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Preface

The aim of these notes is to describe, in a unified fashion, a set of methods for the
simplification of a wide variety of problems which all share the common feature of
possessing multiple scales.1 The mathematical methods which we study are often
referred to as the methods ofaveragingand ofhomogenization. The methods ap-
ply to partial differential equations (PDEs), stochastic differential equations (SDEs),
ordinary differential equations (ODEs) and Markov chains.The unifying principle
underlying the collection of techniques described here is the approximation ofsin-
gularly perturbed linear equations. The unity of the subject is most clearly visible
in the application of perturbation expansions to the approximation of these singular
perturbation problems. A significant portion of the notes isdevoted to such perturba-
tion expansions. In this context we use the termResult to describe the conclusions
of a formal perturbation argument. This enables us to deriveimportant approxima-
tion results without the burden of rigorous proof which can sometimes obfuscate the
main ideas. However, we will also study a variety of tools from analysis and proba-
bility, used to place the approximations derived on a rigorous footing. The resulting
theorems are proved using a range of methods, tailored to different settings. There is
less unity to this part of the subject. As a consequence considerable background is
required to absorb the entire rigorous side of the subject, and we devote a significant
fraction of the book to this background material.

The first part of the notes is devoted to theBackground, the second to thePer-
turbation Expansions which provide the unity of the subject matter, and the third
to theTheory justifying these perturbative techniques. We do not necessarily rec-
ommend that the reader covers the material in this order. A natural way to get an
overview of the subject is to read through Part II of the book on Perturbation Expan-

1 In this book we will apply the general methodology to problems with two, widely sepa-
rated, characteristic scales. The extension to systems with many seperated scales is fairly
straightforward and will be discussed in a number of the Discussion and Bibliography sec-
tions which conclude each chapter. In all cases, the important assumption will be that of
scale separation.
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sions, referring back to the Background material as needed.The Theory can then be
studied, after the form of the approximations is understood, on a case by case basis.

Part I (Background) contains the elements of the theory of analysis, probability
and stochastic processes, as required for the material in these notes, together with
basic introductory material on ODEs, Markov chains, SDEs and PDEs. Part II (Per-
turbation Expansions) illustrates the use of ideas from averaging and homogenization
to study ODEs, Markov chains, SDEs and PDEs of elliptic, parabolic and transport
type; invariant manifolds are also discussed, and viewed asa special case of aver-
aging. Part III (Theory) contains illustrations of the rigorous methods which may be
employed to establish the validity of the perturbation expansions derived in Part II.
The chapters in Part III relate to those in Part II in a one-to-one fashion. It is possible
to pick particular themes from this book and cover subsets ofchapters devoted only
to those themes. The reader interested primarily in SDEs should cover Chapters 6,
10, 11, 17 and 18. Markov chains are covered in Chapters 5, 9 and 16. The subject of
homogenization for elliptic PDEs is covered in Chapters 12 and 19. Homogenization
and averaging for parabolic and transport equations is covered in Chapters 13, 14, 20
and 21.

The subject matter in these set of notes has, for the most part, been known for sev-
eral decades. However, the particular presentation of the material here is, we believe,
particularly suited to the pedagogical goal of communicating the subject area to the
wide range of mathematicians, scientists and engineers whoare currently engaged
in the use of these tools to tackle the enormous range of applications that require
them. In particular we have chosen a setting which demonstrates quite clearly the
wide applicability of the techniques to PDEs, SDEs, ODEs andMarkov chains, as
well as highlighting the unity of the approach. Such a wide–ranging setting is not
undertaken, we believe, in existing books, or is done so lessexplicitly than in this
text. We have chosen to use the phrasingMultiscale Methods in the title of the book
because the material presented here forms the backbone of a significant portion of the
amorphous field which now goes by that name. However we do recognize that there
are vast parts of the field which we do not cover in this book. Inparticular, scale sep-
aration is a fundamental requirement in all of the perturbation techniques presented
in this book. Many applications, however, possess a continuum of scales, with no
clear separation. Furthermore, many of the problems arising in multiscale analysis
are concerned with the interfacing of different mathematical models appropriate at
different scales (such as quantum, molecular and continuum); the tools presented
in these notes do not directly address problems arising in such applications as our
starting point is a single mathematical model, in which scale separation is present.

These notes are meant to be an introduction, aimed primarilytowards graduate
students. Part I of the book (where we lay the theoretical foundations) and Part III
of the book (where we state and prove theorems concerning simplified versions of
the models that are studied in Part II) are necessarily terse; without being so it would
be impossible to present the wide range of applications of the ideas, and illustrate
their unity. Extensions and generalizations of the resultspresented in these notes,
as well as references to the literature, are given in the Discussion and Bibliography
section, at the end of each chapter. With the exception of Chapter 1, all chapters
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are supplemented with exercises. We hope that the format of the book will make it
appropriate for use both as a textbook and for self–study.

Acknowledgements

We are especially grateful to Konstantinos Zygalakis who read and commented
upon much of the manuscript, typed parts of it, and helped to create some of the
figures. Special thanks also are due to Martin Hairer, Valeriy Slastikov, Endre Süli
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8

Invariant Manifolds for ODEs

8.1 Introduction

Perhaps the simplest situation where variable reduction occurs in dynamical systems
is that of attractive invariant manifolds. These manifoldsslaveone subset of the
variables to another. In this chapter we describe a situation where attractive invariant
manifolds can be constructed in scale separated systems, bymeans of perturbation
expansions. In Section 8.2 we introduce the system of ODEs that we want to simplify
by means of the theory of invariant manifolds, and in Section8.3 we present the
simplified equations. The simplified equations are derived in Section 8.4 and several
examples are presented in Section 8.5. In Section 8.6 we describe various extensions
of the results presented in this chapter, together with making bibliographical remarks.
We also discuss the material in this section in relation to averaging, the subject of
Chapters 9 and 10.

8.2 Full Equations

We consider a system of ODEs of the form (4.1.1) and writez asz = (xT , yT )T ,
where

dx

dt
= f(x, y), (8.2.1a)

dy

dt
=

1

ε
g(x, y), (8.2.1b)

andε≪ 1. Herex ∈ X andy ∈ Y in the notation of Chapter 4.
Letϕt

x(y) be the solution operator of the fast dynamics withx viewed as a fixed
parameter andε = 1. To be precise, for anyξ ∈ X , let

d

dt
ϕt

ξ(y) = g(ξ, ϕt
ξ(y)), ϕ0

ξ(y) = y. (8.2.2)

We assume that
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lim
t→∞

ϕt
ξ(y) = η(ξ) (8.2.3)

exists, is independent ofy and that the convergence is uniform inξ. Roughly speak-
ing y(t) solving (8.2.1) is given byy(t) ≈ ϕ

t/ε
x(0)(y(0)) for timest which are small

compared with1 (i.e., t = o(1)) so thatx(t) has not evolved very much. If we
then look at short timescales which are nonetheless large compared withε, so that
y is close to its equilibrium point, (for example ift = O(ε

1

2 )), we deduce that then
y(t) ≈ η(x(0)). This is the mechanism by whichy becomes slaved tox and we now
seek to make the above heuristics more precise.

Notice that the generatorL for (8.2.1) has the form

L =
1

ε
L0 + L1 (8.2.4)

where
L0 = g(x, y) · ∇y, L1 = f(x, y) · ∇x

In particular,L0 is the generator of a process onY for each fixedx.
Now consider the following PDE forv(y, t) in which x is viewed as a fixed

parameter:
∂v

∂t
= L0v, v(y, 0) = φ(y). (8.2.5)

Result 4.6 shows that
v(y, t) = φ(ϕt

x(y)).

Thus, by (8.2.3),
v(y, t)→ φ(η(x)), as t→∞. (8.2.6)

This is related to ergodicity, as equation (8.2.6) shows that the functionv(y, t) ex-
hibits no dependence on initial data, asymptotically ast → ∞, and approaches a
constant iny. Compare with the discussion of ergodicity in Chapter 4, andTheorems
4.12 and 4.13 in particular.

Recall the Definition 4.3 of invariant set. If this set is a manifold then we refer
to it as aninvariant manifold. In this chapter we use the scale-separated form of the
equations (8.2.1) to construct an approximate invariant manifold. In fact the manifold
will have the structure of agraph: it will be represented as a function relating the
y coordinates to thex coordinates. Invariant manifolds representible as graphsare
particulary important in describing the dynamics of ODEs close to equilibria, leading
to the concepts ofstable, unstable and center manifolds.

8.3 Simplified Equations

We now state an approximation result that will be derived by formal perturbation
arguments in the next section. Define the vector fieldF0(x) by

F0(x) = f(x, η(x)). (8.3.1)
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Result 8.1.For ε≪ 1 and timet uptoO(1), x(t) solving(8.2.1)is approximated by
X(t) solving

dX

dt
= F0(X), (8.3.2)

whereF0(x) is given by(8.3.1).

Underlying the derivation of this result is an assumption that y(0) is initalized
close toη(x(0)). When this fails then further arguments are required to dealwith
what is termed an initial or boundary layer – see Section 8.6 for a discussion of this
point.

Result 8.1 gives us the leading order approximation inε. Keeping the next order
yields the refined approximation

dX

dt
= F0(X) + εF1(X), (8.3.3)

where

F1(x) = ∇yf(x, η(x))
(
∇yg(x, η(x))

)−1

∇xη(x)f(x, η(x)).

This approximation requires that∇yg(x, η(x)) is invertible.

8.4 Derivation

The method used to find these simplified equations is to seek anapproximate in-
variant manifold for the system. Furthermore, we assume that the manifold can be
represented as a graph overx, namelyy = Ψ(x). The set determined by such a graph
is invariant (see Definition 4.3) under the dynamics if

dy

dt
= ∇Ψ(x(t))

dx

dt
,

whenevery = Ψ(x). This implies thatΨ must solve the nonlinear PDE

1

ε
g(x, Ψ(x)) = ∇Ψ(x)f(x, Ψ(x)).

We seek solutions to this equation as a power series

Ψ(x) = Ψ0(x) + εΨ1(x) +O(ε2).

This is our first example of a perturbation expansion.
Substituting and equating coefficients of successive powers of ε to zero yields

the hierarchy

O(1
ε ) g(x, Ψ0(x)) = 0,

O(1) ∇yg(x, Ψ0(x))Ψ1(x) = ∇Ψ0(x)f(x, Ψ0(x)).
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Notice that equations (8.2.2),(8.2.3) together imply thatg(ξ, η(ξ)) = 0 for all ξ.
Hence theO(1

ε ) equation above may be satisfied by choosingΨ0(x) = η(x), giving
the approximation (8.3.2). Since the rate of convergence in(8.2.3) is assumed to be
uniform is it natural to assume thaty = η(ξ) is a hyperbolic equilibrium point1

of (8.2.2), so that∇yg(x, η(x)) is invertible. SettingΨ0(x) = η(x) in theO(1)
equation, and inverting, yields

Ψ1(x) = ∇yg(x, η(x))
−1∇η(x)f(x, η(x)).

Thus

f(x, Ψ(x)) = f
(
x, Ψ0(x) + εΨ1(x) +O(ε2)

)

= f(x, Ψ0(x)) + ε∇yf(x, Ψ0(x))Ψ1(x) +O(ε2)

= f(x, η(x)) + ε∇yf(x, η(x))Ψ1(x) +O(ε2),

and the refined approximation (8.3.3) follows.

8.5 Applications

8.5.1 Linear Fast Dynamics

A structure arising in many applications is where the frozenx dynamics, given by
ϕt

ξ(·), is linear. As a simple example consider the equations

dx

dt
= f(x, y),

dy

dt
= −y

ε
+
g̃(x)

ε
. (8.5.1)

Hered = 2 andX = Y = R,Z = R
2. It is straightforward to show that

ϕt
ξ(y) = e−ty +

∫ t

0

es−tg̃(ξ)ds

= e−ty + (1− e−t)g̃(ξ).

Hence (8.2.3) is satisfied forη(·) = g̃(·)
The simplified equation given by Result 8.1 is hence

dX

dt
= f(X, g̃(X)).

Using the fact that∇yg(x, y) = −1 we see that the more refined approximation
(8.3.3) is

dX

dt
= f(X, g̃(X))

(
1− ε df

dy
(X, g̃(X))

dg̃

dx
(X)

)
.

1 A hyperbolic equilibrium point is one where the linearization of the vector field at the
equlibrium point contains no spectrum on the imaginary axis.



8.5 Applications 137

8.5.2 Large Time Dynamics

The statement of the result concerning simplified dynamics concerns the approxi-
mation ofx(t) onO(1) time intervals with respect toε. However in many cases the
results extend naturally to the infinite time domain. The following example illustrates
this idea.

Consider the equations

dx1

dt
= −x2 − x3, (8.5.2a)

dx2

dt
= x1 +

1

5
x2, (8.5.2b)

dx3

dt
=

1

5
+ y − 5x3, (8.5.2c)

dy

dt
= −y

ε
+
x1x3

ε
, (8.5.2d)

so thatX = R
3 andY = R. Result 8.1 indicates thatx should be well approximated

byX solving the Rössler system

dX1

dt
= −X2 −X3, (8.5.3a)

dX2

dt
= X1 +

1

5
X2, (8.5.3b)

dX3

dt
=

1

5
+X3(X1 − 5). (8.5.3c)

The Rössler equations are chaotic and consequently comparison of trajectories over
long time-intervals is not natural. A more useful object is the attractor. A compari-
son of the numerically generated attractors for the two systems is shown in Figure
8.1. The first figure shows the attractor for equations (8.5.2), projected into thex
coordinates, forε = 10−2. The second shows the attractor for the Rössler equations
themselves. The agreement is very strong indicating that the simplified dynamics do
indeed capture behaviour over long time-intervals.

8.5.3 Center Manifold

The center manifold is an invariant manifold containing an equilibrium point whose
linearization has neutral directions (subspaces corresponding to eigenvalues with
zero real part). Consider the equations

dx

dt
= λx+

2∑

i=0

aix
iy2−i,

dy

dt
= x− y +

2∑

i=0

bix
iy2−i.



138 8 Invariant Manifolds for ODEs

−10

−5

0

5

10

15

−10

−5

0

5

10
0

2

4

6

8

10

12

14

16

18

x
1

x
2

x 3

−10

−5

0

5

10

15

−10

−5

0

5

10
0

2

4

6

8

10

12

14

16

18

X
1

X
2

X
3

Fig. 8.1.Comparison between the attracting sets for (8.5.2) withε = 0.01 (left) and (8.5.3)
(right), projected on the(x1, x2) and(X1, X2) planes, respectively.

Hereλ ∈ R and theai andbi are also real numbers. Furthermore, for eacht,x(t) ∈ R

andy(t) ∈ R. When linearized at the origin this equation becomes

dx

dt
= λx,

dy

dt
= x− y.

If (z = (x, y)T then
dz

dt
= Lz

with

L =

(
λ 0
1 −1

)
.

The eigenvalues ofL areλ and−1. As λ passes through0 the linear stability prop-
erty of the origin thus changes from stable to unstable. For this reason, studying the
equation in the vicinity ofλ = 0 is of interest. In particular we expect to find a center
manifold atλ = 0: an invariant manifold tangent to the eigenspace corresponding to
eigenvalue0 of L.

To construct this manifold rescale the equations as follows: we set

x→ εx, y → εy, λ→ ελ, t→ ε−1t.

This corresponds to looking for small amplitude solutions,close to the fixed point at
the origin, at parameter values close to the bifurcation values. Such solutions evolve
slowly and hence time is rescaled to capture non-trivial dynamics. The equations
become
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dx

dt
= λx+

2∑

i=0

aix
iy2−i,

dy

dt
=

1

ε
(x− y) +

2∑

i=0

bix
iy2−i.

A perturbation expansion gives the invariant manifoldy = x and we obtain the
following equations for the dynamics on the invariant manifold:

dX

dt
= λX +AX2,

with A =
∑2

i=0 ai. The caseλ = 0 gives the center manifold itself, andλ < 0 the
stable manifold.

8.6 Discussion and Bibliography

The topic of invariant manifolds has a long history and is itself the subject of entire
books. To do it justice here is impossible and we provide onlybrief pointers to the
literature. From the perspective of this book, our primary motivation for covering
the topic is that it provides a special case of the method of averaging introduced in
the next two chapters; furthermore this case can be introduced without appeal to any
arguments from ergodic theory or from the theory of stochastic processes. It hence
provides a suitable inroad into the topics of this book for readers with a background
in dynamical systems; conversely it provides a concrete link between averaging and
dynamical systems. We discuss this perspective further in Chapter 10. Note also that
the perturbation expansion that we use in this chapter is, ata high level, similar to
those used in the remainder of Part II. It differs in one significant respect, however:
all the remaining chapters involve perturbation expansions for the approximation of
linear problems (by working with the backward equation, andrely on repeated use
of the Fredholm alternative. In this chapter the strategy underlying the perturbation
expansion is somewhat different, as the problem for the graphΨ is nonlinear and the
Fredholm alternative is not used.

Invariant manifolds in general are described in [131] and [331]. These books have
considerable emphasis on the construction of unstable, stable and center manifolds
for invariant sets of the equation (4.1.1). In particular, for the case of the simplest
invariant set, an equilibrium point, we may change coordinates to a frame in which
the origin0 is an equilibrium point and (4.1.1) takes the form

dz

dt
= Lz + h1(z), z(0) = z0.

Hereh1(z) is small compared toz → 0. In the case of a hyperbolic equilibrium
point the invariant subspaces ofL split into stable and unstable spaces. If we letP
denote the orthogonal projection onto the stable space, andQ = I − P denote the
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orthogonal projection onto the unstable space, then introducingx = Pz, y = Qz we
obtain the equations

dx

dt
= L1x+ f1(x, y),

dy

dt
= L2y + g1(x, y).

The stable manifold is (locally near the origin) representable as a graphy = Θ(x);
likewise the unstable manifold is representable as a graphx = Φ(y). The center
manifold is similar to the stable manifold, but occurs when,for example,PZ com-
prises neutral directions inL. Center manifolds in particular are discussed in [57].
The special case where the neutral spectrum ofL contains a pair of complex conju-
gate eigenvalues leads to the Hopf bifurcation theorem; see[212].

These special invariant manifold theorems, concerning behaviour near fixed
points, show the central role of graphs relating one set of variables to another in
the construction of invariant manifolds. Such a graph is at the heart of our construc-
tion of what is sometimes termed aslow manifoldfor (8.2.1). Early studies of the
approximation of ODE with attracting slow manifold by differential-algebraic equa-
tions includes the independent work of Levinson and of Tikhonov (see O’Malley
[239] and Tikhonov et al. [317]). As mentioned in section 8.3the simplest version
of the approximation result requires the fast variabley to be initialized close to the
invariant manifold. However, even if it is not, aninitial layer (sometimes termed
boundary layer) can be introduced to extend the approximation result, and studied
through the method of matched asymptotic expansions; see [324] and [71, 272].

Our construction of an invariant manifold uses the explicitslaving of y to x
through the asymptotically stable fixed points of (8.2.2). More generally, the use of
a spectral gap sufficiently large relative to the size of the nonlinear terms is used in
the construction of local stable, unstable and center manifolds (e.g., Carr [57], Wig-
gins [331]), slow manifolds (Kreiss [178]) and inertial manifolds (Constantin et al.
[69]). In particular the inertial manifold construction shows how ideas from invariant
manifold theory extend naturally to infinite dimensions in the context of dissipative
PDEs.

References to numerical methods for dynamical systems, andfor the computation
of invariant manifolds in particular, may be found in [305].It is also possible to
construct invariant manifolds for stochastic (partial) differential equations. See, for
example, [39, 38, 41, 77, 329, 328] and the references therein.

8.7 Exercises

1. Consider the equations
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dx

dt
= λx+ a0x

3 + a1xy,

dy

dt
= −y +

2∑

i=0

bix
iy2−i.

Hereλ ∈ R and theai andbi are also real numbers. For each fixedt we have
x(t) ∈ R andy(t) ∈ R. Show that the scaling

x→ εx, y → ε2y, λ→ ε2λ, t→ ε−2t

puts this system in a form to which the perturbation techniques of this section
apply. Deduce that the center manifold has the form

dX

dt
= λX +AX3

whereA = a0 + a1b2.
2. Assumeε > 0,A ∈ R

l×l andB ∈ R
(d−l)×(d−l). Consider the equations

dx

dt
= Ax+ εf0(x, y),

dy

dt
= −1

ε
By + g0(x, y),

for ε ≪ 1 andx ∈ R
l, y ∈ R

d−l. Assume thatB is symmetric positive-definite.
Find the first three terms in an expansion for an invariant manifold representingy
as a graph overx.

3. Assumeε > 0 andB ∈ R
(d−l)×(d−l). Consider the equations

dx

dt
= f(x, y),

dy

dt
= −1

ε

(
By − g̃(x)

)
,

for ε≪ 1 andx ∈ R
l, y ∈ R

d−l.

a) Assume thatB is symmetric positive-definite. Find the first term in an expan-
sion for an invariant manifold representingy as a graph overx.

b) Consider the cased− l = 2, g̃ ≡ 0 and

B =

(
0 1
−1 0

)
.

What happens to the solution asε→ 0?
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Averaging for Markov Chains

9.1 Introduction

Perhaps the simplest setting in which to expose variable elimination for stochastic
dynamical problems is to work in the setting of Markov chains. In this context it is
natural to study situations where a subset of the variables evolves rapidly compared
with the remainder, and can be replaced by their averaged effect. In Section 9.2 we
describe the unaveraged Markov chain and in Section 9.3 we present the averaged
equations; the averaged equations are derived in Section 9.4 and an example is given
in Section 9.5. In Section 9.6 we discuss various extensionsof the results from this
chapter and make some bibliographical remarks.

9.2 Full Equations

We work in the set-up of Chapter 5 and consider the backward equation

dv

dt
= Qv. (9.2.1)

Recall that this equation, withv(0) = φ, has the property that

vi(t) = E

(
φz(t)|z(0) = i

)
,

whereE denotes expectation with respect to the Markov transition probabilities. We
assume that the generatorQ 1 takes the form

Q =
1

ε
Q0 +Q1, (9.2.2)

with 0 < ε ≪ 1. We study situations where the state space is indexed by two
variables,x andy, and the leading order contribution inQ, namelyQ0, corresponds

1 In this chapter we denote the generator byQ rather thanL because we use indexl for the
state-space; thus we wish to avoid confusion with the components of the generator.
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to fast ergodic dynamics iny, with x frozen. Averaging overy then gives the effective
reduced dynamics forx.

The precise situation is as follows. Our state space isI := Ix×Iy with Ix, Iy ⊆
{1, 2, · · · }. We letq((i, k), (j, l)) denote the element of the generator associated with
transition from(i, k) ∈ Ix × Iy to (j, l) ∈ Ix × Iy.2 Consider now a family of
Markov chains onIy, indexed byi ∈ Ix. We write the generator asA0(i) with
entries asa0(k, l; i); the indices denote transition fromk ∈ Iy to l ∈ Iy for given
fixed i ∈ Ix. We assume that, for eachi ∈ Ix, A0(i) generates an ergodic Markov
chain onIy . HenceA0(i) has a one-dimensional null space for each fixedi, and3

∑
l a0(k, l; i) = 0, (i, k) ∈ Ix × Iy,∑

k ρ
∞(k; i)a0(k, l; i) = 0, (i, l) ∈ Ix × Iy.

(9.2.3)

This is the index form of equations (5.6.2) withL replaced byA0(i). Without loss
of generality we choose the normalization

∑

k

ρ∞(k; i) = 1 ∀i ∈ Ix.

Thusρ∞(i) = {ρ∞(k; i)}k∈Iy
is the invariant distribution of a Markov chain onIy,

indexed byi ∈ Ix.
Similarly to the above we introduce the generators of a Markov chain onIx,

parameterized byk ∈ Iy. We denote the generator byA1(k) with indicesa1(i, j; k);
the indices denote transition fromi ∈ Ix to j ∈ Ix, for each fixedk ∈ Iy. With this
notation for theA0, A1 we introduce generatorsQ0, Q1 of Markov chains onIx×Iy

by

q0((i, k), (j, l)) = a0(k, l; i)δij,
q1((i, k), (j, l)) = a1(i, j; k)δkl.

(9.2.4)

Hereδij is the usual Kronecker delta. In the construction ofQ0 (resp.Q1) the Kro-
necker delta represents the fact that no transitions are taking place inIx (resp.Iy).

To confirm thatQ0, Q1 as defined are indeed generators, notice that non-diagonal
entries(i, k) 6= (j, l) are nonnegative becauseA0 andA1 are generators. Also

∑

j,l

q0((i, k), (j, l)) =
∑

j,l

a0(k, l; i)δij

=
∑

l

a0(k, l; i)

= 0

2 In this chapter, and in Chapter 16, we will not use suffices to denote the dependence
on the state space as the double-indexing makes this a cluttered notation. Hence we use
q((i, k), (j, l)) rather thanq(i,k),(j,l).

3 Summation is always over indices inIx or Iy in this chapter. It should be clear from the
context which of the two sets is being summed over.
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by (9.2.3). A similar calculation shows that

∑

j,l

q1((i, k), (j, l)) = 0,

using the fact that

∑

j

a1(i, j; k) = 0 ∀ (i, k) ∈ Ix × Iy,

sinceA1(k) is a generator for each fixedk. ThusQ0, Q1 are also the generators of
Markov chains. Finally note that any linear combination of generators, via positive
scalar constants, will also be a generator. Hence (9.2.2) defines a generator for any
ε > 0.

9.3 Simplified Equations

We define the generator̄Q1 of a Markov chain onIx by:

q̄1(i, j) =
∑

k

ρ∞(k; i)a1(i, j; k). (9.3.1)

Notice thatq̄1(i, j) > 0 for i 6= j becauseρ∞(k; i) > 0 anda1(i, j; k) > 0 for
i 6= j. Furthermore

∑

j

q̄1(i, j) =
∑

k

ρ∞(k; i)




∑

j

a1(i, j; k)





= 0.

HenceQ̄1 is the generator of a Markov chain.

Result 9.1.Consider equation (9.2.1) under assumption (9.2.2). Then for ε≪ 1 and
timest uptoO(1) the finite dimensional distributions ofx ∈ Ix are approximated by
a Markov chainX with generatorQ̄1.

We emphaszie thatx is not itself Markovian: only the pair(x, y) is. As discussed
above,Q̄1 is the generator of a Markov chain onIx alone, and the dynamics inIy has
been eliminated through averaging. Thus the approximate variableX is Markovian
and is governed by the backward equation

dv0
dt

= Q̄1v0. (9.3.2)

We now provide justification for this elimination of variables, by means of per-
turbation expansion.
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9.4 Derivation

The method used is to show that the backward equation for the full Markov chain in
(x, y) ∈ Ix × Iy can be approximated by the backward equation (9.3.2) forx ∈ Ix

alone. We consider equation (9.2.1) under (9.2.2). We have the backward equation

dv

dt
=
(1

ε
Q0 +Q1

)
v.

