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Preface

The aim of these notes is to describe, in a unified fashiont afseethods for the
simplification of a wide variety of problems which all shahetcommon feature of
possessing multiple scalésThe mathematical methods which we study are often
referred to as the methods aferagingand ofhomogenization The methods ap-
ply to partial differential equations (PDES), stochastftedential equations (SDESs),
ordinary differential equations (ODEs) and Markov chaifiie unifying principle
underlying the collection of techniques described herdésapproximation o$in-
gularly perturbed linear equations. The unity of the subject is most clearyjble

in the application of perturbation expansions to the apnaxion of these singular
perturbation problems. A significant portion of the notedesoted to such perturba-
tion expansions. In this context we use the té&esult to describe the conclusions
of a formal perturbation argument. This enables us to demmortant approxima-
tion results without the burden of rigorous proof which cam&times obfuscate the
main ideas. However, we will also study a variety of toolsiiranalysis and proba-
bility, used to place the approximations derived on a rigsrfooting. The resulting
theorems are proved using a range of methods, tailoredferelift settings. There is
less unity to this part of the subject. As a consequence derale background is
required to absorb the entire rigorous side of the subject vee devote a significant
fraction of the book to this background material.

The first part of the notes is devoted to Background, the second to thBer-
turbation Expansions which provide the unity of the subject matter, and the third
to the Theory justifying these perturbative techniques. We do not nerégsec-
ommend that the reader covers the material in this order. tArabway to get an
overview of the subject is to read through Part Il of the boolP@rturbation Expan-

LIn this book we will apply the general methodology to probtewith two, widely sepa-
rated, characteristic scales. The extension to systentsmany seperated scales is fairly
straightforward and will be discussed in a number of the O8s@n and Bibliography sec-
tions which conclude each chapter. In all cases, the impbassumption will be that of
scale separation.
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sions, referring back to the Background material as neetieel Theory can then be
studied, after the form of the approximations is understooch case by case basis.

Part | (Background) contains the elements of the theory afyais, probability
and stochastic processes, as required for the materiaksethotes, together with
basic introductory material on ODEs, Markov chains, SDE$ RDES. Part Il (Per-
turbation Expansions) illustrates the use of ideas fromayiag and homogenization
to study ODEs, Markov chains, SDEs and PDEs of elliptic, palia and transport
type; invariant manifolds are also discussed, and viewea sfgecial case of aver-
aging. Part Il (Theory) contains illustrations of the rigas methods which may be
employed to establish the validity of the perturbation exgans derived in Part II.
The chapters in Part lll relate to those in Part Il in a onete-fashion. It is possible
to pick particular themes from this book and cover subsethapters devoted only
to those themes. The reader interested primarily in SDEsldrmver Chapters 6,
10, 11, 17 and 18. Markov chains are covered in Chapters 5] Q@rThe subject of
homogenization for elliptic PDEs is covered in Chaptersi@ 5. Homogenization
and averaging for parabolic and transport equations isreoMa Chapters 13, 14, 20
and 21.

The subject matter in these set of notes has, for the mostygsm known for sev-
eral decades. However, the particular presentation of titemial here is, we believe,
particularly suited to the pedagogical goal of communitgthe subject area to the
wide range of mathematicians, scientists and engineersamhaurrently engaged
in the use of these tools to tackle the enormous range ofcgtigns that require
them. In particular we have chosen a setting which demaestiquite clearly the
wide applicability of the techniques to PDEs, SDEs, ODEs lslladkov chains, as
well as highlighting the unity of the approach. Such a wid&ging setting is not
undertaken, we believe, in existing books, or is done sodapdicitly than in this
text. We have chosen to use the phradihgtiscale Methodsin the title of the book
because the material presented here forms the backbon@oificant portion of the
amorphous field which now goes by that name. However we dgreze that there
are vast parts of the field which we do not cover in this bookdrticular, scale sep-
aration is a fundamental requirement in all of the pertudratechniques presented
in this book. Many applications, however, possess a coatinaf scales, with no
clear separation. Furthermore, many of the problems aigirmultiscale analysis
are concerned with the interfacing of different mathensdtinodels appropriate at
different scales (such as quantum, molecular and contiputiva tools presented
in these notes do not directly address problems arising éh sypplications as our
starting point is a single mathematical model, in whicheaparation is present.

These notes are meant to be an introduction, aimed primasirrds graduate
students. Part | of the book (where we lay the theoreticah@iations) and Part Il
of the book (where we state and prove theorems concerninglifigd versions of
the models that are studied in Part Il) are necessarily;tensieout being so it would
be impossible to present the wide range of applications ®fideas, and illustrate
their unity. Extensions and generalizations of the resuesented in these notes,
as well as references to the literature, are given in theu3ision and Bibliography
section, at the end of each chapter. With the exception optehndl, all chapters
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are supplemented with exercises. We hope that the formaeabdok will make it
appropriate for use both as a textbook and for self—study.
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Invariant Manifolds for ODEs

8.1 Introduction

Perhaps the simplest situation where variable reductiocaorsdn dynamical systems
is that of attractive invariant manifolds. These manifosiisve one subset of the
variables to another. In this chapter we describe a sitnativere attractive invariant
manifolds can be constructed in scale separated systenmebys of perturbation
expansions. In Section 8.2 we introduce the system of ODd&issth want to simplify
by means of the theory of invariant manifolds, and in Sec8d®we present the
simplified equations. The simplified equations are derinve8eéction 8.4 and several
examples are presented in Section 8.5. In Section 8.6 weides@arious extensions
of the results presented in this chapter, together with ngakibliographical remarks.
We also discuss the material in this section in relation teraging, the subject of
Chapters 9 and 10.

8.2 Full Equations

We consider a system of ODEs of the form (4.1.1) and writesz = (27, y™)7T,
where

dx

e f(@,y), (8.2.1a)
dy 1

o= Eg(l,y)7 (8.2.1b)

ande < 1. Herex € X andy € Y in the notation of Chapter 4.
Let % (y) be the solution operator of the fast dynamics withiewed as a fixed
parameter and = 1. To be precise, for any € X, let

%wé(y) =9(& k), Py =y (8.2.2)

We assume that
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Jim g (y) = n(€) (8.2.3)
exists, is independent gfand that the convergence is uniforménRoughly speak-

ing y(t) solving (8.2.1) is given by(t) ~ <p;/(f)) (y(0)) for timest which are small

compared withl (i.e.,t = o(1)) so thatz(t) has not evolved very much. If we
then look at short timescales which are nonetheless lamypared withs, so that
y is close to its equilibrium point, (for exampletif= (’)(a%)), we deduce that then
y(t) =~ n(x(0)). This is the mechanism by whighbecomes slaved te and we now
seek to make the above heuristics more precise.

Notice that the generatdl for (8.2.1) has the form

1
L= gﬁo + Ly (8.2.4)

where
»CO:g(x7y)'vyv ﬁlzf(a’ay)va:

In particular,L is the generator of a process 9rfor each fixedr.
Now consider the following PDE fov(y,t) in which z is viewed as a fixed

parameter:
ov
5 = Lov. 0(.0) = 6(y). (8.2.5)
Result 4.6 shows that
v(y,t) = ol (y))-

Thus, by (8.2.3),
v(y,t) — o(n(x)), as t — oo. (8.2.6)

This is related to ergodicity, as equation (8.2.6) shows tthe functionuv(y, t) ex-
hibits no dependence on initial data, asymptotically as oo, and approaches a
constant irny. Compare with the discussion of ergodicity in Chapter 4, @heorems
4.12 and 4.13 in particular.

Recall the Definition 4.3 of invariant set. If this set is a rifiaid then we refer
to it as aninvariant manifold In this chapter we use the scale-separated form of the
equations (8.2.1) to construct an approximate invariamifokl. In fact the manifold
will have the structure of graph it will be represented as a function relating the
y coordinates to the coordinates. Invariant manifolds representible as grapls
particulary importantin describing the dynamics of ODEssel to equilibria, leading
to the concepts dftable, unstable and center manifolds

8.3 Simplified Equations

We now state an approximation result that will be derived dyrfal perturbation
arguments in the next section. Define the vector figitl) by

Fo(z) = f(x,n(x)). (8.3.1)
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Result 8.1.For e < 1 and timet uptoO(1), x(¢) solving(8.2.1)is approximated by
X (t) solving
dX
— = Fy(X 3.2
dt 0( )a (8 3 )
whereFy(z) is given by(8.3.1)

Underlying the derivation of this result is an assumptioatt10) is initalized
close ton(x(0)). When this fails then further arguments are required to cétd
what is termed an initial or boundary layer — see Section & &fdiscussion of this
point.

Result 8.1 gives us the leading order approximation ikeeping the next order
yields the refined approximation

C;_)t( = Fy(X) + e (X), (8.3.3)

where

-1

Fi() = Vy @, n(@) (Vyg(zn(@))  Van(@)f (@, ().

This approximation requires that, g(x, n(x)) is invertible.

8.4 Derivation

The method used to find these simplified equations is to seedpproximate in-
variant manifold for the system. Furthermore, we assumethliemanifold can be
represented as a graph owenamelyy = ¥ (z). The set determined by such a graph
is invariant (see Definition 4.3) under the dynamics if

dy dx
L - V).

whenever = ¥ (). This implies thatV must solve the nonlinear PDE

%g(x, V(@) = V() f (2, ¥ ().

We seek solutions to this equation as a power series
W(x) = Wy(z) + e (x) + O(e2).

This is our first example of a perturbation expansion.
Substituting and equating coefficients of successive pewet to zero yields
the hierarchy

o(1) g(z,¥y(z)) = 0,
O(1)  Vyg(x, ¥ (x))¥1(z) = V¥ (x) f(z, ¥ (z)).
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Notice that equations (8.2.2),(8.2.3) together imply thegt n(£)) = 0 for all &.
Hence the? (1) equation above may be satisfied by choosingr) = 7(x), giving
the approximation (8.3.2). Since the rate of convergen¢8.i3) is assumed to be
uniform is it natural to assume thagt = 7(¢) is a hyperbolic equilibrium poidt
of (8.2.2), so thatV,g(z, n(x)) is invertible. Setting?y(x) = n(z) in the O(1)
equation, and inverting, yields

U (z) = Vyg(a,n(z)) " Vi(e) f(z, n(z)).
Thus

fl@,¥(z)) = f (z,%(z) + e (z) + O(e?))
= f(z,W(z)) + eV, f(x, % (z))¥ (x) + O(?)
= f(z,n(x)) + eV, f(z,n(x)¥ (z) + O(?),

and the refined approximation (8.3.3) follows.

—

8.5 Applications

8.5.1 Linear Fast Dynamics

A structure arising in many applications is where the frozedynamics, given by
gpg(-), is linear. As a simple example consider the equations

dx

E:f(xay)v
dy _y, 9@
T (8.5.1)

Hered = 2 andX =Y = R, Z = R2. It is straightforward to show that

oh(y) = ety + /0 e 15(€)ds
— ety (1— e N3(e).

Hence (8.2.3) is satisfied fa-) = g(-)
The simplified equation given by Result 8.1 is hence

dX

— = f(X,9(X)).
o = f(X9(X)
Using the fact thav,g(z,y) = —1 we see that the more refined approximation
(8.3.3)is
axX _ A v =29
T = FXg00) (1 - eg- (X, 500 (X)),

L A hyperbolic equilibrium point is one where the linearizatiof the vector field at the
equlibrium point contains no spectrum on the imaginary .axis
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8.5.2 Large Time Dynamics

The statement of the result concerning simplified dynamargcerns the approxi-
mation ofxz(t) on O(1) time intervals with respect to. However in many cases the
results extend naturally to the infinite time domain. Thédeing example illustrates
this idea.

Consider the equations

dl’l

E = —T2 — I3, (852a)
dl’g 1

— =1+ -z 8.5.2b
dt 1+ 5:1/2a ( )
dl’g 1

— = — 5z 8.5.2c
dy _ _y, mzs (8.5.2d)

dt € €

so thatt = R? and) = R. Result 8.1 indicates thatshould be well approximated
by X solving the Rossler system

dXi

- = —-Xo — X3, (8.5.3a)
dXs 1
— =X -X 5.

7 1+ R (8.5.3b)
dX3 1

The Rossler equations are chaotic and consequently cisopasf trajectories over
long time-intervals is not natural. A more useful objecths attractor. A compari-
son of the numerically generated attractors for the twoesystis shown in Figure
8.1. The first figure shows the attractor for equations (§,58jected into ther
coordinates, fore = 10~2. The second shows the attractor for the Rossler equations
themselves. The agreement is very strong indicating tleesithplified dynamics do
indeed capture behaviour over long time-intervals.

8.5.3 Center Manifold

The center manifold is an invariant manifold containing gaibrium point whose
linearization has neutral directions (subspaces corradipg to eigenvalues with
zero real part). Consider the equations

2
da i, 2—i
I z)\x—k;aixy ;
dy

2
— _ b, ) 27i.
= y+; iy
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Fig. 8.1.Comparison between the attracting sets for (8.5.2) with 0.01 (left) and (8.5.3)
(right), projected on théz1, z2) and (X1, X2) planes, respectively.

Here)\ € R and thes; andb; are also real numbers. Furthermore, for egat{t) € R
andy(t) € R. When linearized at the origin this equation becomes

dx

==\
a0
B _,
dt

If (z = (z,y)T then

dz
L
a7

= (20).

The eigenvalues of are A and—1. As ) passes throughthe linear stability prop-
erty of the origin thus changes from stable to unstable. karreason, studying the
equation in the vicinity oi = 0 is of interest. In particular we expectto find a center
manifold atA = 0: an invariant manifold tangent to the eigenspace corredipgrto
eigenvalud) of L.

To construct this manifold rescale the equations as follovesset

with

T —ex,y — ey, X — Xt — 1L

This corresponds to looking for small amplitude solutiarisse to the fixed point at
the origin, at parameter values close to the bifurcationesl Such solutions evolve
slowly and hence time is rescaled to capture non-trivialadyits. The equations
become
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2
d , )
_df = \v + ;,0 a;xty® ¢,

dy 1 2

B g

E—g(x—y)-f—Zblxly L
=0

A perturbation expansion gives the invariant manifgld= x= and we obtain the

following equations for the dynamics on the invariant maluif

dX
Z = AX + AX?
dt + ’

with A = Zf:o a;. The case\ = 0 gives the center manifold itself, and< 0 the
stable manifold.

8.6 Discussion and Bibliography

The topic of invariant manifolds has a long history and islitthe subject of entire
books. To do it justice here is impossible and we provide dmigf pointers to the
literature. From the perspective of this book, our primargtivation for covering
the topic is that it provides a special case of the method efaging introduced in
the next two chapters; furthermore this case can be intedlugthout appeal to any
arguments from ergodic theory or from the theory of stodbgstocesses. It hence
provides a suitable inroad into the topics of this book f@ders with a background
in dynamical systems; conversely it provides a concretelligtween averaging and
dynamical systems. We discuss this perspective furthehapr 10. Note also that
the perturbation expansion that we use in this chapter ia,hagh level, similar to
those used in the remainder of Part Il. It differs in one digant respect, however:
all the remaining chapters involve perturbation expansion the approximation of
linear problems (by working with the backward equation, aglgt on repeated use
of the Fredholm alternative. In this chapter the strategyeuntying the perturbation
expansion is somewhat different, as the problem for thelg¥ajs nonlinear and the
Fredholm alternative is not used.

Invariant manifolds in general are described in [131] argl]3These books have
considerable emphasis on the construction of unstableleséend center manifolds
for invariant sets of the equation (4.1.1). In particular, the case of the simplest
invariant set, an equilibrium point, we may change coorgiado a frame in which
the origin0 is an equilibrium point and (4.1.1) takes the form

d

d—j = Lz+hi(2), 2(0)= 2.

Here h(z) is small compared ta — 0. In the case of a hyperbolic equilibrium
point the invariant subspaces bfsplit into stable and unstable spaces. If weket

denote the orthogonal projection onto the stable space@aadl — P denote the
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orthogonal projection onto the unstable space, then intimdjx = Pz, y = Qz we
obtain the equations

d
d_f - le + fl(xmy)a
dy
A .
o 2y + 91(2,y)

The stable manifold is (locally near the origin) represblegas a graply = ©(x);
likewise the unstable manifold is representable as a graph ®(y). The center
manifold is similar to the stable manifold, but occurs whiem,example,PZ com-
prises neutral directions ifh. Center manifolds in particular are discussed in [57].
The special case where the neutral spectrurh obntains a pair of complex conju-
gate eigenvalues leads to the Hopf bifurcation theorem[XEg.

These special invariant manifold theorems, concerningabielir near fixed
points, show the central role of graphs relating one set afk#es to another in
the construction of invariant manifolds. Such a graph isatheart of our construc-
tion of what is sometimes termedséow manifoldfor (8.2.1). Early studies of the
approximation of ODE with attracting slow manifold by diféntial-algebraic equa-
tions includes the independent work of Levinson and of Tikdwo(see O’'Malley
[239] and Tikhonov et al. [317]). As mentioned in section 818 simplest version
of the approximation result requires the fast variapke be initialized close to the
invariant manifold. However, even if it is not, anitial layer (sometimes termed
boundary layey can be introduced to extend the approximation result, #undiexl
through the method of matched asymptotic expansions; &g &d [71, 272].

Our construction of an invariant manifold uses the explatétving ofy to «
through the asymptotically stable fixed points of (8.2.2prMgenerally, the use of
a spectral gap sufficiently large relative to the size of thelmear terms is used in
the construction of local stable, unstable and center roltsf(e.g., Carr [57], Wig-
gins [331]), slow manifolds (Kreiss [178]) and inertial nifatds (Constantin et al.
[69]). In particular the inertial manifold constructioneshs how ideas from invariant
manifold theory extend naturally to infinite dimensionslie tontext of dissipative
PDEs.

References to numerical methods for dynamical systemdpatite computation
of invariant manifolds in particular, may be found in [30H].is also possible to
construct invariant manifolds for stochastic (partialifefiential equations. See, for
example, [39, 38, 41, 77, 329, 328] and the references therei

8.7 Exercises

1. Consider the equations
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= =Xz + apx® + a1xy,

2
_ i 2—i
%——y—kgbzx'g .

Here A € R and thea; andb; are also real numbers. For each fixedie have
z(t) € R andy(t) € R. Show that the scaling

T —ex,y — 2y, — 2\t — e 2t

puts this system in a form to which the perturbation techegyof this section
apply. Deduce that the center manifold has the form

dX
— =\X + AX?
at N
whereA = ag + a1 bs.
. Assume > 0, A € R andB e R(4-Dx(@=1) Consider the equations

—f; = Az + e fo(z,y),
dy 1

~ —-_-B

= - Y+ go(z,y),

fore < 1andz € R!, y € R?~!. Assume that3 is symmetric positive-definite.
Find the first three terms in an expansion for an invariantifolhrepresenting,
as a graph over.

. Assume > 0 andB € R(@-Dx(d-1) Consider the equations

dx
E - f(xay)7
% 1

= ——(By—iWw),

fore < 1andz € R!, y € R4,

a) Assume thaB is symmetric positive-definite. Find the first term in an expa
sion for an invariant manifold representig@s a graph over.
b) Considerthe casé— [ =2, =0and

s 00).

What happens to the solution as— 0?
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Averaging for Markov Chains

9.1 Introduction

Perhaps the simplest setting in which to expose variabieirdition for stochastic
dynamical problems is to work in the setting of Markov chaimsthis context it is
natural to study situations where a subset of the variabelses rapidly compared
with the remainder, and can be replaced by their averagedtefh Section 9.2 we
describe the unaveraged Markov chain and in Section 9.3 esept the averaged
equations; the averaged equations are derived in Secdam®@.an example is given
in Section 9.5. In Section 9.6 we discuss various extengbifse results from this
chapter and make some bibliographical remarks.

9.2 Full Equations

We work in the set-up of Chapter 5 and consider the backwaundtean

dv
i Qu. (9.2.1)

Recall that this equation, with(0) = ¢, has the property that
vi(t) = E(6:12(0) = i),

whereE denotes expectation with respect to the Markov transitimbabilities. We
assume that the generatgr* takes the form

Q= éQo +Q1, (9.2.2)

with 0 < ¢ <« 1. We study situations where the state space is indexed by two
variables;r andy, and the leading order contribution ép, namelyQ,, corresponds

! In this chapter we denote the generator@yather thanl because we use indéxor the
state-space; thus we wish to avoid confusion with the coraptsnof the generator.
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to fast ergodic dynamics i, with = frozen. Averaging ovey then gives the effective
reduced dynamics far.

The precise situation is as follows. Our state spage:is Z, x Z, withZ,,, 7,, C
{1,2,---}. We letq((4, k), (j,1)) denote the element of the generator associated with
transition from(i, k) € Z, x Z, to (4,1) € Z, x Z,.2 Consider now a family of
Markov chains ortZ,, indexed byi € Z,. We write the generator ad, (i) with
entries asi(k, [;4); the indices denote transition froine Z, to ! € Z, for given
fixedi € Z,. We assume that, for ea¢he Z,., Ay (i) generates an ergodic Markov
chain onZ,. HenceAy (i) has a one-dimensional null space for each fikeathd®

a0k, L) =0, (i,k) €I, xTy, (9.2.3)
Yop P (ksi)ao(k,l;4) = 0, (i,1) € Iy x Iy, -
This is the index form of equations (5.6.2) withreplaced byA, (7). Without loss
of generality we choose the normalization

D pe(kii)=1 Viel,.
k

Thusp™ (i) = {p*>°(k; i) }rez, is the invariant distribution of a Markov chain @y,
indexed byi € Z,..

Similarly to the above we introduce the generators of a Marioain onZ,,
parameterized by € Z,,. We denote the generator By (k) with indicesa, (4, j; k);
the indices denote transition froive Z,, to j € Z,, for each fixedk € Z,,. With this
notation for thed,, A, we introduce generato€g,, (: of Markov chains o, xZ,

by

q0((i, k), (4,1)) = ao(k, 1),
q(l)((i,k‘), (4, 1)) = af(i,j; k). (9.2.4)

Hered;; is the usual Kronecker delta. In the constructiord@f (resp.Q1) the Kro-
necker delta represents the fact that no transitions anegghace inZ, (resp.Z,).

To confirm that®), Q1 as defined are indeed generators, notice that non-diagonal
entries(i, k) # (j,1) are nonnegative becaudg and A, are generators. Also

S a0l ), G.0) = 3 ok, 1:1)6,
Jil Jl
= Z aO(k7 L Z)
l

=0

2 In this chapter, and in Chapter 16, we will not use suffices énote the dependence
on the state space as the double-indexing makes this arellittetation. Hence we use
q((i, k), (4, 1)) rather tharg; ), ;1) -

% Summation is always over indices . or Z, in this chapter. It should be clear from the
context which of the two sets is being summed over.
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by (9.2.3). A similar calculation shows that

Z Q1((i7 k)a (.77 l)) =0,
I

using the fact that

> ai(ijik) =0 V(i,k) € I, x I,
J

sinceA; (k) is a generator for each fixdd ThusQo, Q1 are also the generators of
Markov chains. Finally note that any linear combination ehgrators, via positive
scalar constants, will also be a generator. Hence (9.2f#)edea generator for any
e>0.

9.3 Simplified Equations

We define the generat@}; of a Markov chain orZ, by:
a(i,g) =Y p™(ksi)as (i, js k). (9.3.1)
k

Notice thatg; (¢, j) > 0 for i # j because™>(k;i) > 0 anday(i,j;k) > 0 for
i # j. Furthermore

D@ g) = p (ki) | D aili,j; k)
j k j
=0.
HenceQ), is the generator of a Markov chain.

Result 9.1.Consider equation (9.2.1) under assumption (9.2.2). Toen & 1 and
timest uptoO(1) the finite dimensional distributions ofe 7, are approximated by
a Markov chainX with generatorQ; .

