27)
1— Pel

n#0
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Substituting (4.26 and 4.27) into (4.19) we obtain:

A = Pei(A”x, xi)1

nﬁln ﬁkn
= Pe} (A
# (S 2y o @ o X e

n#0 n#0 1

n=-+oo
/\nﬁlnﬁ*
€ Z |1 — Pel)\n|2

n=—o0 n#0

n=—1
nﬁlnﬁk nﬁlnﬁk
- P 3 n n
K (Z 11— Perh|? Z 11— Perh]?

—nﬁl—nﬁkf ﬁl ﬁ
- P 3 n nMinMkn
€ ; (|1 ~Ped 2 T I Pe]?

_ Peg nio:o _Z,unﬁ[*nﬁkn + Zﬂnﬁlnﬁzn
! |1+ iPejpn|?> |1 —iPeyn|?

S 3
1T
] =

[797% (Blnﬁ;;n - Bl*nﬁkn)
1+ Pe?p2

/-Lnlm(ﬁl*nﬁkn)
1+ Pe?u?

= Pe}

(]

S 3
1T
] =

= Pe} (4.28)

1

3
Il

Now the derivation of formula (4.8) is complete.

4.4 Numerical Examples

In this section we study numerically the properties of the antisymmetric part of the
effective diffusivity for two types of velocity fields. The first example is a steady velocity field
and, as we shall see, the numerical results are in complete accordance with the theoretical
predictions of the previous sections. For the second example we choose a time dependent
velocity field. In this case the analysis of the previous sections is no longer valid. In fact, we
shall see that for this specific example the antisymmetric part of the effective diffusion tensor
depends only on the temporal part of the fluctuations. Let us start with the Childress-Soward
flow [27, 69] perturbed by a higher order harmonic:

V(1 y2) = Yes(y1,y2) + cos®(2mys)

= sin(2my;) sin(27mys) + € cos(2myy ) cos(2mys) + cos?(2my;) (4.29)
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Figure 4.1: K vs the Peclet number for 1¢cs + cos?(2ry;) with € = 0.0, for different
constant mean flows .

The Childress-Soward stream function has the following antisymmetry property:

¢cs (?Jl, Y2 +

L )

(4.30)

Thus, from the results of Fannjiang and Papanicolaou we know that the effective diffusion

tensor corresponding to 1¥¢og is symmetric. However, the addition of the higher order har-

monic term cos?(27y;) breaks all possible antisymmetries of the stream function ¢ and the
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0, = 1, for different constant mean flows.

resulting effective diffusion tensor is not symmetric.

Now we wish to study how the antisymmetric part of the effective diffusivity depends

on the Peclet number, in particular in connection to the presence and proeprties of the mean

flow. In figure 4.1 we plot the symmetric and antisymmetric parts of the effective diffusivity

for ¢(y) and various choices of the mean flow. We see that the scaling of the symmetric

parts of K* for large Pe; depends very sensitively on the presence of the mean flow (for

small Pe; the scaling is always quadratic). In particular, in the absence of mean flow, figure

4.1a, the diagonal components Ki1, Koo scale quadratically and like the square root of Pe;,

respectively. The choice V; = V4, = 10, figure 4.1b, leads to maximally enhanced diffusion

along the direction of the mean flow and both K1, Koo scale quadratically with the Peclet
number. On the other hand, the slightly different mean flow Vi = 10, V, = 37, figure 4.1c

leads to minimally enhanced diffusion and both K11, Koo approach constants, independent

of the Peclet number for Pe = 1025,

On the other hand, the antisymmetric part of IC has the same scaling, independently

of the mean flow. It scales like Pel3 for small Pe; and like Pe; for large values of the Peclet

number.

Let us now consider a different type of perturbation to the Childress-Soward flow which
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breaks the symmetry of K. Following [17] we add one time harmonic to the basic, steady

flow:

v(y,7)=A(1) + ves(y) (4.31)
where ves(y) = V4iibeos and
A(1) = (65 sin(27 1), §, sin(277 + ¢)) (4.32)

Now, since we already know that the Childress-Soward flow leads to a symmetric £, the
antisymmetric part of the effective diffusion tensor is due to the time dependent part of the
fluctuations and in particular the phase ¢. The antisymmetric part vanishes for ¢ = 0 and
¢ = £m. We will study the dependence of the effective diffusion tensor on the phase ¢ and
the Strouhal and Peclet numbers. We start by fixing the nondimensional numbers of the
problem as well as the strength of the time dependent part of the fluctuations and vary ¢.
In figure 4.2 we plot the symmetric and antisymmetric parts of the effective diffusion tensor
(in this example the values of Ki; and Koo are the same so it is enough to plot only Ki1)
as a function of the phase ¢. We fix 6, =, = 1, Pe = 10, S = 1, ¢ = 0.5 and solve the
cell problem in the absence of a mean flow and for V; = V5, = 10. We observe that the
effective diffusion tensor is a periodic function of ¢, as expected. We also observe that, for
these choices of the parameters of the problem, the antisymmetric part can become larger,
in absolute value, than the symmetric part. We also observe that the antisymmetric part is
independent of the presence of a mean flow. We shall come back to this point later.

In figure 4.3 we plot the symmetric as well as the antisymmetric part of the effective
diffusivity versus the Peclet number for various choices of the mean flow as well as the
Strouhal number. We observe that the antisymmetric part scales linearly with the Peclet
number, for fixed Strouhal number. The scaling of the symmetric part as a function of the
Peclet number depends upon the properties of the mean flow.

In figure 4.4 we plot the effective diffusion tensor as a function of the Strouhal num-
ber, for fixed Peclet number. We observe a nonmonotonic dependence of symm(K) on the
Strouhal number as has already been reported in [17]. On the other hand, the antisymmetric
part is inversely proportional to the Strouhal number and limg_,o, K = (. One can show

that the antisymmetric part vanishes at the limit S — oo through asymptotic analysis of
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the cell problem: for large Strouhal numbers the effective diffusivity tensor is determined
from the steady part of the velocity field which leads to a symmetric diffusion tensor!s.
Remark: From the numerical results that we presented it is clear that the antisym-
metric part of £* is independent of the mean flow. Consequently, there will not be an
effective drift due to the antisymmetric part. However, one could consider a generalization
of the velocity field (4.31) in which the amplitude of the temporal part is a function of the
large scales, for example 0, = 0,(x2,1), d, = dy(x1,t). For such a velocity field with slowly
modulated fluctuations the antisymmetric part will be a function of the large scale variables

and this will lead to a non zero eddy induced transport velocity.

13The conclusions regarding the dependence of antisymmetric part of J* on the non dimensional param-
eters of the problem for this particular time dependent field are based on our numerical results and formal
asymptotics of the cell problem, as opposed to a rigorous theory. We do not expect the scalings presented
in figures 4.1 and 4.2 to be valid for arbitrary time dependent fields.
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Figure 4.3: K vs the Peclet number for A(7)+vcs(y) withe=0.5, ¢ = Z,6, =6, = 1,
for different steady mean flows. The lines with slopes 1 and 2 are also drawn for
comparison
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K vs‘ S for Vcs(y) +A(‘r)
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b.  Pe =100, V4 =10.0, V5 = 9.55

Figure 4.4: K vs the Strouhal number for A(7) + ves(y) with e = 0.5, ¢ = 2.6, =
0, = 1, for different constant mean flows. The (broken) line with slope -1 is also

drawn for comparison.



CHAPTER 5
TWO-SCALE CONVERGENCE

5.1 Introduction

In chapters 2 and 3 we derived the effective equations for various choices of the pa-
rameters a and . We used a multiple scales expansion to derive formally equations for
the first two terms in the expansion and then used energy estimates to prove their validity.
We saw that in the parameter range o € (—1,0), v > 0 one has to use elaborate forms of
the multiple scales expansion in order to make sure that all the equations that we need to
consider are well posed and to derive the necessary estimates. Moreover, we saw that these
formal multiple scales expansions failed to provide us with the effective equations in the case
where the mean flow is stronger than the fluctuations.

In this chapter we shall present alternative definitions of the homogenized equations
using the method of two scale convergence. For brevity we shall restrict ourselves to the case
of steady velocity fields. At the end of the chapter we shall make comments concerning the
case of time dependent velocity fields.

In the first section we shall present the relevant definitions and theorems from the
method of two-scale convergence, in a form that is suitable for our purposes. Later on we
shall apply this method to the problem of homogenization for advection-diffusion equations

with mean flow.

5.2 Two—Scale Convergence

The method of two scale convergence is a powerful method for studying homogenization
problems for partial differential equations with periodically oscillating coefficients. It was
devised by Nguetseng in [83] and later popularized by Allaire in [1] and [2]. It was used, for
example, to study problems of fluid flow through inhomogeneous porous media in [29] and
[56]. More importantly for us, this method was applied to the problem of homogenization of
transport equations with incompressible velocity fields in [36] and [57]. The method of two-
scale convergence was extended in various ways: periodic oscillating coefficients in both space

and time—in particular, in connection to the problem of homogenization for parabolic partial
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differential equations with oscillating coefficients in both space and time— were treated in
[53]. Non periodic oscillations using two-scale convergence were studied in [73]. Finally, the
concept of stochastic two-scale convergence was developed in [19] as a tool to study random
homogenization.

We recall briefly the basic definitions and theorems. For details and proofs we refer to
the papers of Allaire [2] and Holmbom [53]. We shall use the notation of W. E from [36].
We first define the space of test functions that we shall need:

Jy={¢ : RExRT x[0,1]7 = R, ¢(x,t,y) is smooth and periodic in y
with period Y = [0, 1]? and has compact support}

We have the following definition:

DEFINITION 5.1 A sequence T° € L? (R* x R?) two- scale converges to Ty(x,t,y) €

loc

L} (RT x R x Y) if for any test function ¥(x,t,y) € J,
lim T8 (x, )0 (x,t,f) dedt = / / To(x, t,y)0(x, t,y) dydwdt (5.1)
0=0 Jr+xrd 0 R+xRdJy

We shall use the notation 7° 2 Ty to mean that the sequence T° two-scale converges to
To. The concept of two scale convergence is useful because of the following compactness

theorem:

THEOREM 5.1 Let T° be a uniformly bounded sequence in L? (R* x RY). Then there

loc

exists a function To(x,t,y) in L2 (R x RY x Y) and a subsequence, still denoted by T°,

loc

such that T° two-scale converges to Ty(z,t,y). Moreover, the subsequence converges weakly

in L7 (RY x RY) to T'(x,t) = [, To(x,t,y)dy.

loc

The two scale limit T is essentially the first term in the multiple scales expansion. We see
that in general it will depend on the oscillations through the auxiliary variable y. This is
the case for example in the homogenization of transport equations, [36, 57]. This due to the
fact that the above theorem does not assume any control over the L? norm of the gradient of
T?. Since the gradient can become unbounded, the oscillations will persist and appear in the
two-scale limit. Uniform bounds in better spaces provide us with more detailed information

about the two-scale limit. We shall use the notation H'(Y)/R := {f € HY(Y); (f) = 0}
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which is more commonly used in this setting than the notation H* that was used in chapter

4.

THEOREM 5.2 (i) Let T? be a uniformly bounded sequence in L} (R*; HL (R?)). Then
T two-scale converges to a function T(x,t) € L% (R*; HL (R?) and there exists a func-
tion Ty (x,t,y) in L} (Rt x R HY(Y)/R) such that, up to a subsequence, V,T° two-scale
converges to V,T(x,t) + V,Ti(x,t,y). T(x,t) is the strong L? (R* x R?) limit of T°.

(i4) Let T° and 5 VT be uniformly bounded sequences in L2, (RT x RY). Then there exists
a function Ty(x,y,t) € L2 (RT x R%: HY(Y)) such that, up to a subsequence, T® and §VT°

loc

two-scale converge to Ty(x.,y,t) and to V,To(x,y,t), respectively.

From the first part of theorem 5.2 we see that a uniform bound over the gradient of T
is enough to justify the second term in the multiple scales expansion Ti(x,t,y). We shall
denote the type of convergence described by the first part of theorem 5.2 by 79 2 T(x,t)
and say that 7° two-scale converges strongly to 7. An immediate corollary of the second

part of theorem 5.2 that we shall need later on is:

COROLLARY 5.1 Let T® and 67 VT? be uniformly bounded sequences in L? (Rt x RY)
with v € (0,1). Then the two-scale limit Ty of T° is independent of y. The two-scale
limit To(x,t) is the weak -L? limit of T°. Moreover, there exists a function Ty(x,t,y) in

L} (R x R HY(Y)/R) such that 67 VT? two-scale converges to V,T1(t,x,y).

loc

Proof:
From the second part of theorem (5.2) we know that § V71 =\ V,T5(x,y,t). On the other
hand, the uniform bound on 6 VT?, v € (0,1) implies that § VT 0. Consequently,
V,To(x,y,t) = 0 (in the weak sense), and Ty = To(x,t). The fact that T, is the weak L?
limit of 7° follows from theorem (5.2).

Now, the uniform bound on §7 VT? implies that, for every ¥ & Jg there exists a
function ®(x,t,y) € (L% (R x R? x Y))? such that:

loc

lim 57/ VT(x,t)- ¥ <X,t, E) dxdt = / / O(x,t,y) - V(x,t,y)dydxdt (5.2)
R+xR4 0 R+xR4JY

6—0
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We now consider a test function ¥ such that V,, - ¥ = 0. We integrate by parts to obtain:

87 s . X — Tim [ s ) . x
lim 6 /RMWVT (x,1) - W (x,t, 5) drdt %13%( 5 /R+deT (x,1)V - W (x,t, 5) dwdt)

— T _5 g . x
(lsg%( 0 /R+deT (x, )V, - ¥ (X,t, 5) da:dt>
= 0, (5.3)

on account of the uniform bound on 7. Combining now the above two equations we deduce:

/ / O(x,t,y)  V(x,t,y)dydxdt =0 (5.4)
R+xRdJy

for all test functions with V,-¥ = 0. Since now the orthogonal complement to divergence free
functions is the space of the gradients, ( see for example [58, ch. 1]), we conclude that there
exists a function T (x, ¢, y) € L2 (RT x R% H(Y))/R) such that §” VT 2 V, T (¢, %, y) and
the proof is complete. We remark that the same conclusion is valid for v > 1. However, in
this case the two-scale limit to 7° will, in general, depend on y.

To understand intuitively the meaning of this corollary, let us consider a multiple scales
expansion of the form T° ~ Ty(x,t) + 6*77 Ty (x, ¢, %) with v € (0,1) (in the next section we
shall see why this is relevant for our problem). We have:

VT ~ SV, To(x,t) + (Ve + %
~ 0V, /Iy +0V, 11+ V, T}

X
vy) 5T1(X: t: y = g)

Thus, in this setting, the function T3 (x, ¢, y) is exactly the higher order term in the expansion.
Finally, in order to study the two scale limit of the given incompressible field v we shall

need the following [2]:

THEOREM 5.3 (i) Let v(x,y) be a smooth vector field, periodic in'y. Then the associated
sequence v°(x, %) two-scale converges to v.

(ii) Let v° be a divergence-free bounded sequence in [L% (R)]4, which two-scale converges

loc

to v(x,y) € [L7.(R? x Y)]?. Then the two-scale limit satisfies V, - v(x,y) = 0, [, Va -

loc

v(x,y)dy = 0.



119

We remark that, since we merely assume that v(x,y) € [L} (R? x Y)]4, we have to interpret

loc
the divergence of v(x,y) in the appropriate sense, namely in the H~! sense. However, in
the sequel we shall assume that the velocity field is smooth, so the divergence free conditions
can be interpreted in the strong sense.

We now wish to apply the method of two-scale convergence to the initial value problem
for the advection diffusion equation. Our goal is to justify rigorously the equations obtained

for the first two terms in the formal multiple scales expansion.

5.3 The Homogenization Theorem

We consider the initial value problem for the advection diffusion equation with mean

flow for steady, incompressible velocity fields written in nondimensional form:

T (x,t
% + <V(x) n 5%(%)) CVT(x,t) = 6*HLATY(x, 1) inREx (0,00)  (5.6a)
T°(x.t = 0) = Tjn(x) onRY, (5.6b)
where, to simplify the notation, we have set Pe; = 1. Since we consider only steady

velocity fields there is no need to introduce the Strouhal number. Before proceeding with
the statement and proof of the homogenization theorem, let us outline the procedure that we
shall use for the case a € (—1,0). We expect a solution of the form T° ~ Tjy + 1+ T} + §T5.
We first obtain estimates on 7T° that enable us to pass to the two scale limit and show that Tj
satisfies a transport equation, the transport velocity being the mean flow. We then subtract

. .. . §_
Tp from T° and "renormalize”, obtaining an equation for 7% = T51+Z°. We then use energy

estimates that enable us, using corollary (5.1), to obtain an equation for 77, as well as the
cell problem. A similar methodology will be used when o > 0.

The parameter range that we shall consider is o € (=1, 1) (the —easier— case a = —1
will be treated in the appendix). Apart from the incompressibility assumption we shall also
assume that the fluctuations are periodic with period Y and have zero average and that
the velocity field as well as the initial conditions are smooth (in fact, all we really need is
Tim € L*(R), V € (L>(R%)4, H € (L=(Y))™4, 'H being the stream matrix defined below,

but we shall not concern ourselves with such technicalities).
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The incompressibility assumption implies that there exists an antisymmetric matrix

H(y), the stream matriz with the following properties:

<:7{U >=0, i,5=1...d

where we have used the summation convention. We present a proof of the above result
in the appendix. We remark that, using theorem (5.3), we have that v (%) 2 v(y) and
H(3) 2 H(y). The strong convergence will enable us to pass to the two scale limits in
various terms of the equations later on .

It will prove useful to rewrite the initial value problem (5.6) using the stream matrix:

OT?(x,t)

v + V(x) - VT(x,t) = §*T'V(K°VT?(x,t)) inR? x (0, 00) (5.7a)

T°(x,t = 0) = Tin(x) on RY, (5.7b)

Using now the techniques presented in the proof of lemma (2.2), we obtain the following

estimates:

T (@, )|z @+ir2ray < C (5.8a)

1ta
53 |IVT (2, 8)l| 12 (m+iz2(ey < C (5.8b)

From these estimates we deduce that T° two-scale converges to Ty(x,t). We multiply now

(5.6) by ¢° € D(R x R?) and integrate by parts on RT x R? to obtain:

—/ T dedt — /Tm(x)qb‘s(a:,O)dx—/ V. VT dx dt
R+xRd Rd

R+xRd

e / V¢ - KOVT dadt =0 (5.9)
R+xRd

In order to obtain the homogenized equation for Tj it is enough to consider a test function
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d(x,t) € D(R x RY). We immediately pass to the two scale limit to obtain:

R+xRd

/ To¢tdxdt+/ T, (x)¢(x,0)dm+/ V. VeTydrdt — 0 (5.10)
R+xRd R4

which is the weak formulation of the transport equation for the first term in the expansion:

0Ty
o +V(x)-VI; =0 (5.11a)
To(x,t) = Tin(x) (5.11b)

Now we wish to obtain an equation for the second term in the expansion. We define:

T —Tq

5
T__&M (5.12)
Using now (5.6) and (5.11) we get and equation for 7%
TH(x,t
Q—T%ELZ V(x) - VT (x,t) — 0°TV(KOVTY(x, 1))
= —%V(%) SVTy(x,t) + ATy(x,t) inR? x (0, 00) (5.13a)
T (x,t=0)=0 onR?, (5.13D)
or:
T (x,t) — _ catl S8 - 5 o
5 +V(x)-VI°(x,t) — 6" V(K'VT(x,t)) = V(K°VT)(x,t)) inR* x (0, 00)
(5.14a)
TY(x,t =0) =0 onR?, (5.14b)

We multiply (5.14) by T*°, integrate by parts and use the Cauchy-Schwarz inequality to



obtain the estimates:

T (z, Oz @+ < C

51+a||vT1’5(m7t)||leoc(R+;L2(Rd)) <C

There are three different cases to consider, depending on a:

L. a e (—10):
TV 2 Ty (x, 1)
S vTY AV, Th(x, y, t)
2. a=0
T A Ty(x,y,1)
SVTY AV, Ti(x,y,t)
3. ae (0,1):

T 2T, (x,y,1)

5 vTY AV, Th(x, y, t)
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(5.15a)

(5.15b)

(5.16a)

(5.16b)

(5.17a)

(5.17b)

(5.18a)

(5.18D)
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The weak formulation of (5.14) is:

— / TV @0 da dt — / V - VT de dt
R+xRd R+xR4

st / Ve - IVTY do dt = — / V¢ - KV T, dx dt (5.19)
R+xRd R+xRd
We start with the case a = 0. We write the two scale limit 7} (x,y,t) in the form:

Tl(X7Y7t) = <T1(XaY7t)>+f1(X7Yat)
= Ti(x,t)+Ti(x,y,1) (5.20)

We now choose a test function ¢(z,t) € D(R x R?) to pass to the two-scale limit:

_ / quﬁtdxdt—/ V - VoT, de dt
RtxRd

RtxRd

- / Vo - / KV, Ty da dt dy = — / VoV Tydz dt (5.21)
R+xRd Y R+xRd

Now we wish to obtain an equation for Ti. To do this, we choose a test function of the form

¢ = ¢1(x, %, t) with ¢1(x,y,t) € J, and pass to the two scale limit in (5.19) to obtain:

— / V- / Vo Tydedtdy — / / Vo1 - KV, T dx dt dy
R+xRd Y R+xReJY

= —/ /¢1v-VT0da:dtdy (5.22)
R+txRd JY

We could content ourselves with the system of equations (5.21), (5.22) as being the weak
formulation of the homogenized system of equations for 77. However, we can decouple the

above equations by using the standard separation of variables trick:

TI(X= y: t) = X(Xv Y) : VmTO(Xa t) (523)
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Inserting (5.23) into (5.22) we obtain:

— / V(/ Vygblx)-VzTod:cdtdy
R+xRd Y

— / (/ Vo1 - /CVyx> -V Tydrdtdy = —/ / ¢1v - VTydx dt dy
R+xRd \JY R+xR4JY

Equation (5.24) is the weak formulation of the elliptic cell problem
(V4+v)-Vyx —Ayx=—v (5.24)

in Y with periodic boundary conditions. Using now (5.23) in (5.21) we obtain:

_ / T\ ¢y da dt —/ V - VT, de dt
RtxRd

RtxRd

+ / V- ( / v x) v, Ty dedt dy — — / VoVTyde di (5.25)
R+xRd Y R+xRd

where the definition of K and the fact that (x) = 0 were used. Equation (5.25) is the weak

formulation of the inhomogeneous transport equation for T';:

T,

FTI V(x)- VT, = V(K*VT) (5.26a)

Ty(x,t=0) =0 (5.26b)

with K* =7 — (v ® x).
Now we proceed with the case a € (—1,0). As before, we choose a test function

d(x,t) € D(R x RY) to pass to the two-scale limit in (5.19):

- / Tlgbtdxdt—/ V . VT, dz dt
R+xRd

R+xRd

- / V- / KV, Ty da dt dy = / VoVT,dz dt (5.27)
R+xRd Y R+xRd

The next step, as before, is to obtain an equation for T5(x,t,y). With the choice of test
function ¢° = § ¢y (x, X.t) with ¢1(x,y,t) € J, the two scale limit of the second term in
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(5.19) gives:
—/ V. -VOTYdedt = —/ V-qubl(x,y:E,t)Tl"sdmdt
R+xRd R+xRd 0

- - / V. (/ Vyqbl (Xv Y, t) dy> Tl (Xv t) dx di
R+xR4 Y
= 0 (5.28)

We compute the two scale limits of the other terms in (5.19) to get:

— / / Vo1 - KV, /Ihdxdt dy = —/ / ¢1v - VIydrdt dy (5.29)
R+xRdJY R+xRdJY

We can now decouple equations (5.27) and (5.29) using separation of variables:
TQ(Xv Yy, t) = X(Y) : VmTO(Xv t) (530)

We obtain

— / (/ Vy¢-/CVyx> -V, 1y dr dt dy = —/ / ¢1v - VIydx dt dy
R+xR4 \JY R+xRe JY

Which is the weak formulation of the cell problem:
v-Vyx —Ayx = —v (5.31)

The method of two scale convergence explains in a transparent fashion why the mean
flow does not enter into the cell problem for a € (—1,0): The better control over the
L2

loc

(R*; L3(R?)) norm of the gradient of T%? enables us to conclude that the two scale limit
Ty is independent of the variable y and consequently the limit of the second term in (5.19)
vanishes, (5.28).

Now we study the case a € (0,1). First we remark that the control over the gradient
of T% that we have is too weak and the two scale limit 77 depends on y. Moreover,
we do not have any information concerning V,T1. Now the solution still looks like T° ~
To + 01Ty + 6 Ty, however the term Tj is weaker than the correction T,. Since, though,
< Ty >= 0 this term is will only contribute to the cell problem through the two-scale limit

V, T, and not to the effective equation.
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The first step is the same as in the a = 0 case: We use the decomposition (5.20) and

a test function ¢(z,t) € D(R x R?) to conclude:

_ / Tlgbtdmdt—/ V - VoT, de di
R+xR4 R+xRd

- / Vo - / KV, Ty da dt dy = — / V- VT, dx dt (5.32)
R+xRd Y R+xRd

Now we choose the test function ¢° = § ¢1(x, ¥,¢) with ¢1(x,y,t) € J,. For the two scale

limit of the second term in (5.19) we have:
— / V. -VPTY dedt = — / V. V,0i(x,y = x )T de dt
RtxR4 R+xRd 0

— —/ V. (/ Vo1 (x,y,t) Ti(x,y,t) dy) dz dt
R+xR4 Y

= —/ \E (/ Vy¢1(x,y,t)T1(X7y,t)dy) dx dt
R+xRd Y

The limits of the other terms in (5.19) are the same as before. We finally get:

— / V- / Vo Tydedtdy — / / V61 - KV, Ty dx dt dy
R+xRd Y R+xReJY

= —/ /d)lv-VToda:dtdy (5.33)
R+xRdJY

So far we have obtained two equations for the three unknowns T4, T}, Tb. We need another
equation to complete the system. To derive this equation we choose a test function ¢’ =
AT o (x, 5.1), ¢2(x,y,t) € Jp. All terms in (5.19) disappear in the limit § — 0 apart from

the second term:

— / V. -V@PTYdedt = & / Vo - VT da dt
R+xRd R+xRd
- V : (/ ¢2(Xa Y, t) vyTQ(Xv Yy, t) dy) d'T dt
Y

R+xRd

Consequently, we obtain the equation:

/ \'A (/ ¢2(X7 Y, t) VyT2(X7 y, t) dy) dedt =0 (534)
R+xRd Y
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Example

The system of equations (5.32), (5.33) and (5.34) is the system of homogenized equations.
We now see that in general we will not be able to decouple these three equations, as we did
before for a € (—1,0]. In particular, equation (5.34) does not imply in general that 7o = 0.
Let us present an example when this is possible. We consider the problem in two dimensions
with a constant mean flow V = (V, V5). Let us first assume that % ¢ Q, which of course
implies that at least one of the two components of the mean flow is irrational. Then equation
(5.34) has only the trivial solution and we get T, = T5(x,t). Then, equation (5.33) reduces

to:

/ V:/VWﬁMMMy:—/ /QMLVRMﬁmy (5.35)
RtxR4 Y R+*xRedJY

which is a well posed equation. In this case we have no enhancement in the diffusivity and

the homogenized equation for T is:

/ T, ¢pdadt + / V -VoT dxdt = — / Vo-VTydxdt (5.36)
R+xR4 R+xRd

R+xRd
which is the weak formulation of the inhomogeneous transport equation for T:

T _
%f+v&yvn:An (5.37a)

Ti(x,t=0)=0 (5.37b)

Remarks Concerning the Well Posedness of the Homogenized Equations
The arguments presented so far show that the functions (T';(x,t), Ti(x.t,y)), (Ti(x,1),
Ty(x,t,y)) and (Ty(x.t), Ti(x,t,y), Ta(x,t,y)) are solutions of the systems of equations
(5.21, 5.22), (5.27, 5.29) and (5.32, 5.33, 5.34) for a = 0, o € (—1,0), and «a € (0, 1), respec-
tively. Let us now discuss the uniqueness of solutions to these equations (well-posedness of
the transport equation for Tj is clear ).

We start with the equations for the parameter range o € (—1,0). We assume that there

exists a second set of solutions (T} (x,t), Ty (x,t¢,y)) that satisfy equations (5.27, 5.29). The
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difference T\g = Ty — Ty satisfies the homogeneous equation:
/ / Vo1 - /CVyTQ dedtdy =0 (5.38)
R+xReJY

We choose ¢; = Ty and use the antisymmetry of H to obtain:

/ / IV, Ts|? dz dt dy = 0 (5.39)
R+xRd JY

Since now Ty € L2 (Rt x R% H*(Y)/R) we conclude that Th = 0 and consequently the
solution of (5.29) is unique. Now use ((5.27) to obtain a homogeneous equation for the

difference T, = Ty — T}
/ Ty ¢y de dt + / V VT, drdt = 0 (5.40)
R+xRd R+xRd

The choice ¢ = T\l, together with the incompressibility of the mean flow, immediately give
YA} = (0 and well-posedness is proved. The case o = 0 can be treated similarly: the incom-
pressibility of the mean flow implies that (5.39) still holds, with T replaced by % 1.

We now turn to the case a € (0,1). We combine equations (5.33, 5.34) to obtain:

/+ d/ y¢1T1 + vy¢2T2> + Vy¢1 . ICVyTQ) dx dt dy
RTXR

= /+ d/¢1V VT dx dt dy (5.41)
R+xR

We assume again that there exists another set of solutions (T} (x, t,y), T4(x., t,y)) and obtain

a homogeneous equation for the differences T,=T,—T L and fg =Ty, —Ty:
/R - / (V- (vygﬁ} £ Vy6Ts) + Vy61 - KV, T) dodtdy =0 (5.42)
x
We choose ¢; = 7/:’2 and ¢o = rf’l to obtain:
/ / V, Ty - KV Ty dz dt dy = 0 (5.43)
R+xRd

Proceeding now as before we conclude that T, = 0 and consequently T, is determined
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uniquely. Using this information we can immediately show that equation (5.33) uniquely
determines 7.
On the other hand, this system of equations does not enable us to uniquely determine

Ty. Indeed, from (5.42) and since T » = () we obtain:

/ / V.V, 60T de di dy = 0 (5.44)
R+xReJY

However, from this equation we cannot conclude in general that 7, apart from the spe-
cific case described in the example above. For the general case where V(x) is a smooth,

incompressible vector field, a more detailed analysis is required.

5.4 Remarks on the Homogenization Theorem

Let us finish this chapter with a few remarks on the homogenized equations derived in
the previous section, together with a discussion of various extensions of the homogenization
theorem. First, let us remark that the results of the previous section, for a € (—1, 0] can be

rephrased as follows: the solution to the original advection diffusion equation is of the form
T° =Ty + 8" Ty + o(637) (5.45)

verifying a posteriori the multiple scale techniques that were used in chapters 2 and 3. The
technique that we used can be continued in order to obtain equations for the higher order
terms in the expansion. Moreover, the rescaling 5.12 that we used the analogous rescalings
for the higher order terms in the expansion can become a part of the unknowns: only one
rescaling will lead us to a nontrivial and non singular two-scale limit. We mention that a
similar technique, the method of development in I'-convergence, has been introduced to treat
singularly perturbed variational problems.

We have argued that the method of two-scale convergence provides us with a systematic
way of obtaining equations for the terms of various orders in the multiple scales expansion.
From this point of view, it seems that two-scale convergence is the method of choice since
it enables us to obtain the effective equations and to verify them in one step. However, as
we have already seen in chapter 3 and is also discussed elsewhere, for example [18, 103], the

creation of initial and boundary layers might affect the higher order terms in the expansion
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with respect to 0. In chapter 3 we had to take care of the initial layer in order to be able
to obtain sharp estimates for the error term in the expansion. On the other hand, there
does not seem to exist an a priori way of treating the initial and boundary layers within the
framework of two-scale convergence and this will affect the error estimates when trying to
obtain a single equation for the first two terms in the expansion.

In the previous section we studied the problem for steady velocity fields. However this
restriction is not necessary and the results can be easily extended to cover spatiotemporally
dependent velocity fields. The definition and basic compactness theorems of two-scale con-
vergence where extended to cover the case where there are oscillations in both space and time
with different speeds of oscillation in the time variable by Holmbom in [53]. For example,

the analogue of theorem (5.1) is:

THEOREM 5.4 Let T° be a uniformly bounded sequence in L7 (Rt x R?). Then there

exists a function Ty(x,t,y,7) in L2 (RT x RTx Y x [0,1]) and a subsequence, still denoted

by T°, such that for any test function ¥ (x,t,y,7) and for all v > 0

1
lim T°(x, 1) (x,t,f,i) dwdt:/ / /TO(X,t,y,S)Qﬁ(X,t,y,S) dydzxdtds
50 Jp4ypa 6 07 r+xrdJo Jy

(5.46)

The class of test functions is taken to be that of functions ¢ (x,t,y,7) which are smooth
with compact support and periodic in both y and 7 with period 1. Holmbom then used his
results to study the problem of homogenization for linear parabolic equations with coefficients
oscillating in both space and time (this corresponds to the case where the mean flow is O(9)
weak compared to the fluctuations). Using the similar techniques to those used in the
previous section we can derive the effective equations for the first two terms in the expansion
as well as the cell problems. Using test functions of the form ¢° = ' “¢y (x,t,%, &) will
enable us to show that the structure of the cell problem depends upon the value of v. For
brevity we shall omit the details.

In the previous section we assumed that the initial conditions are smooth, independent
of 6. However, this is not necessary. We could consider, for example, the initial conditions

to be T? (x) € L*(R?) such that TPn — Tj, strongly in L?(R?). The homogenization result

would be exactly the same in this case.
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In this work we have been concerned with the effect of a spatiotemporally dependent
mean flow on the homogenization for advection-diffusion equations. Certain of the results
presented so far can be extended to the case of advection-reaction-diffusion equations, pro-
vided that the nonlinearity is not too strong. For example, we can use two-scale convergence
to study the problem of homogenization for the following system of an advection-diffusion
equation coupled with an advection-reaction-diffusion equation through a KPP nonlinearity,

that was studied by Majda and Souganidis in [72]:

% + (V(x) + %v(?)) VT (x,t) = KATY(x,t) inQ x (0,T) (5.47a)
% + (V(x, £) + év%)) VZ(x,t) = KAZO(x,t) + Z° (T° — Z%) inQ x (0,T)

(5.47h)

To(x,t) =0 ondQ x (0,T), (5.47¢)

7°(x,t) =0 ondQ x {t =0}, (5.47d)

To(x,t) = Ty(x) on € x {t =0}, (5.47¢)

Z°(x,t) = Zo(x) onQ x {t =0}, (5.47f)

(for simplicity, consider the problem in a bounded domain with smooth boundary and
with Dirichlet boundary conditions but this is not necessary. Moreover, more general types
of nonlinearities can be considered). Standard energy estimates enable us to obtain the
uniform bounds ||T5(:c,t)||Lz(07T;H&(Q)) < C, ||Z‘S(x,t)||L2(07T;H3(Q)) < C (we have to make

certain assumptions concerning the initial conditions of Z°). Using these estimates we can
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pass to the two scale limit to obtain the following system of homogenized equations:

8ng’ D V(x) VT(x.1) = KAT(x, 1)+ V - (Kz- VT) inQx (0.T)  (5.43)
% L V(x) - VZ(x,t) = KAZ(x,8) + V- (Kp-VZ) + Z(T = Z) inQ x (0,T)

(5.48D)

T(x,1) = 0 ond x (0,T), (5.48¢)

Z(x,1) = 0 on € x {t = 0}, (5.484)

T(x,t) = Ty(x) on € x {t = 0}, (5.48¢)

Z(x,1) = Zo(x) on 2 x {t =0}, (5.480)

The effective diffusivity tensor Kr is given by the standard formula K% = (Vy; - Vy;) and
x satisfies the elliptic cell problem v - Vy — KAy = —v.

We emphasize the fact that in order to be able to use the method of two-scale conver-
gence we need to have good uniform estimates of the solution to the PDE under investiga-
tion in the appropriate Sobolev spaces. However, for stronger nonlinearities (for example,
assuming that the reaction is O(6!) compared to the diffusion in the example above or
for Hamilton-Jacobi equations) these estimates are no longer available. For this kind of
problems an 7 L*° variant” of the two-scale convergence method, the perturbed test function
method that was developed by Evans, [38, 39], within the framework of viscosity solutions is
the appropriate tool. This method was used in a series of papers by Majda and Souganidis,
for example [71, 72|, to study the problem of periodic homogenization for advection-reaction-

diffusion equations.



CHAPTER 6
DISCUSSION AND CONCLUSIONS

In this work we studied the problem of periodic homogenization for advection-diffusion
equations with mean flow. We showed that the effective transport of the passive tracers
is greatly influenced by the presence and properties of the mean flow. In our work we
identified three regimes, depending upon the relative strength of the mean flow relative to
the fluctuations. We showed that for weak mean flows the effective equation is an advection—
diffusion equation with a constant effective diffusion tensor whose value depends only upon
the fluctuations. In the second regime where the mean flow is equal in strength with the
fluctuations we showed that the effective diffusion tensor is a function of space and time with
values depending upon both the mean flow and the slow modulations of the fluctuations. The
spatial dependence of the effective diffusion tensor leads to an additional drift term which
contributes to the large scale velocity with which the passive tracers are being transported.
In the third regime where the mean flow is stronger than the fluctuations we rigrously showed
that the homogenized transport is governed by a complicated system of equations where both
the fast and the slow variables are present. One cannot in general decouple this system of
equations. We showed through asymptotic analysis and numerical experiments that resonant
enhanced diffusion phenomena might appear in this regime.

Further, we studied the symmetry properties of the effective diffusion tensor. We
studied the dependence of the antisymmetric part of the effective diffusion tensor on the
Peclet number for steady flows and we derived necessary and sufficient conditions that ensure
the symmetry of *.

The results of this work can be extended in various directions. First, it would be very
interesting to study the same problem in the case where the fluctuations in the velocity are
modeled as a short range correlated, sufficiently mixing random velocity field. This is a more
natural setting in view of applications of the theory to the study of the transport of passive
tracers in the atmosphere and ocean.

Another very interesting problem is that of periodic homogenization for compressible
velocity fields. There have been very few works on this problem even in the case where the

mean flow is absent [79, 114] and none, to our knowledge, to the case of compressible velocity
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fields with mean flow. The compressibility of the velocity field leads to new interesting
physical phenomena such as the trapping of tracer particles and we think that this is a very
exciting area of research.

From the point of view of physical oceanography it would also be very interesting to
study the effects of stratification on the effective transport of passive tracers using ideas
from homogenization theory. Since the physical properties of passive tracers are the same
along lines of constant density [50], the natural coordinate system for this problem is that
of isopycnal coordinates in which the role of the vertical coordinate and density are inter-
changed. In these new coordinates the velocity field is no longer incompressible and the
study of homogenization for compressible velocity fields becomes relevant. The final goal of
such a research project would be the systematic derivation of the so called Gent-McWilliams

parametrization [46, 49] for some simple classes of fluid flows.



APPENDIX A
TIME INDEPENDENT VELOCITY FIELD WITH WEAK

MEAN FLOW

A.1 Introduction

In chapter 5 we derived rigorously the effective equations for the first two terms in the
multiple scales expansion using the method of two scale convergence. We restricted ourselves
to the case o € (—1, 1), a being the exponent that controls the strength of the fluctuations
relative to the mean flow. The case where a = —1, i.e. the case where the mean flow is
O(6)-weak compared to the fluctuations can be treated using the same method: the fact that
(R*; HL (RY)) and we can

diffusion is O(1) enables us to obtain uniform estimates in L} loc
pass to the two scale limit to obtain an advection-diffusion equation for the first term in the

loc
expansion where the diffusion is always enhanced. Thus, in this case we don’t have to derive
equations for higher order terms in the expansion, since at the length and time scales where
the homogenization theorem is valid advection due to the mean flow and enhancement in
the diffusion due to the fluctuations are balanced.

In this appendix we shall present an alternative proof of the homogenization theorem
for weak mean flows using the Trotter-Kato theorem, [89, pp. 87-88], [99, p. 35| [115,
pp.269-272|, from the theory of analytic semigroups. In the next section we present some
properties of the fluctuating part of the velocity field and, in particular, we construct the
stream matrix. Then we prove the homogenization theorem. In the last section we present

some further remarks and comments.

A.2 Construction of the Stream Matrix

Consider the following initial-boundary value problem for the advection—diffusion equa-

tion with homogeneous Dirichlet boundary conditions:

+ (V(x) - %v(%)) VT (x,t) = AT%(x,t), inQ x {t > 0} (A.la)

aT%(x, 1)
5t
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T°(x,t) = Tin(x) on Q x {t =0} (A.1b)

T°(x,t) =0, ondQ x {t> 0} (A.1c)

where €2 is a bounded domain in R? with smooth boundary. To ease the notation we have
set Pe; = 1. Both components of the velocity field are incompressible. The fluctuations are

periodic with unit period:

V-V(x)=0 (A.2a)
Vy-v(y)=0 (A.2Dh)
viy+ej)=v(y) j=1,...d (A.2¢)

) = [ vivyay=o. (A.2d)

where y = £, V,, denotes the gradient with respect to y, {ej};l:l denotes the unit vector in
the j* coordinate direction. As in the previous chapter we shall use the notation Y = [0, 1]<.

We assume that the velocity field is smooth enough to have a Fourier series expansion:

viy) =) e Vv (A.3)

k+£0

Since we have assumed that (v(y)) = 0 the k = 0 term in the Fourier series disappears. We

have the following lemma ( see, for example, [67, ch. 2]):

LEMMA A.1 The velocity field satisfying (A.2) has the following property:
vi-k=0Vk € 7.



Proof:

From the incompressibility condition we get:

Vy v=2mi» Vv, . k=0=v,-k=0 Vk € Z°

k+£0

Now we wish to construct the stream matrix. We write (A.3) componentwise:

vp(y)

We have:

LEMMA A.2 There exist an antisymmetric matric H = H(y) such that

Moreover, (H,,) =0, p,q=1,..,d.

Proof:
We define ‘H as:

We have:

- Z OMHpy

1 Oy,

_ ZeQWik.yvi p=1,..d

k+£0

L
2.

D q
p2mikey kquy — kpuy

: 2
21 " k

_ Z Z 2mik- yk kpvk

p=1 k#0

_Z 27rzkyzkkvk Pv

k+£0

_§ 27rzky qk Vk+§ 27rzkyvk

k#40 k40
Z eQwik-yvi
k#0
v(y), ¢=1,....,d,
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(A4)

(A.5)

(A.6)

(A.8)
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where we have used lemma A.1. The average of each component of the stream matrix is:

(Hpq) = /YHpq(Y)dy

1 2mik-y kq’Uﬁ — kpvl(i
— - i a7k Pk g
/Y TP K2 4

Kk£0
=0, pg=1,..,d (A9)
Now we observe that:
V<y:%)z—Vy-H(y=§>:—5V-H(§), (A.10)

Hence, we can write the advection term due to the velocity fluctuations as:

1 /x 5 L 5
= V- (H-VT, (A.11)

since H is antisymmetric and the Hessian of 7° is symmetric. Using the stream matrix we

can rewrite the advection-diffusion equation in the following form:

OT%(x. )

T V(x) - VT(x,t) = V- (K°VT’(x,t)) (A.12)

where:

X

K ::[—I—H((S)

(A.13)

Clearly, K? is y—periodic, positive definite but not symmetric. The positive definiteness of
K implies that the differential operator —V (K°V) + V(x) - V is uniformly elliptic, [40, p.
204].

We are interested in studying the behavior of the solution of (A.12) in the limit § — 0.
In particular, we want to prove that 7 converges, in the appropriate norm, to a function T
which satisfies the following advection-diffusion equation:

OT(x.t) V(x)-VT(x,1) = V - (K- VT(x, 1)) (A.14)
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with the same initial and boundary conditions. The effective diffusivity tensor K* is given

by the standard formula'*:
K3 =6 + (Vx' - VY) (A.15)
and x(y) is solution of the cell problem:
v(y) - Vyx = Ayx = —v(y) (A.16)

Alternative formulations of £* and the cell problem are [14, pp. 15-17]:

oy’
K= 6, — (KH =2 A7
ij J < ik 8yk> ( a)
~ oK,
Koyl = 22 A.17b
1X 8y2 ) ( )
where IC;;(y) = 6;; + Hij(y), K1 = —%(Kij(y)a%j). We have adopted the summation

convention. Now we are ready to prove the homogenization theorem.

A.3 The Homogenization Theorem

In this section we shall prove the homogenization theorem. Our method will be to
use the Trotter-Kato theorem in order to reduce the problem to that of the homogenizing
the corresponding elliptic equation. More precisely, we shall show that it is enough to prove
strong convergence of the resolvents of the corresponding generators in L?(2). Then we shall
use Tartar’s method of oscillating test functions to study the elliptic problem. We have the

following:

THEOREM A.1 Consider the initial boundary value problem for the advection-diffusion
equation:

oT?(x, )
ot

141n fact, this is the symmetric part of the effective diffusivity. However, since K* is constant only the
symmetric part is important for the homogenized equation

+V(x) VI°x,t) =V - (K'V-T(x,t)), inQx{t>0} (A.18a)
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T°(x,t) = Tin(x), onQ x {t =0} (A.18b)

T°(x,t) =0, indQx {t >0}, (A.18c¢)

where 2 is an open bounded domain of R with smooth boundary. Assume that Tj,(x) €

L3(Q), V(x) € (L=(, RN, H(y) € (L>=(Y))%. Then the solution T°(x,t) of (A.18) con-
verges to the solution T(x,t) of (A.14) with the same initial and boundary conditions.
The effective diffusion tensor is given by formulas (A.15), (A.16). The convergence is
strong in L*(Q)) uniformly in every finite interval of t > 0: To(x,t) — T(x,t) strongly
in L2 (RT; L2(Q)).

loc

Proof:

First we prove that the operator

0 0 0
é - 1 ‘fj A
AT 0x; (K” 0x ; ) oz (A-19)

generates a contraction semigroup in L?(€2). The domain of definition of A? is taken to be:
D(A%) := H}(Q) N H*(Q) (A.20)

D(A?) is dense in L*(2). Moreover, the operator A° is dissipative:

ou
(’CJU,U)LQ(Q) = 81‘@ Z 81-J /Vja—xjudx
ou Ou
= Ko——d
/Q Y 0x; 0x; .
< —|IVul[Zaq
< 0 Yue Hy(Q)n H*(Q) (A.21)

The second integral vanishes on account of the incompressibility of the mean flow:

;
/Vja—uud = /a(vu)uda:
Ox; o Ox;

ou

= J _
/ Vv u@x] dz (A.22)
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Moreover, we have that R(I — A%) = L?(9). To see this, we have to prove that the elliptic

problem

(I—Au’=f z€Q (A.23a)

u’ =0, € o (A.23b)

has a unique weak solution for every f € L?(€2). We have to verify that the bilinear form

Blu,v] : HY() x HYQ) — R

Bolu,v] = //C‘s Ou v 4y s /Vfa—“vdx+/uvdx (A.24)
Q Q

U dx; Ox; 0z

satisfies the conditions of the Lax-Milgram lemma. We readily check that B°[u,v] is contin-

uous and coercive :

ou 81} . Ou
) 6
|B°[u,v]| = }/ 90, 91 /ija—xjvd:c—l—/ﬂuvdx‘
< |k ||Loo/|Vu||w|dx+||m|m/|Vu||v|dm+/|u| o] dz
< Cllullgyollvllme (A.25)
ou Ou ou
[u, ul /,C”c%:zﬁxj a:+/V 8xju a:+/ﬂu x

Oou Ou
= [ 5—— d
/Q JBa:i(?a:j +/Qu .

[/ |Vu|2dw+/u2da:]
Q Q

= C||U||§13(Q) (A.26)

Hence, from the Lumer-Phillips theorem ([115, p. 250], [89, p. 14]) we deduce that A°
generates a contraction semigroup in L?().

Let now A denote the differential operator associated with the homogenized equation:

0 0 -0
= — *_ J— J
A= o (ICZ] aa:j) 1% 5 (A.27)
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According to the Trotter-Kato theorem (, [89, pp. 87-88], [99, p. 35|, [115, pp.269-272] ), in
order to prove that the solution of (A.12) converges to that of (A.14) as § — 0, it is enough

to have strong convergence in L?(Q2) of the resolvent of A% to that of A:
(I—A)'f - (I —A)7f  strongly in L*(Q) V feL*9) (A.28)

In other words, we want strong convergence in L?(Q) of the weak solution of (A.23) to the

weak solution of:

I-Au=f 2€Q (A.29a)

u=0, €N (A.29Dh)
for every f € L?(2). This result is proven in theorem 2. Hence, we finally get:
e 1Ty (x) — e Ty(x) ¥ Th(x) € L2() (A.30)

uniformly in each finite interval of ¢t > 0.
Now we want to prove strong convergence of the resolvents in L*(€2). We shall ac-
complish this using Tartar’s method of oscillating test functions, see for example [28, ch.

).

THEOREM A.2 The weak solution u® of (A.23) converges strongly in L?(2) to the weak
solution u of (A.29).

Proof:
The weak formulation of (A.23) is:

B[l v] = (f,v) Yv € H}Q) (A.31)
The weak formulation of (A.29) is:

Blu,v] = (f,v) Yv € HY(Q) (A.32)
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where Blu,v] is defined like B°[u, v] with KY; replaced by K7; and (-, -) stands for the L?(12)

inner product. First we prove that u° is bounded in HZ (). We have:

B W’ = (f,u)
< Izl w22
< Mzl g o) (A.33)

On the other hand, from the continuity of B°[u’, u’] we can get a lower bound for B?[u®, u°]:

B’ ] < Ol (A.34)

Combining (A.33) and (A.34) we obtain:

||U5||H3(Q) <Cy (A.35)
Let us now define:
ou’
&= Khg (A.36)

Now K9, € L*(R"), which together with (A.35) readily gives:
160112 (@) < Cs (A.37)

The above inequalities imply that we can extract subsequences, still denoted by u°, £ such

that:

u’ — weakly in H}(€2) (A.38a)

ff — & weakly in L2(£2) (A.38Db)
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Using the definition of B°[u’, v] and & we can rewrite (A.31) in the form:

5
&, %) + (Vj%,v) + (', v) = (f,v) Yo € H}(Q) (A.39)

Using (A.38) we can pass to the limit 6 — 0 and obtain:

(&, 88—;;) + (Vjaa—jj,v) + (u,v) = (f,v) Yo € H} () (A.40)

Our aim now is to prove that u, the limit of u%, satisfies (A.29). We shall accomplish this

by obtaining an expression for & using the adjoint problem. The adjoint operator of Ky is:

.0 0
= =g (/cﬂa—y) (A.41)

Let now w be the weak solution of:
Kiw =0, (A.42)

such that w — P is y—periodic, P(y) being a homogeneous polynomial of degree 1. Further,
define

w—P=-yx (A.43)
Consequently, y satisfies the equation
Kix=KiP (A.44)

We require that y is y—periodic. Further, we define w’ as follows:

T
= P)-53(5) (A.45)
Now w?® satisfies the following problem:

(KoY w’® =0 (A.46)
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where:

) o
5o 6 U
= g (/cm axj) (A.47)

and (K°)* is its adjoint. We choose a test function of the form v = w’¢ with ¢ € C°(Q).
We use this test function in (A.31). We also take the L?(2) inner product of (A.46) with

¢u’. Subtracting the resulting expressions we obtain:

B[u’, o w’] — (u’e, (K°)"w’) = (f. ou’) (A.48)

The above equation implies:

§8¢ 6) /’CJ 58¢86

Ou’ 5 § 108 3. 5
(&’8@ 9z, O, da:—i—/QVJa—xj(qbw )d:L’—l—/Qu pw’dr = (f,ow’) (A.49)

Now we want to take the limit 6 — 0. The first term on the left hand side of (A.49) converges
to (&, g 4 P) as the product of a weakly convergent and a strongly convergent sequence. The
third and fourth terms as well as the right hand side converge since both u’ and w’® are
strongly convergent sequences in L?(£2). For the second term on the left hand side of (A.49)

we proceed as follows. First we define the following operator:

(@)= f(5) (A.50)
We have:
s 500 ow® Ow.s o 8gb
/’C dx; O, do = /Q(IC” 8yi) 8% (A-51)

Notice that u‘s% € LY(©) and consequently the integral in (A.51) is well defined. Moreover,

/ dx—>/u—dx (A.52a)

we have:

ow N <’C'.8w

(’C" wa—yi>

Ua—)‘s weak-* in L>=(Q) (A.52b)
T
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For the proof of (A.52b) we refer to [33, ch.2, theorem 1.5]. We can easily see that u® g ¢
Tj

converges strongly in L(£2). Thus, since the integrand in (A.51) consists of the product of a
strongly convergent sequence in L*(2) and a weakly-* convergent sequence in L>(2), (A.52)

implies that:

8¢> ow’ ow 0¢p
j O i J

In appendix B we present a detailed derivation of the above equation. From the above

considerations we finally deduce that the limit of (A.49) as § — 0 is:

96 ow ¢ B
(6 g P) = Wiigg,) [ g do +/W—¢de+/u¢de_(f,¢P) (A.54)

Ox;
or,
Qb ow 0¢ ; Ou B
(& 5 )—(’Cija—y)(u,a—%)Jr( pr ¢ P) + (u, 0 P) = (f, ¢ P) (A.55)
From (A.40), for v = ¢ P, we get:
(¢ P) ou B
(6 =)+ (Vg 0 P) 4 (w0 P) = (1.0 F) (A56)

Combining the above two equations we obtain:

oP ow, , Ou ~
(650+0) = (Ks G} (525.6) Yo € G (@) (A5)

Thus:

8w ou

&

Now we choose P(y) = y;. We define w —y; = —x; and consequently y; satisfies the equation

Kix = Kiy;. Thus, (A.58) gives:

(A.59)
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Inserting now (A.59) into (A.40) we obtain:

oy’ Ou Ov ; Ou B L
(s~ Ky GE) 2 20 4 V2 )+ (o) = () Yo € Q) (A0

Now we have to prove that u satisfies the homogenized equation, i.e. that (A.60) coincides
with (A.32). Comparing (A.32) with (A.60) and using (A.17a) we conclude that we have to
prove that:

ox?

T

)= </ckjg—§;> (A.61)

We multiply the adjoint cell problem X* )21 = K*y; by }’ and integrate over the unit box Y
(this is just the L?(Y") inner product). We have:

O Ky = (7. Kyy

= (Kuz") (A.62)

(X Kix)pe = —(X'

IXy (A.63)

Equations (A.62) and (A.63) now imply (A.61).

So far we have proven that u’ — wu weakly in H (), u being the solution of the
homogenized equation. By the Rellich compactness theorem we know that embedding of
HY(©) in L%(Q) is compact, which implies that u® — u strongly in L%(2). Now the proof is

complete.
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A.4 Comments

Let us first review the method that we used in order to prove the homogenization
theorem in the previous section. First we used the Trotter-Kato theorem to reduce the
problem to the proof of the strong convergence of the resolvents in L?(£2). Then we used the
adjoint to the cell problem to build appropriate test functions that enabled us to pass to the
limit and obtain the strong convergence.

This method seems to be more difficult to use than the two-scale convergence for various
reasons: First, we had to work hard in order to construct the appropriate test functions,
in contrast to the method of two-scale convergence where it was enough to consider test
functions of the form ¢° ~ ¢o(x,t) + & ¢1(x, 1, X). Moreover, it is more difficult to extend
this method to the case of time dependent velocity fields. Finally, the above method cannot
be immediately used to study homogenization for advection-reaction-diffusion equations,
since the Trotter-Kato theorem is no longer valid.

On the other hand, this approach has certain advantages. First, we can use it to
prove homogenization for non-periodic oscillations. In this case we will not have an explicit
expression of the effective diffusion tensor in terms of the solution of the cell problem.
However, we can still show that the solution of the corresponding elliptic problem converges
strongly in L?() to the solutions of an elliptic equation and that the diffusivity is always
enhanced. We refer to [28, ch. 13] for results of this form. This in turn implies convergence
of solutions for the parabolic problem.

More importantly, we can use this method to prove the homogenization theorem for
random velocity fields with short range correlations which are sufficiently mixing. In fact,
a variant of the techniques developed by Papanicolaou and Varadhan [87] can be used in
order to define the appropriate test functions in the random setting. Then, the Trotter-Kato

theorem gives the homogenization theorem for the evolution problem.



APPENDIX B
PROOF OF EQUATION (A.53)

We first prove the following lemma:

LEMMA B.1 Let g. — g weak-* in L>=(Q2) and let f. — f strongly in L*(Q). Then :

/Qfegedxﬁ/ﬂfgdx (B.1)

Proof:
We have:

fege=—(fe=f)9e—9)+fg—Ff9.— feg (B.2)

Thus:

/Qfegedxz—/u X dw+/fgdw—/fgedw—/fgdfv (B.3)

We study each term in the right hand side of the (B.3) separately. We bound the first term

/Ql(ff—f)ll(gs—g)ldfv

< lfe— f||L1(Q) |1ge — g||L°°(Q)
0 (B.4)

as follows:

IN

/Q(fe—f) (9. — g)da

!

Since g. is weakly-* convergent in L*(f2), the third term converges to — [, fgdz. f. is
strongly convergent in L'(2), hence the fourth term converges to — [, f g dz as well. Con-

sequently, we have:

[N [ fete [ fade- [ gt [ o ©)

149



150

and hence:

/Qfegedm—>/ﬂfgdx (B.6)

This completes the proof of the lemma.
In our case we have that u, — u strongly in L2(2) and that ¢ € C5°(£2), consequently
Ue a¢ € L'(Q) and moreover u. ¢ — u 5= strongly in L'(2). On the other hand, we know

that (IC;; g“’ ) —< sz— > weak-* in LOO(Q). Upon using the lemma, we get:

. 8d> ow* “8w 8qb
/’C 8x] 831:Z dv — /QUC”&%) ax]

u-—dz (B.7)
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