Unlike the previous chapter, where we approximated a nonlinear PDE containing a
small parameterε, here the problem is linear. In the following five chapters, all our
perturbation expansions are for similar linear equations.The derivation here is hence
prototypical of what follows.

We seek solutionsv = v(i, k, t) in the form of the multiscale expansion

v = v0 + εv1 +O(ε2). (9.4.1)

Substituting and equating coefficients of powers ofε to zero we find

O(1
ε ) Q0v0 = 0, (9.4.2a)

O(1) Q0v1 = −Q1v0 +
dv0
dt
. (9.4.2b)

By (9.2.3) we deduce from (9.4.2a) thatv0 is independent ofk ∈ Iy. Abusing nota-
tion, we write

v0(i, k, t) = v0(i, t)1(k) (9.4.3)

where1(k) = 1 for all k ∈ Iy. The operatorQ0 is singular and hence, for (9.4.2b)
to have a solution, the Fredholm alternative implies the solvability condition

−Q1v0 +
dv0
dt
⊥Null {QT

0 }. (9.4.4)

From (9.2.3) we deduce that the null space ofQT
0 is characterized by

∑

k,i

ρ∞(k; i)c(i)q0((i, k), (j, l)) = 0, (9.4.5)

for any vectorc = {c(i)} onIx. Using (9.4.3) we find that

dv0
dt
−Q1v0 =

dv0
dt

(i, t)1(k)−
∑

j,l

a1(i, j; k)δklv0(j, t)1(l)

=
(dv0
dt

(i, t)−
∑

j

a1(i, j; k)v0(j, t)
)
1(k).

Imposing the solvability condition (9.4.4) by means of (9.4.5) we obtain

∑

k,i

ρ∞(k; i)c(i)
(dv0
dt

(i, t)−
∑

j

a1(i, j; k)v0(j, t)
)

= 0,
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which implies that

∑

i

c(i)
(dv0
dt

(i, t)−
∑

j

Q̄1(i, j)v0(j, t)
)

= 0.

Sincec is an arbitrary vector onIx we deduce that each component of the sum over
i is zero. This yields (9.3.2).

9.5 Application

Consider a simple example whereIx = Iy = {1, 2}. Thus we have a four–state
Markov chain onI = Ix ×Iy. We assume that the generators of the Markov chains
onIy andIx are given by

A0(i) =

(
−θi θi

φi −φi

)

and

A1(k) =

(
−αk αk

βk −βk

)
,

respectively. In the first (resp. second) of these Markov chains i ∈ Ix (resp.k ∈ Iy)
is a fixed parameter. The parametersθi, φi, αk, βk are all non-negative.

If we order the four states of the Markov chain as(1, 1), (1, 2), (2, 1), (2, 2) then
the generatorsQ0 andQ1 are given by

Q0 =





−θ1 θ1 0 0
φ1 −φ1 0 0
0 0 −θ2 θ2
0 0 φ2 −φ2



 (9.5.1)

and

Q1 =





−α1 0 α1 0
0 −α2 0 α2

β1 0 −β1 0
0 β2 0 −β2



 . (9.5.2)

Note that any linear combination ofQ0 andQ1 will have zeros along the anti-
diagonal and hence the same is true ofQ; this reflects the fact that, by construction,
transitions in bothIx andIy do not happen simultaneously.

The invariant density of the Markov chain with generatorA0(i) is ρ∞(i) =
(λi, 1 − λi)

T with λi = φi/(θi + φi). Recall that the averaged Markov chain on
Ix has generator̄Q1 with entries
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q1(i, j) =
∑

k

ρ∞(k; i)a1(i, j; k)

= λia1(i, j; 1) + (1− λi)a1(i, j; 2).

Thus

Q̄1 =

(
−λ1α1 − (1 − λ1)α2 λ1α1 + (1− λ1)α2

λ2β1 + (1− λ2)β2 −λ2β1 − (1− λ2)β2

)
. (9.5.3)

9.6 Discussion and Bibliography

Two recent monographs where multiscale problems for Markovchains are studied
are [335], [336]. See also [291] for a broad discussion of averaging and dimension
reduction in stochastic dynamics. Markov chain approximations for SDEs, especially
in the large deviation limit, are studied in [111]. Computational methods for multi-
scale Markov chains are discussed in [85, 86]. Diffusion limits of ODEs driven by
Markov Chains are studied in [245]. See also [96] for the proof of a related diffusion
limit theorem. For a connection between Markov chains and center manifolds see
[262].

In this chapter we have presented averaging for Markov chains. Homogenization
(i.e. central limit theorem) results for Markov chains can be found in [184].

In deriving the approximate equation we implicitly assume that the original
Markov chain is prepared in a state which does not depend uponthe parts of the
state space inIy. If this is not the case then a similar analysis can still be carried out,
but an initial layer must be included, over time of orderO(ε), on whichv(t) adjusts
from being a function onIx × Iy to being a function only onIx, to leading order.

9.7 Exercises

1. Find a multiscale expansion for the invariant measure of the Markov chain with
generatorQ = 1

εQ0 +Q1 whenQ0, Q1 are given by (9.5.1), (9.5.2).
2. Find the invariant measure of̄Q1 given by (9.5.3) and interpret your findings in

the light of your answer to the previous question.
3. Consider the SDE (6.5.1). Assume thatu is governed by a two-state Markov

chain, with states{−1,+1}.Write down the generator for the resulting Markov
process in(z, u), on the assumption that the generator for the Markov chain has
the form

L(z) =

(
−θ(z) θ(z)
φ(z) −φ(z)

)
.

4. Consider the same set-up as in the previous question but where the two-state
Markov chain now has generator1

εL(z) with L(z) as given in the previous ques-
tion. Use the method of averaging to find the averaged SDE inz in the limit
ε→ 0, whereu may be eliminated.
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5. Letu be a two state continuous time Markov chain with generator asin the pre-
vious question. Consider the ODE

dz

dt
= λ(u)z, t ∈ [0,∞).

Assume thatλ(−1) < 0 andλ(+1) > 0. Use multiscale analysis to determine
conditions under which the trajectories ofz do not grow.

6. Letu be a Markov chain on a finite state-space with generatorQ taking the form

Q =
1

ε
Q0 +Q1.

Assume that theQi are generators of Markov chains fori = 0, 1 and thatQ has
a two-dimensional null-space:

N (Q0) = span{φ0, φ1}.

Derive a two state Markov chain which approximates the dynamics in this null-
space.
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Averaging for ODEs and SDEs

10.1 Introduction

Here we take the averaging principle developed in the previous chapter for Markov
chains, and apply it to ODEs and SDEs. The unifying theme is the approximate solu-
tion of the backward equation by means of an appropariate perturbation expansion,
and consequent elimination of variables.

In Section 10.2 we present the equations that we will study and in Section 10.3
we present the averaged equations. Section 10.4 contains the derivation of the av-
eraged equations; the derivation is carried out in the case where the fast process is
stochastic. In Section 10.5 we study how the deterministic situation may be handled.
Section 10.6 contains two illustrative examples. Extensions of the results presented
in this chapter, together with bibliographical remarks, are given in Section 10.7.

10.2 Full Equations

We writez solving (6.1.1) asz = (xT , yT )T and consider the case where

dx

dt
= f(x, y), x(0) = x0, (10.2.1a)

dy

dt
=

1

ε
g(x, y) +

1√
ε
β(x, y)

dV

dt
, y(0) = y0, (10.2.1b)

with ε≪ 1 andV a standard Brownian motion. Herex ∈ X , y ∈ Y, z ∈ Z and the
notation is as in Sections 4.1 and 6.1.

In Chapter 8 we considered systems in which the fast dynamicsconverge to anx-
dependent fixed point. This gives rise to a situation where they variables are slaved
to thex variables. Averaging generalizes this idea to situations where the dynamics in
they variable, withx fixed, is more complex. As in the previous chapter on Markov
chains, we average out the fast variabley, over an appropriate invariant measure. We
now make these heuristics precise. We define the generators
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L0 = g(x, y) · ∇y +
1

2
B(x, y) : ∇y∇y, (10.2.2a)

L1 = f(x, y) · ∇x, (10.2.2b)

whereB(x, y) = β(x, y)β(x, y)T . To carry out the averaging procedure in this sec-
tion the most useful way to make an ergodicity assumption is to assume that, for each
fixedx, L0 has one dimensional null space characterized by

L01(y) = 0, (10.2.3a)

L∗0ρ∞(y;x) = 0. (10.2.3b)

Here1(y) denotes constants iny. In the case whereY = T
d the operatorsL0 and

L∗0 are equipped with periodic boundary conditions. In this case these assumptions
about the null spaces ofL0 andL∗0 are shown to hold ifB(x, y) is strictly positive-
definite, uniformly in(x, y) ∈ X × Y, as shown in Theorem 6.16. In more general
situations, such as whenY = R

d or when the matrix valued functionB(x, y) is
degenerate, similar rigorous justifications are possible,but the functional setting is
more complicated, typically employing weightedLp–spaces which characterize the
decay of the invariant density at infinity. See the remarks inSection 18.4.

10.3 Simplified Equations

We assume that the generator of the fast processy(t), namelyL0, satisfies (10.2.3)
for everyx ∈ X . Define the vector fieldF by

F (x) =

∫

Y

f(x, y)µx(dy). (10.3.1)

with µx(dy) = ρ∞(y;x)dy.

Result 10.1.For ε≪ 1 and timest uptoO(1), x(t) solving(10.2.1)is approximated
byX solving

dX

dt
= F (X), X(0) = x0. (10.3.2)

Remark 10.2.A similar result holds even in the case where the equation forthe slow
variablex is stochastic and has the form

dx

dt
= f(x, y) + α(x, y)

dU

dt
, x(0) = x,

with U a standard Brownian motion, indepenent ofV . Under the assumptions of
Result 10.1 the averaged equation becomes

dX

dt
= F (X) +A(X)

dU

dt
, X(0) = x,

whereF (X) is the same as above and

A(X)A(X)T =

∫

Y

α(x, y)α(x, y)T µx(dy).

See Exercise 1.⊓⊔
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10.4 Derivation

As for Markov chains, we derive the averaged equations by working with the back-
ward Kolmogorov equation. Let

v(x, y, t) = E

(
φ(x(t), y(t))|x(0) = x, y(0) = y

)
.

The backward equation (6.3.4) for the SDE (10.2.1) is

∂v

∂t
=

1

ε
L0v + L1v. (10.4.1)

HereL0,L1 are given by (10.2.2) andz in (6.3.4) is(x, y) here. Note thatL0 is a
differential operator iny, in whichx appears as a parameter. Thus we must equip it
with boundary conditions. We simply assume that, with suitable boundary conditions
imposed, (10.2.3) holds. In the case whereY = T

d and periodic boundary conditions
are used the rigorous results of Chapter 7 apply and the ergodicity assumption on the
fast process is satisfied. Note, however, that other functional settings are also pos-
sible; the key in what follows is application of the Fredholmalternative to operator
equations defined throughL0.

We seek a solution to (10.4.1) in the form of the multiscale expansion

v = v0 + εv1 +O(ε2)

and obtain

O(1/ε) L0v0 = 0, (10.4.2a)

O(1) L0v1 = −L1v0 +
∂v0
∂t

. (10.4.2b)

Equation (10.4.2a) implies thatv0 is in the null space ofL0 and hence, by (10.2.3)
and ergodicity, is a function only of(x, t). Fix x. Then the Fredholm alternative for
(10.4.2b), viewed as a differential equation iny, shows that

−L1v0 +
∂v0
∂t
⊥Null {L∗0}.

By (10.2.3) this implies that
∫

Y

ρ∞(y;x)
(∂v0
∂t

(x, t) − f(x, y) · ∇xv0(x, t)
)
dy = 0.

Sinceρ∞ is a probability density we have
∫
Y
ρ∞(y;x)dy = 1. Hence

∂v0
∂t
−
(∫

Y

f(x, y)µx(y)dy

)
· ∇xv0(x, t) = 0

so that by (10.3.1),
∂v0
∂t
− F (x) · ∇xv0 = 0

This is the backward equation for (10.3.2); indeed the method of characteristics as
given by in Result 4.6 shows that we have the required result.
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10.5 Deterministic Problems

In this section we provide a viewpoint on the averaged equation which is useful for
two reasons: it applies when the equations (10.2.1) are deterministic; and it forms
the basis of numerical methods to compute effective equations, in either the deter-
ministic or stochastic contexts. Our starting point is to analyze the behavior of the
fast dynamics iny with x being a fixed parameter.

Letϕt
x(y) be the solution operator of the fast dynamics withx a fixed parameter

andε = 1. To be precise, for fixedξ,

d

dt
ϕt

ξ(y) = g(ξ, ϕt
ξ(y)) + β(ξ, ϕt

ξ(y))
dV

dt
, ϕ0

ξ(y) = y. (10.5.1)

As in Chapter 8,y(t) solving (10.2.1b) is given byy(t) ≈ ϕt/ε
x(0)(y) for timest which

areo(1), so thatx has not evolved very much. Assume that (10.5.1) is ergodic with
invariant measureµξ. On timescales small compared to1 and large compared toεwe
expect thatx(t) is approximately frozen and thaty(t) will traverse its (x-dependent)
invariant measure on this timescale because it is evolving quickly. Thus it is natural
to averagey(t) in thex(t) equation, against the invariant measure for (10.5.1) with
ξ = x(t).

In the case whereβ ≡ 0 thenϕt
ξ(y) coincides with the solution of (8.2.2). When

β 6= 0, note thatϕt
ξ(y) depends on the Brownian motion{V (s)}s∈[0,t] and hence is

a stochastic process. Rather than assuming convergence to afixed point, as we did in
(8.2.3), we assume here thatϕt

ξ(y) is ergodic (see Section 6.4). This implies that the
measure defined by

µx(A) = lim
T→∞

1

T

∫ T

0

IA(ϕt
x(y)) dt, A ⊆ T

d, (10.5.2)

exists, forIA the indicator function of arbitrary Borel setsA ⊆ Y. The averaged
vector fieldF in (10.3.1) can be defined using this measure.

When working with an SDE (β 6= 0) then it is natural to assume thatµx(·)
has a density with respect to the Lebesgue measure so thatµx(dy) = ρ∞(y;x)dy.
In fact, under appropriate assumptions on the coefficientsg(x, y) andβ(x, y) it is
possible to prove that such a density exists. However, we will illustrate by means of
an example arising in Hamiltonian mechanics that this assumption is not necessary.
Note also that the situation in Chapter 8 corresponds to the measureµx(dy) being a
Dirac mass characterizing the invariant manifold:µx(dy) = δ(y − η(x))dy. In this
case we obtain

F (x) = f(x, η(x)).

This is precisely the vector field in (8.3.2) and so the simplified equations in Chapter
8 are a special case of those derived here. However, we derived Result 10.1 in the
case whereβ is nonzero and we assumed that the measureµ has a smooth density
ρ∞(y;x) with respect to Lebesgue measure; that is, we assumed that (10.2.3) holds
and we have thatµx(dy) = ρ∞(y;x)dy. It is useful to have an expression for the
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averaged equation which is also valid for deterministic problems, and for the numer-
ical construction ofF in either deterministic or random problems. We do this by
representing ergodic averages via time averages.

Result 10.3.An alternative representation ofF (x) is via a time average:

F (x) = lim
T→∞

1

T

∫ T

0

f (x, ϕs
x(y)) ds. (10.5.3)

This representation is found by using (10.5.2) to evaluate (10.3.1). Note that, by
ergodicity, the resulting average does not depend upony.

10.6 Applications

We consider two applications of the averaging principle, the first in the context of
SDEs, and the second in the context of Hamiltonian ODEs.

10.6.1 A Skew-Product SDE

Consider the equations

dx

dt
= (1− y2)x,

dy

dt
= −α

ε
y +

√
2λ

ε

dV

dt
.

HereX = Y = R. It is of interest to know whetherx will grow in time, or remain
bounded. We can get insight into this question in the limitε → 0 by deriving the
averaged equations. Note thaty is a time-rescaling of the OU process from Exam-
ple 6.19. The invariant measure for the ergodic processy is a mean zero Gaussian:
N (0, λ

α ) (see Example 6.19). Note that this measure does not depend onx and hence
has densityρ∞(y) only. The averaged vector fieldF is here defined by

F (x) =
(
1−

∫

R

ρ∞(y)y2dy
)
x

whereρ∞ is the density associated with GaussianN (0, λ
α ). Thus

∫

Rd

ρ∞(y)y2dy =
λ

α

and

F (x) =
(
1− λ

α

)
x.

Hence the averaged equation is
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dX

dt
=
(
1− λ

α

)
X.

From this we deduce that trajectories ofx will explode if λ < α and will contract if
λ > α. If λ = α then the averaged vector field is zero. In this situation we need to
rescale timet 7→ t/ε to obtain the problem

dx

dt
=

1

ε
(1 − y2)x,

dx

dt
= − α

ε2
y +

√
2α

ε2
dv

dt
.

On this longer timescale nontrivial dynamics occur. SDEs ofthis form are the topic
of Chapter 11, and this specific example is considered in Section 11.7.

10.6.2 Hamiltonian Mechanics

1 In many applications Hamiltonian systems with strong potential forces, respon-
sible for fast, small amplitude oscillations around a constraining sub-manifold, are
encountered. It is then of interest to describe the evolution of the slowly evolving
degrees of freedom by averaging over the rapidly oscillating variables. We give an
example of this. The example is interesting because it showsthat the formalism of
this chapter can be extended to pure ordinary differential equations, with no noise
present; it also illustrates that it is possible to deal withsituations where the limiting
measureµ retains some memory of initial conditions – in this case the total energy
of the system.

Consider a two-particle system with Hamiltonian,

H(x, p, y, v) =
1

2
(p2 + v2) + Φ(x) +

ω(x)

2 ε2
y2, (10.6.1)

where(x, y) are the coordinates and(p, v) are the conjugate momenta of the two
particles,Φ(x) is a nonnegative potential andω(x) is assumed to satisfyω(x) >

ω̄ > 0 for all x. The corresponding equations of motion are

dx

dt
= p,

dp

dt
= −Φ′(x) − ω′(x)

2ε2
y2,

dy

dt
= v,

dv

dt
= −ω(x)

ε2
y.

We letE denote the value of the HamiltonianH at timet = 0:
1 This example was developed in collaboration with R. Kupferman.
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E = H(x(0), p(0), y(0), v(0)).

Note thatE is the total energy of the two–particle system. We assume that E is
bounded independently ofε. Since the HamiltonianH is conserved in time, sinceΦ
is nonnegative andω > ω̄, equation (10.6.1) implies that

y2
6 2ε2E/ω̄.

Hence the solution approaches the submanifoldy = 0 asε→ 0. Note, however, that
y appears in the combinationy/ε in thex equations and in the expression for the
energyH . Thus it is natural to make the change of variablesη = y/ε. The equations
then read

dx

dt
= p,

dp

dt
= −Φ′(x) − ω′(x)

2
η2,

dη

dt
=

1

ε
v,

dv

dt
= −ω(x)

ε
η. (10.6.2)

In these variables we recover a system of the form (10.2.1) with “slow” variables,
x← (x, p), and “fast” variables,y ← (η, v). It is instructive to write the equation in
second order form as

d2x

dt2
+ Φ′(x) +

1

2
ω′(x)η2 = 0,

d2η

dt2
+

1

ε2
ω(x)η = 0.

The fast equations represent a harmonic oscillator whose frequencyω1/2(x) is mod-
ulated by thex variables.

Consider the fast dynamics, with(x, p) frozen. The Hamiltonian for this fast
dynamics is, forε = 1 andx frozen,

Hfast =
1

2
v2 +

ω(x)

2
η2.

The energy of the fast system, at given(x, p), which is conserved whilst(x, p) is
frozen, is found by subtracting the energy associated with the frozen variables from
the total energy of the original system. We denote the resultof this calculation by

Efast = E − 1

2
p2 − Φ(x).

For fixedx, p the dynamics inη, v is confined to the energy shellHfast(v, η) = Efast.
We denote this energy shell byY(x, p), noting that it is parameterized by the frozen
variables(x, p).
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The harmonic oscillator is studied in Example 4.17. Using the calculations
therein, it follows that the average of the kinetic energy ofthe fast oscillator against
the ergodic measureµx,p onY(x, p) is

∫

Y(x,p)

ω(x)

2
η2µx,p(dη, dv) =

1

2

[
E − 1

2
p2 − Φ(x)

]
.

Thus ∫

Y(x,p)

1

2
η2µx,p(dη, dv) =

1

2ω(x)

[
E − 1

2
p2 − Φ(x)

]
.

Here (x, p) are viewed as fixed parameters and the total energyE is specified by
the initial data of the whole system. The averaging principle states that the rapidly
varyingη2 in the equation (10.6.2) forp can be approximated by its ergodic average,
giving rise to a closed system of equations for(X,P ) ≈ (x, p). These are

dX

dt
= P,

dP

dt
= −Φ′(X)− ω′(X)

2ω(X)

[
E − 1

2
P 2 − Φ(X)

]
, (10.6.3)

with initial dataE,X(0) = X0 = x(0) andP (0) = P0 = p(0). It is verified below
that(X,P ) satisfying (10.6.3) conserve the followingadiabatic invariant

J =
1

ω1/2(X)

[
E − 1

2
P 2 − Φ(X)

]
.

Thus, (10.6.3) reduces to the Hamiltonian form

dX

dt
= P, (10.6.4a)

dP

dt
= −Φ′(X)− J0 [ω1/2(X)]′, (10.6.4b)

whereJ0 is given by

J0 =
1

ω1/2(X0)

[
E − 1

2
P 2

0 − Φ(X0)

]
.

This means that the influence of the stiff potential on the slow variables is to induce
a Hamiltonian structure, but to replace the potentialΦ(x) by an effective potential,

Φeff(x) = Φ(x) + J0 ω
1/2(x).

Note that the limiting equation contains memory of the initial conditions for the
fast variables, through the constantJ0. Thus the situation differs slightly from that
covered by the conjunction of Results 10.1 and 10.3.

To verify thatJ is indeed conserved in time, note that, from the definition ofJ
and from equation (10.6.3),
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d

dt

(
ω

1

2 (X)J
)

=
d

dt

(
E − 1

2
P 2 − Φ(X)

)

= −P dP
dt
− Φ′(X)

dX

dt

=
Pω′(X)

2ω(X)

(
E − 1

2
P 2 − Φ(X)

)

=
Pω′(X)

2ω
1

2 (X)
J.

But, sincedX
dt = P , we find the alternate expression,

d

dt

(
ω

1

2 (X)J
)

=
1

2

ω′(X)

ω
1

2 (X)

dX

dt
J + ω

1

2 (X)
dJ

dt

=
Pω′(X)

2ω
1

2 (X)
J + ω

1

2 (X)
dJ

dt
.

Equating the two expressions gives

dJ

dt
= 0,

sinceω(X) is strictly positive.

10.7 Discussion and Bibliography

Averaging is based on some form or ergodicity of the fast process; whether this
process is deterministic or stochastic is not of primary importance. However it is
easier, in general, to establish ergodicity for stochasticproblems and this is why our
general developments are confined to this case. The averaging method applied to
equations (10.2.1) is analyzed in an instructive manner in [240], where the Liouville
equation is used to construct a rigorous proof of the averaged limit. It is sometimes
possible to obtain averaging results in the nonergodic case, when the null space of
the fast process is finite dimensional, rather than one dimensional. See [246, 326].

A detailed account of the averaging method for ODEs, as well as numerous ex-
amples, can be found in [281]. See also [13]. An English language review of the
Russian literature can be found in [193]. An overview of the topic of slow mani-
folds, especially in the context of Hamiltonian problems, may be found in [199]. The
paper [321] provides an overview of variable elimination ina wealth of problems
with scale separation.

Anosov’s Theorem is the name often given to the averaging principle in the
context of ODEs – (10.2.1) withβ ≡ 0. This theorem requires the fast dynamics to
be ergodic. Often ergodicity fails due to the presence of “resonant zones”—regions
in X for which the fast dynamics is not ergodic. Arnold and Neistadt [193] extended
Anosov’s result to situations in which the ergodicity assumption fails on a sufficiently
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small set ofx ∈ X . Those results were further generalized and extended to the
stochastic framework by Kifer, who also studied the diffusive and large deviation
character of the discrepancy between the effective and exact solution [169, 170, 171,
172]. See also [111, Ch. 7].

The situations in which the fast dynamics tend to fixed points, periodic solutions,
or chaotic solutions can be treated in a unified manner through the introduction of
Young measures(see [29, 309]). Artstein and co-workers considered a classof singu-
larly perturbed system of type (10.2.1), with attention given to the limiting behavior
of both slow and fast variables. In all of the above cases the pair (x, y) can be shown
to converge to(X,µX), whereX is the solution of

dX

dt
=

∫

Td

f(X, y)µX(dy),

andµX is the ergodic measure onTd; the convergence ofy to µX is in the sense
of Young measures. (In the case of a fixed point the Young measure is a Dirac mass
concentrated at a point.) A general theorem along these lines is proved in [17].

There are many generalizations of this idea. The case of nonautonomous fast dy-
namics, as well as a case with infinite dimensions are coveredin [18]. Moreover,
these results still make sense even if there is no unique invariant measureµx, in
which case the slow variables can be proved to satisfy a (nondeterministic) differen-
tial inclusion [19].

In the context of SDE, an interesting generalization of (10.2.1) is to consider
systems of the form

dx

dt
= f(x, y) + α(x, y)

dU

dt
, (10.7.1a)

dy

dt
=

1

ε
g(x, y) +

1√
ε
β(x, y)

dV

dt
. (10.7.1b)

The simplified equation is then an SDE, not an ODE (see Remark 10.2).This situa-
tion is a subcase of the set-up we consider in the next chapter. It can be obtained by
settingf0 = 0 in that chapter, lettingf1 = f there, and by identifyingε here withε2

in that chapter.
In the application section we studied the averaging principle for a two–scale

Hamiltonian system. The systematic study of Hamiltonian problems with two timescales
was initiated by Rubin and Ungar [277]. More recently the ideas of Neistadt, based
on normal form theory, have been applied to such problems [32]; this approach is
very powerful, yielding very tight, exponential, error estimates between the orig-
inal and limiting variables. A different approach to the problem, using the tech-
niques of time-homogenization [43], is the paper [44]. The example presented in
Section 10.6.2 is taken from that paper. The heuristic derivation we have given here
is made rigorous in [44], using time-homogenization techniques, and it is also gen-
eralized to higher dimension. Resonances become increasingly important as the co-
dimension,m, increases, limiting the applicability of the averaging approach to such
two-scale Hamiltonian systems (Takens [306]).

Numerical work on multiscale ODEs and SDEs is overviewed in the next chapter.
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10.8 Exercises

1. Derive the averaged equation resulting from the SDE (10.7.1) under the assump-
tion thatU and V are independent, standard Brownian motions (see Remark
10.2).

