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In this paper, we propose a new approach for sampling from probability measures 
in, possibly, high-dimensional spaces. By perturbing the standard overdamped Langevin 
dynamics by a suitable Stratonovich perturbation that preserves the invariant measure of 
the original system, we show that accelerated convergence to equilibrium and reduced 
asymptotic variance can be achieved, leading, thus, to a computationally advantageous 
sampling algorithm. The new perturbed Langevin dynamics is reversible with respect to 
the target probability measure and, consequently, does not suffer from the drawbacks of 
the nonreversible Langevin samplers that were introduced in C.-R. Hwang et al. (1993) 
[1] and studied in, e.g., T. Lelièvre et al. (2013) [2] and A.B. Duncan et al. (2016) [3], 
while retaining all of their advantages in terms of accelerated convergence and reduced 
asymptotic variance. In particular, the reversibility of the dynamics ensures that there is no 
oscillatory transient behaviour. The improved performance of the proposed methodology, 
in comparison to the standard overdamped Langevin dynamics and its nonreversible 
perturbation, is illustrated on an example of sampling from a two-dimensional warped 
Gaussian target distribution.
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r é s u m é

Dans cet article, nous proposons une nouvelle approche pour l’échantillonnage de mesures 
invariantes dans des espaces de grandes dimensions à l’aide d’une dynamique de Langevin 
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perturbée. En modifiant la dynamique standard de l’équation de Langevin suramortie en 
introduisant une perturbation de Stratonovich convenable préservant la mesure invariante 
du système initial, nous montrons qu’il est possible d’obtenir une convergence accélérée 
vers l’équilibre et une variance asymptotique réduite, conduisant ainsi à un algorithme 
d’échantillonnage avantageux du point de vue du calcul. La nouvelle dynamique de 
Langevin perturbée est réversible par rapport à la mesure de probabilité cherchée et 
ne souffre donc pas des inconvénients des échantillonneurs de Langevin non réversibles 
introduits dans C.-R. Hwang et al. (1993) [1] et étudiés, par exemple, dans T. Lelièvre et 
al. (2013) [2] et A.B. Duncan et al. (2016) [3], tout en conservant tous leurs avantages 
en termes de convergence accélérée et de réduction de la variance asymptotique. En 
particulier, la réversibilité de la dynamique garantit l’absence de comportement transitoire 
oscillant. Les performances améliorées de la méthodologie proposée par rapport à la 
dynamique de Langevin suramortie standard et à sa perturbation irréversible sont illustrées 
par un exemple d’échantillonnage à partir d’une distribution gaussienne déformée à deux 
dimensions.

Crown Copyright © 2019 Published by Elsevier Masson SAS on behalf of Académie des 
sciences. All rights reserved.

1. Introduction

Sampling from probability measures in high dimensional spaces is an important problem that arises in several appli-
cations, including computational statistical physics [4], Bayesian inference [5], and machine learning [6]. Typically one is 
interested in calculating integrals of the form

π(φ) := Eπφ :=
∫
Rd

φ(x)π(dx), (1)

where π(dx) = π(x) dx5 is a probability measure in Rd , known up to the normalization constant and φ ∈ L2(π) is an 
observable. Here L2(π) denotes the weighted L2 space for the scalar product (φ, ψ)π = ∫

Rd φ(x)ψ(x)π(x) dx and the cor-
responding norm is denoted by ‖φ‖π . A standard methodology for calculating, or, rather, estimating the integral in (1) is to 
construct a stochastic process {X(t)}t>0 in Rd , e.g., an Itô diffusion process

dX(t) = f (X(t))dt + σ(X(t))dWt (2)

that is ergodic with respect to the measure π . Here Wt is a standard m-dimensional Brownian motion and f : Rd → Rd

and σ : Rd → Rd×m are assumed smooth and Lipschitz continuous. In particular, π is the unique normalized solution to 
the stationary Fokker–Plank equation L∗π = 0, where L∗ is the L2(dx) adjoint of the generator Lφ := f · ∇φ + 1

2 σσᵀ : ∇2φ

of the SDE (2).6 In what follows, we denote by H∗ the L2(dx) adjoint of an operator H and by H� its L2(π) adjoint.
Under appropriate assumptions on the drift and diffusion coefficients, we can prove a strong law of large numbers and 

a central limit theorem as T → ∞,

πT (φ) := 1

T

ᵀ∫
0

φ(X(t))dt → π(φ) a.e., X0 = x, (3)

and we have the following convergence in law
√

T (πT (φ) − π(φ)) → N (0,σ 2
φ ), (4)

where σ 2
φ denotes the asymptotic variance of the observable φ, given by the Kipnis–Varadhan formula

σ 2
φ = 〈(φ − π(φ), (−L)−1(φ − π(φ))〉π . (5)

Under the assumption that the generator has a spectral gap in L2(π) (see, for instance, [7]) we have the following expo-
nential convergence∣∣E(φ(X(t))) − π(φ)

∣∣ ≤ C e−λt, (6)

where λ > 0 is the spectral gap of the generator L.

5 We assume that the target probability measure has a density with respect to Lebesgue measure. To simplify the notation, we will denote both the 
measure and the density by π .

6 For two matrices A and B , we use the notation A : B = trace(Aᵀ B).
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In this paper, we focus on the overdamped Langevin dynamics for sampling (1),

dX(t) = f (X(t))dt + √
2 dWt, (7)

where f (x) := −∇V (x) and Wt is a standard d-dimensional Brownian motion. The invariant measure of (a) is given by 
π(dx) = Z−1e−V (x) dx, where Z = ∫

Rd e−V (x) dx is the normalization constant and V :Rd →R is a smooth confining poten-
tial. A question that has attracted considerable attention in recent years is the construction of modified Langevin dynamics 
that have better sampling properties in comparison to the standard overdamped Langevin dynamics (7). Several modifica-
tions of the Langevin dynamics (7) that can be used in order to sample from π are presented in [8, Sec. 2.2]. A well-known 
technique that was first introduced in [1,9] and analyzed in a series of recent papers, e.g., [10,11,2,3] for improving the 
performance of the Langevin sampler (7), is to introduce in (2) a divergence-free (with respect to the target distribution) 
drift perturbation g :Rd →Rd ,

dX(t) = ( f (X(t)) + g(X(t)))dt + √
2 dWt, (8)

such that

div(gπ) = 0. (9)

We will refer to (9) as the divergence-free condition. This condition ensures that the SDE (8) has the same invariant measure 
π as (2). We remark that there are infinitely many vector fields g that satisfy (9). A complete characterization of all vector 
fields that satisfy this condition can be found in [9, Prop. 2.2].

It is by now a standard, and not difficult to prove, result that nonreversible dynamics exhibits better properties as a 
sampling scheme, in the sense that the nonreversible perturbation accelerates convergence to equilibrium and reduces the 
asymptotic variance. The generator of the nonreversible dynamics (8) is given by

LD = L+A, (10)

where L is the generator of (2) and A is defined by Aφ = ∇φ · g (in the calculations below, we will use the notation 
Aφ = φ′ g). The drawback of the nonreversible Langevin sampler (8) is that, since the generator of the dynamics is a 
nonselfadjoint operator, a transient, oscillatory phase is introduced. This transient behaviour can be addressed, in principle, 
by the use of an appropriate splitting numerical scheme [12].

In this paper, we introduce and analyze an alternative way for perturbing the overdamped reversible Langevin dynamics 
that is reversible and enjoys all the advantages of the nonreversible sampler (8), while not suffering from the drawback of 
its oscillatory transient dynamics. The new dynamics is given by the Stratonovitch perturbation

dX(t) = f (X(t))dt + g(X(t)) ◦ √
2 dβt + √

2 dWt, (11)

where g satisfies the divergence-free condition, and we assume that βt is a one-dimensional standard Wiener process that 
is independent of Wt .7 For the Stratonovich-perturbed Langevin dynamics (11), we have the following result.

Theorem 1.1 (Reversibility of the perturbed dynamics). Consider the perturbed dynamics (11), were g satisfies the divergence-free 
condition (9). Then the generator of (11) can be written in the form

LS = L+A2, (12)

and LS is symmetric in L2(π), i.e. LS =L�
S .

As a consequence of Theorem 1.1, the eigenvalues of LS are real, hence there is no transient behaviour of the dynamics.

Remark 1. The proposed modified Langevin sampler (11) can be written in the form of a general reversible diffusion process8

(see [13, Ch. 4] for the characterization of diffusion processes that are reversible with respect to a given measure):

dX(t) = −(M∇V )(X(t))dt + (divM)(X(t))dt + √
2D(X(t))dŴt ,

where M = I + ggᵀ = D Dᵀ ∈ Rd×d , D = (I, g) ∈ Rd×(d+1) and Ŵt = (Wt , βt) is a standard (d + 1)-dimensional Brownian 
motion.

7 One can also consider Stratonovich perturbations driven by multidimensional Brownian motions with diffusion functions g j , j = 1, 2, . . . satisfying 
div(g jπ) = 0. A detailed analysis of such perturbed Langevin dynamics will be presented elsewhere.

8 Our results can be extended to cover the case of the preconditioned/Riemannian manifold Markov Chain Monte Carlo Langevin dynamics. The details 
will be presented elsewhere.
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Theorem 1.2 (Invariant measure preservation). Under the assumptions of Theorem 1.1, the perturbed dynamics (11) is ergodic with 
respect to the measure π(dx) = Z−1e−V dx.

Remark 2. We note that Theorems 1.1 and 1.2 remain true for general ergodic SDEs (2) with a Stratonovich perturbation,

dX(t) = f (X(t))dt + g(X(t)) ◦ √
2 dβt + σ(X(t))dWt , (13)

where g is a divergence-free vector field with respect to π and f : Rd → Rd does not have a gradient structure. This 
includes, in particular, degenerate diffusions (e.g., when the diffusion matrix σσᵀ is only positive semidefinite), for example 
the underdamped Langevin dynamics. Indeed, the gradient structure is not used in the proofs. Note, however, that in the 
case where the functional form of π is not explicitly known, it can be difficult to compute such a vector field.

The next theorem shows that, in comparison to the original overdamped Langevin dynamics (7), the Stratonovich 
perturbation yields a larger spectral gap and a reduced asymptotic variance. Similarly to the nonreversible deterministic 
perturbation (8), this hence leads to an improved reversible sampler for the invariant measure (1), both in terms of speed-
ing up the convergence to equilibrium (6) and in terms of reducing the asymptotic variance (5). When combined, these 
results provide us with improved performance when measured in the mean-squared error; see [8, Sec. 2.3].

We recall that, under the assumption that the potential V grows sufficiently fast at infinity, the generator of both the 
standard Langevin and the Stratonovich-perturbed dynamics have purely discrete spectrum.

Theorem 1.3 (Accelerated convergence and reduced asymptotic variance). Let the assumption of Theorem 1.1 hold and let λL and λS

denote the spectral gaps of the overdamped Langevin (7) and of the Stratonovich-perturbed dynamics (11), respectively. Then

λL ≤ λS. (14)

Let, furthermore, φ ∈ L2(π) and denote the corresponding asymptotic variances by σ 2
L (φ) and σ 2

S (φ). Then

σ 2
L (φ) ≥ σ 2

S (φ). (15)

Remark 3. When the target distribution is Gaussian, in particular for the two-dimensional quadratic potential V (x) = 1
2 (x2

1 +
λx2

2) with λ � 1, the standard Langevin dynamics (7) converges to equilibrium at the very slow rate λL = λ, and it was 
shown in [2] that a perturbation of the form

g(x) = δθ J∇V (x), J =
(

0 1
−1 0

)
, (16)

with size δ ∼ λ−1/2 and θ = 1 yields, in the case of a nonreversible perturbation (8), an optimally improved convergence 
rate λD = O(1). For isotropic Gaussians, the optimally reduced asymptotic variance using a nonreversible perturbation can 
also be calculated [3, Sec. 4]. Similarly, an improved convergence rate of λS = O(1) can also be obtained for the reversible 
perturbation (11) for the same scaling δ ∼ λ−1/2 and θ = 1/2. Observe that the factor δθ in (16) yields a perturbation of size 
O(δ) of the Langevin generator L in both perturbed generators LD in (10) and LS in (12). It is important to note that the 
optimal nonreversible perturbation depends on the optimality criterion used, i.e. on whether our aim is to maximize the 
rate of convergence to equilibrium or to minimize the asymptotic variance (uniformly over the space of square integrable 
observables). Contrary to this, the optimal reversible perturbation is the same with respect to these two optimality criteria. 
This observation will be explored further in a future work together with a complete analysis of optimal Stratonovitch 
perturbations for Gaussian target distributions.

2. Proof of the main results

We start by recalling from [2] that the differential operator A is skew-symmetric in L2(π), i.e. A� = −A. This result 
follows from an integration by parts and from (9). To prove our main results, we also use that the original SDE (2) has the
generator

Lφ = φ′ f + �φ. (17)

Proof of Theorem 1.1. We convert the Stratonovitch SDE (11) into an Itô one:

dX = f (X)dt + g′(X)g(X)dt + g(X)
√

2 dβt + √
2 dWt . (18)

Using the calculation

A2φ = (φ′g)′g = φ′g′g + φ′′(g, g),
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we deduce the result (12) by applying formula (17) to the SDE (18). An immediate consequence of A� = −A is then that 
(A2)� =A2, i.e. A2 is L2(π) symmetric. As L itself is L2(π) symmetric, we have that LS is also L2(π) symmetric. �
Proof of Theorem 1.2. The L2-adjoint satisfies

L∗
Sπ = L∗π +A∗(A∗π) = 0, (19)

where we have used the fact that L∗π = A∗π = 0. Hence π is the unique invariant measure of the perturbed dynamics 
(11). �
Proof of Theorem 1.3. We write the generator of the Stratonovich-perturbed dynamics as LS = −B�B − A�A with B =
∇, A = g · ∇, A� = −A. The quadratic form associated with LS is 〈−LSφ, φ〉π = ‖Bφ‖2

π + ‖Aφ‖2
π for all φ ∈ H1(π) the 

weighted Sobolev space that is defined in the standard manner. The quadratic form associated with the generator of the 
reversible Langevin dynamics L = −B�B is 〈−Lφ, φ〉π = ‖Bφ‖2

π . Since both LS and L are symmetric operators in L2(π)

with compact resolvents, the spectral gap of the reversible Langevin dynamics is given by the Rayleigh quotient formula,

λS = min
φ∈H1(π),

∫
φπ=0

〈−LSφ,φ〉π
‖φ‖2

π

= min
φ∈H1(π),

∫
φπ=0

‖Bφ‖2
π + ‖Aφ‖2

π

‖φ‖2
π

≥ min
φ∈H1(π),

∫
φπ=0

‖Bφ‖2
π

‖φ‖2
π

= λL.

To prove the bound on the asymptotic variance, we first write the formula for σ 2
S (φ) in the form σ 2

S (φ) = 〈ψS, φ〉π
where ψS is the solution to the Poisson equation −LSψS = φ, and where without loss of generality we have assumed that ∫
Rd φ π = 0. We also consider ψL, the solution to the Poisson equation −LψL = φ and using L = LS +A�A, we obtain

σ 2
L (φ) = 〈φ,ψL〉π = 〈(−LS)ψS,ψL〉π = 〈ψS, (−L)ψL〉π − 〈A2ψS,ψL〉π = 〈ψS, φ〉π + 〈A�AψS,ψL〉π

= σ 2
S (φ) + 〈AψS,AψL〉π .

