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In this paper we present a systematic and rigorous method for calculating the diffusion tensor for a
Brownian particle moving in a periodic potential which is valid in arbitrary dimensions and for all
values of the dissipation. We use this method to obtain an explicit formula for the diffusion coefficient
in one dimension which is valid in the underdamped limit, and we also obtain higher order corrections
to the Lifson-Jackson formula for the diffusion coefficient in the overdamped limit. A numerical
method for calculating the diffusion coefficient is also developed and is shown to perform extremely
well for all values of the dissipation.
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1. Introduction
Brownian motion in periodic and random potentials has been a very active area of research
for many decades. Apart from the well established applications to electronics [26, 34]
and to solid state physics such as superionic conductors, the Josephson tunneling junction
[1] and surface diffusion [10], new and exciting applications to physics (self-assembled
molecular film growth, catalysis, surface-bound nanostructures) and to biology (stochastic
modeling of molecular and Brownian motors [27]) keep the subject of Brownian motion at
the forefront of current research, both theoretical and experimental.

Despite the fact that Brownian motion in periodic potentials has been studied exten-
sively [30, Ch. 11], [5] and many analytical and numerical results have been obtained,
there are still many open questions, in particular in the underdamped, multidimensional
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case. The main purpose of this paper is to develop a general method for calculating the
diffusion tensor D of the Brownian particle in arbitrary dimensions, and to then use this
method for setting up an efficient numerical method for computing D. Furthermore, we
will show that our method for calculating D will enable us to study various asymptotic
limits of physical interest in a systematic and rigorous fashion.

The dynamics of a Brownian particle moving in a periodic potential is governed by the
Langevin equation

ẍ = −∇V (x)− γẋ + ξ, (1)

where x(t) denotes the particle position, V (x) is a smooth periodic potential, γ denotes the
friction coefficient and ξ(t) is a white noise Gaussian process with correlation function

〈ξi(t)ξj(s)〉 = 2γkBTδijδ(t− s), i, j = 1, . . . , d.

where kB is Boltzmann’s constant and T is the absolute temperature, in accordance with
the fluctuation-dissipation theorem. We use the notation 〈·〉 to denote ensemble average.
We will also write β = (kBT )−1 and ξ(t) =

√
2γβ−1Ẇ , where W (t) is a standard

Brownian motion in Rd. Throughout this work we will assume that the diffusing particle is
of unit mass, m = 1.

The Langevin equation (1) has been studied extensively as a theoretical model for the
diffusion of adsorbates on crystal surfaces [10, 21]. In this setting, q(t) represents the
position of the diffusing particle, V (q) the substrate potential and the friction and noise
terms represent the interaction of the diffusing particle with the phonon heat bath [21]

It is well known that at low temperatures (which is usually the regime of physical
interest), the diffusing particle performs a hopping motion (random walk) between the
local minima of the potential. This hopping motion is characterized by the mean square
jump length 〈`2〉 and the hopping rate κ (or, equivalently, the mean escape time τ with
κ = 1

2τ ). These two quantities are related to the diffusion coefficient through the formula
(in one dimension)

D = 〈`2〉κ. (2)

Knowledge of two of the three quantities (D, 〈`2〉, κ) is sufficient for the calculation of
the third. Of course, the diffusion tensor can also be defined either in terms of the ensemble
average of the second moment, i.e.

D = lim
t→∞

1
2t
〈(q(t)− q(0)

)⊗ (q(t)− q(0))〉, (3)

or in terms of the time integral of the velocity autocorrelation function, i.e. through the
Green-Kubo formula

D =
∫ ∞

0

〈p(t)⊗ p(0)〉 dt (4)

with p(t) = q̇(t). In the above formulas ⊗ stands for the tensor product between two vec-
tors in Rd. We remark that, although formulas (3) and (4) are valid in arbitrary dimensions,
it is not clear how to interpret formula (2) in dimensions higher than 1.

Of particular interest is the dependence of the diffusion coefficient D as well as the
jump rate κ and (mean square) jump length 〈`2〉 on the friction coefficient. In particular,
it is well known that in the underdamped regime the particle diffusion is dominated by the
occurrence of long jumps [2, 4, 11]. Apart from theoretical investigations and numerical
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simulations based on the Langevin dynamics (1), the occurrence of long jumps in the un-
derdamped regime is also verified by means of molecular dynamics simulations of a model
for CO/Ni(111) [7] and is also, by now, a well established experimental result [21,32]. In-
deed, in the case of weak adsorbate-substrate interaction i.e. in the case of weak coupling
between the diffusing particle and the heat bath which corresponds to the underdamped
dynamics regime, the diffusion mechanism is controlled by long jumps, spanning multi-
ple lattice spacings [21, 32]. The rigorous and systematic study of the diffusion process
in the weak dissipation regime is still a major challenge for theoreticians, in particular in
dimensions higher than 1.

The problem of diffusion in periodic potentials is well studied in one dimension [2, 21,
30] or for separable potentials in two and three dimensions [18]. Kramers’ theory [17] ap-
plied to Brownian motion in a periodic potential or the mean first passage time method [33]
enables us to calculate the rate of escape from a local minimum of the potential (hopping
rate). In the overdamped limit this is sufficient to calculate the diffusion coefficient, since
only single jumps occur and consequently 〈`2〉 = L2 where L is the period of the potential.
This leads to the well known Lifson-Jackson formula for the diffusion coefficient [19] [25,
Ch. 13]

D =
D0L

2

∫ L

0
eβV (q) dq

∫ L

0
e−βV (q)

, (5)

where β−1 = kBT and D0 denotes the diffusion coefficient of the free particle

D0 =
kBT

γ
.

Kramers’ formula for the rate of escape enables us to obtain a formula for the diffusion
coefficient which is valid in the moderate-to-strong friction regime, for small temperatures
β À 1 [11, 16]:

D =
ω0

2π

(√
1 +

γ2

4ω2
b

− γ

2ωb

)
e−βEb , (6)

where Eb = V (qMAX) − V (qMIN ), ω2
0 = V ′′(qMIN ), ω2

b = |V ′′(qMAX)|. In the
overdamped, γ/ωb À 1, small temperature β À 1, limit this formula reduces to the small
temperature asymptotics of equation (5):

D =
ω0ωbL

2

2πγ
e−βEb . (7)

The calculation of the diffusion coefficient in the underdamped limit requires two calcu-
lations, that of the hopping rate and that of the mean squared jump length 〈`2〉. Such a
calculation was presented in [18, 31] for the case of a cosine potential. For this potential, a
formula for the diffusion coefficient which is valid in the regime γ ¿ 1 was also obtained
by Risken and presented in his monograph [30]:

D =
1
γ

π

2β
e−2β . (8)

In contrast to the one dimensional problem, a similar theory in higher dimensions is still
lacking, except for the overdamped limit. In this limit approximate analytical results for
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certain two-dimensional potentials have been derived in the literature [3]. Furthermore, it
is possible to prove, using rigorous mathematical analysis, that the diffusion tensor scales
like 1

γ when γ À 1 [12].
On the contrary, it is still not clear what the scaling of the (trace of the) diffusion

tensor with the friction constant is in the underdamped, multidimensional case. Numerical
experiments [2] suggest that this scaling depends crucially on the detailed properties of the
periodic potential; however, a rigorous and systematic theory for explaining the dependence
of the diffusion coefficient on the strength of the dissipation in arbitrary dimensions is still
lacking.

The situation becomes even more unclear when an external driving force (either con-
stant or periodic in time) is present. Brownian motion in tilted periodic potentials has only
been studied in one dimension [30] and explicit formulas are only valid in the overdamped
limit [20,24,28]. Furthermore, numerical experiments [35] seem to indicate that stochastic
resonance in periodic potentials in only possible in dimensions higher than one.

In view of the ubiquity of diffusive motion in periodic potentials in applications, it
seems to be important to develop the multidimensional theory in a systematic and rigorous
way, taking into account external driving forces. This paper is a contribution towards this
goal, and it is a part of our research program on the study of Brownian motion in periodic
and random potentials [12, 23, 24].

All studies on the problem of Brownian motion in a periodic potential that have been re-
ported in the physics literature rely heavily on the analysis of the Fokker-Planck (Kramers-
Chandrashekhar) equation which governs the evolution of the transition probability density
for the Brownian particle. For example, the continued fraction expansion method is used
in order to solve the Fokker-Planck equation [5, 30] in a semi-analytic fashion and to cal-
culate quantities such as the mobility, the intermediate structure function and the dynamic
structure function [6]. Or, Kramers’ theory is being used, which again relies on the study
of the Fokker-Planck equation.

On the other hand, many tools from stochastic analysis [29], the theory of limit the-
orems for Markov processes [8] and the emerging field of multiscale analysis [25] are
appropriate for the study of this problem and, yet, they have received very little attention in
the physics community. The purpose of this paper is to use multiscale methods such as ho-
mogenization theory and singular perturbation theory in order to offer a new insight into the
problem of Brownian motion in periodic potentials. In particular, we derive in a rigorous
and systematic way a formula for the diffusion tensor D of a Brownian particle moving in
a periodic potential in arbitrary dimensions and then we use in order to develop an efficient
numerical method for calculating D. This numerical method is related to the continued
fraction expansion method, but is easier to implement and to analyze. As a byproduct of
our analysis, we derive rigorously a formula for the diffusion coefficient which is valid in
the weak friction limit; furthermore, we also calculate higher order corrections to the large
γ asymptotics of the diffusion coefficient.

The rest of the paper is organized as follows. In Section 2 we present the multiscale
analysis and we derive a formula for the diffusion coefficient. We also show the equiv-
alence between our formula and the Green-Kubo formula (4). In Section (3) we derive
formulas which are valid in the γ → 0 and γ → +∞ limits. In Section 4 we develop the
numerical method and we compare the numerical results obtained using our method with
results obtained from Monte Carlo simulations, from approximate analytical formulas and
from the numerical implementation of formula (2). Section 5 is reserved for conclusions.
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2. Multiscale Analysis
In this section we use multiscale analysis [25] to derive a formula for the diffusion tensor of
a Brownian particle moving in a periodic potential in arbitrary dimensions. We then show
the equivalence between this formula and the Green-Kubo formula for the diffusion tensor.

2.1. Derivation of Formula for the Diffusion Tensor

We start by rescaling the Langevin equation (1)

ẍ = F (x)− γẋ +
√

2γβ−1Ẇ , (9)

where we have set F (x) = −∇V (x). We will assume that the potential is periodic with
period 2π in every direction. Since we expect that at sufficiently long length and time
scales the particle performs a purely diffusive motion, we perform a diffusive rescaling to
the equations of motion (1): t → t/ε2, x → x

ε . Using the fact that Ẇ (c t) = 1√
c
Ẇ (t) in

law we obtain:
ε2ẍ =

1
ε
F

(x

ε

)
− γẋ +

√
2γβ−1Ẇ ,

Introducing p = εẋ and q = x/ε we write this equation as a first order system:

ẋ = 1
ε p,

ṗ = 1
ε2 F (q)− 1

ε2 γp + 1
ε2 γβ−1Ẇ ,

q̇ = 1
ε2 p,

(10)

with the understanding that q ∈ [−π, π]d and x, p ∈ Rd. Our goal now is to eliminate
the fast variables p, q and to obtain an equation for the slow variable x. We shall accom-
plish this by studying the corresponding backward Kolmogorov equation using singular
perturbation theory for partial differential equations.

Let

uε(p, q, x, t) = Ef
(
p(t), q(t), x(t)|p(0) = p, q(0) = q, x(0) = x

)
,

where E denotes the expectation with respect to the Brownian motion W (t) in the Langevin
equation and f is a smooth function.1 The evolution of the function uε(p, q, x, t) is gov-
erned by the backward Kolmogorov equation associated to equations (10) is [25]2

∂uε

∂t
=

1
ε
p · ∇xuε +

1
ε2

(
−∇qV (q) · ∇p + p · ∇q + γ

(− p · ∇p + β−1∆p

))
uε.

:=
(

1
ε2
L0 +

1
ε
L1

)
uε, (11)

1In other words, we have that

uε(p, q, x, t) =

Z
f(x, v, t; p, q)ρ(x, v, t; p, q)µ(p, q) dpdqdxdv,

where ρ(x, v, t; p, q) is the solution of the Fokker-Planck equation and µ(p, q) is the initial distribution.

2it is more customary in the physics literature to use the forward Kolmogorov equation, i.e. the Fokker-Planck
equation. However, for the calculation presented below, it is more convenient to use the backward as opposed to
the forward Kolmogorov equation. The two formulations are equivalent. See [23, Ch. 6] for details.
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where:

L0 = −∇qV (q) · ∇p + p · ∇q + γ
(− p · ∇p + β−1∆p

)
,

L1 = p · ∇x

The invariant distribution of the fast process
{
q(t), p(t)

}
in [−π, π]d×Rd is the Maxwell-

Boltzmann distribution

ρβ(q, p) = Z−1e−βH(q,p), Z =
∫

[−π,π]d×Rd

e−βH(q,p) dqdp,

where H(q, p) = 1
2 |p|2 + V (q). Indeed, we can readily check that

L∗0ρβ(q, p) = 0,

where L∗0 denotes the Fokker-Planck operator which is the L2-adjoint of the generator of
the process L0:

L∗0f · = ∇qV (q) · ∇pf − p · ∇qf + γ
(∇p · (pf) + β−1∆pf

)
.

The null space of the generator L0 consists of constants in q, p. Moreover, the equation

−L0f = g, (12)

has a unique (up to constants) solution if and only if

〈g〉β :=
∫

[−π,π]d×Rd

g(q, p)ρβ(q, p) dqdp = 0. (13)

Equation (12) is equipped with periodic boundary conditions with respect to z and is such
that ∫

[−π,π]d×Rd

|f |2µβ dqdp < ∞. (14)

These two conditions are sufficient to ensure existence and uniqueness of solutions (up to
constants) of equation (12) [12, 13, 22].

We assume that the following ansatz for the solution uε holds:

uε = u0 + εu1 + ε2u2 + . . . (15)

with ui = ui(p, q, x, t), i = 1, 2, . . . being 2π periodic in q and satisfying condition (14).
We substitute (15) into (11) and equate equal powers in ε to obtain the following sequence
of equations:

L0 u0 = 0, (16a)
L0 u1 = −L1 u0, (16b)

L0 u2 = −L1 u1 +
∂u0

∂t
. (16c)

From the first equation in (16) we deduce that u0 = u0(x, t), since the null space of L0

consists of functions which are constants in p and q. Now the second equation in (16)
becomes:

L0u1 = −p · ∇xu0.
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Since 〈p〉 = 0, the right hand side of the above equation is mean-zero with respect to the
Maxwell-Boltzmann distribution. Hence, the above equation is well-posed. We solve it
using separation of variables:

u1 = Φ(p, q) · ∇xu0

with
−L0Φ = p. (17)

This Poisson equation is posed on [−π, π]d×Rd. The solution is periodic in q and satisfies
condition (14). Now we proceed with the third equation in (16). We apply the solvability
condition to obtain:

∂u0

∂t
=

∫

[−π,π]d×Rd

L1u1ρβ(p, q) dpdq

=
d∑

i,j=1

(∫

[−π,π]d×Rd

piΦjρβ(p, q) dpdq

)
∂2u0

∂xi∂xj
.

This is the Backward Kolmogorov equation which governs the dynamics on large scales.
We write it in the form

∂u0

∂t
=

d∑

i,j=1

Dij
∂2u0

∂xi∂xj
(18)

where the effective diffusion tensor is

Dij =
∫

[−π,π]d×Rd

piΦjρβ(p, q) dpdq, i, j = 1, . . . d. (19)

The calculation of the effective diffusion tensor requires the solution of the boundary value
problem (17) and the calculation of the integral in (19). The limiting backward Kolmogorov
equation is well posed since the diffusion tensor is nonnegative. Indeed, let ξ be a unit
vector in Rd. We calculate (we use the notation Φξ = Φ ·ξ and 〈·, ·〉 for the Euclidean inner
product.)

〈ξ, Dξ〉 =
∫

(p · ξ)(Φξ)µβ dpdq =
∫ (− L0Φξ

)
Φξµβ dpdq

= γβ−1

∫ ∣∣∇pΦξ

∣∣2µβ dpdq ≥ 0, (20)

where an integration by parts was used.
Thus, from the multiscale analysis we conclude that at large lenght/time scales the

particle which diffuses in a periodic potential performs and effective Brownian motion
with a nonnegative diffusion tensor which is given by formula (19).

We mention in passing that the analysis presented above can also be applied to the
problem of Brownian motion in a tilted periodic potential. The Langevin equation becomes

ẍ(t) = −∇V (x(t)) + F − γẋ(t) +
√

2γβ−1Ẇ (t), (21)

where V (x) is periodic with period 2π and F is a constant force field. The formulas for
the effective drift and the effective diffusion tensor are

V =
∫

Rd×[−π,π]d
pρ(q, p) dqdp, D =

∫

Rd×[−π,π]d
(p− V )⊗ φρ(p, q) dpdq, (22)
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where
−Lφ = p− V, (23a)

L∗ρ = 0,

∫

Rd×[−π,π]d
ρ(p, q) dpdq = 1. (23b)

with
L = p · ∇q + (−∇qV + F ) · ∇p + γ

(− p · ∇p + β−1∆p

)
. (24)

We have used ⊗ to denote the tensor product between two vectors; L∗ denotes the L2-
adjoint of the operator L, i.e. the Fokker-Planck operator. Equations (23) are equipped
with periodic boundary conditions in q. The solution of the Poisson equation (23) is also
taken to be square integrable with respect to the invariant density ρ(q, p):

∫

Rd×[−π,π]d
|φ(q, p)|2ρ(p, q) dpdq < +∞.

The diffusion tensor is nonnegative definite. A calculation similar to the one used to de-
rive (20) shows the positive definiteness of the diffusion tensor:

〈ξ, Dξ〉 = γβ−1

∫ ∣∣∇pΦξ

∣∣2ρ(p, q) dpdq ≥ 0, (25)

for every vector ξ in Rd. The study of diffusion in a tilted periodic potential, in the under-
damped regime and in high dimensions, based on the above formulas for V and D, will be
the subject of a separate publication.

2.2. Equivalence With the Green-Kubo Formula
Let us now show that the formula for the diffusion tensor obtained in the previous section,
equation (19), is equivalent to the Green-Kubo formula (4). To simplify the notation we will
prove the equivalence of the two formulas in one dimension. The generalization to arbitrary
dimensions is immediate. Let (x(t; q, p), v(t; q, p)) with v = ẋ and initial conditions
x(0; q, p) = q, v(0; q, p) = p be the solution of the Langevin equation

ẍ = −∂xV − γẋ + ξ

where ξ(t) stands for Gaussian white noise in one dimension with correlation function

〈ξ(t)ξ(s)〉 = 2γkBTδ(t− s).

We assume that the (x, v) process is stationary, i.e. that the initial conditions are distributed
according to the Maxwell-Boltzmann distribution

ρβ(q, p) = Z−1e−βH(p,q).

The velocity autocorrelation function is [6, eq. 2.10]

〈v(t; q, p)v(0; q, p)〉 =
∫

v pρ(x, v, t; p, q)ρβ(p, q) dpdqdxdv, (26)

and ρ(x, v, t; p, q) is the solution of the Fokker-Planck equation

∂ρ

∂t
= L∗ρ, ρ(x, v, 0; p, q) = δ(x− q)δ(v − p),
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where
L∗ρ = −v∂xρ + ∂xV (x)∂vρ + γ

(
∂(vρ) + β−1∂2

vρ
)
.

We rewrite (26) in the form

〈v(t; q, p)v(0; q, p)〉 =
∫ ∫ (∫ ∫

vρ(x, v, t; p, q) dvdx

)
pρβ(p, q) dpdq

=:
∫ ∫

v(t; p, q)pρβ(p, q) dpdq. (27)

The function v(t) satisfies the backward Kolmogorov equation which governs the evolution
of observables [25, Ch. 6]

∂v

∂t
= Lv, v(0; p, q) = p. (28)

We can write, formally, the solution of (28) as

v = eLtp. (29)

We combine now equations (27) and (29) to obtain the following formula for the velocity
autocorrelation function

〈v(t; q, p)v(0; q, p)〉 =
∫ ∫

p
(
eLtp

)
ρβ(p, q) dpdq. (30)

We substitute this into the Green-Kubo formula to obtain

D =
∫ ∞

0

〈v(t; q, p)v(0; q, p)〉 dt

=
∫ (∫ ∞

0

eLt dt p

)
pρβ dpdq

=
∫ (

− L−1p
)
pρβ dpdq

=
∫ ∞

−∞

∫ π

−π

φpρβ dpdq,

where φ is the solution of the Poisson equation (17). In the above derivation we have used
the formula −L−1 =

∫∞
0

eLt dt, whose proof can be found in [25, Ch. 11].

3. The Underdamped and Overdamped Limits
In this section we derive approximate formulas for the diffusion coefficient which are valid
in the overdamped γ À 1 and underdampled γ ¿ 1 limits. The derivation of these
formulas is based on the asymptotic analysis of the Poisson equation (17). In this section
we will take the period of the potential is 2π.

3.1. The Underdamped Limit
In this subsection we solve the Poisson equation (17) in one dimension perturbatively for
small γ. We shall use singular perturbation theory for partial differential equations. The
operator L0 that appears in (17) can be written in the form

L0 = LH + γLOU
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where LH stands for the (backward) Liouville operator associated with the Hamiltonian
H(p, q) and LOU for the generator of the OU process, respectively:

LH = p∂q − ∂qV ∂p, LOU = −p∂p + β−1∂2
p .

We expect that the solution of the Poisson equation scales like γ−1 when γ ¿ 1. Thus, we
look for a solution of the form

Φ =
1
γ

φ0 + φ1 + γφ2 + . . . (31)

We substitute this ansatz in (17) to obtain the sequence of equations

LHφ0 = 0, (32a)
−LHφ1 = p + LOUφ0, (32b)
−LHφ2 = LOUφ1. (32c)

From equation (32a) we deduce that, since the φ0 is in the null space of the Liouville
operator, the first term in the expansion is a function of the Hamiltonian z(p, q) = 1

2p2 +
V (q):

φ0 = φ0(z(p, q)).

Now we want to obtain an equation for φ0 by using the solvability condition for (32b). To
this end, we multiply this equation by an arbitrary function of z, g = g(z) and integrate
over p and q to obtain

∫ +∞

−∞

∫ π

−π

(p + LOUφ0) g(z(p, q)) dpdq = 0.

We change now from p, q coordinates to z, q, so that the above integral becomes
∫ +∞

Emin

∫ π

−π

g(z) (p(z, q) + LOUφ0(z))
1

p(z, q)
dzdq = 0,

where J = p−1(z, q) is the Jacobian of the transformation. Operator L0, when applied to
functions of the Hamiltonian, becomes:

LOU = (β−1 − p2)
∂

∂z
+ β−1p2 ∂2

∂z2
.

Hence, the integral equation for φ0(z) becomes
∫ +∞

Emin

∫ π

−π

g(z)
[
p(z, q) +

(
(β−1 − p2)

∂

∂z
+ β−1p2 ∂2

∂z2

)
φ0(z)

]
1

p(z, q)
dzdq = 0.

Let E0 denote the critical energy, i.e. the energy along the separatrix (homoclinic orbit).
We set

S(z) =
∫ x2(z)

x1(z)

p(z, q) dq, T (z) =
∫ x2(z)

x1(z)

1
p(z, q)

dq,

where Risken’s notation [30, p. 301] has been used for x1(z) and x2(z).
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We need to consider the cases
{
z > E0, p > 0

}
,

{
z > E0, p < 0

}
and

{
Emin <

z < E0

}
separately.

We consider first the case E > E0, p > 0. In this case x1(x) = π, x2(z) = −π. We
can perform the integration with respect to q to obtain

∫ +∞

E0

g(z)
[
2π +

(
(β−1T (z)− S(z))

∂

∂z
+ β−1S(z)

∂2

∂z2

)
φ0(z)

]
dz = 0,

This equation is valid for every test function g(z), from which we obtain the following
differential equation for φ0:

−Lφ := −β−1 1
T (z)

S(z)φ′′ +
(

1
T (z)

S(z)− β−1

)
φ′ =

2π

T (z)
, (33)

where primes denote differentiation with respect to z and where the subscript 0 has been
dropped for notational simplicity.

A similar calculation shows that in the regions E > E0, p < 0 and Emin < E < E0

the equation for φ0 is

−Lφ = − 2π

T (z)
, E > E0, p < 0 (34)

and
−Lφ = 0, Emin < E < E0. (35)

Equations (33), (34), (35) are augmented with condition (14) and a continuity condition at
the critical energy [9]

2φ′3(E0) = φ′1(E0) + φ′2(E0), (36)

where φ1, φ2, φ3 are the solutions of equations (33), (34) and (35), respectively.
The average of a function h(q, p) = h(q, p(z, q)) can be written in the form [30, p.

303]

〈h(q, p)〉β :=
∫ ∞

−∞

∫ π

−π

h(q, p)µβ(q, p) dqdp

= Z−1
β

∫ +∞

Emin

∫ x2(z)

x1(z)

(
h(q, p(z, q)) + h(q,−p(z, q))

)
(p(q, z))−1e−βz dzdq,

where the partition function is

Zβ =
√

2π

β

∫ π

−π

e−βV (q) dq.

From equation (35) we deduce that φ3(z) = 0. Furthermore, we have that φ1(z) =
−φ2(z). These facts, together with the above formula for the averaging with respect to
the Boltzmann distribution, yield:

D = 〈pΦ(p, q)〉β = 〈pφ0〉β +O(1) (37)

≈ 2
γ

Z−1
β

∫ +∞

E0

φ0(z)eβz dzO(1)

=
4π

γ
Z−1

β

∫ +∞

E0

φ0(z)e−βz dz, (38)
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to leading order in γ, and where φ0(z) is the solution of the two point boundary value prob-
lem (33). We remark that if we start with formula D = γβ−1〈|∂pΦ|2〉β for the diffusion
coefficient, we obtain the following formula, which is equivalent to (38):

D =
4π

γβ
Z−1

β

∫ +∞

E0

|∂zφ0(z)|2e−βz dz.

Now we solve the equation for φ0(z) (for notational simplicity, we will drop the subscript
0 ). Using the fact that S′(z) = T (z), we rewrite (33) as

−β−1(Sφ′)′ + Sφ′ = 2π.

This equation can be rewritten as

−β−1
(
e−βzSφ′

)
= e−βz.

Condition (14) implies that the derivative of the unique solution of (33) is

φ′(z) = S−1(z).

We use this in (38), together with an integration by parts, to obtain the following formula
for the diffusion coefficient:

D =
1
γ

8π2Z−1
β β−1

∫ +∞

E0

e−βz

S(z)
dz. (39)

We emphasize the fact that this formula is exact in the limit as γ → 0 and is valid for all
periodic potentials and for all values of the temperature.

Consider now the case of the nonlinear pendulum V (q) = − cos(q). The partition
function is

Zβ =
(2π)3/2

β1/2
J0(β),

where J0(·) is the modified Bessel function of the first kind. Furthermore, a simple calcu-
lation yields

S(z) = 25/2
√

z + 1E

(√
2

z + 1

)
,

where E(·) is the complete elliptic integral of the second kind. The formula for the diffu-
sion coefficient becomes

D =
1
γ

√
π

2β1/2J0(β)

∫ +∞

1

e−βz

√
z + 1E(

√
2/(z + 1))

dz. (40)

We use now the asymptotic formula J0(β) ≈ (2πβ)−1/2eβ , β À 1 and the fact that
E(1) = 1 to obtain the small temperature asymptotics for the diffusion coefficient:

D =
1
γ

π

2β
e−2β , β À 1, (41)

which is precisely formula (8), obtained by Risken.
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Unlike the overdamped limit which is treated in the next section, it is not straightfor-
ward to obtain the next order correction in the formula for the effective diffusivity. This
is because, due to the discontinuity of the solution of the Poisson equation (17) along the
separatrix. In particular, the next order correction to φ when γ ¿ 1 is of (γ−1/2), rather
than (1) as suggested by ansatz (31).

Upon combining the formula for the diffusion coefficient and the formula for the hop-
ping rate from Kramers’ theory [14, eqn. 4.48(a)] we can obtain a formula for the mean
square jump length at low friction. For the cosine potential, and for β À 1, this formula is

〈`2〉 =
π2

8γ2β2
for γ ¿ 1, β À 1. (42)

3.2. The Overdamped Limit
In this subsection we study the large γ asymptotics of the diffusion coefficient. As in the
previous case, we use singular perturbation theory, e.g. [15, Ch. 8]. The regularity of the
solution of (17) when γ À 1 will enable us to obtain the first two terms in the 1

γ expansion
without any difficulty.

We set γ = 1
ε . The differential operator L0 becomes

L0 =
1
ε
LOU + LH .

We look for a solution of (17) in the form of a power series expansion in γ:

Φ = φ0 + εφ1 + ε2φ2 + ε3φ3 + . . . (43)

We substitute this into (17) and obtain the following sequence of equations:

−LOUφ0 = 0, (44a)
−LOUφ1 = p + LHφ0, (44b)
−LOUφ2 = LHφ1, (44c)
−LOUφ3 = LHφ2. (44d)

The null space of the Ornstein-Uhlenbeck operator L0 consists of constants in p. Conse-
quently, from the first equation in (44) we deduce that the first term in the expansion in
independent of p, φ0 = φ(q). The second equation becomes

−LOUφ1 = p(1 + ∂qφ).

Let

νβ(p) =
(

2π

β

)− 1
2

e−β p2

2 ,

be the invariant distribution of the OU process (i.e. L∗OUνβ(p) = 0). The solvability
condition for an equation of the form−LOUφ = f requires that the right hand side averages
to 0 with respect to νβ(p), i.e. that the right hand side of the equation is orthogonal to the
null space of the adjoint of LOU . This condition is clearly satisfied for the equation for φ1.
Thus, by Fredholm alternative, this equation has a solution which is

φ1(p, q) = (1 + ∂qφ)p + ψ1(q),
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where the function ψ1(q) of is to be determined. We substitute this into the right hand side
of the third equation to obtain

−LOUφ2 = p2∂2
qφ− ∂qV (1 + ∂qφ) + p∂qψ1(q).

From the solvability condition for this we obtain an equation for φ(q):

β−1∂2
qφ− ∂qV (1 + ∂qφ) = 0, (45)

together with the periodic boundary conditions. The derivative of the solution of this two-
point boundary value problem is

∂qφ + 1 =
2π∫ π

−π
eβV (q) dq

eβV (q). (46)

The first two terms in the large γ expansion of the solution of equation (17) are

Φ(p, q) = φ(q) +
1
γ

(1 + ∂qφ) +O
(

1
γ2

)
,

where φ(q) is the solution of (45). Substituting this in the formula for the diffusion coeffi-
cient and using (46) we obtain

D =
∫ ∞

−∞

∫ π

−π

pΦρβ(p, q) dpdq =
4π2

βZẐ
+O

(
1
γ3

)
,

where Z =
∫ π

−π
e−βV (q), Ẑ =

∫ π

−π
eβV (q). This is, of course, the Lifson-Jackson formula

which gives the diffusion coefficient in the overdamped limit [19]. Continuing in the same
fashion, we can also calculate the next two terms in the expansion (43). From this, we can
compute the next order correction to the diffusion coefficient. The final result is

D =
4π2

βγZẐ
− 4π2βZ1

γ3ZẐ2
+O

(
1
γ5

)
, (47)

where Z1 =
∫ π

−π
|V ′(q)|2eβV (q) dq.

In the case of the nonlinear pendulum, V (q) = cos(q), formula (47) gives

D =
1

γβ
J−2

0 (β)− β

γ3

(
J2(β)
J3

0 (β)
− J−2

0 (β)
)

+O
(

1
γ5

)
, (48)

where Jn(β) is the modified Bessel function of the first kind.
In the multidimensional case, a similar analysis leads to the large gamma asymptotics:

〈ξ, Dξ〉 =
1
γ
〈ξ, D0ξ〉+O

(
1
γ3

)
,

where ξ is an arbitrary unit vector in Rd and D0 is the diffusion coefficient for the Smolu-
chowski (overdamped) dynamics:

D0 = Z−1

∫

Rd

(− LV χ
)⊗ χe−βV (q) dq

where
LV = −∇qV · ∇q + β−1∆q

and χ(q) is the solution of the PDE LV χ = ∇qV with periodic boundary conditions.
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4. The Numerical Method
In order to calculate the diffusion coefficient D we have to solve equation (17) and calculate
the integral in (19). It is possible to do this by means of a spectral method. In particular,
by expanding the solution of (17) into Hermite polynomials in p and a standard Fourier
series in q, we can convert the boundary value problem into an infinite system of linear
equations; upon truncating this system we can obtain a finite dimensional, sparse system of
linear equations which we can easily solve. For simplicity we will consider the problem in
one dimension, though our numerical method works in arbitrary dimensions.

We look for a solution of (17) in the form

φ(p, q) =
+∞∑

k=−∞

+∞∑
n=0

φnkeikqfn(p), (49)

where fn denotes the nth eigenfunction of the Ornstein-Uhlenbeck operator LOU ; the cor-
responding eigenvalue is k. The eigenfunctions of the OU processes are related to the
Hermite polynomials through the formula [30, Ch. 5]

fn(p) =
1√
n!

Hn

(√
βp

)
, (50)

where

Hn(p) = (−1)ne
p2

2
dn

dpn

(
e−

p2

2

)
.

We remark that the solution of the Poisson equation (17) is defined up to a constant which
we have taken to be 0 (i.e. we assume that the solution averages to zero with respect
to the Maxwell-Boltzmann distribution). It is elementary to check that the choice of this
constant does not effect the value of the diffusion coefficient. Notice also that the boundary
conditions (the solution is periodic in q and square integrable with respect to the Maxwell-
Boltzmann distribution) have already been taken into account when writing (49).

Using the fact that the p = β−1/2f1, together with the orthonormality of the eigenfunc-
tions of the Ornstein-Uhlenbeck operator, we obtain the following formula for the diffusion
coefficient:

D = Z−1β−1/2
∞∑

k=−∞
φ1k

∫ π

−π

eikqe−βV (q) dq. (51)

For the cosine potential V (q) = − cos(q) the above formula becomes

D = β−1/2J−1
0 (β)

+∞∑

k=−∞
φ1kJk(β), (52)

Now we shall obtain a linear system of equations for the coefficients φnk for the cosine
potential. The Poisson equation (17) in one dimension is

−Lφ = p = β−1/2f1. (53)

We substitute the expansion (49) into (53) and use the properties of Hermite polynomials
and of trigonometric functions to obtain the following linear system of equations

2β−1kφ1 k + φ1 k−1 − φ1 k+1 = 0, (54a)
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Fig 1. Diffusion coefficient as a function of the friction coefficient for the cosine potential. Dash-dot line and
circles: D obtained from the numerical solution of the Poisson equation, formula (52); stars: D obtained from the
the calculation of the jump length distribution and the hopping rate, formula (2);diamonds: results from Monte
Carlo simulations, formula (3);solid lines, analytical approximation for γ ¿ 1, γ À 1, equations (41) and (7).

2γiφ1 k + 2
√

β−1kφ0 k + 2
√

2β−1kφ2 k +
√

2βφ2 k−1 −
√

2βφ2 k+1 = 2i
√

β−1 δk 0,
(54b)

2
√

β−1
√

n + 1kφn+1 k + 2
√

β−1
√

nkφn−1 k

+
√

β
√

n + 1φn+1 k−1 −
√

β
√

n + 1φn+1 k+1 + 2iγnφn k = 0. (54c)

We truncate (54) by taking into account the first N + 1 terms of the Hermite expansion
and the first K + 1 terms of the Fourier expansion. This leads to a sparse linear system
of (N + 1) (2K + 1) equations and (N + 1) (2K + 1) − 1 variables (note the absence of
the term φ0 0). This implies that one of the equations in (54) is linearly dependent on the
others; to obtain a nonsingular system we remove the equation for k = 0.3 In this way we
obtain a nonsingular system of s = (N + 1) (2K + 1)− 1 equations and unknowns. This
system can be written in the form Ax = b with

xi = φn k, i =
{

k + K + 1 n = 0, k < 0,
n (2K + 1) + k + K n = 0, k > 0 or n 6= 0

and αi j is the coefficient of xj in the ith equation, which is taken from equations (54) for

3This follows from our assumption that the solution of the Poisson equation averages to 0 with respect to the
canonical ensemble.
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values of n and k

i =
{

k + K + 1 n = 0, k < 0
n (2K + 1) + k + K n = 0, k > 0 or n 6= 0

The sparsity of this system implies that we can solve it very efficiently. In particular, we
can calculate accurately the diffusion coefficient with a minimal computational cost, even
for very small values of the friction constant γ.

To illustrate the efficiency of our numerical method, we calculate the diffusion coef-
ficient for the cosine potential as a function of the dissipation γ, at a fixed temperature
β−1 = 0.5. We compare the results obtained through our numerical method with the
approximate analytical expressions (7) and (8), results from Monte Calro simulations us-
ing (3) and results obtained through numerical calculation of the hopping rate and the jump
length distribution, equation (2). FOr the calculation of 〈`2〉 and κ we generate a long path
(for every γ) of the Langevin dynamics using the Milstein scheme.

The results of the numerical simulations are presented in Figure 4. There agreement
between the approximate analytical formulas and the calculation of the diffusion coefficient
using the method described in this section are excellent. Our method is far superior in
comparison to Monte Carlo simulations or the calculation of the mean square jump length
and the hopping rate, since even for very small γ the solution of a rather small linear system
of equations is required.4 On the other hand, contrast, the path of integration over which we
have to solve the Langevin equation in order to compute accurate statistics increases as γ
decreases and the calculation of D using Monte Carlo becomes computationally expensive.

5. Conclusions

The problem of Brownian motion in a periodic potential in arbitrary dimensions was stud-
ied in this paper. Using multiscale techniques [25] we derived a formula for the effective
diffusion tensor which is valid for all values of the friction coefficient and the tempera-
ture, and in arbitrary dimensions. We also showed the equivalence between our formula
and the Green-Kubo formula. The calculation of the diffusion tensor using our approach
requires the solution of a Poisson equation together with the calculation of the average of
an appropriate function with respect to the canonical distribution. Furthermore, the over-
damped and underdamped limits where studied and approximate analytical formulas for
the diffusion coefficient in these two limits where obtained. In addition, a very efficient
numerical method for the calculation of the diffusion coefficient was developed; this nu-
merical method is based on the solution of the Poisson equation via a spectral method and
it leads to the accurate and very efficient calculation of the diffusion coefficient even for
very low values of the friction coefficient.

The approach developed in the paper for the study of the problem of diffusion in pe-
riodic potentials offers various advantages over other analytical and numerical methods.
First, all the results reported in this paper can be justified rigorously and they can also
lead to a rigorous analysis of the dependence of the diffusion tensor on the friction coeffi-
cient and on the temperature. A first step in this direction was taken in [12]. Second, our
method enables us to study various distinguished limits of physical interest (such as the

4Needless to say, more Hermite and Fourier terms have to be taken into account when γ decreases. However,
even for γ very small, the resulting linear system of equations is small enough so that it can be solved in a few
seconds in Matlab.
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overdamped and underdamped limits) in a systematic fashion through asymptotic analysis
of the Poisson equation. Third, it leads to an efficient numerical method for calculating the
diffusion tensor through the numerical solution of the Poisson equation. The effectiveness
of our method was shown in this paper for the one dimensional problem, for which analyt-
ical approximate formulas are can be derived. The method is also very efficient in two and
three dimensions and can offer insight into the problem of Brownian motion in periodic po-
tentials in higher dimensions. A thorough numerical investigation of the multidimensional
problem will be presented elsewhere.
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