2. LetΦ : X × Y : R
+ and consider the equations

dx

dt
= −∇xΦ(x, y) +

√
2σ
dU

dt

dy

dt
= −1

ε
∇yΦ(x, y) +

√
2σ

ε

dV

dt
,

whereU andV are standard Brownian motions of appropriate dimensions. Under
a Fredholm alternative assumption which you should clearlystate, show that the
averaged equation forX has the form

dX

dt
= −∇Ψ(X) +

√
2σ
dW

dt

where theFixman potentialΨ is given by

exp
(
− 1

σ
Ψ(x)

)
=

∫

Y

exp
(
− 1

σ
Φ(x, y)

)
dy.

HereW is Brownian motion of appropriate dimension. (In fact strong conver-
gence techniques, such as those highlighted in Chapter 17, may be use used to
show thatX ≈ x strongly forW = U.).

3. LetΦ be as in the previous question. Write the following second order system as
a system of coupled first order SDEs:

d2x

dt2
+
dx

dt
= −∇xΦ(x, y) +

√
2σ
dU

dt
,

ε
d2y

dt2
+
dy

dt
= −1

ε
∇yΦ(x, y) +

√
2σ

ε

dV

dt
.

Find the stationary distribution of the fast processy explicitly. Find the averaged
equation forX , using the previous question to guide you.

4. Derive the averaged equation from the example in Subsection 10.6.1 by use of
formula (10.5.3) from Result 10.3.

5. Letu be a continuous time Markov chain with generator

L =

(
−a a
b −b

)
.

Without loss of generality label the state-spaceI = {−1,+1}. Define two
functionsω : I → (0,∞) andm : I → (−∞,∞) by ω(±1) = ω± and
m(±1) = m±. Now consider the stochastic differential equations, with coeffi-
cients depending uponu, given by
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dx

dt
= f(x, y) +

√
2σ
dU

dt
,

dy

dt
= −1

ε
ω(u)(y −m(u)) +

√
2σ

ε

dV

dt
,

with U andV standard Brownian motions of appropriate dimensions. Write the
generator for the process(x, y, u) and use multiscale analysis to derive the aver-
aged coupled Markov chain and SDE of the form

dX

dt
= F (X,u) +

√
2σ
dW

dt

whereW is a standard Brownian motion with the same dimension asU .
6. Generalize the previous exercise to the case where the transition rates of the

Markov chain, determined bya andb, depend uponx andy.
7. Find a representation for the effective coefficient matrix A(x) in Remark 10.2,

using time-averaging.
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Homogenization for ODEs and SDEs

11.1 Introduction

In this chapter we continue our study of systems of SDEs with two, widely separated,
characteristic time scales. The setting is similar to the one considered in the previous
chapter. The difference is that in this chapter we seek to derive an effective equation
describing dynamics on the longer,diffusive timescaleO(1/ε2). This is the timescale
of interest when the effective driftF (x) defined in equation (10.3.1) vanishes due,
for example, to the symmetries of the problem. The vanishingof the effective drift is
captured in the centering condition, equation (11.2.5) below. In contrast to the case
considered in the previous chapter, in the diffusive timescale the effective equation is
stochastic, even when noise does not act directly on the slowvariables, that is, even
whenα(x, y) ≡ 0 in equation (11.2.1) below.

In Section 11.2 we present the SDEs that we will analyze in this chapter. Section
11.3 contains the simplified equations which we derive in Section 11.4. In Section
11.5 we describe various properties of the simplified equations. The derivation as-
sumes that the fast process to be eliminated is stochastic. In Section 11.6 we show
how the deterministic case can be handled. In Section 11.7 wepresent various ap-
plications of the theory developed in this chapter: the casewhere the fast process
is of Ornstein–Uhlenbeck type is in Section 11.7.1 and the case where the fast pro-
cess is a chaotic deterministic process is in Section 11.7.2. Deriving the Stratonovich
stochastic integral as the limit of smooth approximations to white noise is consid-
ered in Section 11.7.3; Stokes’ law is studied in Section 11.7.4. The Green–Kubo
formula from statistical mechanics is derived in Section 11.7.5. The case where the
stochastic integral in the limiting equation can be interpreted in neither the Itô nor the
Stratonovich sense in considered in Section 11.7.6. Lévy area corrections are studied
in Section 11.7.7. Various extensions of the results presented in this chapter, together
with bibliographical remarks, are presented in Section 11.8.
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11.2 Full Equations

Consider the SDEs

dx

dt
=

1

ε
f0(x, y) + f1(x, y) + α(x, y)

dU

dt
, x(0) = x0, (11.2.1a)

dy

dt
=

1

ε2
g(x, y) +

1

ε
β(x, y)

dV

dt
, y(0) = y0. (11.2.1b)

HereU andV are indepenent standard Brownian motions. Both thex andy equa-
tions contain fast dynamics, but the dynamics iny is an order of magnitude faster
than inx. As discussed in Sections 4.1 and 6.1x ∈ X , y ∈ Y andX ⊕ Y = Z.

For equation (11.2.1) the backward Kolmogorov equation (6.3.4) withφ = φ(x)1

is,

∂v

∂t
=

1

ε2
L0v +

1

ε
L1v + L2v, for (x, y, t) ∈ X × Y × R

+, (11.2.2a)

v = φ(x), for (x, y, t) ∈ X × Y × {0}, (11.2.2b)

where

L0 = g · ∇y +
1

2
B : ∇y∇y, (11.2.3a)

L1 = f0 · ∇x, (11.2.3b)

L2 = f1 · ∇x +
1

2
A : ∇x∇x, (11.2.3c)

with

A(x, y) := α(x, y)α(x, y)T ,

B(x, y) := β(x, y)β(x, y)T .

By using the method of multiple scales we eliminate they dependence in this Kol-
mogorov equation, in order to identify a simplified equationfor the dynamics ofx
alone.

In terms of the generatorL0, which is viewe as a differential operator iny, in
whichx appears as a parameter, the natural ergodicity assumption to make for vari-
able elimination is the statement thatL0 has one dimensional null space character-
ized by

L01(y) = 0, (11.2.4a)

L∗0ρ∞(y;x) = 0. (11.2.4b)

Here1(y) denotes constants iny andρ∞(y;x) is the density of an ergodic measure
µx(dy) = ρ∞(y;x)dy. We also assume thatf0(x, y) averages to zero under this
measure, so that thecentering condition

1 For simplicity we will take the initial condition of the backward Kolmogorov equation to
be independent ofy. This is not necessary. See the discussion in Section 11.8
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∫

Y

f0(x, y)µx(dy) = 0 ∀x ∈ X (11.2.5)

holds. It can then be shown that the term involvingf0 in thex equation will, in the
limit ε → 0, give rise toO(1) effective drift and noise contributions in an approxi-
mate equation forx.

As in the previous chapter, in the case whereY = T
d the operatorsL0 andL∗0 are

equipped with periodic boundary conditions. Then, assuming thatB(x, y) is strictly
positive definite, uniformly in(x, y) ∈ X ×T

d, Theorem 6.16 justifies the statement
that the null space ofL∗0 is one-dimensional. In more general situations, such as when
Y = R

d, or B(x, y) is degenerate, similar rigorous justifications are possible, but
the functional setting is more complicated, typically employing weightedLp spaces
which characterize the decay of the invariant density at infinity.

WhenY = T
d andB(x, y) is strictly positive definite, Theorem 7.9 also applies

and we have a solvability theory for Poisson equations of theform

−L0φ = h. (11.2.6)

In particular, the equation has a solution if and only if the right hand side of the above
equation is centered with respect to the invariant measure of the fast processµx(dy):

∫

Td

h(x, y)µx(dy) = 0 ∀x ∈ X . (11.2.7)

When (11.2.7) is satisfied, the solution of (11.2.6) is unique up to a constant in the
null space ofL0. We can fix this constant by requiring that

∫

Td

φ(x, y)µx(dy) = 0 ∀x ∈ X .

In more general situations, such as whenY = R
d, or B(x, y) is degenerate, the

question of existence and uniqueness of solutions to the Poisson equation (11.2.6)
becomes more complicated; however, analogous results are posible in function space
settings which enforce appropriate decay properties at infinity. See the remarks and
references to the literature in Section 11.8.

11.3 Simplified Equations

We assume that the operatorL0 satisfies the Fredholm alternative, Theorem 2.42,
and has one-dimensional null-space characterized by (11.2.4). We define thecell
problem 2 as follows:

−L0Φ(x, y) = f0(x, y),

∫

Y

Φ(x, y)ρ∞(y;x)dy = 0. (11.3.1)

2 The word ”cell” here refers to the periodic unit cell which sets the scale for the fast variable,
in the caseY = T

d. The terminology comes from the theory of periodic homogenization
for PDEs.
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This is viewed as a PDE iny, with x a parameter. By the Fredholm alternative,
(11.3.1) has a unique solution, sincef0 satisfies (11.2.5). We may then define a vector
fieldF by

F (x) =

∫

Y

(
f1(x, y) + (∇xΦ(x, y))f0(x, y)

)
ρ∞(y;x)dy

= F1(x) + F0(x) (11.3.2)

and a diffusion matrixA(x) by

A(x)A(x)T = A1(x) +
1

2

(
A0(x) +A0(x)

T
)
, (11.3.3)

where

A0(x) :=2

∫

Y

f0(x, y)⊗ Φ(x, y)ρ∞(y;x)dy, (11.3.4)

A1(x) :=

∫

Y

A(x, y)ρ∞(y;x)dy. (11.3.5)

To make sure thatA(x) is well defined it is necessary to prove that the sum ofA1(x)
and the symmetric part ofA0(x) is positive semidefinite. This is done in Section
11.5.

Result 11.1.For ε ≪ 1 and timest uptoO(1), the processx(t), the solution of
(11.2.1), is approximated by the processX(t), the solution of

dX

dt
= F (X) +A(X)

dW

dt
, X(0) = x0. (11.3.6)

Remark 11.2.Notice that knowledge ofAAT is not sufficient to determineA uniquely.
As a result equation (11.3.3) does not determine the limiting SDE (11.3.6) uniquely.
This is a consequence of the fact that there may be many SDEs that have the same
generator. This in turn relates to the fact that the approximation of the solution to
(11.2.1) by the solution to (11.3.6) is only valid in the sense of weak convergence of
probability measures; see Chapter 18.⊓⊔

11.4 Derivation

We seek a multiscale expansion for the solution of (11.2.2) with the form

v = v0 + εv1 + ε2v2 + · · · . (11.4.1)

Herevj = vj(x, y, t). Substituting this expansion into (11.2.2) and equating powers
of ε gives a hierarchy of equations, the first three of which are
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O(1/ε2) − L0v0 = 0, (11.4.2a)

O(1/ε) − L0v1 = L1v0, (11.4.2b)

O(1) − L0v2 = −∂v0
∂t

+ L1v1 + L2v0. (11.4.2c)

By (11.2.4) equation (11.4.2a) implies that the first term inthe expansion is inde-
pendent ofy, v0 = v(x, t). We proceed now with equation (11.4.2b). The solvability
condition is satisfied for this equation since, by assumption (11.2.5),f0(x, y) is cen-
tered with respect to the invariant measure forϕt

x(·) and, from (11.2.3b),

L1v0 = f0(x, y) · ∇xv0(x, t).

Equation (11.4.2b) becomes

−L0v1 = f0(x, y) · ∇xv0(x, t). (11.4.3)

SinceL0 is a differential operator iny alone withx appearing as a parameter, the
general solution of (11.4.3) has the form

v1(x, y, t) = Φ(x, y) · ∇xv0(x, t) + Φ1(x, t). (11.4.4)

The functionΦ1 plays no role in what follows and thus we set it to zero. Thus we
represent the solutionv1 as a linear operator acting onv0. As our aim is to find a
closed equation forv0, this form for v1 is a useful representation of the solution.
Substituting forv1 in (11.4.3) shows thatΦ solves the cell problem (11.3.1). Condi-
tion (11.2.5) ensures that there is a solution to the cell problem and the normalization
condition makes it unique. Turning now to equation (11.4.2c) we see that the right
hand side takes the form

−
(∂v0
∂t
− L2v0 − L1

(
Φ · ∇xv0

))
.

Hence solvability of (11.4.2c) for each fixedx, requires

∂v0
∂t

=

∫

Y

ρ∞(y;x)L2v0(x, t)dy +

∫

Y

ρ∞(y;x)L1

(
Φ(x, y) · ∇xv0(x, t)

)
dy

= I1 + I2. (11.4.5)

We consider the two terms on the right hand side separately. The first is

I1 =

∫

Y

ρ∞(y;x)
(
f1(x, y) · ∇x +

1

2
A(x, y) : ∇x∇x

)
v0(x, t)dy

= F1(x) · ∇xv0(x, t) +
1

2
A1(x) : ∇x∇xv0(x, t).

Now for the second termI2 note that

L1(Φ · ∇xv0) = f0 ⊗ Φ : ∇x∇xv0 + (∇xΦf0) · ∇xv0.
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HenceI2 = I3 + I4 where

I3 =

∫

Y

ρ∞(y;x)
(
∇xΦ(x, y)f0(x, y)

)
· ∇xv0(x, t) dy

and

I4 =

∫

Y

ρ∞(y;x)
(
f0(x, y)⊗ Φ(x, y) : ∇x∇xv0(x, t)

)
dy.

Thus

I2 = F0(x) · ∇xv0(x, t) +
1

2
A0(x) : ∇x∇xv0(x, t).

Combining our simplifications of the right hand side of (11.4.5) we obtain, since by
(2.2.2) only the symmetric part ofA0 is required to calculate the Frobenius inner
product with another symmetric matrix, the following expression:

∂v0
∂t

= F (x) · ∇xv0 +
1

2
A(x)A(x)T : ∇x∇xv0.

This is the backward equation corresponding to the reduced dynamics given in
(11.3.6).

11.5 Properties of the Simplified Equations

The effective SDE (11.3.6) is only well defined ifA(x)A(x)T given by (11.3.3),
(11.3.5) is nonnegative definite. We now prove that this is indeed the case.

Theorem 11.3.Consider the case whereY = T
d andL0 is equipped with periodic

boundary conditions. Then

〈ξ, A1(x)ξ +A0(x)ξ〉 > 0 ∀x ∈ X , ξ ∈ R
l.

Hence the real-valued matrix functionA(x) is well defined by(11.3.3)sinceA(x)A(x)T

is non-negative definite.

Proof. Let φ(x, y) = ξ · Φ(x, y). Thenφ solves

−L0φ = ξ · f0.

By Theorem 6.12 we have

〈ξ, A1(x)ξ +A0(x)ξ〉

=

∫

Y

(
|α(x, y)T ξ|2 − 2(L0φ(x, y))φ(x, y)

)
ρ∞(y;x)dy

=

∫

Y

(
|α(x, y)T ξ|2 + |β(x, y)T∇yφ(x, y)|2

)
ρ∞(y;x)dy

> 0.
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Thus

〈ξ, AAT ξ〉 = 〈ξ, A1ξ〉+
1

2
〈ξ, (A0 +AT

0 )ξ〉
= 〈ξ, (A1 +A0)ξ〉 > 0.⊓⊔

Two important remarks are in order.

Remark 11.4.Techniques similar to those used in the proof of the previoustheorem,
using (6.3.11) instead of the Dirichlet form itself, show that

1

2

(
A0(x)+A0(x)

T
)

=

∫

Y

(
∇yΦ(x, y)β(x, y)⊗∇yΦ(x, y)β(x, y)

)
ρ∞(y;x)dy. ⊓⊔

(11.5.1)

Remark 11.5.By virtue of Remark 6.13 we see that the proceeding theorem can be
extended to settings other thanY = T

d. ⊓⊔

11.6 Deterministic Problems

As in the previous chapter, it is useful to have representations of the effective equa-
tion in terms of time averages, both for numerical purposes,and for deterministic
problems. To this end, a second representation ofA0(x) andF0(x) is as follows. Let
ϕt

ξ(y) solve (10.5.1) and letEµx be the product measure formed from use ofµx(·) on
initial data and standard independent Wiener measure on driving Brownian motions.
Using this notation we may now employ a time integral to represent the solution of
the cell problem, leading to the following representation formulae.

Result 11.6.Alternative representations of the vector fieldF0(x) and diffusion ma-
trix A0(x) can be found through the following integrals over time andE

µx :

A0(x) = 2

∫ ∞

0

E
µx

(
f0(x, y)⊗ f0(x, ϕt

x(y))
)
dt (11.6.1)

and, if the generatorL0 is independent ofx, then

F0(x) =

∫ ∞

0

E
µx

(
∇xf0(x, ϕ

t
x(y))f0(x, y)

)
dt. (11.6.2)

All these representations hold for anyy, by ergodicity.

The integral overt in this result enables us to express the effective equations
without explicit reference to the solution of the cell problemΦ, and requires suffi-
ciently fastdecay of correlationsin order to be well defined.

Another pair of alternative representations ofF (x) andA(x)A(x)T may be
found by using time averaging (overs) to replace the expectations in the previous re-
sult. The expressions forA0 andF0 then involve two time integrals: the integral over
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s is an ergodic average, replacing averaging with respect to the stationary measure on
path space; the integral overt expresses the effective equations without reference to
the solution of the cell problemΦ and, again, requires sufficiently fastdecay of cor-
relationsin order to be well-defined. In fact the well posedness of the cell problem
(11.3.1) implies the decay of correlations property.

Result 11.7.Alternative representations of the vector fieldF and diffusion matrixA
can be found through the following integrals over time:

F1(x) = lim
T→∞

1

T

∫ T

0

f1(x, ϕ
s
x(y)) ds,

A1(x) = lim
T→∞

1

T

∫ T

0

A(x, ϕs
x(y)) ds;

and

A0(x) = 2

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

f0(x, ϕ
s
x(y))⊗ f0(x, ϕt+s

x (y))ds
)
dt, (11.6.3)

whereϕt
x(y) solves(10.5.1). Furthermore, if the generatorL0 is independent ofx,

then

F0(x) =

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

∇xf0(x, ϕ
t+s
x (y))f0(x, ϕ

s
x(y))ds

)
dt.

All these representations hold for anyy, by ergodicity.

The following result will be useful to us in deriving the alternate representations
of A0(x) andF0(x) in the two preceding results. It uses ergodicity to represent the
solution of the cell problem, and related Poisson equations, as time integrals.

Result 11.8.LetL be the generator of the ergodic Markov processy(t) onY which
satisfies the SDE

dy

dt
= g(y) + β(y)

dV

dt
, y(t) = y (11.6.4)

and letµ(dy) denote the unique invariant measure. Assume thath is centered with
respect toµ : ∫

Y

h(y)µ(dy) = 0.

Then the solutionf(y) of the Poisson equation

−Lf = h,

∫

Y

f(y)µ(dy) = 0

admits the representation formula

f(y) =

∫ ∞

0

(
eLth

)
(y) dt. (11.6.5)
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Proof. We apply the Itô formula tof(y(t)) to obtain

f(y(t))− f(y) =

∫ t

0

Lf(y(s)) ds+

∫ t

0

〈∇yf(y(s)), β(y(s)) dW (s)〉

=

∫ t

0

−h(y(s)) ds+

∫ t

0

〈∇yf(y(s)), β(y(s)) dW (s)〉.

We take expectation with respect to the Wiener measure and use the martingale prop-
erty of stochastic integrals, and the fact thatEh(y(s)|y(0) = y) solves the backward
Kolmogorov equation, to conclude that

f(y) = Ef(y(t)) +

∫ t

0

(
eLsh

)
(y) ds.

We take the limitt→∞ and use the ergodicity of the processy(t), together with the
fact thatf(y) is centered with respect to the invariant measure with density ρ∞(y;x),
to deduce that

f(y) = lim
t→∞

Ef(y(t)) +

∫ ∞

0

(
eLth

)
(y) dt

=

∫

Y

f(y)µ(dy) +

∫ ∞

0

(
eLth

)
(y) dt

=

∫ ∞

0

(
eLth

)
(y) dt

and the proof is complete.⊓⊔
Remark 11.9.Notice that the preceding result implies that we can write, at least for-
mally,

L−1 = −
∫ ∞

0

eLt dt

when applied to functions centered with respect toµ. Furthermore, the result is also
valid for the case where the coefficients in (11.6.4) depend on a parameterx. ⊓⊔

We complete the section by deriving the alternative expressions forA(x) and
F (x) through time integration, given in Results 11.7 and 11.6. The expressions for
F1(x) andA1(x) in Result 11.7 are immediate from ergodicity, simply using the
fact that the time average equals the average againstρ∞. By use of Result 11.8, the
solution to the cell problem can be written as

Φ(x, y) =

∫ ∞

0

(
eL0tf0

)
(x, y) dt =

∫ ∞

0

Ef0(x, ϕ
t
x(y)) dt (11.6.6)

whereE denotes expectation with respect to the Wiener measure. Now

F0(x) =

∫

Y

ρ∞(y;x)∇xΦ(x, y)f0(x, y) dy.
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In the case whereL0 is x−independent so thatϕt
x(·) = ϕt(·) is alsox independent,

as areµx = µ andρ∞( · ;x) = ρ∞(·), we may use (11.6.6) to see that

F0(x) =

∫

Y

ρ∞(y;x)

∫ ∞

0

E∇xf0(x, ϕ
t(y))f0(x, y) dt dy,

whereE is expectation with respect to Wiener measure. Recal thatE
µx denotes the

product measure formed from distributingy in its invariant measure, together with
the Brownian motion driving the equation forϕt(y). Changing the order of integra-
tion we find that

F0(x) =

∫ ∞

0

E
µx

(
∇xf0(x, ϕ

t
x(y))f0(x, y)

)
dt (11.6.7)

as required for the expression in Result 11.6. Now we replaceaverages overEµx by
time averaging to obtain, for ally,

F0(x) =

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

∇xf0(x, ϕ
t+s
x (y))f0(x, ϕ

s
x(y)) ds

)
dt,

and so we obtain the desired formula for Result 11.7.
A similar calculation to that yielding (11.6.7) gives (11.6.1) forA0(x) in Result

11.6. Replacing the average againstE
µx by time average we arrive at the desired

formula forA0(x) in Result 11.7.

11.7 Applications

We give a number of examples illustrating the wide applicability of the ideas in this
chapter.

11.7.1 Fast Ornstein-Uhlenbeck Noise

Consider the equations

dx

dt
=

1

ε
(1 − y2)x, (11.7.1)

dy

dt
= − α

ε2
y +

√
2α

ε2
dV

dt
, (11.7.2)

whereV (t) is a standard one–dimensional Brownian motion. Here

f0(x, y) = (1− y2)x andf1(x, y) = 0.

Recall that the equation fory is a time-rescaling of the OU process from Example
6.19, withλ = α. Furthermore, these equations arise from the first application in
Section 10.6, in the case whereλ = α, and after time rescaling to produce nonzero
effects.
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We have that ∫ ∞

−∞

(1 − y2)xρ∞(y) dy = 0,

whereρ∞(y) is the invariant density of the Ornstein–Uhlenbeck process, namely a
standard unit normal distribution. Thus the theory put forward in this chapter applies.

The generator of the processϕt
ξ(·) = ϕt(·) is

L0 = −αy ∂
∂y

+ α
∂2

∂y2
(11.7.3)

and the cell problem (Poisson equation) (11.3.1) becomes

αy
∂Φ

∂y
− α∂

2Φ

∂y2
= (1− y2)x.

The unique centered solution to this equation is

Φ(y, x) =
1

2α
(1− y2)x.

Under the standard normal distribution the fourth and second moments take values3
and1 respectively. Hence, the coefficients in the limiting equation (11.3.6) are

F (x) =

∫ ∞

−∞

(
− 1

2α
y2(1− y2)x

)
ρ∞(y) dy =

1

α
x

and

A2(x) = 2

∫ ∞

−∞

(
− 1

2α
y2x(1 − y2)x

)
ρ∞(y) dy =

2

α
x2.

The homogenized SDE is thus

dX

dt
=
X

α
+

√
2

α
X
dW

dt
. (11.7.4)

This is the geometric Brownian motion studied in Example 6.4. The solution is

X(t) = X(0) exp
(√ 2

α
W (t)

)
.

It neither converges to0 nor to∞, but subsequences in time attain both limits. This
should be compared with the behaviour found in the first example in Section 10.6
which gives rise to decay (resp. growth) ifλ > α (resp.λ < α). Our example
corresponds to the caseλ = α with time rescaled to see nontrivial dynamics. It thus
lies between decay and growth. Notice that we could have alsotaken the function in
front of the white noise with a minus sign. See Remark 11.2.

Let us now obtain the coefficients of the homogenized equation by using the
alternative representations (11.6.1) and (11.6.2). To this end we need to study the
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variableϕt(y) solving (10.5.1). From the calculations presented in Example 6.19 we
have that

ϕt(y) = e−αty +
√

2α

∫ t

0

e−α(t−s)dV (s),

ϕt(y)2 = e−2αty2 +
√

2αye−αt

∫ t

0

e−α(t−s)dV (s) + 2α
(∫ t

0

e−α(t−s)dV (s)
)2

.

(11.7.5)

In addition, by the Itô isometry,

E

(∫ t

0

e−α(t−s)dV (s)
)2

=

∫ t

0

e−2α(t−s)ds,

=
1

2α

(
1− e−2αt

)
.

To construct the measureEµx

we take the initial conditiony to be a standard unit
Gaussian distribution and an independent driving BrownianmotionV . (The measure
is, in fact, independent ofx in this particular example). Thus, by stationarity under
this initial Gaussian distribution,

∫
ρ∞(y)y2 dy = 1, E

µx

ϕt(y)2 = 1.

Furthermore

E
µx

(∫
ρ∞(y)y2ϕt(y)2 dy

)
= e−2αt

∫
ρ∞(y)y4 dy

+2αE
µx

(∫ t

0

e−α(t−s) dV (s)

)2

= 3e−2αt + 1− e−2αt

= 1 + 2e−2αt.

Sincef0(x, y) = (1 − y2)x, combining these calculations in (11.6.2) gives

F0(x) = x

∫ ∞

0

E
µx

(
(1− ϕt(y)2)(1 − y2)

)
dt

= x

∫ ∞

0

2e−2αtdt

=
x

α
. (11.7.6)

Similarly from (11.6.1) we obtain

A0(x) =
2x2

α
.

This confirms that the effective equation is (11.7.4).
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11.7.2 Fast Chaotic Noise

We now consider an example which is entirely deterministic,but which behaves
stochastically when we eliminate a fast chaotic variable. In this context it is essential
to use the representation of the effective diffusion coefficient given in Result 11.7.
This representation uses time-integrals, and makes no reference to averaging over the
invariant measure (which does not have a density with respect to Lebesgue measure
in this example; see Example 4.16). Consider the equations

dx

dt
= x− x3 +

λ

ε
y2, (11.7.7)

dy1
dt

=
10

ε2
(y2 − y1),

dy2
dt

=
1

ε2
(28y1 − y2 − y1y3),

dy3
dt

=
1

ε2
(y1y2 −

8

3
y3).