We emphaszie thatis not itself Markovian: only the paiz, y) is. As discussed
above(); is the generator of a Markov chain @p alone, and the dynamics has
been eliminated through averaging. Thus the approximaiabla X is Markovian
and is governed by the backward equation

dv ~
d—to = Qvp. (9.3.2)
We now provide justification for this elimination of varias, by means of per-
turbation expansion.
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9.4 Derivation

The method used is to show that the backward equation fouthBlarkov chain in
(z,y) € I, x I, can be approximated by the backward equation (9.3.2} ferZ,
alone. We consider equation (9.2.1) under (9.2.2). We Habackward equation

Z: ( Q0+Q1)

Unlike the previous chapter, where we approximated a nealifPDE containing a
small parameter, here the problem is linear. In the following five chaptetkpar
perturbation expansions are for similar linear equatidhe derivation here is hence
prototypical of what follows.

We seek solutions = v(i, k, t) in the form of the multiscale expansion

v =g + vy + O(e?). (9.4.1)
Substituting and equating coefficients of powers ¢b zero we find

O(1) Qovo =0, (9.4.2a)

d
O(1) Qovr = —Q1vo + % (9.4.2b)

By (9.2.3) we deduce from (9.4.2a) thatis independent ok € Z,,. Abusing nota-
tion, we write
vo (i, k,t) = vo(i, t)1(k) (9.4.3)

wherel(k) = 1 for all k € Z,. The operator), is singular and hence, for (9.4.2b)
to have a solution, the Fredholm alternative implies theaduility condition

— Qo + %J_ Null {QT1. (9.4.4)
From (9.2.3) we deduce that the null spacé)fis characterized by

> 0% (ks i)e(i)qo((i k), (,1) = 0, (9.4.5)

for any vectore = {¢(i)} onZ,. Using (9.4.3) we find that

d”‘) — Qv = dCZO(zt 1(k) = > a1 (i, j; k)drrvo (4, £)1(1)

Jl

dv
= (S )= 2ol Kl H)1(k).
Imposing the solvability condition (9.4.4) by means of (9)4ve obtain

Zp (k;i)e ( Zalljk’l}o],))zo,
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which implies that
e (5200 — 30 @uli wliit)) = 0.

Sincec is an arbitrary vector off,, we deduce that each component of the sum over
i is zero. This yields (9.3.2).

9.5 Application

Consider a simple example whefe = Z,, = {1,2}. Thus we have a four—state
Markov chain orif = 7, x Z,,. We assume that the generators of the Markov chains

onZ, andZ, are given by
. -0, 6,
AO(Z) = ( ¢1‘ _¢1>

and

—QE Qg

mm = (7o),

respectively. In the first (resp. second) of these Markovwrshiac 7, (resp.k € 7))
is a fixed parameter. The parametéysy;, o, B are all non-negative.

If we order the four states of the Markov chain(@sl), (1,2), (2,1), (2,2) then
the generator§, and@); are given by

—6, 6, 0 0
_ p1—¢1 0 0
Qo = 0 0-6, 6 (9.5.1)
0 0 ¢2—¢2

and

—Q1 0 (6751 0

o 0 — Q9 0 (65)
Q= B 0-8 0] (9.5.2)
0 B 0-05

Note that any linear combination @, and @; will have zeros along the anti-
diagonal and hence the same is tru&Xthis reflects the fact that, by construction,
transitions in botl¥,, andZ, do not happen simultaneously.

The invariant density of the Markov chain with generatby(i) is p> (i) =
(A, 1 — X)T with \; = ¢;/(0; + ¢;). Recall that the averaged Markov chain on
T, has generata; with entries
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0(i,j) =Y p™(k;i)ai (i, j; k)
k
= Na1 (4, j; 1) + (1 = Ai)au (4, 5; 2).
Thus

= (2o —(1—=X)az Mar+ (1 —A)aq
@ = ( A2+ (1= A2)f2 —A2f1 — (1 — /\2)52> : (9.5.3)

9.6 Discussion and Bibliography

Two recent monographs where multiscale problems for Mad{wains are studied
are [335], [336]. See also [291] for a broad discussion ofay®g and dimension
reduction in stochastic dynamics. Markov chain approxiomatfor SDES, especially
in the large deviation limit, are studied in [111]. Compidaal methods for multi-
scale Markov chains are discussed in [85, 86]. Diffusioritsnof ODEs driven by
Markov Chains are studied in [245]. See also [96] for the pod@ related diffusion
limit theorem. For a connection between Markov chains anderemanifolds see
[262].

In this chapter we have presented averaging for Markov gh&lomogenization
(i.e. central limit theorem) results for Markov chains canfound in [184].

In deriving the approximate equation we implicitly assurhattthe original
Markov chain is prepared in a state which does not depend tipoparts of the
state space iff,. If this is not the case then a similar analysis can still beiedout,
but an initial layer must be included, over time of ord&{=), on whichv(t) adjusts
from being a function off, x Z, to being a function only off,, to leading order.

9.7 Exercises

1. Find a multiscale expansion for the invariant measuré@eMarkov chain with
generato) = 1Qo + Q1 whenQ,, Q: are given by (9.5.1), (9.5.2).

2. Find the invariant measure &f; given by (9.5.3) and interpret your findings in
the light of your answer to the previous question.

3. Consider the SDE (6.5.1). Assume thats governed by a two-state Markov
chain, with state§—1, +1}. Write down the generator for the resulting Markov
process inz, ), on the assumption that the generator for the Markov chasn ha

the form
—0(2) G(z))
L(z) = .
) ( o(2) (=)
4. Consider the same set-up as in the previous question bertevthe two-state
Markov chain now has generatdl.(z) with L(z) as given in the previous ques-

tion. Use the method of averaging to find the averaged SDE imthe limit
e — 0, whereu may be eliminated.
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5. Letu be a two state continuous time Markov chain with generatdm &se pre-
vious question. Consider the ODE

d
d—j = Mu)z, te]0,00).
Assume that\(—1) < 0 andA(+1) > 0. Use multiscale analysis to determine

conditions under which the trajectoriesnflo not grow.
6. Letu be a Markov chain on a finite state-space with genei@ttaking the form

Q=-Q0+ @

Assume that th€); are generators of Markov chains foe 0, 1 and that®) has
a two-dimensional null-space:

N(Qo) = spar{¢o, ¢ }-

Derive a two state Markov chain which approximates the dyinain this null-
space.
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Averaging for ODEs and SDEs

10.1 Introduction

Here we take the averaging principle developed in the pts/ahapter for Markov
chains, and apply it to ODEs and SDEs. The unifying themedsifiproximate solu-
tion of the backward equation by means of an appropariateation expansion,
and consequent elimination of variables.

In Section 10.2 we present the equations that we will studyiarsection 10.3
we present the averaged equations. Section 10.4 contarggetivation of the av-
eraged equations; the derivation is carried out in the cdwmravthe fast process is
stochastic. In Section 10.5 we study how the determinigtiagon may be handled.
Section 10.6 contains two illustrative examples. Extemsiof the results presented
in this chapter, together with bibliographical remarks given in Section 10.7.

10.2 Full Equations

We write z solving (6.1.1) ag = (27, 47)” and consider the case where

B Jay), 20 =, (10.2.12)
d 1 1 av

with ¢ < 1 andV a standard Brownian motion. Herec X', y € ), z € Z and the
notation is as in Sections 4.1 and 6.1.

In Chapter 8 we considered systems in which the fast dynacoiogerge to an-
dependent fixed point. This gives rise to a situation wheeg,thariables are slaved
to thex variables. Averaging generalizes this idea to situatiomene the dynamics in
they variable, withx fixed, is more complex. As in the previous chapter on Markov
chains, we average out the fast variappl®ver an appropriate invariant measure. We
now make these heuristics precise. We define the generators
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1
Lo=g(z,y) Vy,+ §B(a:,y) 1 VyVy, (10.2.2a)
Ly = f(z,y) Va, (10.2.2b)

whereB(z,y) = B(x,y)3(z,y)T. To carry out the averaging procedure in this sec-
tion the most useful way to make an ergodicity assumptioméssume that, for each
fixed z, Ly has one dimensional null space characterized by

Lol(y) =0, (10.2.3a)
Lip™=(y;z) = 0. (10.2.3b)

Here1(y) denotes constants in In the case whergy = T¢ the operator<, and

L} are equipped with periodic boundary conditions. In thisecd®ese assumptions
about the null spaces d@f, and £ are shown to hold iB(z, y) is strictly positive-
definite, uniformly in(z,y) € X x Y, as shown in Theorem 6.16. In more general
situations, such as whe)i = R¢ or when the matrix valued functioB(z,y) is
degenerate, similar rigorous justifications are possie the functional setting is
more complicated, typically employing weightéé—spaces which characterize the
decay of the invariant density at infinity. See the remarkSewtion 18.4.

10.3 Simplified Equations

We assume that the generator of the fast progégs namelyL,, satisfies (10.2.3)
for everyzx € X. Define the vector field” by

Flz) = /y £(@,y) o dy). (10.3.1)

with p1, (dy) = p* (y; z)dy.
Result 10.1.Fore <« 1 and timeg uptoO(1), z(t) solving(10.2.1)is approximated

by X solving

dX
Remark 10.2A similar result holds even in the case where the equatiothislow
variablez is stochastic and has the form

dx dUu
E_f(xmy)_'_a(xay)E) J:(O)—Z‘,

with U a standard Brownian motion, indepenentlof Under the assumptions of
Result 10.1 the averaged equation becomes

dX du
S PO+ AX) S X0 =1,

whereF'(X) is the same as above and

A(X)AX)T = /y o, ), )T paldy).

See Exercise 1.0
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10.4 Derivation

As for Markov chains, we derive the averaged equations bkingrwith the back-
ward Kolmogorov equation. Let

v(@,y, 1) = E(9(@(t),y(t))]2(0) = 2,5(0) = y).
The backward equation (6.3.4) for the SDE (10.2.1) is

o _ 1y (10.4.1)
ot ¢

Here Ly, £, are given by (10.2.2) andin (6.3.4) is(z,y) here. Note that, is a
differential operator iny, in which z appears as a parameter. Thus we must equip it
with boundary conditions. We simply assume that, with suédoundary conditions
imposed, (10.2.3) holds. In the case whre- T¢ and periodic boundary conditions
are used the rigorous results of Chapter 7 apply and the &igodssumption on the
fast process is satisfied. Note, however, that other funatieettings are also pos-
sible; the key in what follows is application of the Fredhdaditernative to operator
equations defined througty.

We seek a solution to (10.4.1) in the form of the multiscalpagsion

v = vy + evy + (’)(52)
and obtain

0(1/5) Lovg = 0, (10423)
8’00

O(].) ,C()Ul = _»Cl'UO + W (1042b)

Equation (10.4.2a) implies thay is in the null space of, and hence, by (10.2.3)
and ergodicity, is a function only dfz, t). Fix . Then the Fredholm alternative for
(10.4.2Dh), viewed as a differential equationjimshows that

Ov

O | Null{£3}.

—Lyvg + ot

By (10.2.3) this implies that
0
/yﬂ“’(y; ar)(%(xﬂf) — f(@,y) - Vavo(z, t)) dy = 0.

Sincep™ is a probability density we havg} p>(y; x)dy = 1. Hence

v _

ot (/yf(xvy)um(y)dy) - Vavo(z,t) =0

so that by (10.3.1),
% — F(2) Vo =0
This is the backward equation for (10.3.2); indeed the nebttfocharacteristics as

given by in Result 4.6 shows that we have the required result.
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10.5 Deterministic Problems

In this section we provide a viewpoint on the averaged equoatihich is useful for
two reasons: it applies when the equations (10.2.1) arerdétistic; and it forms
the basis of numerical methods to compute effective equstio either the deter-
ministic or stochastic contexts. Our starting point is talgme the behavior of the
fast dynamics iy with = being a fixed parameter.

Let % (y) be the solution operator of the fast dynamics with fixed parameter
ande = 1. To be precise, for fixed,

%s@é(y) = 9(&, 9t (y)) + B(E, wé(y))%a wey) =y (10.5.1)

As in Chapter 8y(t) solving (10.2.1b) is given by(t) ~ 99‘;/(%) (y) for timest which
areo(1), so thatr has not evolved very much. Assume that (10.5.1) is ergodit wi
invariant measurg,. On timescales small compareditand large compared towe
expect thatz(t) is approximately frozen and thatt) will traverse its (-dependent)
invariant measure on this timescale because it is evolvirigkty. Thus it is natural
to averagey(t) in thez(¢) equation, against the invariant measure for (10.5.1) with
& = x(t).

In the case wherg = 0 thempg(y) coincides with the solution of (8.2.2). When
3 # 0, note thaty (y) depends on the Brownian motigi (s)}.c(o,, and hence is
a stochastic process. Rather than assuming convergentigéo @oint, as we did in
(8.2.3), we assume here th,ag(y) is ergodic (see Section 6.4). This implies that the
measure defined by

T

o) = fim 7 [ Lalel@yde, ACT (105.2)
T—oo T 0

exists, forl4 the indicator function of arbitrary Borel set$ C ). The averaged

vector fieldF' in (10.3.1) can be defined using this measure.

When working with an SDEA # 0) then it is natural to assume that(-)
has a density with respect to the Lebesgue measure sp.thég) = p™(y; x)dy.
In fact, under appropriate assumptions on the coefficigfitsy) and 3(z, y) it is
possible to prove that such a density exists. However, widlluétrate by means of
an example arising in Hamiltonian mechanics that this apsiomis not necessary.
Note also that the situation in Chapter 8 corresponds to #esuore.,. (dy) being a
Dirac mass characterizing the invariant manifqld{dy) = 6(y — n(z))dy. In this
case we obtain

F(x) = f(z,n(x)).

This is precisely the vector field in (8.3.2) and so the sifigdiequations in Chapter
8 are a special case of those derived here. However, we ddResult 10.1 in the
case whergj is nonzero and we assumed that the meagunas a smooth density
> (y; ) with respect to Lebesgue measure; that is, we assumed thatg)lholds
and we have that,. (dy) = p>(y;z)dy. It is useful to have an expression for the
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averaged equation which is also valid for deterministidybems, and for the numer-
ical construction off’ in either deterministic or random problems. We do this by
representing ergodic averages via time averages.

Result 10.3.An alternative representation &f(x) is via a time average:

F(z) = lim 1 f(z,05(y)) ds. (10.5.3)

This representation is found by using (10.5.2) to evalua@®3.1). Note that, by
ergodicity, the resulting average does not depend ypon
10.6 Applications

We consider two applications of the averaging principle, filnst in the context of
SDEs, and the second in the context of Hamiltonian ODEs.

10.6.1 A Skew-Product SDE

Consider the equations

dxr

22— (1 =2

o = =y,
dy__a D
a7 e dt’

HereX = ) = R. Itis of interest to know whether will grow in time, or remain
bounded. We can get insight into this question in the limit> 0 by deriving the
averaged equations. Note thats a time-rescaling of the OU process from Exam-
ple 6.19. The invariant measure for the ergodic progeissa mean zero Gaussian:
N(0, g) (see Example 6.19). Note that this measure does not dependrmhhence
has density>(y) only. The averaged vector fiel is here defined by

F(x) = (1 —/Rpc"’(y)fdy)x

wherep™ is the density associated with Gaussié(0, g). Thus

/ P> (y)y*dy = g

Rd

and \
F(z) = (1 - a)x

Hence the averaged equation is
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dx A
== (1-2)x.
dt ( «

From this we deduce that trajectoriessofvill explode if A < o« and will contract if
A > a. If A = a then the averaged vector field is zero. In this situation wedrte
rescale time — ¢ /e to obtain the problem

dx 1
== Z(1 =)
il St

Y
ar =27 €2 dt’

On this longer timescale nontrivial dynamics occur. SDEth@f form are the topic
of Chapter 11, and this specific example is considered in@et.7.

10.6.2 Hamiltonian Mechanics

L In many applications Hamiltonian systems with strong ptégforces, respon-
sible for fast, small amplitude oscillations around a cmistng sub-manifold, are
encountered. It is then of interest to describe the evatutibthe slowly evolving
degrees of freedom by averaging over the rapidly oscikptiariables. We give an
example of this. The example is interesting because it shioatshe formalism of
this chapter can be extended to pure ordinary differentjabéons, with no noise
present; it also illustrates that it is possible to deal withations where the limiting
measure, retains some memory of initial conditions — in this case titaltenergy
of the system.
Consider a two-particle system with Hamiltonian,

1 w(x
H(z,p,y,v) = 5(192 +0?) 4+ &(x) + 2(52) Y2, (10.6.1)

where (z,y) are the coordinates an@, v) are the conjugate momenta of the two
particles,®(x) is a nonnegative potential ang(x) is assumed to satisfy(z) >
@ > 0 for all z. The corresponding equations of motion are

dz
dt
.

% _ () - L)
dy
dt
dv w(x)
dt g2

We let E denote the value of the Hamiltonidh at timet = 0:

! This example was developed in collaboration with R. Kupfamm
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E = H(x(0),p(0),5(0),v(0))-

Note thatF is the total energy of the two—particle system. We assume Ehis
bounded independently ef Since the Hamiltonia# is conserved in time, sincg
is nonnegative ang > &, equation (10.6.1) implies that

y® < 26°F/@.

Hence the solution approaches the submanifold 0 ase — 0. Note, however, that

y appears in the combinatigyye in the « equations and in the expression for the
energyH. Thus it is natural to make the change of variabjes y/<. The equations
then read

dx
dt
dp w'(x)
o _@/ _ T\ 2
0 (x) n

dn 1

dt €

dv w(x)

— =— . 10.6.2

I p— ( )
In these variables we recover a system of the form (10.2.1) Ysiow” variables,
x < (x,p), and “fast” variablesy < (n,v). Itis instructive to write the equation in
second order form as

d?z 1 9

12 + &' (2) + §w'(x)n =0,
d’n 1
W + gw(x)n =0.

The fast equations represent a harmonic oscillator whesgincy.'/?(z) is mod-
ulated by ther variables.

Consider the fast dynamics, witfx, p) frozen. The Hamiltonian for this fast
dynamics is, foe = 1 andx frozen,

1, w(T) o
Hfast - 2” + 9 .
The energy of the fast system, at given p), which is conserved whilstz, p) is
frozen, is found by subtracting the energy associated withftozen variables from
the total energy of the original system. We denote the redultis calculation by

1
Efast =F— §p2 — @(]})
For fixedz, p the dynamics im), v is confined to the energy shél.s; (v, ) = Ffast.

We denote this energy shell BY(x, p), noting that it is parameterized by the frozen
variables(z, p).
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The harmonic oscillator is studied in Example 4.17. Using talculations
therein, it follows that the average of the kinetic energyhaf fast oscillator against
the ergodic measure, , on Y(z, p) is

w(x 1 1
[ o = 5 B 55 - o)
Y(z,p)

Thus
1 2

1, 1
=0 g p(dn, dv) = —— [E —-p” = 4"(33)} :
/y(w) 2 7 2w(x) 2

Here (z, p) are viewed as fixed parameters and the total enéigy specified by
the initial data of the whole system. The averaging priregthtes that the rapidly
varyingn? in the equation (10.6.2) for can be approximated by its ergodic average,
giving rise to a closed system of equations(faf, P) ~ (z,p). These are

dx

ar =l

ap W'(X) 1

=2 (X) - 20 (%) {E — 5P2 - @(X)} : (10.6.3)

with initial dataF, X (0) = X, = 2(0) andP(0) = P, = p(0). Itis verified below
that(X, P) satisfying (10.6.3) conserve the followimgliabatic invariant

J:W%(X) [E—%PQ—@(X)].

Thus, (10.6.3) reduces to the Hamiltonian form

dX
=P

- =D (10.6.4a)
% — (X)) — Jo [ (X)), (10.6.4b)
where.J, is given by
- 1 1,

This means that the influence of the stiff potential on thevstariables is to induce
a Hamiltonian structure, but to replace the poterkigt) by an effective potential,

Dot (z) = D(z) + Jow'/?(x).

Note that the limiting equation contains memory of the alittonditions for the
fast variables, through the constaft Thus the situation differs slightly from that
covered by the conjunction of Results 10.1 and 10.3.

To verify thatJ is indeed conserved in time, note that, from the definitiory of
and from equation (10.6.3),
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i(w%(X)J) - i(E lp @(X))

dt dt 2
= —PC;—I; - @’(X)C;—f
Puw'(X) 1
T 2w(X) (E — 5 _@(X))
_ PW(X)
S 2wi(X)

But, since% = P, we find the alternate expression,

d/ 1 1Y) dX o d)
E(w (X)J) T 2,3(x) dt Ty
Pw'(X) 1 d.]
= T J—‘,— 2 X —_.
2wt (x)” Y 0%

Equating the two expressions gives

dJ
a0

sincew(X) is strictly positive.

10.7 Discussion and Bibliography

Averaging is based on some form or ergodicity of the fast ess¢ whether this
process is deterministic or stochastic is not of primary am@nce. However it is
easier, in general, to establish ergodicity for stochgstiblems and this is why our
general developments are confined to this case. The avgrag#thod applied to
equations (10.2.1) is analyzed in an instructive manne24®], where the Liouville
equation is used to construct a rigorous proof of the avetdgst. It is sometimes
possible to obtain averaging results in the nonergodic,c@ken the null space of
the fast process is finite dimensional, rather than one dsineal. See [246, 326].

A detailed account of the averaging method for ODESs, as vgetitanerous ex-
amples, can be found in [281]. See also [13]. An English laggureview of the
Russian literature can be found in [193]. An overview of thpit of slow mani-
folds, especially in the context of Hamiltonian problemsyme found in [199]. The
paper [321] provides an overview of variable eliminationainvealth of problems
with scale separation.

Anosov’s Theoremis the name often given to the averaging principle in the
context of ODEs — (10.2.1) with = 0. This theorem requires the fast dynamics to
be ergodic. Often ergodicity fails due to the presence adddreant zones"—regions
in X for which the fast dynamics is not ergodic. Arnold and Neids{d93] extended
Anosov’s result to situations in which the ergodicity asgtion fails on a sufficiently
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small set ofr € X. Those results were further generalized and extended to the
stochastic framework by Kifer, who also studied the diffl@sand large deviation
character of the discrepancy between the effective and egadion [169, 170, 171,
172]. See also [111, Ch. 7].

The situations in which the fast dynamics tend to fixed popesiodic solutions,
or chaotic solutions can be treated in a unified manner thrdlg introduction of
Young measurgsee [29, 309]). Artstein and co-workers considered a dasmgu-
larly perturbed system of type (10.2.1), with attentionegivto the limiting behavior
of both slow and fast variables. In all of the above cases #irgp, y) can be shown
to converge td X, ux ), whereX is the solution of

= [ 1 x(an)

andux is the ergodic measure dff’; the convergence af to px is in the sense
of Young measures. (In the case of a fixed point the Young nmedsa Dirac mass
concentrated at a point.) A general theorem along thesg igngroved in [17].

There are many generalizations of this idea. The case ofutonamous fast dy-
namics, as well as a case with infinite dimensions are coviergtB]. Moreover,
these results still make sense even if there is no uniqueigmtameasureu,, in
which case the slow variables can be proved to satisfy a @tenabinistic) differen-
tial inclusion [19].

In the context of SDE, an interesting generalization of 210). is to consider
systems of the form

dx dU

dy 1 1 v

—g(z,y) + %ﬁ(x,y)ﬁ. (10.7.1b)

dt ¢
The simplified equation is then an SDE, not an ODE (see RentaB.This situa-
tion is a subcase of the set-up we consider in the next chdptan be obtained by
settingf, = 0 in that chapter, letting; = f there, and by identifying here withe?
in that chapter.

In the application section we studied the averaging priecfpr a two—scale
Hamiltonian system. The systematic study of Hamiltoniarbfgms with two timescales
was initiated by Rubin and Ungar [277]. More recently theaislef Neistadt, based
on normal form theory, have been applied to such problemk {BB approach is
very powerful, yielding very tight, exponential, error iesates between the orig-
inal and limiting variables. A different approach to the lplem, using the tech-
niques of time-homogenization [43], is the paper [44]. Thamsple presented in
Section 10.6.2 is taken from that paper. The heuristic déon we have given here
is made rigorous in [44], using time-homogenization teqaes, and it is also gen-
eralized to higher dimension. Resonances become incgdgsmportant as the co-
dimensionyn, increases, limiting the applicability of the averagingegach to such
two-scale Hamiltonian systems (Takens [306]).

Numerical work on multiscale ODEs and SDEs is overviewetiartext chapter.
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10.8 Exercises

1. Derive the averaged equation resulting from the SDE (19uhder the assump-
tion that U and V' are independent, standard Brownian motions (see Remark
10.2).

2. Letd : X x Y : RT and consider the equations

dx ~—dU
E - —Vl.@(],‘, y) =+ 20’%

dy 1 20 dV
= V() | 2
dt 6v" (@) + e dt

wherelU andV are standard Brownian motions of appropriate dimensionged
a Fredholm alternative assumption which you should clestdye, show that the
averaged equation foX has the form

dX aw

where theFixman potentiall is given by

exp(—%W(x)) :/yexp(—%@(x,y))dy.

Here W is Brownian motion of appropriate dimension. (In fact syazonver-
gence techniques, such as those highlighted in Chapter 4y b use used to
show thatX =~ x strongly forlW = U.).

3. Let® be as in the previous question. Write the following secorttosystem as
a system of coupled first order SDEs:

2z dx dU
.9 V) a:@ 0y 2 ETRR)
az g~ Vel )+ V20
d’y dy 1 20 dV
YL Yty A
cae Yy T eVt T

Find the stationary distribution of the fast procgssxplicitly. Find the averaged
equation forX, using the previous question to guide you.

4. Derive the averaged equation from the example in Sulmsed.6.1 by use of
formula (10.5.3) from Result 10.3.

5. Letu be a continuous time Markov chain with generator

L- (—g_g).

Without loss of generality label the state-spate= {—1,+1}. Define two
functionsw : Z — (0,00) andm : T — (—o0,00) by w(£1) = w* and
m(41) = m*. Now consider the stochastic differential equations, witlefti-
cients depending upan given by
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du

dy 1 20 dV
n —gw(u)(y —m(u)) + \/;E’

with U andV standard Brownian motions of appropriate dimensions. &\the
generator for the process, y, u) and use multiscale analysis to derive the aver-
aged coupled Markov chain and SDE of the form

% = F(X,u) + \/%%
wherelV is a standard Brownian motion with the same dimensioli as

6. Generalize the previous exercise to the case where thsitiom rates of the
Markov chain, determined hy andb, depend upon andy.

7. Find a representation for the effective coefficient mxattiz) in Remark 10.2,
using time-averaging.
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Homogenization for ODEs and SDEs

11.1 Introduction

In this chapter we continue our study of systems of SDEs with widely separated,
characteristic time scales. The setting is similar to the @msidered in the previous
chapter. The difference is that in this chapter we seek twvelan effective equation
describing dynamics on the longdiffusive timescal©(1/<2). This is the timescale
of interest when the effective driff'(x) defined in equation (10.3.1) vanishes due,
for example, to the symmetries of the problem. The vanisbirtge effective drift is
captured in the centering condition, equation (11.2.59Wweln contrast to the case
considered in the previous chapter, in the diffusive tinaéssthe effective equation is
stochastic, even when noise does not act directly on thewmiables, that is, even
whena(z,y) = 0 in equation (11.2.1) below.

In Section 11.2 we present the SDEs that we will analyze mdhapter. Section
11.3 contains the simplified equations which we derive intiacl1.4. In Section
11.5 we describe various properties of the simplified equati The derivation as-
sumes that the fast process to be eliminated is stochastiedtion 11.6 we show
how the deterministic case can be handled. In Section 11.grasent various ap-
plications of the theory developed in this chapter: the aslsere the fast process
is of Ornstein—Uhlenbeck type is in Section 11.7.1 and tlse eehere the fast pro-
cess is a chaotic deterministic process is in Section 11D&g@ving the Stratonovich
stochastic integral as the limit of smooth approximatiansvhite noise is consid-
ered in Section 11.7.3; Stokes’ law is studied in Sectiory #1.The Green—Kubo
formula from statistical mechanics is derived in Section713. The case where the
stochastic integral in the limiting equation can be intetpd in neither the 1td nor the
Stratonovich sense in considered in Section 11.7.6. Lésy eorrections are studied
in Section 11.7.7. Various extensions of the results piteskin this chapter, together
with bibliographical remarks, are presented in Sectio811.
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11.2 Full Equations

Consider the SDEs

de 1 daUu

P gfo(m,y) + fi(z,y) + a(x,y)ﬁ, 2(0) = o, (11.2.1a)
dy 1 1 dv _

o= gg(x,y) + gﬁ(%y)ﬁy y(0) = wo. (11.2.1b)

HereU andV are indepenent standard Brownian motions. Bothitla®ady equa-
tions contain fast dynamics, but the dynamicgiis an order of magnitude faster
than inz. As discussed in Sections 4.1 and 6.& X,y € YandX & Y = Z.

For equation (11.2.1) the backward Kolmogorov equatiod.gg withg = ¢(z)*

is,
ov 1 1 i
5 E—Qﬁov + gﬁlv + Lov, for (z,y,t) € X x Y xR™, (11.2.2a)
v=¢(x), for (z,y,t) € X xY x {0}, (11.2.2b)
where
1
Lo=g -Vy+ §B 1 VyVy, (11.2.3a)
L1 = fo- Vg, (11.2.3b)
1
Lo = f1 -V + §A : VeV, (11.2.30)
with

A(z,y) = a(z, y)a(z,y)",

B(x7y) = ﬂ(IE, y)ﬁ(xvy)T

By using the method of multiple scales we eliminate ghdependence in this Kol-
mogorov equation, in order to identify a simplified equatfonthe dynamics ofc
alone.

In terms of the generataf,, which is viewe as a differential operator in in
which z appears as a parameter, the natural ergodicity assumptimake for vari-
able elimination is the statement thas has one dimensional null space character-
ized by

Lol(y) =0, (11.2.4a)

L5p> (y;z) = 0. (11.2.4b)

Herel(y) denotes constants inand p>° (y; ) is the density of an ergodic measure
w(dy) = p™(y;x)dy. We also assume thgt(x,y) averages to zero under this
measure, so that theentering condition

! For simplicity we will take the initial condition of the baakard Kolmogorov equation to
be independent af. This is not necessary. See the discussion in Section 11.8
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/yfo(x,y)uw(dy) =0 VxelX (11.2.5)

holds. It can then be shown that the term involvifagn the z equation will, in the
limit £ — 0, give rise toO(1) effective drift and noise contributions in an approxi-
mate equation for.

As in the previous chapter, in the case whgre- T¢ the operator£, and.}; are
equipped with periodic boundary conditions. Then, assarthatB(z, y) is strictly
positive definite, uniformly i{z, y) € X x T¢, Theorem 6.16 justifies the statement
that the null space afj is one-dimensional. In more general situations, such aswhe
Y = R4, or B(z,y) is degenerate, similar rigorous justifications are possibut
the functional setting is more complicated, typically eoyphg weightedl.? spaces
which characterize the decay of the invariant density anityfi

When) = T¢ and B(z, y) is strictly positive definite, Theorem 7.9 also applies
and we have a solvability theory for Poisson equations ofdha

—Lo¢ = h. (11.2.6)

In particular, the equation has a solution if and only if tlght hand side of the above
equation is centered with respect to the invariant meadutedast procesg,. (dy):

/ hz,y) p(dy) =0 Ve X. (11.2.7)
Td

When (11.2.7) is satisfied, the solution of (11.2.6) is urigp to a constant in the
null space ofZ,. We can fix this constant by requiring that

/Td d(z, ) e (dy) =0 Vo e X.

In more general situations, such as whgn= R<, or B(z,y) is degenerate, the
guestion of existence and uniqueness of solutions to thesBwiequation (11.2.6)
becomes more complicated; however, analogous result®aiel@in function space
settings which enforce appropriate decay properties atiipfiSee the remarks and
references to the literature in Section 11.8.

11.3 Simplified Equations

We assume that the operatfg satisfies the Fredholm alternative, Theorem 2.42,
and has one-dimensional null-space characterized by .@)1\®/e define thecell
problem 2 as follows:

—Lod(,y) = fol,y), /y ()™ (y;2)dy = 0. (113.1)

2 The word "cell” here refers to the periodic unit cell whictisthe scale for the fast variable,
in the casey = T<. The terminology comes from the theory of periodic homogatian
for PDEs.
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This is viewed as a PDE ig, with z a parameter. By the Fredholm alternative,
(11.3.1) has a unigue solution, sintesatisfies (11.2.5). We may then define a vector
field F by

F(z) = /y (11, 9) + (T2, 1)) fol, 1)) o™ (v )y
= Fi(z) + Fy(z) (11.3.2)

and a diffusion matrixd(x) by

A@)A@@)T = Ai(z) + %(Ao(x) + Ao(a:)T), (11.3.3)
where

Aofe) =2 [ fola.) © )™ 321 (11.3.4)

A () :=/yx4(x7y)p°° (y; z)dy. (11.3.5)

To make sure thatl(z) is well defined it is necessary to prove that the surd ofz)
and the symmetric part afiy(z) is positive semidefinite. This is done in Section
11.5.

Result 11.1.For ¢ <« 1 and timest upto O(1), the processc(t), the solution of
(11.2.1) is approximated by the proceds(t), the solution of

dX aw
— =FX)+AX)—
= F(X) + A

X(0) = xo. (11.3.6)
Remark 11.2Notice that knowledge ol A” is not sufficient to determing uniquely.
As a result equation (11.3.3) does not determine the ligniBDE (11.3.6) uniquely.
This is a consequence of the fact that there may be many SREkdke the same
generator. This in turn relates to the fact that the appraiom of the solution to
(11.2.1) by the solution to (11.3.6) is only valid in the sepn§weak convergence of
probability measures; see Chapter 18

11.4 Derivation
We seek a multiscale expansion for the solution of (11.2i&) the form
v=wg+evy +e2vg 4. (11.4.1)

Herev; = v;(z,y,t). Substituting this expansion into (11.2.2) and equatinggrew
of € gives a hierarchy of equations, the first three of which are
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O(1/?) = Lovy =0, (11.4.2a)
0(1/6) — £0U1 = £11}0, (ll42b)
O(l) — Lovg = —% + Liv1 + Lovg. (1142C)

By (11.2.4) equation (11.4.2a) implies that the first ternthia expansion is inde-
pendent ofy, vy = v(z,t). We proceed now with equation (11.4.2b). The solvability
condition is satisfied for this equation since, by assunmptid..2.5),fo(z, v) is cen-
tered with respect to the invariant measure$és-) and, from (11.2.3b),

Livo = fo(z,y) - Vavo(z,t).
Equation (11.4.2b) becomes
—Lov1 = fo(z,y) - Vayvo(a,t). (11.4.3)

Since L, is a differential operator iy alone withz appearing as a parameter, the
general solution of (11.4.3) has the form

vi(z,y,t) = D(x,y) - Vyvo(z, t) + P1(x,t). (11.4.4)

The function®, plays no role in what follows and thus we set it to zero. Thus we
represent the solution; as a linear operator acting ag. As our aim is to find a
closed equation forg, this form forwv; is a useful representation of the solution.
Substituting forv; in (11.4.3) shows thab solves the cell problem (11.3.1). Condi-
tion (11.2.5) ensures that there is a solution to the ceblerm and the normalization
condition makes it unique. Turning now to equation (11.¥e see that the right
hand side takes the form

—(% ~ Lovg — £1(P - Vo) ).

Hence solvability of (11.4.2c) for each fixed requires

% = /ypoo(y;x)ﬁgvo(x,t)dy + /ypoo(y;x)ﬁl (@(x, NE vao(x,t)) dy
— I+ L. (11.4.5)
We consider the two terms on the right hand side separateg/filst is
B= [ () Vet A 5ol iy
= Fi(x) - Vyvo(z,t) + %Al(x) 1 Vi Vavo(z,t).
Now for the second terni, note that

L1 (QS . vao) = fo QKD :V, Vv + (VI@fo) - V.
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Hencel, = I3 + I, where
I3 = /yp“’(y; 2)(Va®(z,y) fo(z,y)) - Vevo(z,t) dy
and
I = /y (2 (fol,y) © D, y) : VaVavo (e, ) dy.

Thus )
I, = Fo(x) - Vevo(x, t) + §A0(a:) : Vi Viaevg(z,t).

Combining our simplifications of the right hand side of (15)Ave obtain, since by
(2.2.2) only the symmetric part ol is required to calculate the Frobenius inner
product with another symmetric matrix, the following exgs®n:

1
% = F(x) - Vyuo + §A($)A($)T t VaVato.

This is the backward equation corresponding to the redugerardics given in
(11.3.6).

11.5 Properties of the Simplified Equations

The effective SDE (11.3.6) is only well defined Af(z)A(z)T given by (11.3.3),
(11.3.5) is nonnegative definite. We now prove that thisdeéd the case.

Theorem 11.3.Consider the case whepg = T? and £, is equipped with periodic
boundary conditions. Then

(€A1 (2)E+ Ap(2)€) 20 Vo e X, & cRL

Hence the real-valued matrix functiot(z) is well defined by11.3.3)sinceA(x) A(z)T
is non-negative definite.

Proof. Let ¢(z,y) = ¢ - &(z, y). Theng solves
Los =€ fo
By Theorem 6.12 we have
(€ Av(@)E + Ao(2)e)
= [ (tate Sl = 2(Cadte ot ) (s
= [ (latw)" e + 19.) "ot ) ) oo )

= 0.
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Thus

(€ AATE) = (6, 416) + 3 (6, (4o + AD)E)
= (& (A1 + A9)§) > 0.0

Two important remarks are in order.

Remark 11.4Techniques similar to those used in the proof of the previbasrem,
using (6.3.11) instead of the Dirichlet form itself, shovath

1
—(Ap(z)+Ag(x)T) = z, x, +P(x, z, ©(y; x)dy.
5 (Aotareao(o)”) = [ (9,003 )09, 0w, 0)3(w.5)) 0™ (0 (>1in :

Remark 11.5By virtue of Remark 6.13 we see that the proceeding theorenbea
extended to settings other thah= T¢. O

11.6 Deterministic Problems

As in the previous chapter, it is useful to have represematof the effective equa-
tion in terms of time averages, both for numerical purposesl, for deterministic
problems. To this end, a second representatiaf@f:) andFy (z) is as follows. Let
992 (y) solve (10.5.1) and I€E#~ be the product measure formed from usef-) on
initial data and standard independent Wiener measure vimgfBrownian motions.
Using this notation we may now employ a time integral to repre the solution of
the cell problem, leading to the following representatiomfulae.

Result 11.6.Alternative representations of the vector fidlg(x) and diffusion ma-
trix Ag(x) can be found through the following integrals over time &td:

to) =2 [ (o) @ o)) & (@16

and, if the generator, is independent of, then

Fote) = [ B (Tu oo ) o) . (11.6.2)

All these representations hold for apyby ergodicity.

The integral ovet in this result enables us to express the effective equations
without explicit reference to the solution of the cell pretsi®, and requires suffi-
ciently fastdecay of correlationg order to be well defined.

Another pair of alternative representations Bfz) and A(x)A(z)” may be
found by using time averaging (overto replace the expectations in the previous re-
sult. The expressions fofy and Fy then involve two time integrals: the integral over
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sis an ergodic average, replacing averaging with respebgtgtiationary measure on
path space; the integral oveexpresses the effective equations without reference to
the solution of the cell problerd® and, again, requires sufficiently fadtcay of cor-
relationsin order to be well-defined. In fact the well posedness of #leproblem
(11.3.1) implies the decay of correlations property.

Result 11.7 Alternative representations of the vector fiélcand diffusion matrix4
can be found through the following integrals over time:

Fi(x lim —/ filx, oi(y

and
Aofa) =2 [ (Jim 7 / fole. 5 0)) © fole. i ()ds) dt, (1169

wherey! (y) solves(10.5.1) Furthermore, if the generatof, is independent aof,
then

Fo) = [ (fim 7 [ Tuholo et ol g2 0)ds) .

T—oo T 0
All these representations hold for agyby ergodicity.

The following result will be useful to us in deriving the att@te representations
of Ayg(z) and Fy(x) in the two preceding results. It uses ergodicity to repreten
solution of the cell problem, and related Poisson equatiamtime integrals.

Result 11.8.Let £ be the generator of the ergodic Markov procgés) on ) which

satisfies the SDE
dy dv
—2 = — t) = 11.6.4
7 g(y) + B(y) o y(t) =y ( )

and letu(dy) denote the unique invariant measure. Assume khiatcentered with

respect tqu :
/h w(dy) = 0.

Then the solutiorf (y) of the Poisson equation
—Lf =h, / fly)p(dy) =0

admits the representation formula

fly) = /OOO (e“h)(y) dt. (11.6.5)
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Proof. We apply the Itd formula tg(y(t)) to obtain

Fu / Cf(y(s))ds + / (7, £ (y(s)). Bly(s)) IV (5))
- / —h(y(s)) ds + / (Y, F((s), Bly(s)) AW (s)).

0
We take expectation with respect to the Wiener measure anthasnartingale prop-
erty of stochastic integrals, and the fact that(y(s)|y(0) = y) solves the backward
Kolmogorov equation, to conclude that

fy) =Ef(yt))+ /Ol(eﬂsh) (y) ds.

We take the limit — oo and use the ergodicity of the procegs), together with the
factthatf(y) is centered with respect to the invariant measure with dep3i(y; ),
to deduce that

t—o0

=/f(y)u(dy)+/oo(6“h)(y) dt
y 0

= /00 (eﬁth) (y)dt

0

F) = Jim 1) + [ (Cn))

and the proof is complete.O

Remark 11.9Notice that the preceding result implies that we can writéeast for-

mally,
L= —/ et dt
0

when applied to functions centered with respegt té-urthermore, the result is also
valid for the case where the coefficients in (11.6.4) depend parameter. 0O

We complete the section by deriving the alternative expoessfor A(z) and
F(x) through time integration, given in Results 11.7 and 11.6 &hkpressions for
Fi(x) and A;(x) in Result 11.7 are immediate from ergodicity, simply usihg t
fact that the time average equals the average agaihsBy use of Result 11.8, the
solution to the cell problem can be written as

B(z.y) = / (50 o) () dt = / " Efole, o (y)) de (11.6.6)

whereE denotes expectation with respect to the Wiener measure. Now

Fo(z) = /y % (y: )V (2, ) folz y) dy.
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In the case wher€, is x—independent so that, (-) = '(-) is alsox independent,
as areu, = pandp™(-;x) = p™(-), we may use (11.6.6) to see that

Fo(x) :/yﬂoo(%l') /0°° EV.. fo(x, ¢' (y)) fo(z,y) dt dy,

whereE is expectation with respect to Wiener measure. RecalRHatdenotes the
product measure formed from distributiggn its invariant measure, together with
the Brownian motion driving the equation fgf (y). Changing the order of integra-
tion we find that

Rale) = [ B (Vofale o)) dt (116)

as required for the expression in Result 11.6. Now we redaeeages oveE“= by
time averaging to obtain, for ajl,

[eS) T
R) = [ (Jim 3 [ Vet @) ol o) ds)

T—oo T 0

and so we obtain the desired formula for Result 11.7.

A similar calculation to that yielding (11.6.7) gives (11.Bfor Ag(z) in Result
11.6. Replacing the average agaifi$t by time average we arrive at the desired
formula for Ao (z) in Result 11.7.

11.7 Applications

We give a number of examples illustrating the wide applitigtof the ideas in this
chapter.

11.7.1 Fast Ornstein-Uhlenbeck Noise

Consider the equations

dx 1

i g(1 —y?)z, (11.7.1)
dy « 2a.dV

w2 e (11.7.2)

whereV (t) is a standard one—dimensional Brownian motion. Here

fo(z,y) = (1 —y*)z and fi(z,y) = 0.

Recall that the equation faris a time-rescaling of the OU process from Example
6.19, with A = «. Furthermore, these equations arise from the first apptinati
Section 10.6, in the case wheke= «, and after time rescaling to produce nonzero
effects.
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We have that -
/ (1 —y*)ap™(y) dy =0,

— 0o

wherep™(y) is the invariant density of the Ornstein—Uhlenbeck proceamely a
standard unit normal distribution. Thus the theory put farghin this chapter applies.
The generator of the proces$(-) = ¢'(-) is

2

— — 11.7.
ay 4—0¢8y2 ( 3)

Lo=—ay

and the cell problem (Poisson equation) (11.3.1) becomes

oP 0%
et =(1-y)a

The unique centered solution to this equation is

Py, 2) = 5-(1- ).

Under the standard normal distribution the fourth and sdenoments take values
and1 respectively. Hence, the coefficients in the limiting equa(11.3.6) are

P = [ (<5art =) ) dy = o
and -
) =2 [ (=guitelt =) 2 dy = 2

The homogenized SDE is thus

dX _ X [2 aw

— —-X—. 11.7.4
dt a+ a dt ( )

This is the geometric Brownian motion studied in Example BHe solution is

X(t) = X(0) exp(\/gW(t)).

It neither converges to nor to oo, but subsequences in time attain both limits. This
should be compared with the behaviour found in the first exarmpSection 10.6
which gives rise to decay (resp. growth)f > « (resp.A < «). Our example
corresponds to the case= « with time rescaled to see nontrivial dynamics. It thus
lies between decay and growth. Notice that we could havetalen the function in
front of the white noise with a minus sign. See Remark 11.2.

Let us now obtain the coefficients of the homogenized eqnditip using the
alternative representations (11.6.1) and (11.6.2). Te ¢inid we need to study the
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variabley® (y) solving (10.5.1). From the calculations presented in EXarGd9 we
have that

t
oly) = ey + v2a/ e~ =gy (s),
0

t

gat(y)Q — €—2aty2 + mye—at/

t 2
e~ =9 qV (s) + Za(/ e_o‘(t_s)dV(s)) )
0 0

(11.7.5)

In addition, by the Itd isometry,

t 2 t
E(/ e_o‘(t_s)dV(s)) = / e2et=9) g,
0 0

1
- —(1-— —Q(It).
Qa( €

To construct the measui&*” we take the initial conditiory to be a standard unit
Gaussian distribution and an independent driving BrowmationV'. (The measure
is, in fact, independent af in this particular example). Thus, by stationarity under
this initial Gaussian distribution,

/po‘°(y)y2 dy=1, E"¢'(y)?=1.
Furthermore

B+ (/ p=W)ye' (y)? dy) = 6’2“t/p°°(y)y4 dy

t 2
420 < / emt=s) dV(s))
0

— 36—2()11: 4 1— 6—20115

=14 2e7 2o,

Sincefy(z,y) = (1 — y?)z, combining these calculations in (11.6.2) gives

Fale) = [ (10 )0 - 5

= a:/ 2e 2%t
0

_* (11.7.6)
«

Similarly from (11.6.1) we obtain

This confirms that the effective equation is (11.7.4).
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11.7.2 Fast Chaotic Noise

We now consider an example which is entirely determinidiidt which behaves

stochastically when we eliminate a fast chaotic varialmi¢his context it is essential
to use the representation of the effective diffusion coieffitgiven in Result 11.7.

This representation uses time-integrals, and makes neerefe to averaging over the
invariant measure (which does not have a density with régpdebesgue measure
in this example; see Example 4.16). Consider the equations

d A

d—i —w—a®+ Sy, (11.7.7)
dy1 10

ar = —(yz - y1),

dy

d—; = ?(283/1 Yo — Y1Y3),

dys _ 1 ( _8 ).

a2 Y1Y2 3y3

(11.7.8)

The vectory = (y1,2,y3)" solves the Lorenz equations, at parameter values where
the solution is ergodic (see Example 4.16). In the invana@ausure the component
y2 has mean zero. Thus the centering conition holds. The exufti « is a scalar
ODE driven by a chaotic signal with characteristic tiafe Becausefo(z, y) o« 2,
with invariant measure shown in Figure 4.2, and becgise (x,y) = f1(z) only,
the candidate equation for the approximate dynamics is
dX dw

=X - X34to—ro 11.7.9
dt T ( )
wheres is a constant. Now let(y) = ez - ! (y). Then the constant can be found
by use of (11.6.3) giving

2 2 t+9
o —2)\/ Tlgr;o/ 3 ( )ds)dt.

This is the integrated autocorrelation functionief By ergodicity we expect the
value of 2 to be independent af and to be determined by the SRB measure for
the Lorenz equations alone. Notice that the formula is etgueio make sense, even
though the cell problem is not well-posed in this case bez#us generator of the
fast process is not elliptic.

Another way to derive this result is as follows. Gaussianteviioises 1/, the
time-derivative of Brownian motion, may be thought of as hadeorrelated station-
ary process. The integral of its autocorrelation functiari(y oo) givess? /2. On the
assumption thag, has a correlation function which decays in time, and notirag t
this has timescale?, the autocorrelation osws/az (y) attimelagt may be calculated
and integrated from to co; matching this with the known result for Gaussian white
noise gives the desired result fot.
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11.7.3 Stratonovich Corrections

When white noise is approximated by a smooth process thes téads to Stratonovich
interpretations of stochastic integrals, at least in omeegtision. We use multiscale
analysis to illustrate this phenomenon by means of a simdenple. Consider the
equations

de 1
o gf(ﬂf)y,
dy oy 2a0 dV
— = —-— —— 11.7.1
dt g2 g2 dt’ ( 0
with V' being a standard one-dimensional Brownian motion.
Assume for simplicity thay(0) = 0. Then
E(y(t)y(s)) = e =/l
and, consequently,
2
lim E (ﬂﬂ> = —0(t — s),
e—0 € € o
which implies the heuristic
lim yt) = \/?ﬂ (11.7.112)
e—0 ¢ o dt
Another way of seeing this is by solving (11.7.10) {ole:
y_ [2dV _edy (11.7.12)

€ adt  oadt

If we neglect theO(e) term on the right hand side then we arrive, again, at the
heuristic (11.7.11).
Both of these arguments lead us to conjecture a limiting eguaf the form

aX _ 200V

— —. 11.7.13
dt « dt ( )
We will show that, as appliedhe heuristic gives the incorrect limithis is because,
in one dimension, whenever white noise is approximated by@osh process, the

limiting equation should be interpreted in the Stratonb\dense, giving

dx 2 dv
= = \/;f(X) o=, (11.7.14)

in this case. We now derive this limit equation by the techemgintroduced in this
chapter.
The cell problem is
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—Lo®(z,y) = f(2)y
with £y given by (11.7.3). The solution is readily seen to be

B(r.9) = ~[(@y, Vablay) = —f ()

The invariant density is

(y) = —=exp(-L)
= expl——,
Py o p B
which is in the null space of§ and corresponds to a standard unit Gausaiaf, 1)
random variable.
From equation (11.3.2) we have

Fa) = [ /@) f@o )y
= @)@

Also (11.3.3) gives

A(z)? R% (2)%y°p™ (y)dy
2

_ 4 2
== (x)=.
The limiting equation is therefore the 1td SDE

ax 1, 2. dV
E:Ef (X)f(X)‘F\/;f(X)E-

This is the Itd form of (11.7.14), by Remark 6.2. Hence theimel result is estab-
lished.

11.7.4 Stokes' Law

The previous example may be viewed as describing the mofiam@ssless particle
with positionz in a velocity field proportional tof (x)y, with y an OU process. If
the particle has mass then it is natural to study the generalized equation

d?z 1 dx
— == - — 11.7.15a
mos 6f(ﬂf)y a0 ( )
dy ay 2a.dV
- =2 - —. 11.7.1
dt g2 €2 dt ( 5b)

(Note that settingn = 0 gives the previous example). Equation (11.7.15&})&kes’

law, stating that the force on the patrticle is proportional tmagdorce% (x)y— fi—f
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which is equal to the difference between the fluid velocitg ére particle velocity.
As in the previous examplg,is a fluctuating OU process. For simplicity we consider
the case of unit mass; = 1.

Using the heuristic argument from the previous sectiontriigigural to conjecture

the limiting equation
d’X /2 v dX
yo Ef(X)E - (11.7.16)

In contrast to the previous application, the conjecture thia is the limiting equa-
tion turns out to be correct. The reason is that, heris, smoother and the 1td6 and
Stratonovich integrals coincide; there is no Itd correctio the Stratonovich inte-
gral. (To see this it is necessary to first write (11.7.16) éissaorder system — see
Exercise 2a). We verify the result by using the multiscatthteques introduced in
this chapter.

We first write (11.7.15) as the first order system

o _,

e’

dr 1

7 gf(ﬂf)y,

dy 1 1 av
Y oyt 2v2ail,
dt EQay+s Yt

Here(z,r) are slow variablesa(in (11.2.1)) andy the fast variablesyin (11.2.1)).
The cell problem is now given by

Lo®(z,r,y) = —folz,71,9) = (_f?x)y),

with £y given by (11.7.3). The solution is

P(z,r,y) = (lf(()x)y)’ Vian®(@.y) = (éf’?x)y 8)

[e3%

Notice thatfy is in the null space oV, @, and hence (11.3.2) gives

F(X,R) = F\(X,R) = (_RR). (11.7.17)

From (11.3.3) we have

AX,R)AX,R)T = /R2(8 Lf&)gyz)pc’(’(y)dy.

Recall thap™> (y) is the density of aiv'(0, 1) Gaussian random variable. Evaluating
the integral gives

AX, AKX, R = (| zf?X)Q).
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Hence a natural choice fof(z) is

0
= (2

Thus from (11.7.17) and (11.7.18) we obtain the limiting &tipn

dX
—= =R,
t

d

dR /2 dw
= _ ZAHX)=—
dt R+ af( )dt’

which, upon elimination oRz, is seen to coincide with the conjectured limit (11.7.16).

11.7.5 Green—Kubo Formula

In the previous application we encountered the equationation for a particle with

significant mass, subject to Stokes drag. Here we study the sguation of motion,
but where the velocity field is steady. We also assume thgpainiicle is subject to
molecular diffusion. The equation of motion is thus

d2 _dx du

HereU is a standard unit Brownian motion. We will study the effeetdiffusive
behavior of the particle on large length and timescales, under the assumption that
f(z) is amean zero periodic function. We show that, on appropléage length and
time scales, the particle performs an effective Brownianiom and we calculate its
diffusion coefficient.

To this end we rescale the equation of motion by setting /¢ andt — t/<?
to obtain

(11.7.18)

d%x T dx aU
2_ —_— = —_
dt? f(g) dt+adt'

Introducing the variableg = £ 42 % andz = x /e we obtain the system

dr 1
it e

dy 1 1 o dW
@ = =t I Ty
dz_ 1

at 2

The proces$y, ) is ergodic, with characteristic timescalé, and plays the role of
y in (11.2.1);x plays the role ofz in (11.2.1). The operatof, is the generator of
the processy, z). Furthermore

fl(a:ay7z):Oa f()(flz',y,Z):y.
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Thus, since the evolution @f;, ) is independent of, #(z, y, z), the solution of the
cell problem, is alsa:—independent. Hence (11.3.2) givE$xz) = 0. Turning now
to the effective diffusivity we find that, sincg(x, y) = A(z,y) = 0, (11.3.3) gives
A(z)? = Ap(x). Now definey! (y, ) to be the component of' (y, z) projected onto
they coordinate. By Result 11.7 we have that

Ao(x):2/ Tlgnoo—/ W (y)° T (y)d )dt.

The expression

T—oo T 0

is thevelocity autocorrelation functiarThus the effective equation is
dX aw
= V2D—
dt dt’

a Brownian motion with diffusion coefficient

D= /0 T ot

Thus, the effective diffusion coefficient is given by timegrated velocity autocor-
relation. This is an example of thereen—Kubo formula.

11.7.6 Neither It© nor Stratonovich

We again use Stokes’ law (11.7.15a), now for a particle oflsmassm = 7ye?
wherery = O(1), and neglecting molecular diffusion. If we also assume that
velocity field of the underlying fluid is of the fornéf(x)n wheren is solves an
SDE, then we obtain

d*x dr 1

2—:—— —_
7 TR ACOL (11.7.19a)
dyp 1 1 AW
o =~ =290 20(n) - (11.7.19b)

We interpret equations (11.7.19b) in the Itd sense. Werasghaty(n), o(n) are
such that there exists a unique stationary solution of thé&&mwsPlanck equation for
(11.7.19b), so thaj is ergodic.

We write (11.7.19) as a first order system,

1,

dt E\/TO ’

dv _ Sl v

dt _82\/7'—0 T2’
@ «/20 dW

dt 52

(11.7.20)
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Equations (11.7.20) are of the form (11.2.1) and, under $iseirmption that the fast
process(v, n) is ergodic, the theory developed in this chapter applieortfer to
calculate the effective coefficients we need to solve theosiary Fokker—Planck
equation

ES/)(J?, v,m) =0

and the cell problem
v

—Loh = —, 11.7.21
oh=—= ( )
where 5 o2 fa) 5
— o2 . v\ 9
50—9(77)8774"7(77)8772"‘( \/7_—0 7.0) 8’().
Equation (11.7.21) can be simplified considerably: we lamlafsolution of the form

hz,v,7) = (\/T—o’U + f(x)ﬁ(n)) . (11.7.22)

Substituting this expression in the cell problem we obtaiter some algebra, the
equation
—Lyh =1.

Here £,, denotes the generator 9f We assume that the unique invariant measure
for n(t) has density,, (1) with respect to Lebesgue measure; the centering condition

which ensures the well posedness of the Poisson equati&risﬁor

/ npn(n) dn = 0.
R

We assume that this holds. The homogenized SDE is

dX aw
= = F0)+VDX)—, (11.7.23)
where
Py = [ (SR @) o)
and

D=2 [ (#+ \/LT—Oﬁ(n)f(w)) (2, v, 7) dudy

In the case wherg(t) is the Ornstein—Uhlenbeck process

dn o 20 dW
== 14 = (11.7.24)

we can compute the homogenized coefficieB{sy) and B(X) explicitly. The ef-
fective SDE is

dX A , 2\, AW
T Ty COF 0 \/;f(X)E. (11.7.25)



182 11 Homogenization for ODEs and SDEs

Note that in the limity — oo we recover the Itd stochastic integral, as in Sub-
section 11.7.4, whereas in the limif — 0 we recover the Itd interpretation of the
Stratonovich stochastic integral as in Subsection 11Fa8r, € (0, o) the limiting
equation is of neither the It6 nor the Stratonovich formfaet the equation (11.7.25)
can be written in the form

X(t):xo—i—/o

where the definition of the stochastic integral through Riemsums depends on the
value ofry. The fact that we recover this interesting limit is very muigd to the
scaling of the mass a8(=2). This scaling ensures that the timescale of the ergodic
process) and the relaxation time of the particle are the same. Resenbetween
these timescales gives the desired effect.

t

B e,

11.7.7 The Lévy Area Correction

3 In Section 11.7.3 we saw that smooth approximation to whiisenin one dimen-
sion leads to the Stratonovich stochastic integral. Thi®tdrue in general, however,
in the multidimensional case: an additional drift can appedhe limit. This extra
drift contribution is related to the properties of the Léuga of the limit process (see
the discussion in Section 11.8).

Consider the fast—slow system

T = éyl, (11.7.26a)
. 1
T2 = gyg, (11726b)
. 1
Ty = - (z1y2 — 2291) (11.7.26¢)
. 1 1 1.
1= -3y — a5y + -Wh, (11.7.26d)
€ € €
. 1 1 1.
Y2 =~ 32 + a3 + EWQ’ (11.7.26e)

wherea > 0. HereW,, W, are standard independent Brownian motions.
Notice that equations (11.7.26d) and (11.7.26e) may beemrih the form
1 1 1.
y=—-=y+ZzaJy+-W,
S S S

wherey = (y1, y2), W = (W1, Wa) andJ is the antisymmetric (symplectic) matrix

7= ((1) _01.)'

3 This section was written in collaboration with M. Hairer.
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Applying the heuristic that

aw
~e(l —ad) ™t —
y~el —al)" —
leads to the conjectured limiting equations
) 1 . .
= (W1 - aWQ) : (11.7.27a)
iy = o (W2 n an) : (11.7.27b)
iy = H%“Q ((as = 22)1W1 + (s + 0) W ) (11.7.27¢)

We know from Subsections 11.7.3 and 11.7.6 that we must taleein conjectur-
ing such a limit as typically smooth approximations of whitgise give rise to the
Stratonovich stochastic integral. However in this casealid Stratonovich coincide
so this issue does not arise. Nonetheless, the conjectorig@¢uation is wrong.

Multiscale techniques, as described in this chapter, ledtd correct homoge-
nized system:

. 1 . .
i = (W1 -~ aWz) : (11.7.28a)
iy =17 (W2 n an) : (11.7.28b)

. 1 . . @

I3 = T ((axl —22)Wh + (o2 + 961)W2) + TTa2 (11.7.28c)

Notice the additional constant drift that appears in equm(iL1.7.28c). It is the
antisymmetric part in the equation for the fast procgsshich is responsible for
the presence of the additional drift in the homogenized ggualn particular, when
«a = 0 the homogenized equation becomes

iy =W,
j:Q = WQ;
{L3 = —{L‘QW1 + !L‘1W2
which agrees with the original (in general incorrect) catjeed limit (11.7.27).

11.8 Discussion and Bibliography

The perturbation approach adopted in this chapter, and general related ones, is
covered in a series of papers by Papanicolaou and coworksge {244, 241, 242,
240], building on original work of Khasminkii [165, 166]. 84155, 154, 31, 205,
244,242, 240, 155, 154] for further material. We adaptedyineeral analysis to the
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simple case wher® = T¢. This may be extended to, for examié, by working
in the appropriate functional setting; see [249, 250, 251].

The basic perturbation expansion outlined in this chagarae rigorously justi-
fied and weak convergence.oto X proved ag — 0; see Kurtz [181] and Chapter
18. The perturbation expansion which underlies the apprigclearly exposed in
[241]. See also [117, Ch. 6], [321]. and [291]. Similar pexik are analyzed in [271,
Ch. 8], by using eigenfunction expansions for the FokkearEk operator of the fast
process. Projection operator techniques are also oftetogegbin the physics liter-
ature as a method for eliminating fast variables. See [1h7 6Cand the references
therein.

Studying the derivation of effective stochastic models mtie original system is
an ODE is a subject investigated in some generality in [ZR2¢ specific example in
Section 11.7.2 relies on the ergodicity of the Lorenz equnstj something establishe
in [318, 319]. Use of the integrated autocorrelation funictio calculate the effective
diffusion coefficient numerically is highlighted in [324;different approach to find-
ing the effective diffusion coefficient is described in [12Bhe program described
in that example is carried out in discrete time by Beck [31pwises a skew-product
structure to facilitate an analysis; the ideas can thendmously justified in some
cases. A skew-product set-up is also employed in [322] aB8][1A rigorous limit
theorem for ODEs driven by a fast mixing system is proved Bb[2using the large
deviation principle for dynamical systems developed iRt the paper [208] the
idea that fast chaotic motion can introduce noise in sloviatdes is pursued for an
interesting physically motivated problem where the fastatit behavior arises from
the Burgers bath of [204]. Further numerical experimentslenBurgers bath are
reported in [209].

Related work can be found in [124] and similar ideas in cardgirs time are
addressed in [155, 154] for differential equations; howgekegher than developing
a systematic expansion in powersefthey find the exact solution of the Fokker-
Planck equation, projected into the spaceby use of the Mori-Zwanzig formalism
[65], and then make power series expansionsahthe resulting problem.

In Section 11.7.5 we derived a formula for the effectiveutifbn coefficient in
terms of the integral of the velocity autocorrelation fuant giving the Green—Kubo
formula. This calculatestansport coefficientia the time integral of an autocorrela-
tion function. The Green—Kubo formula, and other transpoefficients, are studied
in many books on statistical mechanics. See, for exampe (8. 11], [269].

Applications of multiscale analysis to climate models, vehthe atmosphere
evolves quickly relative to the slow oceanic variations aurveyed in Majda et
al. [205, 202]. Further applications to the atmospheriescés may be found in
[206, 207]. See also [78]. Stokes’ law, equation (11.7.15& phenomenological
model for the motion of inertial particles in fluids; see [21Vlodels of the form
(11.7.15), where the velocity field of the fluid in which thetees are immersed is
taken to be a Gaussian Markovian random field, were developg88, 289] and
analyzed further in [254]. Similar Gaussian models for pessacers were studied
in [55, 56].
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The fact that smooth approximations to white noise in oneettision lead, in the
limit as we remove the regularization, to Stratonovich bamstic integrals (see Sec-
tion 11.7.3) is often called the Wong—Zakai theorem aft82[3Whether one should
interpret the stochastic integral in the sense of 1td ocat8trovich is usually called
the 1td versus Stratonovich problem. In cases where mame time fast timescale is
present, as in the example considered in Section 11.7.@ptiect interpretation of
the stochastic integral in the limiting SDE depends on tlideowith which we take
the limits. See [109, 280]. As was shown in Section 11.7 &glare instances where
the stochastic integral in the limiting SDE can be interpdah neither the Itd nor the
Stratonovich sense. See [129, 180, 255]. A similar phenaméor the case where
the fast process is a discrete deterministic chaotic mapoliasrved in [124]. An
interesting set-up to consider in this context is the Std&es(11.7.15) in the case
where the mass is small:

s“@:lf(x)y—d—ac—kaﬁ
dt?2 e dt dt’
dy oy 2adV
dat &2 T\ ez ar

Settinge = 0 in the first equation, and invoking a white noise approximafory /s
leads to the conjecture that the lindt of = satisfies a first order SDE. The question
then becomes the interpretation of the stochastic intelgrfl 80] multiscale expan-
sions are used to derive the limiting equation satisfied:big the cases = 1,2
and3. The caser = 1 leads to the Itd equation in the limit, the case= 3 to the
Stratonovich equation and= 2 to an intermediate limit between the two.

In higher dimensions smooth approximations to white nogsalt (in general,
and depending of the type of regularization) in an additiahdt—apart from the
Stratonovich stochastic integral-which is related to t@mutator between the row
vectors of the diffusion matrix. See [151]. A rigorous frangek for understanding
examples such as that presented in Section 11.7.7, basee threbry of rough paths,
can be found in [198].

In this chapter we have considered equations of the forn2(1lwherel/ andV’
are independent Brownian motions. Frequently applicatanse where the noise in
the two processes are correlated. We will cover such sginatin Chapter 13 where
we study homogenization for parabolic PDEs. The structfiteelinear equations
considered will be general enough to subsume the form ofdlokward Kolmogorov
equation which arises from (11.2.1) wh&nandV are correlated — in fact they are
identical. The main change over the derivation in this caajstthat the operatag,
has additional terms arising from the correlation in thesesi— see Exercises 5 and
1.

When writing the backward Kolmogorov equation for the fylseem, equation
(11.2.2), we assumed that the initial conditions depenayan the slow variable
x. This assumption simplifies the analysis but it is not nemgs#f the initial condi-
tion is a function of bothr andy, then an initial (or boundary) layer appears that has
to be resolved. This can be achieved by adding appropriatesta the two—scale
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expansion which decay exponentially fast in time. This iselm [336] for continu-
ous time Markov chains and in [167] for SDEs. In this case tiitgal conditions for
the homogenized SDE are obtained by averaging the initiaditions of the original
SDE with respect to the invariant measure of the fast process

In this chapter we have studied homogenization for finiteatigional stochastic
systems. Similar results can be proved for infinite dimemsigtochastic systems,
SPDEs. See [40] for an application of the techniques deeelapthis chapter to the
stochastic Burgers equation.

The use of the representations in Result 11.1 is discusg@d 1j. The represen-
tations in Results 11.7 and 11.6 for the effective drift aiffiidion can be used in the
design of coarse time-stepping algorithms — see [322]. e the presence of two
widely separated characteristic timescales in the SDER (Ilrenders their numer-
ical solution a formidable task. New numerical methods Haeen developed which
aim at the efficient numerical solution of such problemshie¢tontext of averaging
for Hamiltonian systems the subject is described in [11& subject is revisited,
in a more general setting, in [93]. Many of these methodsak{iie fact that for
sufficiently small the solution of (11.2.1a) can be apprecdied by the solution of the
homogenized equation (11.3.6). The homogenized coeffgcéga computed through
formulae of the form (11.6.3) or (11.6.1), integrating et (11.2.1b) over short
time intervals; see [322, 81, 84, 123]. An ambitious progtanmumerically com-
pute a subset of variables from a (possibly stochastic) e system is outlined
in [162]; this approach does not use scale-separationattykind finds application
in a range of different problems; see [163, 164, 149, 30, 298, 334]. Numeri-
cal methods for multiscale problems are overviewed in [88}. work on parameter
estimation for multiscale SDEs see [258]. For other (partlynputational) work on
dimension reduction in stochastic systems see [59, 14§, 273

11.9 Exercises

1. Find the homogenized equation for the SDEs

dx 1 dUu dV

T gfo(%y) + fi(z,y) + ao(ﬂf,y)% + 041(337y)E7 x(0) = xo,
dy 1 1 1 av

e ;g(xvy) + gg1(x7y) + gﬁ(w7y)%7 y(0) = yo,

assuming thaf, satisfies the centering condition and thaandV are indepen-
dent Brownian motions.
2. a. LetY denote eithef’ or R. What is the generatat for the procesy € Y
given by
dy dv

—_— = _?

In the case wherg(y) = —V¥(y) find a function in the null space af*.
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b. Find the homogenized SDE arising from the system

dx 1

E - gf(xay)7

dy 1 1dV
P gg(y) + 7

in the case wherg = —V¥(y).

c. Define the cell problem, giving appropriate conditionsrtake the solution
unique in the cas@’ = T<. State clearly any assumptions grthat are re-
quired in the preceding derivation.

Use the Itd formula to derive the solution to the SDE (14).7Convert this SDE

into Stratonovich form. What do you observe?

a. Let) be eitherT¢ or R¢. Write down the generatat, for the procesg € Y
given by: . J

d—‘z =g(y) + d—‘t/-
In the case wherg is divergence free, find a function in the null spacecgf

b. Find the averaged SDE arising from the system

dx
E - f(a’ay)v
@ 1 1 dVv

at gg(y) + Ed

in the case where is divergence free.
c¢. Find the homogenized SDE arising from the system

dx 1
i gf(l,y)a
@ 1 1dV

in the case wherg is divergence-free.

d. Define the cell problem, giving appropriate conditionsrtake the solution
unique in the cas® = T¢. Clearly state any assumptions @rthat are re-
quired in the preceding derivation.

Consider the equation of motion

dx dw
T —f($)+f7%,

where f(z) is divergence-free and periodic with mean zero. It is of e to
understand how: behaves on large length and timescales. To this end, rescale
the equation of motion by setting— =/ andt — t/e? and introducey = x /.

Write down a pair of coupled SDEs farandy. Use the methods developed in
Exercise 1 to enable elimination gfto obtain an effective equation far
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6.

7.
8.

Carry out the analysis presented in Section 11.7.6 irirarigidimensions. Does
the limiting equation have the same structure as in the amemsional case?
Derive equation (11.7.25) from (11.7.23) whefn) is given by (11.7.24).

(The Kramers to Smoluchowski limit.) Consider the Larigequation

d’x dx dW
P =b(x) - — + V20— 11.9.1
SaE T T gt V2o ( )
where the particle mass is assumed to be smal; £2.
a. Write (11.9.1) as a first order system by introducing théabdey = ci.
b. Use multiscale analysis to show that, wheg< 1 the solution of (11.9.1) is
well approximated by the solution of the Smoluchowski et

dX aw
c. Calculate the first correction to the Smoluchowski ecumati

Write equations (11.7.16) as a first order system and slhau the 1td and
Stratonovich forms of the equation coincide.
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Homogenization for Elliptic PDEs

12.1 Introduction

In this chapter we use multiscale expansions in order toyghalproblem of homog-
enization for second order uniformly elliptic PDEs in digence form. At a purely
formal level the calculations used to derive the homogehé&piations are very sim-
ilar to those used in the previous chapter to study homogéniz for SDEs. The
primary difference is that there is no time dependence ititlear equations that we
study.

In Section 12.2 we present the boundary value problem sludi¢his chapter.
Section 12.3 contains the simplified (homogenized) eqnatiand their derivation
is given in Section 12.4. Section 12.5 studies the strucifiiee simplified equation,
showing that it inherits ellipticity from the original eq@n. In Section 12.6 we
describe two applications of the theory, both explicitijvable, a one dimensional
example, and a two dimensional layered material.

12.2 Full Equations

We study uniformly elliptic PDEs in divergence form, withri2hlet boundary con-
ditions:
V. (AEVuE) —f forze 0, (12.2.1a)

u® =0 forx € 912 (12.2.1b)

Hereu® = wu®(x) is an unknown scalar field, to be determined, = A(x/¢) a
given matrix field andf = f(x) a given scalar field. Unlike the problems in the
previous four chapters, there are not two different expliariablesr andy. We will
introducey = x/¢ to create a setting similar to that in the previous chaptrs.
goal is then to derive a homogenized equation in whid eliminated, in the limit
¢ — 0. Furthermore, we study various properties of the homogeiipefficients.

We takef? C R¢, open, bounded with smooth boundary. We will assume that the
matrix—valued functiom(y) is smooth,l—periodic and uniformly positive definite.



190 12 Homogenization for Elliptic PDEs

This assumption implies that the differential operatot égapears on the left hand
side of (12.2.1a) is uniformly elliptic (see Chapter 7). thermore, we take the func-
tion f(z) to be smooth and independentofTo summarize, we make the following
assumptions:

f € C®(R%,R); (12.2.2a)
A€ O (T4 R&); (12.2.2b)
Ja > 0: (€, Ay)E) > al€)?, YyeTiVeE eRY (12.2.2¢)

Notice that our assumptions ehimply thatA® € M(«, 3, £2) for some appropriate

£ and « independent of. The regularity assumptions are more stringent than is
necessary; we make them at this point in order to carry oufdhmeal calculations
that follow. Allowing minimal regularity assumptions is anportantissue, however:

in many applications one expects that the coefficiéfy) will have jumps when
passing from one material phase to the other. Our proofsmwidgenization theorems

in Chapter 19 will weaken the regularity assumptions thatwade here.

Let Ay = -V, - (AV,) equipped with periodic boundary conditions on the unit
torus and withA = A(y). This operator will play a central role in the following.
It was studied in Example 7.12: there it was shown that it hase dimensional
null space, comprising constantsijinFurthermore, use of the Fredholm Alternative,
shows that the Poisson equation

Aov = h, v is1-periodic (12.2.3)
has a solution if and only if
/ h(y)dy = 0. (12.2.4)
Td

The solution is unique up to an additive constant. Amongallittons of (12.2.3)
which satisfy the solvability condition we will choose thaigue solution whose
integral overT¢ vanishes:

Aov = h, wv is1-periodic v(y)dy = 0.
Td

Equations of the form (12.2.3) will play a central role in wifiallows.

12.3 Simplified Equations

Define theeffective diffusion tensorby the formula

A= [ (40 + A@Tx)T) dy (12:31)

where the vector fielg, : T¢ — R satisfies theell problem

~V, - (VyxAT) = v, - AT, xis 1-periodic (12.3.2)
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Result 12.1.For 0 < ¢ <« 1 the solutionu® of equation(12.2.1)is approximately
given by the solutiom of the homogenized equation

~V - (AVu) = f forz € 2, (12.3.3a)
u =0 forz € af2. (12.3.3b)

Notice that the fieldy is determined up to a constant vector. However, since only
V,x enters into the formula for the homogenized mattimppearing in the homog-
enized equation, the value of this constant is irrelevaot.definiteness, however,
we work with the unique solutiog found by imposing the normalization

/Td x(y)dy = 0. (12.3.4)

The cell problem can be written in an alternative, sometimgsful, form by
writing an equation for each componentyf

Aoxe =Vy-ap, £=1,....,d, (12.3.5)

wherea, = Aey, ¢ = 1,...,d and{e,}¢_, is the standard basis d&r. Thusay is
the ¢t column of A.

Remark 12.2Since the HessialV,V u is symmetric, it follows from property
(2.2.2) applied to (12.3.1) that the following expressionA is equally valid:

i / (AW)" + Vyx(u)AW)T) dy.
'I[‘d.

Indeed this expression and (12.3.1) may be combined (fompleaveraged) to
obtain other equally valid expressions fér(for example symmetric). O

12.4 Derivation

Since a small parameterappears in equation (12.2.1), it is natural to look for a
solution in the form of a power series expansiom:in

uf =g+ euy + 2us + ... ..

The basic idea behind the method of multiple scales is tonasgbat all terms in
the above expansion depend explicitlylmothz andy = Z. Furthermore, since the
coefficients of our PDE are periodic functionsbft is reasonable to require that all
terms in the expansion are periodic functionsoHence, we assume the following
ansatz for the solution®:

u®(r) = ug (a:, g) +eu (x, g) + 2 uy (a:, g) +..., (12.4.1)



192 12 Homogenization for Elliptic PDEs

whereu;(z,y),  =0,1,..., are periodic iny.

The variablesr andy = Z represent the "slow” (macroscopic) and "fast” (micro-
scopic) scales of the problem, respectively. Eeg 1 the variabley changes much
more rapidly thanc and we can think of as being a constant, when looking at the
problem at the microscopic scale. This is where scale sépaiia exploitedwe will
treat z and y as independent variablegustifying the validity of this assumption
ase — 0 is one of the main issues in the rigorous theory of homog¢ioizaSee
Chapter 19.

The fact thaty = Z implies that the partial derivatives with respecttbecome

1
V — Vm + gvy

In other words, theotal derivativeof a functiong® (z) := g (x, g) can be expressed
as

1
Vo' (@) = Vag(e,y)| | +=Viglay)| .

Y= Y=<

where the notatioh(z, y)|,=. means that the function(z, y) is evaluated ag = .
We use the above to rewrite the differential operator

A==V (A(y)V)

in the form

A = %Ao + lAl + As, (12.4.2)
3 9
where
Ay = ~V, - (A(y)V,), (12.4.3a)
A==V, - (A[Yy)Vz) = Vo - (A[y)Vy), (12.4.3Db)

Notice that the coefficients in all the operators defined atare periodic functions
of y. We equipA, with periodic boundary conditions GFf'.
Equation (12.2.1) becomes, on account of (12.4.2),

<5i2“40 + éAl + .A2> uf = f for (z,y) € 2 x T, (12.4.4a)

uf =0 for (z,y) € 002 x T4 (12.4.4b)
We substitute (12.4.1) into (12.4.4) to deduce:

1 1
E_QAOUO + - (Aoui + Ajug) + (Aguz + Ajug + Asug) + O(e) = f. (12.4.5)

We equate coefficients of equal powersdb zero in the above equation and disre-
gard all terms of order higher thanto obtain the following sequence of problems:
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O(1/e?)  Agug =0, (12.4.6a)
0(1/5) .Aou1 = —.Aluo, (1246b)
O(l) Aous = —Ajur — Asug + I (12.4.60)

Hereu;(z, y) arel—periodic in their second argument.

Notice that A, is a differential operator iy and thatz appears in equations
(12.4.6b) and (12.4.6¢c) merely as a parameter. From (1&8.4v@ deduce that
uo(z,y) = u(x) — thus the first term in the multiscale expansion is indepehde
of y. The remaining two equations are of the form (12.2.3) witk- v(z,y) and
similarly h = h(x, y); thusz enters as a parameter.

Let us proceed now with (12.4.6b) which becomes

Aoug = (Vy . AT) -Vau, wui(zx,-)isl-periodic / urdy =0. (12.4.7)
Td
The solvability condition (12.2.4) is satisfied because

/ (Vy -AT) -Veudy = Vyu- / v, Al dy
T4 T4
= O’

by the divergence theorem and periodicity 4f-); see Remark 7.13. We seek a
solution of (12.4.7) using separation of variables:

ur(z,y) = x(y) - Vau(z). (12.4.8)

Upon substituting (12.4.8) into (12.4.7) we obtain the getiblem (12.3.2) for the
vector fieldx(y). The fieldx(y) is called thefirst order corrector . Notice that the
periodicity of the coefficients implies that the right handesof equation (12.3.2)
averages to zero over the unit cell and consequently theuoallem is well posed.
We ensure the uniqueness of solutions to (12.3.2) by rewuilie corrector field to
have zero average — condition (12.3.4).

Now we consider equation (12.4.6c¢). By (12.2.4) we see thatrder for this
equation to be well posed, it is necessary and sufficientiright hand side to av-
erage to zero ovef<. Since we have assumed that the functfgn) is independent
of y the solvability condition implies:

/ﬂ‘d (Agug + Aruq) dy = f. (12.4.9)

The first term on the left hand side of the above equation is

/ Asug dy = / —V. - (A(y)Vu) dy
Td Td

. [( [, aw) dy) vmum]

- ( A(y) dy) 1 Vi Vu(x). (12.4.10)
']I‘d
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Moreover
/]l‘d Ajur dy = /W (=Vy - (A(y)Vour) — Vi - (A(y)Vyuq)) dy
= Il + IQ.

The first terml; = 0 by periodicity and Remark 7.13. Now we consider

I

Ve - (A(y)Vyur) dy
Td

— [ A(y) : VoV, (x - Veu) dy
'ﬂ*d

- ( /Tr d (A(y)Vyx(y)T)dy) VLV, (12.4.11)

We substitute (12.4.11) and (12.4.10) in (12.4.9) to olsérhomogenized equation
of Result 12.1 where the homogenized coefficidms given by the formula (12.3.1).
This completes the derivation.

12.5 Properties of the Simplified Equations

In this section we study some basic properties of the effectefficients. In particu-
lar, we show that the matrix of homogenized coefficietis positive definite, which
implies that the homogenized differential operator is amifly elliptic and that, con-
sequently, the homogenized equation is well posed. Furtber, we show that sym-
metry is preserved under homogenization: the homogenizgdxis symmetric if
A(y) is. We also show that the homogenization process can crestatpies: even
if the matrix A(y) is diagonal, the matrix of homogenized coefficiedtmieed not
be.

In order to study the matrix of homogenized coefficients itiseful to find an
alternative representation far. To this end, we introduce the bilinear form

a(0.6) = | (9,0, AG)7,) dy. (125.1)

defined for all functions, 1) € C''(T%). Notice that this is the bilinear from associ-
ated with the operatad, in the sense that

/T A dy=ar(6,4) V.9 € Ch, (T9) (12.5.2)

Note that, wheneved is symmetric, so is the bilinear form, (-, -). We start by ob-
taining an alternative, equivalent formulation for thel ggbblem. The formulation
is closely related to the weak formulation of elliptic PDisdivergence—form in-
troduced in Chapter 7. In the rest of this section we will assuhat the solution of
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the cell problem is smooth enough to justify the calculaitmat follow. It will be
enough to assume that each component of the correctorfigldis continuously
differentiable and periodicy,(y) € CL.,.(T%), £ =1,...,d.

per

Recall thak, denotes the unit vector with” entryd;;. Also lety, denote the*”
component of the vectay. Note thate, = V,y, and recall thaty, = Aey, the ¢tk
column of A. Using these two elementary facts we can obtain the follgwiseful
lemma.

Lemma 12.3.The cell problen{12.3.2)can be written in the form
ar(d,xe+ye) =0 Vo € Ch (T, £=1,...d. (12.5.3)
Proof. From (12.3.5) we deduce that
Aoxe =Vy - (Aer) = Vy - (AVyye) = —Aoye.
Consequently, the cell problem can be written in the form
Ao(xi +y) =0, 1=1,....d,

with periodic boundary conditions. We multiply the cell ptem as formulated
above by an arbitrary function € C;er(ﬂl‘d). Integrating over the unit cell, using
Remark 7.13 and equations (12.5.1) and (12.5.2), we oht&i53). O

Using this lemma we give an alternative representation édarfor the homoge-
nized coefficients. The lemma shows thiis symmetric, wheneved(y) is.

Lemma 12.4.The effective matrixl has components given by
i = a1(x; + ¥ X +vi), hj=1,....d. (12.5.4)
In particular, symmetry ofi(y) implies symmetry ofl.
Proof. Notice first that the previous lemma implies that, singé&y) € C,..,.(T%),
a1(xisxj +y;) =0, Vi, j,=1,...,d. (12.5.5)
We now use formula (12.3.1), together with (12.5.5) to abtai
aij = €; -Zej

= /y(ei - Aej +e; - AVyXTej)dy

- /y (Voyi - AVyy; + Vi - AV, ) dy

/y <Vyyv:, A(Vy(yj + Xj) > dy

= a1(yi, x; +Y))
= a1(yi + Xi, X5 + Yj)-
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This proves (12.5.4). Assume now théfy) = A(y)?. This implies that the bilinear
formaq (-, -) is symmetric. Thus

Gij = a1(Yi + Xis X5 + ¥j)
= a1 (y; + X, Xi +¥i)
= Gj;,

which shows that the homogenized matrix is symmetrig.
We now show that the homogenized matrixs positive definite. This implies
that the homogenized equation is a well posed elliptic PDE.

Theorem 12.5.The matrix of homogenized coefficiertss positive definite.

Proof. Let¢ € R be an arbitrary vector. We need to show that there exists staon
@ > 0 such that .
(€, A¢) > ql¢)®, vE e R

We use the representation formula (12.5.4) to deduce that:

<£a Z£> = al(w7 ’LU),

with w = £- (x +y). We now use the uniform positive definitenessidj)) to obtain
ar (w,w) > a/ |V,w|? dy > 0.
Td

ThusA is nonnegative.
To show that it is actually positive definite we argue as feoLet us assume
that
(6,48 =0

for someg. Then, sincex > 0, V,w = 0 andw = ¢, a constant vector; consequently
y=c—&-x

The right hand side of this equation is 1—periodic and camtirs iny and conse-
quently the left hand side should also be. The only way thishappen is i€ = 0.
This completes the proof of the lemmad

The above theorem shows that uniform ellipticity is a proyérat is preserved
under the homogenization procedure. In particular, thigies that the homogenized
equation is well posed, since it is a uniformly elliptic PDEmwconstant coefficients.

Remark 12.6Note that homogenization does not preserve isotropy. Itiqudair,
even if the diffusion matrixA has only diagonal non—-zero elements, the homoge-
nized diffusion matrix4 will in general have non-zero off-diagonal elements. To
see this, let us assume tha} = 0, i # j. Then the off-diagonal elements of the
homogenized diffusion matrix are given by the formula (hnmswation convention
here)
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8)(]‘ . .

a;j = i dy, :

@ij /Td a By Y, L F ]
This expression is not necessarily equal to zero and leatisetsurprising result
that an isotropic composite material can behave, in thet mithe microstructure

becomes finer and finer, like an anisotropic homogeneousialated

12.6 Applications

We present two useful illustrative examples, for which &iplkolutions may be

found. Essentially, the one—dimensional case is the onheige setting in which

the cell problem can be solved analytically and an explaitrfula for the effective

diffusivity can be obtained. In higher dimensions, expliormulae for the effective

diffusivities can be obtained only when the specific streetf the problem under
investigation enables us to reduce the calculation of tiedgenized coefficients to
consideration of one dimensional problems. Such a redudipossible in the case
of layered materials, the second example that we consider.

12.6.1 The One-Dimensional Case

Letd = 1 and takef2 = [0, L]. Then the Dirichlet problem (12.2.1a) reduces to a
two—point boundary value problem:

_% (a (g) CZ;:) = [ forz e (0,L), (12.6.1a)

u®(0) =u*(L) = 0. (12.6.1b)

We assume that(y) is smooth, periodic with period 1. We also assume that there
exist constantd < a < 8 < oo such that

a<aly)<B, Vyelol]. (12.6.2)

We also assume thgtis smooth.

The cell problem becomes a boundary value problem for amardidifferential
equation with periodic boundary conditions.

_ A BX ) Z daly)
a <a(y) dy) =y fory € (0,1), (12.6.3a)
1
x is 1—periodic / x(y)dy = 0. (12.6.3b)
0

Sinced = 1 we only have one effective coefficient which is given by the dimen-
sional version of (12.3.1), namely
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‘= Y
_ <a(y) <1 N dé_g)» , (12.6.4)

Here, and in the remainder of this chapter, we employ thetioota

(f(y)) == » f(y) dy,

for the average over?.
Equation (12.6.3a) can be solved exactly. Integration focdimy gives

d
a(y)d—X = —a(y) + c1. (12.6.5)
Y
The constant; is undetermined at this point. The inequality (12.6.2)alais to
divide (12.6.5) bya(y) since it implies that is strictly positive. We then integrate
once again fron) to y to deduce:

Vo1
Xy =—y+01/ ——dy + c2.
) e

In order to determine the constantwe use the fact that(y) is a periodic function.
Thusx(0) = x(1) and we deduce that

a7

1= —1——
fO ay)dy

Thus, from (12.6.5),
dx 1
1+ 2 =—————.
dy — {a(y)~"aly)
(Notice thatcs is not required for the calculation @f) We substitute this expression
into equation (12.6.4) to obtain

a=(a(y)~H. (12.6.6)

This is the formula which gives the homogenized coefficienbme dimension. It
shows clearly that, even in this simple one—dimensionainggtthe homogenized
coefficient is not found by simply averaging the unhomogedizoefficients over a
period of the microstructure. Rather, the homogenizedimient is the inverse of the
average of the inverse of the unhomogenized coefficient kahmonic averagdt is
quite easy to show that the homogenized coefficient whichviengoy the harmonic
average (12.6.6) is bounded from above by the averagé,0f See Exercise 12.
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12.6.2 Layered Materials

We consider problem (12.2.1), with assumptions (12.2.8%fed, in two dimen-
sions. We assume that the domainc R? represents tayered materialthe prop-
erties of the material change only in one direction. Herfee coefficientsd(y) are
functions of one variable: fay = (y1,y2)” we have

aij = ai(y1), 1,5=12. (12.6.7)

The fact that the coefficients are functionsyafimplies the right hand side of the
cell problem (12.3.2) is a function gf, alone. As a consequence the solution of the
cell problem is also a function gf; alone and takes the form

xe = xe(yr), €=1,2. (12.6.8)
Upon substituting this into (12.3.2) we conclude that thHegreblem becomes
d dxe(y1) daye(y1)
- = (=1,2 12.6.9
dy1 (all (yl) dy1 dy1 ) ) ( )

with periodic boundary conditions. Similarly, the formdtar the homogenized co-
efficients (12.3.1) becomes:

1
dyx .
Q5 = / (aij(yl) + a1 (yﬂM) dyl, 1,5 =1,2. (12610)
0 dy:
Let us now solve equations (12.6.9). These are ordinargrdifitial equations and we
can solve them in exactly the same way that we solved the amerdional problems
in the preceding subsection. To this end, we integrate fidoy and divide through
by a11(y1) to obtain
d; 1
Xe s T =12 (12.6.11)
dy1 a1y ai
where the constant; is to be determined. We have to consider the cdsesl and
¢ = 2 separately. We start with= 1. In this case the above equation simplifies to
dx1

1
- = _1+cl_7
dy a11

which is precisely the equation that we considered in Sect6.1. Thus, we have:

a1 (12.6.12)

dyy (a11(y)~Hai(y)

Now we consider equation (12.6.11) for the cése 2:

d a 1
dx2 _ o2 1
dy a11 ajy
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We integrate the above equation once again and then deteth@rcoefficient; by
requiringx2(y1) to be periodic. The final result is

dxa(y1) _ _ a1a(y1) n (a12(y1)/a11(y1)) 1 . (12.6.13)

diy1 a11(y1) (a'(y1))  anly1)

Now we can compute the homogenized coefficients. We stantawit The calcula-
tion is the same as in the one—dimensional case:

ail = <a11(y1)_1>_1. (12.6.14)

We proceed with the calculation af>. We substitute (12.6.13) into (12.6.10) with
1 =1, j = 2to deduce:

Q12 = /1 <a12(y1) + an(:‘ﬂ)%) dy

_ u u ai2(y1) | (az2(y1)/ani(y1)) 1
= < 12(y1) + a1 y1)< a1 (y1) + <a11 ) au(gn))) dy
= /o <a12 (y1) —a12(y1) + <a12<(gi)1/(211)(y1)>> dy
1 1
_ {aa(mn /au( Y1)
(a7; (1))
Hence )
G = (22 art 1 -1 .0.
iz = (2200 (o ) (12.6.15)
Similarly,
o fanl)\
ag1 = <a11(y1)> < 11 (y1)> . (12616)

Finally we considefios :

g = /01 <a22(’y1) + a21(’y1)cb(;7;i/1)> dy
_ /01 <a22(y1)+a21(y1) <_a12(y1) L lo(y)/an(y)) 1 )) dy

a11(y1) (an'(y1))  anly)
- [ (onto - iy ozl
= oo ) (o it 007+ (oo - 2550
Consequently:
o= () iy ) 5 07 (o) 22

(12.6.17)
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It is evident from formulae (12.6.14), (12.6.15), (12.6.46d (12.6.17) that the ho-
mogenized coefficients depend on the original ones in a venypticated, highly
nonlinear way.

12.7 Discussion and Bibliography

The method of multiple scales was developed by various relsees in the 70s with
significant contributions from Keller, Babuska, SanchedeRzia, Bensoussan, Li-
ons, Papanicolaou and others. See [158, 159, 26, 25, 241Pan€ the references
therein. A first systematic exposition of the method of nplétiscales is contained in
[33], where references to the earlier literature can be fo&ee also the book [279].
Rigorous convergence results for elliptic PDEs with rapidécillating coefficients
were proved before the development of the method of mulspédes. See [73, 296]
and the text [153]. However the power of the method of mudtiptales is its wide
applicability to a variety of differing settings. In congta rigorous results tend to
apply on a case by case basis and their proofs differ suletgritetween different
PDEs, and between Markov chains, ODEs and SDEs. (See Paiftthis book).
In most cases, however, an appropriate Poisson equatiercéthproblem) plays a
prominent role in the analysis.

The one dimensional problem (see Section 12.6.1) was stuidlif296], with-
out using the method of multiple scales. In the one dimermgioase it is possible
to derive the homogenized equation using the method of plel§cales even in
the nonperiodic setting; see [143, Ch. 5], [66, Ch. 5]. Thenbgenized equation
is a second order uniformly elliptic PDE in the case of noigmic fast oscillatory
coefficients. However this result is most naturally obtdinvéa the theory ofH —
andI"—convergence, rather than multiple-scale expansions.Z5,[[308]. In the
general setting of nonperiodic, deterministic, homogatiin the homogenized co-
efficients cannot be expressed in terms of solutions to qjate Poisson equations
and there are no explicit formulae for them. In this case bi&t one can hope for is
to obtain bounds on the homogenized coefficients.

The homogenized equation for layered materials (see $et#®.2) was derived
rigorously by Murat and Tartar without any appeal to the rdtbf multiple scales;
see [232] and the references to the original papers thérhatwo—dimensional case
that we treated in subsection 12.6.2 can be easily extendhdd—dimensional one,
d > 2, i.e.to the case wheg;(y) = a;;(y1), ,j =1,...,d. See [232].

The elliptic boundary value problem (12.2.1) is a Dirictpedblem. However, an
inspection of the analysis presented in Section 12.4 rethat the boundary condi-
tions did not play any role in the derivation of the homogedizquation. In particu-
lar, the two—scale expansion (12.4.1) that we used in oocdgetive the homogenized
equation did not contain any information concerning thertatary conditions of the
problem under investigation. Indeed, the boundary comatbecome somewhat ir-
relevantin the homogenization procedure. Exactly the szatweilations enable us to
obtain the homogenized equation for Neumann or mixed bayraanditions. This
is not surprising since the derivation of the homogenizagaéiqn is based on the
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analysis of local problems of the form (12.2.3). This localldem cannot really see
the boundary — this is the key property of scale separation.

However, the boundary conditions become very importantnathgng to prove
the homogenization theorem. The fact that the two—scalaresipn (12.4.1) does not
satisfy the boundary conditions of our PDE exactly but,eatbnly up toO(¢), in-
troduces boundary layers [143, ch. 8Boundary layers affect the convergence rate
at whichu®(x) converges ta.(z) ase — 0. We can solve this problem by modify-
ing the two—scale expansion (12.4.1), adding additiomaisevhich take care of the
boundary layer and vanish exponentially fast as we move dweay the boundary
so that they do not affect the solution in the interior. Wesreed [27] for details.

The discussion in Remark 12.2 is further elaborated in [B8]ia [66]. Different
expressions for the effective diffusion tensor can be udefuthe proof of various
properties of the the effective diffusion tensor.

From the point of view of continuum mechanics, the methodashbgenization
enables us to obtain macroscopanstitutive lawdgor composite materials. Macro-
scopic constitutive laws have been derived using homogéniztheory for various
types of composite materials. See, e.g. [46, 108]. An altidre approach is pre-
sented in [230, 133]. The theory of composite materialsésgnted in the excellent
monograph [229].

In the Dirichlet problem that we analyzed in Section 12.4 wsumed that the
matrix A (x) depends only on the microscale, i.e.

x
ro=4(%)
(1) = A (2
with A(y) being al—periodic matrix valued function. However, the method ofimu
tiple scales is also applicable to the case where the casftcdepend explicitly on
the macroscale as well as the microscale:
x
A(z) = A ( , —) :
(2) = A (a2,
with A(z, y) beingl—periodic iny and smooth inc. When the coefficients have this
form they are calledbcally periodicor non—uniformly periodic Analysis similar to
the one presented in Section 12.4 enables us to obtain thedenized equation for
the Dirichlet problem

-V - (A*Vu®) = f forz € 2, (12.7.1a)

u® =0 forx € 912, (12.7.1b)

where A®(x) = A(z,z/e). Now the homogenized coefficients are functions of
x:
~V-(AVu) = f forz e 2 (12.7.2a)

! The presence of boundary and initial layers is a common featuall problems of singular
perturbations. See the bibliographical discussions iermthapters from Part I, and [143]
and [161], for further detalils.
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u=0 forz € 912, (12.7.2b)

and the cell problem is parameterizedbginceA = A(x, y):
—Vy - (VyxAT) =V, - AT, yeT’ (12.7.3)

The homogenized coefficients are given by the formula:

A(r) = /]l‘d (A(z,y) + A(a:,y)vmx(x,y)T) dy. (12.7.4)

We emphasize the fact that the "macroscopic variablenters in the above two
equations as a parameter. Consequently, in order to cortipugdfective coefficients
we need to solve the cell problem (12.7.3) and evaluate tegrals in (12.7.4) at all
pointsz € (2.

The method of multiple scales can also be applied to semailie#liptic PDEs
with rapidly oscillating coefficients — equations of therfor

V. (AEWE) = f(uf) forz € 9, (12.7.5a)

u® =0 forz € 012 (12.7.5b)

The homogenized equation takes the form
—V - (AVu) = f(u) forz € £, (12.7.6a)

u=20 forz € 912, (12.7.6b)

with A as in (12.3.1).

In section (12.2) we obtained the first two terms in the twalesexpansion for
the Dirichlet problem (12.2.1). The second term is propordil—up to an unknown
function of z— to the gradient of the first term in the expansion which selee
homogenized equation, i.e

uy (x, g) =X (%) -Vu(z) + ur (), (12.7.7)

wherex(y) solves the cell problem. We can also solve higher order éopsand
obtain higher order terms in the two—scale expansion. Famgte, we can solve
equation (12.4.6) and compute the third term in the expansiQr, y):

us(2,y) = O(y) : VaVou() + fia(x) (12.7.8)

where thesecond order corrector fiel®(y) is a matrix valued function which satis-
fies the boundary value problem

A6 = B. (12.7.9)

Here B(y) is given by
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B(y) := A+ Ay) + Ay)Vyx(m)" + Vyx(y)Ay) +x(y) ® (Vy - Aly)T).
All higher order equations are of the form
Aotgro = —Ajug1 — Aour, k=1,2,...

It turns out thatuy () is proportional to the:*” order derivatives ofi(x). See [27].
The method of multiple scales can be extended to situatidresemhere aré
length scales in the problem, i.e. when the ma#tiXx) has the form

c . - T
A (x)_A(€,€2,...,€k),

and A is 1-periodic in all of its arguments. This is known esterated homoge-
nization—[33, Sec. 1.8]. A rigorous analysis of reiterated homogatidon in a quite

general setting is presented in [8]. Reiterated homogéaizhas recently found ap-
plications in the problem of advection and diffusion of pessracers in fluids. See,
for example, [253, 219, 220] for details. When there are itdip many scales in the
problem, without a clear separation, the homogenizatisuoltdreaks down, in the
sense that the homogenized coefficient cafl.ligee [16].

In general itis not possible to compute the homogenizedicaeits analytically;
indeed, their calculation requires the solution of the pedblem and the calculation
of the integrals in (12.3.1). In most cases this can be dohemmerically. It is
possible, however, to obtain bounds on the magnitude of ffieetwe coefficients.
Various tools for obtaining bounds have been developedexample it is possible
to obtain a variational characterization of the homogeshizeefficients. We refer to
[229, 311, 107] for various results in this direction. Marfitieese techniques apply
to the nonperiodic setting.

The method developed in this chapter readily extends tallhttundary value
problem such as the following parabolic PDE:

887; VL (ATVEE) = £ in 02 % (0,T), (12.7.10a)
w =0 ondN x (0,T) (12.7.10b)
u® = uip(r) in 2 x {0} (12.7.10c)

under various assumptions concerning thdependence id¢ and f¢. A time-
dependent situation of interest arises when the coeffgiehthe evolution PDE
oscillate in time as well as space, i4". = A (£, %), k > 0 with the matrix valued
function A(y, 7) being 1—periodic in botly andr. This means that we have to intro-
duce two fast variablegy = £ andr = .. More information on homogenization
for evolution equations with space—time dependent coefftsican be found in [33,
Ch. 3]. We study homogenization for parabolic PDEs usingntie¢hod of multiple
scales in Chapters 11, 13 and 14.

One can also study the problem of homogenization for hyperbwave) equa-

tions:
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2,,€
% VL (ATVE) = f in 2% (0,7), (12.7.11a)
u® =0 ondf2 x (0,7), (12.7.11b)
u® =g, in 2 x {0}, (12.7.11c)
%it = vin(z) In 2 x {0} (12.7.11d)

The method of multiple scales can be used to obtain a homoggtaguation, which
is a wave equation with constant coefficients and the sartialiand boundary con-
ditions. However there is a fundamental difference betwbénand the parabolic
case: for parabolic problems the dissipation drives thetsmi to lie near to the null
space of the leading order operatty, no matter how the initial data is chosen. For
the wave equation this does not happen and it is necessahpse @nitial data close
to the desired subspace. We will not study homogenizatiow&ve equations in this
book. We refer the interested reader to [66, Ch. 12], [33,2¢h[160, 47]. Related
problems arise for the Schrodinger equation with multiptales — see [316]. Ho-
mogenization result for the Schrodinger equation and tb@hnection to effective
mass theorems are presented in [10].

The numerical evaluation of homogenized coefficients, & glriodic setting,
can be performed efficiently using a spectral method. On therchand, the nu-
merical solution of the original boundary value problem.@L2) whene is small
is a very hard problem. Special methods, which in one way ottear are based
on homogenization, have been developed over the last fews.y®¥ée refer to
[145, 76, 2,82,9,52, 61, 89, 90, 92, 231] and the referern@sin on this topic. The
development and analysis of finite element methods fortelPDEs with a multi-
scale structure, and related problems arising in geopalajplications, is discussed
in [60, 88, 145, 146]. Numerical methods for elliptic PDEbjget to stochastic forc-
ing, or with stochastic coefficients, is described in [3, 1216, 215, 286, 287].

12.8 Exercises

1. Consider the problem of homogenization for (12.2.1) wiencoefficients ma-
trix A(y) has different period in each direction

Aly + Mer) = Aly), k=1,...,

with A\, > 0, k£ = 1,...d. Write down the formulas for the homogenized coeffi-
cients.

2. Consider the two—scale expansion (12.4.1) for proble2(1). In this chap-
ter we calculated the first three terms in the two—scale esipanu, solves the
homogenized equation,; is given by (12.7.7) and by (12.7.8). Verify the
expression for,, and the form of the higher order cell problem (12.7.9).
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3. Consider the Dirichlet problem (12.2.1) fordadimensional layered material,

ie.
a;j(y) = aij(y1), 1-periodicinyg;, ¢,j=1,...,d.

We solved this problem in Subsection 12.6.2 in the e¢ase 2. Now solve the
corresponding cell problem and obtain formulas for the hgemized coefficients
for d > 3, arbitrary.

4. Considerthe problem of homogenization for second ordéotmly elliptic PDE
in 1 dimension, i.e. the problem studied in Section 12.6.1.
a. Calculater for the case

~Jar : ye]o, 3],
a(y)—{a2 . ye(%,21],

wherea;, as are positive constants.
b. Now calculate: for the case

1

aly) = 2 + sin(2my)

5. Consider the Dirichlet problem (12.2.1) folladimensional isotropic material,
ie.
a;j(y) = a(y)d;;, 1-periodic 4,j=1,...,d,
whered;; stands for Kronecker's delta.
a. Use the specific structure dfy) to simplify the cell problem as much as you

can.
b. Letd = 2 and assume that(y) is of the form

a(y) = Yi(y1)Ya(y2)-

Solve the two components of the cell problem and obtain féamdor the
homogenized coefficients (hint: use separation of vargble
6. Consider the boundary value problem (12.7.1). Assume tha= A(z, %)
whereA(z, y) is smooth 1—periodic iny and uniformly elliptic and that, further-
more, f is smooth. Use the method of multiple scales to obtain gdinat@ns
of the homogenized equation (12.7.2), the cell problemABY and the formula
for the homogenized coefficients (12.7.4). Verify that tesults of section 12.5
still hold.
7. Consider the Dirichlet problem

r X e\
V. (A (? 6—2) Vu ) —fforze® (12.8.1a)
u(x) =0, forx € 012. (12.8.1b)

where the coefficientsl(y, z) are periodic in bothy and z with period1. Use
the3—scale expansion

. T T T T 9 T T
ut () =ug (2, =, = ) tew (2, =, = ) +eu (2, =, 5 ) + ...
e e e'e e
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to derive an effective homogenized equation, together thighformula for the
homogenized coefficients and two cell problems.

Repeat the previous exercise by homogenizing first wigheet toz = y /= and
then with respect tg:

a. Homogenize the equation

V. (A (y g) w) —f forze (12.8.2a)

u(x) =0, forxz € 92 (12.8.2b)

by treatingy as a parameter.
b. Homogenize the equation

V. (Z (%) VEE) —f, forze 0 (12.8.3a)

u(x) =0, forx € 912, (12.8.3b)

whereA(y) is given by the expression derived in the preceding sectidimeo
question.
Derive the homogenized equation, together with the celblem and the formula
for the homogenized coefficients, by applying the method oligile scales to
the heat equation (12.7.10), witkf = A(Z).
Consider the initial boundary value problem (12.7.1@phwA® = A(Z, 5%)
Explain why it is natural for the period of oscillations imié to be characterized
by k = 2. Carry out homogenization for the cades- 1,2, 3..2
Use the method of multiple scales to derive the homogenéqjuation from
(12.7.12).
Prove that the homogenized coefficiefibor equation (12.6.1) under (12.6.2) has

the same upper and lower boundadg):

a<a<p.
Moreover, show that it is bounded from above by the averaggf

a < (a(y))-
Show that the equation (12.7.5) can be homogenized &rabie effective equa-
tion (12.7.6).
LetA : T¢ — R?*? pe smooth and periodic and consider the eigenvalue problem

V. (AEWE) = Xu forz € 0
u® =0, x€af2,

whereA®(z) = A(z/e). Use a multiscale expansion to find an approximation to
the eigenvalue problem in which— 0 is eliminated.

2 See [33, ch.3] and [253] for further details on the derivatihthe homogenized equations

using the method of multiple scales.
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15. a. Consider the eigenvalue problem
—Au® + évauf =Xu®, zef
u® =0, x€af.

Assume that” : T¢ — R is smooth and periodic, that

/Td V(y)dy =0

and thatl’¢(z) = V(x/¢). Use a multiscale expansion to find an approxima-
tion to the eigenvalue problem in whieh— 0 is eliminated.

b. (ii) Are the resulting eigenvalues smaller or larger thia@meigenvalues which
arise wher/ = 07?
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Homogenization for Parabolic PDEs

13.1 Introduction

In this chapter we use multiscale techniques to investiggtéong time behavior of
solutions to parabolic PDEs. The techniques employed anestlidentical to those
used in the study of homogenization for SDEs in Chapter 1is @bnnection will
be made more explicit at the end of the chapter.

In Section 13.2 we present the full equations that we willlarea Section 13.3
contains the simplified equations that are derived by usaehtethod of multiple
scales in Section 13.4. Section 13.5 is devoted to varioysepties of the simplified
equations. In Section 13.6 we study two applications of #reegal theory, to gradient
flows (Section 13.6.1) and to divergence free flows (Sectf.2). The connection
between homogenization for parabolic PDEs and asymptaticlems for SDES is
made in Section 13.7. Extensions and bibliographical résw@ppear in Section 13.8.

13.2 Full Equations

We study the following initial value (Cauchy) problem

% =b-Vu+ DAu for (z,t) € R x RT, (13.2.1a)

u=u, for(zt)e R? x {0}, (13.2.1b)

with D > 0. In our analysis we will assume that the vectét) is smooth and
periodic in space with periotin all spatial directions. Furthermore, we assume that
the initial conditions are slowly varying, so that

win() = g (2) = glea), (13.2.2)

with 0 < ¢ < 1. Since the initial data is slowly varying and so is the salaofiit
is natural to look at large length and time scales to see fieetafe behavior of the
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PDE (13.2.1). If the vector field averages to zero in an appropriate sense then, as
we will show in this chapter, the effective behavior.ofs that of a pure diffusion.
To see this effect we redefine the variahles through the rescaling

r=c¢lo, t—oe % (13.2.3)

and relabek to u° to emphasize this rescaling. This particular scaling otspmnd
time, known as theliffusive scaling, is appropriate whenever the advective effects,
created by, are expected to average out; it is then appropriate to sicaéeon an
even longer scale than space, and seek purely diffusiveteffd/e will be precise
about the condition thataverages out at the end of this section.
The rescaled field*(x, t) satisfies the equation
ous 1

T gbf -Vuf + DAuE  for (z,t) e R x RT, (13.2.4a)

ut =g for (z,t) € RY x {0}. (13.2.4b)

Hereb®(z) = b(x/<). This equation will be the object of our study in this chapter.
Let us define the operator

Lo =bly) -V, + DA, (13.2.5)

with periodic boundary conditions dn, 1]¢ and its L?—adjoint £, also with peri-
odic boundary conditions. We refer 10 as themolecular diffusivity. Note that’,
is the generator of the Markov procegg) which is the solution of the SDE

dy dw

— =0 V2D—
o W dt

on the unit torug?. Hence it is natural to define thievariant distribution p(y) to

be the stationary solution of the adjoint equation:

Lip=0. (13.2.6)

By Theorem 6.16 there is a unique solution to this equatipntounormalization,
and the normalization may be chosen so that the solutionggiya In the sequel
we will normalize the solution to (13.2.6) according to

/Wp(y)dy=1-

Notice that this choice turns the measpfdy) = p(y) dy into a probability measure
onT?,
In order to derive the homogenized equation for (13.2.4) eedto study equa-
tions of the form
—Lov="h (13.2.7)

with periodic boundary conditions and withbeing a smooth periodic function gf
It is straightforward to check that the assumptions of Theo7.9 are satisfied and
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hence the operatat, satisfies the Fredholm alternative. This implies, in pattg
that £, has a one-dimensional null space, comprising constantsltralso implies
that £§ has a one-dimensional null space, as stated above, andespbyp. Fur-
thermore, equation (13.2.7) has a solution if and only ifrilgat hand side of the
equation is centered with respect to the invariant distidiou

/ h(y)p(y) dy = 0.
’H‘d

In this case the solution of (13.2.7) is unique up to constdnthe case where= b,
the vector field arising in the PDE (13.2.1), the condition is

[ vty =o. (13.2.8)

We call this thecentering condition. We fix the free constant in the solution (13.2.7)
by requiring that the solution of (13.2.7) satisfies

[, vty =o. (13.2.9)

When the centering condition is not satisfied it is necestargscale the origi-
nal problem in a different fashion, to see effectadvectivebehavior. In particular
(13.2.3) is replaced by thedvective scaling

r—ete, t—elt (13.2.10)

Then averaging is used to find the effective equation, widgtoiv of transport type.
See Chapter 14.

13.3 Simplified Equations

Assume that the vector fiele{y) satisfies the centering condition (13.2.8). Define
the vector fieldy(y) to be the solution of theell problem

—Lox = b, xis1—periodic / x(y)p(y)dy = 0. (13.3.2)
Td

Theeffective diffusion tensdpr effective diffusivityis defined as

k=pr+20 [ Vst [ (b0 e xw)owan (1332

Result 13.1.Assume thaf13.2.8)holds. For0 < ¢ <« 1 and times of O(1) the so-
lution u¢ of (13.2.4)is approximated by, the solution of the homogenized equation

% =K:V.Vu for (z,t) e R? x RT, (13.3.3a)

u=g for (z,t) € R? x {0}. (13.3.3b)
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Remark 13.2Since the HessiaV,V u is symmetric, it follows from property
(2.2.2) applied to (13.3.2) that the following expressioni is equally valid:

K=DI+D /Td (Vyx() + Vyx@)") py) dy

1

T3 /Td (b(w ® x(y) +x(y) ® b(y))p(y) dy.  (13.3.4)

Many variants on this idea are possibled

13.4 Derivation

Our goal now is to use the method of multiple scales in ordaniyze the behavior
of u®(x,t), the solution of (13.2.4), in the limit as— 0. In particular, we want to
derive Result 13.1.

We introduce the auxiliary variablg = x/c. ! Let ¢ = ¢(z, /) be scalar-
valued. The chain rule gives

1 2 1
Vo =V,o+ gqub and A¢=A,¢+ EVI~VZ,¢+ E—Qquﬁ.
The partial differential operator that appears on the rigahd side of equation

(13.2.4) now becomes
1 1
L= _2£0 + =Ly + Lo,
3 3
where
Lo=0b(y) - Vy+ DAy,
L1 =0by) Vz+2DV, -V,
Lo =DA,.
In terms ofx andy equation (13.2.4a) becomes

Out 1 1
—=|s5Lo+-L1+L ‘.
ot (52 ot et * 2) "
We seek a solution in the form of a multiple scales expansion
us(x7 t) = Uo (LC, Y, t) +eur ({E, Y, t) + EQU? (LC, Y, t) +.. (1341)

whereu;(z,y,t), j = 1,2..., are periodic iry with periodl. We substitute (13.4.1)
and equate terms of equal powerszinVe obtain the following sequence of equa-
tions:

L As in the elliptic case, this is where the assumption of ssefearation is exploitedwe
treat x and y as independent variablesJustifying this assumption as— 0 is one of the
main issues in the rigorous theory of homogenization. Sesp@h 20.
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O(1/e?) = Loug =0, (13.4.2a)
0(1/6) — £0u1 = £1U,0, (1342b)
0(1) — Lous = Liur + Loug — % (1342C)

Note thatLy, which is a differential operator ig only, is equipped with periodic
boundary conditions.

SinceL, has a one-dimensional null-space, equation (13.4.2a)jesfilat the
first term in the expansion is independenyobo thatuy = u(x, t) only. Notice that

Liug = b(y) - Vau(z,t).

The centering condition (13.2.8) ensures that (13.4.2b)ehsolution, by the Fred-
holm alternative. Sincg€ is a differential operator iy only, we may use separation
of variables to write the solution as

ul(xayvt) = X(y) : VT’U,(J?,t)

Thenyx(y) solves the cell problem (13.3.1) . Our assumptions implytiteere exists
a unique, smooth solution to the cell problem.

Now we proceed with the analysis of ti¥1) equation (13.4.2c). The solvability
condition (13.2.8) reads

0
/Trd (% — Loug — £1u1> pdy = 0.

The fact thatuy = u(x,t) is independent of enables us to rewrite the above equa-
tion in the form

ou
o= DAu+ /qr (ﬁlul)pdy. (13.4.3)

Now we have
Liug = (b- Vu(x - Vau) + 2DV, - Vy(x - Vau))
= (b®x+2DV,XT) : V.V u.
In view of the above calculation, equation (13.4.3) becomes

ou
E = ,C : vamu,

which is the homogenized equation (13.3.3a). The effediiffesivity £ is given by
formula (13.3.2).

13.5 Properties of the Simplified Equations

In this section we show that the effective diffusivity is v definite. This implies
that the homogenized equation is well posed. To prove this'\eed to calculate
the Dirichlet form associated with the operaty. The following is a direct conse-
guence of Theorem 6.12 in the case of additive noise. Réaatlptis the invariant
distribution, a non-negative! (T?) function in the null-space of}.
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Lemma 13.3.Let f(y) € C2,,.(T¢). Then

per

/ (—Lof (1)) f(w)p(y) dy = D / IV, F@)2p(y) dy. (13.5.1)
Td Td

Remark 13.4Let L2(T) be theL? space weighted by the invariant distributiafy)
and denote the inner product and corresponding norifa,by;2 and|| - || .z, respec-
tively. Then, by equation (6.3.13), the result of Lemma 1&8 be expressed in the
form

(—Lof. f)rz = D|Vyflz2. O

The main result of this section is that the effective diffityiis a positive definite
matrix. In particular, we have the following.

Theorem 13.5.Let¢ € R? be an arbitrary vector and lete (y) := x(y) - & Then

€K =D [ e+ xew)Pos) dy
Td
Furthermore,
alé]® < (6,KE) VEER (13.5.2)
with

a=D (/w p Hy) dy) - . (13.5.3)

Proof. Note that—Lox: = £ - b. We use the definition ok and Lemma 13.3 to
calculate

(£.K€) = DI + 2D / £ Vyxe(w)p(y) dy + / (€ B)xe(w)p(y) dy
'ﬂ‘d ’H‘d
= DI +2D [ € xelwolo) du+ D [ 19,xe () dy

-D / €4V, xe () 2o(y) dy.
Td

The fact that the effective diffusivity in nonnegative dé@énfollows immediately
from the above equation. To show thiétis positive definite we use the fact that the
integral of derivatives of periodic functions oVef is 0, together with the Cauchy—
Schwarz inequality and the fact thaty) is everywhere positive, to calculate:

2

DleP =D [ €+ Vo) ay

1 1 ?
=D ‘/ €+ Vyxe) p2(y)p~ 2 (y) dy
Td

<D (/w 1€+ Vyxel p(y) dy) (/Td p(y) dy)
= (€, K¢) (/Td p~1(y) dy) :




13.6 Applications 215

from which the lower bound immediately follows O

Itis of interest to know how the effective diffusion tengércompares with the
original diffusion tensoD 1. It turns out tha#C can be either greater or smaller than
D (inthe sense of matrices). This issue is discussed in dietaié next section where
we will show that the effective diffusivity is smaller thanfor gradient vector fields
b and that it is greater thab for divergence—free vector fields

13.6 Applications

In this section we will consider two particular choices foe drift termb in (13.2.4a),
gradientanddivergence—fredields. In both cases it is possible to perform explicit
calculations which yield considerable insight. In par&uwe will be able to obtain
a formula for the (unigue) invariant distribution and, ceqaently, to simplify the
centering condition (13.2.8). Furthermore we will be aldecompare the effective
diffusivity with the original diffusivity D. We will see that the effective diffusiv-
ity is smaller thanD for gradient vector field$, and that it is greater thap for
divergence—free vector fields We also study two particular cases of gradient and
divergence—free flows for which we can derive closed forradita the effective dif-
fusivity.

There are at least two reasons why it is interesting to cengigadient and
divergence—free flows. On the one hand, parabolic PDEs dfottme (13.2.1) with
b being either the gradient of a scalar field or divergence-fiygpear frequently in
applications: wheh = —VV then equation (13.2.1) describes Brownian motion in
a periodic potential. On the other hand, wiheis divergence—free equation (13.2.1)
becomes the advection diffusion equation which describi@gmprocesses in in-
compressible fluids. According to the Hodge decompositi@otem, every smooth
vector field onT? can be decomposed into the sum of a gradient and a divergence—
free field:

b(y) = -VV(y) +v(y), V-u(y) =0,
with
(=VV{(y), U(?J))Lz(qrd) =0.

Hence, by studying gradient and divergence—free flows weystiie two extreme

cases of this decomposition.
13.6.1 Gradient Vector Fields

We consider the case where the vector figlg) in equation (13.2.4a) is the gradient
of a smooth, scalar periodic function,

b(y) = =V, V(y). (13.6.1)

The functionV is called thepotential In this case it is straightforward to derive a
formula for the solutiorp of the stationary adjoint equation (13.2.6) with periodic
boundary conditions.
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Lemma 13.6.Assume that the vector fields a gradient given by13.6.1) Let £
denote the adjoint of, defined in(13.2.5) Then the equation

Lip =0, /w p(y)dy =1, (13.6.2)
subject to periodic boundary conditions @f has a unique solution given by
ply) = %e—V(WD, Z = / e~ VWID gy, (13.6.3)
Td

Proof. Equation (13.6.2), in view of equation (13.6.1), becomes
Vy - (VyV(©)p(y) + DVyp(y)) = 0. (13.6.4)
We immediately check that(y) given by (13.6.3) satisfies

VyV(y)p(y) + DVyp(y) =0,

and hence it satisfies (13.6.4). Furthermore, by constmetie have that

1
/Td ZeVOID gy =,

and hence(y) is correctly normalized. Thus we have constructed a saldfequa-
tion (13.6.2). Uniqueness follows by the ergodicity of thiechastic process with
generatoi’, (see Theorem 6.16).00

Remark 13.7The positive functiorp defined in (13.6.3) is called th@&ibbs distri-
bution and the probability measug€y)dy the Gibbs measure The normalization
constant” is called thepartition function. 0O

In the case of gradient flows the centering condition (13..8atisfied identically
for any potential.

Lemma 13.8.Consider the operatot, given by(13.2.5)with periodic boundary
conditions and assume thétty) = —V, V (y) with V € Cj,,.(T%). Then the center-
ing condition(13.2.8)is always satisfied.

Proof. We use the divergence theorem to calculate

1
b)p(y)dy = — | =V, V(y)e VWP ay
'ﬂ'd Z 'Ird
_D ~V(y)/D
-7 . Ve dy

=0.

O
In the case of gradient flows the operatly defined in (13.2.5) equipped with
periodic boundary conditions becomes symmetric in the @eite function space.
We have the following.
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Lemma 13.9.Assume that conditiof13.6.1)is satisfied and leb denote the Gibbs
distribution (13.6.3) Then the operato£ given in(13.2.5)satisfies

L 1@ (cor)otrdn= [ nw)(eofm)otan.  @265)

forall f, h € C?

d
per (T )
Proof. Using the divergence theorem we have

1 D
/ fLohpdy = — f(—VyV-Vyh)e_V/Ddy—i—E/ fAhe™VIP dy
Td Td Td

Q -V/D _Q -V/D
Z/Tdfvyh Vy (e7VP) ay Z/W(vyf Vyh)e VP dy

—g/w fVyh-V, (e_V/D) dy

—D/Td (Vyf-vyh)pdy.

The expression in the last line is symmetricfinh and hence (13.6.5) follows.O

Remark 13.10The symmetry of, arises quite naturally from the identity (6.3.11)
used in proving Theorem 6.12. Furthermore, the calculaised in the proof of the
above lemma gives us the following useful formula

/Td J(=Loh)pdy = D/Td (Vyf ' Vyh)pdy (13.6.6)

forall f, h € C2,,.(T¢). The Dirichlet form Lemma 13.3 follows from this upon

per

settingf = h. Now let¢, ¢ € C2,,.(T%;R?). In view of (13.6.6) we also have

/H‘d (¢ © (—ﬁow))pdy =D /I[‘d (quﬁ ® vyw)de (13.6.7)
O

Remark 13.11Using the notation introduced in Remark 13.4 we can exptess t
result of Lemma 13.9 by saying thAt) is symmetric as an operator froﬂf, to Lf,.
Furthermore, identity (13.6.6) can be written in the form

(fa _‘COh)L% =D (vyf; Vyh)Lg .

Ergodic Markov processes whose generator is a symmetriatgren Lf, are called
reversible . Thus we have shown that SDEs with additive noise and withifa dr
which is a gradient field are reversibleO
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Now we are ready to prove various properties of the effedtifsivity. For this
we will need the following integration by parts formula, whifollows from the
divergence theorem and the periodicityyoandp :

[ @dedy= [ (9,000~ x0Vop)dy == [ (x@V,)dy. 1368)
Te Td Td

Theorem 13.12 Assume thak(y) is a gradient so thaf13.6.1)holds and lety(y)
denote the Gibbs distributiof13.6.3) Then the effective diffusivifl3.3.2)satisfies
the upper and lower bounds

D
— < (¢, < D|¢J)? R, 13.6.9
ZZ<<£K£>< 1§17 V¢ e ( )

where
2:/ VOI/D gy
Td

In particular, diffusion is always depleted when comparedrolecular diffusivity.
Furthermore, the effective diffusivity is symmetfic.

Proof. The lower bound follows from the general lower bound (13.,5e2juation
(13.5.3) and the formula for the Gibbs measure. To estalttislupper bound, we
use (13.6.8) and (13.6.7) to obtain

IC:DI+2D/ (Vx)Tpdy+/ -V, V@xpdy
Td Td
:DI—2D/ Vyp®xdy+/ -V,V ®xpdy
Td Td
:DI—2/ —VyV®xpdy+/ -V,V ®xpdy
Td Td
:DI—/ -V,V @ xpdy
Td
=DI—/W(—£0X)®Xde
= DI—D/ (Vyx ® Vyx)pdy. (13.6.10)
Td

Hence, forye = x - &,

(€.K€) = DIEE =D [ 19, xePpdy
< Dlef”.
This proves depletion. The symmetry/Sffollows from (13.6.10). O

2 Notice that the Cauchy-Schwarz inequality shows m§t> 1.
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The One Dimensional Case
The one dimensional case is always in gradient féim) = —0, V (y). Furthermore
in one dimension we can solve the cell problem (13.3.1) isedbform and calcu-

late the effective diffusion coefficient explicitly—up togdratures. We start with the
following calculation concerning the structure of the d#ffon coefficient.

1 1
K=D-+ ZD/ Oyxp dy +/ —0yVxpdy
0 0
1 1
=D+ 2D/ Oyxpdy + D/ XOyp dy
0 0
1 1
=D+ 2D/ Iyxpdy — D/ Iyxp dy
0 0
1
= D/ (14 8yx)pdy. (13.6.11)
0
The cell problem (13.3.1) in one dimension is
DOyyx — 0yVOyx = 0,V. (13.6.12)
We multiply equation (13.6.12) by~ V' ()/D to obtain
dy (3yX6—V(y)/D) = -9, (e—V(y)/D) )

We integrate this equation frofto i and multiply bye" )/ to obtain
Ayx(y) = =1+ cre” W/,

Another integration yields

Yy
X(y) =—-y+c / 6V(y)/D dy + 2.
0

The periodic boundary conditions imply that0) = x (1), from which we conclude
that

1
e / VOID gy 0.
0

Hence

c1 =

1 /\ 1
=, Z z/ VWD gy,
A 0
We deduce that .

Oyx =—1+ Eev(yVD.

We substitute this expression into (13.6.11) to obtain
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D [* Vi
k=7 [ @roxee Py
0
D 1
- VWDV W)/D gy
0
= %, (13.6.13)
with . .
Z :/ e VW/Pay 7 :/ VWD qy. (13.6.14)
0 0

Notice that in the one—dimensional case the formula for ffex#ve diffusivity
is precisely the lower bound in (13.6.9). This shows thatdkeer bound is sharp.

Example 13.13Consider the potential

a . S [O, 5],
Viy) = {a; : ZG (%’1]a

(13.6.15)
wherea,, a, are positive constants.
Itis straightforward to calculate the integrals in (134.fo obtain the formula

D
K= ———. 13.6.16
cosh? (—“15“2) ( )

In Figure 13.1 we plot the effective diffusivity given by (B316) as a function of
the molecular diffusivityD, on a log scale. We observe thétdecays exponentially
fastin the limitasD — 0. O

13.6.2 Divergence—Free Fields

In this section we consider the problem of homogenizatior{18.2.4a) in the case
where the vector field(y) is divergence—free (or incompressible):

V- b(y) = 0. (13.6.17)

The incompressibility ob(y) simplifies the analysis considerably because the ad-
vection operator R
£0 = b(y) ! vyv

with periodic boundary conditions is antisymmetriclii(T<):

3 Of course, this potential is not even continuous, let alaneath, and the theory as de-
veloped in this chapter does not apply. It is possible, hewneo consider a regularized
version of this discontinuous potential and then homogsitn theory applies.
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Fig. 13.1.Log-log plot of the effective diffusivity versus moleculdiffusivity for the potential
(13.6.15).

Lemma 13.14.Letb(y) € C},,. (T R?) satisfy(13.6.17) Then for allf (), h(y) €
C1 . (T4) we have

» f(y) (b(y) - Vyh(y)) dy = — » h(y) (b(y) - Vy f(y)) dy.
In particular,
» f(y) (b(y) - Vyf(y)) dy = 0. (13.6.18)

Proof. We use the incompressibility @{y), together with the periodicity of (y),
h(y) andb(y) to calculate

1) (b(y) - Vyh(y)) dy = / F@)V, - (b(w)h(y)) dy
Td Td
=~ [ 90 0

==/ hw (0(y) - Vy £ (y)) dy.
Equation (13.6.18) follows from the above calculation upettingf = h. O
Using the previous lemma it is easy to prove that the uniguariant measure of
the fast process is the Lebesgue measure.
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Lemma 13.15.Let £, denote the operator defined (f3.2.5)with periodic bound-
ary conditions and wittb(y) satisfying(13.6.17) Let £} denote thel.>—adjoint of
Ly. Then the adjoint equation

Lip =0, / p(y)dy =1, (13.6.19)
’]I‘d

with periodic boundary conditions df has a unique classical solution given by
ply) =1 (13.6.20)

Proof. Lemma 13.14 implies that the>—adjoint of £, is
Ly =—bly) -V, + DA, (13.6.21)

with periodic boundary conditions. Le{y) be a solution of equation (13.6.19). We
multiply the equation by(y), integrate ovef’? and use Lemma 13.14 to obtain

/ [Vyp(y)|* dy = 0, (13.6.22)
'ﬂ*d

from which we deduce that(y) is a constant. Hence, the unique normalized solution
of (13.6.19) is given by (13.6.20).0

Remark 13.16The solutiorp(y) = 1 can be seen to be in the null space of (13.6.21)
by inspection. Uniqueness can then be proved by appealiagtaicity of the pro-
cess with generatof, (see Theorem 6.16), or by use of the maximum principle.
O

Remark 13.17An immediate corollary of Proposition 13.15 is that for diyence—
free fields the solvability condition (13.2.8) becomes

/W b(y)dy = 0.

Thus, it is straightforward to check whether a given peladivergence—free field
satisfies the solvability condition — the field must averagestro over the unit torus.
O

Now let x(y) be the solution of the cell problem (13.3.1) wilty) satisfying
(13.6.17). The periodicity of(y), together with (13.6.20) imply that the second
term on the right hand side of equation (13.3.2) vanishesthadormula for the
effective diffusivity reduces to

K=DI+ | bly) @ x(y)dy. (13.6.23)

b
Td

The effective diffusivity as given in (13.3.2) is symmetiie gradient flows. This is
not true for divergence—free flows. However, only the symiogiart of C enters into
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the homogenized equation by Remark 13.2. For this reasoedédine the effective
diffusivity to be the symmetric part o€:

K :=DI + %/ (b(y) ® x(y) + x(y) ® b(y)) dy. (13.6.24)
’Ird

Our goal now is to show that the homogenization proceduramreds diffusion, i.e.
that the effective diffusivity is always greater than theleoolar diffusivity D. For
this we will need an alternative representation formulatfor

Theorem 13.18.The effective diffusivitiC given by the expressiqi3.6.24)can be
written in the form

K = DI + D/ Vox(y) © Vyx(y) dy. (13.6.25)
Td

Proof. We take the outer product of the cell problem (13.3.1) witly) to the left
and integrate over the unit cell to obtain

=D | x(y)® Ayx(y)dy — /w X)) © (Vyx()b(y)) dy = /W X(y) ® b(y) dy.

Td
We apply the divergence theorem to ttveo integralson the left hand side of the
above equation, using periodicity and the fact thistdivergence—free, to obtain

D /w Vyx(y) ® Vyx(y) dy + /Td (Vx(m)b(y)) @ x(y) dy = /Td x(y) @ b(y) dy.

(13.6.26)
Alternatively we may take the outer product within (13.3.1) to the right and use
the divergence theorem only on the first integral, to obtain

D /w Vyx(y) ® Vyx(y) dy — /w (Vx(y)b(y)) @ x(y) dy = /w b(y) @ x(y) dy.

(13.6.27)
We add equations (13.6.26) and (13.6.27) to obtain:

1

3 / (b(y) ® x(y) + x(w) @b(y)) dy =D [ Vyx(y) ® Vyx(y)dy.
T4 Td

Equation (13.6.25) now follows upon substituting the abexgression into equation
(13.6.24). O
We can now obtain upper and lower bounds for the effectivieisiifity.

Theorem 13.19 Assume thab(y) is divergence—free. Then the effective diffusivity
satisfies the upper and lower bounds

DI¢|* < (¢,K¢) < (D + %) 35 (13.6.28)

whereC = C(b, 2) > 0 is explicitly computable! The lower bound becomes an
equality for all¢ only whenb(y) = 0.

* IndeedC = (Cy||b||1,)? whereC, is the Poincaré constant from inequality (2.4.7).
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Proof. The lower bound follows from the general bound (13.5.2),adiqun (13.5.3)
and the fact that for divergence—free flop(g/) = 1. Furthermore, equation (13.6.25)
implies that

(€,K¢) == DI¢|* + D /T |Vyxe ()| dy, (13.6.29)

wherexe = x - . Clearly the equality¢, K¢) = D|¢|? for all ¢ implies thatye = 0
for all £ implying thatx(y) = 0. By (13.3.1) this implies that = 0.
For the upper bound we take the inner product of the cell gmblith an arbi-
trary vectoré € R? to obtain
—ﬁng =b- 5

We multiply this equation withy,, integrate ovefl?, use Lemma 13.14 and the
Poincaré inequality to calculate

D||Vyx®|22 = (—Loxe, xe) = (b- &, xe)
<1 €2 llxell z2
< Cplbll L2l Vyxell 2 1€l

whereC,, is the Poincaré constant @if. From the above estimate we deduce that

VG
||va§HL2 < Tlfl

with C' = (C,||b|| .=)*. The result follows from (13.6.29).0)

Shear Flow in 2D

In this section we study an example of a divergence—free flmwnhich the cell
problem can be solved in closed form, that afteear flow The structure of a shear
velocity field is such that the cell problem becomes an omgiddferential equation.

Lety = (y1,%2)”. We consider the problem of homogenization for (13.2.4a) in
two dimensions for the following velocity field:

b(y) = (0,b2(y1))", (13.6.30)

wherebs(y1) is a smoothl—periodic function with mean zero. Notice that the ve-
locity field (13.6.30) is incompressible:

_ 8b1 8b2 o 8b2(y1)

V) = 5 T A T o

The two components of the cell problem satisfy

—DAyx1(y) — b2(y1) Paly) _ 0, (13.6.31a)

)
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=D aly) — o) 22

as well as periodicity and the normalization condition thamtegrates to zero over
the unit celly.

If we multiply the first equation (13.6.31a) by (), integrate by parts ovelr?
then we deduce that

= ba(y1), (13.6.31b)

/ IVyx1(y)>dy = 0.
’]I‘d

Hencexi(y) = 0, since we impose the normalizatigy(y)) = 0 with () =
de -dy. On the other hand, since the right hand side of (13.6.31jp¢ s only on
y1, it is reasonable to assume that the solufiefly) is independent of»; we seek
a solution of this form and then, provided that we can find sucblution, unique-
ness of solutions to the cell problem implies that it is théy@olution. Equation
(13.6.31b) becomes:

d2
_D% — ba(yn). (13.6.32)
Y1
If ¢ is a periodic solution to
d2
) o), (13.6.33)
1

theny is independent oD andys = ¢/ D.
By (13.6.24) the effective diffusivityC is the following2 x 2 matrix:

K- D+ [ (bix1) dy 5 [ (b2xa + bixz) dy
T
3 Jpo (bax1 +b1x2) dy D+ [1o (bax2) dy

/D 0
T\ 0 Kag )

where we have used the fact that= y; = 0. Using the fact thaby, x> depend
only ony; we obtain

1
Kas := D +/ bQXQdyl

X2
—D+/ DngQdyl

—D+D/’ ’d1

=0 [l fan
+D/0 dy1 a1

Notice the remarkable fact that, singds independent oD, the formula shows
that the effective diffusion coefficient scalesias® as the original molecular diffu-
sion coefficientD tends to zero. This demonstrates that the upper bound inrétreo
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13.19 is sharp. The intuition behind this scaling is that sfmall D, the equation is
approximately a transport equation in the direction The direction of transport is
slowly modulated, leading to overall diffusive behaviduut on long time-scales the
predominant effect is transport. This enhances the diffysi

It is possible to express as an integral operator acting énand show that

Koz =D + %HbQH?{;JT(O,l)' (13.6.34)
See Exercise 10.
Example 13.20Consider the case
ba(y1) = sin(27y1). (13.6.35)
We use formula (13.6.34) and Exercise 10 to obtain
Koo =D + &%D (13.6.36)

In Figure 13.2 we plot the effective diffusivity given by (8336) as a function of

10

10" 10° 10 10

D

Fig. 13.2.Log-log plot of the effective diffusivity versus moleculdiffusivity for the sine
shear flow (13.6.35).

the molecular diffusivityD, on a log scale. We observe thiadiverges Iike% in the
limtasD — 0. O
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13.7 The Connection to SDEs

Equation (13.2.1) is the backward Kolmogorov equation eissed with the SDE

dx aw

whereV denotes standard Brownian motion BA. Unsurprisingly, then, the ho-
mogenization results derived in this chapter have imglcest for the behavior of
solutions to this SDE. To see this we first apply the rescalseg to derive (13.2.4)
from (13.2.1) to the SDE (13.7.1). That is, we relabel actaydo

r—x/e, t—t/e?

giving the SDE
de 1 rx dW
= - gb(g) + V2D (13.7.2)
(Recall Remark 6.3 regarding the behavior of white noisecutiche rescaling).
If we introduce the variablg = x /e then we can write this SDE in the form

d 1 aw
= ~bly) + V2D—,

dt ¢

dy 1 1 —dW
W_ VoD
dt €2 bly) + € dt

Here we viewz as being an element &? whilst y is on the torusT. This is
very similar to the form (11.2.1) which we analyzed in Chagdt&. The only dif-
ference is that the noises appearing in thendy equations areorrelated(in fact
U =V = W). This has the effect of changing the operafgrin that chapter, so
that the results derived there do not apply directly. They, deowever, be readily
extended to the study of correlated noise — see Chapter ElciSgs 5 and 1. Notice
that the centering condition (13.2.8) is precisely the d¢tonl (11.2.5) since is the
stationary solution of the same Fokker-Planck equation.

The calculations in this chapter show how the backward Kglonov equation
for the coupled SDE irfx, y) can be approximated by a diffusion equation in the
variable alone. Indeed, the diffusion equation is the backivikolmogorov equation
for pure Brownian motion. Interpreted in terms of the SDE via¢ain the following
result.

Result 13.21 Assume that the centering conditi¢t3.2.8)holds. Fore <« 1 and
t = O(1), x solving the SDHE13.7.2)can be approximated h¥ solving

dX dw
R T\ "
o (K+KT)

dt
where the matrixC is given by(13.3.2)

If the centering condition is not satisfied then the apppniescaling of (13.7.1)
is an advective one, leading to the equations (14.6.1) derel in the next chapter.
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13.8 Discussion and Bibliography

The problem of homogenization for second order paraboli€®Bnd its connec-
tion to the study of the long time asymptotics of solutionsS&IEs is studied in
[33, Ch. 3]. References to the earlier literature can be dotnere. See also [238].
SDEs of the form (13.7.1), whose drift is the gradient of aquic scalar function,
describe Brownian motion in periodic potentials. This ayMenportant problem in
many applications, for example in solid state physics amdoby. See [271, Ch.
11], [267] and the references therein. Multiscale techesqwere applied to this
problem in [257]. Periodic homogenization for gradient fois also discussed in
[238, 256, 323, 118]. Formula (13.6.13) for the effectiviudivity of a Brownian
particle moving in a one dimensional periodic potential wasved in [191] without
any appeal to homogenization theory. See also [138, Set.Bfbwnian motion in
a two—scale periodic potential in one dimension is studig842]. The multidimen-
sional problem is analyzed in [258].

On the other hand, the SDE (13.7.1) with divergence—frdealtcurs naturally
in the modeling of diffusion processes in fluids. Homogetrafor periodic, in-
compressible flows is a part of the theorytafbulent diffusioq200, 99]. See also
[221, 100, 101]. In this context an interesting questionoeons the dependence of
the effective diffusivity on the molecular diffusiaB. It turns out that the smalD—
asymptotics of the effective diffusivity depends sensitvon the streamline topol-
ogy of the fluid velocity field(y). See [63, 294, 295, 62, 140, 20, 22, 21]. Interesting
experimental results concerning the dependence of thetiefediffusivity on D or,
rather, on thePeclet numberPe are reported in [293, 292]; rescaling enables these
results to be interpreted in terms of molecular diffusividgmogenization for com-
pressible flows with applications to atmospheric transpbgnomena is studied in
[223].

Itis possible to derive a homogenized equation even whereihiring condition
(13.2.8) is not satisfied. In this case it is necessary to Usgnae co—moving with
themean flow

5= [ bwpely) dv (13.8.1)

Then, it is possible to derive a homogenized equation of ¢inen {(13.3.3) for the

rescaled field _
r bt t
ue(x,t):u(— ) .

e g2’ g2

The effective diffusivity is given by the formula

K =DI+2D /W Vyx(v)" p(y) dy + /w (b(y) —b) © x(y)p(y) dy, (13.8.2)
The cell problem (13.3.1) is also modified:
—Lox =b—0. (13.8.3)

See Exercise 5 in Chapter 14.
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The mean flow» can have a dramatic effect in the smallasymptotics of the
effective diffusivity for periodic divergence—free flowist particular, the scaling of
K with D for D < 1 depends on whether the mean flow is a rational or irrational
vector. See [201, 222, 35, 295, 175]. A similar discontimdependence of the
effective diffusivity on the wavelengths of the inhomogiies was observed for
gradient flows in [126].

Itis proved in Section 13.6.1 that for gradient flows the ukfbn is always de-
pleted. In fact, much sharper results can be obtained: thetefe diffusivity is "ex-
ponentially” smaller tharD, for D sufficiently small. That is, there exist positive
constants; andc; such that

(€, KE) =cre7 /P D«1.

See [54] and the references therein. On the other hand,fiwtieé diffusion coeffi-
cient can become arbitrarily large, when compared to themdar diffusivity, when
a constant external force is added to the gradient drift[28®, 282].

The fact that the effective diffusivity along the directiohthe shear is inversely
proportional to the molecular diffusivity, formula (1338l), was discovered in [313],
without any appeal to homogenization theory. This phenanes often refered to
asTaylor dispersionSee also [11]. A similar result for time dependent perictiear
flows was obtained in [340] through a direct calculation wite advection—diffusion
equation.

To derive the expression (13.6.34) for the effective diffascoefficient (from
Exercise 10) itis necessary to use formal calculations fathrier series. Of course,
we have to prove that we can differentiate the Fourier semeksthat the Fourier se-
ries that we get for the second derivativexdl)) makes sense. For various properties
of Fourier series we refer the reader to [132, Ch. 3].

We showed that the effective diffusion tensor is symmetigfadient flows. The
effective diffusivity, however, is not necessarily symnefor general vector fields.
Despite the fact that the antisymmetric part of the effextiiffusivity does not affect
the homogenized equation, it is of physical significancgivies rise to a component
of the flux which is perpendicular to the concentration geatli[174]. Whereas the
effective diffusivity is symmetric or not depends on the syetry properties of the
underlying vector field(y).® This issue is studied for divergence—free flows in [174,
253]; in those references the dependence of the antisynenpeitt of the effective
diffusivity on the Peclet number is also studied.

In addition to the Eulerian definition of the effective difivity giving rise to the
effectivge diffusion tensoiC we can also define a Lagrangian effective diffusivity
through the long time average of the variance of the undaglgitochastic process
x(t).

DL, e iy A0~ (=) © (@(t) — (@(0)) (13.8.4)

t—o0 2t

® For example, in the case of gradient flows the effective ditfity is symmetric because of
the reversibility (which, of course, is a symmetry propgaygradient flows.
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Notice thatDeLf f is a symmetric tensor. It is straightforward to show thatttieeLa-
grangian effective diffusivity (13.8.4) agrees with thanmetric parof the Eulerian
effective diffusivity.

The method of multiple scales can also be used to study th#epmoof homog-
enization for parabolic PDEs with time dependent coeffigevhich are periodic in
bothx andt. See, e.g. [118, 228, 323, 257, 42].

Monte Carlo methods for advection diffusion and for transfRDEs are pre-
sented in [187]. Numerical methods for advection diffuseguations with a multi-
scale structure are developed in [1].

13.9 Exercises

1. Derive a formula fousq(z, z /e, t), the third term in the expansion (13.4.1).
2. Consider the problem of homogenization for

in one dimension with the (1—periodic) potential

_ yelod,
V@)—{l—i : 56(%71],

Calculate the effective diffusivitiC. Use Laplace’s method to study the small
asymptotics ofC.

3. Carry out the program from the previous exercise for theepial V(y) =
sin(27y). (Hint: use Bessel functions).

4. Calculate the effective diffusivity (13.3.2) for thie-dimensional vector field
b(y) = (b1(y1), b2(y1))-

5. Consider the problem of homogenization for the reactmvection—diffusion
equation

=-b
ot e \g

where the vector field(y) and the scalar functior(y) are smooth and periodic.
Use the method of multiple scales to homogenize the above PO#articular:
a) Derive the solvability condition.
b) Obtain the conditions thaty) andc(y) should satisfy so that you can derive
the homogenized equation.
c) Derive the homogenized equation, the cell problem(s)taedormula for
the homogenized coefficients.
d) Suppose that the reaction term is nonlinear: the zerat@rdgerm in equation
(13.9.1) is replaced by
c (E, ue) ,
9

where the functior(y, ) is 1—periodic iny for everyw. Can you homoge-
nize equation. (13.9.1) in this case?

ous 1 (g) _VUEJFAUEJF%C (g) ue, (13.9.1)
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6. Consider the problem of homogenization for the PDE

ou®
ot

- <b1(a:) n %bQ (g)) VU A, (13.9.2)

where the vector field:(y) is smooth and periodic arig (z) is periodic. Use
the method of multiple scales to homogenize the above PDjafticular:
a) Derive the solvability condition.
b) Obtain the conditions thdt(y) should satisfy so that you can derive the
homogenized equation.
¢) Show that the homogenized equation is

% =b-Vu+K:VVu (13.9.3)

and derive the cell problem(s) and the formulae for the hoenaged coeffi-

cientsb andXC.
7. Consider the problem of homogenization for the PDE (23.i8.the case where

bi(e) = —VV(z) and by(y) = —Vp(y).

wherep(y) is periodic.
a) Show that in this case there exists a symmetric matrsxuch that

K =DK, B=-KVV.
b) Let
L:=b-V+K:VVu.

1. Derive a formula for*, the L?—adjoint of £.
2. Show that the function

1
p(y) = e O, Z:/ VWD gy
Td

solves the homogeneous adjoint equation
L*p =0.
8. Consider the problem of homogenization for the followmifIQE

ou®
ot

where A° = A(x/e), b* = b(z/e) and the vector field(y) and the matrix
A(y) are smooth and periodic, amt{y) is positive definite. Use the method of
multiple scales to derive the homogenized equation. Inqudatr:
a) Derive the solvability condition.
b) Obtain conditions orb(y) which ensure the existence of a homogenized
equation.

=b-Vu® + A°: va.’rus
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10.

11.

12.

13.
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c) Derive the homogenized equation, the cell problem anddireula for the
homogenized coefficients.

d) Prove that the homogenized matrix is positive definite.

Consider the problem of homogenization for the followiigE

out 1 (a: t

g’ g2

ot e

) -Vu® + DAu®,

where the vector field(y, 7) is smooth, divergence free andperiodic in both
y andr. Use the method of multiple scales to derive the homogerégedtion.
In particular:
a) Derive the solvability condition.
b) Obtain conditions om(y, 7) which ensure the existence of a homogenized
equation.
c) Derive the homogenized equation, the cell problem anddireula for the
homogenized coefficients.
d) Prove that the homogenized matrix is positive definite.
TheH .1 norm of a real—-valued, periodic function with peribdan be expressed

per

in terms of Fourier series (see the discussion in Sectionad.follows:

2y gy = oy S P
Hper(0,1) — 972 ot k2

Use this definition, and the Fourier series representatidheosolutiony of the
problem 13.6.31b, to establish formula (13.6.34) from thgression forCy; in
terms ofy.

Consider Exercise 9 in dimensidr= 2 and with the velocity field

b(yh Y2, T) = (07 bQ(yh 7—))

Derive a formula for the effective diffusivitiC. How doesC depend orD?
Repeat the calculations of Section 13.6.2 and Exerdis®rlthe 2d velocity
fields
b(y1,y2) = (V. b(y1))
and
b(y1,y2,7) = (V,b(y1,7)),

respectively, wher® € R. (Hint: you need to use equations (13.8.2) and (13.8.3)
and their generalizations for time dependent velocity §igld
Letb(y) be a smooth, real valude-periodic, mean zero function and g, } >

k=—o0
be its Fourier coefficients. Prove thgt= 0 and that_;, = by,.
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Averaging for Linear Transport and Parabolic PDEs

14.1 Introduction

In this chapter we investigate the long time behavior of sohs to the linear trans-
port (or advection) equation, and to the parabolic (adeeetiiffusion) equation
from the previous chapter, when the centering conditionoissatisfied. The tech-
niques we employ are sometimes referred to as homogemzaihniques in the
literature. However in terms of the classification in Seetio3 the methods are ac-
tually averaging methods. We use this terminology.

In Sections 14.2 and 14.3 we set up the problem of interestlzml state the
approximation result. Section 14.4 contains the derivatibthe averaged equation,
when the starting point is a parabolic equation. Sectiob isldevoted to the case
where the averaging is for a pure transport equation; theessbere are more subtle
(no Fredholm alternative for the leading order linear opmmaand this is why we
devote a separate section to it. In Section 14.6 we make tigection to averaging
for ODEs and SDEs. Section 14.7 contains bibliographicabues.

14.2 Full Equations

We study the long time behavior of solutions to the lineaapalic equation corre-
sponding to advection—diffusion in a steady periodic vigyoiteld b:

% =b-Vu+DAu for (z,t) € R? x R, (14.2.1a)

u=uy, for(zt) € R x {0}. (14.2.1b)

This is the parabolic equation (13.2.1) and, in the dase 0, it reduces to a linear
transport equation. As in Chapter 13 we study the case where

uzn(x) = g(EZ‘),
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and rescale the equation in both space and time in order terstaohd the behav-

ior of solutions to equation (14.2.1) at length and time esalhich are long when

compared to those of the velocity fiebdz). In this setting, the small parameter in
the problem is the ratio between the characteristic lengtie] scale of the velocity

field — its period — and the largest length (time) scale of treblgem — the one at

which we are looking for an averaged description. In contrashe analysis of the

advection—diffusion equation in the previous chapter, ascale time and space in
the same fashion, namely

r—elz, t—elt (14.2.2)

In the parabolic cas® > 0 this is because we do not assume that the centering
condition (13.2.8) holds; thus the advective effects doaverage out. Such a trans-
formation is also natural in the cage= 0 since the transport PDE (14.2.1a) is then
of first order in both space and time.

The initial value problem that we wish to investigate beceme

ou®
ot

=b° - Vu® +eDAu® for (z,t) € R x RY, (14.2.3a)

ut = f forz e RY x {0}. (14.2.3b)

Hereb® (z) = b(x /<), as in the previous chapter.
As in the previous chapter we define the operator

Lo =b(y)-V, + DA, (14.2.4)

with periodic boundary conditions. Note that constantg e in the null space of
this operator; furthermore, fab > 0 the null space is one dimensional and com-
prises only constants. TH&?—adjoint of , is L}, also with periodic boundary con-
ditions. Recall from Chapter 13 that, fér > 0, theinvariant distribution p(y) is
the unique stationary solution of the adjoint equation

Lop=0, / ply)dy = 1, (14.2.5)
'ﬂ*d

equipped with periodic boundary conditions. Hor> 0 both operators, and L*
satisfy a Fredholm alternative.

14.3 Simplified Equations

In this and the following section we simply assume that therafr., has a one

dimensional null space, comprising constants; and thatdhee holds for its adjoint

L, with null space spanned ky This follows from the Fredholm alternative for

D > 0. For D = 0 it requires some form of ergodicity of the underlying ODE for

which L is the generator. We discuss this ergodicity issue in Sestld.5 and 14.6.
Under the stated assumptions 6mwe have the following result:
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Result 14.1.Let b be a smooth periodic vector field. Assume that the operégor
defined in(14.2.4)satisfies

N(Lo) = span(1), N(L;) = span(p).

Then, fore <« 1 andtimes of O(1), the solutioru® (, t) of (13.2.4)is approximated
byu(z,t), the solution of the averaged equation:

ou - 7
S b V=0, b= / p(y)b(y) dy,
Td

together with the same initial condition as fof.

The calculations leading to this approximation result tddeerescaled parabolic
equation (14.2.3a) as starting point and recover a trahggpration by means of
averaging. Naively it might appear that the diffusion term(14.2.3a) simply dis-
appears from the averaging calculation, since it is mudigpby . This viewpoint
is wrong the diffusion coefficient plays an essential role. In gah#ite form of the
stationary distribution, against whidhis averaged, depends crucially éh > 0,
throughp.®

Note that the centering condition (13.2.8) simply stated th= 0. This is why
a different scaling of space and time is used in Chapter 13 filoat used here:
specifically a longer timescale is used there, in order tmsemegligible effects.

14.4 Derivation

We use the method of multiple scales as introduced in the t@oegling chapters.
We introduce the auxiliary variablg = z/¢. Let ¢ = ¢(x,x/¢) be scalar-valued.
The chain rule gives

1 2 1
Vo=Veo+-Vyo and A¢=Au6+ -V, Vy6+ 54,0,

The partial differential operator that appears on the rigahd side of equation
(14.2.3) has the form

1
L= gﬁo + L1 +eLls,
where
Lo=0b(y) Vy+ DAy,
L1 =0by) Vz+2DV,-Vy,
Lo =DA,.
In terms ofx andy equation (14.2.3) becomes

1 An exception is the case divergence—free flows: the invar@easurep is the Lebesgue
measure on the unit torus for dll > 0. See Proposition 13.15.
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ou®
ot

1
= <g£o + L1+ Eﬁg) u®.
We look for a solution in the form of a two-scale expansion:
X €T
u®(z,t) = ug (x,—,t) + euq (a:,—,t) +.... (14.4.1)
9 9

We assume that all terms in the expansigtr, y,¢), j = 0,1, ... arel—periodicin

y and treatr andy := £ as independent variableésWe substitute (14.4.1) into equa-
tion (14.2.3a), use the assumed independengeaoidy and collect equal powers of
¢ to obtain the following set of equations:

O(1/e) —Loug = 0, (14.4.2a)

0
O(1) —Lous = Lrug — %, (14.4.2b)
whereu,; (x, y) is 1—periodic iny.
We can now complete the averaging procedure. From the firgatémm in
(14.4.2), and our assumptions g, we deduce that the first term in the expansion

is independent of the oscillations which are expressedititraéhe auxiliary variable
y:
ug = u(x, ).

We use this to compute:

ou(z,t)
ot

Sincep is in the null space ofj the second equation in (14.4.2) implies that

Liug = —b(y) - Vau(z,t).

0= % - </w P(y)b(y) dy> - Vau(z, ). (14.4.3)

We have thus obtained the desired averaged equation:

ou(x,t)

P 5 Voulat) =0, b= / p(0)b(y) dy,
Td

together with the same initial conditions as thosewfar

14.5 Transport Equations: D = 0

We have indicated that, in general, the averaged transpogt®n depends subtly
on the diffusion coefficienD through the invariant distributiop against whichh

2 As in the elliptic and parabolic homogenization procedirethe previous two chapters,
this is where we exploit scale separatiave treat x and y as independent variables
Justifying this assumption as — 0 is one of the main issues in the rigorous theory of
averaging. See Chapter 21.
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is averaged. Existence and unigueness of the stationanbdifon p is automatic
when D > 0 but requires some form of ergodicity, which will depend upgbe
properties ob, whenD = 0. It is therefore a nontrivial question to ask when, and
to what extent, the preceding averaging calculations exterthe casé) = 0. The
calculations rely on the null spaces£f andL{ being one dimensional, something
ensured by the Fredholm alternative in the cBse 0. We discuss the analogues of
these results in the cage = 0.
Let
Lo =0b(y) -V, (14.5.1)

with domainC,,,.(T%). We can extend this operator ®(£o) C L:%,(T%) as in
(4.3.8). We assume for the moment that there are no norftfiwviations in the null
spaceVN of Ly:

N(Ly) = {constants iny } (14.5.2)

viewing the operator as acting di(£,). From Chapter 4 we know that this is es-
sentially an ergodicity assumption on the ODE with vectodfie— see Theorem
4.13(iii). In relation to this, the idea thal is nonempty with domain viewed as
beingcger(’ﬂ‘d), implies the existence of an invariant measure which is atbesyl
continuous with respect to the Lebesgue measure — see Theoi&(iii). Thus er-
godicity with respect to absolutely continuous invariargasureu provides us with
the necessary tools to carry out the formal perturbatioraegjons of this chapter
in the caseD = 0. In particular, in the ergodic case, (14.4.2a) implies thats
independent of and also that a necessary condition for a solutipf (14.4.2b) to
exist is the equation (14.4.3).

Note that ifb is divergence—free (the velocity field is incompressiblert.L is
skew—symmetric (Lemma 13.14) and so we deduce from (14tap)

N(L;) = {constants iny }. (14.5.3)

However, in the general ergodic cagewill not be a constant function.

14.5.1 The One-Dimensional Case

Consider the rescaled transport equation (14.2.3a) in onergsion:
ou® b ou®

ot Ox

u=g for(z,t) € R x {0}, (14.5.4b)

whereg = g(z) is independent of the oscillatioRgVe assume that(y) is a strictly
positive, smooth, 1—periodic function. The stationarywiile equation

=0 for(z,t) e RxR", (14.5.4a)

Lip=0, p>0, 1-periodic (14.5.5)
together with the normalization condition

3 This is not necessary — see Exercise 3 from Chapter 21.
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/Olp(y)dyzl,

has unique normalized solution the probability density
p(y) = o C=®y) ", (14.5.6)

here we have used the notatipihto denote averaging ovéd, 1], as in Chapter 12.
Positivity ofb is key to this existence and uniqueness result, and alse trgjodicity
of the underlying flow. These issues are discussed in Exampie

We obtain the averaged equation

gu_ 59t _y, (14.5.7)

with the same initial conditions as in (14.5.4b) and with

b= (b(y)"")".

Notice that, in contrast to the ergodic divergence—free qagsented in the next
subsection, it is the harmonic average of the velocity fietd appears in the averaged
equation (14.5.7) rather than the standard average. (KHatdtie harmonic average
also arises in the one—dimensional elliptic case — see Stibsd 2.6.1).

14.5.2 Divergence—Free Velocity Fields

If b is divergence—free (the velocity field is incompressibtetL given by (14.5.1)
is skew—symmetric (Lemma 13.14) and so we deduce that, i5(2yholds, then

N(Ls) = {constants iny }. (14.5.8)

(See Example 4.15). Unfortunately, even for divergenae-fields, the ergodic hy-
pothesis leading to (14.5.2) is often not satisfied. Comsadeequation in the form
(14.4.2a):

Lou:=by) - Vyu=0 (14.5.9)
with periodic boundary conditions. Although= 1 solves this equation, it is rare
that this solution is unique: the null space of the operAtotontains, in general, non-
trivial functions ofy. As an example, consider the smoathperiodic, divergence—
free field

b(y) = (sin(27my2), sin(27y1)).
It is easy to check that the function

u(y) = cos(2my1) — cos(2mys2)

solves equation (14.5.9). Consequently, the null spagk afepends on the velocity
field b(y) and it does not consist, in general, merely of constanis ithis implies
that we cannot carry out the averaging procedure using thiead®f multiple scales.

Itis natural to ask whether there is a way of deciding whetigiven divergence—
free velocity field oril¢ is ergodic or not. This is indeed possible in two dimensions.
A result along these lines is the following.
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Theorem 14.2.Letb(y) : T?> — R? be a smooth divergence—free velocity field sat-
isfying

bi(y) #0 Yy e T’
so that it has no stagnation points. Ligt i = 1,2 denote the average of thiéh

component of the velocity field ovEf and define the rotation number as
_h
=g

Then there exists a smooth change of varialjles z under which the ODEs

dy1 - dyg -

o by (y)a a bg(y) (14.5.10)
transform into

d21 dZQ

et . 14.5.11

7 9(2), s v9(2) ( )

whereg(z) is a nonvanishing smooth scalar function. Assume furthegrtiaty is
irrational. Then the null space of the generatty is one—dimensional.

Proof. The first part of the theorem can be proved by constructindi@itp the
transformation that maps (14.5.10) into (14.5.41):

1 a8 1 Y2
a= [T w0 n= [hmod
bg 0 bl 0
The second part of the theorem can be proved using FourigrsameSee Exercise 7.
O

Thus, under the conditions of this theorem, Theorem 4.18shahd the formal
perturbation expansions of this chapter may be applied.

14.6 The Connection to ODEs and SDEs

We consider first the cage = 0. Recall from Chapter 4 that the solution of (14.2.3)

is given by
u(z,t) = g(¢' (),
wherey!(x) solves the ODE

4 gty = (£,

o' (z) = .

Result 14.1 shows that, when the ergodicity assumptionsheddthat’, has one-
dimensional null space, this equation is well approximdted

4 Under the additional assumption that=# 0 which can be removed later.
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7' (x) = bt + =,

the solution of

d_, -

—-% =b

ai? @ ="

Pl(r) =1
Here
b= [ by = 00
by (14.5.6).
Another way to see this result is as follows. ket ¢f(z) andy = z /<. Then

dx

dy 1

a gb(y)-

Under the ergodic hypothesis the fast procgbsas invariant measuyeon the torus
T<. Thus the averaging Result 10.1 gives thag well approximated by the solution

of the equation

dx -
E—b.

This is precisely the approximation derived above.

Example 14.3In the one-dimensional case it is possible to derive thesayest equa-
tion (14.5.7) using the method of characteristics. To sex tlonsider the equation

dx x
G =1(5)
dt €
in one dimension, and under the same assumptions as béfareséty = x /¢ then

it is straightforward to show that

dy 1

==-b
o = 2P,
so that, if we defind” by
T /1 1 p 1
= —az = =,
o b(2) b
then .
y(neT) = g +n.
Hence

x(neT) = z(0) 4 ne.

It follows from continuity that:(¢) converges toX (¢) where
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X(t) = 2(0) + %

This limiting function X (¢) satisfies the homogenized equation

dx 1 -
d T
If D > 0 then equation (14.2.3) is the backward Kolmogorov equdtiornhe

SDE J oW
X x
— =b(- V2eD—.
di b(s) LT
Another way to interpret the averaging result is thus afed. Lety = /e to
obtain

dx dW
E = b(y) + Vv 2€DW,

dy 1 12D dW
29 _ - 14.6.1
dt sb(y)+ e dt (14.6.1)

Under the ergodic hypothesis the fast proaghsis invariant measuygeon the torus
T<. Thus a generalization of the averaging Result 10.1 givaisiths well approxi-

mated by the ODE

dr -
— =b.
dt

14.7 Discussion and Bibliography

The perturbation expansion used here is analogous to tleat insthe method of
averaging, for Markov chains, ODE and SDE, in Chapters 9 &ndtie problem of
averaging for linear transport equations has been studieddny authors. See for
example [80, 147, 312, 51]. Averaging for SDEs is studieddtad in [111].

WhenD = 0 the method of multiple scales enables us to obtain the agdday
ear transport equation (14.2.3a) only in the case wheredlaeiy field is ergodic.
The method of multiple scales breaks down when the veloaty fs not ergodic,
since in this case we do not have a solvability condition Whiould enable us to
average. In fact, when the velocity field is not ergodic, the» 0 limit becomes
much more complicated and the limiting process cannot beesgpd through a sim-
ple PDE. In order to study the problem for general velocitydBe not necessarily
ergodic, it is possible to use the method of two—scale cayarase. This will be done
in Chapter 21.

Theorem 14.2 is proved in [312], where the result is provedvio-dimensional
flows that have a smooth invariant density, not only divecgeffree flows (for which
the invariant density is simply). It is not the sharpest result that one can prove,
but the assumptioh; # 0 leads to a particularly simple proof. The proof of the
analogous theorem under the assumptions that there aragmasibn points can be
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found in [290]. A similar theorem holds for velocity fieldstivian invariant measure
other than the Lebesgue measurelBnsee [312].

The example studied in Section 14.5.1 can be found in [81]. 34@nte Carlo
methods for advection—diffusion and for transport PDEspaesented in [187].

14.8 Exercises

1. How does the dynamics of the ODE studied in Section 14.Bahge ifb is

allowed to change sign?
= ()

2. Consider the equation
in one dimension, and under the assumptiondh{asp b) is smooth 1 —periodic
andinf, a > 0 (resp.inf, b > 0). Find the averaged equations.

3. Study the problem of averaging for (14.2.3) with a smoathqaic (shear) ve-
locity field b : T? — R? of the form

b(y) = (0,b2(y1))”.

4. Study the problem of averaging for (14.2.3) with a velpéigld b : T? — R2 of
the form

b(y) = b(y)(0,7)7,

Whereg(y) is a smooth]—periodic scalar function and € R.

5. Consider equation (13.2.4) in the case where the cegteondition (13.2.8)
does not hold. Show that it is possible to derive a homogerérgiation of the
form (13.3.3) for the rescaled field

z bt ot
v (z,t)=u|———, =
(%) (5 g2 52>

whereu solves (14.2.1) anblis given in Result 14.1. Show that the cell-problem
becomes ~
—Lox=b—0b. (14.8.1)

and that the effective diffusivity is given by the formula

K=pr+2D [ T oy + [ (o) ~5) @ xw)ol)) .
Td Td
(14.8.2)
6. Study the problem of homogenization for the ODE

whereV (y) is a smooth periodic function arnfdl is a constant vector.
7. Complete the details in the proof of Theorem 14.2.



Part Il

Theory



