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Abstract
Thin liquid films are ubiquitous in natural phenomena and technological applications. They
have been extensively studied via deterministic hydrodynamic equations, but thermal fluctu-
ations often play a crucial role that needs to be understood. An example of this is dewetting,
which involves the rupture of a thin liquid film and the formation of droplets. Such a process is
thermally activated and requires fluctuations to be taken into account self-consistently. In this
work we present an analytical and numerical study of a stochastic thin-film equation derived
from first principles. Following a brief review of the derivation, we scrutinise the behaviour
of the equation in the limit of perfectly correlated noise along the wall-normal direction, as
opposed to the perfectly uncorrelated limit studied by Grün et al. (J Stat Phys 122(6):1261–
1291, 2006). We also present a numerical scheme based on a spectral collocation method,
which is then utilised to simulate the stochastic thin-film equation. This scheme seems to
be very convenient for numerical studies of the stochastic thin-film equation, since it makes
it easier to select the frequency modes of the noise (following the spirit of the long-wave
approximation). With our numerical scheme we explore the fluctuating dynamics of the thin
film and the behaviour of its free energy in the vicinity of rupture. Finally, we study the effect
of the noise intensity on the rupture time, using a large number of sample paths as compared
to previous studies.
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1 Introduction

A thin liquid film can be understood as a layer of liquid with thickness ranging from fractions
of a nanometer to several micrometers, typically resting or flowing on a substrate. Thin liquid
films are quite often found in nature and nowadays technological applications: from gravity
currents under water and lava flows, falling films of water on the surface of windows and
sloppy streets on a rainy day, to films used in industrial coating processes for decorative,
insulating or protective purposes and the cooling of microelectronic devices, to name but
a few examples [10,36,44,57,61]. Thin films have attracted considerable attention since the
pioneering work of Reynolds on lubrication [68], who realised their significance in both
applications and fluid dynamics fundamentals. Over the last few decades, understanding the
behaviour of thin films and being able to make reliable predictions of their stability and
dynamics has been crucial in the rapidly growing field of microfluidics, i.e. in the art of
miniaturizing chemical and lab-on-chip devices (e.g. Ref. [65]). Such small-scale setups
have shown a tremendous relevance to model and replicate biological systems, e.g. blood
circulation systems [8,66,72], or biological processes, such as in-vivo protein crystallisation
and bone formation [2,31,47].

It is therefore no surprise that the problem of modelling and predicting the behaviour
of thin liquid films has attracted the attention of numerous researchers from engineering,
physics, and applied mathematics, over the last few decades. In most practical cases, the
thin films are subject to additional effects and complexities, such as body forces, often
gravity as in the case of falling liquid films [18,19,44], three-phase moving contact lines [56,
73,74], thermo-/solutocapillary Marangoni effects [43,60] and non-Newtonian effects [63,
71]. The present study focuses on the particular case of a thin film of Newtonian fluid,
resting on a planar horizontal substrate and driven by the competition between surface tension
and intermolecular forces (but nevertheless, the theoretical-computational framework we
develop and corresponding conclusions are general, and,with properminormodifications, are
expected to be applicable to awide spectrumof physical problems dominated byfluctuations).

Themost fundamental approach to thin films beginswith the general equations of hydrody-
namics, usually referred to as Navier–Stokes equations of motion. These equations represent
the conservation laws for the observable fields, i.e. density, velocity and energy, which are
typically written as a set of partial differential equations (PDEs). At constant temperature,
they reduce to two physical conservation laws: the conservation of mass and the conserva-
tion of linear momentum. The complexity of these equations can be considerably reduced by
utilising the so-called long-wave approximation (or lubrication approximation for vanishing
Reynolds numbers), typically valid for small slopes and strong surface tension effects. The
cornerstone of the long-wave approximation is the disparity in scale between the characteristic
film height d along the wall-normal/cross-stream direction and the characteristic length scale
λ along the parallel-to-the-wall/streamwise direction which is taken to be long, so that the
so-called film parameter, ε = d/λ � 1, a consequence of the strong coherence of the film in
the cross-streamdirection due to the action of viscosity. Rescaling the hydrodynamic problem
by using the characteristic parameters d , λ and ε, a long-wave expansion, i.e. a regular pertur-
bation expansion for ε, leads to a model of reduced dimensionality, a single nonlinear PDE
of the evolution type for the film thickness h(x, t) where x is the streamwise direction and t
denotes times. Such an equation is often referred to as the thin-film equation, and although
it is much simpler than the full hydrodynamic problem, it still captures its basic features.
Detailed descriptions of the long-wave approximation can be found in Refs. [44,54,57].
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This procedure is appropriate for deterministic systems. But thin films are often suscepti-
ble to thermal fluctuations, especially as the film thickness approaches the nanoscale [41]. To
include such effects into the thin-filmequationwe can follow the sameprocedure for the deter-
ministic case but starting from a different point so that fluctuations are self-consistently taken
into account. Namely, wemust start by considering the equations of fluctuating hydrodynam-
ics (FH), originally postulated by Landau and Lifshitz [48] on the basis of phenomenological
arguments, and then proceed with the long-wave approximation as discussed above. But it
should be noted that the phenomenological origin of FH should not be seen as a weakness, as
indeed a great deal of theoretical work has been successfully undertaken to derive it from first
principles since the days of Landau and Lifshitz (an extensive review is given in Ref. [32]).
After applying the long-wave approximation to FH, one obtains a stochastic PDE (SPDE)
for the film height which we will refer to as the stochastic thin-film equation. This model
was almost simultaneously proposed by Davidovitch et al. [12] and Grün et al. [37], using
phenomenological and formal mathematical arguments, respectively.

The stochastic thin-film equation exhibits the convenient structure of a conservative
stochastic gradient flow. Thismeans that the deterministic part of the equation evolves accord-
ing to the steepest descent of an energy functional H(h) [67,76,78] and the fluctuation term
is a conservative field. As discussed by Grün et al. [37], the conservative structure makes
the noise independent of the stochastic calculus chosen even though it is state dependent,
with Itô’s and Stratonovich’s calculus being themost widely used [28,69]. This equivalence is
quite important as we do not have to worry about the correct interpretation of the noise, which
occurs more often than not in stochastic modelling [30,69]. However, the noise appearing in
the stochastic thin-film equation involves a convolution integral along the wall-normal direc-
tion. And this appears to be against the spirit of the long-wave approximation which aims
at removing the dependency of the time-evolution equation on the cross-stream coordinate.
Surprisingly, the work of Davidovitch et al. [12] does not include explicitly such a compli-
cated fluctuating term, despite starting from the same point, i.e. the FH equations. In fact,
these authors postulated an SPDE with a much simpler multiplicative noise almost without
theoretical justification and motivated primarily by physical arguments. Contrarily, Grün et
al. [37] realised the need to alleviate the complexity of the noise which they replaced with
a conservative state-dependent version as well. But instead of postulating the simpler noise,
Grün et al. discretised the original SPDE to transform it into a set of stochastic differential
equations (SDEs). Analysing the associated Kramers-Moyal coefficients [28,69] they found
an alternative noise that converges to the same Fokker–Planck equation, hence implying the
same statistics. Such an equivalent noise term can then be replaced in the original SPDE
yielding the equation in Ref. [12], the most widely-accepted version of the stochastic thin-
film equation (e.g. [27,53,65]). This equation opens the door to numerical scrutiny of the
effect of noise on dewetting.

