
� 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena - Metamaterials 2017
Marseille, France, Aug. 28th - Sept. 2nd 2017

Regularized transformation optics for transient heat transfer
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Abstract – We report on certain cloaking strategies for transient heat transfer. Regularized
Kohn’s transform is employed to design cylindrical cloaks and to prove a near-cloak result. Our
main result says that, after the lapse of a certain threshold time, the temperature field outside
the cylindrical cloak is close to that of the uniformly conducting medium irrespective of the
conductivity enclosed in the cloaked region.

I. INTRODUCTION

The by now classical transformation optics approach to cloaking employs singular change-of-variables such
as the Pendry’s transform [1] where one blows up a point to the cloaked region. Although physicists have made
rapid progress in the fabrication and characterization of electromagnetic cloaks [2], mathematical analysis of such
singular structures is highly non-trivial. Rather than working with the singular transform, we adapt the viewpoint
of [3] where the singular scheme is replaced by a regularized one and the notion of “perfect cloak” is replaced by
the the notion of “near-cloak”.

More precisely, the regularized transformation in [3] blows up a ball of radius ε rather than a point. We consider
an arbitrary spatial domain Ω ⊂ R2 which contains B2 (we denote by Br the ball of radius r centred at the origin).
Given a small parameter ε > 0, we consider the Lipschitz invertible map Fε : Ω "→ Ω defined as Fε(x) := x for
x ∈ Ω \ B2, Fε(x) :=

(
2−2ε
2−ε + |x|

2−ε

)
x
|x| for x ∈ B2 \ Bε and Fε(x) :=

x
ε for x ∈ Bε. Note that taking ε = 0

in the mapping Fε yields the singular transform of Pendry. In what follows, we denote by DFε(x), the Jacobian
matrix associated with the Lipschitz map Fε : Ω "→ Ω.

Change-of-variables based cloaking essentially exploits the coordinate invariance property of the underlying
differential equation. We consider an evolution equation for a temperature field u(t, x) in space-time variables:

ρ(x)∂tu(t, x) = div (A(x)∇u(t, x)) + f(x)

where the coefficients ρ(x) represents the volumetric heat capacity, A(x) represents the thermal conductivity
coefficient and f(x) represents the heat source independent of time, ∂t is the partial derivative with respect to the
time variable and div, ∇ are the usual divergence and gradient operators with respect to space variable.

In this short note, we announce some of our recent results on “near-cloaking” strategies for the above parabolic
problem. To the best of our knowledge, this is the first work to consider near-cloaking strategies to address time-
dependent heat conduction problem. Here, we only state some of the main results of our work and give some
numerical illustrations. We choose to give elaborate explanations, mathematical proofs and further analysis else-
where (see [4]). We cite [5] which formally treats the thermal cloaking problem using Pendry’s transform. Note
that the evolution equation which we consider is a good model for [6], which designs and fabricates a microstruc-
tured thermal cloak that molds the heat flow around an object in a metal plate.

II. MAIN OBJECTIVES AND RESULTS

Given a positive bounded density η(x) and a positive definite bounded conductivity β(x) on B1, our goal is
to construct coefficients ρcl(x) and Acl(x) such that (ρcl(x), Acl(x)) = (η(x),β(x)) for x ∈ B1 such that the
solution to the following evolution

ρcl(x)∂tucl(t, x) = div (Acl(x)∇ucl(t, x)) (1)
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satisfies ucl(t, x) ≈ uhom(t, x) for x ∈ Ω \ B2, probably for time instants t > 0 after a threshold T ∗ < ∞, with
uhom(t, x) being solution to the homogeneous equation

∂tuhom(t, x) = ∆uhom(t, x). (2)

More importantly, the aforementioned approximation should hold irrespective of the choice of (η(x),β(x)) in B1.
Note further that the evolution equations (1) and (2) are to be supplemented by initial data in Ω and boundary data
on R+ × ∂Ω. In fact, we treat them as initial boundary value problems with Neumann data. Furthermore, the
chosen data are the same for both the evolutions (1)-(2).

Theorem 1 Given ε > 0, there exists a threshold time T ∗(ε) < ∞ such that for all t ≥ T ∗(ε) we have

∥uhom(t, ·)− ucl(t, ·)∥L2(∂Ω) ≤ C ε2 (3)

where the constant C is independent of ε. The temperature fields ucl(t, x) and uhom(t, x) in the above estimate
are solutions to the evolution problems (1) and (2) respectively. Furthermore, the cloaking coefficients in (1) are

ρcl(y), Acl(y) =

⎧
⎨

⎩

1 Id for y ∈ Ω \B2,
F∗ε 1(y) F∗ε Id(y) for y ∈ B2 \B1,
η(y) β(y) for y ∈ B1,

(4)

where the functions F∗ε 1(y) and F∗ε Id(y) in (4) are the so-called push-forward functions given as

F∗ε 1(y) =
1

detDFε(x)
; F∗ε Id(y) =

DFε(x)DF⊤ε (x)
detDFε(x)

where x = F−1
ε (y).

The estimate (3) makes precise the meaning of ucl(t, x) approximating uhom(t, x) mentioned earlier. Our choice
of the domain Ω containing B2 is arbitrary and Theorem 1 asserts that for any such arbitrary choice, the distance
between the solutions uhom and ucl (measured in the L2(∂Ω)-norm) can be made as small as we wish provided we
engineer appropriate cloaking coefficients (for instance via a homogenization approach) – see (4) – in the annulus
B2 \ B1. This is the notion of “near-cloak”. Unlike the “perfect cloaking” strategies which demand equality be-
tween uhom and ucl everywhere outside B2, “near-cloak” strategies only ask for them to be close in certain norm
topologies. “Near-cloaking” strategies is what matters in practice.
Our idea of proof for Theorem 1 goes via the following steps: Step I: Using a “change-of-variable” principle,
we deduce the equivalence between the evolution (1) and the evolution of temperature field in a uniformly con-
ducting medium with a small defect of extreme conductivity provided that we are interested in the behaviour of
the temperature fields outside B2. Step II: We then study the long time behaviour of solutions to certain initial
boundary value problems of parabolic type with Neumann data. We further characterise the equilibrium states and
prove an exponential decay estimate on the associated semigroup in the Sobolev space H1(Ω). Step III: We close
the arguments by borrowing an idea from [7] which deals with the effect of small inhomogeneities with extreme
conductivities on boundary measurements in the context of electric impedance tomography.
Rather than giving the technical details of the proof in their entirety (interested readers are to consult [4]), we
here focus our attention on an interesting observation on the long time behaviour of a particular parabolic problem
which we encounter in the proof of Theorem 1.
For an unknown vε(t, x), consider the initial-boundary value problem

∂vε

∂t
= div

(
Dε(x)∇vε

)
in (0,∞)× Ω; ∇vε · n(x) = 0 on (0,∞)× ∂Ω; vε(0, x) = vin(x) in Ω, (5)

with the conductivity Dε(x) being uniform with a small defect. More precisely, the conductivity coefficient
Dε(x) = Id in Ω \ Bε and Dε(x) = ε2β

(
x
ε

)
in Bε, where β is any bounded positive definite matrix. We

prove the following long time asymptotic result.

Proposition 2 Let vε(t, x) be the solution to the initial-boundary value problem (5). Suppose the initial datum
vin ∈ H1(Ω). Then, there exists a constant γ(ε) > 0 such that for all t > 0, we have

∥∥vε(t, ·)− ⟨vin⟩
∥∥2
H1(Ω)

≤ e−2tγ(ε)
(∥∥vin

∥∥2
L2(Ω)

+ ε−2
∥∥∇vin

∥∥2
L2(Ω)

)
(6)

where ⟨vin⟩ denotes the averaged initial field.

���



� 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena - Metamaterials 2017
Marseille, France, Aug. 28th - Sept. 2nd 2017

The proof of the above proposition employs the spectral method. More precisely, for the eigen-pairs (µε
k,ϕ

ε
k)
∞
k=1,

we consider the Neumann eigenvalue problem

−div (Dε∇ϕε
k) = µε

kϕ
ε
k in Ω; ∇ϕε

k · n(x) = 0 on ∂Ω (7)

and use the family {ϕε
k}∞k=1 of eigenfunctions as an orthonormal basis in L2(Ω). It turns out that the constant γ(ε)

in (6) is the first non-zero eigenvalue to the above spectral problem. A non-trivial part of the proof of Proposition
2 is to derive the estimate

∥∇vε∥2L2(Ω) ≤ e−2tγ(ε)ε−2
∥∥∇vin

∥∥2
L2(Ω)

(8)

using the spectral representation via the aforementioned orthonormal basis of eigenfunctions.
We shall illustrate the sharpness of the estimate (8) by a numerical experiment using the finite element software
COMSOL MULTIPHYSICS in a two dimensional domain (−3, 3)2. Taking the positive definite matrix β to be
identity and considering the initial datum vin(x1, x2) = x2 + 3, we compute the solution vε(t, x) for the initial
boundary value problem (5) while fixing the regularization parameter ε = 10−1. For the same choice of ε, we also
compute the first non-zero eigenvalue (0.522689) and the associated eigenfunction for the spectral problem (7).

Fig. 1: Panel (a) – Graphs corresponding to the inequality (8): left-hand side of the inequality (blue) and right-
hand side of the inequality (red); Insets in Panel (a) – Contour plots at the time instant t = 0.5s: field vε (left) and
field |∂x1v

ε|2 + |∂x2v
ε|2 (right); Panel (b) – Eigenfunction: plot of the eigenfield corresponding to first non-zero

eigenvalue 0.522689.

Acknowledgement: The authors acknowledge the support of the EPSRC programme grant “Mathematical
fundamentals of Metamaterials for multiscale Physics and Mechanic” (EP/L024926/1).

REFERENCES

[1] J.B. Pendry, D. Schurig and D.R. Smith, “Controlling Electromagnetic Fields,” Science, vol. 312, pp. 1780–1782, 2006.
[2] D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr and D.R. Smith, “Demonstration of a Metama-

terial Electromagnetic Cloak at Microwave Frequencies,” Science, vol. 314, pp. 977–980, 2006.
[3] R.V. Kohn, H. Shen, M.S. Vogelius and M.I. Weinstein, “Cloaking via change of variables in electric impedance tomog-

raphy,” Inverse Problems, vol. 24, p. 015016, 2008.
[4] R. Craster, S. Guenneau, H. Hutridurga and G. Pavliotis, “Cloaking via mapping for the heat equation,” in preparation.
[5] S. Guenneau, C. Amra and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt.

Express, vol. 20, pp. 8207–8218, 2012.
[6] R. Schittny, M. Kadic, S. Guenneau and M. Wegener, “Experiment on Transformation Thermodynamics: Molding the

flow of heat,” Phys. Rev. Lett., vol. 110, p. 195901, 2013.
[7] A. Friedman and M. Vogelius, “Identification of small inhomogeneities of extreme conductivity by boundary measure-

ments: a theorem on continuous dependence,” Arch. Rational Mech. Anal., vol. 105, pp. 299–326, 1989.

���


