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For a given target density π on Rd , there exist infinitely many diffusion processes that are ergodic with
respect to π and that can be used in order to sample from this distribution. As observed in a number of
papers Lelièvre et al. (2013); Duncan et al. (2016); Rey-Bellet & Spiliopoulos (2015a,b) samplers based
on nonreversible diffusion processes can significantly outperform their reversible counterparts both in
terms of reducing the asymptotic variance as well in increasing the rate of convergence to equilibrium. In
this paper, we take advantage of this observation in order to construct efficient sampling algorithms based
on the Lie-Trotter decomposition of a nonreversible diffusion process into reversible and nonreversible
components. We show that samplers based on this scheme can significantly outperform standard MCMC
methods, at the cost of introducing some controlled bias. In particular, we prove that numerical integrators
constructed according to this decomposition are geometrically ergodic. Moreover we characterize fully
their asymptotic bias and variance by analysing the solution of a discrete Poisson equation, and show
that the samplers inherit the good mixing properties of the underlying nonreversible diffusion. This is
illustrated further with a number of numerical examples ranging from highly correlated low dimensional
distributions, to logistic regression problems in high dimensions as well as inference for spatial models.
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1. Introduction

Consider the problem of computing expectations with respect to a probability distribution with smooth
density π(x), known only up to the normalization constant, i.e. we wish to evaluate

π( f ) =
∫
Rd

f (x)π(x)dx. (1.1)

For high dimensional distributions, deterministic techniques are no longer tractable. On the other hand,
probabilistic methods do not suffer the same curse of dimensionality and thus are often the method of
choice. One such approach is Markov Chain Monte Carlo (MCMC) which is based on the construc-
tion of a Markov process on Rd whose unique invariant distribution is π(x). Due to their simplicity
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and wide applicability, Markov chains based on Metropolis-Hastings (MH) transition kernels Hastings
(1970); Metropolis et al. (1953) and their numerous variants remain the most widely used scheme for
sampling from a general target probability distribution, despite having been introduced over 60 years
ago. As there are infinitely many Markov processes which are ergodic with respect to a given target
distribution π , a natural question is whether a Markov process can be chosen which is more efficient,
in terms of accelerating convergence to equilibrium and improving mixing. Metropolized schemes are
reversible Markov chains by construction. It is a well documented fact that nonreversible chains con-
vergence to equilibrium faster than reversible ones Neal (2004); Diaconis et al. (2000); Mira & Geyer
(2000) and have a smaller asymptotic variance. Various MCMC schemes have been proposed which are
based on the general idea of breaking reversibility by introducing an augmented target measure on an
extended state space, along with dynamics which is invariant with respect to the augmented target mea-
sure. For discrete state spaces, the lifting method Diaconis et al. (2000); Hukushima & Sakai (2013);
Turitsyn et al. (2011) is one such approach, where the Markov chain is “lifted” from the state space E
to E×{1,−1}. The transition probabilities in each copy of E are modified by introducing transitions
between the copies to preserve the invariant distribution but now promote the sampler to generate long
trajectories. For continuous state spaces, analogous approaches involve augmenting the state space with
a velocity/momentum variable and constructing Makovian dynamics which are able to mix more rapidly
in the augmented state space. Such methods include Hybrid Monte Carlo (HMC) methods, inspired by
Hamiltonian dynamics. While the standard construction of HMC Duane et al. (1987); Neal (2011) is
reversible, it is straightforward to construct dynamics based on the Generalized HMC scheme Horowitz
(1991) which will not be reversible, see also Ottobre et al. (2016) and more recently Ma et al. (2016).

Deferring issues of simulation until later, another candidate Markov process for sampling from the
distribution π is the diffusion process (Xt)t>0 defined by the following Itô stochastic differential equation
(SDE):

dXt = b(Xt)dt +
√

2dWt , (1.2)

where Wt is a standard Rd–valued Brownian motion and b : Rd → Rd is a smooth vector field which
satisfies

b(x) = ∇ logπ(x)+ γ(x), ∇ · (π(x)γ(x)) = 0, (1.3)

for some smooth vector field γ on Rd satisfying some mild assumptions (c.f. Proposition 2.2). It is a well
known fact that the process Xt is reversible if and only if the vector field γ vanishes, γ = 0, see (Pavliotis,
2014, Ch. 4).

By the Birkhoff ergodic theorem,

lim
T→∞

1
T

∫ T

0
f (Xs)ds = Eπ [ f ] =: π( f ), f ∈ L1(π),

and thus one can use

πT ( f ) :=
1
T

∫ T

0
f (Xs)ds

as an estimator for π( f ), for T sufficiently large. A natural way to measure the efficiency of such
estimator is the mean square error (MSE) given by

MSE(T ) := E|πT ( f )−π( f )|2. (1.4)

Under appropriate conditions on Xt and f , the estimator πT ( f ) will satisfy a central limit theorem, i.e.

lim
T→+∞

√
T (πT ( f )−π( f )) = N (0,2σ

2( f )), (1.5)
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where σ2( f ) is the asymptotic variance of the estimator πT ( f ) which can be expressed by

σ
2( f ) := 〈φ ,(−L )φ〉

π
, (1.6)

where L is the infinitesimal generator of (1.2) and φ is the mean zero solution of the following Poisson
equation on Rd ,

−L φ = f −π( f ). (1.7)

The mean square error MSE (1.4) can be naturally decomposed it in terms of bias µT ( f ) and variance
σ2

T ( f ) as follows

E|πT ( f )−π( f )|2 = (EπT ( f )−π( f ))2 +E(πT ( f )−EπT ( f ))2 = (µT ( f ))2 +σ
2
T ( f ).

For large T , the variance satisfies σ2
T ( f ) ' T−1σ2( f ), while (µT ( f ))2 = o(T−1). Since γ(x) is not

uniquely defined in (1.3), i.e. there are infinitely many solutions to the partial differential equation
∇ · (γπ) = 0, a natural question is how it should be chosen to ensure that for a given time T , the MSE
in (1.4) is as small as possible. This can be achieved in two manners, the first by maximising the rate
of convergence to equilibrium of (1.2) as was considered in Lelièvre et al. (2013); Wu et al. (2014). In
general, constructing a nonreversible flow γ by which to maximise the rate of convergence in L2(π) is
challenging, even for Gaussian target measures. An alternative is to choose γ(x) in such a way so as to
reduce the asymptotic variance σ2( f ) Duncan et al. (2016). It should be emphasised that the optimal
choice will be different for each case, and will depend specifically on the observable f . In particular
in Duncan et al. (2016); Rey-Bellet & Spiliopoulos (2015a,b), it was shown that the choice γ(x) = 0,
which corresponds to using reversible dynamics, gives the maximum value of asymptotic variance for
a given choice of diffusion tensor. More precisely, introducing a nonreversible perturbation will never
decrease the performance of an estimator based on Langevin dynamics, both in terms of convergence to
equilibrium and asymptotic variance.

In general (1.2) cannot be simulated exactly, and one typically resorts to a discretisation of the SDE,
denoted by X̂∆ t

n , in order to approximate π( f ). In particular, the following ergodic average is used

π̂
∆ t
T ( f ) :=

1
N

N

∑
k=0

f (X̂∆ t
k ), N∆ t = T. (1.8)

Extra caution has to be taken in order to ensure that the above quantity converges in the limit of T → ∞

since even if (1.2) is ergodic (or even exponentially ergodic), this will not necessarily be the case for
its numerical discretisation Roberts & Stramer (2002); Stramer & Tweedie (1999a,b). In addition, even
when the numerical discretization is ergodic and thus

lim
T→∞

π̂
∆ t
T ( f ) = π̂

∆ t( f ) =
∫
Rd

f (x)π̂∆ t(x)dx, (1.9)

it is not true in general that π̂∆ t = π , since the underlying numerical discretization introduces bias in the
estimation of π( f ) (see Talay & Tubaro (1990); Abdulle et al. (2014, 2015)). However, as discussed
in Section 4.3, this bias tends to 0 as ∆ t → 0 under appropriate conditions on the numerical integrator.
One way to eliminate such bias is through Metropolization Smith & Roberts (1993); Tierney (1994),
i.e. the introduction of an accept-reject step that ensures that the corresponding Markov chain is ergodic
with respect to the target distribution π . However, such bias elimination might not be advantageous in
practice since the Metropolised chain will be reversible by construction, thus eliminating any benefit



4 of 30 A.B. DUNCAN ET AL.

introduced by the nonreversible perturbation γ . When computing expectations of distributions with
expensive likelihoods, it might be too costly to sample a long Markov chain trajectory. If an appropriate
nonreversible Langevin dynamics (1.2) can be introduced which does give rise to a dramatic reduction
in asymptotic variance, then it might be advantageous to permit a controlled amount of bias in exchange
for needing to sample far less. This bias-variance tradeoff, in the context of numerical discretisations of
(1.2) is the subject of study of this paper.

In recent years, several Langevin-type sampling schemes have been proposed that are different from
the standard overdamped Langevin dynamics and for which it is possible to prove that they have better
properties, in the sense that they converge faster to the target distribution and that the asymptotic variance
is smaller. A partial list of such modified Langevin samplers is presented in Duncan et al. (2017). It
is important to note, however, that it is not a priori clear that the discretized diffusion will inherit the
advantageous properties of the continuous time process. Therefore, great care has to be taken in order to
discretize the modified Langevin dynamics in a way that preserves that optimal properties of the SDE.
The main goal of this paper is to address this issue for the class of nonreversible Langevin dynamics that
were introduced in Hwang et al. (2005) and analyzed in e.g. Lelièvre et al. (2013); Hwang et al. (2015);
Rey-Bellet & Spiliopoulos (2015a,b). In particular, we present a complete analysis of the performance
of splitting schemes for simulating nonreversible Langevin SDEs that are ergodic with respect to a given
target distribution.

In particular, we will consider discretizations based on a Lie-Trotter splitting between the reversible
and the nonreversible part of the dynamics. More specifically, we consider integrators of the form

X̂∆ t
n+1 =Θ∆ t ◦Φ∆ t(X̂∆ t

n ), (1.10)

where Φ∆ t(x) is a integrator that approximates the flow map corresponding to the deterministic dynam-
ics

dxt

dt
= γ(xt), (1.11)

and Θ∆ t(x) which approximates the reversible dynamics

dxt = ∇ logπ(xt)dt +
√

2dWt . (1.12)

In this paper we shall focus on the specific case when the reversible dynamics is simulated using a
Metropolized scheme, while the nonreversible dynamics are simulated using a high-order ODE integra-
tor. We mention here that this splitting idea has also been used recently in Poncet (2017) to construct a
non-reversible sampler with no bias. This however, comes with the cost of having to solve (1.11) using
an implicit integrator. Furthermore, in Futami et al. (2020, 2021) a non-Metropolised ensemble version
that discretises directly the non-reversible dynamics was proposed and studied for its non-asymptotic
convergence properties.

The choice of Φ∆ t ,Θ∆ t has a fundamental influence on the bias, asymptotic variance and stability
of the resulting sampler. In particular, if one chooses Φ∆ t to be a Metropolised integrator Bou-Rabee
& Hairer (2012) then, similarly to the result in Abdulle et al. (2015), the order of convergence of the
deterministic integrator Θ∆ t provides a lower bound for the difference between expectations with respect
to π̂∆ t and π . However, this is not the case for the numerical asymptotic variance σ̂2

∆ t( f ), since even
though we can show that it is a perturbation of σ2( f ) the difference will depend crucially on the choice
of Θ∆ t . These results are important as they allow to choose the correct combination of dynamics and
numerical scheme that drastically reduces the computational cost required to achieve a given tolerance
of error.

In summary, the main contributions of this paper are:
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1. proving geometric ergodicity for the Markov chain given by (1.10) for a variety of different nu-
merical integrators applied to the reversible part;

2. a complete characterisation of the asymptotic bias of (1.10);

3. showing that, by completely characterising the asymptotic variance, numerical integrators of the
type (1.10) inherit the asymptotic variance benefits of the non reversible SDE (1.2);

4. exhibiting the potential of using nonreversible integrators for sampling as illustrated from a num-
ber of different numerical experiments on inference for spatial models as well as real data sets.

We mention here that the proof of the geometric ergodicity uses the approach described in Meyn
& Tweedie (1993a), while the characterisation of the asymptotic bias uses the framework developed in
Abdulle et al. (2014). Additionally, the characterisation of the asymptotic variance relies heavily on the
analysis of the discrete Poisson equation associated with the splitting scheme. A similar analysis was
carried out in Mijatović & Vogrinc (2018) and has also recently been used to analyse the asymptotic
variance of random walk Metropolis chains Mijatović & Vogrinc (2019).

The rest of the paper is organised as follows. In Section 2 we describe some known theoretical
results for the SDE (1.2) which are necessary for the development of this paper. In Section 3 we identify
sufficient conditions to guarantee geometric ergodicity of the Lie-Trotter splitting scheme (1.10) on Rd .
In Section 4 we study the asymptotic properties of a class of numerical integrators for (1.2) for which the
Lie-Trotter scheme is a special case. In particular we derive perturbative expansions for the asymptotic
bias and variance. In Section 5 we apply these results to characterise the asymptotic bias and variance
of the Lie-Trotter scheme on the bounded domain Td . To demonstrate the efficacy of the irreversible
schemes, in Section 6 we present a number of numerical experiments on inference for spatial models as
well as on Bayesian logistic regression. Finally, a discussion of the results presented in this paper and
potential future research directions can be found in Section 7.

2. Properties of Overdamped Langevin Diffusions

In this section we discuss different known theoretical results that are useful for understanding the main
results of the paper. We start by listing the assumptions we shall make on π and the SDE (1.2) to ensure
ergodicity.

Assumption 2.1

1. The measure π possesses a positive smooth density π(x) > 0, known up to a normalizing constant,
such that π ∈ L1(Rd).

2. The drift vector b : Rd → Rd of (1.2) is smooth and satisfies (1.3) with γ : Rd → Rd being a smooth
vector field with components in L1(π).

The following result provides necessary and sufficient conditions on the coefficients of (1.2) to
ensure that Xt possesses a unique stationary distribution π .

PROPOSITION 2.2 Suppose that Assumptions 2.1 hold. Then the diffusion process Xt defined by (1.2)
possesses a strongly continuous semigroup (Pt)t>0 on L2(π) defined by

Pt f (x) = E[ f (Xt) |X0 = x]. (2.1)
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The associated infinitesimal generator is an an extension of

L =
1
π

∇ · (π∇·)+ γ ·∇ (2.2)

with core C∞
c (Rd). Moreover, Pt has unique invariant distribution π . Conversely, given a diffusion

process of the form (1.2) which is invariant with respect to π , then the drift b necessarily satisfies (1.3).

Proof. The first part of this result is a direct application of (Lorenzi & Bertoldi, 2006, Thm 8.1.26).
The converse implication can be checked using integration by parts. �
While many choices for γ are possible (see Ma et al. (2015) for a more complete recipe) a natural family
of vector fields is given by γ(x) = J∇Φ(π(x)), where Φ is a smooth function satisfying ∇Φ(π(·)) ∈
L1(π) and J is d×d skew-symmetric matrix. We shall focus specifically on the following three choices:

1. If π satisfies
∫
Rd |∇ logπ(x)|π(dx)< ∞, then the vector field

γ(x) = J∇ logπ(x), J =−J>, (2.3)

satisfies condition (1.3). This was the choice which was studied in Duncan et al. (2016).

2. If
∫
Rd |∇ logπ(x)|π1+α(dx)< ∞ for some α > 0 then another natural choice for the vector field is

given by
γ(x) = J∇π

α(x), J =−J>. (2.4)

Although (2.4) introduces an additional tuning parameter α , one might prefer this choice as it
coincides with the intuition that when far away from the modes the sampler should move towards
the modes as quickly as possible, and should only undergo these deterministic meanders in regions
of high probability.

3. Let Ψ : R→ R be a smooth, compactly supported function. Then

γ(x) = J∇ logπ(x)Ψ(π(x)), J =−J>, (2.5)

will always satisfy (1.3). Moreover, if π has compact level sets, then γ will also be compactly
supported on Rd .

Applying the results detailed in Glynn & Meyn (1996); Meyn & Tweedie (1993b), we shall as-
sume that the process Xt possesses a Lyapunov function, which is sufficient to ensure the exponential
ergodicity of Xt , as detailed in the subsequent proposition.

Assumption 2.3 (Foster–Lyapunov Criterion) There exists a function V : Rd → R and constants
c > 0 and b ∈ R such that

LV (x)6−cV (x)+b1C, and V (x)> 1, x ∈ Rd , (2.6)

where 1C is the indicator function over a petite set.

For the definition of a petite set we refer the reader to Meyn & Tweedie (1993a). For the generator
L corresponding to the process (1.2) compact sets are always petite. The exponential ergodicity of Xt
follows from the following proposition (see also Mattingly et al. (2002); Meyn & Tweedie (1993a)).
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PROPOSITION 2.4 Suppose that Assumption 2.3 holds, then there exist constants C > 0 and λ > 0 such
that:

|Pt f (x)−π( f )|6CV (x)e−λ t , x ∈ Rd , (2.7)

for all f satisfying | f |6V .