To prove our claim, it is sufficient to show that 〈AψS, AψL〉π ≥ 0. We calculate

〈AψS,AψL〉π = 〈AψS,A(−L)−1φ〉π = 〈AψS,A(−L)−1((−L) + (−A2))ψS〉π
= 〈A�AψS, (I + (−L)−1(−A2))ψS〉π = ‖AψS‖2

π + 〈(−A2)ψS, (−L)−1(−A2))ψS〉π
= ‖AψS‖2

π + ‖Bψ‖2
π ≥ 0,

with ψ := (−L)−1(−A2)ψS. �
Remark 4. Notice also that the perturbation A2 is only negative semidefinite. In particular, the null space of the perturbation 
is (much) larger than that of the generator of the overdamped Langevin dynamics, which consists of constants. The amount 
of improvement in the calculation of the integral in (1) using the long-time average depends on the magnitude of the 
projection of the observable φ on the null space of A2. Clearly, if this projection is zero, then the inequality in (15) is strict. 
The details of these arguments will be presented elsewhere.

3. Numerical experiments

In this section, we present some numerical experiments to corroborate our theoretical findings and illustrate the features 
of the Stratonovitch-perturbed Langevin dynamics (11). Although we are primarily interested in large-dimensional problems, 
we consider, for simplicity, the following warped Gaussian distribution, as considered in [3, Sec. 5.2], with density π(x) =
Z−1e−V (x) , where V (x) is the two-dimensional potential V (x) = x2

1
100 + (x2 + bx2

1 − 100b)2, where the parameter b = 0.05 is 
related to how warped the distribution is. For the purposes of this paper, it is sufficient to consider the family of vector 
fields g(x) = J∇V (x), J = − Jᵀ , for all constant skew-symmetric matrices J . In particular, we consider the vector field g(x)
defined by (16), and we compare the effect of the nonreversible perturbation with θ = 1 in (8) (Fig. 1a) to that of the 
new reversible Stratonovitch perturbation with θ = 1/2 in (11) (Fig. 1b) for several sizes δ = 1, 64, 256 of the perturbation. 
We also include for reference the results for the standard overdamped Langevin equation (7). We consider the observable 
φ(x) = x2

1 + x2
2 and consider the estimator 1

M

∑M
i=1 φ(X (i)(t)) �E(φ(X(t)). We take the initial condition X0 = (0, 0) and we 

plot for M = 103 independent realisations X (i)(t), i = 1, . . . , M the error | 1
M

∑M
i=1 φ(X (i)(t)) − π(φ)| as a function of time 

t ∈ [0, 4]. The solution is approximated using the simplest Euler–Maruyama method with very small step size �t = 10−5

(considering the Itô formulation (18)). We observe that, although the speed of the convergence E(φ(X(t)) → π(φ) as 
t → ∞ is very slow for the standard overdamped Langevin dynamics (see the nearly horizontal black curve for δ = 0), both 
perturbations lead to an increase in the speed of the convergence to equilibrium (see the transient phase for small time t) 
while reducing the asymptotic variance (see the equilibrium phase for large time t ≥ 2 where the oscillations are only due 
to Monte-Carlo errors), which corroborates Theorem 1.2 and Theorem 1.3. In addition, the Stratonovitch perturbation yields 
no oscillatory behaviour in contrast to the nonreversible one (see Theorem 1.1). This feature renders the new sampling 
scheme more amenable to efficient numerical methods. This will be explored further in a future study.
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Fig. 1. Error evolution along time of the average over M = 103 trajectories of the nonreversible and the Stratonovitch-perturbed Langevin dynamics for 
different sizes δ = 0, 16, 128, 256 of the perturbation.
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