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In many applications it is desirable to infer coarse-grained models from observational data. 
The observed process often corresponds only to a few selected degrees of freedom of a 
high-dimensional dynamical system with multiple time scales. In this work we consider 
the inference problem of identifying an appropriate coarse-grained model from a single 
time series of a multiscale system. It is known that estimators such as the maximum like-
lihood estimator or the quadratic variation of the path estimator can be strongly biased 
in this setting. Here we present a novel parametric inference methodology for problems 
with linear parameter dependency that does not suffer from this drawback. Furthermore, 
we demonstrate through a wide spectrum of examples that our methodology can be used 
to derive appropriate coarse-grained models from time series of partial observations of a 
multiscale system in an effective and systematic fashion.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many natural phenomena and technological applications are characterized by the presence of processes occurring across 
different length and/or time scales. Examples range from biological systems [1] and problems in atmosphere and ocean 
sciences [2,3] to molecular dynamics [4], materials science [5] and fluid and solid mechanics [6–8], to name but a few. 
Studying the full dynamics of such systems is often a very intricate task due to the complex structure of the systems which 
also hampers the ability to obtain governing equations from first principles. However, it is often possible to exploit, e.g., scale 
separation in order to obtain a reduced (low-dimensional) model for a few selected degrees of freedom. The coefficients 
and/or parameters in the reduced model must be derived from the full dynamics through an appropriate coarse-graining 
procedure; see, e.g. [9–11] for recent works on various coarse-graining methods. As mentioned above, it is often not possible 
to obtain such a coarse-grained equation in explicit form and one must necessarily resort to observations [12,13]. It is thus 
desirable to appropriately fit a reduced stochastic coarse-grained model to the observations of the underlying complex 
process.

The general problem of obtaining a reduced coarse-grained model from the full system can be formulated as follows. 
Let the underlying system be given in terms of a dynamical system Z which evolves, symbolically written, according to the 
dynamics

dZ

dt
= F (Z) , (1)
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where the state space Z of Z is high (or even infinite) dimensional and F is a nonlinear function. For instance, the semilin-
ear partial differential equation of the type ut =Au + ψ(u, ∇u, ∇2u, . . .) with periodic boundary conditions in an extended 
domain, often appearing in pattern formation dynamics of spatially extended systems, can be written as an infinite dimen-
sional system of ordinary differential equations (ODEs) in Fourier space in the form of (1) in which case F depends on the 
operator A and the function ψ . As we are only interested in the evolution of a few selected degrees of freedom, i.e. only 
some components of the full dynamics Z solving (1), we assume that one can separate these resolved degrees of freedom 
(RDoF) in the dynamical system from the unresolved degrees of freedom (UDoF). The choice of RDoF and UDoF is a part of 
our modeling strategy. Standard examples include systems with well-separated time scales, e.g. the decomposition between 
climate and weather degrees of freedom in atmosphere–ocean science and the use of reaction coordinates in the study of 
chemical kinetics or in molecular dynamics. For such systems, one decomposes the state space into subspaces X and Y
that contain the RDoF and UDoF, respectively:

Z = X ⊕Y ,

with dim(X ) � dim(Y) typically. We also introduce the projection operators onto these spaces P : Z �→ X and (I − P ) :
Z �→ Y , respectively. Let now X be the projection of Z onto the space of X , i.e. X = P Z . Then we postulate the existence of 
a reduced coarse-grained stochastic model describing the evolution of X alone. Here we assume that the stochastic model 
for X is given via a stochastic differential equation (SDE):

dX = f (X)dt + √
g(X)dWt , (2)

where W denotes a standard Brownian motion of dimension equal to dim(X ). Once the coarse-grained model (2) is iden-
tified, it can be a used to study the dynamic characteristic features of the full system (1). Indeed, its low-dimensionality 
and simplicity makes it particularly accessible for both rigorous and computational treatment; see [14–16] for examples. 
For many practically relevant cases however, and as we emphasized earlier, it is not possible to derive a coarse-grained 
model (2) analytically, because of the complexity of the underlying full system or simply because the full model (1) is not 
completely known. Consequently, the only way to obtain a coarse-grained model in such a situation is to use observations, 
e.g. experimental and/or simulation data, of the full dynamics projected onto the subspace X , i.e. onto of RDoF. That is, it 
is desirable to identify the coarse-grained SDE model (2) in a data-driven fashion.

An important class of dynamical systems for which coarse-grained equations of the form (2) are known to exist, is 
when the dynamical system (1) is given as system of SDEs with two widely separated time scales. Such systems are a 
natural testbed for data-driven coarse-graining techniques, as one has explicit information about the coarse-grained model. 
Specifically, let us consider the following as a prototypical multiscale system

dXε =
(

1

ε
a0(Xε, Y ε) + a1(Xε, Y ε)

)
dt + α0(Xε, Y ε)dUt + α1(Xε, Y ε)dVt , (3a)

dY ε =
(

1

ε2
b0(Xε, Y ε) + 1

ε
b1(Xε, Y ε)

)
dt + 1

ε
β(Xε, Y ε)dVt , (3b)

with ε � 1 controlling the time scale separation. That is, Xε denotes the degrees of freedom we are interested in (i.e. the 
RDoF) and for which we would like to obtain a coarse-grained model describing the evolution of Xε independent of Y ε

as ε � 1. Mathematically, the derivation of such coarse-grained models can be made rigorous in the limit of ε → 0 using 
averaging and homogenization techniques; see e.g. [17] and the references therein for details. In particular, the slow process 
Xε converges weakly in C([0, T ], Rd) to X solving an SDE of the form (2):

dX = f (X)dt + √
g(X)dWt . (4)

The drift and diffusion coefficients (i.e. the functions f and g) can be formally derived using standard results from homoge-
nization theory. A data-driven coarse-graining strategy would then be to use available observations of the multiscale system, 
specifically of Xε in (3), to identify the coarse-grained model (4) by inferring the functions f and g .

Often it is possible to justify proposing a coarse-grained equation with a particular structure based on theoretical argu-
ments or previous experience with similar systems. In these cases the inference problem for f and g in Eq. (4) reduces 
to estimating unknown parameters in the SDE. There is a vast and rich literature on the parametric inference problem for 
SDEs; see [18–20] for instance. For a data-driven coarse-graining approach for Eq. (4) based on observations from Eq. (3)
it turns out, however, that commonly used estimators can be biased due to small scale effects in the observations. In fact, 
estimators, such as the maximum likelihood estimator and the quadratic variation of the path estimator, are highly sensitive 
to the scale separation. While these estimators do converge (as ε → 0) to the parameters in the coarse-grained model on 
the shorter advective time scale, they become biased on the longer diffusive time scale [12,21]. The systematic bias due 
to multiscale effects on the diffusive time scale can be reduced by subsampling the data at an appropriate rate. However, 
the idea of subsampling does not necessarily lead to an efficient algorithm that can be used by practitioners, because the 
optimal sampling rate is known only for very simple systems (see e.g. [22–24]) and since, furthermore, subsampling the 
data increases the variance of the estimator. A satisfactory algorithm for fitting a coarse-grained SDE to data based on the 
idea of subsampling at the optimal rate combined with an appropriate variance reduction step has been developed only for 
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some simple systems used in econometrics [22]. To our knowledge such a methodology has not been developed and imple-
mented for problems arising in the natural sciences, such as in molecular dynamics or in statistical physics for example. In 
addition to the problem of typically not knowing the optimal subsampling rate, the numerical experiments in [12] more-
over indicate that the optimal subsampling rate can vary between parameters in the same coarse-grained model. Related 
work that investigates the problem of parametric inference combined with subsampling techniques in various settings can 
be found e.g. in [25–28], while parametric inference for multiscale problems with vanishing noise is, e.g., studied in [29]. 
Similar consistency questions arise also in fields other than parametric inference, including problems in stochastic filtering 
and stochastic control for SDEs with multiple scales [30,31].

Related data-driven approaches have also been studied in the context of numerical methods for SDEs with multiple time 
scales, i.e. for systems of the form (3). We mention in particular the heterogeneous multiscale method [32,33], which is 
based on the idea of evolving the solution of the reduced coarse-grained equation, when the coefficients in the coarse-
grained equation are being evaluated “on the fly” by running short runs of the underlying fast dynamics. Similar ideas 
have been proposed in the framework of the equation-free methodology introduced by Kevrekidis and collaborators (see 
e.g. [34–37]), where a coarse-grained model is evolved using appropriately initialized simulation on short time scales of the 
full multiscale system without knowing the coarse-grained equation in closed form, making this methodology in principle 
also applicable for more general problems, such as kinetic equations. As such, these techniques can be viewed as a hybrid 
between numerical analysis and statistical inference.

To accurately infer coarse-grained models from observations of a multiscale system, one has to resort to alternative 
estimation methodologies, which are robust with respect to the multiscale effects of the dynamics. The present study is 
motivated by a recently introduced estimation methodology which demonstrated how to bypass the need to subsample 
data [13]. In the form as proposed in [13] this methodology is, however, only applicable for observations where an ensemble 
of short trajectories for multiple initial conditions is available; a design common in many computer-based simulations. In 
most real world experiments, such as in molecular dynamics simulations one typically has access only to a single long 
time series. The goal of the present work is therefore to generalize and appropriately extend the methodology developed 
in [13], so that it can be used for an observation design where only one long time series is available. Furthermore, we 
demonstrate by means of numerical experiments that the proposed inference methodology works well for various quite 
general dynamical systems of the form (1), for which a coarse-grained model of the form (2) is known to exist.

The rest of the paper is organized as follows. In Section 2 we follow the general procedure of [13] and present the 
necessary generalizations and extensions required for the case of the observational design of a single time series. Specifically, 
we will focus on problems where both the drift function f and the diffusion coefficient g depend linearly on an unknown 
parameter vector. This setting covers, for example, the cases where f and g can be expressed as an appropriate series 
(e.g. Taylor of Fourier) of known functions. Moreover, we believe that the ideas developed in this work for the case of 
linear parameter dependency can also be instrumental for the nonlinear case. To demonstrate the effectiveness of the 
developed methodology we apply it to a number of selected examples, which we discuss in Section 3. Specifically, we use 
the estimation methodology to identify coarse-grained models for Brownian motion in a two-scale potential (i.e. a stochastic 
multiscale systems), for a deterministic system exhibiting chaos, for a Kac–Zwanzig model, and for a deterministic model 
for Brownian motion. Finally, Section 4 offers a summary and discussion of our results.

2. Estimators for coarse-grained models

We outline here a general methodology that can be used to estimate parameters in SDEs based on a single trajectory 
of discrete time observations. For the sake of clarity, we first outline the derivation of the estimator for the case where no 
multiscale effects are present. To this end we derive an estimating equation in a continuous time setting, which will relate 
the unknown parameters to statistical properties of the solution to the SDE and discuss how to obtain parametric estimators 
from it. To obtain a functional relation between unknown parameters and statistical properties of the model, in Section 2.1
we follow the methodology outlined in [13] and generalize it appropriately. Most of the examples we are interested in are 
such that the coarse-grained model is one-dimensional, see Section 3, i.e. we focus on the case of a scalar diffusion process. 
It is, however, worthwhile to remark that the our derivation can be readily extended to the multidimensional case. Moreover, 
we discuss modifications and discretizations to the continuous time estimating equation to account for observations which 
are available in the from of a time series before discussing the coarse-graining scenario.

2.1. Estimating equation

Consider the scalar-valued Itô SDE

dX = f (X)dt + √
g(X)dWt , X(0) = ξ , (5)

on some finite time interval [0, T ], T > 0, with W denoting a standard one-dimensional Brownian motion. We assume that 
both the drift function f and the diffusion function g are such that Eq. (5) has a unique strong solution on [0, T ]; details are 
given in [38,39]. Let us denote by Xξ (t) the solution of Eq. (5) at time t started in ξ at time zero, i.e. Xξ (0) = ξ . Moreover, 
denote by L the generator associated with (5), i.e. L := f d

dx + 1
2 g d2

dx2 . Then, Itô’s formula together with the martingale 
property of the stochastic integral implies that
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E

(
φ
(

Xξ (t)
)) − φ(ξ) =

t∫
0

E

(
(Lφ)

(
Xξ (s)

))
ds , (6)

for any φ ∈ C2(R) and deterministic initial condition ξ . For the sake of completeness, we remark that other commonly 
used notations for E

(
φ
(

Xξ (t)
))

are E
(
φ
(

X(t)
)∣∣X(0) = ξ

)
or Eξ

(
φ
(

X(t)
))

, and that Eq. (6) is also known as Dynkin’s for-
mula [39, Ch. 7.4].

In this work we follow a semiparametric approach for the parametrization of Eq. (5). That is, we assume that both f and 
g depend on an unknown parameter vector θ ≡ (θ1, . . . , θn)T ∈ R

n , n ∈ N, which we wish to determine from observations. 
Specifically, we consider

f (x) ≡ f (x; θ) :=
n∑

j=1

θ j f j(x) and g(x) ≡ g(x; θ) :=
n∑

j=1

θ j g j(x) , (7)

with some known functions f j and g j , 1 ≤ j ≤ n. That is, both f and g can depend on the same parameter. If this is not
the case however, one can think of the first k, say, components of the vector θ parametrizing the drift function f while the 
remaining n − k components the diffusion function g , and setting f j = 0 for k < j ≤ n as well as g j = 0 for 1 ≤ j ≤ k. For 
the numerical examples in Section 3 we will have that f and g are polynomials of some degree, so that f j and g j will be 
appropriate monomials, respectively. After substituting (7) into (6) and rearranging terms, we arrive at

E

(
φ
(

Xξ (t)
)) − φ(ξ) =

n∑
j=1

θ j

t∫
0

E

(
(L jφ)

(
Xξ (s)

))
ds , (8)

with L j := f j
d

dx + 1
2 g j

d2

dx2 . To write this estimating equation (8) in a more compact manner, we define the following com-
ponent functions for any fixed time t ∈ [0, T ] and any fixed function φ,

bc(ξ) := E

(
φ
(

Xξ (t)
)) − φ(ξ) ∈ R and ac(ξ) :=

( t∫
0

E

(
(L jφ)

(
Xξ (s)

))
ds

)
1≤ j≤n

∈R
n ,

which highlight the dependency on ξ . Using these definitions, Eq. (8) reduces to

ac(ξ)T θ = bc(ξ) , (9)

which is underdetermined for n > 1. To make this identity useful nonetheless, we exploit the fact that Eq. (9) is valid for 
any ξ ; a technique that has already been used successfully in [13]. We now introduce the concept of trial points: as we 
work in an observation framework where only one time series is available, we denote by ξ the trial point instead of initial 
condition to avoid confusion with the initial condition of the time series; see also Section 2.2.1. By considering a finite 
sequence of trial points (ξi)1≤i≤m , we can assemble a system of linear equations, solved by the parameter vector θ :

Aθ = b , (10)

where A := (
ac(ξi)

T
)

1≤i≤m ∈ R
m×n and right-hand side b := (

bc(ξi)
)

1≤i≤m ∈ R
m . Since this linear system does not have a 

unique solution in general, we define the estimator of θ based on A and b as the least squares solution of Aθ = b with 
minimum norm:

θ̂ := arg min
x∈S

‖x‖2
2 , S := {

x ∈R
n:‖Ax − b‖2

2 = min
}

. (11)

At this point, we can still exploit the degree of freedom for choosing φ in Eq. (8) freely. Motivated by [13] where approxi-
mations of the first and second moment provided very accurate estimates of θ , we use φ(x) := x + x2 throughout this work. 
In fact, the two-step estimation approach for θ presented in the aforementioned work can be recovered as a special case 
of the procedure outlined here. Indeed, using φ(x) = x causes Eq. (8) to degenerate to an equation not containing any pa-
rameters characterizing the diffusion function g . This then yields an estimator for the drift parameters only. After this first 
step, we substitute the obtained estimators into the parametrization of f . Repeating then the same steps with the function 
φ(x) = x2 gives an estimator of the remaining parameters determining g and the two-step scheme is completed. Finally, we 
mention that other choices for the function φ may work as well to construct the estimator (11). In view of the preceding 
discussion it is clear however, that φ cannot be chosen arbitrarily as it has to be such that Eq. (8) still depends on all 
unknown parameters that we want to estimate. The used function φ(x) = x + x2 thus appears to be the obvious candidate 
for various problems, while other choices of φ may be problem dependent. A more systematic study of how to choose φ in 
the context of the rigorous convergence analysis will be presented in [40].
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2.2. Modifications due to discrete time observations

Recall that we seek to determine an approximation of the parameter vector θ in Eq. (5) with parametrization (7), based 
on a trajectory of discrete time observations. That is, we have access to N data XN := (

X(tk)
)

1≤k≤N with tk = (k −1)h, where 
h = T /(N − 1). A constant sampling rate h is assumed here merely for simplicity and the proposed methodology can be 
readily extended to the case of non-constant sampling rates. To apply the methodology outlined above, we have to carry out 
two essential modifications to the purely continuous framework (8). Firstly, we have to estimate the conditional expectations 
of the form E

(
ϕ

(
Xξ (τ )

))
based on XN . Secondly, we have to replace the temporal integrals with discrete versions. A detailed 

algorithmic description of the estimation procedure for discrete time observations based on these modifications is presented 
in Section 2.2.3.

2.2.1. Estimating the conditional expectation
Throughout the estimation procedure, we have to approximate conditional expectations of the form E

(
ϕ

(
Xξ (τ )

))
for 

multiple values of the trial point ξ . The available time series XN provides, however, only one initial condition which we 
cannot influence nor manipulate; thus the necessity to distinguish between trial point and initial condition. A way out of 
this predicament is possible when the time series (i.e. the discrete time process) is stationary and sufficiently mixing so 
that

Cov
(

X(t), X(t + kh)
) ≤ Cρk ,

for some finite C > 0 and ρ ∈ [0, 1[, which we will assume from now on; see e.g. [41,42] for further details in the inference 
context and refer to e.g. [43,44] and the references therein for a discussion of sufficient conditions on the drift function 
and the diffusion coefficient in SDE model (5). Related conditions on the covariance as a function of the lag k have also 
been used in other works on parametric inference for diffusion processes; see [24] for instance. Intuition in this case 
then suggests to sequentially search the time series XN for the value of the trial point ξ and then to approximate the 
expectation by averaging over the events ϕ(X) at τ time units after the occurrences of ξ in XN . A technique which makes 
this approximation idea precise is the class of so-called local polynomial kernel regression estimators [42]. Recall that the 
sampling time of the time series XN is h. For a shift by τ > 0 time units to be well-defined, we require that τ = lh, for some 
l ∈ {1, 2, . . . , N − 1} and for such a τ we set Nτ = N − τ/h ∈ N. Then the simplest regression estimator (locally constant) 
yields the approximation

E

(
ϕ

(
Xξ (τ )

))∣∣∣
τ=lh

≈
∑Nτ

k=1 ϕ
(

X(tk+l)
)

K
(

X(tk)−ξ
κNτ

)
∑Nτ

k=1 K
(

X(tk)−ξ
κNτ

) , (12)

which is also known as the Nadaraya–Watson estimator [45,46]. Here K is an appropriately chosen kernel, and 0 < κNτ

denotes the bandwidth which decays to zero as Nτ → ∞ at a rate depending on the sense of convergence in Eq. (12); 
details are given in [41]. Throughout this study we select the Gaussian kernel K (x) := exp (−x2/2)/

√
2π for convenience, 

but we remark that other choices are possible.
Upon defining w Nτ ,k(ξ) := K

(
(X(tk) − ξ)/κNτ

)
/ 
∑Nτ

k=1 K
(
(X(tk) − ξ)/κNτ

)
, one can rewrite the regression estimator, i.e. 

the right-hand side in Eq. (12), as 
∑Nτ

k=1 w Nτ ,i(ξ)ϕ
(

X(tk+l)
)
. That is, the regression estimator is given as a weighted average 

with non-identical weights w Nτ ,k(ξ). Let us finally note that if the trial point ξ is such that the denominator of the regres-
sion estimator in Eq. (12) is zero (roughly speaking this happens if ξ is not in the support of the stationary density of XN ), 
then we set w Nτ ,k(ξ) = 1/Nτ instead for well-posedness (see also Section 2.2.3 below). However, one should ensure that 
this event is avoided by selecting the trial points appropriately, otherwise the estimator’s approximation accuracy would 
deteriorate due to incorporating unfeasible information. As the regression estimator in Eq. (12) essentially averages over 
the events ϕ

(
X(tk+l)

)
for which X(tk) ≈ ξ , one should moreover try to ensure that the trial point ξ is located in a region 

where most of the observations are located in order to average over a sufficiently large sample; see Section 3 for a detailed 
description of how to choose the trial points in practice.

2.2.2. Temporal integrals
The integrands of the temporal integrals in Eq. (8) are precisely the conditional expectations discussed above. Let u(τ ) :=

E
(
ϕ

(
Xξ (τ )

))
be such an expectation for a fixed trial point ξ and function ϕ . To replace the temporal integral of u over [0, t]

by a discrete version in (8), we use the composite trapezoidal rule with nh equally spaced (nh = t/h) subdivisions:

t∫
0

u(s)ds ≈ h

2

(
u(0) + u(t) + 2

nh−1∑
l=1

u(lh)

)
. (13)

The choice of an equally spaced subdivision of [0, t] where the division length coincides with the sampling rate h of the 
available time series XN is made for reasons of a consistent discretization. In fact, it ensures that the time points τ , say, 
at which the integrand u is evaluated, is an integer multiple of h, so that the shifts by τ time units in the regression 
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Algorithm 1 Algorithmic description of the introduced estimation procedure.

Require: 0 < t such that t/h ∈ N, 0 < h, � ∈R
m , and XN ∈R

N

1: l ← t
h

2: for i = 1 to m do
3: ξ ← �i
4: for j = 1 to n do
5: u j,0 ← f j(ξ)(1 + 2ξ) + g j(ξ)

6: end for
7: for k = 1 to l do
8: X ←XN (1 : N − k)

9: Y ← XN(1 + k : N)

10: for j = 1 to n do
11: u j,k ← nwe

(
X, f j(Y )(1 + 2Y ) + g j(Y ), ξ

)
12: end for
13: end for
14: X ← XN (1 : N − l)
15: Y ←XN (1 + l : N)

16: bi ← nwe
(

X, Y + Y 2, ξ
) − (ξ + ξ2)

17: for j = 1 to n do
18: Ai, j ← h

2

(
u j,0 + u j,l + 2 

∑l−1
k=1 u j,k

)
19: end for
20: end for
21: θ ← A+b
22: return θ

Algorithm 2 Pseudocode of the nwe procedure used in Algorithm 1 to approximate conditional expectations via the 
Nadaraya–Watson estimator.

Require: X, Y ∈ R
M and ξ ∈ R

1: κ ← arg minδ>0

(
1

δM2
√

2

∑M
i, j=1 K

( Xi−X j

δ
√

2

) − 2
M(M−1)

∑M
i=1

∑
i �= j K

( Xi−X j
δ

))
2: if

∑M
i=1 K

( Xi−ξ
κ

) = 0 then

3: u ← 1
M

∑M
i=1 Yi

4: else

5: u ←
∑M

i=1 Yi K
( Xi−ξ

κ

)
∑M

i=1 K
( Xi−ξ

κ

)
6: end if
7: return u

estimator (12) are well-defined. Other (possibly non-equally spaced) time discretizations, which are consistent in the sense 
that each trapezoidal node is an integer multiple of h, are of course possible. Finally, we mention that the use of trapezoidal 
rule (13) is motivated by the fact that the integrands u are replaced by the regression estimators (12) in practice, for which 
we cannot expect to provide sufficient smoothness. Under these conditions the trapezoidal rule is advantageous over higher 
order methods since higher order derivatives, as used in classical Taylor expansion based arguments, are not continuous [47].

2.2.3. An algorithmic description for discrete time observations
To illustrate how the combination of these approximations can be used to apply the developed methodology to discrete 

time observations, we present a detailed pseudocode in Algorithm 1. Here we assume that a parametrization for both 
drift function and diffusion function has been fixed by choosing f j and g j in Eq. (7), for 1 ≤ j ≤ n. The input arguments 
of Algorithm 1 are the time series XN of N discrete time observations corresponding to a constant sampling rate h, the 
m trial points �, and the time t controlling the temporal integration in (8), which is assumed to be an integer multiple 
of h (cf. Section 2.2.1). We note that we use the colon notation [48, Ch. 1.1.8] in lines 8, 9 and 14, 15 to select several 
components of a vector at once, so that we can suppress additional iteration details. Similarly, the application of a function 
defined on R to a vector (such as in lines 11 and 16) is understood componentwise. We emphasize that the statement 
θ ← A+b in line 21 is merely meant as a formal notation for computing the least squares solution of Aθ = b with minimum 
norm. In fact, in this work we use a QR factorization with column pivoting to solve the least squares problem but other 
choices are possible, typically depending on the rank of A; see, e.g., [48, Ch. 5]. Furthermore, the procedure nwe (called in 
lines 11 and 16) implements the Nadaraya–Watson estimator (12) for the approximation of conditional expectations and its 
detailed pseudocode is given in Algorithm 2. Its input arguments are two lists X , Y of the same length as well as the trial 
point ξ and the algorithm returns an approximation of E(Y |X = ξ). In the pseudocode presented here, we use the least 
squares cross validation for a data-driven bandwidth selection (line 1). We mention, however, that this selection technique 
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is used here merely for the sake of a compact notation and several other methods can be used alternatively [49, Ch. 8.5]. 
For the numerical examples discussed in Section 3 we tried different bandwidth selection methods (not shown) but did not 
observe any significant differences. We also note that there exist efficient computational strategies to evaluate the term in 
brackets in line 1 of Algorithm 2 via fast Fourier transform related approaches.

2.3. Estimators for coarse-grained models of multiscale systems

A central goal of this study is to identify a coarse-grained model based on observations of a multiscale system. Specifi-
cally, we consider the prototypical multiscale system (3), i.e.

dXε =
(

1

ε
a0(Xε, Y ε) + a1(Xε, Y ε)

)
dt + α0(Xε, Y ε)dUt + α1(Xε, Y ε)dVt , (14a)

dY ε =
(

1

ε2
b0(Xε, Y ε) + 1

ε
b1(Xε, Y ε)

)
dt + 1

ε
β(Xε, Y ε)dVt , (14b)

equipped with appropriate initial conditions on the time interval [0, T ], where U and V denote independent Brownian 
motions, and ε > 0 is a small parameter controlling the scale separation. Here we assume that 1 = dim (X ), while dim (Y)

is arbitrary, so that the coarse-grained model

dX = f (X)dt + √
g(X)dWt , (15)

is also one-dimensional; W is a standard one-dimensional Brownian motion. In fact, using results from homogenization 
theory one can rigorously show that the process Xε solving (14a) converges weakly in C([0, T ], R) to the process X solv-
ing (15) as ε → 0, provided that the fast process Y ε is ergodic and the centering condition is satisfied; see, e.g., [17] and 
the references therein.

Our data-driven coarse-graining strategy is to use the available observations of Xε solving (14a) with ε > 0 and estimate 
both f and g in (15) using exactly the same estimation methodology as presented in Section 2.1. We emphasize that we 
are facing a problem of model misspecification now: fitting model (15) to observation from (14a) which is not consistent 
with model (15). Parametric inference for misspecified models in the absence of multiscale effects has been studied, e.g. 
in [19, Ch. 2.6]. Here we expect that in the limit of infinite scale separation ε → 0, the error due to the model misspec-
ification vanishes [40]. Finally, our motivation to resort to the estimation methodology of Section 2.1 also for this setting 
stems from recent results in [13], where, as described in Section 1, a related scheme demonstrated to be able to accurately 
estimate the coarse-grained model from observations of the multiscale system. This favorable property agrees with our in-
tuition that the estimated model should be close to the coarse-grained model if the model misspecification is small, i.e. 
if ε � 1. In fact, in view of the theoretical results presented in [40], it is expected that, in the absence of all other error 
contributions such as the finite sample size, the estimators converge in a probabilistic sense (in fact, the convergence is 
almost surely) to the parameters in the coarse-grained model in the limit ε → 0.

Specifically, in this multiscale setting we have access to N discrete time observations of Eq. (14a), that is Xε
N :=(

Xε(tk)
)

1≤k≤N with tk = (k −1)h, where h = T /(N −1). Based on the semiparametric parametrization (7) of the drift and the 
diffusion coefficients in the coarse-grained model (15), the multiscale time series Xε

N is used to assemble the corresponding 
matrix Aε and right-hand side bε in Eq. (10). The estimated parameter vector of the coarse-grained model based on the 
multiscale data Xε

N is then given by the least squares solution of Aεθ = bε with minimum norm. We denote the estimated 
parameter vector by θ̂ ε to emphasize the dependency on the multiscale observations Xε

N . It is also worth mentioning that 
the estimation procedure is solely derived from the coarse-grained model (15). That is, the procedure does not incorporate 
any knowledge of the corresponding multiscale system (14). In addition, we are not assuming knowledge of the scale sepa-
ration parameter ε. In other words, one can view the available time series Xε

N as obtained purely from a “black box” model, 
which is close to the coarse-grained model (15) provided that ε � 1.

3. Numerical experiments

In this section we apply the proposed estimation procedure to several examples. We focus here on the inference problem 
for coarse-grained models based on multiscale observations, for which classical estimators are expected to fail. In Section 3.1
we first investigate a stochastic multiscale system, namely Brownian motion in a two-scale potential. The remaining exam-
ples are deterministic multiscale systems, for which we seek to identify a coarse-grained stochastic model from a single 
time series. Specifically, we estimate parameters in the coarse-grained model for a deterministic system exhibiting fast 
temporal chaos (Section 3.1), in a low-dimensional approximation of a large Hamiltonian system (Section 3.3), and in an 
Ornstein–Uhlenbeck process constructed in a purely deterministic setting (Section 3.4). To verify the accuracy of the esti-
mated parameters in the coarse-grained models, we compare the obtained estimates with theoretically available ones. We 
will also address the question of selecting the time t controlling the temporal integrals in (8), in order to uniquely define 
the estimation procedure of Section 2. To emphasize the dependency of the estimated parameter vector based on multiscale 
data θ̂ ε also on t , we use θ̂ ε ≡ θ̂ ε

t . To assemble the linear system (10) we use m = 54 trial point for all examples. As men-
tioned above already, these points ξ are selected a-priori for each example such that they cover most of the range of the 
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time series Xε
N . One simple and ad hoc way is to identify the region for ξ by defining aN := (1 − ν) min(Xε

N ) + ν max(Xε
N )

and bN := ν min(Xε
N ) + (1 − ν) max(Xε

N ), for 0 < ν < 1/2. Furthermore, let η1, η2, . . . , ηm be an independent and identically 
distributed sequence of random variables following a standard normal distribution. Then we set lm := min1≤i≤m(ηi) as well 
as rm := max1≤i≤m(ηi) and select the trial points by linearly mapping ηi to the region of interest [aN , bN ]:

ξi := aN − bN

lm − rm
ηi + lmbN − rmaN

lm − rm
,

for 1 ≤ i ≤ m, which are then fixed throughout the numerical experiment. This rather naive procedure worked well for 
the examples that follow where we used ν = 0.2, because the trial points ξ are located in regions where most of the 
observations are, so that estimates of the conditional expectations are expected to be accurate. We remark however, that 
other approaches are possible as well. In fact, a more systematic way to construct the trial points is via a resampling method, 
which exploits the shape of the empirical distribution function of Xε

N . In this case let η1, η2, . . . , ηm be an independent 
and identically distributed sequence of random variables following a uniform distribution on [0, 1]. Moreover, denote by 
Xε

1:N , Xε
2:N , . . . , Xε

N:N the order statistic of Xε
N so that Xε

1:N < Xε
2:N < · · · < Xε

N:N . Then the trial points may be constructed via

ξi := Xε
ki :N , ki := min {k ∈ N:ηi N ≤ k} ,

for 1 ≤ i ≤ m. Although we did not observe significant differences between these two trial point selection strategies for 
the examples considered here, the second systematic strategy may be advantageous in more general cases as it is purely 
data-driven. Finally, we note that we set the estimation procedure’s defining parameters m, T , and h in such a way that their 
error contribution due to approximations are negligible compared to the scale separation ε. This is done to focus solely on 
the estimator’s performance under the presence of multiscale effects in the observations, a scenario where other estimation 
techniques fail to be consistent.

3.1. Brownian particle in a two-scale potential

Let us begin with an example borrowed from [12], which was originally used to investigate the failure of classical 
parametric estimation techniques for multiscale diffusion processes. Specifically, we consider

dXε = − d

dx
V

(
Xε,

Xε

ε

)
dt + √

2σ dWt ,

which models the position of a Brownian particle moving in a two-scale potential V and being affected by thermal noise. 
Here W denotes a standard one-dimensional Brownian motion. We investigate the situation when the two-potential V is 
given by a large scale part Vα superimposed with a periodically fluctuating part p: V (x, y) = Vα(x) + p(y). Under this 
assumption, the multiscale SDE can be written as

dXε = −
(

V ′
α(Xε) + 1

ε
p′

(
Xε

ε

))
dt + √

2σ dWt . (16)

Notice that the SDE (16) can be rewritten as a fast/slow system of the form (14) by introducing the auxiliary variable 
Y ε := Xε/ε.

We consider the case where the fluctuating part p is a smooth periodic function with period L and the large scale part 
is a quadratic potential, i.e. Vα(x) = αx2/2. Then, as ε → 0, Xε solving (16) converges weakly in C([0, T ], R) to the solution 
of the coarse-grained equation

dX = −A X dt + √
2� dWt , (17)

where A = αL2/(Z+ Z−) and � = σ L2/(Z+ Z−), with Z± = ∫ L
0 e±p(y)/σ dy; see [12] for details. We set the fluctuating part to 

be p(y) = cos (y). Then the constants Z± can be easily computed so that A = α/I0(σ
−1)

2
and � = σ/I0(σ

−1)
2

, where I0
denotes the modified Bessel function of first kind. We note that both parameters in (17) depend non-trivially on σ .

To estimate the n = 2 parameters in (17), we choose the functions in the drift and diffusion parametrization (7) as 
f1(x) = x, f2(x) = 0 = g1(x), and g2(x) = 2, with true parameter vector θ = (−A, �)T . An estimate of θ is then based on a 
time series on [0, 1000] of the multiscale system (16) with α = 2, σ = 1 for each ε ∈ {0.1, 0.3, 0.5}. The time series were 
obtained by numerically integrating (16) via the Euler–Maruyama method with step size h = 0.001 and initial condition 
Xε(0) = 0. Fig. 1 shows the relative error of the estimated parameter vector θ̂ ε

t as a function of t , for each value of ε
respectively. For all three of them one observes that while very small values of t result in a large relative error, increasing t
reduces the error significantly. In fact, for t = 1 and ε = 0.1 we find a relative error of 10% and for even larger values of t
the relative error drops further significantly below 5%. For t ≥ 3 (not shown here) the relative error starts fluctuating around 
4% due to discretization errors but remains of the same order as the scale separation parameter ε, which is in agreement 
with the results presented in [40]. Consequently, it is possible to obtain very accurate estimates of the parameters in the 
coarse-grained model (17) based on observations of the multiscale system (16), once t is sufficiently large. In fact, by 
comparing the resulting relative errors for different values of ε, Fig. 1 suggests to choose t of O(1) for a relative error 
of O(ε).
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Fig. 1. Relative error of the estimated parameter vector θ̂ ε
t for (17) based on observations of (16) with α = 2, σ = 1, and ε ∈ {0.1,0.3,0.5}.

Fig. 2. Bias and variance of the estimation procedure as functions of T for t ∈ {0.05, 0.5} and ε = 0.1. Expectations were approximated as described in the 
text.

We proceed by numerically studying the bias and the variance of the estimation procedure for a fixed time t as functions 
of the length of the time interval T . To this end we use M independent Brownian motions in Eq. (16) to generate an 
ensemble of independent trajectories Xε

1 , Xε
2 , . . . , Xε

M , each on the time interval [0, T ]. Applying the estimation procedure 
to every such time series Xε

k yields an estimated value, which we denote by θ̂t (Xε
k , T ) to emphasize the dependency on the 

k-th time series and on the final time T . Using these estimated values we approximate expectations by ensemble averages 
to define the bias and variance. Specifically, let E T

M(θ̂ε
t ) := 1

M

∑M
k=1 θ̂t(Xε

k , T ) be the average of these estimated values. Then 
we use

bias(θ̂ε
t , T ) := ∥∥E T

M(θ̂ε
t ) − θ

∥∥
2 ≈ ∥∥E(

θ̂t(Xε, T )
) − θ

∥∥
2 ,

to quantify the (absolute) bias and as a measure of the variance we use

Var(θ̂ε
t , T ) := 1

M − 1

n∑
i=1

M∑
k=1

(
ei · (θ̂t(Xε

k , T ) − E T
M(θ̂ε

t )
))2 ≈

n∑
i=1

Var
(
ei · θ̂t(Xε, T )

)
,

with ei , 1 ≤ i ≤ n, denoting the canonical basis vectors of Rn . In other words Var(θ̂ε
t , T ) is simply an approximation of the 

trace of the covariance matrix. Fig. 2 shows the behavior the estimation procedure’s bias and variance as functions of T
using M = 100 independent Brownian motions for t ∈ {0.05, 0.5} and ε = 0.1. One observes that the variance Var(θ̂ε

t , T )

(Fig. 2(b)) decreases to zero as T increases, with slightly different rates for the different values of t . Conversely, the bias 
bias(θ̂ε

t , T ) (Fig. 2(a)) starts to decrease by increasing T for both values of t , however, after some value of T , the bias 
approaches a limiting value of approximately 0.15 for t = 0.05 and fluctuates around 0.04 for t = 0.5. This fluctuation 
persists even for T > 1000 (not shown here) and are mainly due to the error induced by approximating an expectation via 
an ensemble average of size M = 100, which becomes visible in this logarithmic scaling. The fact that the bias approaches 
a non-zero limiting value is not surprising (and in fact in agreement with the theoretical results), as one expects that the 
estimated value approaches the true value θ , as T → ∞, plus an O(ε) error due to the multiscale effects in the data Xε . 
Furthermore, we note that both values of t correspond to estimated values in Fig. 1 which have a considerable relative error, 
where the relative error for t = 0.5 is significantly smaller than the one for t = 0.05, hence explaining the different limiting 
values in Fig. 2(a) as the constant of the O(ε) error is t dependent.
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Fig. 3. Parameter estimates Â (+) and σ̂ (×) for (19) based on observations Xε of (18) with α = 1/3, λ = 2/45, and ε = 10−1.

3.2. Fast deterministic chaos

We consider an ODE driven by the time rescaled Lorenz equations:

dXε

dt
= α

(
Xε − (Xε)

3) + λ

ε
Y ε

2 , (18a)

dY ε
1

dt
= 10

ε2
(Y ε

2 − Y ε
1 ) , (18b)

dY ε
2

dt
= 1

ε2
(28Y ε

1 − Y ε
2 − Y ε

1 Y ε
3 ) , (18c)

dY ε
3

dt
= 1

ε2

(
Y ε

1 Y ε
2 − 8

3
Y ε

3

)
. (18d)

Equations of this form have been used as a deterministic climate toy model, see [50] for instance. Our aim is to obtain a 
stochastic coarse-grained model from observations of (18). It is known that, as ε → 0, the slow component Xε of Eq. (18)
converges weakly in C([0, T ], R) to the solution of the homogenized equation [51]

dX = A
(

X − X3)dt + √
σ dWt . (19)

In Eq. (19) the true parameter values are A = α and the diffusion coefficient σ is given in terms of the Green–Kubo 
formula [17]

σ = 2λ2

∞∫
0

lim
T →∞

1

T

T∫
0

Y ε=1
2 (s)Y ε=1

2 (s + t)ds dt . (20)

Obtaining a value for σ directly from Eq. (20) is computationally challenging so that the parametric estimation problem of 
σ from observations of Eq. (18a) arises naturally for this model, even without the connection to data-driven coarse-graining 
methodologies.

To estimate both the drift coefficient A and the diffusion coefficient σ (i.e. n = 2) in Eq. (19), a self-evident choice for the 
functions in Eq. (7) is f1(x) = x − x3, f2(x) = 0 = g1(x), and g2(x) = 1, where the true parameter vector is θ = (A, σ)T . To 
generate the time series we numerically integrate the multiscale system of ODEs (18) with α = 1/3, λ = 2/45, and ε = 0.1
on [0, 5000] with initial conditions Xε(0) = 1, Y ε(0) = (1, 1, 1)T . For these parameter choices (mainly the value of ε) the 
ODE system (18) is only marginally stiff and we thus solve it using a fourth order Runge–Kutta scheme with step size 
h = 0.001. Since there is no exact value for σ in Eq. (19) available, we cannot compute the relative error of the estimated 
parameter vector θ̂ ε

t . Instead Fig. 3 illustrates both estimated values Â and σ̂ as functions of t directly. One finds that the 
estimated drift parameter Â is strongly biased for very small values of t . Increasing t reduces the bias significantly and the 
estimated value approaches the true value (dashed line), only with minor fluctuations. In fact, the relative error is smaller 
than 6% for t ≥ 0.5. The estimated diffusion coefficient σ̂ shows qualitatively the same behavior. Specifically, by increasing t
the estimated value seems to approach a limiting value. In fact, averaging over the obtained estimated values for t ≥ 0.5 (i.e. 
the region for which Â is accurate), one finds σ̂ ≈ 0.113 with minor fluctuations (standard deviation ≈ 0.002). This value 
of σ̂ is in very good agreement with those reported in the literature [52,13], albeit marginally smaller. In fact, the relative 
error between the obtained value here and the value reported in [13] is around 6%.
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3.3. Large Hamiltonian systems: the Kac–Zwanzig model

Here we apply our methodology to the variant of the Kac–Zwanzig model studied in [53]. Specifically, we consider the 
case where one distinguished particle, with coordinate Q M and momentum P M , moves in an one-dimensional potential V
and interacts with M ∈N heat bath particles. Let the heat bath particles be described by coordinates q ≡ (q1, . . . , qM)T ∈ R

M

and momenta p ≡ (p1, . . . , pM)T ∈R
M . Then we consider the Hamiltonian

H(P M , Q M , p,q) := 1

2
P M

2 + V (Q M) + 1

2

M∑
j=1

p j
2

m j
+ 1

2

M∑
j=1

k j(q j − Q M)2 .

That is, the j-th heat bath particle with mass m j acts on the distinguished particle as a linear spring with stiffness con-
stant k j . The interaction with the bath is governed by the following 2(M + 1)-dimensional system of ODEs

dQ M

dt
= P M ,

dP M

dt
=

M∑
j=1

k j(q j − Q M) − V ′(Q M) , (21a)

dq j

dt
= p j

m j
,

dp j

dt
= −k j(q j − Q M) , j = 1, . . . , M . (21b)

The initial condition for this system are Q M(0) = Q 0, P M(0) = P0, q j(0) = q j,0, and p j(0) = p j,0. We assume that the 
initial conditions for the heat bath particles are in equilibrium. That is, we assume that the 2M-dimensional vector of 
initial conditions for the particles in the heat bath (positions and momenta) is randomly distributed according to a Gibbs 
distribution with density proportional to exp(−βH), conditioned on (Q 0, P0). Here β > 0 denotes the inverse temperature. 
Under these conditions it is possible to derive a coarse-grained model for the distinguished particle; see e.g. [53,54] and the 
references therein for details.

The precise form of the coarse-grained model depends mainly on the chosen values for the spring constants k j and 
the particles’ mass m j , 1 ≤ j ≤ M . Here we borrow Example 7.3 from [52]. Let α ∈ (0, 1) and define ω j = Mαη j , where 
(η j)1≤ j≤M is an identically and independently distributed sequence of random variables with η1 ∼ U(0, 1). Moreover, we 
set k j = 2αMα/

(
π(α2 + ω j

2)M
)

and m j = k j/ω j
2. Then, as M → ∞, the process Q M solving the full model (21) converges 

weakly in C2([0, T ]; R) to the process Q which is the solution of the stochastic integro-differential equation

Q̈ (t) + V ′(Q (t)
) +

t∫
0

e−α|t−s| Q̇ (s)ds = Z(t) ,

where Z denotes the Ornstein–Uhlenbeck process solving dZ = −αZ dt + √
2α/β dW . By introducing an auxiliary variable, 

it is possible to convert the integro-differential equation with nonlocal memory into a Markov process. Specifically, the 
limiting process Q is equivalently given as the solution of the augmented system of SDEs

dQ

dt
= P , (22a)

dP

dt
= S − V ′(Q ) , (22b)

dS = (μS − P )dt + √
2σ dW , (22c)

where the auxiliary variable S embodies the memory effects due to the heat bath interactions. Consequently, the coarse-
grained model associated with the 2(M + 1)-dimensional Hamiltonian system (21) is given in form of a 3-dimensional 
stochastic system. The limiting parameters in the coarse-grained model (22) are given by μ = −α and σ = α/β , where we 
recall that β is the inverse temperature.

The goal now is to estimate μ and σ in (22c) from observations in form of a single time series of (Q M , P M). Although the 
coarse-grained model (22) is three-dimensional, we can use a slightly modified procedure of the one derived in Section 2 for 
one-dimensional models, since we are concerned with identifying parameters in only one of the equations in (22), namely 
in (22c). Using Itô’s formula for (22) with the function φ(s) = s + s2, which only depends on s, we find

E

(
φ
(

Sξ (t)
)) − φ(ξ) +

t∫
0

E

(
P P0(τ )φ′(Sξ (τ )

))
dτ =

t∫
0

E

(
(L0φ)

(
Sξ (τ )

))
dτ ,

with (L0ϕ)(s) := μs d
ds ϕ(s) +σ d2

ds2 ϕ(s). This is an estimating equation like (8) and we thus only have to modify the definition 
of the term bc in (9) to account for the dependency of (22c) on the process P (the integral term on the left-hand side 
above). The rest of the procedure follows as in Section 2. In fact, we select the functions in parametrization (7) with n = 2
as f1(x) = x, f2(x) = 0 = g1(x), and g2(x) = 2, where the true parameter vector is θ = (μ, σ)T .
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Fig. 4. Relative error of the estimated parameter vector θ̂ ε
t for (22c) based on observations (Q M , P M ) of (21) with α = 1/22, β = 1, and M ≡ ε−1 = 5000.

It is important to stress that we wish to estimate μ and σ in (22c), but that we do not observe the process S directly: 
unlike for Q and P where we observe Q M and P M which converge to Q and P , respectively, we do not have access to 
such a process for S . We only have observations of (Q M , P M) from the full Hamiltonian system (21) with sampling time h. 
In the absence of model misspecification (i.e., when observing Q , P directly and not just Q M , P M instead), this problem is 
typically associated with hidden Markov model techniques as S is unobserved (i.e. hidden); see e.g. [55]. Here we consider 
a simple approximation to reconstruct the unobserved process S , which we will need in the estimation procedure. To this 
end we use the observations we have in (22b) with a first order finite difference approximation:

SM(t) := P M(t + h) − P M(t)

h
+ V ′(Q M(t)

)
.

We remark that, in principle, we can apply our methodology even if only Q M is observed but not P M . In that case one has to 
use both Eq. (22a) and Eq. (22b) with finite difference approximations to obtain suitable approximations of P and S . These 
finite difference approximation ideas have also been used in [54] within a customized maximum likelihood framework for 
the Kac–Zwanzig model. However, in their study the authors had to choose h sufficiently large as otherwise the parameter 
estimation performed poorly due to the presence of multiscale effects. Here we are not restricted by the multiscale structure 
of the problem.

For the numerical example we consider the case where the distinguished particle moves in a quartic potential, i.e. 
V (x) = −x2/2 + x4/4. Moreover, we use M = 5000 heat bath particles and set α = 1/2 and β = 1. To obtain a time series 
for (Q M , P M) of the full Hamiltonian system (21) on [0, 1000], we approximate it via a semi-implicit Euler scheme with 
time step h = 10−3 started at Q 0 = 1, P0 = 0. Fig. 4 depicts the relative error of the estimated parameter vector θ̂ ε

t as a 
function of t , with the understanding that ε ≡ M−1. Similar to the previous examples, one also observes here that it is 
possible to obtain accurate estimates once the value of t is sufficiently large. The relative error fluctuates closely around 
6% for t ≥ 0.2 and can be reduced even further by increasing M (not shown). To assess the obtained accuracy of 6%, we 
mention that in [54], as noted above, a specifically customized maximum likelihood method has been used to estimate 
parameters in a related problem and the authors report relative errors of 5–15%.

3.4. Deterministic Brownian motion

In [56] an Ornstein–Uhlenbeck process is constructed within a completely deterministic framework as an appropriate 
limit process of a chaotic dynamical system. Specifically, consider the position Xε and the velocity V ε of the dynamical 
system

dXε

dt
= V ε , (23a)

dV ε

dt
= −γ V ε + ηε , (23b)

with a deterministic perturbation ηε ≡ ηε(t) in the velocity variable. Here we use

ηε(t) = √
ε

∞∑
l=0

ζ(tl)δ(t − tl) , (24)

so that the derivative of the velocity variable V ε experiences small “kicks” at times t0, t1, . . ., where tl = lε. Here ζ is a 
discrete time dynamical system of the form ζ(tl+1) = �(ζ(tl)) and the function � is chosen such that the dynamical system 
ζ exhibits a strongly chaotic behavior. In our numerical example we used �(y) := cos (3 arccos(y)). Based on this dynamical 
system ζ the perturbation ηε in Eq. (24) is fixed and it follows from the results in [56] that the solution (Xε, V ε) of the 
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Fig. 5. Relative error of the estimated parameter vector θ̂ ε
t for (25b) based on observations Xε of (23) with γ = 1 and ε = 0.1.

chaotic deterministic system (23) converges weakly in C([0, T ], R), as ε → 0, to an Ornstein–Uhlenbeck process (X, V ), 
which solves

dX = V dt , (25a)

dV = −γ V dt + √
σ dWt , (25b)

where the diffusion coefficient is σ = 1/2.
We now aim for estimating both γ and σ in (25b) based only on one long trajectory of observations of the position 

variable Xε solving (23a). That is, we do not observe V ε solving (23b) directly. Instead we will, as in Section 3.3, compute 
an approximation Ṽ ε based on a finite difference approximation in (25a) first, i.e. we set Ṽ ε(tl) := (Xε(tl+1) − Xε(tl))/ε, 
recalling that tl+1 − tl = ε. Based on this approximate trajectory we can then directly apply the procedure introduced in 
Section 2 to estimate both γ and σ in (25b), since the velocity SDE is independent of the position. Therefore (n = 2) 
and we select the functions f1(x) = x, f2(x) = 0 = g1(x), and g2(x) = 1 in (7), corresponding to the true parameter vector 
θ = (−γ , σ)T . A time series of Xε on [0, 1000] with sampling rate h = 0.01 is obtained by solving the perturbed system (23)
with Xε(0) = −0.15, V ε(0) = −0.53, γ = 1 and ε = 0.1. Fig. 5 shows the relative error of the estimated parameter vector 
θ̂ ε

t as a function of t . Increasing t yields very accurate estimates with the relative error fluctuating around 5% for t ≥ 0.5.

4. Conclusion

In this paper we have introduced a novel numerical/statistical procedure which allows us to estimate parameters in 
coarse-grained models based on partial observations of a corresponding multiscale system. For such systems commonly 
used estimators, such as the maximum likelihood estimator, are known to be biased. Our approach is based on our previous 
study in [13] where it was assumed that an ensemble of short trajectories for multiple initial conditions is available. Here 
we generalize and appropriately extend the work presented in [13] to the practically relevant setting where only one 
(long) time series is available. In fact, the examples presented demonstrate that the developed inference method yields 
accurate approximations of the parameters in coarse-grained models based on a time series of the “slow” component of 
a multiscale system. The examples range from coarse-grained models where the associated multiscale system is stochastic 
to coarse-grained models for fully deterministic multiscale systems. We believe that this selection of examples highlights 
the broad occurrence of data-driven coarse-graining problems and thus the necessity for appropriate inference techniques 
which are robust against multiscale effects in the observation, as the one introduced here.

The illustrated robustness of an inference technique against multiscale effects (i.e. against perturbations that are small 
in the weak sense) appears to be novel but also has important implications in practice. Specifically, it significantly widens 
the range of applications to problems where the observed process is not necessarily a diffusion process. For instance, it 
covers the case of non-Markovian processes that can be approximated by a Markov process in an augmented state space 
(see, e.g., [57, Ch. 8.2]) and the concept of diffusion approximation (see, e.g., [58, Ch. 7]), both allowing for non-negligible 
deviations of the observation process from the assumed SDE model.

The focus of our study was on demonstrating that the introduced methodology can accurately infer parameters in coarse-
grained models from a time series, either stochastic or chaotic, of a multiscale system. Clearly there are still many challenges 
that remain to be addressed. One of them is the rigorous analysis of the algorithm to understand its asymptotic properties, 
but also to explore its limitations. Some first results concerning the convergence properties of the methodology have already 
been obtained and will be presented in [40]. A closely related and important avenue of future efforts is the study of the 
asymptotic distribution of the estimators, which in turn can be used to guide the construction of asymptotic confidence in-
tervals for the estimated values. Another interesting topic, which is relevant in many applications, is the study of additional 
observation error. That is, one only observes a contaminated version X̃ε of Xε:

X̃ε(tk) = Xε(tk) + η(tk) ,
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for any k ≥ 0, where η denotes the observation error. To allow for this additional contamination, our methodology would 
have to be combined with appropriate filtering techniques, a very appealing prospect. First results on combining filtering 
ideas with parametric inference techniques have been studied in [25] for a particular multiscale problem. See also [59] for 
more recent work on combining the MLE with filtering techniques for a class of multiscale problems. But also conceptu-
ally different approaches to the problem of data-driven coarse-graining appear worthwhile investigating. As, for example, 
most work on data-driven coarse-graining is based on a frequentist inference approach, investigating similar questions in a 
Bayesian approach poses a natural and interesting perspective as well; see [60] for related work in the context of inverse 
problems with a multiscale structure. We shall examine these and related questions in future studies.
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