The present work introduces an alternative and more systematic derivation of the stochas-
tic thin-film equation from FH. Our derivation differs from the previous works fundamentally
in two points. First, we do not require the noise to be delta-correlated in both the streamwise
and the wall-normal direction, unlike the work of Grün et al. Indeed, we obtain the same
SPDE by only imposing that the noise is perfectly correlated along the cross-stream direction.
We believe that this condition is more physically meaningful than imposing an uncorrelated
noise along the cross-stream direction, as is the case in previous works. Indeed, as we already
emphasised, it is precisely the coherence of the film in this direction due to the action of vis-
cosity that forms the basis of the long-wave approximation. The correlation coefficients along
the streamwise direction are ultimately obtained by imposing the detailed-balance condition.
Second, we present an efficient numerical scheme based on spectral collocation methods,
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which we believe to be more convenient as it gives us the opportunity of selecting in a
straightforward way the frequency modes of the noise (following the spirit of the long-wave
approximation). Along the way, we also perform the necessary theoretical analysis that is
missing in the literature and provide a formal definition of the rupture time. This includes
a detailed linear stability analysis of the initially uniform thin film, which is necessary to
understand the origin and nature of the thin-film rupture. We show that the film is uncondi-
tionally stable to sufficiently small perturbations in the case of a negligible interface potential.
In the case of a general interface potential, φ(h) = α h−3 − β h−2, which is the sum of a
non-negative convex and a concave term, we find that the condition required for the film to
become linearly unstable is β > 2α. We also prove that the stochastic thin-film equation
with the simpler multiplicative noise fulfils the detailed-balance condition, which is required
from thermodynamical arguments [12,37], for a very particular noise structure.Moreover, we
present simulations of the dynamics of rupture by using our numerical scheme and study how
the noise intensity affects the rupture time. Our results and definition of rupture time seem to
perfectly agree with the numerical results obtained by Grün et al. Our work thus brings clo-
sure, from the theoretical point of viewbut also in the practical sense, to the stochastic thin-film
problem and provides a general theoretical and numerical apparatus that will be relevant in a
wide variety of natural processes which involve a similar stochastic gradient-flow structure.

In the same spirit, we believe that our work is of relevance not only for the thin-film
community, for obvious reasons, but also to the current state-of-the-art in stochasticmodelling
and statistical physics. This is due to the fact that the theoretical analysis and the numerical
method introduced here can be useful to research fields involving a similar SPDE, which
can be found in a wide variety of problems. Examples of these are the study of nanojets
via phenomenological equations [25,55], the dynamics of colloidal systems and/or systems
with long-range interactions via a fluctuating dynamic density-functional theory (DDFT) [1,
6,7,16,23,45,46], phase transitions in complex systems with coarse-grained models from
fluctuatingDDFT [50,51], crystallisation via stochastic phase-field-crystal (PFC)models [26,
33,34], and many more. Indeed, in recent years there has been an explosion of interest in the
formal study of PDEs and SPDEs of the same structure, ever since the pioneering work of
Otto [58], where it was shown that the solutions of such kind of equations for a particular
mobility tensor represent a gradient flow of the Dirichlet free energy with respect to the
2-Wasserstein metric (which metrizes the weak topology of probability measures [29,77])
when the problem is formulated into a discrete time variational scheme. Similar results were
obtained by Dolbeault et al. [22] and Lisini et al. [49] for concave mobility operators, but
do not exist for the kind of mobility tensor involved in this work. More recently, Reina
and Zimmer [67] found a general fluctuation-dissipation relation between the drift and the
fluctuating term of a general stochastic gradient flow which also includes the stochastic
thin-film equation considered here, so that both the maximum-entropy production (MEP)
and the large-deviation (LD) principle are satisfied. Such a relation is indeed satisfied by
the structure of the noise we obtain from imposing the detailed-balance condition to the
equivalent multiplicative noise. It is therefore evident that theoretical and numerical methods
presented in this work should be of interest to practitioners of many other fields, who might
be interested in analysing the sensitivity to fluctuations or in simulating the dynamics of the
system at hand, as already noted earlier.

In Sect. 2 we present the Landau–Lifshitz FH equations for a fluid film flowing on a
horizontal substrate. We continue with the long-wave (or lubrication) approximation, for
which we appropriately nondimensionalise the FH equations, and subsequently take a reg-
ular perturbation expansion for ε � 1. This yields the stochastic thin-film equation with
a conservative noise involving a convolution integral. A flow diagram to summarise our
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Fig. 1 Flow diagram of the approach used to derive the stochastic thin-film equation from the full underly-
ing Hamiltonian dynamics. Arrows indicate the interconnectedness of the different approaches. Thick black
boxes/arrows: this work. Thin boxes/arrows: previous works. Text on arrows gives brief descriptions of the
approximations/manipulations made

derivation and the relationship with previous approaches is given in Fig. 1. Before substi-
tuting the convoluted noise with a simpler multiplicative version, the gradient flow structure
of the deterministic part of the equation is shown in Sect. 3. In this section we also give the
effective energy functional related to the thin-film equation and study the linear stability of
an initially uniform thin film. In Sect. 4 a simpler multiplicative noise with free parameters,
which is equivalent to the one derived from first principles, is proposed. We then study the
implications of imposing the detailed-balance condition to the resultant SPDE and show the
equivalence with the original noise in the limit of perfect correlation along the cross-stream
direction. In Sect. 5 we introduce a numerical method to integrate the stochastic thin-film
equation based on a spectral collocation scheme. Finally, concluding remarks and discussion
are offered in Sect. 6.

2 Theoretical Framework

2.1 Stochastic Navier–Stokes Equation

In this work, we restrict ourselves to two dimensions as in Ref. [37]. The fluctuating dynamics
of a two-dimensional thin film of Newtonian fluid flowing on a horizontal substrate can be
described by the incompressible Navier–Stokes equations [37] (see also Fig. 1):

∇ · u(r; t) = 0, (1a)

ρ(r; t)Dtu(r; t) = μ∇2u(r; t) − ∇ p(r; t) + ∇ · S(r; t), (1b)

123



584 M. A. Durán-Olivencia et al.

where u = (u, v)� is a two-dimensional velocity vector field, with u and v being the
streamwise and cross-stream components, respectively, μ is the dynamic viscosity, ρ is
the fluid density, and p is the pressure of the fluid. Although one would expect significant
differences in the analysis, numerics and physics between two- and three-dimensional films,
we believe that the simpler two-dimensional case is a good starting point, offering useful
information-insight and the theoretical framework for the substantially more involved three-
dimensional problem.And although events of interest, such as dewetting and subsequent drop
formation, actually occur in a three-dimensional setting, we expect the phenomenology of
the two-dimensional case to share some common features with that of the three-dimensional
one. The operator Dt = (∂t + u · ∇) = (∂t + u∂x + v∂y) is the convective derivative, and S
is the fluctuating stress tensor, which represents the effect of random thermal fluctuations on
the film dynamics. The stress tensor S is symmetric and has zero mean, besides having the
following correlation structure:

E

(
S i j (x, y; t)Slm(x ′, y′; t ′)

)
= 2 kBT μ qx (x − x ′)qy(y − y′)δ(t − t ′)(δilδ jm + δimδ jl),

(2)

where kB is the Boltzmann constant, T is a positive constant fixing the temperature/noise
intensity of the system and the functions qx and qy are left undefined for the time being. At
the wall, we apply the standard no-slip boundary condition:

u(r; t) = 0, ∀r ∈ {(x, y) ∈ R
2 : y = 0}, (3)

whereas at the fluid-air interface y = h(x; t), with h being the film height at the position x
and time t , we apply the stress-balance boundary condition:

(σ + S) · n̂ = (
 + γ κ) n̂ at y = h(x; t), (4)

where σ is the viscous stress tensor, κ is the mean curvature of the surface, γ is the surface
tension coefficient, n̂ is the normal vector to the interface, and 
 = −φ′(h) = − ∂φ(h)

∂h is
the disjoining pressure, with φ(h) the interface potential, which models molecular interac-
tions between liquid molecules and air [37]. Additionally, we apply the following kinematic
boundary condition at the interface:

∂t h = v − u ∂xh at y = h(x; t), (5)

which states that a fluid particle on the interfacewill remain there for all times, thus preventing
matter from leaving the interface via e.g. evaporation or any other mechanism.

2.2 Long-Wave Approximation: The Stochastic Thin Film Equation

In the following we simplify the FH equations by nondimensionalising them via the param-
eters shown in Table 1 following Ref. [37]. In this way, we rewrite the equations in terms of
two fundamental parameters, the characteristic film height d along the cross-stream direction
and the characteristic length scale λ along the streamwise direction. We then take the limit
ε = d/λ � 1 and retain terms up to and includingO(ε). This step, and as already mentioned
in the Introduction, is what is widely known as the long-wave approximation. In Table 1, U
is the characteristic velocity scale of the flow and quantities with tildes are non-dimensional
and taken to be of O(1) with respect to ε.

The scaling of the deterministic terms follows e.g. from the analysis introduced by Dussan
and Davis [13]. The noise tensor is scaled in such a way that it is of the same order as the
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Table 1 Nondimensionalisation of the FH equation, as proposed by Grün et al. [37]

x = λ x̃, y = d ỹ, p =
(
Uμ
dε

)
p̃,

∂x = (1/λ) ∂̃x ∂y = (1/d) ∂̃y Π =
(
Uμ
dε

)
Π̃

u = U ũ v = εU ṽ t =
(

λ
U

)
t̃

γ =
(
Uμ

ε3

)
γ̃ κ =

(
ε2

d

)
κ̃ h = d h̃

Sxy =
(
Uμ
d

)
S̃xy (Sxx ,S yy) =

(
Uμ
λ

)
(S̃xx , S̃ yy) T =

(
μUλ2

εkb

)
T̃

corresponding leading order terms in the viscous stress tensor. This ensures that the terms
are retained to leading order in ε. For the Reynolds number, Re = ρUd/μ, we assume
Re ∼ O(1). Thus, the equations for the streamwise and cross-stream velocities are given by:

εReDt u =
(
ε2∂2x + ∂2y

)
u − ∂x (p + 
) + ε2∂xSxx + ∂ySxy, (6a)

ε3 ReDtv = ε2
(
ε2∂2x + ∂2y

)
v − ∂y(p + 
) + ε2∂xSxy + ε2∂yS yy, (6b)

where the tildes were removed for the sake of simplicity. To leading order in ε, this reduces
to:

0 = −∂x (p + 
) + ∂y
(
∂yu + Sxy) , (7a)

0 = −∂y(p + 
). (7b)

On the other hand, the continuity equation (1a), no-slip condition (3) and the kinematic
boundary condition (4) remain unchanged. It can also be shown that the curvature κ becomes
∂2x h + O(ε2), while the normal component of the normal stress tensor, n̂ · (σ + S) · n̂, is
simply −p + O(ε2). Therefore, to leading order in ε, the interface stress balance condition
(5) reduces to:

p = −γ ∂2x h at y = h. (8)

The tangential component of the normal stress, given by t̂ · (σ + S) · n̂, then becomes:

t̂ · (σ + S) · n̂ =
(
∂yu + Sxy

)
∂xh

|∂xh| + O(ε2), (9)

which yields the following boundary condition:

∂yu + Sxy = 0 at y = h. (10)

Integrating now Eq. (7a) with respect to y and applying the boundary conditions in Eqs. (3)
and (10), we obtain the following expression for the streamwise velocity:

u =
(
y2

2
− yh

)
∂x (p + 
) −

∫ y

0
Sxy(y′) dy′. (11)

Substituting Eq. (11) into the kinematic boundary condition Eq. (5), yields the time-evolution
equation for the thin-film height:

∂t h = ∂x

[
h3

3
∂x
(
φ′(h) − γ ∂2x h

)+
∫ h

0

∫ y

0
Sxy(y′) dy′ dy

]
. (12)
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To simplify the fluctuating term, we can integrate the nested integral by parts and define
S(r; t) = Sxy(r; t), so that we finally obtain the central equation of this work:

∂t h = ∂x

[
h3

3
∂x
(
φ′(h) − γ ∂2x h

)+
∫ h

0
(h − y)S(y) dy

]
, (13)

where the correlation structure of the noise is given by:

E(S(x, y; t)S(x ′, y′; t ′)) = 2 T qx (x − x ′)qy(y − y′)δ(t − t ′). (14)

Obviously, Eq. (13) shows exactly the same structure as the SPDE derived by Grün et al.
[37], as we have closely followed their derivation. But at the same time there is a remarkable
difference in that we are not imposing so far any specific structure for the correlators qx and
qy , which in the study of Grün et al. [37] are imposed to be Dirac’s delta. Indeed we will
study later a different limit, where the noise is perfectly correlated along the cross-stream
direction, which as already noted in the Introduction it is more physically meaningful.

As also already emphasised in the Introduction, the main advantage of this approach to the
thin-filmdynamics is that the fluctuations are derived ab initio. That sets aside any controversy
regarding the best noise to represent real fluctuations, as the noise is naturally derived from
first principles within the self-consistent framework of FH. However, the fluctuating term
in Eq. (13) is too convoluted for practical purposes and, also, against the spirit of the long-
wave approximation to eliminate the dependence in the cross-stream direction since it still
shows explicitly a dependency in this direction. In Sect. 4 we will discuss how to derive
an equivalent dynamics by proposing a much simpler version of the noise that is more
convenient for analytical and numerical purposes. Despite the formal derivation presented
here, and later in Sect. 4, the stochastic thin-film model studied in this work does not fit
in any existent theory for SPDEs, e.g. Hairer’s theory on regularity structures [38], at least
for now. The mathematical challenge of giving a mathematically rigorous meaning to this
kind of equations is, obviously, far beyond the original scope of this work. Nevertheless,
any progress on such an area of research will have an important impact in many statistical-
mechanical applications, where this type of SPDE appears.

3 Deterministic Dynamics

3.1 Gradient Flow Structure

In this section we will demonstrate the gradient-flow structure of the deterministic part of
the SPDE (13). To do that, we need to show that there exists an effective energy functional
H(h) such that the deterministic part of the equation can be rewritten as the gradient of that
functional with a certain metric. If we consider the functional:

H(h) =
∫ L

0
φ(h) + γ

2
|∂xh|2 dx, (15)

where L is the length of the domain in the x-direction, Eq. (13) can be rewritten as:

∂t h = ∂x

[
h3

3
∂x

(
δH
δh

)
+
∫ h

0
(h − y)S dy

]
, (16)
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with δ
δh representing the functional derivative. Neglecting the noise for the time being we

have that

∂t h = ∂x

[
h3

3
∂x

(
δH
δh

)]
=: g−1

h DH(h) = ∇H(h), (17)

which can be given a geometric interpretation as gradient flow on the energy surface in h-
space with a metric of g−1

h = ∂x M(h)∂x , where M = h3/3 is the effective mobility, and
DH := δH

δh . Indeed, in the particular case of φ(h) = 0 Eq. (17) belongs to a more general
family of fourth-order degenerate PDEs of the form

∂t h = ∂x
(
M(h)∂3x h

)
, (18)

which models the dynamics of different physical systems depending on the choice of the
“mobility” M(h). For M(h) = h3 +αh, the equation describes the spread of a small viscous
drop [35], and in the case of M(h) = |h| it describes the behaviour of a thin neck of fluid in a
Hele-Shaw cell [9] (see also the discussion in Ref. [11]). Similar equations are also obtained
as the mean-field limits of interacting particle systems, with the resulting PDEs governing
the evolution of the density of the system [1,6,7,16,23,45,46]. It is worth mentioning that
a gradient-flow structure is not a common property, however this feature is also shared with
another well-known equation, the Derrida–Lebowitz–Speer–Spohn (DLSS) equation [20].
The DLSS equation is also a fourth-order gradient flow which was originally derived for the
study of interface fluctuations in a two-dimensional spin system. As noticed by Jüngel and
Matthes [42], the common structure shared by both Eq. (18) and the DLSS equation yields
similar analytical difficulties in proving the positivity or non-negativity of solutions.

Focusing only on the deterministic part of Eq. (16), i.e. without the noise term and setting
φ(h) = 0, the resulting deterministic equation (17) is also conservative. This means that if
the system has initially a given mass given by c = ∫ L

0 h(x; t = 0) dx , then the mass will
remain constant over time. Moreover, for non-negative initial conditions, the positivity of the
solution is preserved [3].

Let us now consider the time derivative of the energy functional which will give us
information about the behaviour of the energy function over time, for φ(h) = 0. For this
purpose, let us assume periodic boundary conditions in x , hence:

dH
dt

=
∫ L

0

δH
δh

∂t h dx (19)

=
∫ L

0
−γ ∂xh ∂x

(
h3

3
∂x
(−γ ∂2x h

))
dx (20)

= −
∫ L

0
γ 2 h

3

3
(∂3x h)2 dx < 0, ∀h 	= c

L
, (21)

with c being the mass of the initial condition, as mentioned above. The sign of the temporal
derivative of the energy functional informs us about the dissipative nature of the functional
for all acceptable film heights (i.e. with h ≥ 0 and mass c) except for h∗ = c/L . Also, the
functionalH is bounded from below by 0 and is continuous. Thus,H satisfies the conditions
required for it to be a Lyapunov functional [70]. This implies that h∗ = c

L is the only steady
state for φ(h) = 0 and that it is globally attractive.
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In the presence of a non-zero interaction potential φ, we can explicitly compute the first
and second variations of H:

δH(h, η) =
∫ L

0
(−γ ∂2x h + φ′(h))η dx, (22a)

δ2H(h, η) =
∫ L

0
γ (∂xη)2 + η2φ′′(h) dx, (22b)

where η belongs to a suitably defined space of admissible variations. It can be easily shown
that any critical point of H (determined by δH(h, η) = 0,∀η) is a stationary solution of the
deterministic PDE (17). What is more, given a critical point ofH we can solve a variational
problem in η for the functional δ2H(h, η). Assuming η is sufficiently smooth, we obtain the
following identity:

γ ∂2x η = η φ′′(h). (23)

Multiplying both sides of Eq. (23) by η, it is straightforward to get:

η2φ′′(h) = γ ∂2x

(
η2

2

)
− γ (∂xη)2. (24)

Substituting this result into Eq. (22b) and assuming periodic boundary conditions in x , we
get that δ2H = 0 for all critical points η (and, thus, by extension for all minimisers) of this
functional. This results in δ2H(h, η) ≥ 0 for all critical points h of H and all admissible η.
Hence, the critical points satisfy at least the necessary conditions for being minimisers of the
functional H.

3.2 Linear Stability Analysis of the Uniform State

In what follows we study the linear stability of an initial uniform state with constant height.
To do that, we can linearise Eq. (17) about the state h∗ = 1 with mass c = L , by inserting
perturbations of the form:

h = h∗ + εg, (25a)
∫ L

0
g(x) dx = 0, (25b)

with g(x) > −1, ∀x ∈ [0, L].
Let us first consider a system with zero interaction potential, φ(h) = 0. Retaining only

the terms of O(ε) in the equation, the resulting linearised operator N can be written as:

N g = −γ

3
∂4x g. (26)

Considering again periodic boundary conditions, the eigenvalues λn and eigenfunctions gn
of the linearised operator are the following:

λn = −γ
4π4n4

L4 , (27)

gn =
√

1

L
exp

(
i
2πnx

L

)
, (28)

for all n ∈ Z\{0}. As can be immediately seen, the eigenvalues λn are strictly negative. As a
result, the system is unconditionally stable to sufficiently small perturbations.
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Let us consider now the interesting case of a non-zero interaction potential that can be
written as the sum of a non-negative convex and a concave function of the height. Consider,
e.g., the case of φ(h) = αh−3 − βh−2 with α, β ∈ R

+. The physical basis of this form
goes back to the work by Derjaguin and Framkin, while using elements from the statistical
mechanics of classical fluids, namelyDFT, it can be shown that the (local)Derjaguin–Framkin
disjoining pressure is an asymptote to that obtained fromDFT as the distance of the chemical
potential from its saturation value vanishes [79]. The linearised operator can then be written
as follows,

N g = (4α − 2β) ∂2x g − γ

3
∂4x g. (29)

For x ∈ [0,∞), we assume the factorisation g(x; t) = eikxG(t), with k = (2π/L) ∈ R the
wavenumber and L the wavelength. This yields

G(t) = exp
{[

(2β − 4α)k2 − γ

3
k4
]
t
}

. (30)

Therefore, one branch of the neutral curve is given by k = 0 and the other is given by

(2β − 4α) = γ

3
k2, (31a)

|kcr| =
√
6(β − 2α)

γ
, (31b)

which defines the minimum wavelength (and, hence, domain length) for instability:

Lcr = 2π

kcr
= 2π

√
γ

6(β − 2α)
. (32)

Now, we can readily compute the wavenumber associated with the maximum growth rate,
kmax, and the corresponding domain length, Lmax,

kmax = 1√
2
kcr, (33a)

Lmax = √
2Lcr, (33b)

From (31b) it is straightforward that the condition for the system to be unstable is β > 2α.
These results are summarised in Fig. 2.

4 Equivalent Stochastic Dynamics

Having characterised the linear stability conditions for the deterministic part of the stochastic
thin-film equation derived in Sect. 2, we turn to the effect of fluctuations. As repeatedly
mentioned so far, the structure of the noise in Eq. (13) is not yet convenient for practical
purposes. That is why there is a need for a statistically equivalent equation involving a
simpler noise term. Particularly, Grün et al. [37] have shown that there exists an equivalence
in law between the above following two SPDEs:
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Fig. 2 Linear stability of the uniform state for the interaction potential φ = αh−3 − βh−2 with α = 1
30 and

β = 1
2 as a function of the surface tension coefficient, γ . a The stability map in terms of the k and γ values,

whereas b the same on the L–γ plane. Shaded red regions correspond to the parameter values for which the
system is unstable. Dashed lines represent the critical stability curve given by Eqs. (31b) and (32). Solid lines
represent the values associated with the maximum growth rate, Eq. (33)

∂t h = ∂x

[
h3

3
∂x

(
δH
δh

)
+
∫ h

0
(h − y)S(y) dy

]
, (34a)

∂t h = ∂x

⎡
⎣h3

3
∂x

(
δH
δh

)
+
√
h3

3
N
⎤
⎦ , (34b)

where S and N are zero-mean spatiotemporal noise functions, defined by their correlation
structure:

E(S(x, y, t)S(x ′, y′, t ′)) = 2T δ(t − t ′)qx (x − x ′)qy(y − y′), (35a)

E(N (x, t)N (x ′, t ′)) = 2T δ(t − t ′)δ(x − x ′). (35b)

Specifically, the equivalence is obtained by using a finite-difference discretisation of (34a)
and, then, computing the relatedKramers-Moyal coefficients to show that they both have asso-
ciated the same Fokker–Planck equation (for delta-correlated noise in the x and y directions).
Inwhat follows,weuse afinite-difference discretisation only to show that the simplifiedSPDE
satisfies the detailed-balance condition (which is a requirement from thermodynamics [21]).
This is done in Sect. 4.1. After that, in Sect. 4.2, we demonstrate that there exists an equiv-
alency between the two SPDEs using a Q-Wiener representation of the noise function, S.
The reader should note that a similar cubic multiplicative noise is derived in Refs. [16] and
[46] starting from a particle description of the system. We note that one would thus expect
this equivalent SPDE to be obtained, at least in principle, as the mean field limit of a system
of interacting stochastic processes.

4.1 Detailed-Balance Condition

In the original work of Grün et al. [37], it was stated without proof that the simplified SPDE
in Eq. (34b) satisfies the detailed-balance condition. In this section we present a proof of
this result. Our proof outlined below is based on a spatial discretisation of a more general
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version of Eq. (34b) with the multiplicative noise given by νhn . In the end, we find a general
condition that the noise must fulfil based on the Fokker–Planck equation associated with the
resultant set of SDEs.

Let us consider the SPDE:

∂t h = ∂x

[
h3

3
∂x

(
δH
δh

)
+ νhnN

]
, (36)

where ν, n ∈ R are free parameters for the moment, H being the energy functional given in
Eq. (15). Let us also consider a finite difference discretisation of the x-axis such that x� = � a,
with a ∈ R+ the grid-spacing length and � = 0, . . . , d − 1 the grid index. In that case, we
have that:

h(t) = [h�]�h�=h(�a;t) = [h(0; t), h(a; t), . . . , h((d − 2)a; t), h((d − 1)a; t)]� ∈ R
d .

(37)
Using now the differentiation matrix for a central-difference scheme A ∈ R

d×d , we can
rewrite Eq. (36) as follows:

∂th(t) = A (j(t) + K(t)ξ(t)) , (38)

where we have also introduced the discretised version of the drift, j = ( j�) ∈ R
d , and of the

noise intensity, given by the diagonal matrix K = (K��) ∈ R
d×d :

j�(t) = h3�(t)

3

[
A
(
1

a
∇hH̃(t)

)]

�

, (39a)

K��(t) = νhn� (t). (39b)

We also define the diagonal matrix, K′ = (K ′
��) ∈ R

d×d as follows,

K ′
��(t) = 1√

3
h3/2� (t). (39c)

In the above expressions, the discretised version H̃ of the functional H is defined by the
Riemman sum H̃ = a

∑
l

(
φ′(hl) − γ

2 (Ah)2l

)
and ξ = (ξ1, . . . , ξd)

� is a Gaussian white

noise with the following correlation structure:

E(ξ�(t)ξm(t ′)) = 2T

a
δ�mδ(t − t ′). (40)

The adjoint of the infinitesimal generator,L †, of the Markov semigroup associated with this
SDE is then given by:

L †φ = ∇h ·
(

(−A · j)φ + T

a
∇h · (Σφ)

)
, (41)

with Σ = AK(AK)T . Thus, the Fokker–Planck equation governing the temporal evolution
of the probability density function (PDF) to observe a certain state at a given time, ρ(h; t),
can be written as:

∂tρ = L †ρ = ∇h ·
(

−Ajρ − T

a
(AKKTA∇hρ)

)
, (42)

with the initial condition ρ0 = ρ(0). Here we have used the fact that A is antisymmetric and
that ∇h(AKKTA) = 0. Inserting the definition of the discretised drift given in Eq. (39a) into
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Eq. (42), we obtain,

∂tæ = ∇h ·
((

−1

a
AK′K′TA∇hH̃ − T

a
AKKTA∇h

)
ρ

)
(43)

= −1

a
∇h · J (ρ),

with:

J (ρ) =
(
AK′K′TA∇hH̃ + TAKKTA∇h

)
ρ. (44)

If we now set ρ = ρs to be the Gibbs measure associated with ˜H(h), i.e., ρs = 1
Z e

− 1
T

˜H(h)

for some normalisation constant Z , we obtain:

J (ρs) =
(
A
(
K′K′T − KKT

)
A∇hH̃

)
ρs = Γ (h)ρs, (45)

Now, we need to show that if K′K′T − KKT 	= 0,∀h ∈ R
d there exists and admissible,

h ∈ R
d for which Γ (h) 	= 0. It is sufficient to show this for only one component of the

vector, [Γ h]l . To do this, we define the function, f (h�), as follows,

f (h�) = h3�
3

− ν2h2n� . (46)

Then, after some straightforward but lengthy calculations, we obtain an explicit expression
for [Γ (h)]0,

[Γ (h)]0 = [− f (h1) − f (hd−1)]
[
12αh−5

0 − 6βh−4
0 − 2(h2 − h0) + 2(h0 − hd−2)

]

+ f (h1)

[
12αh−5

2 − 6βh−4
2 − 2(h4 − h2) + 2(h2 − h0)

]

+ f (hd−1)

[
12αh−5

d−2 − 6βh−4
d−2 − 2(h0 − hd−2) + 2(hd−2 − hd−4)

]
. (47)

We can now pick h0 = h2 = hd−2 = hd−4 = κ/(2da), h4 = 2h2 for some 0 < κ < 1 and
pick h1 < 1/(ad) such that f (h1) 	= 0. The other components of h can be chosen such that∑
�

h�a = 1. This gives us [Γ (h0)] 	= 0. Thus the flux J (ρs) can be zero, ∀h ∈ R
d ,if and only

if ν = ± 1√
3
and n = 3

2 . That is, the Fokker–Planck equation satisfies the detailed-balance

condition and, thus, the generator L is symmetric [59], if and only if the general noise in
Eq. (36) has exactly the same noise coefficient, ν and dependency on h, as proposed in Refs.
[12,37].

This result is in agreement with the general fluctuation-dissipation relation for general
stochastic gradient flows dz = g−1(z)DH(z)dt + σ(z)dW(t), with K the metric, σ an
operator acting on dW(t) and W(t) a Brownian sheet, recently discussed by Reina and
Zimmer [67]. Following these authors, for the MEP and the LD principles to be fulfilled
concomitantly, the relationship g−1 ∝ σσ ∗ must be satisfied. In our particular case, that
means:

∂x

(
h3

3
∂x f (x)

)
∝ ∂x

(
ν2h2n∂x f (x)

)
, (48)
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whence, ν = ± 1√
3
and n = 3

2 if the proportionality constant is assumed to be unity. As can
be seen, the detailed-balance condition is more restrictive as it imposes the proportionality
constant without doubt.

In that case, the stationary process associated with the SDE in Eq. (38) is reversible,
i.e. for every T ∈ [0,∞), h(t) and the time-reversed process h(T − t) have the same
finite-dimensional distribution [59]. This means that, given any finite sequence of times
t0 < t1 < t2 < · · · < tk = T , and corresponding measurable subsets, A0, A1, A2, . . . , Ak ,
the following identity is true:

P(h(t0) ∈ A0, . . . ,h(tk) ∈ Ak) = P(h(T − t0) ∈ A0, . . . ,h(T − tk) ∈ Ak), (49)

whichmeans that, statistically, the stationary process is insensible to the time-arrow direction.

4.2 Representation of the Noise in Two Dimensions

We turn now our attention back to Eq. (34a) with the aim of representing the spatiotempo-
ral fluctuations, S, in a more convenient way, as we already mentioned before. When the
noise term is finally represented as an infinite expansion in terms of independent real-valued
Brownian motions, we will be able to impose the long correlation-length limit along the
cross-stream direction, i.e. ly → ∞, and show that the noise in Eq. (34a) (hence, the SPDE
itself) converges to the much simpler one-dimensional noise structure of Eq. (34b).

Consider a finite domain of length L along the streamwise direction x , and height h(x; t)
along the wall-normal direction y, with periodic boundary conditions along x . Let H be the
Hilbert space of all square integrable functions on [0, L] × [0, h]. Assume that for every
time t ∈ [0,∞), S takes values in H . It is known that a spatiotemporal noise process can be
written as the formal time derivative of a Q-Wiener process, W , such that [15,75]:

S = d

dt
W, (50)

where W is an infinite-dimensional zero-mean Gaussian process which takes values in H
and is defined entirely by the covariance operator Q, which is symmetric, positive and of
finite trace. Consider the following result [64]:

Proposition 1 Let Q ∈ L(H)1 be a symmetric, non-negative operator with tr(Q) < ∞.
Further, we assume that gk ∈ H , k ∈ Z is an orthonormal basis consisting of the eigenvectors
of Q with eigenvalues λk . Then an H-valued random variable,W , is Gaussian or Q-Wiener
if and only if,

W =
∞∑

k=−∞

√
λk gkβk(t), (51)

where βk(t) are independent real-valued Brownian motions and where the convergence is in
L2(Ω,F,P; H), the space of Bochner-square integrable functions, f : Ω → H.

Applying Prop. 1, we can obtain a formal representation for S as follows:

S(x, y; t) =
∞∑

k=−∞

√
λk gk β̇k(t), (52)

1 L(H) is the space of bounded linear operators on H .
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where β̇k : Ω×[0,∞) → R are independent white-noise processes, i.e. zero-meanGaussian
processes with correlation determined by E(β̇k(t)β̇l(s)) = δklδ(t − s), and λk and gk are the
eigenvalues and eigenvectors, respectively, of the operator Q, defined by its action on a field:

Q f (x, y) ≡
∫ L

0

∫ h

0
2Tqx (x − x ′)qy(y − y′) f (x ′, y′) dx ′ dy′ (53)

We propose the functions qx and qy to be:

qx (x) = Z−1
x exp

(
−1

2
sin2

(πx

L

)( L2

l2x

))
, (54)

qy(y) = Z−1
y exp

(
−1

2
sin2

(π y

h

)(h2
l2y

))
, (55)

where lx , ly are the correlation lengths, and Zx , Zy the normalisation constants, along x

and y, respectively. We set Zx such that
∫ L/2
−L/2 qxdx = √

2T , while Zy is left undefined
for the time being. Q is symmetric and nonnegative, as expected. The trace is given by∫ L
0

∫ h
0 2T Z−1

x Z−1
y dx dy and is, thus, finite. To close the alternative representation of the

noise we need to solve the eigenvalue problem:

Qgk = λkgk . (56)

The structure of the operator Q motivates us to write the eigenfunctions gk as the product of
two functions gk(x, y) = X(x)Y (y), so that the eigenvalue problem is rewritten as:

(∫ L

0
2Tqx (x − x ′)Xm(x ′) dx ′

)(∫ h

0
qy(y − y′)Yn(y′) dy′

)
= ambn XmYn . (57)

The solution to this eigenvalue problem has the following eigenfunctions:

Xm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
L cos

( 2πmx
L

)
, m > 0,√

2
L sin

( 2πmx
L

)
, m < 0,√

1
L , m = 0,

Yn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
h cos

(
2πny
h

)
, n > 0,√

2
h sin

(
2πny
h

)
, n < 0,√

1
h , n = 0,

(58)

with the eigenvalues given by,

am =

⎧
⎪⎨
⎪⎩
2T Z−1

x exp
(
− L2

4l2x

) ∫ L

0
exp

(
L2

4l2x
cos

(
2π z

L

))
cos

(
2πmz

L

)
dz, m 	=0,

(2T )3/2 m = 0,

(59a)

bn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Z−1
y exp

(
− h2

4l2y

)∫ h

0
exp

(
h2

4l2y
cos

(
2π z

h

))
cos

(
2πnz

h

)
dz, n 	= 0,

∫ h

0
qy dy n = 0.

(59b)

At this stage, we require that b0 must be constant and independent of ly . Thus, the normali-
sation constant Zy must be defined as,

Zy = Zy(ly) = 1

b0

∫ h

0
exp

(
−1

2
sin2

(π y

h

)( h

ly

)2)
dy, b0 ∈ R

+. (60)
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Finally, we have all the ingredients for the easier representation of W , and hence for S
according to Eq. (52),

W =
∞∑

m=−∞

∞∑
n=−∞

√
ambn XmYnβmn(t), (61)

together with the definitions given before in Eqs. (58)–(60) and with βmn(t) as independent
1D Brownian motions.

4.3 Long Correlation-Length Limit: Perfectly Correlated Noise Along the
Wall-Normal Direction

As we mentioned at the beginning of Sect. 4.2, what is left to obtain Eq. (34b) is to take the
limit of W when the correlation length goes to infinity. It is true that in the original Landau
and Lifshitz derivation the correlations are considered to be Diracs in every direction, as
is the case in many other fluctuating hydrodynamics derivations where the system under
consideration is open (without boundaries) (e.g. [24]). Our approach on the other hand, is
more “natural” motivated from physical considerations as we explained in the Introduction.
But at the same time, there is no rigorous justification of what the autocorrelation function
looks like for thin films in the presence of awall and in that respect, our approach is effectively
a hypothesis when it comes to modelling fluctuations. For this reason, we are considering
the generalisation presented in this work. Thus,

lim
ly→∞W = lim

ly→∞

∞∑
m=−∞

∞∑
n=−∞

√
ambn XmYnβmn(t). (62)

Consider now the behaviour of the eigenvalues, bn, ∀n 	= 0, in the same limit:

lim
ly→∞ bn = lim

ly→∞ Z−1
y exp

(
− h2

4l2y

)∫ h

0
exp

(
h2

4l2y
cos

(
2π z

h

))
cos

(
2πnz

h

)
dz

=
(

lim
ly→∞ Z−1

y

)(
lim

ly→∞ exp

(
− h2

4l2y

))

×
(

lim
ly→∞

∫ h

0
exp

(
h2

4l2y
cos

(
2π z

h

))
cos

(
2πnz

h

)
dz

)

= b0

lim
ly→∞

∫ h

0
exp

(
h2

4l2y
cos

(
2π z

h

))
cos

(
2πnz

h

)
dz

lim
ly→∞

∫ h

0
exp

(
h2

4l2y
cos

(
2π z

h

))
dz

, n 	= 0. (63)

By dominated convergence we have,

lim
ly→∞ bn = 0, n 	= 0. (64)

Now consider the Q-Wiener process W ′ having the following representation,

W ′ =
∞∑

m=−∞

√
b0Y0

√
am Xmβ0m(t). (65)
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Fix t > 0, and consider the sequence of random variables,Wly (t) : Ω → H . Then, we have:

||W ′(t) − Wly (t)||L2 ≤ ε +
⎛
⎜⎝
∫

Ω

∣∣∣∣∣∣

∣∣∣∣∣∣
N∑

n=−N ,n 	=0

M∑
m=−M

√
bnamYn Xmβmn(w, t)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

dω

⎞
⎟⎠

1/2

≤ ε +
N∑

n=−N ,n 	=0

M∑
m=−M

√
bnamt, (66)

for some ε which can be made arbitrarily small. Using this result and Eq. (64), we have
W → W ′ as ly → ∞, in L2(Ω; H). Thus, we can formally write that Sly → D = dW ′

dt as
ly → ∞. Finally, inserting this representation into (34a) one gets:

∂t h = ∂x

(
h3

3
∂x

(
δH
δh

)
+

∞∑
m=−∞

√
am Xm

∫ h

0
(h − y)

√
b0Y0dy β̇m

)
. (67)

Integrating the last term of the latter equation we eventually obtain the expression we were
after:

∂t h = ∂x

(
h3

3
∂x

(
δH
δh

)
+

√
b0
2

√
h3

∞∑
m=−∞

√
am Xm β̇m

)
. (68)

As can be seen, the infinite sum in this equation represents the spatiotemporal noise N of
Eq. (34b). Thus, we can conclude that in the long correlation-length limit the SPDE (34a)
converges to a b0-parametrised family of SPDEs with a simpler noise structure. We can now
select a particular value of b0, which was left intentionally undefined before. The choice of
that constant must be such that the resulting Fokker–Planck equation satisfies the detailed-
balance condition with the invariant measure, ρs , as specified in the previous section. Under
such circumstances, b0 should be equal to 4ν2 = 4

3 and, therefore, the term multiplying the

noise N will become ± h
3
2√
3
, as postulated by Davidovitch et al. [12] and Grün et al. [37]. It

is also interesting to note that numerical computation of the eigenvalues bn reveals that they
are distributed according to a discrete Gaussian distribution of the form (see Fig. 3):

bn = b0 exp

⎛
⎝−

(√
2nly
h

)2
⎞
⎠ , n ∈ Z. (69)

Hence, choosing b0 is equivalent to selecting the normalisation constant of the distribution.
Computations of bn and their apparent distribution are shown in Fig. 3 for different values
of the correlation-length ly .

5 Numerical Experiments

Having shown the equivalency between the two equations (34a) and (34b), we perform
detailed numerical experiments using a spectral method as an alternative to the finite-element
discretisation used in the previous study by Grün et al. [37]. Spectral methods give us the
opportunity of selecting, in a straightforwardway, the frequencymodes of the noise (following
the spirit of the long-wave approximation), besides the convenience of smaller but denser
matrices. SPDEs need to be discretised carefully, since different discretisations can converge
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Fig. 3 Distribution of the
eigenvalues bn of the covariance
operator Q for different values of
the correlation length along the
wall-normal direction
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to different limiting processes as the mesh size goes to zero. A good discussion about this
issue is offered in Ref. [40], where discrepancies are shown for different finite-difference
approximations of the stochastic Burgers equation.

In what follows, we provide a brief description of how our numerical method works and,
then, proceed to validate it by computing statistics for the rupture times. Considering the
SPDE in (34b), we know that there exists a trace-class, nonnegative covariance operator Q′
such that its eigenfunctions can be used to provide a spectral decomposition of the noise
termN . We argue that this set of eigenfunctions should form the natural setting to discretise
the SPDE. Computing the solutions with such a discretisation, and observing a qualitative
agreement with previous works [37], we intend to show that our discretisation method is
correct. Nevertheless, a more exhaustive analysis of the sensitivity of the solutions on the
number of points is yet to be done. This is however a question worth investigating in more
detail in future studies, along with a rigorous examination of the numerical method, since
the transition from a discrete solution to the actual continuous function that solves the SPDE
is still a mathematical challenge.

5.1 Description of the Numerical Method

Consider the uniformly spaced partition {xn}N−N ⊂ [0, L] with spacing Δx . Again, we
define the film height vector h ∈ R

2N+1,hi = h(xi−N−1). Let Xm and am be the eigen-
functions and eigenvalues of Q′ respectively. Thus we can now define the spectral matrix,
C ∈ R

(2N+1)×(2N+1) such that Ci j = X j−N−1(xi−N−1) and the vector of eigenvalues,
a ∈ R

2N+1 such that ai = ai−N−1. This way,Cx for any x ∈ R
2N+1 is a Galerkin projection

onto the space of eigenfunctions of Q′. If we choose Q′ as follows:

Q′ f =
∫ L

0
2Tqx (x − x ′) f (x ′) dx ′, ∀ f ∈ L2([0, L]), (70)

then Xm and am are exactly those in (58) and (59b). This considerably simplifies the
differentiation operation. We can use this to define the spectral differentiation matrices
Dn ∈ R

(2N+1)×(2N+1) that will be required for the numerical experiment. Let B, A ∈
R

(2N+1)×(2N+1) be anti-diagonal and diagonal matrices, respectively, such that Bi,2N+2−i =
sign(N+1− i) and Aii = | 2π i−N−1

L |. Then, we set Dn = C−1(AB)nC so that Dnh amounts
to an approximation of the nth-derivative of h. We can now write down a nonlinear SDE with
multiplicative noise which approximates the solution of the SPDE:

123



598 M. A. Durán-Olivencia et al.

Fig. 4 The L2-norm of the film
height averaged over 60 sample
paths plotted against number of
approximating modes, N for a
fixed time

√
2T = 0.01
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dh = b(h)dt + σ(h)dWt , (71)

where:

b = D1

(
h3

3
D1
(
φ′(h) − γ D2h

)) ∈ R
2N+1, (72a)

σ = D1

⎛
⎝
⎛
⎝IyT

√
h3

3

⎞
⎠C(IyT a)

⎞
⎠ ∈ R

(2N+1)×(2N+1), (72b)

are the drift vector and the square root of the diffusion matrix, respectively, with y ∈ R
2N+1

defined as yi = 1.
Having the approximating SDE, all that is left is to choose an appropriate time-integration

scheme. Since the deterministic problem is stiff, it is more appropriate and reliable to use two
separate time-stepsΔts andΔtd < Δts , for the stochastic and deterministic parts of the SDE,
respectively. Consider the uniform partition tn ⊂ [0, T ] with spacing Δts . Then, for each
interval, [ti , ti + Δts] we integrate over time the deterministic equation, dh = b(h)dt with
hti as the initial condition using MATLAB’s ode15s stiff explicit multistep solver to obtain
h∗

ti+Δts , where the solver selects Δtd adaptively. We then add the stochastic component
using the Milstein scheme, i.e. hti+Δts = h∗

ti+Δts + √
Δtsσξ + Δts

2 σσ T (ξ2 − 1), where
ξ is a vector of independent and identically distributed (iid) Gaussian random variables. As
regards to the question of whether this numerical scheme satisfies a discrete version of the
fluctuation–dissipation theorem we remark that it is not straightforward to define properly
non-Gaussian Gibbs measures in infinite dimensions for SPDEs and thus it is hard to make
the notion of such a theorem rigorous for the approximating SDE. We direct the reader
to the following references for more details on fluctuation-dissipation theorems for SPDEs
[4,5,17,39]. To conclude our discussion of the numerical scheme we include Fig. 4, showing
convergence of the scheme in grid-size/number of modes.

5.2 Simulations

Here we perform numerical simulations of the deterministic and the stochastic thin-film
equations. We know from our analysis in Sect. 3.2 that the uniform solution is linearly
unstable. This raises the question of whether or not there exist other stationary solutions to
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(a) (b)

(c) (d)

Fig. 5 Deterministic evolution of a thin filmunder the influence of the disjoining potential,φ(h) = h−3

30 − h−2

2 .
The sequencemust be understood in the following order (a)→(b)→(c)→(d). The uniform solution destabilises
and then converges to a second stationary solution which has a cluster-like structure, i.e. the film ruptures and
breaks up into droplets
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Fig. 6 Evolution of the energy functionalH as a function of time (left), showing two minima: the uniform and
droplet states, and of its functional derivative δH

δh near the rupture time (right), where the two white regions
represent values of x and t for which the functional derivative is zero

the thin-film equation. Choosing the domain length to be an integermultiple of Lmax and time-
integrating with the initial condition h0 = 1+ ε sin(kmaxx) for ε � 1, the system converges
to a second stationary solution, as is evident in Fig. 5. The second stationary solution has
a cluster-like structure and corresponds to the film rupturing and breaking up into droplets.
This behaviour resembles that seen in systems of interacting particles in statistical mechanics
where the uniformdistribution destabilises and gives rise tomolecular clusters (see, e.g., Refs.
[14] and [52]) but also in systems with state transitions induced by thermal fluctuations (e.g.
Ref. [62]).

To ensure that there is no transient stationary solution between the uniform state and
the droplet state, we have also computed the values of the free energy functional H as a
function of time (see Fig. 6 (left)) and the functional derivative δH

δh near the rupture time
(see Fig 6 (right)). As can be seen, the functional derivative is strictly non-zero between the
two states, which indeed implies there is no transient intermediate solution. This calculation
is completely necessary to know whether the system has to overcome an energy “barrier”
during the breakup process, which then would comprise a nucleation event.

The inclusion of noise does not seem to induce a qualitative difference onto the behaviour
of the thin film (see Fig. 7). The transitions from fluctuations about the uniform state to
fluctuations about the droplet state can be seen in Fig. 7. To study the effect of noise on
the thin-film dynamics we vary the value of the noise intensity and obtain statistics for the
rupture time tr , which we define as:

123



600 M. A. Durán-Olivencia et al.

(a) (b)

(c) (d)

Fig. 7 Temporal evolution of the thin film under the influence of the disjoining potential, φ(h) = h−3

30 − h−2

2
for

√
2T = 0.01 and lx = 0. The sequence is organised in time as follows (a)→(b)→(c)→(d)

Fig. 8 Single-path variation of
the minimum film height near the
rupture time with

√
2T = 0.01

and lx = 0
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Fig. 9 Mean rupture time t̄r as a
function of the noise intensity√
2T . Error bars show the

standard deviation of t̄r
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tr =
(
sup
∀n

|min(htn+1) − min(htn )|
)

Δts . (73)

The reason behind this choice lies in the fact that the minimum film height changes rapidly
in the vicinity of the film rupture time as can be seen in Fig. 8. Using this definition of the
film rupture time, we can then compute its dependence of the noise intensity. For each value
of T we set the number of sample paths. The variation of t̄r = E(tr ) with

√
2T can be seen

in Fig. 9. From the same figure it is also evident that the noise has the effect of reducing
the time it takes on average for the film to breakup, as expected from physical intuition.
Nevertheless, as the noise intensity increases, the rupture time tends to saturate to a fixed
value. This saturation time seems to reflect the fact that the system has a proper time scale
to react to fluctuations, no matter how intense they are.

123



Instability, Rupture and Fluctuations in Thin... 601

6 Concluding Remarks

In this work we have introduced an alternative and rigorous derivation of the stochastic thin-
film equation from first principles. We have also presented numerical simulations to study
the stability of an initially homogeneous state and the response of the system to fluctuations.
The starting point of the derivation is the stochastic Navier–Stokes equations for the velocity
field of an incompresible fluid on a planar horizontal solid substrate. The relation of these
equations with an underlying Hamiltonian dynamics of the constituent particles of the fluid
is sketched in Fig. 1, where we also highlight our contribution to the state-of-the-art and
summarise all possible model equations obtained from the original Hamiltonian system.
Having the fluctuating equations governing the relevant hydrodynamic fields for the system
dynamics, we apply the widely-known long-wave approximation, which makes possible a
considerable reduction of the dynamics in terms of the height of the liquid film. Despite such
a simplification, the resultant SPDE describing the temporal evolution of the height of the
film along the streamwise direction contains a fluctuating term which is not convenient for
practical purposes. Inspired by the work of Davidovitch et al. [12] and Grün et al. [37], we
propose a tractable, but general, state-dependent noise term to replace the original one. At
this point, we analyse the condition the noise term must fulfil in order to satisfy the detailed-
balance condition. We show that, for the new equation to fulfil the detailed-balance condition
the noise must have the same structure as the one proposed in previous works [12,37]. We
subsequently justify the structure of the alternative noise term proposed by using a Q-Wiener
representation of the original noise. We then show that the original stochastic dynamics and
the alternative SPDE converge when the long correlation-length limit is imposed along the
wall-normal direction. That is, both noise terms produce an equivalent statistics when the
simpler is considered to be perfectly correlated along the wall-normal direction. We believe
this limit ismore physicallymeaningful than the uncorrelated noise originally derivedbyGrün
et al. [37].

We also demonstrate the gradient-flow structure of the thin-film equation and define the
associated energy functional,H. By studying the variation of such a functional, we show that
an initially spatially homogeneous film is unconditionally linearly stable to sufficiently small
perturbations in the case of a negligible interface potential. In the case of a general interface
potential, φ(h) = α h−3 − β h−2, which is the sum of a non-negative convex and a concave
term, we find that the condition required for the film to become unstable is β > 2α. This
result is crucial in that it gives the conditions under which the dewetting process can occur.
To scrutinse the nonlinear dynamics of the film and resulting rupture process, we propose
a numerical algorithm based on a spectral collocation method. We perform simulations of
the dynamics of the thin film and study the evolution of the energy functional close to the
rupture of the film. Finally, we study the effect of the noise intensity on the rupture time, and
our results are in agreement with those by Grün et al. [37]. As a remark, we observe that the
rupture time seems to saturate as the noise intensity increases, resembling the saturation of
the escape time in some thermally-activated processes, e.g. nucleation.
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