Moreover, the Foster-Lyapunov criterion also provides a sufficient condition for the Poisson equation
(1.7) to be well-posed, and thus for the central limit theorem (1.5) to hold.

PROPOSITION 2.5 (Glynn & Meyn, 1996, Theorem 4.3) Suppose that Assumption 2.3 holds and that
π(U2) < ∞, then for any function f such that | f | 6U and for any initial distribution, the central limit
theorem (1.5) holds, i.e.

√
T (πT ( f )−π( f )) converges weakly to a N (0,2σ2( f ))–distributed random

variable, with
σ

2( f ) =
∫
Rd

φ(x)(−L )φ(x)π(x)dx,

where φ is the unique mean zero solution to the Poisson equation (1.7). Moreover the solution φ can be
expressed as

φ =
∫

∞

0
[Pt f −π( f )] dt.

The following lemma provides a sufficient condition on π for (1.2) to possess a Lyapunov function. It
is a slight generalisation of a similar result from Roberts & Tweedie (1996), extended to also apply in
the case of nonreversible diffusion processes.

LEMMA 2.1 (Roberts & Tweedie, 1996, Theorem 2.3) Consider the process Xt defined by (1.2) with
drift coefficient b satisfying (1.3) . Suppose that π is bounded, there exists 0 < δ < 1 such that,

liminf
|x|→∞

(
(1−δ )|∇ logπ(x)|2 +∆ logπ(x)

)
> 0, (2.8)

and the vector field γ satisfies
∇ · γ(x) = 0, x ∈ Rd . (2.9)

Then the Foster–Lyapunov criterion holds for (1.2) with U(x) = π−δ (x) and moreover π(U)< ∞.

REMARK 2.1 Note that when γ(x) = J∇Φ(π(x)) equation (2.9) is automatically satisfied. Hence the
choices of choices of γ specified by (2.3), (2.4) and (2.5) all satisfy (2.9).

3. Stochastic Stability of the splitting scheme on Rd

In this section we identify sufficient conditions under which the Lie-Trotter scheme on Rd is geometri-
cally ergodic with respect to an invariant distribution π̂∆ t which will be a perturbation of π . In general, a
discretization of the ergodic diffusion process (1.2) need not be ergodic, geometric or otherwise, see for
example Roberts & Tweedie (1996) . For the splitting scheme we shall show that provided the approx-
imate nonreversible flow Φ∆ t is sufficiently weak away from the origin, the process (1.10) will inherit
the geometric ergodicity from the reversible dynamics. We follow Meyn and Tweedie Meyn & Tweedie
(1993a) to demonstrate geometric ergodicity of

(
X̂∆ t

n

)
n∈N

. Consider the reversible process defined by

Z∆ t
n+1 =Θ∆ tZ∆ t

n , (3.1)

and P̃∆ t be the corresponding transition semigroup. We shall assume that the reversible dynamics are
a Metropolis-Hastings chain, with proposal kernel q∆ t(·|x). More specifically, given x ∈ Rd , Θ∆ t(x) is
constructed as follows
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1. Sample y∼ q∆ t(· |x).
2. With probability

α(x,y) = min
(

1,
π(y)q∆ t(x|y)
π(x)q∆ t(y|x)

)
, (3.2)

set Θ∆ tx := y otherwise Θ∆ tx := x.

It is well known that the target distribution π is invariant under the map Θ∆ t Metropolis et al. (1953);
Hastings (1970). In this paper, we shall focus on two specific proposals, namely the Langevin proposal

q∆ t(· |x) = x+∆ t∇ logπ(x)+
√

2∆ tg, (3.3)

and the random walk proposal
q∆ t(· |x) = x+

√
2∆ tg, (3.4)

where g is a standard d-dimensional Gaussian random variable. The resulting scheme is known as
Metropolis-Adjusted Langevin Algorithm (MALA) when proposal (3.3) is used, and Random Walk
Metropolis Hastings (RWMH) when (3.4) is used. Denote by P̂∆ t(x, ·) and P̃∆ t(x, ·) the transition distri-
bution functions of the splitting scheme (1.10) and (3.1) respectively. Then clearly,

P̂∆ t f (x,A) = (P̃∆ t f )(Φ∆ t(x),A), A ∈B(Rd).

Following the approach of Mengersen & Tweedie (1996) we first show that (1.10) is a π-irreducible,
aperiodic Markov chain. Moreover, we will show that all compact sets are small, i.e. for every compact
set C, there exists a δ > 0 and n > 0 such that

P̂n
∆ t(x, ·)> δν(·), x ∈C.

Finally, we will show that if a Foster-Lyapunov condition holds for the reversible dynamics P̃∆ t , then it
also holds for P̂∆ t . To this end, we shall make the following assumptions.

Assumption 3.1 For ∆ t sufficiently small, we assume that

1 The reversible chain (3.1) satisfies a Foster-Lyapunov condition, i.e. there exists a continuous function
V > 1, a compact set C ⊂ Rd and constants λ ∈ (0,1) and b> 0 such that

P̃∆ tV (x)6 λV (x)+b1C(x), x ∈ Rd . (3.5)

2 The nonreversible flow map Φ∆ t satisfies the following condition,

lim sup
|x|→∞

V (Φ∆ t(x))−V (x)
V (x)

<
1
λ
−1. (3.6)

3 The preimage Φ
−1
∆ t (C) is bounded.

The main theorem of this section establishes the geometric ergodicity of (1.10).

THEOREM 3.2 Suppose that Assumptions 3.1 hold, and that π and q∆ t(y|x) are positive and continuous
for all x,y ∈ Rd . Then for ∆ t sufficiently small, the process X̂∆ t

n is geometrically ergodic, i.e. there
exists ρ ∈ (0,1) and K > 0 such that

sup
|g|6V

∣∣∣∣∫Rd
g(y)

(
P̂n

∆ t(x,y)− π̂∆ t(y)
)

dy
∣∣∣∣6 KV (x)ρn, n ∈ N.
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Proof. The proof of this theorem can be found in the supplementary material. � The following result
is an application of Theorem 3.2 for the Random Walk proposal (3.4).

COROLLARY 3.1 (Geometric Ergodicity of Lie-Trotter scheme with RWMH dynamics) Consider the
Lie-Trotter splitting scheme X̂∆ t

n where the reversible dynamics (1.12) are simulated using a RWMH
scheme with proposal defined by (3.4). Suppose that the conditions on π and q∆ t specified in (Roberts
et al., 1998, Theorem 3.2) hold and moreover that

lim
|x|→∞

(|Φ∆ t(x)|− |x|) = 0, (3.7)

for ∆ t sufficiently small. Then X̂∆ t
n is geometrically ergodic.

An almost identical result holds for the MALA proposal (3.3).

COROLLARY 3.2 (Geometric Ergodicity of Lie-Trotter scheme with MALA dynamics) Consider the
Lie-Trotter splitting scheme X̂∆ t

n where the reversible dynamics (1.12) are simulated using a MALA
scheme with proposal defined by (3.3). Suppose that the conditions on π and q∆ t specified in (Roberts
& Tweedie, 1996, Theorem 4.1) hold and moreover that (3.7) holds for ∆ t sufficiently small. Then X̂∆ t

n
is geometrically ergodic.

In particular, suppose that lim|x|→∞ π(x)→ 0, and that, given α > 0, there exist positive constants α ′,
K1 and K2 such that

|∇π
α(x)|6 K1π

α ′(x), |∇∇π
α(x)|max 6 K2, x ∈ Rd , (3.8)

where | · |max denotes the max norm. If γ = J∇πα for J antisymmetric, then condition (3.7) will hold if
Φ∆ t(x) is simulated using an explicit Euler or Runge-Kutta scheme. A similar result holds for γ given
by (2.5).

4. Asymptotic Bias and Variance Estimates for general integrators

In this section we consider the asymptotic behaviour of the estimator (1.8) for π( f ), obtained for a
general numerical scheme (X̂∆ t

k )k>0. In particular, we shall derive estimates for the asymptotic bias
and asymptotic variance of the estimator π̂∆ t( f ). For simplicity we shall focus on the case where
the domain is Td , i.e. the unit hypercube with periodic boundary conditions. As in Mattingly et al.
(2010) this set-up greatly simplifies the derivation of expressions for bias and variance, particularly since
remainder terms arising from Taylor expansions can be easily controlled. We expect that extending these
results to unbounded domains should be possible by following analogous approaches in Kopec (2014).
Throughout this section, we shall assume that the numerical integrator X̂∆ t

k is ergodic, with unique
invariant distribution π̂∆ t .