(11.7.8)

The vectory = (y1, y2, y3)
T solves the Lorenz equations, at parameter values where

the solution is ergodic (see Example 4.16). In the invariantmeausure the component
y2 has mean zero. Thus the centering conition holds. The equation forx is a scalar
ODE driven by a chaotic signal with characteristic timeε2. Becausef0(x, y) ∝ y2,
with invariant measure shown in Figure 4.2, and becausef1 = (x, y) = f1(x) only,
the candidate equation for the approximate dynamics is

dX

dt
= X −X3 + σ

dW

dt
, (11.7.9)

whereσ is a constant. Now letψt(y) = e2 ·ϕt(y). Then the constantσ can be found
by use of (11.6.3) giving

σ2 = 2λ2

∫ ∞

0

1

T

(
lim

T→∞

∫ T

0

ψs(y)ψt+s(y)ds
)
dt.

This is the integrated autocorrelation function ofy2. By ergodicity we expect the
value ofσ2 to be independent ofy and to be determined by the SRB measure for
the Lorenz equations alone. Notice that the formula is expected to make sense, even
though the cell problem is not well-posed in this case because the generator of the
fast process is not elliptic.

Another way to derive this result is as follows. Gaussian white noiseσẆ , the
time-derivative of Brownian motion, may be thought of as a delta-correlated station-
ary process. The integral of its autocorrelation function on [0,∞) givesσ2/2.On the
assumption thaty2 has a correlation function which decays in time, and noting that
this has timescaleε2, the autocorrelation ofλεψ

s/ε2

(y) at timelagtmay be calculated
and integrated from0 to∞; matching this with the known result for Gaussian white
noise gives the desired result forσ2.
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11.7.3 Stratonovich Corrections

When white noise is approximated by a smooth process this often leads to Stratonovich
interpretations of stochastic integrals, at least in one dimension. We use multiscale
analysis to illustrate this phenomenon by means of a simple example. Consider the
equations

dx

dt
=

1

ε
f(x)y,

dy

dt
= −αy

ε2
+

√
2α

ε2
dV

dt
, (11.7.10)

with V being a standard one-dimensional Brownian motion.
Assume for simplicity thaty(0) = 0. Then

E(y(t)y(s)) = e−
α

ε2
|t−s|

and, consequently,

lim
ε→0

E

(
y(t)

ε

y(s)

ε

)
=

2

α
δ(t− s),

which implies the heuristic

lim
ε→0

y(t)

ε
=

√
2

α

dV

dt
. (11.7.11)

Another way of seeing this is by solving (11.7.10) fory/ε:

y

ε
=

√
2

α

dV

dt
− ε

α

dy

dt
. (11.7.12)

If we neglect theO(ε) term on the right hand side then we arrive, again, at the
heuristic (11.7.11).

Both of these arguments lead us to conjecture a limiting equation of the form

dX

dt
=

√
2

α
f(X)

dV

dt
. (11.7.13)

We will show that, as applied,the heuristic gives the incorrect limit:this is because,
in one dimension, whenever white noise is approximated by a smooth process, the
limiting equation should be interpreted in the Stratonovich sense, giving

dX

dt
=

√
2

α
f(X) ◦ dV

dt
, (11.7.14)

in this case. We now derive this limit equation by the techniques introduced in this
chapter.

The cell problem is



11.7 Applications 177

−L0Φ(x, y) = f(x)y

with L0 given by (11.7.3). The solution is readily seen to be

Φ(x, y) =
1

α
f(x)y, ∇xΦ(x, y) =

1

α
f ′(x)y.

The invariant density is

ρ∞(y) =
1√
2π

exp
(
−y

2

2

)
,

which is in the null space ofL∗0 and corresponds to a standard unit GaussianN (0, 1)
random variable.

From equation (11.3.2) we have

F (x) =

∫

R

1

α
f ′(x)f(x)y2ρ∞(y)dy

=
1

α
f ′(x)f(x).

Also (11.3.3) gives

A(x)2 =

∫

R

2

α
f(x)2y2ρ∞(y)dy

=
2

α
f(x)2.

The limiting equation is therefore the Itô SDE

dX

dt
=

1

α
f ′(X)f(X) +

√
2

α
f(X)

dV

dt
.

This is the Itô form of (11.7.14), by Remark 6.2. Hence the desired result is estab-
lished.

11.7.4 Stokes’ Law

The previous example may be viewed as describing the motion of a massless particle
with positionx in a velocity field proportional tof(x)y, with y an OU process. If
the particle has massm then it is natural to study the generalized equation

m
d2x

dt2
=

1

ε
f(x)y − dx

dt
, (11.7.15a)

dy

dt
= −αy

ε2
+

√
2α

ε2
dV

dt
. (11.7.15b)

(Note that settingm = 0 gives the previous example). Equation (11.7.15a) isStokes’
law, stating that the force on the particle is proportional to a drag force,1εf(x)y− dx

dt ,
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which is equal to the difference between the fluid velocity and the particle velocity.
As in the previous example,y is a fluctuating OU process. For simplicity we consider
the case of unit mass,m = 1.

Using the heuristic argument from the previous section it isnatural to conjecture
the limiting equation

d2X

dt2
=

√
2

α
f(X)

dV

dt
− dX

dt
. (11.7.16)

In contrast to the previous application, the conjecture that this is the limiting equa-
tion turns out to be correct. The reason is that, here,x is smoother and the Itô and
Stratonovich integrals coincide; there is no Itô correction to the Stratonovich inte-
gral. (To see this it is necessary to first write (11.7.16) as afirst order system – see
Exercise 2a). We verify the result by using the multiscale techniques introduced in
this chapter.

We first write (11.7.15) as the first order system

dx

dt
= r,

dr

dt
= −r +

1

ε
f(x)y,

dy

dt
= − 1

ε2
αy +

1

ε

√
2α
dV

dt
.

Here(x, r) are slow variables (x in (11.2.1)) andy the fast variables (y in (11.2.1)).
The cell problem is now given by

L0Φ(x, r, y) = −f0(x, r, y) =
(

0
−f(x)y

)
,

with L0 given by (11.7.3). The solution is

Φ(x, r, y) =
(

0
1
αf(x)y

)
, ∇(x,r)Φ(x, y) =

(
0 0

1
αf

′(x)y 0

)
.

Notice thatf0 is in the null space of∇(x,r)Φ, and hence (11.3.2) gives

F (X,R) = F1(X,R) =
(
R
−R

)
. (11.7.17)

From (11.3.3) we have

A(X,R)A(X,R)T =

∫

R

2
(0 0

0 1
αf(X)2y2

)
ρ∞(y)dy.

Recall thatρ∞(y) is the density of anN (0, 1) Gaussian random variable. Evaluating
the integral gives

A(X,R)A(X,R)T =
(0 0

0 2
αf(X)2

)
.



11.7 Applications 179

Hence a natural choice forA(x) is

A(X,R) =

(
0√

2
αf(X)

)
.

Thus from (11.7.17) and (11.7.18) we obtain the limiting equation

dX

dt
= R,

dR

dt
= −R+

√
2

α
f(X)

dW

dt
,

which, upon elimination ofR, is seen to coincide with the conjectured limit (11.7.16).

11.7.5 Green–Kubo Formula

In the previous application we encountered the equation of motion for a particle with
significant mass, subject to Stokes drag. Here we study the same equation of motion,
but where the velocity field is steady. We also assume that theparticle is subject to
molecular diffusion. The equation of motion is thus

d2x

dt2
= f(x)− dx

dt
+ σ

dU

dt
. (11.7.18)

HereU is a standard unit Brownian motion. We will study the effective diffusive
behavior of the particlex on large length and timescales, under the assumption that
f(x) is a mean zero periodic function. We show that, on appropriate large length and
time scales, the particle performs an effective Brownian motion, and we calculate its
diffusion coefficient.

To this end we rescale the equation of motion by settingx→ x/ε andt → t/ε2

to obtain

ε2
d2x

dt2
=

1

ε
f
(x
ε

)
−dx
dt

+ σ
dU

dt
.

Introducing the variablesy = εdx
dt andz = x/ε we obtain the system

dx

dt
=

1

ε
y,

dy

dt
= − 1

ε2
y +

1

ε2
f(z) +

σ

ε

dW

dt
,

dz

dt
=

1

ε2
y.

The process(y, z) is ergodic, with characteristic timescaleε2, and plays the role of
y in (11.2.1);x plays the role ofx in (11.2.1). The operatorL0 is the generator of
the process(y, z). Furthermore

f1(x, y, z) = 0, f0(x, y, z) = y.
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Thus, since the evolution of(y, z) is independent ofx, Φ(x, y, z), the solution of the
cell problem, is alsox−independent. Hence (11.3.2) givesF (x) = 0. Turning now
to the effective diffusivity we find that, sinceα(x, y) = A(x, y) = 0, (11.3.3) gives
A(x)2 = A0(x). Now defineψt(y, z) to be the component ofϕt(y, z) projected onto
they coordinate. By Result 11.7 we have that

A0(x) = 2

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

ψs(y)ψs+t(y)ds
)
dt.

The expression

C(t) = lim
T→∞

1

T

∫ T

0

ψs(y)ψs+t(y)ds

is thevelocity autocorrelation function. Thus the effective equation is

dX

dt
=
√

2D
dW

dt
,

a Brownian motion with diffusion coefficient

D =

∫ ∞

0

C(t)dt.

Thus, the effective diffusion coefficient is given by theintegrated velocity autocor-
relation. This is an example of theGreen–Kubo formula.

11.7.6 Neither Itô nor Stratonovich

We again use Stokes’ law (11.7.15a), now for a particle of small massm = τ0ε
2

whereτ0 = O(1), and neglecting molecular diffusion. If we also assume thatthe
velocity field of the underlying fluid is of the form1

εf(x)η whereη is solves an
SDE, then we obtain

τ0ε
2 d

2x

dt2
= −dx

dt
+

1

ε
f(x)η, (11.7.19a)

dη

dt
=

1

ε2
g(η) +

1

ε

√
2σ(η)

dW

dt
. (11.7.19b)

We interpret equations (11.7.19b) in the Itô sense. We assume thatg(η), σ(η) are
such that there exists a unique stationary solution of the Fokker-Planck equation for
(11.7.19b), so thatη is ergodic.

We write (11.7.19) as a first order system,

dx

dt
=

1

ε
√
τ0
v,

dv

dt
=

f(x)η

ε2
√
τ0
− v

τ0ε2
,

dη

dt
=
g(η)

ε2
+

√
2σ(η)

ε

dW

dt
.

(11.7.20)
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Equations (11.7.20) are of the form (11.2.1) and, under the assumption that the fast
process(v, η) is ergodic, the theory developed in this chapter applies. Inorder to
calculate the effective coefficients we need to solve the stationary Fokker–Planck
equation

L∗0ρ(x, v, η) = 0

and the cell problem

−L0h =
v√
τ0
, (11.7.21)

where

L0 = g(η)
∂

∂η
+ σ(η)

∂2

∂η2
+

(
f(x)η√
τ0
− v

τ0

)
∂

∂v
.

Equation (11.7.21) can be simplified considerably: we look for a solution of the form

h(x, v, η) =
(√

τ0 v + f(x)ĥ(η)
)
. (11.7.22)

Substituting this expression in the cell problem we obtain,after some algebra, the
equation

−Lηĥ = η.

HereLη denotes the generator ofη. We assume that the unique invariant measure
for η(t) has densityρη(η) with respect to Lebesgue measure; the centering condition
which ensures the well posedness of the Poisson equation forĥ is

∫

R

ηρη(η) dη = 0.

We assume that this holds. The homogenized SDE is

dX

dt
= F (X) +

√
D(X)

dW

dt
, (11.7.23)

where

F (x) :=

∫

R2

(
v√
τ0
ĥ(η)f ′(x)

)
ρ(x, v, η) dvdη

and

D(x) := 2

∫

R2

(
v2 +

v√
τ0
ĥ(η)f(x)

)
ρ(x, v, η) dvdη.

In the case whereη(t) is the Ornstein–Uhlenbeck process

dη

dt
= − α

ε2
η +

√
2λ

ε2
dW

dt
(11.7.24)

we can compute the homogenized coefficientsD(X) andB(X) explicitly. The ef-
fective SDE is

dX

dt
=

λ

α2(1 + τ0α)
f(X)f ′(X) +

√
2λ

α2
f(X)

dW

dt
. (11.7.25)
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Note that in the limitτ0 → ∞ we recover the Itô stochastic integral, as in Sub-
section 11.7.4, whereas in the limitτ0 → 0 we recover the Itô interpretation of the
Stratonovich stochastic integral as in Subsection 11.7.3.Forτ0 ∈ (0,∞) the limiting
equation is of neither the Itô nor the Stratonovich form. Infact the equation (11.7.25)
can be written in the form

X(t) = x0 +

∫ t

0

2λ

α2
f(X)◦̂dW (t),

where the definition of the stochastic integral through Riemann sums depends on the
value ofτ0. The fact that we recover this interesting limit is very muchtied to the
scaling of the mass asO(ε2). This scaling ensures that the timescale of the ergodic
processη and the relaxation time of the particle are the same. Resonance between
these timescales gives the desired effect.

11.7.7 The Ĺevy Area Correction

3 In Section 11.7.3 we saw that smooth approximation to white noise in one dimen-
sion leads to the Stratonovich stochastic integral. This isnot true in general, however,
in the multidimensional case: an additional drift can appear in the limit. This extra
drift contribution is related to the properties of the Lévyarea of the limit process (see
the discussion in Section 11.8).

Consider the fast–slow system

ẋ1 =
1

ε
y1, (11.7.26a)

ẋ2 =
1

ε
y2, (11.7.26b)

ẋ3 =
1

ε
(x1y2 − x2y1) , (11.7.26c)

ẏ1 = − 1

ε2
y1 − α

1

ε2
y2 +

1

ε
Ẇ1, (11.7.26d)

ẏ2 = − 1

ε2
y2 + α

1

ε2
y1 +

1

ε
Ẇ2, (11.7.26e)

whereα > 0. HereW1,W2 are standard independent Brownian motions.
Notice that equations (11.7.26d) and (11.7.26e) may be written in the form

ẏ = − 1

ε2
y +

1

ε2
αJy +

1

ε
Ẇ ,

wherey = (y1, y2),W = (W1, W2) andJ is the antisymmetric (symplectic) matrix

J =
(

0 −1
1 0.

)
.

3 This section was written in collaboration with M. Hairer.
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Applying the heuristic that

y ≈ ε(I − αJ)−1 dW

dt

leads to the conjectured limiting equations

ẋ1 =
1

1 + α2

(
Ẇ1 − αẆ2

)
, (11.7.27a)

ẋ2 =
1

1 + α2

(
Ẇ2 + αẆ1

)
, (11.7.27b)

ẋ3 =
1

1 + α2

(
(αx1 − x2)Ẇ1 + (αx2 + x1)Ẇ2

)
. (11.7.27c)

We know from Subsections 11.7.3 and 11.7.6 that we must take care in conjectur-
ing such a limit as typically smooth approximations of whitenoise give rise to the
Stratonovich stochastic integral. However in this case Itˆo and Stratonovich coincide
so this issue does not arise. Nonetheless, the conjectured limit equation is wrong.

Multiscale techniques, as described in this chapter, lead to the correct homoge-
nized system:

ẋ1 =
1

1 + α2

(
Ẇ1 − αẆ2

)
, (11.7.28a)

ẋ2 =
1

1 + α2

(
Ẇ2 + αẆ1

)
, (11.7.28b)

ẋ3 =
1

1 + α2

(
(αx1 − x2)Ẇ1 + (αx2 + x1)Ẇ2

)
+

α

1 + α2
. (11.7.28c)

Notice the additional constant drift that appears in equation (11.7.28c). It is the
antisymmetric part in the equation for the fast processy which is responsible for
the presence of the additional drift in the homogenized equation. In particular, when
α = 0 the homogenized equation becomes

ẋ1 = Ẇ1,

ẋ2 = Ẇ2,

ẋ3 = −x2Ẇ1 + x1Ẇ2

which agrees with the original (in general incorrect) conjectured limit (11.7.27).

11.8 Discussion and Bibliography

The perturbation approach adopted in this chapter, and moregeneral related ones, is
covered in a series of papers by Papanicolaou and coworkers –see [244, 241, 242,
240], building on original work of Khasminkii [165, 166]. See [155, 154, 31, 205,
244, 242, 240, 155, 154] for further material. We adapted thegeneral analysis to the
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simple case whereY = T
d. This may be extended to, for exampleR

d, by working
in the appropriate functional setting; see [249, 250, 251].

The basic perturbation expansion outlined in this chapter can be rigorously justi-
fied and weak convergence ofx toX proved asε→ 0; see Kurtz [181] and Chapter
18. The perturbation expansion which underlies the approach is clearly exposed in
[241]. See also [117, Ch. 6], [321]. and [291]. Similar problems are analyzed in [271,
Ch. 8], by using eigenfunction expansions for the Fokker–Planck operator of the fast
process. Projection operator techniques are also often employed in the physics liter-
ature as a method for eliminating fast variables. See [117, Ch. 6] and the references
therein.

Studying the derivation of effective stochastic models when the original system is
an ODE is a subject investigated in some generality in [242].The specific example in
Section 11.7.2 relies on the ergodicity of the Lorenz equations, something establishe
in [318, 319]. Use of the integrated autocorrelation function to calculate the effective
diffusion coefficient numerically is highlighted in [322];a different approach to find-
ing the effective diffusion coefficient is described in [125]. The program described
in that example is carried out in discrete time by Beck [31] who uses a skew-product
structure to facilitate an analysis; the ideas can then be rigorously justified in some
cases. A skew-product set-up is also employed in [322] and [125]. A rigorous limit
theorem for ODEs driven by a fast mixing system is proved in [225], using the large
deviation principle for dynamical systems developed in [224]. In the paper [208] the
idea that fast chaotic motion can introduce noise in slow variables is pursued for an
interesting physically motivated problem where the fast chaotic behavior arises from
the Burgers bath of [204]. Further numerical experiments onthe Burgers bath are
reported in [209].

Related work can be found in [124] and similar ideas in continuous time are
addressed in [155, 154] for differential equations; however, rather than developing
a systematic expansion in powers ofε, they find the exact solution of the Fokker-
Planck equation, projected into the spaceX , by use of the Mori-Zwanzig formalism
[65], and then make power series expansions inε of the resulting problem.

In Section 11.7.5 we derived a formula for the effective diffusion coefficient in
terms of the integral of the velocity autocorrelation function, giving the Green–Kubo
formula. This calculates atransport coefficientvia the time integral of an autocorrela-
tion function. The Green–Kubo formula, and other transportcoefficients, are studied
in many books on statistical mechanics. See, for example, [28, Ch. 11], [269].

Applications of multiscale analysis to climate models, where the atmosphere
evolves quickly relative to the slow oceanic variations, are surveyed in Majda et
al. [205, 202]. Further applications to the atmospheric sciences may be found in
[206, 207]. See also [78]. Stokes’ law, equation (11.7.15a)is a phenomenological
model for the motion of inertial particles in fluids; see [217]. Models of the form
(11.7.15), where the velocity field of the fluid in which the particles are immersed is
taken to be a Gaussian Markovian random field, were developedin [288, 289] and
analyzed further in [254]. Similar Gaussian models for passive tracers were studied
in [55, 56].
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The fact that smooth approximations to white noise in one dimension lead, in the
limit as we remove the regularization, to Stratonovich stochastic integrals (see Sec-
tion 11.7.3) is often called the Wong–Zakai theorem after [332]. Whether one should
interpret the stochastic integral in the sense of Itô or Stratonovich is usually called
the Itô versus Stratonovich problem. In cases where more than one fast timescale is
present, as in the example considered in Section 11.7.6, thecorrect interpretation of
the stochastic integral in the limiting SDE depends on the order with which we take
the limits. See [109, 280]. As was shown in Section 11.7.6, there are instances where
the stochastic integral in the limiting SDE can be interpreted in neither the Itô nor the
Stratonovich sense. See [129, 180, 255]. A similar phenomenon for the case where
the fast process is a discrete deterministic chaotic map wasobserved in [124]. An
interesting set-up to consider in this context is the Stokeslaw (11.7.15) in the case
where the mass is small:

εa d
2x

dt2
=

1

ε
f(x)y − dx

dt
+ σ

dU

dt
,

dy

dt
= −αy

ε2
+

√
2α

ε2
dV

dt
.

Settingε = 0 in the first equation, and invoking a white noise approximation fory/ε
leads to the conjecture that the limitX of x satisfies a first order SDE. The question
then becomes the interpretation of the stochastic integral. In [180] multiscale expan-
sions are used to derive the limiting equation satisfied byx in the casesa = 1, 2
and3. The casea = 1 leads to the Itô equation in the limit, the casea = 3 to the
Stratonovich equation anda = 2 to an intermediate limit between the two.

In higher dimensions smooth approximations to white noise result (in general,
and depending of the type of regularization) in an additional drift–apart from the
Stratonovich stochastic integral–which is related to the commutator between the row
vectors of the diffusion matrix. See [151]. A rigorous framework for understanding
examples such as that presented in Section 11.7.7, based on the theory of rough paths,
can be found in [198].

In this chapter we have considered equations of the form (11.2.1) whereU andV
are independent Brownian motions. Frequently applications arise where the noise in
the two processes are correlated. We will cover such situations in Chapter 13 where
we study homogenization for parabolic PDEs. The structure of the linear equations
considered will be general enough to subsume the form of the backward Kolmogorov
equation which arises from (11.2.1) whenU andV are correlated – in fact they are
identical. The main change over the derivation in this chapter is that the operatorL1

has additional terms arising from the correlation in the noises – see Exercises 5 and
1.

When writing the backward Kolmogorov equation for the full system, equation
(11.2.2), we assumed that the initial conditions depended only on the slow variable
x. This assumption simplifies the analysis but it is not necessary. If the initial condi-
tion is a function of bothx andy, then an initial (or boundary) layer appears that has
to be resolved. This can be achieved by adding appropriate terms in the two–scale
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expansion which decay exponentially fast in time. This is done in [336] for continu-
ous time Markov chains and in [167] for SDEs. In this case the initial conditions for
the homogenized SDE are obtained by averaging the initial conditions of the original
SDE with respect to the invariant measure of the fast process.

In this chapter we have studied homogenization for finite dimensional stochastic
systems. Similar results can be proved for infinite dimensional stochastic systems,
SPDEs. See [40] for an application of the techniques developed in this chapter to the
stochastic Burgers equation.

The use of the representations in Result 11.1 is discussed in[241]. The represen-
tations in Results 11.7 and 11.6 for the effective drift and diffusion can be used in the
design of coarse time-stepping algorithms – see [322]. In general the presence of two
widely separated characteristic timescales in the SDEs (11.2.1) renders their numer-
ical solution a formidable task. New numerical methods havebeen developed which
aim at the efficient numerical solution of such problems. In the context of averaging
for Hamiltonian systems the subject is described in [116]; the subject is revisited,
in a more general setting, in [93]. Many of these methods exploit the fact that forε
sufficiently small the solution of (11.2.1a) can be approximated by the solution of the
homogenized equation (11.3.6). The homogenized coefficients are computed through
formulae of the form (11.6.3) or (11.6.1), integrating equation (11.2.1b) over short
time intervals; see [322, 81, 84, 123]. An ambitious programto numerically com-
pute a subset of variables from a (possibly stochastic) dynamical system is outlined
in [162]; this approach does not use scale-separation explicitly and finds application
in a range of different problems; see [163, 164, 149, 30, 190,278, 334]. Numeri-
cal methods for multiscale problems are overviewed in [83].For work on parameter
estimation for multiscale SDEs see [258]. For other (partlycomputational) work on
dimension reduction in stochastic systems see [59, 148, 273].

11.9 Exercises

1. Find the homogenized equation for the SDEs

dx

dt
=

1

ε
f0(x, y) + f1(x, y) + α0(x, y)

dU

dt
+ α1(x, y)

dV

dt
, x(0) = x0,

dy

dt
=

1

ε2
g(x, y) +

1

ε
g1(x, y) +

1

ε
β(x, y)

dV

dt
, y(0) = y0,

assuming thatf0 satisfies the centering condition and thatU andV are indepen-
dent Brownian motions.

2. a. LetY denote eitherTd or R
d. What is the generatorL for the processy ∈ Y

given by
dy

dt
= g(y) +

dV

dt
?

In the case whereg(y) = −∇Ψ(y) find a function in the null space ofL∗.
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b. Find the homogenized SDE arising from the system

dx

dt
=

1

ε
f(x, y),

dy

dt
=

1

ε2
g(y) +

1

ε

dV

dt
,

in the case whereg = −∇Ψ(y).
c. Define the cell problem, giving appropriate conditions tomake the solution

unique in the caseY = T
d. State clearly any assumptions onf that are re-

quired in the preceding derivation.
3. Use the Itô formula to derive the solution to the SDE (11.7.4). Convert this SDE

into Stratonovich form. What do you observe?
4. a. LetY be eitherTd or R

d. Write down the generatorL0 for the processy ∈ Y
given by:

dy

dt
= g(y) +

dV

dt
.

In the case whereg is divergence free, find a function in the null space ofL∗
0.

b. Find the averaged SDE arising from the system

dx

dt
= f(x, y),

dy

dt
=

1

ε
g(y) +

1√
ε

dV

dt
,

in the case whereg is divergence free.
c. Find the homogenized SDE arising from the system

dx

dt
=

1

ε
f(x, y),

dy

dt
=

1

ε2
g(y) +

1

ε

dV

dt
,

in the case whereg is divergence-free.
d. Define the cell problem, giving appropriate conditions tomake the solution

unique in the caseY = T
d. Clearly state any assumptions onf that are re-

quired in the preceding derivation.
5. Consider the equation of motion

dx

dt
= f(x) + σ

dW

dt
,

wheref(x) is divergence-free and periodic with mean zero. It is of interest to
understand howx behaves on large length and timescales. To this end, rescale
the equation of motion by settingx→ x/ε andt→ t/ε2 and introducey = x/ε.
Write down a pair of coupled SDEs forx andy. Use the methods developed in
Exercise 1 to enable elimination ofy to obtain an effective equation forx.
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6. Carry out the analysis presented in Section 11.7.6 in arbitrary dimensions. Does
the limiting equation have the same structure as in the one dimensional case?

7. Derive equation (11.7.25) from (11.7.23) whenη(t) is given by (11.7.24).
8. (The Kramers to Smoluchowski limit.) Consider the Langevin equation

ε2
d2x

dt2
= b(x)− dx

dt
+
√

2σ
dW

dt
, (11.9.1)

where the particle mass is assumed to be small,m = ε2.
a. Write (11.9.1) as a first order system by introducing the variabley = εẋ.
b. Use multiscale analysis to show that, whenε ≪ 1 the solution of (11.9.1) is

well approximated by the solution of the Smoluchowski equation

dX

dt
= b(X) +

√
2σ
dW

dt
.

c. Calculate the first correction to the Smoluchowski equation.
9. Write equations (11.7.16) as a first order system and show that the Itô and

Stratonovich forms of the equation coincide.
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Homogenization for Elliptic PDEs

12.1 Introduction

In this chapter we use multiscale expansions in order to study the problem of homog-
enization for second order uniformly elliptic PDEs in divergence form. At a purely
formal level the calculations used to derive the homogenized equations are very sim-
ilar to those used in the previous chapter to study homogenization for SDEs. The
primary difference is that there is no time dependence in thelinear equations that we
study.

In Section 12.2 we present the boundary value problem studied in this chapter.
Section 12.3 contains the simplified (homogenized) equations, and their derivation
is given in Section 12.4. Section 12.5 studies the structureof the simplified equation,
showing that it inherits ellipticity from the original equation. In Section 12.6 we
describe two applications of the theory, both explicitly solvable, a one dimensional
example, and a two dimensional layered material.

12.2 Full Equations

We study uniformly elliptic PDEs in divergence form, with Dirichlet boundary con-
ditions:

−∇ ·
(
Aε∇uε

)
= f for x ∈ Ω, (12.2.1a)

uε = 0 for x ∈ ∂Ω. (12.2.1b)

Hereuε = uε(x) is an unknown scalar field, to be determined,Aε = A(x/ε) a
given matrix field andf = f(x) a given scalar field. Unlike the problems in the
previous four chapters, there are not two different explicit variablesx andy. We will
introducey = x/ε to create a setting similar to that in the previous chapters.Our
goal is then to derive a homogenized equation in whichy is eliminated, in the limit
ε→ 0. Furthermore, we study various properties of the homogenized coefficients.

We takeΩ ⊂ R
d, open, bounded with smooth boundary. We will assume that the

matrix–valued functionA(y) is smooth,1–periodic and uniformly positive definite.
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This assumption implies that the differential operator that appears on the left hand
side of (12.2.1a) is uniformly elliptic (see Chapter 7). Furthermore, we take the func-
tion f(x) to be smooth and independent ofε. To summarize, we make the following
assumptions:

f ∈ C∞(Rd,R); (12.2.2a)

A ∈ C∞
per(T

d,Rd×d); (12.2.2b)

∃α > 0 : 〈ξ, A(y)ξ〉 > α|ξ|2, ∀ y ∈ T
d ∀ ξ ∈ R

d. (12.2.2c)

Notice that our assumptions onA imply thatAε ∈M(α, β,Ω) for some appropriate
β andα independent ofε. The regularity assumptions are more stringent than is
necessary; we make them at this point in order to carry out theformal calculations
that follow. Allowing minimal regularity assumptions is animportant issue, however:
in many applications one expects that the coefficientA(y) will have jumps when
passing from one material phase to the other. Our proofs of homogenization theorems
in Chapter 19 will weaken the regularity assumptions that wemake here.

LetA0 = −∇y · (A∇y) equipped with periodic boundary conditions on the unit
torus and withA = A(y). This operator will play a central role in the following.
It was studied in Example 7.12: there it was shown that it has aone dimensional
null space, comprising constants iny. Furthermore, use of the Fredholm Alternative,
shows that the Poisson equation

A0v = h, v is 1–periodic, (12.2.3)

has a solution if and only if ∫

Td

h(y)dy = 0. (12.2.4)

The solution is unique up to an additive constant. Among all solutions of (12.2.3)
which satisfy the solvability condition we will choose the unique solution whose
integral overTd vanishes:

A0v = h, v is 1–periodic,
∫

Td

v(y) dy = 0.

Equations of the form (12.2.3) will play a central role in what follows.

12.3 Simplified Equations

Define theeffective diffusion tensorby the formula

A =

∫

Td

(
A(y) +A(y)∇χ(y)T

)
dy (12.3.1)

where the vector fieldχ : T
d → R

d satisfies thecell problem

−∇y ·
(
∇yχA

T
)

= ∇y ·AT , χ is 1–periodic. (12.3.2)
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Result 12.1.For 0 < ε ≪ 1 the solutionuε of equation(12.2.1)is approximately
given by the solutionu of the homogenized equation

−∇ ·
(
A∇u

)
= f for x ∈ Ω, (12.3.3a)

u = 0 for x ∈ ∂Ω. (12.3.3b)

Notice that the fieldχ is determined up to a constant vector. However, since only
∇yχ enters into the formula for the homogenized matrixA appearing in the homog-
enized equation, the value of this constant is irrelevant. For definiteness, however,
we work with the unique solutionχ found by imposing the normalization

∫

Td

χ(y)dy = 0. (12.3.4)

The cell problem can be written in an alternative, sometimesuseful, form by
writing an equation for each component ofχ :

A0χℓ = ∇y · aℓ, ℓ = 1, . . . , d , (12.3.5)

whereaℓ = Aeℓ, ℓ = 1, . . . , d and{eℓ}dℓ=1 is the standard basis onRd. Thusaℓ is
theℓth column ofA.

Remark 12.2.Since the Hessian∇x∇xu is symmetric, it follows from property
(2.2.2) applied to (12.3.1) that the following expression forA is equally valid:

A =

∫

Td

(
A(y)T +∇yχ(y)A(y)T

)
dy.

Indeed this expression and (12.3.1) may be combined (for example averaged) to
obtain other equally valid expressions forA (for example symmetric). ⊓⊔

12.4 Derivation

Since a small parameterε appears in equation (12.2.1), it is natural to look for a
solution in the form of a power series expansion inε:

uε = u0 + εu1 + ε2u2 + . . . .

The basic idea behind the method of multiple scales is to assume that all terms in
the above expansion depend explicitly onbothx andy = x

ε . Furthermore, since the
coefficients of our PDE are periodic functions ofx

ε it is reasonable to require that all
terms in the expansion are periodic functions ofx

ε . Hence, we assume the following
ansatz for the solutionuε:

uε(x) = u0

(
x,
x

ε

)
+ ε u1

(
x,
x

ε

)
+ ε2 u2

(
x,
x

ε

)
+ . . . , (12.4.1)
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whereuj(x, y), j = 0, 1, . . . , are periodic iny.
The variablesx andy = x

ε represent the ”slow” (macroscopic) and ”fast” (micro-
scopic) scales of the problem, respectively. Forε ≪ 1 the variabley changes much
more rapidly thanx and we can think ofx as being a constant, when looking at the
problem at the microscopic scale. This is where scale separation is exploited:we will
treat x and y as independent variables. Justifying the validity of this assumption
asε → 0 is one of the main issues in the rigorous theory of homogenization. See
Chapter 19.

The fact thaty = x
ε implies that the partial derivatives with respect tox become

∇→ ∇x +
1

ε
∇y.

In other words, thetotal derivativeof a functiongε(x) := g
(
x, x

ε

)
can be expressed

as

∇gε(x) = ∇xg(x, y)
∣∣∣
y= x

ε

+
1

ε
∇yg(x, y)

∣∣∣
y= x

ε

,

where the notationh(x, y)|y=z means that the functionh(x, y) is evaluated aty = z.
We use the above to rewrite the differential operator

Aε := −∇ · (A(y)∇)

in the form

Aε =
1

ε2
A0 +

1

ε
A1 +A2, (12.4.2)

where

A0 := −∇y · (A(y)∇y) , (12.4.3a)

A1 := −∇y · (A(y)∇x)−∇x · (A(y)∇y) , (12.4.3b)

A2 := −∇x · (A(y)∇x) . (12.4.3c)

Notice that the coefficients in all the operators defined above are periodic functions
of y. We equipA0 with periodic boundary conditions onTd.

Equation (12.2.1) becomes, on account of (12.4.2),
(

1

ε2
A0 +

1

ε
A1 +A2

)
uε = f for (x, y) ∈ Ω × T

d, (12.4.4a)

uε = 0 for (x, y) ∈ ∂Ω × T
d. (12.4.4b)

We substitute (12.4.1) into (12.4.4) to deduce:

1

ε2
A0u0 +

1

ε
(A0u1 +A1u0) + (A0u2 +A1u1 +A2u0) +O(ε) = f. (12.4.5)

We equate coefficients of equal powers ofε to zero in the above equation and disre-
gard all terms of order higher than1 to obtain the following sequence of problems:
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O(1/ε2) A0u0 = 0, (12.4.6a)

O(1/ε) A0u1 = −A1u0, (12.4.6b)

O(1) A0u2 = −A1u1 −A2u0 + f. (12.4.6c)

Hereuj(x, y) are1−periodic in their second argument.
Notice thatA0 is a differential operator iny and thatx appears in equations

(12.4.6b) and (12.4.6c) merely as a parameter. From (12.4.6a) we deduce that
u0(x, y) = u(x) – thus the first term in the multiscale expansion is independent
of y. The remaining two equations are of the form (12.2.3) withv = v(x, y) and
similarly h = h(x, y); thusx enters as a parameter.

Let us proceed now with (12.4.6b) which becomes

A0u1 =
(
∇y · AT

)
· ∇xu, u1(x, ·) is 1–periodic,

∫

Td

u1 dy = 0. (12.4.7)

The solvability condition (12.2.4) is satisfied because
∫

Td

(
∇y · AT

)
· ∇xu dy = ∇xu ·

∫

Td

∇y · AT dy

= 0,

by the divergence theorem and periodicity ofA(·); see Remark 7.13. We seek a
solution of (12.4.7) using separation of variables:

u1(x, y) = χ(y) · ∇xu(x). (12.4.8)

Upon substituting (12.4.8) into (12.4.7) we obtain the cellproblem (12.3.2) for the
vector fieldχ(y). The fieldχ(y) is called thefirst order corrector . Notice that the
periodicity of the coefficients implies that the right hand side of equation (12.3.2)
averages to zero over the unit cell and consequently the cellproblem is well posed.
We ensure the uniqueness of solutions to (12.3.2) by requiring the corrector field to
have zero average – condition (12.3.4).

Now we consider equation (12.4.6c). By (12.2.4) we see that,in order for this
equation to be well posed, it is necessary and sufficient for the right hand side to av-
erage to zero overTd. Since we have assumed that the functionf(x) is independent
of y the solvability condition implies:

∫

Td

(A2u0 +A1u1) dy = f. (12.4.9)

The first term on the left hand side of the above equation is
∫

Td

A2u0 dy =

∫

Td

−∇x · (A(y)∇xu) dy

= −∇x ·
[(∫

Td

A(y) dy

)
∇xu(x)

]

= −
(∫

Td

A(y) dy

)
: ∇x∇xu(x). (12.4.10)
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Moreover
∫

Td

A1u1 dy =

∫

Td

(
−∇y · (A(y)∇xu1)−∇x · (A(y)∇yu1)

)
dy

=: I1 + I2.

The first termI1 = 0 by periodicity and Remark 7.13. Now we considerI2:

I2 =

∫

Td

−∇x · (A(y)∇yu1) dy

= −
∫

Td

A(y) : ∇x∇y (χ · ∇xu) dy

= −
(∫

Td

(A(y)∇yχ(y)T ) dy

)
: ∇x∇xu. (12.4.11)

We substitute (12.4.11) and (12.4.10) in (12.4.9) to obtainthe homogenized equation
of Result 12.1 where the homogenized coefficientA is given by the formula (12.3.1).
This completes the derivation.

12.5 Properties of the Simplified Equations

In this section we study some basic properties of the effective coefficients. In particu-
lar, we show that the matrix of homogenized coefficientsA is positive definite, which
implies that the homogenized differential operator is uniformly elliptic and that, con-
sequently, the homogenized equation is well posed. Furthermore, we show that sym-
metry is preserved under homogenization: the homogenized matrix is symmetric if
A(y) is. We also show that the homogenization process can create anisotropies: even
if the matrixA(y) is diagonal, the matrix of homogenized coefficientsA need not
be.

In order to study the matrix of homogenized coefficients it isuseful to find an
alternative representation forA. To this end, we introduce the bilinear form

a1(ψ, φ) =

∫

Td

〈∇yφ,A(y)∇yψ〉 dy, (12.5.1)

defined for all functionsφ, ψ ∈ C1(Td). Notice that this is the bilinear from associ-
ated with the operatorA0, in the sense that

∫

Td

φA0ψ dy = a1(φ, ψ) ∀φ, ψ ∈ C1
per(T

d). (12.5.2)

Note that, wheneverA is symmetric, so is the bilinear forma1(·, ·). We start by ob-
taining an alternative, equivalent formulation for the cell problem. The formulation
is closely related to the weak formulation of elliptic PDEs in divergence–form in-
troduced in Chapter 7. In the rest of this section we will assume that the solution of
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the cell problem is smooth enough to justify the calculations that follow. It will be
enough to assume that each component of the corrector fieldχ(y) is continuously
differentiable and periodic:χℓ(y) ∈ C1

per(T
d), ℓ = 1, . . . , d.

Recall thateℓ denotes the unit vector withith entryδil. Also letyℓ denote theℓth

component of the vectory. Note thateℓ = ∇yyℓ and recall thataℓ = Aeℓ, theℓth

column ofA. Using these two elementary facts we can obtain the following useful
lemma.

Lemma 12.3.The cell problem(12.3.2)can be written in the form

a1(φ, χℓ + yℓ) = 0 ∀φ ∈ C1
per(T

d), ℓ = 1, . . . d. (12.5.3)

Proof. From (12.3.5) we deduce that

A0χℓ = ∇y · (Aeℓ) = ∇y · (A∇yyℓ) = −A0yℓ.

Consequently, the cell problem can be written in the form

A0(χl + yl) = 0, l = 1, . . . , d,

with periodic boundary conditions. We multiply the cell problem as formulated
above by an arbitrary functionφ ∈ C1

per(T
d). Integrating over the unit cell, using

Remark 7.13 and equations (12.5.1) and (12.5.2), we obtain (12.5.3). ⊓⊔
Using this lemma we give an alternative representation formula for the homoge-

nized coefficients. The lemma shows thatA is symmetric, wheneverA(y) is.

Lemma 12.4.The effective matrixA has components given by

aij = a1(χj + yj , χi + yi), i, j = 1, . . . , d. (12.5.4)

In particular, symmetry ofA(y) implies symmetry ofA.

Proof. Notice first that the previous lemma implies that, sinceχi(y) ∈ C1
per(T

d),

a1(χi, χj + yj) = 0, ∀ i, j,= 1, . . . , d. (12.5.5)

We now use formula (12.3.1), together with (12.5.5) to obtain

aij = ei · Aej

=

∫

Y

(
ei · Aej + ei · A∇yχ

T ej

)
dy

=

∫

Y

(
∇yyi ·A∇yyj +∇yyi ·A∇yχj

)
dy

=

∫

Y

〈
∇yyi, A

(
∇y(yj + χj

)〉
dy

= a1(yi, χj + yj)

= a1(yi + χi, χj + yj).
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This proves (12.5.4). Assume now thatA(y) = A(y)T . This implies that the bilinear
form a1(·, ·) is symmetric. Thus

aij = a1(yi + χi, χj + yj)

= a1(yj + χj , χi + yi)

= aji,

which shows that the homogenized matrix is symmetric.⊓⊔
We now show that the homogenized matrixA is positive definite. This implies

that the homogenized equation is a well posed elliptic PDE.

Theorem 12.5.The matrix of homogenized coefficientsA is positive definite.

Proof. Let ξ ∈ R
d be an arbitrary vector. We need to show that there exists a constant

α > 0 such that
〈ξ, Aξ〉 > α|ξ|2, ∀ξ ∈ R

d.

We use the representation formula (12.5.4) to deduce that:

〈ξ, Aξ〉 = a1(w,w),

with w = ξ · (χ+y). We now use the uniform positive definiteness ofA(y) to obtain

a1(w,w) > α

∫

Td

|∇yw|2 dy > 0.

ThusA is nonnegative.
To show that it is actually positive definite we argue as follows. Let us assume

that
〈ξ, Aξ〉 = 0

for someξ. Then, sinceα > 0,∇yw = 0 andw = c, a constant vector; consequently

ξ · y = c− ξ · χ.

The right hand side of this equation is 1–periodic and continuous iny and conse-
quently the left hand side should also be. The only way this can happen is ifξ = 0.
This completes the proof of the lemma.⊓⊔

The above theorem shows that uniform ellipticity is a property that is preserved
under the homogenization procedure. In particular, this implies that the homogenized
equation is well posed, since it is a uniformly elliptic PDE with constant coefficients.

Remark 12.6.Note that homogenization does not preserve isotropy. In particular,
even if the diffusion matrixA has only diagonal non–zero elements, the homoge-
nized diffusion matrixA will in general have non–zero off–diagonal elements. To
see this, let us assume thataij = 0, i 6= j. Then the off–diagonal elements of the
homogenized diffusion matrix are given by the formula (no summation convention
here)
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aij =

∫

Td

aii
∂χj

∂yi
dy, i 6= j.

This expression is not necessarily equal to zero and leads tothe surprising result
that an isotropic composite material can behave, in the limit as the microstructure
becomes finer and finer, like an anisotropic homogeneous material. ⊓⊔

12.6 Applications

We present two useful illustrative examples, for which explicit solutions may be
found. Essentially, the one–dimensional case is the only general setting in which
the cell problem can be solved analytically and an explicit formula for the effective
diffusivity can be obtained. In higher dimensions, explicit formulae for the effective
diffusivities can be obtained only when the specific structure of the problem under
investigation enables us to reduce the calculation of the homogenized coefficients to
consideration of one dimensional problems. Such a reduction is possible in the case
of layered materials, the second example that we consider.

12.6.1 The One–Dimensional Case

Let d = 1 and takeΩ = [0, L]. Then the Dirichlet problem (12.2.1a) reduces to a
two–point boundary value problem:

− d

dx

(
a
(x
ε

) duε

dx

)
= f forx ∈ (0, L), (12.6.1a)

uε(0) = uε(L) = 0. (12.6.1b)

We assume thata(y) is smooth, periodic with period 1. We also assume that there
exist constants0 < α 6 β <∞ such that

α 6 a(y) 6 β, ∀y ∈ [0, 1]. (12.6.2)

We also assume thatf is smooth.
The cell problem becomes a boundary value problem for an ordinary differential

equation with periodic boundary conditions.

− d

dy

(
a(y)

dχ

dy

)
=
da(y)

dy
, for y ∈ (0, 1), (12.6.3a)

χ is 1–periodic,
∫ 1

0

χ(y) dy = 0. (12.6.3b)

Sinced = 1 we only have one effective coefficient which is given by the one dimen-
sional version of (12.3.1), namely
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a =

∫ 1

0

(
a(y) + a(y)

dχ(y)

dy

)
dy

=

〈
a(y)

(
1 +

dχ(y)

dy

)〉
. (12.6.4)

Here, and in the remainder of this chapter, we employ the notation

〈f(y)〉 :=

∫

Td

f(y) dy,

for the average overTd.
Equation (12.6.3a) can be solved exactly. Integration from0 to y gives

a(y)
dχ

dy
= −a(y) + c1. (12.6.5)

The constantc1 is undetermined at this point. The inequality (12.6.2) allows us to
divide (12.6.5) bya(y) since it implies thata is strictly positive. We then integrate
once again from0 to y to deduce:

χ(y) = −y + c1

∫ y

0

1

a(y)
dy + c2.

In order to determine the constantc1 we use the fact thatχ(y) is a periodic function.
Thusχ(0) = χ(1) and we deduce that

c1 =
1

∫ 1

0
1

a(y) dy
= 〈a(y)−1〉−1.

Thus, from (12.6.5),

1 +
dχ

dy
=

1

〈a(y)−1〉a(y) .

(Notice thatc2 is not required for the calculation ofa.) We substitute this expression
into equation (12.6.4) to obtain

a = 〈a(y)−1〉−1. (12.6.6)

This is the formula which gives the homogenized coefficient in one dimension. It
shows clearly that, even in this simple one–dimensional setting, the homogenized
coefficient is not found by simply averaging the unhomogenized coefficients over a
period of the microstructure. Rather, the homogenized coefficient is the inverse of the
average of the inverse of the unhomogenized coefficient – theharmonic average. It is
quite easy to show that the homogenized coefficient which is given by the harmonic
average (12.6.6) is bounded from above by the average ofa(y). See Exercise 12.
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12.6.2 Layered Materials

We consider problem (12.2.1), with assumptions (12.2.2) satisfied, in two dimen-
sions. We assume that the domainΩ ⊂ R

2 represents alayered material: the prop-
erties of the material change only in one direction. Hence, the coefficientsA(y) are
functions of one variable: fory = (y1, y2)

T we have

aij = aij(y1), i, j = 1, 2. (12.6.7)

The fact that the coefficients are functions ofy1 implies the right hand side of the
cell problem (12.3.2) is a function ofy1 alone. As a consequence the solution of the
cell problem is also a function ofy1 alone and takes the form

χℓ = χℓ(y1), ℓ = 1, 2. (12.6.8)

Upon substituting this into (12.3.2) we conclude that the cell problem becomes

− d

dy1

(
a11(y1)

dχℓ(y1)

dy1

)
=
da1ℓ(y1)

dy1
, ℓ = 1, 2 (12.6.9)

with periodic boundary conditions. Similarly, the formulafor the homogenized co-
efficients (12.3.1) becomes:

aij =

∫ 1

0

(
aij(y1) + ai1(y1)

dχj(y1)

dy1

)
dy1, i, j = 1, 2. (12.6.10)

Let us now solve equations (12.6.9). These are ordinary differential equations and we
can solve them in exactly the same way that we solved the one–dimensional problems
in the preceding subsection. To this end, we integrate from0 to y and divide through
by a11(y1) to obtain

dχℓ

dy1
= − a1ℓ

a11
+ c1

1

a11
, ℓ = 1, 2 (12.6.11)

where the constantc1 is to be determined. We have to consider the casesℓ = 1 and
ℓ = 2 separately. We start withℓ = 1. In this case the above equation simplifies to

dχ1

dy1
= −1 + c1

1

a11
,

which is precisely the equation that we considered in Section 12.6.1. Thus, we have:

dχ1

dy1
= −1 +

1

〈a11(y)−1〉a11(y)
. (12.6.12)

Now we consider equation (12.6.11) for the caseℓ = 2:

dχ2

dy1
= −a12

a11
+ c1

1

a11
.
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We integrate the above equation once again and then determine the coefficientc1 by
requiringχ2(y1) to be periodic. The final result is

dχ2(y1)

dy1
= −a12(y1)

a11(y1)
+
〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉
1

a11(y1)
. (12.6.13)

Now we can compute the homogenized coefficients. We start with a11. The calcula-
tion is the same as in the one–dimensional case:

a11 = 〈a11(y1)
−1〉−1. (12.6.14)

We proceed with the calculation ofa12. We substitute (12.6.13) into (12.6.10) with
i = 1, j = 2 to deduce:

a12 =

∫ 1

0

(
a12(y1) + a11(y1)

dχ2(y1)

dy1

)
dy

=

∫ 1

0

(
a12(y1) + a11(y1)

(
−a12(y1)

a11(y1)
+
〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉
1

a11(y1)

))
dy

=

∫ 1

0

(
a12(y1)− a12(y1) +

〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉

)
dy

=
〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉
.

Hence

a12 =

〈
a12(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1. (12.6.15)

Similarly,

a21 =

〈
a21(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1. (12.6.16)

Finally we considera22 :

a22 =

∫ 1

0

(
a22(y1) + a21(y1)

dχ2(y1)

dy1

)
dy

=

∫ 1

0

(
a22(y1) + a21(y1)

(
−a12(y1)

a11(y1)
+
〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉
1

a11(y1)

))
dy

=

∫ 1

0

(
a12(y1)−

a12(y1)a21(y1)

a11(y1)
+
a21(y1)

a11(y1)

〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉

)
dy

=

〈
a21(y1)

a11(y1)

〉〈
a12(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1 +

〈
a22(y1)−

a12(y1)a21(y1)

a11(y1)

〉
.

Consequently:

a22 =

〈
a21(y1)

a11(y1)

〉〈
a12(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1 +

〈
a22(y1)−

a12(y1)a21(y1)

a11(y1)

〉
.

(12.6.17)
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It is evident from formulae (12.6.14), (12.6.15), (12.6.16) and (12.6.17) that the ho-
mogenized coefficients depend on the original ones in a very complicated, highly
nonlinear way.

12.7 Discussion and Bibliography

The method of multiple scales was developed by various researchers in the 70s with
significant contributions from Keller, Babuska, Sanchez–Palenzia, Bensoussan, Li-
ons, Papanicolaou and others. See [158, 159, 26, 25, 24, 23, 91] and the references
therein. A first systematic exposition of the method of multiple scales is contained in
[33], where references to the earlier literature can be found. See also the book [279].
Rigorous convergence results for elliptic PDEs with rapidly oscillating coefficients
were proved before the development of the method of multiplescales. See [73, 296]
and the text [153]. However the power of the method of multiple scales is its wide
applicability to a variety of differing settings. In contrast, rigorous results tend to
apply on a case by case basis and their proofs differ substantially between different
PDEs, and between Markov chains, ODEs and SDEs. (See Part IIIof this book).
In most cases, however, an appropriate Poisson equation (the cell problem) plays a
prominent role in the analysis.

The one dimensional problem (see Section 12.6.1) was studied in [296], with-
out using the method of multiple scales. In the one dimensional case it is possible
to derive the homogenized equation using the method of multiple scales even in
the nonperiodic setting; see [143, Ch. 5], [66, Ch. 5]. The homogenized equation
is a second order uniformly elliptic PDE in the case of nonperiodic fast oscillatory
coefficients. However this result is most naturally obtained via the theory ofH−
andΓ−convergence, rather than multiple-scale expansions. See [296], [308]. In the
general setting of nonperiodic, deterministic, homogenization the homogenized co-
efficients cannot be expressed in terms of solutions to appropriate Poisson equations
and there are no explicit formulae for them. In this case, thebest one can hope for is
to obtain bounds on the homogenized coefficients.

The homogenized equation for layered materials (see Section 12.6.2) was derived
rigorously by Murat and Tartar without any appeal to the method of multiple scales;
see [232] and the references to the original papers therein.The two–dimensional case
that we treated in subsection 12.6.2 can be easily extended to thed–dimensional one,
d > 2, i.e. to the case whereaij(y) = aij(y1), i, j = 1, . . . , d. See [232].

The elliptic boundary value problem (12.2.1) is a Dirichletproblem. However, an
inspection of the analysis presented in Section 12.4 reveals that the boundary condi-
tions did not play any role in the derivation of the homogenized equation. In particu-
lar, the two–scale expansion (12.4.1) that we used in order to derive the homogenized
equation did not contain any information concerning the boundary conditions of the
problem under investigation. Indeed, the boundary conditions become somewhat ir-
relevant in the homogenization procedure. Exactly the samecalculations enable us to
obtain the homogenized equation for Neumann or mixed boundary conditions. This
is not surprising since the derivation of the homogenized equation is based on the
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analysis of local problems of the form (12.2.3). This local problem cannot really see
the boundary – this is the key property of scale separation.

However, the boundary conditions become very important when trying to prove
the homogenization theorem. The fact that the two–scale expansion (12.4.1) does not
satisfy the boundary conditions of our PDE exactly but, rather, only up toO(ε), in-
troduces boundary layers [143, ch. 3].1 Boundary layers affect the convergence rate
at whichuε(x) converges tou(x) asε → 0. We can solve this problem by modify-
ing the two–scale expansion (12.4.1), adding additional terms which take care of the
boundary layer and vanish exponentially fast as we move awayfrom the boundary
so that they do not affect the solution in the interior. We refer to [27] for details.

The discussion in Remark 12.2 is further elaborated in [33] and in [66]. Different
expressions for the effective diffusion tensor can be useful for the proof of various
properties of the the effective diffusion tensor.

From the point of view of continuum mechanics, the method of homogenization
enables us to obtain macroscopicconstitutive lawsfor composite materials. Macro-
scopic constitutive laws have been derived using homogenization theory for various
types of composite materials. See, e.g. [46, 108]. An alternative approach is pre-
sented in [230, 133]. The theory of composite materials is presented in the excellent
monograph [229].

In the Dirichlet problem that we analyzed in Section 12.4 we assumed that the
matrixAε(x) depends only on the microscale, i.e.

Aε(x) = A
(x
ε

)
,

with A(y) being a1–periodic matrix valued function. However, the method of mul-
tiple scales is also applicable to the case where the coefficients depend explicitly on
the macroscale as well as the microscale:

Aε(x) = A
(
x,
x

ε

)
,

with A(x, y) being1–periodic iny and smooth inx. When the coefficients have this
form they are calledlocally periodicor non–uniformly periodic. Analysis similar to
the one presented in Section 12.4 enables us to obtain the homogenized equation for
the Dirichlet problem

−∇ · (Aε∇uε) = f for x ∈ Ω, (12.7.1a)

uε = 0 for x ∈ ∂Ω, (12.7.1b)

whereAε(x) = A(x, x/ε). Now the homogenized coefficientsA are functions of
x:

−∇ ·
(
A∇u

)
= f for x ∈ Ω (12.7.2a)

1 The presence of boundary and initial layers is a common feature in all problems of singular
perturbations. See the bibliographical discussions in other chapters from Part II, and [143]
and [161], for further details.
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u = 0 for x ∈ ∂Ω, (12.7.2b)

and the cell problem is parameterized byx sinceA = A(x, y):

−∇y ·
(
∇yχA

T
)

= ∇y · AT , y ∈ T
d. (12.7.3)

The homogenized coefficients are given by the formula:

A(x) =

∫

Td

(
A(x, y) +A(x, y)∇xχ(x, y)T

)
dy. (12.7.4)

We emphasize the fact that the ”macroscopic variable”x enters in the above two
equations as a parameter. Consequently, in order to computethe effective coefficients
we need to solve the cell problem (12.7.3) and evaluate the integrals in (12.7.4) at all
pointsx ∈ Ω.

The method of multiple scales can also be applied to semilinear elliptic PDEs
with rapidly oscillating coefficients – equations of the form

−∇ ·
(
Aε∇uε

)
= f(uε) for x ∈ Ω, (12.7.5a)

uε = 0 for x ∈ ∂Ω. (12.7.5b)

The homogenized equation takes the form

−∇ ·
(
A∇u

)
= f(u) for x ∈ Ω, (12.7.6a)

u = 0 for x ∈ ∂Ω, (12.7.6b)

with A as in (12.3.1).
In section (12.2) we obtained the first two terms in the two–scale expansion for

the Dirichlet problem (12.2.1). The second term is proportional–up to an unknown
function of x– to the gradient of the first term in the expansion which solves the
homogenized equation, i.e

u1

(
x,
x

ε

)
= χ

(x
ε

)
· ∇xu(x) + û1(x), (12.7.7)

whereχ(y) solves the cell problem. We can also solve higher order equations and
obtain higher order terms in the two–scale expansion. For example, we can solve
equation (12.4.6) and compute the third term in the expansionu2(x, y):

u2(x, y) = Θ(y) : ∇x∇xu(x) + û2(x) (12.7.8)

where thesecond order corrector fieldΘ(y) is a matrix valued function which satis-
fies the boundary value problem

A0Θ = B. (12.7.9)

HereB(y) is given by



204 12 Homogenization for Elliptic PDEs

B(y) := −A+A(y) +A(y)∇yχ(y)T +∇yχ(y)A(y) + χ(y)⊗
(
∇y ·A(y)T

)
.

All higher order equations are of the form

A0uk+2 = −A1uk+1 −A0uk, k = 1, 2, . . .

It turns out thatuk(x) is proportional to thekth order derivatives ofu(x). See [27].
The method of multiple scales can be extended to situations where there arek

length scales in the problem, i.e. when the matrixAε(x) has the form

Aε(x) = A
(x
ε
,
x

ε2
, . . . ,

x

εk

)
,

andA is 1–periodic in all of its arguments. This is known asreiterated homoge-
nization– [33, Sec. 1.8]. A rigorous analysis of reiterated homogenization in a quite
general setting is presented in [8]. Reiterated homogenization has recently found ap-
plications in the problem of advection and diffusion of passive tracers in fluids. See,
for example, [253, 219, 220] for details. When there are infinitely many scales in the
problem, without a clear separation, the homogenization result breaks down, in the
sense that the homogenized coefficient can be0. See [16].

In general it is not possible to compute the homogenized coefficients analytically;
indeed, their calculation requires the solution of the cellproblem and the calculation
of the integrals in (12.3.1). In most cases this can be done only numerically. It is
possible, however, to obtain bounds on the magnitude of the effective coefficients.
Various tools for obtaining bounds have been developed; forexample it is possible
to obtain a variational characterization of the homogenized coefficients. We refer to
[229, 311, 107] for various results in this direction. Many of these techniques apply
to the nonperiodic setting.

The method developed in this chapter readily extends to intial/boundary value
problem such as the following parabolic PDE:

∂uε

∂t
−∇ · (Aε∇uε) = fε in Ω × (0, T ), (12.7.10a)

uε = 0 on∂Ω × (0, T ) (12.7.10b)

uε = uin(x) in Ω × {0} (12.7.10c)

under various assumptions concerning theε dependence inAε and fε. A time-
dependent situation of interest arises when the coefficients of the evolution PDE
oscillate in time as well as space, i.e.Aε = A

(
x
ε ,

t
εk

)
, k > 0 with the matrix valued

functionA(y, τ) being 1–periodic in bothy andτ . This means that we have to intro-
duce two fast variables:y = x

ε andτ = t
εk . More information on homogenization

for evolution equations with space–time dependent coefficients can be found in [33,
Ch. 3]. We study homogenization for parabolic PDEs using themethod of multiple
scales in Chapters 11, 13 and 14.

One can also study the problem of homogenization for hyperbolic (wave) equa-
tions:
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∂2uε

∂t2
−∇ · (Aε∇uε) = f in Ω × (0, T ), (12.7.11a)

uε = 0 on∂Ω × (0, T ), (12.7.11b)

uε = uin in Ω × {0}, (12.7.11c)

∂uε

∂t
= vin(x) in Ω × {0}. (12.7.11d)

The method of multiple scales can be used to obtain a homogenized equation, which
is a wave equation with constant coefficients and the same initial and boundary con-
ditions. However there is a fundamental difference betweenthis and the parabolic
case: for parabolic problems the dissipation drives the solution to lie near to the null
space of the leading order operatorL0, no matter how the initial data is chosen. For
the wave equation this does not happen and it is necessary to chose initial data close
to the desired subspace. We will not study homogenization for wave equations in this
book. We refer the interested reader to [66, Ch. 12], [33, ch.2], [160, 47]. Related
problems arise for the Schrödinger equation with multiplescales – see [316]. Ho-
mogenization result for the Schrödinger equation and their connection to effective
mass theorems are presented in [10].

The numerical evaluation of homogenized coefficients, in the periodic setting,
can be performed efficiently using a spectral method. On the other hand, the nu-
merical solution of the original boundary value problem (12.2.1) whenε is small
is a very hard problem. Special methods, which in one way or another are based
on homogenization, have been developed over the last few years. We refer to
[145, 76, 2, 82, 9, 52, 61, 89, 90, 92, 231] and the references therein on this topic. The
development and analysis of finite element methods for elliptic PDEs with a multi-
scale structure, and related problems arising in geophysical applications, is discussed
in [60, 88, 145, 146]. Numerical methods for elliptic PDEs subject to stochastic forc-
ing, or with stochastic coefficients, is described in [3, 141, 216, 215, 286, 287].

12.8 Exercises

1. Consider the problem of homogenization for (12.2.1) whenthe coefficients ma-
trix A(y) has different period in each direction

A(y + λkek) = A(y), k = 1, . . . ,

with λk > 0, k = 1, . . . d. Write down the formulas for the homogenized coeffi-
cients.

2. Consider the two–scale expansion (12.4.1) for problem (12.2.1). In this chap-
ter we calculated the first three terms in the two–scale expansion:u0 solves the
homogenized equation,u1 is given by (12.7.7) andu2 by (12.7.8). Verify the
expression foru2, and the form of the higher order cell problem (12.7.9).
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3. Consider the Dirichlet problem (12.2.1) for ad–dimensional layered material,
i.e.

aij(y) = aij(y1), 1–periodic iny1, i, j = 1, . . . , d.

We solved this problem in Subsection 12.6.2 in the cased = 2. Now solve the
corresponding cell problem and obtain formulas for the homogenized coefficients
for d > 3, arbitrary.

4. Consider the problem of homogenization for second order uniformly elliptic PDE
in 1 dimension, i.e. the problem studied in Section 12.6.1.
a. Calculatea for the case

a(y) =

{
a1 : y ∈ [0, 1

2 ],
a2 : y ∈ (1

2 , 1],

wherea1, a2 are positive constants.
b. Now calculatea for the case

a(y) =
1

2 + sin(2πy)
.

5. Consider the Dirichlet problem (12.2.1) for ad–dimensional isotropic material,
i.e.

aij(y) = a(y)δij , 1–periodic, i, j = 1, . . . , d,

whereδij stands for Kronecker’s delta.
a. Use the specific structure ofA(y) to simplify the cell problem as much as you

can.
b. Letd = 2 and assume thata(y) is of the form

a(y) = Y1(y1)Y2(y2).

Solve the two components of the cell problem and obtain formulae for the
homogenized coefficients (hint: use separation of variables).

6. Consider the boundary value problem (12.7.1). Assume that Aε = A(x, x
ε )

whereA(x, y) is smooth,1–periodic iny and uniformly elliptic and that, further-
more,f is smooth. Use the method of multiple scales to obtain generalizations
of the homogenized equation (12.7.2), the cell problem (12.7.3) and the formula
for the homogenized coefficients (12.7.4). Verify that the results of section 12.5
still hold.

7. Consider the Dirichlet problem

−∇ ·
(
A
(x
ε
,
x

ε2

)
∇uε

)
= f for x ∈ Ω (12.8.1a)

uε(x) = 0, for x ∈ ∂Ω. (12.8.1b)

where the coefficientsA(y, z) are periodic in bothy andz with period1. Use
the3–scale expansion

uε(x) = u0

(
x,
x

ε
,
x

ε2

)
+ εu1

(
x,
x

ε
,
x

ε2

)
+ ε2u2

(
x,
x

ε
,
x

ε2

)
+ . . .
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to derive an effective homogenized equation, together withthe formula for the
homogenized coefficients and two cell problems.

8. Repeat the previous exercise by homogenizing first with respect toz = y/ε and
then with respect toy:
a. Homogenize the equation

−∇ ·
(
A
(
y,
y

ε

)
∇uε

)
= f, for x ∈ Ω (12.8.2a)

uε(x) = 0, for x ∈ ∂Ω (12.8.2b)

by treatingy as a parameter.
b. Homogenize the equation

−∇ ·
(
A
(x
ε

)
∇uε

)
= f, for x ∈ Ω (12.8.3a)

uε(x) = 0, for x ∈ ∂Ω, (12.8.3b)

whereA(y) is given by the expression derived in the preceding section of the
question.

9. Derive the homogenized equation, together with the cell problem and the formula
for the homogenized coefficients, by applying the method of multiple scales to
the heat equation (12.7.10), withAε = A(x

ε ).
10. Consider the initial boundary value problem (12.7.10) with Aε = A(x

ε ,
t

εk ).
Explain why it is natural for the period of oscillations in time to be characterized
by k = 2. Carry out homogenization for the casesk = 1, 2, 3..2

11. Use the method of multiple scales to derive the homogenized equation from
(12.7.11).

12. Prove that the homogenized coefficienta for equation (12.6.1) under (12.6.2) has
the same upper and lower bound asa(y):

α 6 a 6 β.

Moreover, show that it is bounded from above by the average ofa(y):

a 6 〈a(y)〉.

13. Show that the equation (12.7.5) can be homogenized to obtain the effective equa-
tion (12.7.6).

14. LetA : T
d → R

d×d be smooth and periodic and consider the eigenvalue problem

−∇ ·
(
Aε∇uε

)
= λεuε forx ∈ Ω

uε = 0, x ∈ ∂Ω,

whereAε(x) = A(x/ε). Use a multiscale expansion to find an approximation to
the eigenvalue problem in whichε→ 0 is eliminated.

2 See [33, ch.3] and [253] for further details on the derivation of the homogenized equations
using the method of multiple scales.
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15. a. Consider the eigenvalue problem

−∆uε +
1

ε
V εuε = λεuε, x ∈ Ω
uε = 0, x ∈ ∂Ω.

Assume thatV : T
d → R is smooth and periodic, that

∫

Td

V (y)dy = 0

and thatV ε(x) = V (x/ε). Use a multiscale expansion to find an approxima-
tion to the eigenvalue problem in whichε→ 0 is eliminated.

b. (ii) Are the resulting eigenvalues smaller or larger thanthe eigenvalues which
arise whenV ≡ 0?
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Homogenization for Parabolic PDEs

13.1 Introduction

In this chapter we use multiscale techniques to investigatethe long time behavior of
solutions to parabolic PDEs. The techniques employed are almost identical to those
used in the study of homogenization for SDEs in Chapter 11. This connection will
be made more explicit at the end of the chapter.

In Section 13.2 we present the full equations that we will analyze. Section 13.3
contains the simplified equations that are derived by use of the method of multiple
scales in Section 13.4. Section 13.5 is devoted to various properties of the simplified
equations. In Section 13.6 we study two applications of the general theory, to gradient
flows (Section 13.6.1) and to divergence free flows (Section 13.6.2). The connection
between homogenization for parabolic PDEs and asymptotic problems for SDEs is
made in Section 13.7. Extensions and bibliographical remarks appear in Section 13.8.

13.2 Full Equations

We study the following initial value (Cauchy) problem

∂u

∂t
= b · ∇u +D∆u for (x, t) ∈ R

d × R
+, (13.2.1a)

u = uin for (x, t) ∈ R
d × {0}, (13.2.1b)

with D > 0. In our analysis we will assume that the vectorb(x) is smooth and
periodic in space with period1 in all spatial directions. Furthermore, we assume that
the initial conditions are slowly varying, so that

uin(x) = gε(x) := g(εx), (13.2.2)

with 0 < ε ≪ 1. Since the initial data is slowly varying and so is the solution, it
is natural to look at large length and time scales to see the effective behavior of the
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PDE (13.2.1). If the vector fieldb averages to zero in an appropriate sense then, as
we will show in this chapter, the effective behavior ofu is that of a pure diffusion.

To see this effect we redefine the variablesx, t through the rescaling

x = ε−1x, t→ ε−2t (13.2.3)

and relabelu to uε to emphasize this rescaling. This particular scaling of space and
time, known as thediffusive scaling, is appropriate whenever the advective effects,
created byb, are expected to average out; it is then appropriate to scaletime on an
even longer scale than space, and seek purely diffusive effects. We will be precise
about the condition thatb averages out at the end of this section.

The rescaled fielduε(x, t) satisfies the equation

∂uε

∂t
=

1

ε
bε · ∇uε +D∆uε for (x, t) ∈ R

d × R
+, (13.2.4a)

uε = g for (x, t) ∈ R
d × {0}. (13.2.4b)

Herebε(x) = b(x/ε). This equation will be the object of our study in this chapter.
Let us define the operator

L0 = b(y) · ∇y +D∆y (13.2.5)

with periodic boundary conditions on[0, 1]d and itsL2–adjointL∗0, also with peri-
odic boundary conditions. We refer toD as themolecular diffusivity. Note thatL0

is the generator of the Markov processy(t) which is the solution of the SDE

dy

dt
= b(y) +

√
2D

dW

dt

on the unit torusTd. Hence it is natural to define theinvariant distribution ρ(y) to
be the stationary solution of the adjoint equation:

L∗0ρ = 0. (13.2.6)

By Theorem 6.16 there is a unique solution to this equation, up to normalization,
and the normalization may be chosen so that the solution is positive. In the sequel
we will normalize the solution to (13.2.6) according to

∫

Td

ρ(y) dy = 1.

Notice that this choice turns the measureµ(dy) = ρ(y) dy into a probability measure
onT

d.
In order to derive the homogenized equation for (13.2.4) we need to study equa-

tions of the form
−L0v = h (13.2.7)

with periodic boundary conditions and withh being a smooth periodic function ofy.
It is straightforward to check that the assumptions of Theorem 7.9 are satisfied and
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hence the operatorL0 satisfies the Fredholm alternative. This implies, in particular,
thatL0 has a one-dimensional null space, comprising constants iny. It also implies
thatL∗0 has a one-dimensional null space, as stated above, and spanned byρ. Fur-
thermore, equation (13.2.7) has a solution if and only if theright hand side of the
equation is centered with respect to the invariant distribution:

∫

Td

h(y)ρ(y) dy = 0.

In this case the solution of (13.2.7) is unique up to constants. In the case whereh = b,
the vector field arising in the PDE (13.2.1), the condition is

∫

Td

b(y)ρ(y) dy = 0. (13.2.8)

We call this thecentering condition. We fix the free constant in the solution (13.2.7)
by requiring that the solution of (13.2.7) satisfies

∫

Td

v(y)ρ(y) dy = 0. (13.2.9)

When the centering condition is not satisfied it is necessaryto rescale the origi-
nal problem in a different fashion, to see effectiveadvectivebehavior. In particular
(13.2.3) is replaced by theadvective scaling

x→ ε−1x, t→ ε−1t. (13.2.10)

Then averaging is used to find the effective equation, which is now of transport type.
See Chapter 14.

13.3 Simplified Equations

Assume that the vector fieldb(y) satisfies the centering condition (13.2.8). Define
the vector fieldχ(y) to be the solution of thecell problem

−L0χ = b, χ is1 –periodic,
∫

Td

χ(y)ρ(y)dy = 0. (13.3.1)

Theeffective diffusion tensor(or effective diffusivity) is defined as

K = DI + 2D

∫

Td

∇yχ(y)Tρ(y) dy +

∫

Td

(
b(y)⊗ χ(y)

)
ρ(y) dy. (13.3.2)

Result 13.1.Assume that(13.2.8)holds. For0 < ε≪ 1 and timest ofO(1) the so-
lutionuε of (13.2.4)is approximated byu, the solution of the homogenized equation

∂u

∂t
= K : ∇x∇xu for (x, t) ∈ R

d × R
+, (13.3.3a)

u = g for (x, t) ∈ R
d × {0}. (13.3.3b)
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Remark 13.2.Since the Hessian∇x∇xu is symmetric, it follows from property
(2.2.2) applied to (13.3.2) that the following expression forK is equally valid:

K = DI +D

∫

Td

(
∇yχ(y) +∇yχ(y)T

)
ρ(y) dy

+
1

2

∫

Td

(
b(y)⊗ χ(y) + χ(y)⊗ b(y)

)
ρ(y) dy. (13.3.4)

Many variants on this idea are possible.⊓⊔

13.4 Derivation

Our goal now is to use the method of multiple scales in order toanalyze the behavior
of uε(x, t), the solution of (13.2.4), in the limit asε → 0. In particular, we want to
derive Result 13.1.

We introduce the auxiliary variabley = x/ε. 1 Let φ = φ(x, x/ε) be scalar-
valued. The chain rule gives

∇φ = ∇xφ+
1

ε
∇yφ and ∆φ = ∆xφ+

2

ε
∇x · ∇yφ+

1

ε2
∆yφ.

The partial differential operator that appears on the righthand side of equation
(13.2.4) now becomes

L =
1

ε2
L0 +

1

ε
L1 + L2,

where

L0 = b(y) · ∇y +D∆y,

L1 = b(y) · ∇x + 2D∇x · ∇y,

L2 = D∆x.

In terms ofx andy equation (13.2.4a) becomes

∂uε

∂t
=

(
1

ε2
L0 +

1

ε
L1 + L2

)
uε.

We seek a solution in the form of a multiple scales expansion

uε(x, t) = u0 (x, y, t) + εu1 (x, y, t) + ε2u2 (x, y, t) + . . . (13.4.1)

whereuj(x, y, t), j = 1, 2 . . . , are periodic iny with period1. We substitute (13.4.1)
and equate terms of equal powers inε. We obtain the following sequence of equa-
tions:
1 As in the elliptic case, this is where the assumption of scaleseparation is exploited :we

treat x and y as independent variables. Justifying this assumption asε → 0 is one of the
main issues in the rigorous theory of homogenization. See Chapter 20.
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O(1/ε2) − L0u0 = 0, (13.4.2a)

O(1/ε) − L0u1 = L1u0, (13.4.2b)

O(1) − L0u2 = L1u1 + L2u0 −
∂u0

∂t
. (13.4.2c)

Note thatL0, which is a differential operator iny only, is equipped with periodic
boundary conditions.

SinceL0 has a one-dimensional null-space, equation (13.4.2a) implies that the
first term in the expansion is independent ofy, so thatu0 = u(x, t) only. Notice that

L1u0 = b(y) · ∇xu(x, t).

The centering condition (13.2.8) ensures that (13.4.2b) has a solution, by the Fred-
holm alternative. SinceL0 is a differential operator iny only, we may use separation
of variables to write the solution as

u1(x, y, t) = χ(y) · ∇xu(x, t).

Thenχ(y) solves the cell problem (13.3.1) . Our assumptions imply that there exists
a unique, smooth solution to the cell problem.

Now we proceed with the analysis of theO(1) equation (13.4.2c). The solvability
condition (13.2.8) reads

∫

Td

(
∂u0

∂t
− L2u0 − L1u1

)
ρ dy = 0.

The fact thatu0 = u(x, t) is independent ofy enables us to rewrite the above equa-
tion in the form

∂u

∂t
= D∆u+

∫

Td

(
L1u1

)
ρ dy. (13.4.3)

Now we have

L1u1 =
(
b · ∇x(χ · ∇xu) + 2D∇x · ∇y(χ · ∇xu)

)

=
(
b⊗ χ+ 2D∇yχ

T
)

: ∇x∇xu.

In view of the above calculation, equation (13.4.3) becomes

∂u

∂t
= K : ∇x∇xu,

which is the homogenized equation (13.3.3a). The effectivediffusivity K is given by
formula (13.3.2).

13.5 Properties of the Simplified Equations

In this section we show that the effective diffusivity is positive definite. This implies
that the homogenized equation is well posed. To prove this weneed to calculate
the Dirichlet form associated with the operatorL0. The following is a direct conse-
quence of Theorem 6.12 in the case of additive noise. Recall thatρ is the invariant
distribution, a non-negativeL1(Td) function in the null-space ofL∗0.
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Lemma 13.3.Letf(y) ∈ C2
per(T

d). Then
∫

Td

(−L0f(y))f(y)ρ(y) dy = D

∫

Td

|∇yf(y)|2ρ(y) dy. (13.5.1)

Remark 13.4.LetL2
ρ(T

d) be theL2 space weighted by the invariant distributionρ(y)
and denote the inner product and corresponding norm by(·, ·)L2

ρ
and‖ · ‖L2

ρ
, respec-

tively. Then, by equation (6.3.13), the result of Lemma 13.3can be expressed in the
form

(−L0f, f)L2
ρ

= D‖∇yf‖2L2
ρ
. ⊓⊔

The main result of this section is that the effective diffusivity is a positive definite
matrix. In particular, we have the following.

Theorem 13.5.Let ξ ∈ R
d be an arbitrary vector and letχξ(y) := χ(y) · ξ. Then

〈ξ,Kξ〉 = D

∫

Td

|ξ +∇yχξ(y)|2ρ(y) dy.

Furthermore,
α|ξ|2 6 〈ξ,Kξ〉 ∀ ξ ∈ R

d. (13.5.2)

with

α = D

(∫

Td

ρ−1(y) dy

)−1

. (13.5.3)

Proof. Note that−L0χξ = ξ · b. We use the definition ofK and Lemma 13.3 to
calculate

〈ξ,Kξ〉 = D|ξ|2 + 2D

∫

Td

ξ · ∇yχξ(y)ρ(y) dy +

∫

Td

(ξ · b)χξ(y)ρ(y) dy

= D|ξ|2 + 2D

∫

Td

ξ · ∇yχξ(y)ρ(y) dy +D

∫

Td

|∇yχξ(y)|2ρ(y) dy

= D

∫

Td

|ξ +∇yχξ(y)|2ρ(y) dy.

The fact that the effective diffusivity in nonnegative definite follows immediately
from the above equation. To show thatK is positive definite we use the fact that the
integral of derivatives of periodic functions overT

d is 0, together with the Cauchy–
Schwarz inequality and the fact thatρ(y) is everywhere positive, to calculate:

D|ξ|2 = D

∣∣∣∣
∫

Td

(ξ +∇yχξ) dy

∣∣∣∣
2

= D

∣∣∣∣
∫

Td

(ξ +∇yχξ) ρ
1

2 (y)ρ−
1

2 (y) dy

∣∣∣∣
2

6 D

(∫

Td

|ξ +∇yχξ|2 ρ(y) dy
)(∫

Td

ρ−1(y) dy

)

= 〈ξ,Kξ〉
(∫

Td

ρ−1(y) dy

)
,
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from which the lower bound immediately follows.⊓⊔
It is of interest to know how the effective diffusion tensorK compares with the

original diffusion tensorDI. It turns out thatK can be either greater or smaller than
D (in the sense of matrices). This issue is discussed in detailin the next section where
we will show that the effective diffusivity is smaller thanD for gradient vector fields
b and that it is greater thanD for divergence–free vector fieldsb.

13.6 Applications

In this section we will consider two particular choices for the drift termb in (13.2.4a),
gradientanddivergence–freefields. In both cases it is possible to perform explicit
calculations which yield considerable insight. In particular, we will be able to obtain
a formula for the (unique) invariant distribution and, consequently, to simplify the
centering condition (13.2.8). Furthermore we will be able to compare the effective
diffusivity with the original diffusivityD. We will see that the effective diffusiv-
ity is smaller thanD for gradient vector fieldsb, and that it is greater thanD for
divergence–free vector fieldsb. We also study two particular cases of gradient and
divergence–free flows for which we can derive closed formulae for the effective dif-
fusivity.

There are at least two reasons why it is interesting to consider gradient and
divergence–free flows. On the one hand, parabolic PDEs of theform (13.2.1) with
b being either the gradient of a scalar field or divergence–free appear frequently in
applications: whenb = −∇V then equation (13.2.1) describes Brownian motion in
a periodic potential. On the other hand, whenb is divergence–free equation (13.2.1)
becomes the advection diffusion equation which describes mixing processes in in-
compressible fluids. According to the Hodge decomposition theorem, every smooth
vector field onT

d can be decomposed into the sum of a gradient and a divergence–
free field:

b(y) = −∇V (y) + v(y), ∇ · v(y) = 0,

with
(−∇V (y), v(y))L2(Td) = 0.

Hence, by studying gradient and divergence–free flows we study the two extreme
cases of this decomposition.

13.6.1 Gradient Vector Fields

We consider the case where the vector fieldb(y) in equation (13.2.4a) is the gradient
of a smooth, scalar periodic function,

b(y) = −∇yV (y). (13.6.1)

The functionV is called thepotential. In this case it is straightforward to derive a
formula for the solutionρ of the stationary adjoint equation (13.2.6) with periodic
boundary conditions.
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Lemma 13.6.Assume that the vector fieldb is a gradient given by(13.6.1). LetL∗0
denote the adjoint ofL0 defined in(13.2.5). Then the equation

L∗0ρ = 0,

∫

Td

ρ(y)dy = 1, (13.6.2)

subject to periodic boundary conditions onT
d has a unique solution given by

ρ(y) =
1

Z
e−V (y)/D, Z =

∫

Td

e−V (y)/D dy. (13.6.3)

Proof. Equation (13.6.2), in view of equation (13.6.1), becomes

∇y ·
(
∇yV (y)ρ(y) +D∇yρ(y)

)
= 0. (13.6.4)

We immediately check thatρ(y) given by (13.6.3) satisfies

∇yV (y)ρ(y) +D∇yρ(y) = 0,

and hence it satisfies (13.6.4). Furthermore, by construction we have that
∫

Td

1

Z
e−V (y)/D dy = 1,

and henceρ(y) is correctly normalized. Thus we have constructed a solution of equa-
tion (13.6.2). Uniqueness follows by the ergodicity of the stochastic process with
generatorL0 (see Theorem 6.16).⊓⊔
Remark 13.7.The positive functionρ defined in (13.6.3) is called theGibbs distri-
bution and the probability measureρ(y)dy theGibbs measure. The normalization
constantZ is called thepartition function . ⊓⊔
In the case of gradient flows the centering condition (13.2.8) is satisfied identically
for any potential.

Lemma 13.8.Consider the operatorL0 given by(13.2.5)with periodic boundary
conditions and assume thatb(y) = −∇yV (y) with V ∈ C1

per(T
d). Then the center-

ing condition(13.2.8)is always satisfied.

Proof. We use the divergence theorem to calculate
∫

Td

b(y)ρ(y) dy =
1

Z

∫

Td

−∇yV (y)e−V (y)/D dy

=
D

Z

∫

Td

∇ye
−V (y)/D dy

= 0.

⊓⊔
In the case of gradient flows the operatorL0 defined in (13.2.5) equipped with

periodic boundary conditions becomes symmetric in the appropriate function space.
We have the following.
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Lemma 13.9.Assume that condition(13.6.1)is satisfied and letρ denote the Gibbs
distribution(13.6.3). Then the operatorL0 given in(13.2.5)satisfies

∫

Td

f(y)
(
L0h(y)

)
ρ(y) dy =

∫

Td

h(y)
(
L0f(y)

)
ρ(y) dy, (13.6.5)

for all f, h ∈ C2
per(T

d).

Proof. Using the divergence theorem we have
∫

Td

fL0hρ dy =
1

Z

∫

Td

f
(
−∇yV · ∇yh

)
e−V/D dy +

D

Z

∫

Td

f∆yhe
−V/D dy

=
D

Z

∫

Td

f∇yh · ∇y

(
e−V/D

)
dy − D

Z

∫

Td

(∇yf · ∇yh) e
−V/D dy

−D
Z

∫

Td

f∇yh · ∇y

(
e−V/D

)
dy

= −D
∫

Td

(
∇yf · ∇yh

)
ρ dy.

The expression in the last line is symmetric inf, h and hence (13.6.5) follows.⊓⊔

Remark 13.10.The symmetry ofL0 arises quite naturally from the identity (6.3.11)
used in proving Theorem 6.12. Furthermore, the calculationused in the proof of the
above lemma gives us the following useful formula

∫

Td

f(−L0h)ρ dy = D

∫

Td

(
∇yf · ∇yh

)
ρ dy (13.6.6)

for all f, h ∈ C2
per(T

d). The Dirichlet form Lemma 13.3 follows from this upon
settingf = h. Now letφ, ψ ∈ C2

per(T
d; Rd). In view of (13.6.6) we also have

∫

Td

(
φ⊗ (−L0ψ)

)
ρ dy = D

∫

Td

(
∇yφ⊗∇yψ

)
ρ dy (13.6.7)

⊓⊔

Remark 13.11.Using the notation introduced in Remark 13.4 we can express the
result of Lemma 13.9 by saying thatL0 is symmetric as an operator fromL2

ρ to L2
ρ.

Furthermore, identity (13.6.6) can be written in the form

(f,−L0h)L2
ρ

= D (∇yf,∇yh)L2
ρ
.

Ergodic Markov processes whose generator is a symmetric operator inL2
ρ are called

reversible . Thus we have shown that SDEs with additive noise and with a drift
which is a gradient field are reversible.⊓⊔
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Now we are ready to prove various properties of the effectivediffusivity. For this
we will need the following integration by parts formula, which follows from the
divergence theorem and the periodicity ofχ andρ :

∫

Td

(
∇yχ

)
ρ dy =

∫

Td

(
∇y(χρ)− χ⊗∇yρ

)
dy = −

∫

Td

(χ⊗∇yρ) dy. (13.6.8)

Theorem 13.12.Assume thatb(y) is a gradient so that(13.6.1)holds and letρ(y)
denote the Gibbs distribution(13.6.3). Then the effective diffusivity(13.3.2)satisfies
the upper and lower bounds

D

ZẐ
6 〈ξ,Kξ〉 6 D|ξ|2 ∀ξ ∈ R

d, (13.6.9)

where

Ẑ =

∫

Td

eV (y)/D dy.

In particular, diffusion is always depleted when compared to molecular diffusivity.
Furthermore, the effective diffusivity is symmetric.2

Proof. The lower bound follows from the general lower bound (13.5.2), equation
(13.5.3) and the formula for the Gibbs measure. To establishthe upper bound, we
use (13.6.8) and (13.6.7) to obtain

K = DI + 2D

∫

Td

(∇χ)T ρ dy +

∫

Td

−∇yV ⊗ χρ dy

= DI − 2D

∫

Td

∇yρ⊗ χdy +

∫

Td

−∇yV ⊗ χρ dy

= DI − 2

∫

Td

−∇yV ⊗ χρ dy +

∫

Td

−∇yV ⊗ χρ dy

= DI −
∫

Td

−∇yV ⊗ χρ dy

= DI −
∫

Td

(
− L0χ

)
⊗ χρ dy

= DI −D
∫

Td

(
∇yχ⊗∇yχ

)
ρ dy. (13.6.10)

Hence, forχξ = χ · ξ,

〈ξ,Kξ〉 = D|ξ|2 −D
∫

Td

|∇yχξ|2ρ dy

6 D|ξ|2.

This proves depletion. The symmetry ofK follows from (13.6.10). ⊓⊔
2 Notice that the Cauchy-Schwarz inequality shows thatZ bZ > 1.
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The One Dimensional Case

The one dimensional case is always in gradient form:b(y) = −∂yV (y). Furthermore
in one dimension we can solve the cell problem (13.3.1) in closed form and calcu-
late the effective diffusion coefficient explicitly–up to quadratures. We start with the
following calculation concerning the structure of the diffusion coefficient.

K = D + 2D

∫ 1

0

∂yχρ dy +

∫ 1

0

−∂yV χρ dy

= D + 2D

∫ 1

0

∂yχρ dy +D

∫ 1

0

χ∂yρ dy

= D + 2D

∫ 1

0

∂yχρ dy −D
∫ 1

0

∂yχρ dy

= D

∫ 1

0

(
1 + ∂yχ

)
ρ dy. (13.6.11)

The cell problem (13.3.1) in one dimension is

D∂yyχ− ∂yV ∂yχ = ∂yV. (13.6.12)

We multiply equation (13.6.12) bye−V (y)/D to obtain

∂y

(
∂yχe

−V (y)/D
)

= −∂y

(
e−V (y)/D

)
.

We integrate this equation from0 to y and multiply byeV (y)/D to obtain

∂yχ(y) = −1 + c1e
V (y)/D.

Another integration yields

χ(y) = −y + c1

∫ y

0

eV (y)/D dy + c2.

The periodic boundary conditions imply thatχ(0) = χ(1), from which we conclude
that

−1 + c1

∫ 1

0

eV (y)/D dy = 0.

Hence

c1 =
1

Ẑ
, Ẑ =

∫ 1

0

eV (y)/D dy.

We deduce that

∂yχ = −1 +
1

Ẑ
eV (y)/D.

We substitute this expression into (13.6.11) to obtain
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K =
D

Z

∫ 1

0

(1 + ∂yχ(y)) e−V (y)/D dy

=
D

ZẐ

∫ 1

0

eV (y)/De−V (y)/D dy

=
D

ZẐ
, (13.6.13)

with

Z =

∫ 1

0

e−V (y)/D dy, Ẑ =

∫ 1

0

eV (y)/D dy. (13.6.14)

Notice that in the one–dimensional case the formula for the effective diffusivity
is precisely the lower bound in (13.6.9). This shows that thelower bound is sharp.

Example 13.13.Consider the potential

V (y) =

{
a1 : y ∈ [0, 1

2 ],
a2 : y ∈ (1

2 , 1],
(13.6.15)

wherea1, a2 are positive constants.3

It is straightforward to calculate the integrals in (13.6.14) to obtain the formula

K =
D

cosh2
(

a1−a2

D

) . (13.6.16)

In Figure 13.1 we plot the effective diffusivity given by (13.6.16) as a function of
the molecular diffusivityD, on a log scale. We observe thatK decays exponentially
fast in the limit asD → 0. ⊓⊔

13.6.2 Divergence–Free Fields

In this section we consider the problem of homogenization for (13.2.4a) in the case
where the vector fieldb(y) is divergence–free (or incompressible):

∇ · b(y) = 0. (13.6.17)

The incompressibility ofb(y) simplifies the analysis considerably because the ad-
vection operator

L̂0 = b(y) · ∇y,

with periodic boundary conditions is antisymmetric inL2(Td):

3 Of course, this potential is not even continuous, let alone smooth, and the theory as de-
veloped in this chapter does not apply. It is possible, however, to consider a regularized
version of this discontinuous potential and then homogenization theory applies.
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Fig. 13.1.Log-log plot of the effective diffusivity versus moleculardiffusivity for the potential
(13.6.15).

Lemma 13.14.Letb(y) ∈ C1
per(T

d; Rd) satisfy(13.6.17). Then for allf(y), h(y) ∈
C1

per(T
d) we have

∫

Td

f(y) (b(y) · ∇yh(y)) dy = −
∫

Td

h(y) (b(y) · ∇yf(y)) dy.

In particular, ∫

Td

f(y) (b(y) · ∇yf(y)) dy = 0. (13.6.18)

Proof. We use the incompressibility ofb(y), together with the periodicity off(y),
h(y) andb(y) to calculate

∫

Td

f(y) (b(y) · ∇yh(y)) dy =

∫

Td

f(y)∇y ·
(
b(y)h(y)

)
dy

= −
∫

Td

∇yf(y) · (b(y)h(y)) dy

= −
∫

Td

h(y)
(
b(y) · ∇yf(y)

)
dy.

Equation (13.6.18) follows from the above calculation uponsettingf = h. ⊓⊔
Using the previous lemma it is easy to prove that the unique invariant measure of

the fast process is the Lebesgue measure.



222 13 Homogenization for Parabolic PDEs

Lemma 13.15.LetL0 denote the operator defined in(13.2.5)with periodic bound-
ary conditions and withb(y) satisfying(13.6.17). LetL∗0 denote theL2–adjoint of
L0. Then the adjoint equation

L∗0ρ = 0,

∫

Td

ρ(y)dy = 1, (13.6.19)

with periodic boundary conditions onTd has a unique classical solution given by

ρ(y) = 1. (13.6.20)

Proof. Lemma 13.14 implies that theL2–adjoint ofL0 is

L∗0 = −b(y) · ∇y +D∆y, (13.6.21)

with periodic boundary conditions. Letρ(y) be a solution of equation (13.6.19). We
multiply the equation byρ(y), integrate overTd and use Lemma 13.14 to obtain

∫

Td

|∇yρ(y)|2 dy = 0, (13.6.22)

from which we deduce thatρ(y) is a constant. Hence, the unique normalized solution
of (13.6.19) is given by (13.6.20).⊓⊔

Remark 13.16.The solutionρ(y) = 1 can be seen to be in the null space of (13.6.21)
by inspection. Uniqueness can then be proved by appealing toergodicity of the pro-
cess with generatorL0 (see Theorem 6.16), or by use of the maximum principle.
⊓⊔

Remark 13.17.An immediate corollary of Proposition 13.15 is that for divergence–
free fields the solvability condition (13.2.8) becomes

∫

Td

b(y) dy = 0.

Thus, it is straightforward to check whether a given periodic divergence–free field
satisfies the solvability condition – the field must average to zero over the unit torus.
⊓⊔

Now let χ(y) be the solution of the cell problem (13.3.1) withb(y) satisfying
(13.6.17). The periodicity ofχ(y), together with (13.6.20) imply that the second
term on the right hand side of equation (13.3.2) vanishes andthe formula for the
effective diffusivity reduces to

K = DI +

∫

Td

b(y)⊗ χ(y) dy. (13.6.23)

The effective diffusivity as given in (13.3.2) is symmetricfor gradient flows. This is
not true for divergence–free flows. However, only the symmetric part ofK enters into
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the homogenized equation by Remark 13.2. For this reason we redefine the effective
diffusivity to be the symmetric part ofK:

K := DI +
1

2

∫

Td

(
b(y)⊗ χ(y) + χ(y)⊗ b(y)

)
dy. (13.6.24)

Our goal now is to show that the homogenization procedure enhances diffusion, i.e.
that the effective diffusivity is always greater than the molecular diffusivityD. For
this we will need an alternative representation formula forK.

Theorem 13.18.The effective diffusivityK given by the expression(13.6.24)can be
written in the form

K = DI +D

∫

Td

∇yχ(y)⊗∇yχ(y) dy. (13.6.25)

Proof. We take the outer product of the cell problem (13.3.1) withχ(y) to the left
and integrate over the unit cell to obtain

−D
∫

Td

χ(y)⊗∆yχ(y) dy −
∫

Td

χ(y)⊗
(
∇yχ(y)b(y)

)
dy =

∫

Td

χ(y)⊗ b(y) dy.

We apply the divergence theorem to thetwo integralson the left hand side of the
above equation, using periodicity and the fact thatb is divergence–free, to obtain

D

∫

Td

∇yχ(y)⊗∇yχ(y) dy +

∫

Td

(
∇χ(y)b(y)

)
⊗ χ(y) dy =

∫

Td

χ(y)⊗ b(y) dy.
(13.6.26)

Alternatively we may take the outer product withχ in (13.3.1) to the right and use
the divergence theorem only on the first integral, to obtain

D

∫

Td

∇yχ(y)⊗∇yχ(y) dy −
∫

Td

(
∇χ(y)b(y)

)
⊗ χ(y) dy =

∫

Td

b(y)⊗ χ(y) dy.

(13.6.27)
We add equations (13.6.26) and (13.6.27) to obtain:

1

2

∫

Td

(
b(y)⊗ χ(y) + χ(y)⊗ b(y)

)
dy = D

∫

Td

∇yχ(y)⊗∇yχ(y) dy.

Equation (13.6.25) now follows upon substituting the aboveexpression into equation
(13.6.24). ⊓⊔

We can now obtain upper and lower bounds for the effective diffusivity.

Theorem 13.19.Assume thatb(y) is divergence–free. Then the effective diffusivity
satisfies the upper and lower bounds

D|ξ|2 6 〈ξ,Kξ〉 6

(
D +

C

D

)
|ξ|2, (13.6.28)

whereC = C(b,Ω) > 0 is explicitly computable.4 The lower bound becomes an
equality for allξ only whenb(y) ≡ 0.

4 IndeedC = (Cp‖b‖L2
)2 whereCp is the Poincaré constant from inequality (2.4.7).
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Proof. The lower bound follows from the general bound (13.5.2), equation (13.5.3)
and the fact that for divergence–freeflowsρ(y) = 1. Furthermore, equation (13.6.25)
implies that

〈ξ,Kξ〉 := D|ξ|2 +D

∫

Td

|∇yχξ(y)|2 dy, (13.6.29)

whereχξ = χ · ξ. Clearly the equality〈ξ,Kξ〉 = D|ξ|2 for all ξ implies thatχξ = 0
for all ξ implying thatχ(y) ≡ 0. By (13.3.1) this implies thatb ≡ 0.

For the upper bound we take the inner product of the cell problem with an arbi-
trary vectorξ ∈ R

d to obtain
−L0χξ = b · ξ.

We multiply this equation withχξ, integrate overTd, use Lemma 13.14 and the
Poincaré inequality to calculate

D‖∇yχ
ξ‖2L2 = (−L0χξ, χξ) = (b · ξ, χξ)

6 ‖b · ξ‖L2‖χξ‖L2

6 Cp‖b‖L2‖∇yχξ‖L2 |ξ|,

whereCp is the Poincaré constant onTd. From the above estimate we deduce that

‖∇yχξ‖L2 6

√
C

D
|ξ|

with C =
(
Cp‖b‖L2

)2
. The result follows from (13.6.29).⊓⊔

Shear Flow in 2D

In this section we study an example of a divergence–free flow for which the cell
problem can be solved in closed form, that of ashear flow. The structure of a shear
velocity field is such that the cell problem becomes an ordinary differential equation.

Let y = (y1, y2)
T . We consider the problem of homogenization for (13.2.4a) in

two dimensions for the following velocity field:

b(y) = (0, b2(y1))
T , (13.6.30)

whereb2(y1) is a smooth,1–periodic function with mean zero. Notice that the ve-
locity field (13.6.30) is incompressible:

∇ · b(y) =
∂b1
∂y1

+
∂b2
∂y2

=
∂b2(y1)

∂y2
= 0.

The two components of the cell problem satisfy

−D∆yχ1(y)− b2(y1)
∂χ1(y)

∂y2
= 0, (13.6.31a)
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−D∆yχ2(y)− b2(y1)
∂χ2(y)

∂y2
= b2(y1), (13.6.31b)

as well as periodicity and the normalization condition thatχ integrates to zero over
the unit cellY.

If we multiply the first equation (13.6.31a) byχ1(y), integrate by parts overTd

then we deduce that ∫

Td

|∇yχ1(y)|2 dy = 0.

Henceχ1(y) = 0, since we impose the normalization〈χ(y)〉 = 0 with 〈·〉 :=∫
Td ·dy. On the other hand, since the right hand side of (13.6.31b) depends only on
y1, it is reasonable to assume that the solutionχ2(y) is independent ofy2; we seek
a solution of this form and then, provided that we can find sucha solution, unique-
ness of solutions to the cell problem implies that it is the only solution. Equation
(13.6.31b) becomes:

−Dd
2χ2(y1)

dy2
1

= b2(y1). (13.6.32)

If ψ is a periodic solution to

−d
2ψ(y1)

dy2
1

= b2(y1), (13.6.33)

thenψ is independent ofD andχ2 = ψ/D.
By (13.6.24) the effective diffusivityK is the following2× 2 matrix:

K =

(
D +

∫
T2 (b1χ1) dy

1
2

∫
T2 (b2χ1 + b1χ2) dy

1
2

∫
T2 (b2χ1 + b1χ2) dy D +

∫
T2 (b2χ2) dy

)

=

(
D 0
0 K22

)
,

where we have used the fact thatb1 = χ1 = 0. Using the fact thatb2, χ2 depend
only ony1 we obtain

K22 := D +

∫ 1

0

b2χ2dy1

= D +

∫ 1

0

−Dd
2χ2

dy2
1

χ2dy1

= D +D

∫ 1

0

∣∣∣
dχ2

dy1

∣∣∣
2

dy1

= D +
1

D

∫ 1

0

∣∣∣
dψ

dy1

∣∣∣
2

dy1.

Notice the remarkable fact that, sinceψ is independent ofD, the formula shows
that the effective diffusion coefficient scales asD−1 as the original molecular diffu-
sion coefficientD tends to zero. This demonstrates that the upper bound in Theorem
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13.19 is sharp. The intuition behind this scaling is that, for smallD, the equation is
approximately a transport equation in the directionx2. The direction of transport is
slowly modulated, leading to overall diffusive behaviour,but on long time-scales the
predominant effect is transport. This enhances the diffusivity.

It is possible to expressψ as an integral operator acting onb2 and show that

K22 = D +
1

D
‖b2‖2H−1

per(0,1)
. (13.6.34)

See Exercise 10.

Example 13.20.Consider the case

b2(y1) = sin(2πy1). (13.6.35)

We use formula (13.6.34) and Exercise 10 to obtain

K22 = D +
1

8π2D
. (13.6.36)

In Figure 13.2 we plot the effective diffusivity given by (13.6.36) as a function of
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−1

10
0

10
1

10
−1

10
0

10
1

D

K

Fig. 13.2.Log-log plot of the effective diffusivity versus moleculardiffusivity for the sine
shear flow (13.6.35).

the molecular diffusivityD, on a log scale. We observe thatK diverges like1
D in the

limit asD → 0. ⊓⊔
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13.7 The Connection to SDEs

Equation (13.2.1) is the backward Kolmogorov equation associated with the SDE

dx

dt
= b(x) +

√
2D

dW

dt
, (13.7.1)

whereW denotes standard Brownian motion onR
d. Unsurprisingly, then, the ho-

mogenization results derived in this chapter have implications for the behavior of
solutions to this SDE. To see this we first apply the rescalingused to derive (13.2.4)
from (13.2.1) to the SDE (13.7.1). That is, we relabel according to

x→ x/ε, t→ t/ε2

giving the SDE
dx

dt
=

1

ε
b
(x
ε

)
+
√

2D
dW

dt
. (13.7.2)

(Recall Remark 6.3 regarding the behavior of white noise under time rescaling).
If we introduce the variabley = x/ε then we can write this SDE in the form

dx

dt
=

1

ε
b(y) +

√
2D

dW

dt
,

dy

dt
=

1

ε2
b(y) +

1

ε

√
2D

dW

dt
.

Here we viewx as being an element ofRd whilst y is on the torusTd. This is
very similar to the form (11.2.1) which we analyzed in Chapter 11. The only dif-
ference is that the noises appearing in thex andy equations arecorrelated(in fact
U = V = W ). This has the effect of changing the operatorL1 in that chapter, so
that the results derived there do not apply directly. They can, however, be readily
extended to the study of correlated noise – see Chapter 11, Exercises 5 and 1. Notice
that the centering condition (13.2.8) is precisely the condition (11.2.5) sinceρ is the
stationary solution of the same Fokker-Planck equation.

The calculations in this chapter show how the backward Kolmogorov equation
for the coupled SDE in(x, y) can be approximated by a diffusion equation in thex
variable alone. Indeed, the diffusion equation is the backward Kolmogorov equation
for pure Brownian motion. Interpreted in terms of the SDE we obtain the following
result.

Result 13.21.Assume that the centering condition(13.2.8)holds. Forε ≪ 1 and
t = O(1), x solving the SDE(13.7.2)can be approximated byX solving

dX

dt
=
√

(K +KT )
dW

dt

where the matrixK is given by(13.3.2).

If the centering condition is not satisfied then the appropriate rescaling of (13.7.1)
is an advective one, leading to the equations (14.6.1) considered in the next chapter.
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13.8 Discussion and Bibliography

The problem of homogenization for second order parabolic PDEs and its connec-
tion to the study of the long time asymptotics of solutions ofSDEs is studied in
[33, Ch. 3]. References to the earlier literature can be found there. See also [238].
SDEs of the form (13.7.1), whose drift is the gradient of a periodic scalar function,
describe Brownian motion in periodic potentials. This a very important problem in
many applications, for example in solid state physics and biology. See [271, Ch.
11], [267] and the references therein. Multiscale techniques were applied to this
problem in [257]. Periodic homogenization for gradient flows is also discussed in
[238, 256, 323, 118]. Formula (13.6.13) for the effective diffusivity of a Brownian
particle moving in a one dimensional periodic potential wasderived in [191] without
any appeal to homogenization theory. See also [138, Sec. VII]. Brownian motion in
a two–scale periodic potential in one dimension is studied in [342]. The multidimen-
sional problem is analyzed in [258].

On the other hand, the SDE (13.7.1) with divergence–free drift occurs naturally
in the modeling of diffusion processes in fluids. Homogenization for periodic, in-
compressible flows is a part of the theory ofturbulent diffusion[200, 99]. See also
[221, 100, 101]. In this context an interesting question concerns the dependence of
the effective diffusivity on the molecular diffusionD. It turns out that the smallD–
asymptotics of the effective diffusivity depends sensitively on the streamline topol-
ogy of the fluid velocity fieldb(y). See [63, 294, 295, 62, 140, 20, 22, 21]. Interesting
experimental results concerning the dependence of the effective diffusivity onD or,
rather, on thePeclet numberPe are reported in [293, 292]; rescaling enables these
results to be interpreted in terms of molecular diffusivity. Homogenization for com-
pressible flows with applications to atmospheric transportphenomena is studied in
[223].

It is possible to derive a homogenized equation even when thecentering condition
(13.2.8) is not satisfied. In this case it is necessary to use aframe co–moving with
themean flow

b =

∫

Td

b(y)ρ(y) dy. (13.8.1)

Then, it is possible to derive a homogenized equation of the form (13.3.3) for the
rescaled field

uε(x, t) = u

(
x

ε
− bt

ε2
,
t

ε2

)
.

The effective diffusivity is given by the formula

K = DI + 2D

∫

Td

∇yχ(y)Tρ(y) dy +

∫

Td

(
b(y)− b

)
⊗ χ(y)ρ(y) dy, (13.8.2)

The cell problem (13.3.1) is also modified:

−L0χ = b− b. (13.8.3)

See Exercise 5 in Chapter 14.
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The mean flowb can have a dramatic effect in the smallD asymptotics of the
effective diffusivity for periodic divergence–free flows;in particular, the scaling of
K with D for D ≪ 1 depends on whether the mean flow is a rational or irrational
vector. See [201, 222, 35, 295, 175]. A similar discontinuous dependence of the
effective diffusivity on the wavelengths of the inhomogeneities was observed for
gradient flows in [126].

It is proved in Section 13.6.1 that for gradient flows the diffusion is always de-
pleted. In fact, much sharper results can be obtained: the effective diffusivity is ”ex-
ponentially” smaller thanD, for D sufficiently small. That is, there exist positive
constantsc1 andc2 such that

〈ξ,Kξ〉 = c1e
−c2/D, D ≪ 1.

See [54] and the references therein. On the other hand, the effective diffusion coeffi-
cient can become arbitrarily large, when compared to the molecular diffusivity, when
a constant external force is added to the gradient drift, see[268, 282].

The fact that the effective diffusivity along the directionof the shear is inversely
proportional to the molecular diffusivity, formula (13.6.34), was discovered in [313],
without any appeal to homogenization theory. This phenomenon is often refered to
asTaylor dispersion. See also [11]. A similar result for time dependent periodicshear
flows was obtained in [340] through a direct calculation withthe advection–diffusion
equation.

To derive the expression (13.6.34) for the effective diffusion coefficient (from
Exercise 10) it is necessary to use formal calculations withFourier series. Of course,
we have to prove that we can differentiate the Fourier seriesand that the Fourier se-
ries that we get for the second derivative ofχ(y) makes sense. For various properties
of Fourier series we refer the reader to [132, Ch. 3].

We showed that the effective diffusion tensor is symmetric for gradient flows. The
effective diffusivity, however, is not necessarily symmetric for general vector fields.
Despite the fact that the antisymmetric part of the effective diffusivity does not affect
the homogenized equation, it is of physical significance: itgives rise to a component
of the flux which is perpendicular to the concentration gradient, [174]. Whereas the
effective diffusivity is symmetric or not depends on the symmetry properties of the
underlying vector fieldb(y).5 This issue is studied for divergence–free flows in [174,
253]; in those references the dependence of the antisymmetric part of the effective
diffusivity on the Peclet number is also studied.

In addition to the Eulerian definition of the effective diffusivity giving rise to the
effectivge diffusion tensorK we can also define a Lagrangian effective diffusivity
through the long time average of the variance of the underlying stochastic process
x(t).

DL
eff := lim

t→∞

〈((x(t) − 〈x(t)〉) ⊗ (x(t) − 〈x(t)〉)〉
2t

. (13.8.4)

5 For example, in the case of gradient flows the effective diffusivity is symmetric because of
the reversibility (which, of course, is a symmetry property) of gradient flows.
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Notice thatDL
eff is a symmetric tensor. It is straightforward to show that thethe La-

grangian effective diffusivity (13.8.4) agrees with thesymmetric partof the Eulerian
effective diffusivity.

The method of multiple scales can also be used to study the problem of homog-
enization for parabolic PDEs with time dependent coefficients which are periodic in
bothx andt. See, e.g. [118, 228, 323, 257, 42].

Monte Carlo methods for advection diffusion and for transport PDEs are pre-
sented in [187]. Numerical methods for advection diffusionequations with a multi-
scale structure are developed in [1].

13.9 Exercises

1. Derive a formula foru2(x, x/ε, t), the third term in the expansion (13.4.1).
2. Consider the problem of homogenization for

∂uε

∂t
= −1

ε
∇V

(x
ε

)
· ∇uε +D∆uε

in one dimension with the (1–periodic) potential

V (y) =

{
y : y ∈ [0, 1

2 ],
1− y : y ∈ (1

2 , 1],

Calculate the effective diffusivityK. Use Laplace’s method to study the smallD
asymptotics ofK.

3. Carry out the program from the previous exercise for the potential V (y) =
sin(2πy). (Hint: use Bessel functions).

4. Calculate the effective diffusivity (13.3.2) for the2–dimensional vector field
b(y) = (b1(y1), b2(y1)).

5. Consider the problem of homogenization for the reaction–advection–diffusion
equation

∂uε

∂t
=

1

ε
b
(x
ε

)
· ∇uε +∆uε +

1

ε
c
(x
ε

)
uε, (13.9.1)

where the vector fieldb(y) and the scalar functionc(y) are smooth and periodic.
Use the method of multiple scales to homogenize the above PDE. In particular:
a) Derive the solvability condition.
b) Obtain the conditions thatb(y) andc(y) should satisfy so that you can derive

the homogenized equation.
c) Derive the homogenized equation, the cell problem(s) andthe formula for

the homogenized coefficients.
d) Suppose that the reaction term is nonlinear: the zeroth order term in equation

(13.9.1) is replaced by

c
(x
ε
, uε
)
,

where the functionc(y, u) is 1–periodic iny for everyu. Can you homoge-
nize equation. (13.9.1) in this case?
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6. Consider the problem of homogenization for the PDE

∂uε

∂t
=

(
b1(x) +

1

ε
b2

(x
ε

))
· ∇uε +∆uε, (13.9.2)

where the vector fieldb2(y) is smooth and periodic andb1(x) is periodic. Use
the method of multiple scales to homogenize the above PDE. Inparticular:
a) Derive the solvability condition.
b) Obtain the conditions thatb2(y) should satisfy so that you can derive the

homogenized equation.
c) Show that the homogenized equation is

∂u

∂t
= b · ∇u+K : ∇∇u (13.9.3)

and derive the cell problem(s) and the formulae for the homogenized coeffi-
cientsb andK.

7. Consider the problem of homogenization for the PDE (13.9.2) in the case where

b1(x) = −∇V (x) and b2(y) = −∇p(y),

wherep(y) is periodic.
a) Show that in this case there exists a symmetric matrixK̂ such that

K = DK̂, B = −K̂∇V.

b) Let
L := b · ∇+K : ∇∇u.

1. Derive a formula forL∗, theL2–adjoint ofL.
2. Show that the function

ρ(y) :=
1

Z
e−V (y)/D, Z =

∫

Td

e−V (y)/D dy

solves the homogeneous adjoint equation

L∗ρ = 0.

8. Consider the problem of homogenization for the followingPDE

∂uε

∂t
= bε · ∇uε +Aε : ∇x∇xu

ε

whereAε = A(x/ε), bε = b(x/ε) and the vector fieldb(y) and the matrix
A(y) are smooth and periodic, andA(y) is positive definite. Use the method of
multiple scales to derive the homogenized equation. In particular:
a) Derive the solvability condition.
b) Obtain conditions onb(y) which ensure the existence of a homogenized

equation.
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c) Derive the homogenized equation, the cell problem and theformula for the
homogenized coefficients.

d) Prove that the homogenized matrix is positive definite.
9. Consider the problem of homogenization for the followingPDE

∂uε

∂t
=

1

ε
b

(
x

ε
,
t

ε2

)
· ∇uε +D∆uε,

where the vector fieldb(y, τ) is smooth, divergence free and1–periodic in both
y andτ . Use the method of multiple scales to derive the homogenizedequation.
In particular:
a) Derive the solvability condition.
b) Obtain conditions onb(y, τ) which ensure the existence of a homogenized

equation.
c) Derive the homogenized equation, the cell problem and theformula for the

homogenized coefficients.
d) Prove that the homogenized matrix is positive definite.

10. TheH−1
per norm of a real–valued, periodic function with period1 can be expressed

in terms of Fourier series (see the discussion in Section 2.7) as follows:

‖f‖2
H−1

per(0,1)
=

1

2π2

∞∑

k=1

|fk|2
|k|2 .

Use this definition, and the Fourier series representation of the solutionψ of the
problem 13.6.31b, to establish formula (13.6.34) from the expression forK22 in
terms ofψ.

11. Consider Exercise 9 in dimensiond = 2 and with the velocity field

b(y1, y2, τ) = (0, b2(y1, τ)).

Derive a formula for the effective diffusivityK. How doesK depend onD?
12. Repeat the calculations of Section 13.6.2 and Exercise 11 for the 2d velocity

fields
b(y1, y2) = (V, b(y1))

and
b(y1, y2, τ) = (V, b(y1, τ)),

respectively, whereV ∈ R. (Hint: you need to use equations (13.8.2) and (13.8.3)
and their generalizations for time dependent velocity fields).

13. Letb(y) be a smooth, real valued1–periodic, mean zero function and let{bk}+∞
k=−∞

be its Fourier coefficients. Prove thatb0 = 0 and thatb−k = bk.
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Averaging for Linear Transport and Parabolic PDEs

14.1 Introduction

In this chapter we investigate the long time behavior of solutions to the linear trans-
port (or advection) equation, and to the parabolic (advection–diffusion) equation
from the previous chapter, when the centering condition is not satisfied. The tech-
niques we employ are sometimes referred to as homogenization techniques in the
literature. However in terms of the classification in Section 1.3 the methods are ac-
tually averaging methods. We use this terminology.

In Sections 14.2 and 14.3 we set up the problem of interest andthen state the
approximation result. Section 14.4 contains the derivation of the averaged equation,
when the starting point is a parabolic equation. Section 14.5 is devoted to the case
where the averaging is for a pure transport equation; the issues here are more subtle
(no Fredholm alternative for the leading order linear operator) and this is why we
devote a separate section to it. In Section 14.6 we make the connection to averaging
for ODEs and SDEs. Section 14.7 contains bibliographical remarks.

14.2 Full Equations

We study the long time behavior of solutions to the linear parabolic equation corre-
sponding to advection–diffusion in a steady periodic velocity field b:

∂u

∂t
= b · ∇u +D∆u for (x, t) ∈ R

d × R
+, (14.2.1a)

u = uin for (x, t) ∈ R
d × {0}. (14.2.1b)

This is the parabolic equation (13.2.1) and, in the caseD = 0, it reduces to a linear
transport equation. As in Chapter 13 we study the case where

uin(x) = g(εx),



234 14 Averaging for Linear Transport and Parabolic PDEs

and rescale the equation in both space and time in order to understand the behav-
ior of solutions to equation (14.2.1) at length and time scales which are long when
compared to those of the velocity fieldb(x). In this setting, the small parameter in
the problem is the ratio between the characteristic length (time) scale of the velocity
field – its period – and the largest length (time) scale of the problem – the one at
which we are looking for an averaged description. In contrast to the analysis of the
advection–diffusion equation in the previous chapter, we rescale time and space in
the same fashion, namely

x→ ε−1x, t→ ε−1t. (14.2.2)

In the parabolic caseD > 0 this is because we do not assume that the centering
condition (13.2.8) holds; thus the advective effects do notaverage out. Such a trans-
formation is also natural in the caseD = 0 since the transport PDE (14.2.1a) is then
of first order in both space and time.

The initial value problem that we wish to investigate becomes:

∂uε

∂t
= bε · ∇uε + εD∆uε for (x, t) ∈ R

d × R
+, (14.2.3a)

uε = f for x ∈ R
d × {0}. (14.2.3b)

Herebε(x) = b(x/ε), as in the previous chapter.
As in the previous chapter we define the operator

L0 = b(y) · ∇y +D∆y (14.2.4)

with periodic boundary conditions. Note that constants iny are in the null space of
this operator; furthermore, forD > 0 the null space is one dimensional and com-
prises only constants. TheL2–adjoint ofL0 isL∗0, also with periodic boundary con-
ditions. Recall from Chapter 13 that, forD > 0, the invariant distribution ρ(y) is
the unique stationary solution of the adjoint equation

L∗0ρ = 0,

∫

Td

ρ(y) dy = 1, (14.2.5)

equipped with periodic boundary conditions. ForD > 0 both operatorsL0 andL∗
satisfy a Fredholm alternative.

14.3 Simplified Equations

In this and the following section we simply assume that the operatorL0 has a one
dimensional null space, comprising constants; and that thesame holds for its adjoint
L∗0, with null space spanned byρ. This follows from the Fredholm alternative for
D > 0. ForD = 0 it requires some form of ergodicity of the underlying ODE for
whichL0 is the generator. We discuss this ergodicity issue in Sections 14.5 and 14.6.

Under the stated assumptions onL0 we have the following result:
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Result 14.1.Let b be a smooth periodic vector field. Assume that the operatorL0

defined in(14.2.4)satisfies

N (L0) = span(1), N (L∗0) = span(ρ).

Then, forε≪ 1 and timest ofO(1), the solutionuε(x, t) of (13.2.4)is approximated
byu(x, t), the solution of the averaged equation:

∂u

∂t
− b · ∇xu = 0, b :=

∫

Td

ρ(y)b(y) dy,

together with the same initial condition as foruε.

The calculations leading to this approximation result takethe rescaled parabolic
equation (14.2.3a) as starting point and recover a transport equation by means of
averaging. Naively it might appear that the diffusion term in (14.2.3a) simply dis-
appears from the averaging calculation, since it is multiplied by ε. This viewpoint
is wrong: the diffusion coefficient plays an essential role. In general the form of the
stationary distribution, against whichb is averaged, depends crucially onD > 0,
throughρ.1

Note that the centering condition (13.2.8) simply states that b = 0. This is why
a different scaling of space and time is used in Chapter 13 from that used here:
specifically a longer timescale is used there, in order to seenonnegligible effects.

14.4 Derivation

We use the method of multiple scales as introduced in the two preceding chapters.
We introduce the auxiliary variabley = x/ε. Let φ = φ(x, x/ε) be scalar-valued.
The chain rule gives

∇φ = ∇xφ+
1

ε
∇yφ and ∆φ = ∆xφ+

2

ε
∇x · ∇yφ+

1

ε2
∆yφ.

The partial differential operator that appears on the righthand side of equation
(14.2.3) has the form

L =
1

ε
L0 + L1 + εL2,

where

L0 = b(y) · ∇y +D∆y,

L1 = b(y) · ∇x + 2D∇x · ∇y,

L2 = D∆x.

In terms ofx andy equation (14.2.3) becomes

1 An exception is the case divergence–free flows: the invariant measureρ is the Lebesgue
measure on the unit torus for allD > 0. See Proposition 13.15.
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∂uε

∂t
=

(
1

ε
L0 + L1 + εL2

)
uε.

We look for a solution in the form of a two-scale expansion:

uε(x, t) = u0

(
x,
x

ε
, t
)

+ εu1

(
x,
x

ε
, t
)

+ . . . . (14.4.1)

We assume that all terms in the expansionuj(x, y, t), j = 0, 1, . . . are1–periodic in
y and treatx andy := x

ε as independent variables.2 We substitute (14.4.1) into equa-
tion (14.2.3a), use the assumed independence ofx andy and collect equal powers of
ε to obtain the following set of equations:

O(1/ε) −L0u0 = 0, (14.4.2a)

O(1) −L0u1 = L1u0 −
∂u0

∂t
, (14.4.2b)

whereuj(x, y) is 1−periodic iny.
We can now complete the averaging procedure. From the first equation in

(14.4.2), and our assumptions onL0, we deduce that the first term in the expansion
is independent of the oscillations which are expressed through the auxiliary variable
y:

u0 = u(x, t).

We use this to compute:

L1u0 =
∂u(x, t)

∂t
− b(y) · ∇xu(x, t).

Sinceρ is in the null space ofL∗0 the second equation in (14.4.2) implies that

0 =
∂u(x, t)

∂t
−
(∫

Td

ρ(y)b(y) dy

)
· ∇xu(x, t). (14.4.3)

We have thus obtained the desired averaged equation:

∂u(x, t)

∂t
− b · ∇xu(x, t) = 0, b :=

∫

Td

ρ(y)b(y) dy,

together with the same initial conditions as those foruε.

14.5 Transport Equations:D = 0

We have indicated that, in general, the averaged transport equation depends subtly
on the diffusion coefficientD through the invariant distributionρ against whichb

2 As in the elliptic and parabolic homogenization proceduresin the previous two chapters,
this is where we exploit scale separation:we treat x and y as independent variables.
Justifying this assumption asε → 0 is one of the main issues in the rigorous theory of
averaging. See Chapter 21.
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is averaged. Existence and uniqueness of the stationary distribution ρ is automatic
whenD > 0 but requires some form of ergodicity, which will depend uponthe
properties ofb, whenD = 0. It is therefore a nontrivial question to ask when, and
to what extent, the preceding averaging calculations extend to the caseD = 0. The
calculations rely on the null spaces ofL0 andL∗0 being one dimensional, something
ensured by the Fredholm alternative in the caseD > 0. We discuss the analogues of
these results in the caseD = 0.

Let
L0 = b(y) · ∇y (14.5.1)

with domainC1
per(T

d). We can extend this operator toD(L0) ⊂ L∞
per(T

d) as in
(4.3.8). We assume for the moment that there are no nontrivial functions in the null
spaceN of L0:

N (L0) =
{

constants iny
}

(14.5.2)

viewing the operator as acting onD(L0). From Chapter 4 we know that this is es-
sentially an ergodicity assumption on the ODE with vector field b – see Theorem
4.13(iii). In relation to this, the idea thatL∗0 is nonempty with domain viewed as
beingC1

per(T
d), implies the existence of an invariant measure which is absolutely

continuous with respect to the Lebesgue measure – see Theorem 4.12(iii). Thus er-
godicity with respect to absolutely continuous invariant measureµ provides us with
the necessary tools to carry out the formal perturbation expansions of this chapter
in the caseD = 0. In particular, in the ergodic case, (14.4.2a) implies thatu0 is
independent ofy and also that a necessary condition for a solutionu1 of (14.4.2b) to
exist is the equation (14.4.3).

Note that ifb is divergence–free (the velocity field is incompressible) thenL is
skew–symmetric (Lemma 13.14) and so we deduce from (14.5.2)that

N (L∗0) =
{

constants iny
}
. (14.5.3)

However, in the general ergodic case,ρ will not be a constant function.

14.5.1 The One–Dimensional Case

Consider the rescaled transport equation (14.2.3a) in one dimension:

∂uε

∂t
− bε ∂u

ε

∂x
= 0 for (x, t) ∈ R× R

+, (14.5.4a)

u = g for (x, t) ∈ R× {0}, (14.5.4b)

whereg = g(x) is independent of the oscillations.3 We assume thatb(y) is a strictly
positive, smooth, 1–periodic function. The stationary Liouville equation

L∗0ρ = 0, ρ > 0, 1–periodic, (14.5.5)

together with the normalization condition

3 This is not necessary – see Exercise 3 from Chapter 21.
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∫ 1

0

ρ(y) dy = 1,

has unique normalized solution the probability density

ρ(y) =
C

b(y)
, C = 〈b(y)−1〉−1; (14.5.6)

here we have used the notation〈·〉 to denote averaging over[0, 1], as in Chapter 12.
Positivity ofb is key to this existence and uniqueness result, and also to the ergodicity
of the underlying flow. These issues are discussed in Example4.14.

We obtain the averaged equation

∂u

∂t
− b∂u

∂x
= 0, (14.5.7)

with the same initial conditions as in (14.5.4b) and with

b = 〈b(y)−1〉−1.

Notice that, in contrast to the ergodic divergence–free case presented in the next
subsection, it is the harmonic average of the velocity field that appears in the averaged
equation (14.5.7) rather than the standard average. (Note that the harmonic average
also arises in the one–dimensional elliptic case – see Subsection 12.6.1).

14.5.2 Divergence–Free Velocity Fields

If b is divergence–free (the velocity field is incompressible) thenL given by (14.5.1)
is skew–symmetric (Lemma 13.14) and so we deduce that, if (14.5.2) holds, then

N (L∗0) =
{

constants iny
}
. (14.5.8)

(See Example 4.15). Unfortunately, even for divergence–free fields, the ergodic hy-
pothesis leading to (14.5.2) is often not satisfied. Consider an equation in the form
(14.4.2a):

L0u := b(y) · ∇yu = 0 (14.5.9)

with periodic boundary conditions. Althoughu ≡ 1 solves this equation, it is rare
that this solution is unique: the null space of the operatorL0 contains, in general, non-
trivial functions ofy. As an example, consider the smooth,1–periodic, divergence–
free field

b(y) = (sin(2πy2), sin(2πy1)).

It is easy to check that the function

u(y) = cos(2πy1)− cos(2πy2)

solves equation (14.5.9). Consequently, the null space ofL0 depends on the velocity
field b(y) and it does not consist, in general, merely of constants iny. This implies
that we cannot carry out the averaging procedure using the method of multiple scales.

It is natural to ask whether there is a way of deciding whethera given divergence–
free velocity field onTd is ergodic or not. This is indeed possible in two dimensions.
A result along these lines is the following.
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Theorem 14.2.Let b(y) : T
2 → R

2 be a smooth divergence–free velocity field sat-
isfying

b1(y) 6= 0 ∀y ∈ T
2

so that it has no stagnation points. Letbi, i = 1, 2 denote the average of theith
component of the velocity field overT

2 and define the rotation number as

γ =
b1

b2
.

Then there exists a smooth change of variablesy 7→ z under which the ODEs

dy1
dt

= b1(y),
dy2
dt

= b2(y) (14.5.10)

transform into
dz1
dt

= g(z),
dz2
dt

= γg(z) (14.5.11)

whereg(z) is a nonvanishing smooth scalar function. Assume furthermore thatγ is
irrational. Then the null space of the generatorL0 is one–dimensional.

Proof. The first part of the theorem can be proved by constructing explicitly the
transformation that maps (14.5.10) into (14.5.11):4

z1 =
1

b2

∫ y1

0

b2(ξ, 0) dξ, z2 =
1

b1

∫ y2

0

b1(y1, ξ) dξ.

The second part of the theorem can be proved using Fourier analysis. See Exercise 7.
⊓⊔

Thus, under the conditions of this theorem, Theorem 4.13 holds and the formal
perturbation expansions of this chapter may be applied.

14.6 The Connection to ODEs and SDEs

We consider first the caseD = 0. Recall from Chapter 4 that the solution of (14.2.3)
is given by

u(x, t) = g(ϕt(x)),

whereϕt(x) solves the ODE

d

dt
ϕt(x) = b

(ϕt(x)

ε

)
,

ϕt(x) = x.

Result 14.1 shows that, when the ergodicity assumption holds so thatL0 has one-
dimensional null space, this equation is well approximatedby

4 Under the additional assumption thatb2 6= 0 which can be removed later.
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ϕt(x) = bt+ x,

the solution of

d

dt
ϕt(x) = b,

ϕt(x) = x.

Here

b =

∫

Td

ρ(y)b(y)dy = 〈b(y)−1〉

by (14.5.6).
Another way to see this result is as follows. Letx = ϕt(x0) andy = x/ε. Then

dx

dt
= b(y),

dy

dt
=

1

ε
b(y).

Under the ergodic hypothesis the fast processy has invariant measureρ on the torus
T

d. Thus the averaging Result 10.1 gives thatx is well approximated by the solution
of the equation

dX

dt
= b.

This is precisely the approximation derived above.

Example 14.3.In the one-dimensional case it is possible to derive the averaged equa-
tion (14.5.7) using the method of characteristics. To see this, consider the equation

dx

dt
= b
(x
ε

)

in one dimension, and under the same assumptions as before. If we sety = x/ε then
it is straightforward to show that

dy

dt
=

1

ε
b(y),

so that, if we defineT by

T =

∫ 1

0

1

b(z)
dz =

1

b
,

then

y(nεT ) =
x(0)

ε
+ n.

Hence
x(nεT ) = x(0) + nε.

It follows from continuity thatx(t) converges toX(t) where
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X(t) = x(0) +
t

T
.

This limiting functionX(t) satisfies the homogenized equation

dX

dt
=

1

T
= b. ⊓⊔

If D > 0 then equation (14.2.3) is the backward Kolmogorov equationfor the
SDE

dx

dt
= b
(x
ε

)
+
√

2εD
dW

dt
.

Another way to interpret the averaging result is thus as follows. Lety = x/ε to
obtain

dx

dt
= b(y) +

√
2εD

dW

dt
,

dy

dt
=

1

ε
b(y) +

√
2D

ε

dW

dt
. (14.6.1)

Under the ergodic hypothesis the fast processy has invariant measureρ on the torus
T

d. Thus a generalization of the averaging Result 10.1 gives thatx is well approxi-
mated by the ODE

dx

dt
= b.

14.7 Discussion and Bibliography

The perturbation expansion used here is analogous to that used in the method of
averaging, for Markov chains, ODE and SDE, in Chapters 9 and 10. The problem of
averaging for linear transport equations has been studied by many authors. See for
example [80, 147, 312, 51]. Averaging for SDEs is studied in detail in [111].

WhenD = 0 the method of multiple scales enables us to obtain the averaged lin-
ear transport equation (14.2.3a) only in the case where the velocity field is ergodic.
The method of multiple scales breaks down when the velocity field is not ergodic,
since in this case we do not have a solvability condition which would enable us to
average. In fact, when the velocity field is not ergodic, theε → 0 limit becomes
much more complicated and the limiting process cannot be expressed through a sim-
ple PDE. In order to study the problem for general velocity fields, not necessarily
ergodic, it is possible to use the method of two–scale convergence. This will be done
in Chapter 21.

Theorem 14.2 is proved in [312], where the result is proved for two-dimensional
flows that have a smooth invariant density, not only divergence–free flows (for which
the invariant density is simply1). It is not the sharpest result that one can prove,
but the assumptionb1 6= 0 leads to a particularly simple proof. The proof of the
analogous theorem under the assumptions that there are no stagnation points can be
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found in [290]. A similar theorem holds for velocity fields with an invariant measure
other than the Lebesgue measure onT

2; see [312].
The example studied in Section 14.5.1 can be found in [81, 312]. Monte Carlo

methods for advection–diffusion and for transport PDEs arepresented in [187].

14.8 Exercises

1. How does the dynamics of the ODE studied in Section 14.5.1 change ifb is
allowed to change sign?

2. Consider the equation
dx

dt
= a

(x
ε

)
b
( t

εα

)

in one dimension, and under the assumption thata (resp.b) is smooth,1−periodic
andinfx a > 0 (resp.infy b > 0). Find the averaged equations.

3. Study the problem of averaging for (14.2.3) with a smooth periodic (shear) ve-
locity field b : T

2 7→ R
2 of the form

b(y) = (0, b2(y1))
T .

4. Study the problem of averaging for (14.2.3) with a velocity field b : T
2 7→ R

2 of
the form

b(y) = b̂(y)(0, γ)T ,

wherêb(y) is a smooth,1–periodic scalar function andγ ∈ R.
5. Consider equation (13.2.4) in the case where the centering condition (13.2.8)

does not hold. Show that it is possible to derive a homogenized equation of the
form (13.3.3) for the rescaled field

uε(x, t) = u

(
x

ε
− bt

ε2
,
t

ε2

)

whereu solves (14.2.1) andb is given in Result 14.1. Show that the cell-problem
becomes

−L0χ = b− b. (14.8.1)

and that the effective diffusivity is given by the formula

K = DI + 2D

∫

Td

∇yχ(y)Tρ(y) dy +

∫

Td

((
b(y)− b

)
⊗ χ(y)ρ(y)

)
dy.

(14.8.2)
6. Study the problem of homogenization for the ODE

dx

dt
= −∇V

(x
ε

)
+ F

whereV (y) is a smooth periodic function andF is a constant vector.
7. Complete the details in the proof of Theorem 14.2.
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