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Abstract. Using thermodynamic and variational principles we study
a basic phase field model for the mixture of two incompressible flu-
ids in strongly perforated domains. We rigorously derive an effective
macroscopic phase field equation under the assumption of periodic flow
and a sufficiently large Péclet number with the help of the multiple
scale method with drift and our recently introduced splitting strategy
for Ginzburg-Landau/Cahn-Hilliard-type equations [19]. As for the clas-
sical convection-diffusion problem, we obtain systematically diffusion-
dispersion relations (including Taylor-Aris-dispersion). In view of the
well-known versatility of phase field models, our study proposes a promis-
ing model for many engineering and scientific applications such as mul-
tiphase flows in porous media, microfluidics, and fuel cells.

Keywords: homogenization, diffusion-dispersion relations, porous struc-
tures, Stokes-Cahn-Hilliard equations

1 Introduction and results

We describe an arbitrary interface between two fluids by the total energy density,

e(x(X, t), t) :=
1

2

∣∣∣∣∂x(X, t)

∂t

∣∣∣∣2 − λ

2
|∇xφ(x(X, t), t))|2 − λ

2
F (φ(x(X, t), t)) , (1)

where φ is a conserved order-parameter that evolves between different fluid
phases represented as the minima of a homogeneous free energy F . The pa-
rameter λ represents the surface tension effect, i.e. λ ∝ (surface tension) ×
(capillary width). We allow for free energies F which represent polynomials of
the form

F (φ) :=

∫ φ

0

f(s) ds , and f(s) := a3s
3 + a2s

2 + a1s . (2)
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We introduce the Lagrangian coordinate X for the (initial) material configu-
ration and we denote by x(X, t) the Eulerian (reference) coordinate. The last
two terms in (1) represent the well-known Cahn-Hilliard/Ginzburg-Landau free
energy density adapted to the flow map x(X, t) defined by{

∂x
∂t = u(x(X, t), t) ,

x(X, 0) = X .
(3)

By the kinetic energy, i.e., the first term in (1), we can account for fluid flow of
incompressible materials with the viscosity µ, i.e.,{

∂u
∂t + (u · ∇)u− µ∆u +∇p = g ,

divu = 0 ,
(4)

where g is a driving force acting on the fluid. We consider mixtures of two
incompressible and immiscible fluids of the same viscosity µ which is satisfied in
many practical situations.

Suppose that the fluid initially occupies a domain Ω ⊂ Rd, with d > 0 the
dimension of space. For an arbitrary length of time T > 0 we then define the
total energy by

E(x) :=

∫ T

0

∫
Ω

e(x(X, t), t) dX dt . (5)

Equation (5) combines an action functional for the flow map x(X, t) and a free
energy for the order parameter φ and hence combines mechanical and thermo-
dynamic energies [7,6,9,10,12]. We will focus our studies on quasi-stationary, i.e.,
ut = 0 and g 6= 0, and low-Reynolds number flows, i.e., (u · ∇)u = 0. By using
calculus of variations [20] and the theory of gradient flows together with the
imposed boundary condition

∫
∂Ω

w(x) do(x) for w(x) ∈ H3/2(∂Ω), where do is
the surface maesure, we derive the following set of equations

(Homogeneous case)



−µ∆u +∇p = g in ΩT ,

φt + Pe(u · ∇)φ = λdiv (∇ (f(φ)−∆φ)) in ΩT ,

∇nφ := n · ∇φ = w(x) on ∂ΩT ,

∇n∆φ = 0 on ∂ΩT ,

φ(x, 0) = h(x) on Ω ,

(6)

where divu = 0 in ΩT , u = 0 on ∂ΩT , ΩT := Ω×]0, T [, ∂ΩT := ∂Ω1×]0, T [,
λ represents the elastic relaxation time of the system, and the driving force g
accounts for the elastic energy [10]

g = −γdiv (∇φ⊗∇φ) , (7)

where γ corresponds to the surface tension [11] and hence we set γ = λ for
simplicity as in [1]. We denote by Pe := kτLU

D the dimensionless Péclet number
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for a reference fluid velocity U := |u|, L is the characteristic length of the porous
medium, and via Einstein’s relation we obtain the diffusion constant D = kτM
from the mobility M for the Boltzmann constant k and temperature τ . Our
restriction to the Stokes equation (in difference to [10]) is motivated here by the
fact that such flows turn into Darcy’s law in porous media, e.g. [5,8]. The main

~ ~ ~ ~ ~ ~Bε Bε Bε Bε Bε Bε

~ ~ ~ ~ ~ ~Bε Bε Bε Bε Bε Bε

~ ~ ~ ~ ~ ~Bε Bε Bε Bε Bε Bε

6
?
`

~ ~ ~ ~ ~ ~Bε Bε Bε Bε Bε Bε

~ ~ ~ ~ ~ ~Bε Bε Bε Bε Bε Bε

Periodic covering by cells Y

(ε→0)
-

Homogenous approximation

Ω

6

?

L

Reference cell Y

6

?

`
Y 2

:=Y \Y 1

;

Fig. 1. Left: Porous medium Ωε := Ω \ Bε as a periodic covering of reference cells
Y := [0, `]d. Top: Reference cell Y = Y 1 ∪ Y 2. Right: “Homogenization limit”.

objective of our study is to derive effective macroscopic equations describing (6)
in the case of perforated domains Ωε ⊂ Rd instead of a homogeneous Ω ⊂ Rd. A
well-accepted approach is to represent a porous medium Ω = Ωε∪Bε periodically
with pore space Ωε and solid phase Bε. We define Iε := ∂Ωε ∩ ∂Bε where
ε > 0 defines the heterogeneity ε = `

L for a characteristic pore size ` and the
characteristic length of the porous medium L, see Figure 1. Then, we define the
porous medium by a periodic covering with a reference cell Y := [0, `1]× [0, `2]×
· · · × [0, `d] which represents a single, characteristic pore. For simplicity, we set
`1 = `2 = · · · = `d = 1. The periodicity assumption allows, by passing to the
limit ε→ 0, for the derivation effective macroscopic porous media equations, as
depicted in Figure 1. The pore and the solid phase of the medium are defined as
usual by, Ωε :=

⋃
z∈Zd ε

(
Y 1 + z

)
∩Ω , and Bε :=

⋃
z∈Zd ε

(
Y 2 + z

)
∩Ω = Ω\Ωε ,

where the subsets Y 1, Y 2 ⊂ Y are defined such that Ωε is a connected set.
More precisely, Y 1 denotes the pore phase (e.g. liquid or gas phase in wetting
problems), see Figure 1.
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For a feasible and reliable upscaling, we restrict ourselves to periodic flows
defined on a single reference cell Y , i.e.,

(Periodic flow)



−µ∆yu +∇yp = −γdivy (∇yψ ⊗∇yψ) in Y 1 ,

u is Y 1-periodic ,

Pe(u · ∇y)ψ = λdivy (∇y(f(ψ)−∆yψ)) in Y 1 ,

∇nψ := (n · ∇y)ψ = w on ∂Y 2 ,

∇n∆yψ = 0 on ∂Y 2 ,

(8)

where ψ is Y 1-periodic divy u = 0 in Y 1 and u = 0 on ∂Y 2.
Motivated by [14,15], we study the case of large Péclet number and consider

the following distinguished limit.

Assumption (LP): The Péclet number scales with respect to the character-
istic pore size ε > 0 as follows: Pe ∼ 1

ε .

Let us first discuss Assumption (LP). If one introduces the microscopic Péclet
number Pemic : − = kτ`U

D , then it follows immediately that Pe = Pemic

ε . Since
we introduced a periodic flow problem on the characteristic length scale ` > 0
of the pores by problem (8), it is obvious that we have to apply the microscopic
Péclet number in a corresponding microscopic formulation,

(Microscopic problem)


∂
∂tφε + Pemic

ε (u(x/ε) · ∇)φε

= λdiv (∇ (f(φε)−∆φε)) in ΩεT ,

∇nφε := n · ∇φε = w(x/ε) on IεT ,

∇n∆φε = 0 on IεT ,

(9)

for the initial condition φε(·, 0) = ψ(·) on Ωε and the definition IεT := Iε×]0, T [.
The microscopic system (10) leads to a high-dimensional problem even under
the assumption of periodicity since the space discretization parameter needs to
be chosen to be much smaller than the characteristic size ε of the heterogeneities
of the porous structure, e.g. left-hand side of Figure 1.

Obviously, the systematic and reliable derivation of practical, convenient,
and low-dimensional approximations is the key to feasible numerics of problems
posed in porous media and provides a basis for computationally efficient schemes.
We further note that physically, the periodic fluid velocity defined by (8) can
be considered as the spatially periodic velocity of a moving frame. Hence, the
periodic fluid velocity u(x/ε) := u(y) enters the microscopic phase field problem
as follows

(Microscopic problem)



∂
∂tφε + Pemic

ε (u(x/ε) · ∇)φε

= λdiv (∇ (f(φε)−∆φε)) in ΩεT ,

∇nφε := n · ∇φε = w(x/ε) on IεT ,

∇n∆φε = 0 on IεT ,

φε(·, 0) = ψ(·) on Ωε .

(10)
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The main result of our study is the systematic derivation of upscaled immis-
cible flow equations which effectively account for pore geometries starting from
the microscopic system (8)–(10) by passing to the limit ε→ 0, i.e.,

(Upscaled equation)


p∂φ0

∂t = div
([
pf ′(φ0)M̂−

(
2 f(φ0)

φ0
− f ′(φ0)

)
M̂v − Θ̂(x, t)

−Ĉ(x, t)
]
∇φ0

)
− f ′(φ0)div

(
(M̂v + K̂)∇φ0

)
+λ2

p div
(

M̂w∇
(

div
(

D̂∇φ0
)
− w̃0

))
,

(11)

where Θ̂(x, t) := {θkl}1≤k,l≤d and Ĉ(x, t) := {cik}1≤k,l≤d take the fluid convec-
tion into account, i.e.,

θkl :=
Pemic
|Y |

∫
Y 1

(u · ∇y)ζkl(y) dy , cik :=
Pemic
|Y |

∫
Y 1

(ui − vi)δikξ
k
v (y) dy .

(12)

These two tensors account for the so-called diffusion-dispersion relations (e.g.
Taylor-Aris-dispersion [3,4,21]). The tensors M̂, M̂v and M̂w are derived and
defined in [18]. The result (11) makes use of the recently proposed splitting
strategy for homogenization of fourth order problems in [19] and an asymptotic
multiscale expansion with drift introduced in [2,13]. We note that the nonlinear
problem (11) is characterized by a complex coupling between the micro- and the
macroscale. As a consequence, the reference cell problems need to be computed
for each macroscopic degree of freedom now and seems to be an intrinsic feature
of upscaling nonlinearly coupled problems [16,18,19].

2 Conclusion

The main new result here is the extension of the results in the study by Schmuck
et al. in the absence of flow [19] to include a periodic fluid flow in the case of
sufficiently large Péclet number. The resulting new effective porous media ap-
proximation (11) of the microscopic Stokes-Cahn-Hilliard problem (8)–(10) re-
veals interesting physical characteristics such as diffusion-dispersion [4] relations
by (12). The homogenization methodology serves as a systematic tool for the
reliable and rigorous derivation of effective macroscopic porous media equations
starting with the fundamental work on Darcy’s law [5,8]. A qualitative quantifi-
cation of the new equations by error estimates [17] would be very interesting.
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