4.1 Notation

We first introduce the notation which will be used in this section and the remainder of the paper. Given
a probability measure µ on (Td ,B(Td)) define L2(µ) to be the Hilbert space of square integrable
functions on Td , equipped with inner product 〈·, ·〉µ and norm ‖·‖L2(π). The subspace L2

0(µ) of L2(µ) is
defined to be

L2
0(µ) = { f ∈ L2(µ) : µ( f ) = 0}, (4.1)
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We define L∞(µ) (also denoted by L∞(Td)) to be the Banach space of essentially bounded functions
on Td equipped with norm ‖·‖L∞(Td). The subspace L∞

0 (µ) of L∞(µ) is defined analogously to (4.1).
Finally, given a (signed) measure ν on (Td ,B(Td)) we denote the total variation norm of ν by ‖ν‖TV .

4.2 Backward error analysis for ODEs

Backward error analysis is a powerful tool for the analysis of numerical integrators for differential
equations Sanz-Serna & Calvo (1994); Leimkuhler & Reich (2004); Hairer et al. (2006). In particular,
it is the main ingredient for the proof of the good energy conservation (without drift) of symplectic
Runge-Kutta methods when applied to deterministic Hamiltonian systems over exponentially long time
intervals Hairer et al. (2006). In our context it is useful to characterize the infinitesimal generator of the
numerical flow Φ∆ t approximating the solution of the ODE (1.11). Indeed, given a consistent integrator
zn+1 = Φ∆ t(zn) for the ODE

dz(t)
dt

= f (z(t)), (4.2)

the idea of backward error analysis is to search for a modified differential equation written as a formal
series in powers of the stepsize ∆ t,

dz̃
dt

= f (z̃)+∆ t f1(z̃)+∆ t2 f2(z̃)+ . . . , z̃(0) = z0 (4.3)

such that (formally) zn = z̃(tn), where tn = n∆ t (in the above differential equation, we omit the time
variable for brevity). The numerical solution can thus be interpreted as a higher order approximation
of the exact solution of a modified ODE. For all reasonable integrators, the vector fields f j can be
constructed inductively Leimkuhler & Reich (2004); Hairer et al. (2006), starting from f0 = f . In
general, the series in (4.3) will diverge for nonlinear systems, and thus needs to be truncated. We thus
consider the truncated modified ODE at order s

dz̃
dt

= f (z̃)+∆ t f1(z̃)+∆ t2 f2(z̃)+ . . .+∆ ts fs(z̃), z̃(0) = z0. (4.4)

One can then show that zn = z̃(tn)+O(∆ ts+1) for ∆ t → 0 for bounded times tn = n∆ t 6 T . We note
that the flow Φ̃∆ t(z) of the modified differential equation (4.4) satisfies

φ ◦ Φ̃∆ t =

(
M

∑
k=0

∆ tkL̃ k
D

k!

)
φ+O(∆ tM+1), L̃D = F0 +∆ tF1 +∆ t2F2 + . . .+∆ tsFs, (4.5)

for all M > 0, and smooth test functions φ , and where Fjφ = f j ·∇φ , j = 0, . . . ,s and f0 = f 1.

4.3 Asymptotic bias of numerical integrators

The aim of this subsection is to describe the conditions on a numerical integrator for (1.2) which are
sufficient for the numerical invariant distribution π̂∆ t to approximate π to order r in the weak sense.

1For all ∆ t small enough, the sum in (4.5) can be shown to converge for M→ ∞ in the case of analytic vector fields f j (and
analytic test functions φ ), which permits to remove the O remainder.
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These conditions relate directly to the expansion of one-step numerical expectations in powers of ∆ t. In
particular, denote by P̂∆ t the transition semigroup associated with X̂∆ t , i.e.

P̂∆ t f := E
[

f (X̂∆ t
1 )|X0 = x

]
and assume that the following expansion holds

P̂∆ t f = f +∆ tA0 f + . . .+∆ tkAk−1 f +∆ tk+1Ak f +∆ tqQ f ,∆ t , q > k+1, (4.6)

where Ai, i = 0,1, · · · ,k are linear differential operators with coefficients depending smoothly on π(x),
its derivatives, and the choice of the numerical integrator. In addition Q f ,∆ t is a smooth remainder term
depending both on f and ∆ t while being uniformly bounded with respect to ∆ t. The following theorem
provides sufficient conditions for expectations with respect to π̂∆ t to approximate expectations with
respect to π to order r.

THEOREM 4.1 Consider equation (1.2) solved by a numerical scheme which is ergodic with respect to
some probability measure π̂∆ t and such that the one step transition semigroup satisfies (4.6) with

A∗jπ = 0, for j = 1, · · · ,r−1, (4.7)

where q > r. Then one obtains∫
Td

f (x)π̂∆ t(dx) =
∫
Td

f (x)π(dx)+∆ tr
∫
Td

Ar(−L )−1( f −π( f ))π(dx)+∆ tqR f ,∆ t , (4.8)

where the remainder term R f ,∆ t is uniformly bounded with respect to ∆ t, for ∆ t sufficiently small.

Proof. The proof can be found in (Abdulle et al., 2014, Theorem 3.1). �

REMARK 4.1 Integrators X̂∆ t
n which have weak error order r will automatically satisfy condition (4.7)

for j = 0, . . . ,r−1. However, the converse is not necessarily true, see Abdulle et al. (2014) for further
discussion.

Since the ergodic average (1.8) satisfies π̂∆ t
N∆ t( f )→ π̂∆ t( f ) =

∫
Td f (x)π(x)dx as N→ ∞, it follows

immediately from Theorem 4.1 that, for sufficiently small ∆ t,

lim
N→∞

π̂N∆ t( f ) = π( f )+∆ tr
∫
Td

Ar(−L )−1( f −π( f ))π(dx)+o(∆ tr),

provided (4.7) holds.

4.4 Asymptotic variance of numerical integrators

The aim of this subsection is to derive a perturbation expansion in the small timestep regime for the
asymptotic variance of an arbitrary ergodic numerical integrator for the dynamics (1.2). To this end,
we consider a diffusion Xt for which the central limit theorem (1.5) holds. Moreover, we shall make
the following assumption, which implies that the corresponding numerical scheme X̂∆ t

k converges to
equilibrium exponentially fast in L∞(Td), with rate which is uniform with respect to ∆ t.

Assumption 4.2 There exist constants C > 0 and λ > 0 independent of ∆ t such that, for ∆ t sufficiently
small, ∥∥∥P̂k

∆ t f − π̂
∆ t( f )

∥∥∥
L∞(Td)

6Ce−λk∆ t
∥∥∥ f − π̂

∆ t( f )
∥∥∥

L∞(Td)
, f ∈ L∞(Td).
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REMARK 4.2 This condition is nontrivial to verify in general. For the specific case of the Lie-Trotter
integrator (1.10), when the reversible component of the dynamics is integrated either using MALA or
random walk proposals, it is shown in Theorem 5.3 that Assumption 4.2 holds.

Given an observable f ∈ C∞(Td) we consider π̂∆ t
T as in (1.8). We define the rescaled asymptotic

variance of the estimator π̂∆ t
T as follows

σ̂
2
∆ t( f ) = ∆ t lim

N→∞
NVar

π̂∆ t

[
1
N

N−1

∑
k=0

f (X̂∆ t
k )

]
. (4.9)

Here we rescale the asymptotic variance with ∆ t, to guarantee a well–defined limit when ∆ t → 0.
Assumption 4.2 implies that there exists a constant K > 0, independent of ∆ t such that∥∥∥∥∥∥

[
I− P̂∆ t

∆ t

]−1
∥∥∥∥∥∥

L∞
0 (π̂

∆ t )

< K, (4.10)

for ∆ t sufficiently small. In particular, we can express (4.9) as

σ̂
2
∆ t( f ) = 2∆ t

〈(
f − π̂

∆ t( f )
)
,
(

I− P̂∆ t

)−1(
f − π̂

∆ t( f )
)〉

π̂∆ t
−∆ tVar

π̂∆ t [ f ]. (4.11)

It should be clear from (4.11) that there will be two contributions to the error between σ̂2
∆ t( f ) and

σ2( f ): one arising from the order of weak convergence of the numerical method, and one from the
time discreteness of the process X̂∆ t

k . Indeed, even when one considers the exact discrete time dynamics
defined by

X∆ t
n = X(n∆ t), n ∈ N,

the error between the corresponding asymptotic variance σ2
∆ t( f ) and σ2( f ) will be non-zero, despite

the fact that both discrete and continuous time Markov processes have the same invariant distribution.
To isolate the different sources of error, we present first Proposition 4.3 which quantifies the effect of
the time-discreteness on the asymptotic variance. In Theorem 4.4 we then quantify the error between
the asymptotic variances σ2

∆ t( f ) and σ̂2
∆ t( f ) of X∆ t

n and X̂∆ t
n , respectively.

PROPOSITION 4.3 For all f ∈ C∞(Td) there exists a smooth function R f such that for ∆ t sufficiently
small,

σ
2
∆ t( f ) = σ

2( f )−2∆ tVarπ [ f ]+
∆ t2

6
〈(−L )( f −π( f )) , f −π( f )〉

π
+∆ t2R f

where R f is bounded, independent of ∆ t.

Proof. The proof can be found in Section .1. �

Define the operator M∆ t to be the projector onto functions with mean zero with respect to π̂∆ t , i.e.

M∆ tφ(x) = φ(x)−
∫
Td

φ(y)π̂∆ t(y)dy.

The following theorem characterises the difference between the asymptotic variance arising from the
exact discrete time dynamics X∆ t

n and the numerical integrator X̂∆ t
n .
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THEOREM 4.4 Suppose that, for some k∈N, k> 1, there exist operators A0, . . . ,Ak on C∞(Td), bounded
uniformly with respect to ∆ t, where Ai =

L i+1

(i+1)! , i = 0, · · · ,k− 1 and such that for all ψ ∈ C∞(Td) the

semigroup P̂∆ t satisfies (4.6). Suppose that the corresponding invariant distribution π̂∆ t satisfies∫
Td

ψ(x)π̂∆ t(x)dx =
∫
Td

ψ(x)π(x)dx+∆ trRψ ,

where r > k and Rψ is a smooth remainder term, uniformly bounded with respect to ∆ t. Moreover,
suppose that P̂∆ t satisfies (4.10). Then for all f ,g ∈ C∞(Td) such that π( f ) = π(g) = 0, we have the
expansion〈

g,
(

I−P∆ t
∆ t

)−1
f
〉

π

=

〈
M∆ tg,

(
I−P̂∆ t

∆ t

)−1
M∆ t f

〉
π̂∆ t

+∆ tkR1( f ,g)+o(∆ tk), (4.12)

where

R1( f ,g) =

〈(
I− P̂∆ t

∆ t

)−1

M∆ t

(
L k+1

(k+1)!
−Ak

)(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

. (4.13)

In particular
σ̂

2
∆ t( f ) = σ

2
∆ t( f )+2∆ tkR1( f , f )+o(∆ tk). (4.14)

Moreover, we can write the remainder term as

R1( f ,g) =
〈
(−L )−1

(
L k+1

(k+1)!
−M0Ak

)
(−L )−1 f ,g

〉
π

+o(∆ tk), (4.15)

where M0ψ = ψ− ∫Td ψ(y)π(y)dy.

Proof. The proof can be found in Section .1. �
To complete this analysis we shall consider the asymptotic variance arising from a perturbed diffu-

sion process X̃t having infinitesimal generator L̃∆ t such that, for ∆ t sufficiently small

L̃∆ t f = L f +∆ tkLk f +∆ tq−1R f , f ∈C∞(Td), (4.16)

where q > k+ 1. We shall also assume that (L̃∆ t)
−1 is bounded in L∞

0 (π̂
∆ t) uniformly with respect to

∆ t. More specifically there exists K > 0, independent of ∆ t such that∥∥∥∥(−L̃∆ t

)−1
∥∥∥∥

L∞
0 (π̂

∆ t )

< K, (4.17)

for ∆ t sufficiently small. The following result characterises the influence of this perturbation on the
asymptotic variance for small ∆ t. For numerical approximations of Xt for which a modified SDE
Zygalakis (2011) is known, the following result combined with Proposition 4.3 provide a convenient
means of obtaining an expression for the asymptotic variance σ̃2

∆ t( f ) of the numerical scheme in terms
of σ2( f ).

PROPOSITION 4.5 Consider a diffusion process X̃t on Td with smooth coefficients and generator L̃∆ t
which satisfies (4.16) and (4.17). Suppose that X̃t has unique invariant distribution π̂∆ t which satisfies∫

ψ(x)π̂∆ t(x)dx =
∫

ψ(x)π(x)dx+∆ trRψ , (4.18)
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where r > k, and Rψ is a smooth remainder term, uniformly bounded with respect to ∆ t. Then for all
f ∈C∞(Td) with π( f ) = 0,

σ̃
2
∆ t( f ) = σ

2
∆ t( f )+2∆ tkR f +o(∆ tk). (4.19)

where

R f =

〈(
−L̃∆ t

)−1
M∆ t(−Lk)(−L )−1 f ,M∆ t f

〉
π̂∆ t

. (4.20)

Moreover, we can express the remainder term as

R f =
〈
(−L )−1 M0(−Lk)(−L )−1 f , f

〉
π

+o(∆ tk), (4.21)

where M0ψ = ψ− ∫Td ψ(y)dy.

Proof. The result follows from an argument similar to that of Theorem 4.4. �

5. Asymptotic Bias and Variance Estimates for the splitting scheme

In this section we derive asymptotic bias and variance estimates for the Lie-Trotter splitting scheme
(1.10) on Td by applying the general results derived in Section 4. In Section 5.1 we apply Theorem
4.1 to obtain an asymptotic bias estimate for the splitting scheme. In particular, we find that when an
unbiased method is used for the reversible part of the dynamics, then the order of the bias of the splitting
scheme depends only on the properties of the deterministic integrator applied to the nonreversible part
of the dynamics. Furthermore, in Section 5.2 we obtain estimates for the asymptotic variance, in the
particular case where a Metropolized integrator is used to integrate the reversible part of the dynamics.
These estimates confirm the soundness of the spitting approach as they imply that for ∆ t sufficiently
small, the numerical asymptotic variance mimics the good properties of the asymptotic variance of the
exact dynamics.

5.1 Asymptotic bias of the splitting scheme

We now consider the Lie-Trotter scheme (1.10) on Td . In this section we obtain estimates for the
asymptotic bias of the scheme by applying Theorem 4.1.

THEOREM 5.1 Suppose that π is invariant by Θ∆ t , the integrator used for the reversible dynamics, and
that that the deterministic flow Φ∆ t satisfies a modified backward equation of the form (4.3) where the
vector fields f j satisfy

∇ · ( f j(x)π(x)) = 0, j = 1, . . . ,r−1. (5.1)

Then, assuming ergodicity, the Lie-Trotter splitting (1.10) has order r of accuracy for the invariant
measure. More precisely, for all φ ∈C2(Td) and ∆ t sufficiently small∫

Td
φ(x)π̂∆ t(dx) =

∫
Td

φ(x)π(dx)+∆ trCr,φ +∆ tr+1Rφ ,∆ t , (5.2)

where Cr,φ and Rφ ,∆ t are uniformly bounded and

Cr,φ =
〈

fr,(−L )−1(φ −π(φ))
〉

π
.
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REMARK 5.1 From standard elliptic energy estimates, the remainder term Cr,φ in (5.2) satisfies the a
priori bound

|Cr,φ |6 2ρ
−1‖ fr‖L2(π)‖φ‖L2(π),

where ρ is the L2(π) Poincare constant.

Theorem 5.1 follows from a direct application of Theorem 4.1 and is proved in Section ??. Suppose that
the nonreversible dynamics is determined by (1.11) where γ(x) = β γ̃(x), for β ∈R and for some smooth
vector field γ̃ . If Ψ∆ t is an integrator for the flow with error order r, then it is straightforward to show
that Ψ∆ t will satisfy a modified backward equation of the form (4.3) where the vector fields f j satisfy
the scaling f j = |β | j+1 f̃ j, with ‖ f̃ j‖L2(π) ∼ O(1) for j = 0, . . . ,r− 1. It follows that if the conditions
of Theorem 5.1 hold, then the leading order term of the bias is of the form C∆ tr|β |r+1, where C is
independent of ∆ t and β . This estimate provides a rule of thumb for choosing the magnitude of the
nonreversible perturbation β . Clearly, this should be as large as possible while maintaining a given
tolerance ε for the bias. To this end, for ∆ t� 1, β must satisfy

|β | � ε
1

r+1 ∆ t−
r

r+1 .

In particular, assuming that |β | � ∆ t−κ where κ ∈ R, we obtain an upper bound

κ 6− 1
r+1

log ε

log ∆ t
+

r
r+1

. (5.3)

For ε � ∆ t, this rule suggests that β should have been chosen to be O(1) with respect to ∆ t if a first
order integrator is used to simulate the nonreversible dynamics. Employing a higher order integrator
however, permits larger values of |β |, in particular |β | � ∆ t−0.6 for a fourth order scheme as considered
in the examples of Section 6. We emphasise that unless we have explicit control on the growth of the
remainder term in (4.5) as a function of β , then (5.3) is only heuristic. Moreover, we are assuming that
the integrator Ψ∆ t is stable for this parameter regime. In general though, if this heuristic choice of β

was leading to unstable integration, then one would either use a smaller β (which would though lead
to reduced benefits in terms of asymptotic variance) or could instead use an appropriate stiff numerical
integrator.

5.2 Asymptotic variance of the splitting scheme

In this section we characterise the asymptotic variance of the splitting scheme (1.10). As we are working
under the assumption that ∆ t is small, we see that the asymptotic variance will agree, to leading order
with the asymptotic variance of the continuous underlying dynamics, with any distinctions arising as
second order behaviour. We show that, unlike the bias estimates obtained in Theorem 5.1 these higher-
order error terms will also depend on the choice of integrator for the reversible dynamics Θ∆ t . For
clarity, we shall focus specifically on the case where Θ∆ t is simulated using MALA. We again shall
assume that the integrator Φ∆ t for the nonreversible flow satisfies the following expansion

Φ∆ tφ = φ +∆ tA1φ +∆ t2A2φ +∆ t3Rφ , φ ∈C∞(Td),

where A1 = γ(x) ·∇ is the antisymmetric part of L in L2(π) and Rφ ∈C∞(Td) is bounded independently
of ∆ t.
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Proposition ?? in the Appendix implies that the reversible integrator Θ∆ t satisfies the following
perturbation expansion

Θ∆ tφ = φ +∆ tG1φ +∆ t2G2φ +∆ t5/2Rφ , φ ∈C∞(Td), (5.4)

where G1 = S is the symmetric part of L in L2(π), G2 is given by (??), and Rφ is a smooth remainder
term bounded independently with respect to ∆ t. The following theorem characterises the asymptotic
variance of the Lie-Trotter splitting scheme (1.10) for this choice of reversible dynamics. It is a direct
application of Theorem 4.4 and is proved in Section ??.

THEOREM 5.2 Consider the Lie-Trotter splitting scheme defined by (1.10) where Θ∆ t is integrated using
MALA and suppose that the nonreversible dynamics preserves the invariant distribution up to order 2.
Then for all f ∈C∞(Td) we have

σ̂
2
∆ t( f ) = σ

2( f )−2∆ tVarπ [ f ]

+∆ t
〈
(−L )−1(L 2−2(A2 +G1A1 +G2)(−L )−1( f −π( f ), f −π( f )

〉
π
+o(∆ t).

If moreover, the nonreversible dynamics is integrated using a second order scheme then the O(∆ t) term
can be written as 〈

(−L )−1 ((S 2−2G2)+ [S ,A ]
)
(−L )−1( f −π( f ), f −π( f )

〉
π
,

where S and A are the symmetric and antisymmetric parts of L in L2(π), respectively.

From the point of view of tuning the nonreversible Langevin sampler defined by (1.10) the main
conclusion of Theorem 5.2 is that, for ∆ t sufficiently small, the asymptotic variance of (1.10) is, to
leading order, equal to the asymptotic varaince of the exact dynamics (1.2). In particular, given an
observable f , this result implies that a choice of flow γ which reduces the variance of a sampler based
on (1.2) will have a similarly beneficial effect on (1.10). One can thus leverage the theory detailed in
Duncan et al. (2016) and Lelièvre et al. (2013) to design efficient samplers for a given target distribution
π and observable f .

5.3 Uniform rate of convergence to equilibrium for the Splitting Scheme

In this section we shall show that Assumption 4.2 holds when the reversible dynamics is simulated using
a Metropolis-Hastings scheme using MALA. To establish this, it is sufficient to show that a uniform
minorization condition holds. More specifically, there exists ∆ t∗ and α̃ > 0 and a probability measure
ν such that for any bounded measurable non-negative function f and x ∈ Td ,

PdT/∆ te
∆ t f (x)> α̃

∫
Td

f d ν , (5.5)

where 0 < ∆ t 6 ∆ t∗. This approach will follow very closely (Fathi & Stoltz, 2015, Sec. 4.4), and we
shall only illustrate the slightly different set-up of the proof here.

THEOREM 5.3 Consider the Markov chain X̂n
∆ t defined by (1.10) where the reversible dynamics Θ∆ t are

simulated using a Metropolis-Hastings scheme with MALA (3.3). Then, for ∆ t sufficiently small, the
uniform minorisation condition (5.5) holds, and as a result, Assumption 4.2 holds for X̂n

∆ t .
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Proof. It is straightforward from the construction of the Lie-Trotter process (1.10) that we can write

X̂∆ t
n = X̂∆ t

0 +Gn +Fn, (5.6)

where

Gn =
√

2∆ t
n−1

∑
k=0

1
[
uk 6 α

(
Φ∆ t

(
X̂∆ t

k

)
,Ψ∆ t

(
Φ∆ t

(
X̂∆ t

k

)
,gk

))]
gk,

and

Fn =−∆ t
n−1

∑
k=0

1
[
uk 6 α

(
Φ∆ t

(
X̂∆ t

k

)
,Ψ∆ t

(
Φ∆ t

(
X̂∆ t

k

)
,gk

))]
∇U

(
Ψ∆ t

(
Φ∆ t

(
X̂∆ t

k

)
,gk

))
,

where (uk)
n−1
k=0 are i.i.d U [0,1] distributed random variables, (gk)

n−1
k=0 are i.i.d N (0, I) distributed random

variables, where α is the acceptance probability and Ψ∆ t is the proposal function, i.e.

Ψ∆ t(x,g) = x+∆ t∇U(x)+
√

2∆ tg.

We introduce the decomposition Gn = G̃n + Ĝn where

G̃n =
√

2∆ t
n−1

∑
k=0

1 [uk 6 1]gk, (5.7)

and

Ĝn =
√

2∆ t
n−1

∑
k=0

(
1
[
uk 6 α

(
Φ∆ t

(
X̂∆ t

k

)
,Ψ∆ t

(
Φ∆ t

(
X̂∆ t

k

)
,gk

))]
−1[uk 6 1])

)
gk. (5.8)

Following (Fathi & Stoltz, 2015, Sec 4.4), one decomposes each random variable in the summand into
a drift plus a martingale increment term, i.e.(

1
[
uk 6 α

(
Φ∆ t

(
X̂∆ t

k

)
,Ψ∆ t

(
Φ∆ t

(
X̂∆ t

k

)
,gk

))]
−1[uk 6 1])

)
gk = D(X̂∆ t

k )+Mk,

where Mk is a martingale adapted to the filtration of X̂∆ t
k . We obtain

D(x) = Eg∼N (0,I) [(α (Φ∆ t (x) ,Ψ∆ t (Φ∆ t (x) ,g))−1)g] . (5.9)

It follows from (??) that there exists a constant C independent of ∆ t such that

|D(x)|6C∆ t3/2, (5.10)

for ∆ t sufficiently small. Thus, it follows that

∆ t1/2
n−1

∑
k=0

D(X̂∆ t
k )6C∆ t. (5.11)

Similarly one can show that

E
[
|Mk|2

∣∣∣ X̂∆ t
k

]
6C′∆ t1/2,
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so that by Chebyschev’s inequality, for n6 dT/∆ te,

P

[∣∣∣∣∣Ĝn−
√

2∆ t
n−1

∑
k=0

D(X̂∆ t
k )

∣∣∣∣∣> 1
2

]
6C′′∆ t1/2, (5.12)

for some constant C′′ independent of ∆ t. Applying (5.11) and choosing ∆ t sufficiently small we obtain

P
[∣∣∣Ĝn

∣∣∣> 1
]
6 Ĉ∆ t 6

1
2
,

where Ĉ is a constant independent of ∆ t. The remainder of the argument involves controlling the mag-
nitude of Fn and the distribution of G̃n to obtain the minorisation condition (5.5) and follows identically
to (Fathi & Stoltz, 2015, Sec 4.4). �

6. Numerical experiments

In this section, we perform a number of different numerical investigations that illustrate the superior-
ity of the nonreversible Langevin samplers over standard Metropolis-Hastings algorithms for a fixed
computational budget. In particular, we define computational cost here in terms of number of density
evaluations which is the dominating cost in high dimensions. To this end we ensure that every compari-
son is made for the same computational cost, i.e., same number of density evaluations.

As a first numerical example we consider the expectation of an observable with respect to the fol-
lowing two dimensional distribution

π(x) ∝ exp
(
− x2

1
100
− (x2 +bx2

1−100b)2
)
, (6.1)

where x = (x1,x2). The parameter b> 0 controls the degree of warpedness, and is chosen to be b= 0.05.
Our objective is to estimate π( f ) when f (x) = |x|2. The nonreversible flow γ is chosen as follows:

γ(x) = J∇ logπ(x), J =

(
0 1
−1 0

)
.

In Figure 1, we plot characteristic trajectories of MALA as well its nonreversible counterpart (for
β = 25) starting from the initial point x = (15,2). The figure suggests superior mixing of the nonre-
versible samplers, which improves further with increasing β values. In Figure 2 the mean-square error
is plotted as a function of stepsize for different values of flow strength β . The reversible part of the
Lie-Trotter scheme is simulated using MALA and RWMH in Figures 2a, and 2b , respectively. The
“exact” value of π( f ) used to compute the MSE is obtained via adaptive Gaussian quadrature, accurate
up to 10−10. In accordance with the results of Theorems 5.1 and 5.2, the MSE is a tradeoff between bias
and variance. For a fixed computational budget as ∆ t decreases, the bias arising from the discretisation
of the nonreversible flow decreases. However, the variance simultaneously increases as the total simu-
lated time T = N∆ t is reduced. This competion between bias and variance suggest an optimal choice
of timestep ∆ t which minimises the MSE. This tradeoff is further exacerbated when β is increased.
Nevertheless, for an appropriate choice of β the MSE can be up to an order of magnitude lower than
that of MALA, at the same computational cost.
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FIG. 1. Typical trajectories for MALA and Lie-Trotter splitting scheme applied to the warped Gaussian distribution (6.1), with
computational budget of 3200 density evaluations. Both schemes started from x = (15,2) depicted by a blue dot.
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FIG. 2. Comparison of the MSE between MALA and different nonreversible samplers applied to the warped Gaussian distribution
(6.1). The computational budget is set to N = 3.5 · 103 density evaluations, and 4th order Runge-Kutta method is used for the
nonreversible component.

6.1 Logistic Regression

Let X be a m×d design matrix comprising m samples with d covariates and a binary response variable
Y ∈ {−1,1}m. A Bayesian logistic regression model of the binary response is obtained by the introduc-
tion of the regression coefficient θ ∈ Rd . For the sake of exposition, we shall assume a Gaussian prior
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of θ , i. e., θ ∼N (0,Σ). The posterior distribution π(θ |X ,Y ) is given by

π(θ |(X ,Y )) ∝ exp

(
m

∑
i=1

Yiθ
T Xi− log(1+ eθ T Xi)− 1

2
θ

T
Σ
−1

θ

)
. (6.2)

In Figure 3 we investigate the use of the Lie Trotter sampler applied to this problem for the Pima Indians2

dataset obtained from the UCI machine learning repository. The skew symmetric matrix J is chosen by
generating a random permutation σ(1), . . . ,σ(d) and setting

Jσ(i),σ(i+1) = 1 and Jσ(i+1),σ(i) =−1,

for i = 1, . . . ,d − 1, and zero elsewhere. In Figure 3a we plot the first estimator π̂∆ t
T (θ1) with 95%

confidence intervals for different values of β and stepsize. Each point in the plot costs 3.5 · 103 den-
sity evaluations. To provide a comparison against the truth, an optimally tuned MALA scheme was
integrated over 107 timesteps. In Figure 3b we plot the effective sample size (ESS) of the Lie-Trotter
scheme for different values of β and ∆ t. The markers denote the median value of the ESS with the
markers denoting the 5% and 95% percentiles. We note however that there would typically be a very
small number of observables for which the nonreversible scheme offers no advantage. This agrees with
the theory detailed in Duncan et al. (2016) which characterises the minimum attainable variance reduc-
tion in terms of the projection of the observable f on the nullspace of the operator J∇V (x) ·∇. As J is
chosen randomly, there will always been a number of observables which are close to this subspace, and
thus the nonreversible dynamics offer no advantage. One possible remedy around this is to periodically
resample the nonreversible matrix J, but we do not investigate this here.
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FIG. 3. Confidence interval for an estimator of Y1,1 and ESS for estimators for π (θi), i= 1, . . . ,9 for logistic regression of the Pima
Indians data set. Each data point in these plots is set to 3.5 · 103 density evaluations. The results are compared to an optimally
tuned MALA simulation run for 107 density evaluations.

2Here m = 768,d = 9.
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6.2 Spatial model

We now consider a high dimensional target distribution related to inference for a log-Gaussian Cox
point process previously considered in Møller et al. (1998). In particular, given the location of 126 Scots
pine saplings in a natural forest in Finland, we wish to infer the average intensity of a corresponding
Poisson point process. Following Christensen et al. (2005), we consider a discretised version of the
model where the spatial region is discretised to a 64× 64 regular grid. For each i, j Xi, j is the random
variable counting the number of observations in the (i, j)-cell ,and hence the dimension of the problem
is d = 642 = 4096. The observations are assumed to be generated by a Poisson point process with
unobserved intensity Λi, j, i, j = 1, · · · ,64. Given the Λi, j the random variables Xi, j are assumed to be
conditionally independent with Poisson distributed mean mΛi, j, where m= 1/4096 is the area of a single
cell. We impose a log-Gaussian prior on Λi, j, more specifically

Λi, j = exp(Yi, j),

where Y = (Yi, j, i, j = 1, · · ·64)∼N (µ1,Σ) where

Σi, j,i′, j′ = σ
2

[
−−{(i− i′)2 +( j− j′)2}1/2

64β

]
, i, j, i′, j′ = 1 · · · ,64.

The posterior distribution is thus given by

f (y|x) ∝

64

∏
i, j=1

exp{(xi, jyi, j)−mexp(yi, j)}exp{−0.5(y−µ1)T
Σ
−1(y−µ1)}.

Due to the poor scaling of the posterior distribution in Christensen et al. (2005) a reparametrization
of y is introduced to improve the mixing of the Metropolis-Hastings scheme. This procedure is ex-
pensive with a computational cost of O(d3). However, in the case of the nonreversible samplers, the
nonreversible perturbation compensates for the poor scaling, thus rendering this reparametrisation un-
necessary.

In Figure 4 we plot an estimator of E(Λ |x) using MALA and its nonreversible counterpart respec-
tively. For this computation the skew-symmetric matrix J was generated randomly as in the logistic
regression example. Due to the large number of variables, for any given random choice of J, there
would be a small number of variables for which the nonreversible scheme does not offer significant
advantage over MALA, as described in Duncan et al. (2016). To better understand the effect of the non-
reversible flow on an average covariate, we generate 10 independent random skew-symmetric matrices,
and compute the average ESS over J. The results are presented in Figure 5. In Figure 5c a histogram of
the ESS over all variables is plotted for both MALA and the splitting scheme for specific choices of ∆ t
and β . We observe that the ESS for the nonreversible scheme is orders of magnitude better than MALA.
To illustrate the dependence of ESS on timestep, similarly to the case of logistic regression, in Figure 5b
we plot the median ESS for different choices of timestep. It is clear that increasing β and ∆ t as much
as possible increases the ESS. However, this comes at the cost of increasing bias as can be observed in
Figure 5a. Nonetheless, it is evident that the nonreversible sampler significantly outperforms the MALA
scheme.
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FIG. 4. E(Yi, j) estimated using different schemes. The computational budget is set to N = 3.5 ·103 gradient evaluations.

7. Discussion

In this paper sampling methods based on nonreversible diffusions have been proposed and evaluated on
a range of different inference problems. The development of these methods is an attempt to improve
on existing MCMC methodology in the case of target densities that might be of high dimension and
exhibit strong correlations. The key idea behind these samplers is the exploitation of the irreversibility
of an underlying diffusion process, which leads to reduced asymptotic variance. This becomes possible
through a careful discretisation of the underlying SDE that introduces a controllable bias, but more
importantly mimics the reduced asymptotic variance of the nonreversible diffusion.

From a practical point of view, the careful balancing of the bias and variance achieved by the non-
reversible samplers leads to much more efficient sampling than MALA. In particular, across all our
experiments we observe improvements of two orders of magnitude in terms of effective sample size.
Moreover, all our comparisons are being made on the basis of the same number of density evaluations
used in the nonreversible samplers and MALA. Furthermore, in the case of the log- Gaussian Cox
model the nonreversible samplers are able to achieve this dramatic improvement in terms of the ESS
without the need of an expensive O(d3) reparametrisation, which is also the computational bottleneck in
high dimensions for more sophisticated sampling algorithms such as MMALA Girolami & Calderhead
(2011). We mention also here that a new class of methods Titsias & Papaspiliopoulos (2018) shares this
improved performance without the need for such an expensive rescaling.

There exist a number of different directions that one could extend this work. In particular, when
dealing with the nonreversible part of the dynamics further computational benefits may be achieved
with the use of adaptive integration. Furthermore, one could replace the Metropolis-Hasting scheme
used for simulating the reversible part of the dynamics by appropriate numerical schemes Abdulle et al.
(2014) that preserve the invariant measure to high order. In this situation one would expected the results
of our analysis to still hold which is important as the corresponding nonreversible samplers would allow
for greater flexibility in the presence of big data, where traditional MCMC methods might become
prohibitively expensive.
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FIG. 5. Results for the inference of the log-Gaussian Cox process. The computational budget is set to N = 3.5 · 103 density
evaluations. A reference MALA simulation run for 107 density evaluations is provided for comparison.
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Appendix A. Proofs of the main results

In this section we prove the main results of the paper relating to the asymptotic bias and variance of the
splitting method. The proof of the geometric ergodicity of the splitting scheme (1.10) on Rd is relatively
standard, and therefore deferred to the supplementary material.

.1 Asymptotic variance of numerical integrators

Here we prove Proposition 4.3 and Theorem 4.4 which characterises the error in the asymptotic variance
for an arbitrary numerical integrator.

Proof of Proposition 4.3. It follows from the maximum principle that the operator (−L )−1 is
bounded on L∞

0 (π). Given a smooth ψ ∈ L∞(Td), we first show that ∆ t(I−P∆ t)
−1ψ and its derivatives

with respect to x are bounded, uniformly with respect to ∆ t. To this end, we Taylor expand ((I −
P∆ t)/∆ t)ψ with respect to ∆ t around 0, yielding

(I−P∆ t)

∆ t
ψ = (−L )ψ +

∆ t
2
(−L )2

ψ +
∆ t2

6
(−L )3

ψ +
∆ t3

24
(−L )4Psψ,

for some s ∈ [0,∆ t]. Comparing coefficients of equal powers, it follows that(
(−L )−1− ∆ t

2
I +

∆ t2

12
(−L )

)
(I−P∆ t)

∆ t
ψ = (I +∆ t3R)ψ,

where Rψ = (−L )3 1
24 Psψ− ∆ t

48 (−L )4Psψ + 1
24 (−L )3ψ + ∆ t

72 (−L )4ψ + ∆ t2

288 (−L )5Psψ . The opera-
tor R is bounded on L∞

0 (Td) and so, for ∆ t sufficiently small, (I +∆ t3R) is invertible. It follows that(
I−P∆ t

∆ t

)−1

= (I +∆ t3R)−1
(
(−L )−1− ∆ t

2
I +

∆ t2

12
(−L )

)
.

Provided that ψ is smooth with bounded derivatives on Td then one can show that, for 06 s6 ∆ t:

‖∇xPsψ‖L∞(Td) 6C(1+‖∇V‖L∞(Td)+‖∇∇V‖L∞(Td))(‖ψ‖L∞(Td)+‖∇ψ‖L∞(Td))∆ t,

for some constant C independent of ∆ t which implies that

‖∇xRψ‖6C

(
1+ sup

i=0,...,10
‖∇iV‖L∞(Td)

)
sup

i=0,...,9
‖∇i

ψ‖L∞(Td)∆ t.

These together with standard energy estimates for solutions of elliptic PDEs on Td yield that
(

I−P∆ t
∆ t

)−1

has a bounded first derivative, uniformly with respect to ∆ t. Similar arguments yield that, provided that

V are ψ are smooth on Td , then
(

I−P∆ t
∆ t

)−1
ψ has all derivatives bounded, uniformly with respect to

∆ t. Since R is a bounded operator on L2(π), there exists δ such that ∆ t3‖R‖L2(π) 6 2, for all ∆ t 6
δ . It follows that (I +∆ t3R)−1ψ = ψ +∆ t3rψ where rψ is bounded in L2, uniformly with respect to
min(∆ t,δ ), so that (

I−P∆ t

∆ t

)−1

ψ = (−L )−1
ψ− ∆ t

2
ψ +

∆ t2

12
(−L )ψ +∆ t3rψ . (A.1)
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Let f ∈C∞(Td), then similar to (4.9), the asymptotic variance of the estimator ∆ tN−1
∑

N−1
n=0 f (X∆ t

n ) for
the discretized exact process is given by

σ
2
∆ t( f ) = 2

〈(
I−P∆ t

∆ t

)−1

( f −π( f )), f −π( f )

〉
π

−∆ tVarπ [ f ].

By (A.1) it follows that

σ
2
∆ t( f ) = 2

〈
(−L )−1( f −π( f )), f −π( f )

〉
π
−∆ t 〈( f −π( f )), f −π( f )〉

π
−∆ tVarπ [ f ]

+
∆ t2

6
〈(−L )( f −π( f )), f −π( f )〉

π
+∆ t3R f

= σ
2( f )−2∆ tVarπ [ f ]+

∆ t2

6
〈(−L )( f −π( f )), f −π( f )〉

π
+∆ t3R f ,

as required. �
Proof of Theorem 4.4. The proof of this result follows closely that of (Leimkuhler et al., 2013, Theorem

2.9). To this end, given f ,g ∈C∞(Td) such that π( f ) = π(g) = 0, consider
〈(

I−P∆ t
∆ t

)−1
f ,g
〉

π

. Since(
I−P∆ t

∆ t

)−1
f has mean zero with respect to π , then〈(

I−P∆ t

∆ t

)−1

f ,g

〉
π

=

〈(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π

=

〈(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

+∆ trR f ,g,

for a smooth remainder term R f ,g bounded uniformly with respect to ∆ t. Using the expansion (4.6) for
the semigroup P̂∆ t :〈(

I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

=

〈(
I− P̂∆ t

∆ t

)−1

M∆ t

(
I− P̂∆ t

∆ t

)(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

=

〈(
I− P̂∆ t

∆ t

)−1

M∆ t

(
I−P∆ t

∆ t
+∆ tk

(
L k+1

(k+1)!
−Ak

))(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

+∆ tq−1

〈(
I− P̂∆ t

∆ t

)−1

M∆ tR f ,M∆ tg

〉
π̂∆ t

=

〈(
I− P̂∆ t

∆ t

)−1

M∆ t f ,M∆ tg

〉
π̂∆ t

+∆ tk

〈(
I− P̂∆ t

∆ t

)−1

M∆ t

(
L k+1

(k+1)!
−Ak

)(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

+∆ tq−1

〈(
I− P̂∆ t

∆ t

)−1

M∆ tR f ,M∆ tg

〉
π̂∆ t

,

(A.2)
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where R f is a smooth function depending on f , bounded uniformly with respect to ∆ t. By Assumption
4.2, the coefficients of the ∆ tk and ∆ tq−1 terms are bounded uniformly with respect to ∆ t. Equation
(4.12) then follows immediately, and thus (4.14). Noting that M∆ t = M∆ tM0 then by applying (A.2) with

f =
(

L k+1

(k+1)!
−M0Ak

)(
I−P∆ t

∆ t

)−1

f , and g = g,

we obtain

R1( f ,g) =

〈(
I− P̂∆ t

∆ t

)−1

M∆ t

(
L k+1

(k+1)!
−M0Ak

)(
I−P∆ t

∆ t

)−1

f ,M∆ tg

〉
π̂∆ t

=

〈(
I−P∆ t

∆ t

)−1( L k+1

(k+1)!
−M0Ak

)(
I−P∆ t

∆ t

)−1

f ,g

〉
π

+∆ tq−1R2( f ,g),

for some smooth, uniformly bounded remainder term R2. Note that, as detailed in the proof of Proposi-
tion 4.3, this choice of f is smooth, with all derivatives bounded uniformly with respect to ∆ t. We now
apply (A.1) to the discrete generator ∆ t−1(I−P∆ t) to obtain〈(

I−P∆ t

∆ t

)−1( L k+1

(k+1)!
−M0Ak

)(
I−P∆ t

∆ t

)−1

f ,g

〉
π

=

〈
(−L )−1

(
L k+1

(k+1)!
−M0Ak

)
(−L )−1 f ,g

〉
π

+∆ tR3( f ,g),

for a smooth bounded remainder term R3, from which (4.15) follows. �


