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Stabilising falling liquid film flows using feedback control
Alice B. Thompson,a) Susana N. Gomes, Grigorios A. Pavliotis,
and Demetrios T. Papageorgiou
Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

(Received 21 June 2015; accepted 8 December 2015; published online 12 January 2016)

Falling liquid films become unstable due to inertial effects when the fluid layer is suffi-
ciently thick or the slope sufficiently steep. This free surface flow of a single fluid layer
has industrial applications including coating and heat transfer, which benefit from
smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the
system are altered by feedback controls based on observations of the interface height,
and supplied to the system via the perpendicular injection and suction of fluid through
the wall. In this study, we model the system using both Benney and weighted-residual
models that account for the fluid injection through the wall. We find that feedback using
injection and suction is a remarkably effective control mechanism: the controls can be
used to drive the system towards arbitrary steady states and travelling waves, and the
qualitative effects are independent of the details of the flow modelling. Furthermore,
we show that the system can still be successfully controlled when the feedback is
applied via a set of localised actuators and only a small number of system observations
are available, and that this is possible using both static (where the controls are based on
only the most recent set of observations) and dynamic (where the controls are based
on an approximation of the system which evolves over time) control schemes. This
study thus provides a solid theoretical foundation for future experimental realisations
of the active feedback control of falling liquid films. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4938761]

I. INTRODUCTION

The flow of a thin liquid film down an inclined planar wall is a classical problem in fluid me-
chanics. The flow becomes unstable when the Reynolds number, defined on the undisturbed interface
flow speed, is above a critical value which depends on the inclination angle; the flow is stable when the
layer is sufficiently thin. After the onset of instability, the system initially exhibits two-dimensional
(2-D) waves that propagate down the slope, followed by more complicated behaviour that can even-
tually lead to three-dimensional (3-D) spatiotemporal chaos. The development of thin film models for
this system, and the behaviour exhibited therein, has recently been reviewed by Craster and Matar1

and Kalliadasis et al.2

In addition to acting as a paradigm for understanding transitions between different types of
dynamical behaviour, the flow of thin films has a broad range of industrial applications. We note
particularly coating flows,3 where a uniform coating of a flat or shaped substrate is desired, and heat
and mass transfer, which is typically enhanced by mixing associated with interfacial waves.2 These
contrasting applications lead naturally to the desire to control the system dynamics, and in an ideal
situation we would like to be able to drive the system into the full range of regimes.

For flat homogeneous walls, a steady uniform flow solution exists known as the Nusselt solution,
which can of course be unstable. The introduction of steady but spatially varying topography can be
used to create patterned steady states, which have slightly different stability properties to the corre-
sponding unpatterned system. The steady states and dynamics of systems with wavy walls have been
studied using various combinations of full computations, long-wave models, and experiments.4–9 The
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effect of topographical patterning on flow stability is quite subtle, and the critical Reynolds number
can be increased or decreased depending on the system parameters and the choice of topography
amplitude and wavelength. It is generally only possible to obtain significant modification to the
critical Reynolds number by introducing large-amplitude topographical variations, and hence also
large-amplitude deformation of the free surface and flow. Steady topographical patterning falls into
the category of open-loop control, where the controls to be applied are pre-determined. However,
it is well known from a control theory perspective that controls chosen in response to real-time
observations of the system state are able to have a much stronger effect on flow stability than that
caused by open-loop controls, and furthermore can do so without changing the nature of the steady
state itself. In this paper, we consider such closed-loop (or feedback) control, which will be imposed
to the system by suction and injection of fluid through the wall.

Much of the thin-film literature focuses on the additional instabilities and flow modes that can
occur in flows with heating and cooling,10 or on flows over steady non-uniform topography; both
have direct applications in heat exchangers. Thermal effects and topography are often combined with
each other11,12 or with electric fields.13–17 Other physical mechanisms that have been investigated
within the context of thin-film flow down inclined planes include chemical coatings or microstructure
to induce effective slip,18 surfactants,19 porous20,21 or deformable22 walls, explicit injection/suction
through the planar wall,23 and magnetic fields.24 All of these previous studies consider pre-determined
modifications to the system, rather than active feedback.

Feedback control requires real-time observations of at least some components of the system state,
and we will build our control strategies around observations of the film height. Liu and Gollub25

investigated experimentally the dynamics of thin films within the context of the onset of chaos; they
used a fluorescence imaging process to measure the two-dimensional film thickness in real time, and
also used laser beam deflection to obtain local measurements of the interface slope. Vlachogiannis
and Bontozoglou26 examined the flow of thin films over a wavy wall, and used interferometry cali-
brated against needle-point measurements to obtain the interface height. Heining, Pollak, and Sell-
ier27 showed that the free surface shape and topography profile can be obtained from measurements
of the surface velocity, and implemented this both in Navier–Stokes simulations and experiments.
Schörner, Reck, and Aksel9 used experiments with visualization by laser reflection to study the effect
of differently shaped topographical configurations with the same basic amplitude and wavelength on
the flow down an inclined plane; they were able to infer the streamwise growth rate of small-amplitude
perturbations by comparing the magnitude of interfacial fluctuations at two streamwise locations.

Thompson, Tseluiko, and Papageorgiou23 used long wave models to study the effect of imposed,
steady, spatially periodic suction/injection on thin-film flow down an inclined plane. They found that
the imposed suction always leads to non-uniform states, enables a non-trivial bifurcation structure
and complicated time-dependent behaviour, and significantly alters the trajectories of particles in the
flow, but has a relatively small effect on flow stability. Fluid injection through slots has also been
considered theoretically for its effect on spreading films;28 suction leads to ridges on the free surface,
and injection to indentations, but there is no steady state as the total mass is not conserved. Injection
has some similarities to flow over a porous wall, which tends to wick fluid into narrow pores; this
flow is particularly relevant to the printing of ink onto paper, for which substrate porosity affects the
lifetime and spreading of drops. Davis and Hocking29 considered flow of thin drops and films with
wetting fronts along a porous substrate that is wetted by the fluid, and is initially dry, and found that
for both films and drops, the fluid is eventually drawn entirely into the substrate. Thiele, Goyeau, and
Velarde20 used a Benney equation to study flow over a heated, fluid-filled, inclined porous substrate,
bounded below by a solid wall so that the total mass of the liquid film is conserved. They found that
the addition of a porous substrate typically has a small destabilising effect on the uniform film state,
and in the nonlinear regime the film develops drops and ridges which slide down the plane. Film flows
with point and slot-shaped sources have also been studied as a model for lava spreading,30 though the
fluid does not form a continuous film, instead containing several wetting fronts.

The first instability to develop as the film thickness increases is in the form of long-wave pertur-
bations which propagate down the slope, and have no transverse component. The long-wave, stream-
wise nature of the instability means that thin film flow is often studied using reduced-dimensional
models based on long-wave assumptions and neglecting variation in the transverse direction (and
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hence also neglecting any effect of side walls). A number of models are available, which differ most
fundamentally in the manner in which inertial effects are incorporated. Here, we use two different
first-order long-wave models: the Benney equation and the weighted-residual (WR) equation, which
were extended by Thompson, Tseluiko, and Papageorgiou23 to include the effect of suction and injec-
tion. These two long-wave models are identical at zero Reynolds number, and both agree with the
Navier–Stokes system regarding the critical Reynolds number for the onset of instability. However,
the structures of these models differ significantly, most notably regarding the number of degrees of
freedom. The Benney equation is a single evolution equation for the interface height h(x, t), while
the weighted-residual model comprises coupled equations for h(x, t), and the independently evolving
down-slope flux q(x, t), and of course the Navier–Stokes equations at finite Reynolds number allow
evolution of h(x, t) together with evolution of the vector-valued velocity field at every point within the
fluid. The robustness of control strategies to changes in the model is one of the major themes of this
paper; we seek to understand what features of the system state need to be measured to deliver effective
control, and whether the control system can be designed without needing detailed knowledge of the
system state and underlying dynamics.

Feedback control systems consist of a set of control actuators and response functions;31 for linear
controls, the response is a linear function of the deviation of the observed state from the desired state.
An appropriate linear function is constructed based on hypotheses regarding the dynamics of the
uncontrolled system and its response to the control actuators. In the simplest scenario, the controls
are distributed along the domain. In more realistic scenarios, the control actuation is only possible
at a finite number of points in the domain, and observations of the current state are not available
everywhere. Feedback control theory is useful in both cases, and standard tools for tackling these
problems are discussed by Zabczyk.31

Theoretical applications of feedback control for thin films include thermal perturbations in liq-
uids spreading over a solid substrate to suppress the contact line instability32 and point actuated suc-
tion/injection to suppress waves in weakly nonlinear models of thin films33 or to enhance such wavy
behaviour.34 When suppressing waves, again in weakly nonlinear systems, Armaou and Christofides35

prove that stabilisation can be achieved by using a finite number of observations, either by static or
dynamic output feedback control (see Sec. IV D and the Appendix), while Armaou and Christofides36

use nonlinear feedback controls. Efforts have also been made to optimise the placement of actuators
and sensors to suppress37 or enhance34 waves on a thin film. Feedback control strategies have been
implemented for the two-dimensional Navier–Stokes equations in the context of data assimilation,38

in which controls applied towards known observations are used to overcome incomplete knowledge
of the initial state in the forecasting of hurricanes and typhoons.

Both of the long wave models studied here reduce to the forced Kuramoto-Sivashinsky (KS)
equation under a weakly nonlinear analysis, and form part of a rational hierarchy of models which
lead to the KS equation.39,40 The KS equation retains many essential features of the Benney equation,
in particular nonlinearity, energy production, and dissipation. However, it is a much simpler system,
which moreover has the property of global existence of solutions,41 a global attractor,42 and sharp
bounds on its solutions and derivatives.43 These global properties make the KS equation amenable
to analysis, and various control schemes have been developed and applied for the KS equation,
e.g., Gomes, Papageorgiou, and Pavliotis.34 With the inclusion of suitable linear feedback controls
towards the flat solution, the bounds on the solutions make it possible to prove that the L2-norm
is a Lyapunov function for the dynamical system corresponding to the KS equation, and hence the
controlled system is nonlinearly stable. Furthermore, the existence of bounds on the solutions can be
used to prove the existence of optimal controls. When stabilising nontrivial steady states or travelling
waves, the boundedness of these nontrivial solutions plays a crucial role in the proof of existence of
a Lyapunov function and also influences the choice of the controls.

The difficulty in applying the KS controls to thin-film systems is twofold: the nonlinearities are
more complicated, and so there is no global existence theory; in fact the Benney model can lead
to unbounded behaviour,2,44 and second, the structure of the weighted-residual and Navier–Stokes
models, when applied at finite wavelength, is significantly different to that of the KS equation. It is
reasonable to suspect that a control strategy carefully optimised for one model may be ineffective in
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another, and so we focus here on the use of relatively simple control schemes, and investigate their
robustness to variations in the model details.

In this paper, we consider the effect of feedback control, applied via a suction boundary condition
and based on observations of the interface height, on the dynamics and stability of a thin layer of
fluid flowing down an inclined plane. We use two different long-wave models, described in Sec. II, to
model the system, and also compare certain stability results to those for the Navier–Stokes equations.
In Sec. III, we show that a proportional control scheme, in which fluid is injected at each streamwise
location in proportion to the observed deviation of the interface height at that location from uniform,
has a stabilising effect on nearly uniform flow in all three models. We compute the critical control
magnitude required to stabilise the uniform state to perturbations of all wavelengths, finding that the
critical Reynolds number for the onset of propagating waves can be increased significantly by using
the proportional control scheme. For the control system to be physically realisable, we must relax the
requirement that the system state is known at every position, and that the suction applied can take an
arbitrary shape. Therefore, in Sec. IV, we discuss control strategies for the case where feedback is
applied through a discrete set of localised actuators and the system is similarly observed at a small
number of locations in the domain. We discuss both control schemes based on static observations
(where the control amplitudes are calculated from only the most recent set of observations) and dy-
namic observations (where the controls are calculated using an approximation to the system state
which is built up over time). In Sec. V, we discuss linear stability and nonlinear behaviour when
controlling to non-uniform travelling waves and non-uniform steady states. We note that the property
of a given non-uniform state being an exact solution of the equations is model dependent and therefore
can never be perfectly satisfied. In order to test the robustness of the control scheme to variations in the
model, we consider controlling to non-uniform interface shapes with only very crude prior knowledge
of the governing equations. We find that in this case, the controls lead to equilibrium states which
converge towards the desired system as the control amplitude is increased, and that these equilibrium
states are stable when large-amplitude controls are applied. Our conclusions are presented in Sec. VI.

II. GOVERNING EQUATIONS

We consider a thin layer of fluid, with mean thickness hs, flowing down a plane inclined at an
angle θ to the horizontal. We adopt a coordinate system such that x is the down-slope coordinate, and
y is the perpendicular distance from the wall, as shown in Fig. 1. The upper interface of the fluid is
a free surface, located at y = h(x, t). The lower boundary of the fluid is a rigid wall, through which
fluid may be injected or removed.

The two-dimensional (2-D) Navier–Stokes equations admit a solution which is uniform in the
streamwise direction, known as the Nusselt solution,45 for which the surface velocity is Us =

ρgh2
s sin θ/(2µ), where ρ is the fluid density, g the acceleration due to gravity, and µ the dynamic

FIG. 1. Sketch of flow domain showing coordinate system. We consider a fluid layer, with mean height hs, bounded on y = 0
by a rigid wall inclined at an angle θ to the horizontal, and at y = h(x) by a free surface. Fluid is injected through the wall,
with velocity v = F(x, t) which changes in time in response to fluctuations of the free surface.
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viscosity of the fluid. We non-dimensionalise the problem based on the length scale hs and the velocity
scale Us and define the Reynolds number R and the capillary number C based on the velocity Us,

R =
ρhsUs

µ
, C =

µUs

γ
, (1)

where γ is the coefficient of surface tension at the air-fluid interface. Subsequent equations are all
dimensionless.

A. Navier–Stokes equations

We wish to solve the 2-D Navier–Stokes equations, with velocity u(x, y, t) = (u, v), and fluid
pressure p(x, y, t). The momentum equation and continuity equations are

R
�
ut + uux + vuy

�
= −px + 2 + uxx + uyy, (2)

R
�
vt + uvx + vvy

�
= −py − 2 cot θ + vxx + vyy, (3)

and

ux + vy = 0. (4)

The boundary conditions at the wall are given by

u = 0, v = F(x, t). (5)

Here, the function F(x, t) represents the injection velocity normal to the wall, y = 0. Note that we
assume that the injection of fluid does not affect the no-slip boundary condition on the wall. At the
interface, y = h(x, t), the tangential and normal components of the dynamic stress balance condition
yield

�
vx + uy

� �
1 − h2

x

�
+ 2hx

�
vy − ux

�
= 0, (6)

p − pa −
2

1 + h2
x

�
vy + uxh2

x − hx

�
vx + uy

��
= − 1

C
hxx

(1 + h2
x)3/2 , (7)

where pa is the atmospheric pressure, assumed constant. The system is closed by the kinematic bound-
ary condition at the free surface

ht = v − uhx. (8)

Defining the down slope flux q

q(x, t) =
 h

0
u(x, y, t) dy, (9)

integrating (4), and applying boundary conditions (5) and (8), yields the mass conservation equation
in terms of q,

ht − F(x, t) + qx = 0. (10)

The flow is modelled either by the 2-D Navier–Stokes equations or by one of the two reduced-
dimension long-wave models, which are derived according to either the Benney46 or weighted-
residual47 methodology in order to approximate the flow in a long wave limit. To achieve this, we
define new variables

X = δx, T = δt, v = δw, C = δ2C, F = δ f (11)

and seek a solution for small δ. The extension of these two long wave models to include the effects
of suction/injection is discussed by Thompson, Tseluiko, and Papageorgiou,23 and so the relevant
governing equations are stated without derivation here.

B. Benney system

In the Benney model, the flux q is slaved to the interface height h, and up to first order in δ,
including the cross-flow effects induced by F, the flux is given by23
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q(X,T) = 2h3

3
+ δ


h3

3

(
−2hX cot θ +

hXXX

C

)
+ R

(
8h6hX

15
− 2h4 f

3

)
. (12)

We then recast the equation in terms of the original variables to obtain

q(x, t) = h3

3

(
2 − 2hx cot θ +

hxxx

C

)
+ R

(
8h6hx

15
− 2h4F

3

)
= Z(h,F). (13)

The coupling of (13) to (10) yields a closed system for the evolution of the interface height h(x, t).
We note that the appearance of terms involving F in (13) is a consequence of the choice of F

with respect to the long wave scaling. By supposing F to be an order smaller with respect to δ in the
long wave expansion (11), we can replace (13) with the simpler version,

q(x, t) = h3

3

(
2 − 2hx cot θ +

hxxx

C

)
+

8Rh6hx

15
. (14)

In this limit, the only effect of F on the system dynamics is via its appearance in the mass conservation
equation (10).

C. Weighted-residual system

Alternatively, following the weighted-residual methodology developed by Ruyer-Quil and Man-
neville,47 the flux q gains its own evolution equation, so that time derivatives of both h and q appear
in the equations. After substituting (11) into the governing equations and retaining terms up to and
including O(δ), the evolution equation for q is23

2δRh2

5
∂q
∂T
+ q =

2h3

3
+ δ


h3

3

(
−2hX cot θ +

hXXX

C

)
+ R

(
18q2hX

35
− 34hqqX

35
+

hq f
5

)
. (15)

In the original variables, (15) becomes

2
5

Rh2qt + q =
h3

3

(
2 − 2hx cot θ +

hxxx

C

)
+ R

(
18q2hx

35
− 34hqqx

35
+

hqF
5

)
= Z(h,q,F), (16)

which when coupled to (10) yields a closed system, for h(x, t) and q(x, t). Initial conditions are
required for both h and q. The Benney and weighted-residual models are identical when R = 0, and
can be shown to agree at O(1) and O(δ) in the long-wave limit.23

D. Choice of controls

The focus of this paper is on the application of blowing and suction as a linear control mechanism
in response to observations of the interface height. We begin in Sec. III by considering the case of
controlling towards the uniform Nusselt state, based only on observations of h. To achieve this, we
set

F(x, t) = −α[h(x, t) − 1], (17)

where α is a real constant to be chosen; in most cases, we find that the uniform state becomes increas-
ingly stable for large positive α. Note that if h = 1 everywhere, then the controls have zero magnitude.

The control scheme (17) requires perfect knowledge of the instantaneous interface shape h(x, t),
and the ability to impose any continuous F(x, t). In practice, we expect neither of these assumptions
to hold. Instead, fluid is injected via a number of localised actuators, or slots, in the substrate, and
interface observations are available at a small number of locations in the flow domain. In Sec. IV,
we investigate control schemes based on point actuators and localised observers, with both static
observations and dynamic observers, and the appropriate form of the injection profile F(x, t) will be
discussed when necessary.

In Sec. V, we consider controlling towards either nonuniform travelling waves of permanent form
or nonuniform steady states. Travelling waves can be written as h = H(ζ), where ζ = x −Ut and U
is the constant propagation speed. By direct analogy to (17), we set

F(ζ, t) = −α[h(ζ, t) − H(ζ)]. (18)
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We note that if h(x, t) = H(x −Ut) for all time, then F = 0, so that the travelling wave h = H(x −Ut),
is also a solution of the controlled equations. Nonuniform steady interface shapes H(x) are not steady
states of the equations when F = 0, but Thompson, Tseluiko, and Papageorgiou23 showed that impos-
ing a steady suction component S(x) enables non-uniform steady states. Combining with linear con-
trol, we obtain

F(x, t) = −α[h(x, t) − H(x)] + S(x). (19)

For non-uniform states, the calculation of S(x) to obtain an exact steady state, or of the travelling
wave solution H(ζ), requires detailed knowledge of the governing equations. For example, these
states differ even between the Benney and weighted-residual models, let alone the Navier–Stokes
equations. In Sec. V C, we consider the robustness of our control schemes when the model details
are not well known; we do so by controlling towards a finite-amplitude non-uniform state H(x), but
setting S(x) = 0, so that the target state is not a steady solution. As a result, the control parameter α
has a role to play in setting both the shape of any steady states obtained, as well as their stability.

E. Numerical calculations for linear stability of non-uniform solutions

For a translationally invariant system, as occurs for distributed controls towards a uniform film
state, the linear stability of the uniform film state can be calculated via a normal mode analysis, and
this will be pursued for the Benney, weighted-residual and Navier–Stokes systems in Section III.
However, if the base state for the stability analysis is not uniform, or the feedback control system
has localised actuators or observers, then the system is no longer translationally invariant, and so the
eigenmodes of the system are no longer normal modes. In that case, we can compute the discretised
eigenmodes of the system by formulation and numerical solution of a generalised eigenvalue problem
for linear stability, as described below.

We consider the evolution of a small perturbation ĥ,

h = H(x) + ϵ ĥeλt, q = Q(x) + ϵ q̂eλt, F = S(x) − ϵeλtαĥ. (20)

We recall the Benney equation

ht + qx − F = 0, q = Z(h,F), (21)

where Z(h,F) is defined in (13) and expand for small ϵ . The equations at O(1) in ϵ must be satisfied
by the base state H(x), Q(x), S(x). At O(ϵ), we obtain a generalised eigenvalue problem for ĥ, q̂, and
λ,

λ *
,

I 0
0 0

+
-
*
,

ĥ
q̂
+
-
= *
,

−αI −∂x
Zh − ZFαI −I

+
-
*
,

ĥ
q̂
+
-
, (22)

where ∂x is the derivative operator, I is the identity matrix, and the blocks Zh and ZF are linear
operators, for example, from (13), we have

Zh =


H2

(
2 − 2 cot θHx +

Hxxx

C

)
+

16RH5Hx

5
− 8H3RS

3


I

+


−2H3

3
cot θ +

8R
15

H6

∂x +

H3

3C
∂xxx. (23)

We can eliminate q̂ to obtain a smaller eigenvalue problem for ĥ alone,

λ ĥ = −∂xZhĥ − [I − ∂xZF]αĥ. (24)

For the uniform state, H = 1, Q = 2/3, and S = 0, the blocks Zh and ZF simplify considerably; in fact,
we can calculate the eigenvalues analytically in that case. For non-uniform base states, we calculate
the eigenvalues by replacing the derivative operators with pseudo-spectral derivative matrices, and
solving the eigenvalue problem numerically using standard algorithms available in M.
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We can also write the flux equation of the weighted-residual system in a similar form

2
5

Rh2qt + q = Z(h,q,F). (25)

We again obtain a generalised eigenvalue problem for ĥ, q̂, and λ in the weighted-residual equations,

λ
*..
,

I 0

0
2
5

RH2I

+//
-

*
,

ĥ
q̂
+
-
= *
,

−αI −∂x
Zh − ZFαI Zq − I

+
-
*
,

ĥ
q̂
+
-
, (26)

where the blocks Zh, Zq, and ZF can be obtained by differentiating (16). We note that there are twice
as many eigenmodes in the weighted residual equations as in the Benney equation.

In addition to linear stability calculations, we also perform a number of initial value calculations
as described by Thompson, Tseluiko, and Papageorgiou,23 involving a pseudo-spectral method for
spatial discretization, and a fully implicit, backward finite difference time stepper.

III. EFFECT OF PROPORTIONAL CONTROLS ON THE STABILITY OF A UNIFORM FILM

The uniform film state h = 1, known as the Nusselt solution, is a steady solution to all three sets of
equations (Navier–Stokes, Benney, and weighted-residual) in the absence of suction. The base state
is

h = 1, q = 2/3, u = y(2 − y), v = 0, p = 2(1 − y) cot θ. (27)

In the 2-D Navier–Stokes,48,49 Benney,46 and weighted-residual models,47 this solution is linearly
stable to perturbations of all wavelengths if

R < R0 ≡
5
4

cot θ. (28)

As R is increased across this threshold, the first perturbations to become unstable are those with infi-
nite wavelength, and in fact the long-wavelength nature of the instability was the physical motivation
for the development of long-wave models.

The application of linear controls F = −α(h − 1) affects the linear stability of the Nusselt solu-
tion. As the system is invariant under translation in x, the eigenmodes are proportional to exp(ik x),
and so we write

h = 1 + ϵ ĥeik x+λt, q =
2
3
+ ϵ q̂eik x+λt (29)

and seek a solution for ϵ ≪ 1. We aim to compute λ(k); solutions are stable to perturbations of all
wavelengths if the real part of λ,ℜ(λ), is negative for all real k. In what follows we calculate λ for
each of the models including feedback control in order to establish that the constant α can be chosen
stabilise the uniform flow described in (27). In the case of Benney and weighted-residual models, this
can be performed analytically, whereas for the Navier–Stokes equations we compute the eigenvalues
numerically.

A. Benney equations

Linearising the mass conservation equation (10) yields

λ ĥ + αĥ + ikq̂ = 0. (30)

Substituting (29) into (13) gives

q̂ =
(
2 − 2ik cot θ

3
− ik3

3C
+

8ikR
15
+

2αR
3

)
ĥ, (31)

and combining (31) with (30) yields a single eigenvalue λ,

λ = −α
(
1 +

2Rik
3

)
− 2ik +

8k2

15

(
R − 5 cot θ

4
− 5k2

8C

)
. (32)
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FIG. 2. Results for the real part of the Benney eigenvalue λ as a function of k , for R = 5, C = 0.05, θ = π/4 and α = 0 (solid
lines), and α =αB = 0.15 (dashed lines) from (34).

Throughout this paper, we will suppose that α is real and independent of k, and taking α > 0
in (32) is seen to have a stabilising effect on the Benney system. If R < R0, the Nusselt solution is
linearly stable for all real k in the absence of controls and becomes more so as α increases. However,
if R > R0, there is a finite k with maximum growth rate, and it is easy to show that

max
k
ℜ(λ) = −α + 16C(R − R0)2

75
. (33)

Hence, we can stabilise the uniform film state against perturbations of all wavelengths by choosing
α > αB, where

αB =
16C(R − R0)2

75
. (34)

The dispersion relation (32) is plotted with and without controls in Fig. 2, for parameters at which
the uncontrolled solution is unstable. In the absence of controls, the real part of λ is positive for small
k, with a finite cutoff wavenumber kc, above which the real part rapidly becomes increasingly nega-
tive. Setting α = αB shifts the real part of the entire spectrum by −αB. This means that perturbations
of very small wavenumber decay with a finite growth rate of approximately −αB, rather than having
a small positive growth rate in the absence of controls. The maximum growth rate occurs at the same
k as in the absence of controls, and for α = αB, this maximum growth rate is exactly zero. We can
also compare the imaginary part of λ (not shown); we find that setting α = αB slightly increases the
magnitude of the imaginary part, and hence the downstream propagation speed of small perturbations
is slightly increased.

B. Weighted residual equations

The linearised version of the weighted residual equation (16) yields

2λR
5

q̂ + q̂ =
(
2 − 2ik cot θ

3
− ik3

3C
+

8ikR
35
− 2Rα

15

)
ĥ − 68ikR

105
q̂. (35)

We combine (35) with (30) to obtain a quadratic equation for λ,

2Rλ2

5
+ λ

(
1 +

68ikR
105

+
2αR

5

)
+ α

(
1 +

18ikR
35

)
+ 2ik +

8k2RH

15
− 8k2R

35
= 0, (36)

where

RH =
5
4

cot θ +
5k2

8C
= R0 +

5k2

8C
. (37)

The characteristic equation (36) has complex coefficients, and so its two roots for λ are not complex
conjugates. We calculate the two roots for λ numerically to determine the effect of imposing controls;
Fig. 3 shows λ as a function of k, with and without controls. The eigenvalues of the weighted-residual
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FIG. 3. Results for the real part of both eigenvalues λ for the weighted-residual model as a function of k , for R = 5,C = 0.05,
θ = π/4 and α = 0 (solid lines), and α =αB (dashed lines) from (34).

equation display relatively little variation with respect to k in comparison to the Benney results, but
the two systems share the same cutoff wavenumber in the absence of feedback controls. With the
addition of feedback controls, we find that positive α decreases the real part of λ for both eigenvalues
of the weighted-residual system, with the exception of the most stable eigenmode at k = 0, which is
independent of α (see below). Choosing the critical α = αB for the Benney equation, given by (34),
is more than sufficient to stabilise the uniform state against perturbations of all wavenumbers in the
weighted-residual equations.

In the long-wave limit k ≪ 1, (36) becomes

(λ + α)
(
1 +

2Rλ
5

)
= 0 (38)

which has roots at λ = −α and λ = −5/(2R). Choosing non-zero α affects the stability of the first
root, and means that we must choose α > 0 to obtain a stable solution. The second root is unaffected
by α, and as a consequence, the maximum real part of λ across all k is always greater than −5/(2R),
regardless of the value of α.

Although the effect of α on λ is more complicated than that for the Benney equations, we can
still calculate the critical control amplitude α needed to ensure thatℜ(λ) ≤ 0 for all k. Perturbations
with very large wavenumber are always stabilised by surface tension, so all eigenvalues for large k
have negative real part. If the uniform state is unstable to perturbations for some k, then there is at
least one cutoff value of k for which ℜ(λ) = 0. We, therefore, investigate the conditions for which
there is a purely imaginary root, writing for convenience λ = −2ikΩ. We solve the imaginary part of
(36) to obtain

Ω =
1 + 9αR

35

1 + 2αR
5

. (39)

Since Ω is independent of k, we can rewrite the real part of (36) as a quadratic equation in k2,

k4

3C
+ k2

(
−8RΩ2

5
+

136RΩ
105

− 8R
35
+

8R0

15

)
+ α = 0. (40)

The roots of this equation correspond to wavenumbers whereℜ(λ(k)) = 0. When α is insufficient to
stabilise perturbations of all wavelengths, there are two roots for k2, and one root at the critical value
of α. The uniform state is stable to perturbations of all wavelengths if there are no real roots for k2,
i.e., when (40) has negative determinant. This condition can be rewritten using the definition of Ω to
obtain that the uniform state is stable if

*.
,

R


1 + 71αR
245 +

3α2R2

175

1 + 4αR
5 +

4α2R2

25


− R0

+/
-

2

<
75α
16C

. (41)
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FIG. 4. The boundaries for stability to perturbations of all wavelengths, for θ = π/4, C = 0.05. The stable region emanates
from the

√
α axis.

The term in square brackets is monotonically decreasing in αR for αR > 0. When α is small, we find

R ≈ R0 +


75α
16C

, (42)

which is exactly the Benney result. At large α,

R ≈ 28
3

*
,

R0 +


75α
16C

+
-

(43)

and so the maximum R for which the uniform solution is stable at large, fixed α in the weighted-
residual model is nearly 10 times larger than predicted by the Benney model. The stability boundaries
for the Benney and weighted residual results are given by (34) and (41) and are plotted in the

√
α-R

plane in Fig. 4, together with the corresponding Navier–Stokes results as discussed below; it appears
that the stable region of the Benney equation is always a subset of the stable region according to the
weighted-residual equation, so the critical α predicted by (34) is indeed a conservative estimate of
the necessary α required to stabilise the uniform film to perturbations of all wavelengths.

C. Navier–Stokes equations

We can compute the linear stability of the Nusselt state in the two-dimensional Navier–Stokes
equations, subject to distributed feedback controls, by a normal mode analysis. This analysis is well
known in the absence of suction.50 The addition of suction controls changes only one boundary
condition in the resulting Orr-Sommerfeld system, and so only a brief description of the equations is
presented here.

We perturb about the uniform state, writing

h = 1 + ϵ Ĥ exp(ik x + λt),
u = ū(y) + ϵÛ(y) exp(ik x + λt),
v = 0 + ϵV̂ (y) exp(ik x + λt),
p = p̄(y) + ϵ P̂(y) exp(ik x + λt),

(44)

where ū(y) = y(2 − y) and p̄(y) correspond to the uniform film solution described in (27), and then
linearise with respect to ϵ . The perturbation velocity components Û(y) and V̂ (y) can be expressed
in terms of a streamfunction ψ(y), so that

Û(y) = −ψ ′(y), V̂ (y) = ikψ(y), (45)

which immediately satisfies the mass conservation equation (4). The two components of the mo-
mentum equations (2) and (3) can then be combined to yield the Orr-Sommerfeld equation, which is
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a linear ordinary differential equation for ψ in 0 < y < 1,(
d2

dy2 − k2
)2

ψ = R[λ + ikū(y)]
(

d2

dy2 − k2
)
ψ − ikū′′(y)Rψ. (46)

The boundary conditions at the free surface are unaffected by α, and after some manipulation
involving (2) to eliminate the fluid pressure, we obtain three boundary conditions at the free surface,

−ψ ′′′(1) + (Rλ + ikR − 3k2)ψ ′(1) = 2ik Ĥ cot θ +
ik3Ĥ

C
,

ψ ′′(1) = −2Ĥ − k2ψ(1), ikψ(1) = (λ + ik)Ĥ .
(47)

The no-slip boundary condition on the wall yields

Û(0) = −ψ ′(0) = 0 (48)

and the responsive flux through the wall becomes the boundary condition

V̂ (0) = ikψ(0) = −αĤ . (49)

When k = 0, we can solve (46)-(49) for ψ(y) and λ analytically, and enumerate the eigenmodes.
There is a single eigenmode that involves perturbations to the interface height (i.e., Ĥ , 0), and for
this eigenmode λ = −α at k = 0. There are also an infinite number of shear eigenmodes which leave
the interface position unperturbed. These eigenmodes are all stable, and the eigenvalue with the largest
real part satisfies λR = −(π/2)2, irrespective of α.

For k , 0, we solve (46)-(49) numerically. We can formulate the system as a generalised eigen-
value problem for ψ, Ĥ , and λ, discretise the derivative operators on ψ using finite differences or
Chebyshev polynomials, and solve the resulting generalised eigenvalue problem using standard M-
 routines. Alternatively, we can formulate the complete system for the real and imaginary parts
of ψ and λ as a boundary value problem in A-0751 with λ as a free parameter, as discussed by
Kalliadasis et al.,2 though this is only useful for tracking a single eigenmode.

Results for λ(k) are shown in Fig. 5 for the two least stable eigenmodes. In the absence of con-
trols, the Navier–Stokes results show a smaller cutoff wavenumber than the Benney and weighted
residual results. As was the case for the weighted-residual equations, we find that introducing positive
α decreases the real part of both eigenvalues shown, but has vanishing effect when k = 0 on all but
the least stable eigenmode. Furthermore, the critical α computed according to the Benney result (34)
is again sufficient to stabilise the uniform state against perturbations of all wavelengths.

In Fig. 4, we show the critical α required so thatℜ(λ) ≤ 0 for all k in the Navier–Stokes equa-
tions. This is computed in A-07, with the condition that ℜ(λ) has both a turning point and a
zero at the same value of k. When α < 0.5, this stability boundary is in good agreement with the

FIG. 5. Results for the real part of the two Navier–Stokes eigenvalues λ with the largest real part, as a function of k , for
R = 5, C = 0.05, θ = π/4 and α = 0 (solid lines), and α =αB (dashed lines) from (34).
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FIG. 6. Results of an initial value calculation using the weighted residual equations, starting from a non-uniform,
non-equilibrium state, which evolves without suction until t = 100. For t > 100, we enable feedback controls with F =

−0.5(h−1), and the system converges towards the uniform state. Flow fields for the four instants marked with black dots are
shown in Fig. 7.

weighted-residual results, with both predicting that the critical Reynolds number is increased substan-
tially, from its uncontrolled value of 1.25 to around 50. Beyond this point, the weighted-residual re-
sults predict that the critical R should continue to increase rapidly with α. However, the Navier–Stokes
results show a turning point in R(α), followed by a very slow decrease in R as α is increased. This
eventual deviation is not entirely unexpected, given the wide range of Reynolds number spanned in
the calculation of Fig. 4.

D. Initial value calculations

Although we have demonstrated that the control parameter α can be chosen to make the uni-
form state linearly stable to perturbations of all wavelengths, it is not necessarily the case that the
system will converge to the uniform state in nonlinear simulations. In Fig. 6, we show results of an
initial value calculation of the weighted-residual system, starting from a finite-amplitude state that is
neither a steady nor travelling-wave solution of the weighted-residual equations. We initially allow
this state to evolve without controls and find that the system moves towards a travelling wave state of
finite amplitude. We then activate the feedback controls with α = 0.5, which is large enough that the
uniform state is linearly stable. Instantaneous flow fields are shown in Fig. 7 just before and after the
application of controls. After the decay of transient behaviour, we observe from Fig. 6 that the distance
of the solution to the desired state decays exponentially with respect to time, which is consistent with
the expectation that the largest deviation is due to a single eigenmode which decays at constant rate.
As the imposed injection is proportional to h − 1, the control magnitude also decays exponentially
with time and the film becomes increasingly uniform. However, although the amplitude of the applied
injection and suction becomes vanishingly small at late times, the feedback control scheme is still
required to suppress the growth of small perturbations, and thus to ensure the linear stability of the
system.

E. Linear stability for phase-shifted distributed controls

As an initial step towards designing a more efficient system for feedback control, we can inves-
tigate the effect of shifting observations relative to actuators, still using a normal mode analysis. We
replace the control scheme (17) with a scheme based on shifted observers,

F(x, t) = −α[h(x − ξ, t) − 1]. (50)

Here, the real parameter ξ is the distance between observer and actuator. Positive ξ means that the
observers are displaced upstream relative to the position at which the injection is applied. This scheme
introduces no favoured x locations, and so the eigenmodes can still be written as

h = 1 + ϵ ĥ exp(ik x + λt) +O(ϵ2), q = 2/3 + ϵ q̂ exp(ik x + λt). (51)
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FIG. 7. Instantaneous flow fields at moments just before and after the application of controls (which is at t = 100) for the
same calculation as Fig. 6. At t = 95, the system has reached a travelling wave state. Controls are activated at t = 100, and the
magnitude of controls is the largest there. At subsequent times, the interface is closer to the flat state, and so smaller controls
are needed. Here, R = 5, C = 0.05, and θ = π/4, and the domain is periodic with period 40.

We then find

F = −αe−ikξϵ ĥ exp(ik x + λt). (52)

We thus simply replace α by α exp(−ikξ) in (32) and (36) to understand the effect of ξ on the eigen-
values of the Benney and weighted-residual models, respectively. For both models, we can perform
a numerical search to calculate the boundary of the region in α-ξ space where the uniform state is
stable to perturbations of arbitrary wavelengths, as shown in Fig. 8; for the parameters in this figure,
we find that choosing ξ ≈ 2 has the best stabilising effect in both models, in the sense that a stable
uniform state is obtained at the lowest value of α. There are some differences between the results for
the two models: the effect of positive ξ is less pronounced in the weighted-residual model than in
the Benney calculations, and in fact for the weighted-residual model, choosing positive ξ eventually
becomes less stabilising as α is increased.

FIG. 8. Linear stability properties of the uniform state as a function of the control strength α and the displacement ξ between
observer and actuator, with control scheme (50) for R = 5, θ = π/4, C = 0.05. Stability results refer to perturbations of all
wavelengths. The lowest α is required at a finite positive value of ξ. The dashed line shows the O(k2) optimiser in the Benney
equations: ξ = 2R/3. (a) Benney. (b) Weighted-residual.
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In order to understand why the control scheme is most effective when actuators are displaced
upstream by a finite distance, we can expand the Benney eigenvalue under the assumption that kξ is
small, to reach

ℜ(λ) = −α
(
1 + k2ξ


2R
3
− ξ

2

)
+

8k2

15

(
R − 5 cot θ

4
− 5k2

8C

)
. (53)

To maximise the effect of α, we should choose ξ = 2R/3, which provides a reasonable estimate of the
optimal ξ, as shown in Fig. 8. This should become a better estimate as R → R0, so that the unstable
k move towards zero.

IV. APPLYING CONTROLS VIA POINT ACTUATORS

A physically important question that we wish to address next is the application of suction controls
using point actuators, and based on a limited number of observations of the system state. Here, we
consider only behaviour within a spatial period of length L, and only stabilisation of the uniform state.

We are given the localised actuator functions Ψm(x), so that

F(x, t) =
M

m=1

bm(t)Ψm(x), (54)

where the M coefficients bm(t) are to be determined from P discrete observations yp(t) of the interface
height,

yp(t) =
 L

0
Φp(x)(h(x, t) − 1) dx. (55)

We note that the explicit x-dependence of the system that arises from localised actuators and
observers means that the system is no longer translationally invariant in x, and so linear stability
properties of even a uniform film in the Navier–Stokes equations cannot be obtained by a normal
mode analysis. Instead, we derive most of our control strategies using the Benney model and use the
weighted-residual model as a black box experiment to represent the additional complexities of the
full physical system subject to controls derived using a low order model.

As a starting point, we suppose that the controls are a linear function of the observations available
at a given instant, which is known as a static observation scheme. In the most general form, we can
then write

F = ΨKΦ(h − 1). (56)

Here, the operator Φ describes observations of the system, Ψ represents the shape of the actuators,
and K is the control operator which we are free to choose based on our knowledge of Φ, Ψ, and the
system dynamics. We will use M linearly independent actuators and P observations, which are the
ranks ofΨ andΦ, respectively. In a discretised form,Ψ andΦ are matrices of size N × M and P × N ,
respectively. The matrix K has size M × P, and we may choose all of its entries. Given this form
for F, we can compute the linear stability of a given steady state by replacing α with −ΨKΦ in the
eigenvalue problems described in Sec. II E.

A. Choice of point actuators and observers

We choose to use M equally spaced actuators, which are each periodic with period L and locally
behave as Dirac δ-functions, so that

Ψm(x) = δ(x − xm), xm = mL/M. (57)

We similarly use P equally spaced observer functions, which are displaced upstream by a distance ξ
from the actuator positions, so that

Φp(x) = δ(x − xp), xp = pL/P − ξ. (58)
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FIG. 9. A typical row of the matrix K , or feedback gain, obtained by the LQR algorithm, with 5 equally spaced actuators,
with shape smoothed according to (59) with w = 0.1, and shown by the dotted line here. The cost parameter for (64) is
µ = 0.1, and for the weighted-residual equation, the same cost weighting is associated with q−2/3 as for h−1.

For our numerical calculations, we replace δ(x) in (57) and (58) by the smoothed, periodic func-
tion d(x), defined by

d(x) = exp


cos(2πx) − 1
w2


. (59)

One such actuator shape function is plotted in Fig. 9 for w = 0.1. We normalise the smoothed func-
tions d(x) so that each actuator and observer shape function has integral 1 over the interval [0,L],
and so d(x) → δ(x) as w → 0.

B. Proportional control

If the number of actuators is equal to the number of observers, one of the simplest methods to
choose the suction/injection profile is to link each actuator to a neighbouring observer, setting

bm(t) = −αym(t), (60)

where the positive control amplitude α acts analogously to the control parameter α in Sec. III. In terms
of the generalised eigenvalue problems, we simply set K = −αI. If all actuators, and all observers,
are equally spaced, the control scheme is specified entirely by α and the displacement ξ between
actuator and observer. In Sec. III, we considered the continuous analogue of this scheme, with feed-
back at every point proportional to the interface height at that point only. We found that positive α
had a stabilising effect on the system dynamics according to both long-wave models and also in the
Navier–Stokes equations.

When applying the proportional control scheme (60) with localised observers and actuators, the
eigenmodes are not sinusoidal with respect to x, and so we calculate the linear stability properties
numerically by solving an eigenproblem; note that this calculation only allows for perturbations with
wavelength at most L. We find that increasing α has a stabilising effect on the uniform film, and
that the value of α required to obtain a linearly stable state decreases when increasing the number of
actuators M and observers P (see Fig. 10).

We can also investigate the effect of the displacement ξ between the observers and actuators on
the linear stability of the uniform state. As discussed in Sec. III E, the uniform state is most easily
stabilised by distributed controls when ξ ≈ 2, and when R is close to R0, this best choice for ξ is given
by ξ ∼ 2R/3. However, the use of localised observers and actuators introduces a natural lengthscale
L/M , which is the distance between neighbouring observers, and for the analysis in this section, we
also have the lengthscale L of the imposed periodicity. We can numerically calculate the effect of the
displacement ζ on the linear stability of the uniform film, subject to control scheme (60), by solving
an eigenvalue problem for each ξ and α. Fig. 10 shows the stability boundaries in α-ξ space for
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FIG. 10. Stability results as the control amplitude α is varied, with a phase shift ξ between actuator and observer. There
are M equally spaced actuators, and P =M equally spaced observers, each smoothed according to (59) with w = 0.1, and
results are shown for M = P = 3,5,7,9. The largest stable region occurs for M = 9. As is the case for distributed actuators
(see Sec. III E and Fig. 8), the best stabilisation occurs at a moderate, positive value of ξ, so that the observers are positioned
upstream relative to the actuators. (a) Benney. (b) Weighted-residual.

M = P = 3,5,7,9. We find that a stable state can be obtained at the smallest α when ξ ≈ 2, which is
comparable to the results of the calculations for distributed controls and observations shown in Fig. 8,
despite the additional lengthscales present in the system with localised observers and controls. The
magnitude of α required to stabilise the uniform state generally decreases as M = P is increased, but
even for just three actuators, we can stabilise the uniform film state by choosing a sufficiently large
α with ξ ≈ 3.

C. Linear-quadratic regulator (LQR) with full observations

The control scheme described in Subsection IV B only allows each actuator to communicate
with a single observer. We should be able to obtain better control by allowing data from all observers
to be combined before determining the actuator amplitudes; we will still consider linear control, but
allow all entries of the M × P matrix K to be non-zero. This more general scheme can also encompass
situations where M , P.

The statement that the full system state can be observed is a stringent constraint; for the weighted-
residual model, this requires simultaneous information regarding h(x, t) and q(x, t), and in the Navier–
Stokes system, the full system state includes two components of the velocity field along with the inter-
face height. Notwithstanding the difficulties of obtaining full observations, if we are somehow able
to observe the full system state, a variety of algorithms from control theory can be used to compute
the controls. Here, we choose to use the LQR algorithm,31 which determines K so as to minimise a
cost functional associated with the control amplitudes and the deviation of the system from the flat
state.

The LQR algorithm is designed for the system

dz
dt
= Jz + Ψu, u = K z, (61)

where z and u are vectors, the matrices J and Ψ are given, and we wish to choose the matrix K in
order to minimise the cost κ defined by

κ =

 ∞

0

�
zTUz + uTVu

�
dt, (62)

where U and V are given symmetric, positive definite matrices that define the relative cost associated
with different solution components. A minimiser K of cost (62) subject to system (61) is strongly
connected to a solution, if it exists, of an algebraic Ricatti equation

U + PJ + JTP − PΨV−1
Ψ

TP = 0, (63)
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in which the unknown P is a non-negative definite matrix. If P̃ is a solution to (63) and P̃ − P is nega-
tive definite for all other solutions P, then P̃ is called a minimal solution to (63) and K = −V−1ΨT P̃
minimises the cost functional (62). Furthermore, in Zabczyk,31 it is proved that if the pair (J,Ψ) is
controllable and U = CTC, where the pair (J,C) is observable (see the Appendix for definitions of
controllability and observability) then the algebraic Ricatti equation (63) has exactly one solution P,
and the matrix J − ΨV−1ΨTP is stable.

For simplicity, we use the following cost functional, in terms of our variables:

κ =

 ∞

0

 L

0

�
µ(h − 1)2 + (1 − µ)F2	 dx dt . (64)

For a given physical system, the control scheme is a function of the single parameter µ ∈ (0,1). The
choice of K and the resulting system eigenvalues are dependent on µ, but a stable system should be
obtained for any 0 < µ < 1. Row m of the matrix K determines the amplitude of actuator m,

bm(t) =
N
n=1

Kmn(hn(t) − 1). (65)

Fig. 9 shows one such row, or feedback gain, computed using the LQR algorithm, as implemented
using the M LQR function, for the Benney and weighted-residual equations. The LQR algo-
rithm gives very smooth control input functions for the Benney equation. The largest part of the input
function is localised slightly upstream of the actuator location when using the full Benney equation
(13), or more centrally when using the simplified version (14). We can insert the Benney controls
directly into the weighted-residual model, and in fact still obtain a stable state.

We can also use the LQR algorithm to calculate controls for the weighted-residual model, but the
controls require observations of both h and q. We also note that the control input functions (Fig. 9)
have relatively sharp edges near the width of the actuator. The full LQR controls are able to stabilise
the uniform state in the weighted-residual model, and for our test case the maximum real part of any
eigenvalue is−5.62 × 10−2. Realistically, we are unlikely to have access to observations of both h and
q, and so it would be desirable to approximate q from our observations of h using a low order model.
The simplest method is to suppose that q = 2/3, in effect discarding the control component from q.
We find that this yields a linearly stable system, but the maximum real part of any eigenvalue is then
−5.09 × 10−3, so that convergence towards the uniform state would be very slow. We can recover the
information regarding the q controls by supposing that q = 2h3/3 (as shown in (13), this is the leading
order flux in the long-wave limit), and so q̂ = 2ĥ. The largest growth rate is then −5.64 × 10−2, which
is comparable to the growth rate obtained when the flux q can be fully observed.

D. Dynamical observers for a finite number of observations

For the LQR methodology described above, full observations of the system state are assumed
to be available. The system is specified by the interface shape in the Benney equation, but in the
weighted-residual equations we also require full knowledge of the total down-stream flux at each
streamwise location. Furthermore, for the Navier–Stokes equations, we would need to know the
instantaneous velocity at every point within the fluid. Such knowledge is unrealistic, and so we now
consider the case where the only system observations available are those of the interface height, h, at
only a finite number of points within the periodic domain. In Subsection IV C, we showed that if full
observations are available, standard algorithms, such as LQR, can be used to construct a control matrix
K for the instantaneous control scheme (56) so that localised actuators can be used to stabilise the uni-
form state. Alternatively, if distributed actuators can be applied, the LQR algorithm can also be used to
calculate a control scheme subject to localised observers (see discussion in the Appendix). However,
if there are restrictions on both actuators and observers, it is not always possible to construct a control
scheme based on (56) so that the uniform state is linearly stable. Instead, we turn to a system of dynam-
ical observers, in which both current and historical observations are used to determine the controls.
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The principle of the approach described here is to construct an approximation of the system state
which is continually corrected based on the observations available. We focus our effort on approximat-
ing the coefficients of those modes which are unstable in the uncontrolled system. We use the dynamic
method described by Zabczyk31 and applied for the KS equation in Armaou and Christofides,35 where
the predictions evolve in time according to our understanding of the linearised system behaviour in
the form of its Jacobian matrix and the system amplitudes, and the predicted amplitudes are corrected
according to our observations. This is in contrast to static observation schemes, which can be written
in the form of (56), where the controls are calculated only from the most recent set of observations.

After transformation to Fourier space, we can describe the evolution of a small perturbation h̃ in
the (simplified) Benney equation (14) by

dh̃
dt
= J̃ h̃ + F̃ . (66)

In the absence of suction, the system has no preferred positions, and so the eigenvectors of J are
Fourier modes, and the transformed Jacobian matrix J̃ is diagonal. We reorder the wavenumbers so
that the unstable eigenmodes of J appear first,

dh̃
dt
= J̃ h̃ + F̃ = *

,

J̃u 0
0 J̃s

+
-

h̃ + F̃, (67)

where the subscripts u and s correspond to unstable and stable modes, respectively. We wish to control
to the state h̃ = 0.

To stabilise the zero state of this system, we would ideally leave the stable modes untouched,
while choosing F to react to the unstable modes. This can be achieved by letting

F̃ = Ψ̃K̃ h̃u = *
,

Ψ̃u

Ψ̃s

+
-

K̃ h̃u, (68)

so that

d
dt

*
,

h̃u

h̃s

+
-
= *
,

J̃u 0
0 J̃s

+
-
*
,

h̃u

h̃s

+
-
+ *
,

Ψ̃uK̃ 0
Ψ̃sK̃ 0

+
-
*
,

h̃u

h̃s

+
-
= *
,

J̃u + Ψ̃uK̃ 0
Ψ̃sK̃ J̃s

+
-
*
,

h̃u

h̃s

+
-
. (69)

The matrix on the right-hand side of the eigenvalue problem is lower triangular by blocks, and the
block J̃s is diagonal. The eigenvalues and eigenvectors corresponding to J̃s are thus unchanged by F̃.

The remaining task is to stabilise the subsystem

dh̃u

dt
= J̃u h̃u + Ψ̃uK̃ h̃u. (70)

To choose the matrix K̃ , we use the LQR algorithm on subsystem (70), which has size equal to the
number of unstable modes, M . However, to apply these controls, we need to approximate z = h̃u

based on our observations. We can write our discrete set of observations as y = Φ(h − 1), ỹ = Φ̃h̃ =
Φ̃u h̃u + Φ̃sh̃s.

We can obtain a good approximation of z by considering a set of ordinary differential equations,

dz
dt
= ( J̃u + Ψ̃uK̃)z + L(y − ȳ) = �

J̃u + Ψ̃uK̃ − LΦ̃u

�
z + L y, ȳ = Φuz. (71)

Here, ȳ is the expected set of observations based on our current approximation to the system, and the
L(y − ȳ) term indicates a correction based on our actual observations. Once we know z, we can set
F̃ = Ψ̃K̃ z. However, we still need to choose the matrix L in order that z will converge rapidly to h̃u.
We define an error term: ẽ = h̃u − z, and after several substitutions we find that ẽ is governed by

dẽ
dt
= Y ẽ − LΦsh̃s, Y = J̃u − LΦ̃u. (72)

To obtain rapid convergence of our estimator z towards the true system state, we need the eigenvalues
of the matrix Y to have large and negative real part, and we can use the LQR algorithm to obtain
a suitable matrix L to achieve this. If the conditions on the eigenvalues of Y are satisfied, it can be
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FIG. 11. Distance between current solution and uniform film state as a function of time for M = 5 actuators, with P

observers, and maximum real part of the eigenvalues of system (73) as a function of P. The actuator and observer shapes are
as described by (59), with w = 0.1 and ξ = 0. The initial condition is h = 1+0.3cos(2πx/L)+0.1sin(4πx/L), with L = 30.

proved that the solution z to (71) converges exponentially to the true coefficients h̃u of h as long as
the initial guess is sufficiently good. Furthermore, if the real part of these eigenvalues is sufficiently
large (in absolute value), then we can write Y = Y/ϵ for small ϵ and, by multiplying (72) by ϵ , can
obtain a system of equations in the standard singularly perturbed form.52 This system possesses an
exponentially stable fast subsystem (the equation for z) and an exponentially stable slow subsystem
(the (stabilised) linearised equation for h), which implies that system (73) is exponentially stable.

We can rewrite the complete system in real space to determine the behaviour of the nonlinear
initial value problem,

ht + qx = F(x, t), (73a)

q(x, t) = h3

3

(
2 − 2hx cot θ +

hxxx

C

)
+

8Rh6hx

15
, (73b)

F(x, t) = F −1
Ψ̃K̃ z, (73c)

dz
dt
=
�
J̃u + Ψ̃uK̃ − LΦ̃u

�
z + L y, (73d)

y = Φ(h − 1), (73e)

where F is the Fourier transform operator. It can be seen from (73c)-(73e) that the feedback control
F is calculated only from those observations of the true system state h attainable through the matrix
Φ.

It is necessary to alter, and hence approximate, all of the unstable eigenmodes of the system in
order to stabilise the uniform state, and so the size of z must be equal to or greater than the number
of unstable modes. We expect to achieve better performance as the number of tracked and stabilised
modes is increased. The number of actuators M need not be equal to the number of observers P,
and Fig. 11 shows system eigenvalues as P is increased for M = 5 (note that P is odd). We find that
choosing P = 7 gives much faster convergence than P = 5, but further increases in P have negligible
effect on the eigenvalues. However, nonlinear initial value simulations of system (73) benefit from
taking P = 9. In Fig. 12, we compare nonlinear initial value calculations for M = 5, based on P = 5
and on full observations. We find that much faster convergence is obtained with full observations.

The system of equations for dynamic observers shown in (73) is for the simplified version of the
Benney equation (14). The analysis can be extended to include cross flow effects present in (13) by
left-multiplying Ψ by (I − ∂xZF) before computing Ψ̃u. The Benney control scheme can be imple-
mented in the weighted-residual equation by simply replacing Equation (73b) by (16), but we cannot
be certain that the resulting system will be linearly stable. For our test case, we find that even the linear
stability of the uniform state in the weighted-residual equations is sensitive to P, with P = 5 stable,
but P = 7 unstable. A full analysis of the approximately controlled weighted-residual equation is a
topic for future work.
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FIG. 12. Semi-log plot of the distance between the current and flat states (left) and amplitudes of controls as a function
of time (right), for M = 5. For the upper row of figures, we use P = 5 observations, while for the lower row, we use full
knowledge of the interface height h.

V. CONTROLLING TO NON-UNIFORM SOLUTIONS WITH DISTRIBUTED CONTROLS

Feedback controls of the form F = −α(h − H) can also be used to drive the system towards
non-uniform states, by setting the target state H to be spatially varying. We would like to know
whether the state h = H is always reached, and whether this state is stable. Small perturbations about
H are always affected by the feedback controls, and so α will change the linear stability properties
of the state H . As F = 0 when h = H , the system can only remain in this state if h = H is an exact
solution of the equations in the absence of suction. We will discuss the system dynamics when H is
not an exact solution of the governing equations in Sec. V C. The extension of the localised control
schemes developed in Sec. IV to stabilise a non-uniform state is a non-trivial task, as discussed in
Sec. V D, and is left for future work.

A. Travelling waves

The long-wave systems support non-uniform travelling wave solutions, of the form h = H(x −
Ut), where U is the propagation speed. Travelling waves undergo bifurcations (see, e.g., Oron and
Gottlieb53), and may be stable or unstable in the corresponding moving frame. If the target state H is
an exact travelling wave solution to the equations in the absence of suction, then the state H is also
a travelling wave solution to the same equations with F = −α[h − H(ζ)], and thus the application of
controls affects the stability but not the shape or speed of the targeted travelling wave. It is important
to note that the shapes and bifurcation structure of travelling waves differ between the models.

Fig. 13(a) shows an unstable travelling wave solution to the Benney equation. For simplicity, we
limit perturbations to those periodic with the same spatial period as the travelling wave. In order to
compute the stability of travelling waves, we transform to the frame moving at speed U, and then
identify x with ζ . For the Benney equation, the generalised eigenvalue problem (24) becomes

λ ĥ =
�
U∂ζ − ∂ζZh − [I − ∂ζZF]α	 ĥ. (74)

We note that if ZF = 0, which is the case for the simplified Benney equation (14), then the eigenvalues
λ are shifted by −α, and the eigenvectors of the system are unchanged from those in the absence
of controls. However, if we are using the standard Benney equation (13) (which includes cross-flow
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FIG. 13. (a) A travelling wave solution to the Benney equation, for R = 2, θ = π/4, C = 0.05, U = 2.82. (b) The real part of
the seven complex eigenvalues with the largest real part, as α is increased. Real eigenvalues are shown by red dashed lines,
while black solid lines indicate the real part of complex conjugate pairs. Neutral stability occurs at α = 0.0434. (c) Results
from nonlinear initial value calculations, starting from close to a uniform film, controlling towards the solution shown in (a),
for α = 0, α = 0.05, α = 0.1, α = 0.15. Convergence to H is only achieved in the two latter cases.

effects) or the weighted-residual system, the effect of α on the eigenvalues is more complicated than
a simple shift, and we solve the eigenvalue problem numerically to determine the effect of α on the
linear stability properties of the non-uniform travelling waves.

Fig. 13(b) shows the real part of the seven most unstable eigenmodes as a function of α when
considering the linear stability of the travelling wave shown in Fig. 13(a). When α = 0, this travelling
wave is unstable, with one eigenmode with a positive real eigenvalue. There are two eigenmodes with
eigenvalue zero; one corresponds to varying the mean film thickness and the other to translational
displacement of the travelling wave. The real part of the most unstable eigenvalue decreases with α,
until it collides with another eigenvalue while still in the right half plane. These two eigenvalues then
form a complex conjugate pair, which eventually crosses the imaginary axis with a finite imaginary
part, stabilising the system for α > 0.0434. This stabilisation occurs via a Hopf bifurcation, and so
we would expect to observe small-amplitude limit cycles for α just below the critical value. However,
linear stability alone does not mean that the travelling wave is necessarily an attractor when starting
from the uniform state, and indeed initial value calculations starting from the uniform film state, as
plotted in Fig. 13(c), do not reach the desired travelling wave when α = 0.05. However, the system
successfully converges to the desired travelling wave when α = 0.1 and converges more rapidly when
α = 0.15. We note that even when the system is converging to the travelling wave, the solution norms
show evidence of decaying oscillations.

B. Non-uniform steady states

We do not know of any non-uniform steady states to the Benney, weighted-residual, or Navier–
Stokes equations for flow down a planar, unpatterned wall in the absence of suction; instead structures
are swept downstream by the underlying flow. However, as discussed in Thompson, Tseluiko, and Pa-
pageorgiou,23 the application of steady non-zero suction gives rise to non-uniform steady states, with
their own bifurcation structure and stability properties. Moreover, we can often choose the applied
steady suction in order to make a given interface shape into a steady solution of the equations.

In order to include both steady suction and feedback, we use an extension of the controls,

F = −α[h(x, t) − H(x)] + S(x). (75)

Here, α is the control parameter, and S(x) is the steady component of F that we are free to specify. If
α = 0, S(x) must have zero mean to prevent growth in fluid mass, and thus to allow steady solutions.
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FIG. 14. Steady flux q and suction S for steady state (76). The solid and dashed lines correspond to Benney and
weighted-residual results, respectively.

We choose the following non-uniform steady state as the target state for our calculations:

H(x) = 1 + 0.3 cos
(

2π
L

)
+ 0.2 sin

(
4π
L

)
+ 0.2 sin

(
6π
L

)
, L = 30, (76)

shown in Fig. 14, and set R = 5, C = 0.05, θ = π/4. For these parameters, the uniform film state is
unstable. The state h = H is not a steady solution of the equations when S = 0, but we can calculate
S(x) to make it so.

For h = H to be a steady solution of the Benney equation, we have

F = S = qx (77)

and

q =
H3

3

(
2 − 2Hx cot θ +

Hxxx

C

)
R

(
8H6Hx

15
− 2H4F

3

)
. (78)

We can rearrange these two equations to obtain a single equation for S = F,

S +
(

2RH4S
3

)
x

=


H3

3

(
2 − 2Hx cot θ +

Hxxx

C

)
+

8RH6Hx

15



x

, (79)

subject to periodic boundary conditions on S(x). The right hand side of (79) is known, and the left
hand side is linear in S(x). There is, therefore, a unique solution for S(x), given H(x), in the Benney
model, and the equation has a solution for each smooth, non-zero H . We note that the task of finding
a suction profile to enable a particular steady solution is related to inverse topography problems, in
which the bottom profile is computed from observations of the interface height7 or surface velocity.27

Perhaps unsurprisingly, the linearity with respect to S obtained in (79) does not apply in the
weighted-residual model. Instead we must solve

F = S = qx (80)

and

q =
H3

3

(
2 − 2Hx cot θ +

Hxxx

C

)
+ R

(
18q2Hx

35
− 34Hqqx

35
+

HqF
5

)
, (81)

again subject to periodic boundary conditions on S and q. We can use F = qx to rewrite the second
equation as an equation for q alone,

q =
H3

3

(
2 − 2Hx cot θ +

Hxxx

C

)
+ R

(
18q2Hx

35
− 27Hqqx

35

)
, (82)

but this is nonlinear in the unknown q, and so we cannot guarantee existence or uniqueness of solu-
tions. However, solutions should still exist when H is close to 1, and for the non-uniform state (76),
we obtain the solution shown in Fig. 14.
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FIG. 15. Illustration of a transcritical bifurcation that occurs when controlling to an unstable steady state (with minimum
value 0.1375) that has only one positive eigenvalue. Exchange of stability occurs through a transcritical bifurcation at
α = 1.92, necessitating the existence of another solution branch, which here connects to a stable steady solution for the
same S at α = 0. The second solution branch only persists slightly beyond the transcritical bifurcation, here diverging
through the minimum layer height vanishing at a finite value of α. The parameters here are R = 0, C = 0.05, θ = π/4,
S = 0.7cos(2πx/10), which matches the bifurcation structure for α = 0 shown in Fig. 3 of Thompson, Tseluiko, and
Papageorgiou.23

With the appropriate S for the corresponding model, as shown in Fig. 14, numerical solutions
of the discretised eigenvalue problems described in Sec. II E show that steady state (76) is stable
for α > 1.32 in the Benney model, and α > 1.39 in the weighted residual model. In both cases, the
exchange of stability occurs via a Hopf bifurcation, so that below the critical value of α, we would
again expect to observe time-periodic limit cycles.

A second mechanism for exchange of stability involves real eigenvalues passing through zero.
In Fig. 15, we choose a steady flux S(x) which is known23 to correspond to two solutions H(x) when
α = 0, one of which (H1) is stable, the other (H2) is unstable with one positive real eigenvalue, and
show the results of controlling towards the latter, unstable state, H2. Each steady state at α = 0 gives
rise to a solution branch for α > 0. The target state H2 is always a solution and is stable for α > 1.92.
For α < 1.92, H2 has a single eigenvalue with positive real part, and this eigenvalue is exactly zero
at α = 1.92. The exchange of stability via a real eigenvalue passing through zero corresponds to a
transcritical bifurcation, and implies the local existence of a second solution branch, which here is
the branch that connects back to H1 at α = 0. The second branch diverges as α increases beyond 1.92,
here by the minimum film height tending to zero.

C. Controlling towards non-solutions

In Subsection V B, we required that the target state H is an exact solution of the equations, so that
the system will remain at h = H if it ever reaches it, and the main questions surround linear stability,
which can be directly modified by linear feedback controls. However, in practice, the target state is
highly unlikely to be an exact solution, due to discretisation error, imperfectly known parameters,
or, more interestingly for our purposes, discrepancies which arise due to calculating travelling waves
or the steady flux S according to a low-order model which only approximates the true system. We
now investigate robustness to model choice by analysing the behaviour of the system when feedback
controls are applied towards a state which is not a solution to the governing equations, and so can
never be more than transiently achieved.

We suppose that the system reaches an equilibrium state H∗, which will depend on the target state
H , the feedback control strength α, any patterning imposed on the system via S, and the parameters
of the uncontrolled system. We usually have a nonlinear system to solve for H∗, which need not have
unique solutions. In the Benney equation, the steady state H∗ must satisfy

F = −α[H∗ − H] + S, F = qx (83)

and

q =
H∗3

3

(
2 − 2H∗x cot θ +

H∗xxx

C

)
+ R

(
8H∗6H∗x

15
− 2H∗4F

3

)
. (84)
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FIG. 16. Steady solutions to the Benney equation and weighted residual equations, controlled towards h =H (shown in
bold) using control scheme (75), for α = 0,0.125,0.25,0.5,1,2, and S = 0. Here, R = 5, C = 0.05, and θ = π/4. Dashed lines
indicate unstable solutions.

These equations are nonlinear in H∗, and can have zero, one, or more solutions. Fig. 16 shows steady
solutions to the nonlinear Benney system described by (83) and (84), and also the corresponding
weighted-residual system, for the case S = 0, with H given by the large-amplitude, non-uniform state
(76). We find that for both models, the numerical solutions for H∗ tend towards H as α increases, and
our linear stability calculations confirm that the states H∗ are stable at large α. However, the value of
α at which steady states become stable and also the extent to which the steady states deviate from H
at a given α are dependent on the choice of model.

The linearity of the control scheme means that suction can be interpreted as feedback controls
towards the equilibrium state H∗, which is itself dependent on α and the original target state H . We
define S∗ = −α(H∗ − H) + S, so that for general h, we can write

F = −α(h − H) + S = −α(h − H∗) + S∗. (85)

As a result, the system is indistinguishable from controlling to the state H∗ with feedback control
parameter α and steady suction component S∗.

For large α, we can find a simple asymptotic solution for the steady state H∗. If the system tends
towards a bounded steady state as α increases, then F must remain bounded, and so the interface
shape H∗ must tend towards H . Also, F tends towards S0(x), which is defined to be the steady flux
required to make the desired state H a steady solution of the equations. Thus, without regard to the
model details, but assuming only that a bounded steady state H∗ exists for large α, we find that this
state behaves as

H∗ = H +
S − S0

α
+O

(
1
α2

)
. (86)

The function S0, and subsequent terms in the expansion, will depend on the details of the model, but
in general we can move the equilibrium state H∗ closer to the desired state H by increasing α. In
Fig. 15, we show a system where there are two steady states for the same parameters, and controls
are applied towards one of these states. However, one of the solution branches disappears at a finite
α, so that for sufficiently large α, the only steady state remaining is the one described by (86). More
generally, branch divergence means that unwanted solution branches can be eliminated by increasing
the control amplitude.

D. Control towards non-uniform states with point actuators

In Sec. IV, we considered control schemes based on localised observers and actuators that remain
fixed in the laboratory frame, and showed that these schemes can be used to stabilise the uniform film
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state. We then showed in Sec. V that distributed control schemes can be used to stabilise non-uniform
travelling waves, and to create and stabilise non-uniform steady states. However, the extension of the
point-actuator control schemes to non-uniform travelling waves and non-uniform steady states faces
significant difficulties.

Travelling waves are steady with respect to a moving coordinate ζ = x −Ut and can be written
as h = H(ζ). However, if the observers and actuators are fixed in the laboratory frame, then these
move relative to the travelling wave to be controlled. To calculate linear stability, we first transform
to the moving frame, so that the base state h = H(ζ) is a steady solution of the controlled equations.
However, the evolution of small perturbations is subject to the spatial structure of the control scheme,
which in this moving frame is also time-dependent. If the control scheme is spatially periodic in the
laboratory frame, then it is both spatially and temporally periodic in the travelling frame, and we must
use Floquet multipliers with respect to time to obtain eigenvectors. For a general control scheme, this
requires the computation of eigenfunctions that are explicitly dependent on both space and time within
periodic boundary conditions, which is beyond the scope of the present study. We note however that
Gomes, Papageorgiou, and Pavliotis34 showed that for the KS equation, localised controls derived for
a uniform state could be used to stabilise travelling wave solutions in cases where the wave frame
moves relative to the controls.

Non-uniform steady interface shapes H(x) require a non-zero suction profile S0(x) in order to
ever be steady solutions of the governing equations. However, if suction must be delivered through
a linear combination of M localised actuator shapes, it is very unlikely that the exact profile S0(x)
can be achieved. Thus, we will no longer obtain the result that h → H(x) when strong controls are
applied. It is easy to imagine situations where the interface shape appears to be close to the desired
state when viewed through localised observers, while diverging significantly at other positions, and
so we leave the analysis of this system to future work.

VI. CONCLUSION

In this paper, we analysed the effect of feedback control on the dynamics of a thin film flowing
down an inclined plane. Feedback was applied through injection and suction through the planar wall,
with the required injection/suction profile determined in response to observations of the height of the
air-fluid interface. We used long wave models based on the Benney and weighted-residual method-
ologies to describe the effect of suction and injection on the system dynamics. We note that suction
is the only mechanism by which the net system mass can be modified, and so suction controls are
the only way in which perturbations of infinite wavelength can be made better than neutrally sta-
ble; furthermore, suction controls do not require knowledge of any further properties of the fluid in
question than those required to describe its uncontrolled dynamics.

The simplest control scheme is to suppose that the suction profile is locally proportional to the
deviation of the interface profile from the desired state, so that fluid is injected where the film is
particularly thin, and removed from thicker regions. We used a linear stability analysis to show that
this simple control scheme, governed only by the constant of proportionality α, has a stabilising effect
on the uniform film state for positive α in both Benney and weighted-residual models, and also in the
Navier–Stokes equations. We calculated the critical value of α needed to stabilise the uniform state
to perturbations of all wavelengths, and showed that the control scheme can significantly increase the
critical Reynolds number for the onset of instability.

The analysis summarised so far is for distributed controls, but we also studied a more realistic
scenario by supposing that injection/suction can be delivered only via a small number of localised
actuators, corresponding, for example, to slots in the planar wall bounding the flow. Likewise, we
should base our control scheme on a limited number of observations of the system state. The control
system requiring the least amount of communication between actuators and observers occurs when
each actuator is connected to only one observer, and the applied suction is proportional to the deviation
of the observation from the desired value. For equally spaced actuators, our numerical calculations
show that this singly connected control scheme has a stabilising effect on the uniform film state in both
long-wave models. The uniform state becomes more stable as the number of observers and actuators
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is increased. We investigated the effect of displacing the observer relative to its linked actuator, and
found that the observer should ideally be positioned slightly upstream of the actuator to obtain the
best stabilisation. Displacement between observers and actuators can also be incorporated in the fully
distributed case, and we again find that the most efficient stabilisation occurs when the observer is
slightly upstream of the actuator.

In principle, we should be able to obtain better system performance by using all available obser-
vations to compute the feedback controls. If the entire system state is observable, we can use stan-
dard algorithms from control theory to decide the control inputs according to various objectives. For
example, we used the LQR algorithm to minimise a cost functional defined in terms of the deviation of
the film from the flat state and the actuator amplitudes from zero. The use of point actuators means that
the system is not translationally invariant, and so the linear stability of the Navier–Stokes equations
can no longer be studied by a normal mode analysis. However, we found that controls calculated
using the LQR algorithm for the Benney equation were able to stabilise the uniform state in both the
Benney and weighted-residual systems.

For the case where only a small number of observations are available, controls developed under
the assumption of full observations can still be implemented by using dynamical observers, and we
exploited this strategy to control the Benney system. In this scheme, the Benney system is augmented
by a system of ordinary differential equations to create an evolving approximation of the magnitudes
of the unstable eigenmodes, which evolves according to our understanding of the underlying system,
with corrections due to the available observations. Our stability and initial value calculations confirm
that this approach does indeed stabilise the uniform state in the Benney system. For our test case, we
found that increasing the number of observations above the number of unstable modes initially yields
a significant increase in the overall convergence rate, but further increases have negligible effect.

To test the robustness of the dynamical observer scheme in a proxy physical setting, we inserted
the Benney control scheme into the weighted-residual equation. We found that the uniform state was
sometimes stable, but this depended sensitively and non-monotonically on the number of observations
used to calculate the controls. The eigenvalues of the Benney and weighted residual equations behave
differently, and so we might expect that the dynamic approximations converge poorly to the true state.
However, at least for stabilising the uniform state, we have the option of using the singly connected
control scheme with discrete actuators and observers, which behaves similarly in both long-wave
models, and so depends relatively weakly on model details.

The thin-film systems can support non-uniform travelling waves, which propagate down the slope
at constant speed. These may be stable or unstable, and we found that locally proportional controls
can be used to stabilise unstable travelling waves. The total magnitude of the imposed suction will
vanish as the target state is approached if it is an exact solution of the equations, so controls can be, in
principle, used to physically verify the shape of unstable states. If a steady suction profile is applied,
the system can support non-uniform steady states.23 These steady states have their own bifurcation
structure, can be stable or unstable, and have a more complicated internal flow than that for a film of
uniform thickness. If the suction profile corresponding to a desired steady interface shape is known
exactly, we showed that the feedback control scheme can be used to stabilise the steady state in a
similar manner to that for stabilising travelling waves.

The shape and speed of travelling waves, and the suction profile corresponding to steady states,
differ between the two long-wave models here, and likely also the Navier–Stokes equations. It is,
therefore, unreasonable to assume that the target state is an exact solution of the equations. However,
we find that if controls are applied with large positive α towards an arbitrary state that is not an exact
solution of the equations, the system will both move towards that state and become stable as α is
increased, irrespective of the model used.

In some ways, it is unsurprising that simple control schemes can be used to linearly stabilise
the uniform state in the Benney equation, as the linear operator is similar to that for the Kuramoto-
Sivashinsky (KS) equation, where control schemes have been rigorously derived.34,54 However, the
KS results provide no guarantee on the nonlinear behaviour, or on system dynamics away from long-
wave limits, and so our nonlinear initial value calculations and linear stability calculations in the
Navier–Stokes equations provide meaningful tests on the use of feedback control. It would also be
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interesting to investigate the effect of linear suction controls on nonlinear stability and blow up phe-
nomena in the Benney equation.

Real experiments are nearly always performed in channels with rigid bounding side walls. The
no-slip condition applied along this wall introduces lateral variation in the base flow, confined within
a distance from the wall comparable to the film thickness. Side walls are also responsible for the
appearance of curved wave fronts55 even for channels much wider than the fluid depth, and the sta-
bility boundary can be surprisingly sensitive56 to the conditions governing the three-phase contact
line where air, liquid, and wall meet. We might also expect complex interactions if actuation such as
heating or blowing and suction is applied close to the side walls.

The analysis in this paper has assumed either a domain of infinite extent in the streamwise direc-
tion (for linear stability of a uniform film) or periodic boundary conditions (for our analysis of control
strategies using localised actuators and observers, and for control towards non-uniform states). How-
ever, experiments are actually performed on a wall of finite extent. Fluid enters the domain at an inlet
at which periodic perturbations can be applied. It then takes some distance for the waves to reach
their fully developed state, and eventually the fluid is allowed to fall from the plane at the outlet. For
practical implementation, we would envisage observing the interface in the developed region, and
also applying feedback there. It is, therefore, important that feedback is quickly applied, so that it is
able to take effect before waves pass out of the region of interest. We note that it is possible to simu-
late the whole system, including inflow and outflow regions, in both Navier-Stokes and long-wave
computations.

The focus of the current work was on using feedback applied through blowing and suction, but the
methodology developed here could be extended to other types of actuation, such as substrate heating,
which would be easier to implement in practice and is a subject that we are actively exploring. In
addition to exploring the effects of side walls and inlet and outlet regions, future work could also
include assessing the effect of noise and uncertainty, and also numerical experiments incorporating
restrictions on the control scheme to reflect latency in flow visualization, data processing, and the
application of feedback. Overall, we are hopeful that practical implementation of feedback control
for thin film flow can soon be achieved.

Data access statement: The data shown in the figures are available in the supplementary
material.57
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APPENDIX: CONTROLLABILITY AND DETECTABILITY

Here, we state some basic definitions from control theory; further details can be found in
Zabczyk.31 We consider the linear system

dz
dt
= Az + Bu, y = Cz, (A1)

where A, B, and C are N × N , N × M , and M × P matrices, respectively. We will say that a matrix
A is stable if all its eigenvalues have negative real part.

We will call the system (A1), or the pair (A,B), controllable if there exists a matrix K such
that A + BK is stable. If the system is controllable, we can always obtain the state z∗ by taking
u = K(z − z∗), regardless of initial conditions. Similarly, we say that system (A1), or the pair (A,C),
is detectable if there exists a matrix L such that A + LC is stable. If the pair (A,C) is detectable, then
(AT ,CT) is controllable.

The Kalman Rank condition gives a necessary and sufficient condition on A and B for control-
lability, and therefore detectability. This condition states that system (A1) is controllable if and only
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if rank[A|B] = N , where

[A|B] = [B AB A2B . . . AN−1B]
is a N × N2 matrix obtained by writing consecutively the columns of the matrices An−1B, n =
1, . . . ,N .

The natural choice when constructing controls based on the observations y would be to choose a
matrix K such that the matrix A + BKC is stable. Controls that can be written in the form u = K y are
called static output feedback controls. However, for nontrivial B and C, it is not possible, in general,
to construct a matrix K so that A + BKC is stable. This difficulty motivates the construction of the
dynamical observers presented in Sec. IV D.
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