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SEMIPARAMETRIC DRIFT AND DIFFUSION ESTIMATION FOR
MULTISCALE DIFFUSIONS∗

S. KRUMSCHEID† , G. A. PAVLIOTIS‡ , AND S. KALLIADASIS§

Abstract. We consider the problem of statistical inference for the effective dynamics of mul-
tiscale diffusion processes with (at least) two widely separated characteristic time scales. More
precisely, we seek to determine parameters in the effective equation describing the dynamics on the
longer diffusive time scale, i.e., in a homogenization framework. We examine the case where both
the drift and the diffusion coefficients in the effective dynamics are space dependent and depend on
multiple unknown parameters. It is known that classical estimators, such as maximum likelihood
and quadratic variation of the path estimators, fail to obtain reasonable estimates for parameters
in the effective dynamics when based on observations of the underlying multiscale diffusion. We
propose a novel algorithm for estimating both the drift and the diffusion coefficients in the effective
dynamics based on a semiparametric framework. We demonstrate by means of extensive numerical
simulations of a number of selected examples that the algorithm performs well when applied to data
from a multiscale diffusion. These examples also illustrate that the algorithm can be used effectively
to obtain accurate and unbiased estimates.

Key words. parameter estimation, multiscale diffusions, stochastic differential equations, ho-
mogenization, coarse-graining, effective dynamics
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1. Introduction. Problems with multiple temporal and/or spatial scales emerge
naturally in a wide variety of fields in science and engineering, from biological phe-
nomena [CPV10] and atmosphere and ocean science [MFK08] to molecular dynam-
ics [GKZ07], material science [Fis09], and fluid and solid mechanics [Hor10, HM98].
Many such systems are often subject to noise that is either due to thermal fluctua-
tions [Ein56], randomness in the environment (e.g., uncertainty in some parameters)
[HL84, SKP10, PTK+11], coarse-graining of high-dimensional deterministic systems
with random initial conditions [Maz02, Zwa01], or stochastic parameterization of small
scale effects [ELVE05].

Mathematically the influence of noise in such a system can be described by (non-
linear) stochastic differential equations (SDEs) with multiple scales. In many cases
these equations are high dimensional, but from a practical point of view only the
evolution of some components of the solution is of main interest since they act on
a slower scale. It is therefore desirable to approximate the full system by an ade-
quate simplified low-dimensional effective model (i.e., to coarse-grain) that retains
the essential dynamic characteristics of the full system. The effective equation is of-
ten amenable to analytical and numerical work. However, usually only the complete
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multiscale (fast/slow) system is directly observable but not the effective dynamics.
Consequently, much research has been undertaken to find accurate approximations to
the effective dynamics [GKS04].

In many applications a wealth of data (i.e., observations of the fast/slow system)
is often available, and it is therefore worthwhile to use these data to determine the
effective dynamics. However, extracting the effective dynamics directly from the avail-
able data is often not straightforward and it is thus important to adapt techniques
from analysis, statistics, and numerical analysis to obtain appropriate coarse-grained
models.

This data-driven coarse-graining methodology has been applied to relatively sim-
ple (stochastic) systems for which a low-dimensional coarse-grained equation exists,
using techniques such as homogenization and averaging. For example, in [PS07] Brow-
nian motion in a two-scale potential was studied. Therein, through both rigorous
mathematical analysis and numerical simulations, it was shown that the estimation
of drift and diffusion coefficients in the coarse-grained model is asymptotically bi-
ased when using classical estimators. Furthermore, it was shown that subsampling
the available data at an appropriate rate between the two characteristic time scales
of the full system is necessary for an accurate estimation of both the drift and the
diffusion coefficients in the coarse-grained model. More general fast/slow systems of
SDEs for which a coarse-grained equation exists were studied in [PPS09], where it was
shown that the same issue of asymptotically biased estimators persists in the homog-
enization framework—that is, when considering an effective dynamics on the (longer)
diffusive time scale—and that appropriately subsampled data reduce the bias. These
techniques were then applied to the problem of estimating eddy diffusivities from
noisy Lagrangian observations in [CP09], where an improved algorithm that com-
bines subsampling with appropriate averaging and variance reduction techniques was
proposed and tested. Furthermore, inverse problems for multiscale partial differential
equations—a problem closely related to that of parameter estimation—were studied
in [NPS12].

Although appropriate subsampling can potentially improve the accuracy of esti-
mators in the context of multiscale diffusions, as it yields unbiased estimators, the
question of an optimal subsampling rate (i.e., the rate for which the biased is removed)
remains open; e.g., the studies in [PS07, PPS09] provide only existence results. Fur-
thermore, the numerical experiments presented in the aforementioned works indicate
that the optimal subsampling rate is not only problem dependent but is also different
for different parameters in the same model. Consequently, an optimal subsampling
rate is in general unknown. The problem of identifying an optimal subsampling rate
for Gaussian processes has been studied in [ABT10, ABT11]; see also [ZMAS05] for
related work in the context of econometrics.

Related problems have been studied in the context of numerical analysis for SDEs
with multiple time scales. In particular, the heterogeneous multiscale method (HMM)
[VE03, ELVE05] is based on the idea of evolving the solution of the low-dimensional
coarse-grained equation when the coefficients in the coarse-grained equation are being
evaluated “on the fly” by running short runs of the underlying fast dynamics. Similar
ideas have been proposed in the framework of the “equation-free methodology” intro-
duced by Kevrekidis and collaborators; see, e.g., [TQK00, KGH+03, KGH04, KS09].
Recently, the HMM methodology has been extended to approximate stochastic partial
differential equations with multiple time scales [AP12]. As such, these techniques can
be considered as a hybrid between numerical analysis and statistical inference since
the coefficients in the coarse-grained SDE are estimated from data that are obtained
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from short runs of the full dynamics. We emphasize, however, that in the HMM the
fast dynamics is assumed to be known, whereas in the aforementioned works on pa-
rameter estimation for multiscale diffusions, as well as in the present work, no such
assumption is made.

We also mention that the effect of the multiscale structure on the evolution of the
coarse-grained probability density using the Fokker–Planck equation (Kolmogorov’s
forward equation) was studied in [FSR11]. In this study it was shown that when
decreasing the spatial discretization in a finite difference approximation the error
increases rapidly and that in order to avoid this it is necessary to improve the accuracy
of the estimators of the drift and diffusion coefficients.

In many cases of interest the noise in the coarse-grained equation appears in a
multiplicative way. One is thus confronted with the problem of estimating parameters
in both the drift and the diffusion coefficients of an SDE of the form

dxt = f(xt;ϑ) dt+ g(xt; θ) dWt ,

with unknown parameters (ϑ, θ)T ∈ Θ, the set of all feasible parameters. The problem
is further complicated by the fact that the parameters ϑ and θ may not be indepen-
dent, as, for example, in the problem of Brownian motion in a two-scale potential; see
section 3.2.2. In the absence of multiscale effects in the data, or if one assumes that
the optimal subsampling rate is known, a combination of the maximum likelihood es-
timator (MLE) and the quadratic variation of the path (QVP) is the most commonly
used estimator in practice; see [Pra99, Kut04, LS10] for background material on clas-
sical estimators. The QVP (or a variant thereof) is used to estimate parameters in
the diffusion coefficient, and, based on these estimates, the MLE is used to obtain
estimates for the parameters in the drift. As the MLE is based on an SDE with unit
diffusion, one usually transforms the original SDE into an SDE with a unit diffusion
coefficient by applying Itô’s formula to

hθ(x) =

∫ x

c

g(u; θ)−1 du(1)

for an arbitrary c in the state space of the process x and replacing θ with the estimator
obtained from the QVP for concreteness. For example, when considering

g(x; θ) =
√
θ1 + θ2x2 ,

which is the diffusion coefficient in the coarse-grained equation of the stochastic Burg-
ers equation (see section 3.2.5), then transformation (1) reads as

hθ(x) =
ln
(√
θ2x+

√
θ1 + θ2x2

)− ln
(√
θ2c+

√
θ1 + θ2c2

)
√
θ2

,

where θ = (θ1, θ2)
T has to be replaced by a previously obtained estimator.

Notice that this transformation can be singular when implementing it in practice
so that special care has to be taken when performing numerical simulations. In
particular within the MLE framework where a (nonlinear) objective function needs
to be maximized, this might cause problems. An alternative approach to estimating
parameters is based on the MLE for the discretized approximation, e.g., obtained
by the Euler–Maruyama scheme [KP92, Chap. 9.1], of the time-continuous SDE.
However, the nonvanishing (fixed) time-step size introduces an additional bias so that
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even for simple models this approach does not necessarily yield consistent estimators
[Lo88].

The main aim of the present study is to develop statistical inference techniques
that enable us to estimate parameters in both the drift and the diffusion coefficients
of a coarse-grained equation in the presence of an underlying (either stochastic or
deterministic) multiscale structure in the fast/slow system. More precisely, given
only observations of the slow component of the fast/slow system without any further
knowledge of the fast component, the aim is to infer the coefficients in the coarse-
grained equation. Furthermore, we wish to extend this approach in a semiparametric
framework to situations where the drift and diffusion coefficients can be expanded in
an appropriate (e.g., Taylor series) expansion.

Besides the lack of reliable statistical inference techniques for these problems,
the motivation for this study also originates from recent results on the derivation
of coarse-grained equations (also known as amplitude equations) for stochastic par-
tial differential equations (SPDEs) with quadratic nonlinearities [BHP07]. A typical
example for such an SPDE is the stochastic Burgers equation

dut =
(
(∂2x + 1)ut + ∂xu

2
t + ε2ut

)
dt+ εQ dWt(2)

on [0, π] equipped with appropriate boundary conditions. Therein Q denotes the
covariance operator, W space-time white noise, and 0 < ε � 1. To study solutions
to (2) of O(ε) on time scales of O(ε−2), i.e., ensuring that we are in the regime
described by amplitude equations, a diffusive rescaling is performed by defining v via
εv(ε2t) = u(t). Then v solves

dvt =

(
1

ε2
(∂2x + 1)vt +

1

2ε
∂xv

2
t + vt

)
dt+

1

ε
Q dWt .(3)

If the SPDE is equipped with homogeneous Dirichlet boundary conditions, it can be
shown that the dominant mode of the solution to (3) can be approximated by the
solution to a one-dimensional SDE driven by classical Brownian motion Wt of the
form

dXt =
(
AXt −BX3

t

)
dt+

√
σ2
a + σ2

bX
2
t dWt .

Since this class of SPDEs arises in many different applications—from population biol-
ogy [HL84] to fluid dynamics [PTK+11, PPK+12], where much data are available—it
is of major interest to obtain effective dynamics for the dominant modes of solutions
to the SPDE by means of a data-driven coarse-graining methodology.

The statistical inference technique we propose here consists of two steps. First, we
use the martingale property of the stochastic integral to obtain an equation involving
only the drift but not the diffusion coefficient of the SDE. Since the drift might
depend on multiple (unknown) parameters, it is generally impossible to obtain the
parameters uniquely from a single equation. The main element we employ to overcome
this underdetermined situation is the often disregarded initial condition. In fact, by
varying the initial condition of the SDE one can define the estimator for the drift
parameters via the best approximation of a system of equations. For the second
step, we rely on the estimators for the drift parameters and on the Itô isometry
to obtain a relation for the unknown parameters in the diffusion. Using the same
idea as in the first step, that is, by varying the initial condition of the SDE, we
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can also define the estimators for parameters concerning the diffusion via the best
approximation of a system of equations. The expectations involved in both steps of
the estimation procedure are approximated by an average over many short trajectories
(i.e., by ensemble averages), in contrast to classical estimators that often rely on a
long trajectory of the underlying process; see, e.g., [Pra99]. That is, the methodology
we propose here relies on independent short trajectories starting from different initial
conditions.

The main practical advantages of the methodology proposed here can be summa-
rized as follows:

(a) Coarse-grained models of high-dimensional, possibly infinite-dimensional,
problems that retain the essential dynamic characteristic of the full system
are a powerful tool for studying problems arising in science and engineer-
ing. The simplicity of such an effective model, typically an SDE, makes it
attractive for mathematical and numerical scrutiny. When the coefficients
of the SDE can be computed exactly, the effective SDE allows us to rapidly
decipher some of the basic characteristics of the full system, e.g., by com-
puting first-passage properties and properties alike, as done, for instance, in
[PTK+11, PPK+12]. However, in several problems it is not straightforward
to obtain the coefficients of the coarse-grained SDE exactly due to the com-
plexity of the underlying full system. From a theoretical standpoint several
assumptions need to be made, e.g., the dynamics is dominated by a sin-
gle eigenfunction/mode (often associated with a symmetry in the system)
and the higher-order modes decay sufficiently fast (see the derivation of the
“phase-diffusion” equation describing the transverse instability of propagat-
ing waves/fronts; see, e.g., [Kur03, Kal00]), to obtain computable coefficients.
Conversely, from a practical point of view obtaining approximations (estima-
tors) of the coefficients in the coarse-grained model, which can be used to
study the basic characteristics of the full system, is very appealing.

(b) A model for a physical or technological process might not be readily avail-
able, either because its derivation is cumbersome or it is not straightforward
to formulate it from first principles. But the underlying physics of the phe-
nomena at hand and previous experience with similar systems suggest an
SDE of the form adopted here, at least in certain regions of the parame-
ter space. In a spirit similar to that of the equation-free approach, one can
utilize available data and obtain a low-dimensional approximation to the pro-
cess, which in turn can be used as a model for the process in regions of the
parameter space consistent with the assumptions imposed from the outset.
But often such models can be applicable in regions beyond those dictated
by the assumptions. For instance, for a long-wave instability such as that
observed on a surface of a film flowing down an inclined plane [KRQSV12]
the growth rate curve of infinitesimal disturbances extends from the origin
up to a cut-off wavenumber. The Landau–Stuart equation is then applicable
only sufficiently close to the cut-off; i.e., it can be used to describe the tran-
sition when an unstable wave motion of given (“fundamental”) wavenumber
interacts with its first stable harmonics. On the other hand, when the growth
rate curve has a “nose” near criticality consistent with a short-wave instabil-
ity and so that the system equilibrates to a stationary norm solution in the
nonlinear regime, such as with with Rayleigh–Bénard convection [CH93], the
Landau–Stuart equation can be applicable even past the instability threshold.

D
ow

nl
oa

de
d 

05
/1

7/
13

 to
 1

29
.3

1.
24

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETER ESTIMATION FOR MULTISCALE DIFFUSIONS 447

The rest of the paper is organized as follows. In section 2 we present the precise
derivation of the estimators for systems with and without multiscale structure. Based
on these results, in section 3 the general applicability and performance of the pro-
posed methodology is investigated via different numerical examples. The extensive
numerical study we undertake illustrates that the proposed technique enables us to
estimate parameters in multiscale diffusions accurately. A summary of the results and
future perspectives are offered in section 4.

2. Estimators. We present the precise derivation of the drift and diffusion es-
timators for systems without and systems with multiscale effects present. First we
outline the methodology for SDEs without multiscale structure and illustrate some
properties of the estimators in this case before presenting the setup for multiscale
diffusions.

2.1. Derivation of drift and diffusion estimators. For the sake of simplicity
here we consider only one-dimensional real-valued processes (see sections 3.2.3 and
3.2.4 for examples of multivariate processes). Consider the scalar-valued Itô stochastic
differential equation

dxt = f(xt) dt+
√
g(xt) dWt , x(0) ≡ x0 = ξ ,(4)

where W denotes standard one-dimensional Brownian motion. Both the drift coef-
ficient f and the diffusion coefficient g are assumed to be sufficiently smooth such
that the SDE provides a unique solution for any initial condition ξ ∈ R and on any
finite time interval; see, e.g., [Kry99, sect. 1]. Moreover, we assume that both drift
f and diffusion g depend on unknown parameters, and the task is to estimate the
parameters in f and g from available data. In fact, here we focus on the case when
f(x) and g(x) are polynomials in x of degree max {Jf} and max {Jg}, respectively,
where Jf , Jg ⊂ N0 denote index sets of finite cardinality p = |Jf | and q = |Jg|, re-
spectively. The unknown coefficients of the polynomials are ϑ ≡ (ϑj)j∈Jf

∈ R
p and

θ ≡ (θj)j∈Jg
∈ R

q, respectively; i.e., we consider

f(x) ≡ f(x;ϑ) :=
∑
j∈Jf

ϑjx
j and g(x) ≡ g(x; θ) :=

∑
j∈Jg

θjx
j .(5)

Consequently, f and g are linear functions in ϑ and θ, respectively. These particular
assumptions on the drift f and the diffusion g simplify the notation in what follows,
and they will lead to a linear system of equations for the estimators of the parameters.
Notice that parameterization (5) is not compulsory and also that other parameter-
izations, such as (x; θ) �→ ∑

j∈J θjvj(x) for some known functions vj , will lead to
linear system of equations for θ. More general parameterizations will, however, not
necessarily result in a system of linear equations for θ anymore, and more elaborate
methods (e.g., an iterative approach using Newton’s method) are required.

The starting point in the derivation of the estimators is based on the following
identities:

E(xt − ξ) =
∫ t

0

E
(
f(xs)

)
ds ,(6a)

E

((
xt − ξ −

∫ t

0

f(xs) ds

)2
)

=

∫ t

0

E
(
g(xs)

)
ds ,(6b)
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owing to the martingale property of the stochastic integral and the Itô isometry,
respectively, holding for any fixed initial condition ξ. The next step is to incorporate
the parameterization of the functions f and g into (6) to identify the functional
structure of the relation for the parameters ϑ and θ, respectively. We begin with
substituting the parameterization of f into (6a), which will yield an estimator for
the parameter ϑ that is present in the drift term alone. Based on this estimator it
is possible to proceed similarly with (6b) and eventually obtain an estimator for the
parameter θ present in the diffusion part.

Substituting ansatz (5) for f into (6a) yields

E(xt − ξ) =
∑
j∈Jf

ϑj

∫ t

0

E(xs
j) ds(7)

for a given initial condition ξ. Therein E denotes the expectation with respect to
the Wiener measure and with respect to processes starting at a fixed initial condition
ξ. To emphasize this dependency on the initial condition we will use the notation
E ≡ Eξ. Fix a time t > 0 (the question of how to choose the final time t will be
addressed in section 3) and define

b1 : R 	 ξ �→ b1(ξ) := Eξ(xt − ξ) ∈ R ,

a1 : R 	 ξ �→ a1(ξ) :=

(∫ t

0

Eξ(xs
j) ds

)
j∈Jf

∈ R
p .

With these definitions (6a) can be rewritten as

a1(ξ)
Tϑ = b1(ξ) .(8)

The above equation is underdetermined for p > 1. To derive a well-defined estimator
for ϑ, we consider a finite sequence of initial conditions (ξi)1≤i≤m, with m ≥ p. Since
(8) is valid for each initial condition, this approach yields a system of linear equations

A1ϑ = b1 ,(9)

with A1 :=
(
a1(ξi)

T
)
1≤i≤m

∈ R
m×p and b1 :=

(
b1(ξi)

)
1≤i≤m

∈ R
m. The linear

system does not have a unique solution in general (if a solution exists at all). To
overcome this shortcoming we define the solution of the system of linear equations in
(9), i.e., the estimator of the drift parameter, to be the best approximation

ϑ̂ := argmin
s∈S1

‖s‖22 , S1 :=
{
z ∈ R

p : ‖A1z − b1‖22 → min
}
,

respectively,

ϑ̂ := A+
1 b1 ,(10)

with A+
1 being the Moore–Penrose pseudoinverse [BIG03]. We note that the estima-

tion of parameters in the drift does not require knowledge of the diffusion coefficient.
Assume now that we have already estimated the parameters in the drift f cor-

rectly. Then substituting the ansatz (5) of g into (6b) yields

E

((
xt − ξ −

∫ t

0

f(xs; ϑ̂) ds

)2
)

=
∑
j∈Jg

θj

∫ t

0

E(xs
j) ds .D
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Recall again that the expectation is with respect to the Wiener measure and processes
starting at ξ, and hence E ≡ Eξ. To cope with multiple parameters, we follow the
same approach as for the drift parameters above. In fact, define here

b2 : R 	 ξ �→ b2(ξ) := Eξ

((
xt − ξ −

∫ t

0

f(xs; ϑ̂) ds

)2
)
∈ R ,

a2 : R 	 ξ �→ a2(ξ) :=

(∫ t

0

Eξ(xs
j) ds

)
j∈Jg

∈ R
q

and consider again a finite sequence of initial conditions (ξi)1≤i≤m. Then we also
obtain a system of linear equations for the parameters

A2ϑ = b2 ,(11)

with A2 :=
(
a2(ξi)

T
)
1≤i≤m

∈ R
m×q and b2 :=

(
b2(ξi)

)
1≤i≤m

∈ R
m. We define the

estimator again via the best approximation

θ̂ := A+
2 b2 .(12)

Since the estimation of diffusion parameters θ is based on the estimators ϑ̂ for the
drift parameters, additional error sources might affect the estimator θ̂ in practice; see
section 2.3 for an example of this error propagation.

In practice we are confronted with discrete observations instead of continuous
ones so that we need to approximate the (deterministic) integrals in a1(·), a2(·), and
b2(·). Assume that we have (n + 1) observations at equidistant times tk := kh for
0 ≤ k ≤ n and h := t/n. The goal is to approximate the integrals by means of these
observations. Since the integrands depend on the path of the solution of an SDE,
we cannot expect the integrands to be very smooth. For such “rough” functions the
trapezoidal rule is more accurate than Simpson’s rule [CUN02]. Consequently, we
approximate the various integrals via the composite trapezoidal rule

∫ t

0

E(xs
j) ds =

n−1∑
k=0

∫ tk+h

tk

E(xs
j) ds ≈ h

2

(
E(x0

j
)
+ E(xt

j
)
+ 2

n−1∑
k=1

E(xtk
j)

)
,(13)

where we used that t0 = 0 and tn = t.

2.2. Description of the algorithm: An example. To apply the actual para-
metric estimation procedure introduced in the previous section to a specific problem,
not only does data need to be available, but also a parameterization needs to be cho-
sen. Consequently, the complete algorithm can be understood as consisting of two
stages:

1. Initialization. The time step h is given by the underlying time series of
observations and is assumed to be constant (however, this assumption is not
necessary; in fact, the procedure might be carried out in the exact same
manner with a nonequidistant sampling rate), and the terminal time t =
nh is fixed by choosing n appropriately (cf. section 3). Expectations are
approximated by averages over N trajectories generated from N independent
Brownian motions. The crucial step is to fix a parameterization for both the
drift and the diffusion coefficients. Finally, the sequence of initial conditions
(ξi)1≤i≤m needs to be chosen appropriately.

D
ow

nl
oa

de
d 

05
/1

7/
13

 to
 1

29
.3

1.
24

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

450 S. KRUMSCHEID, G. A. PAVLIOTIS, AND S. KALLIADASIS

2. Two-step estimation. Based on the initializations in the previous stage the
estimators are well defined. According to section 2.1 the parameters ϑ and
θ are estimated successively: first the parameters in the drift and then the
parameters in the diffusion coefficient. For both estimators, two steps need
to be performed:
(a) Assemble the linear system equations (9) and (11), respectively.
(b) Solve the arising systems via best approximations (10) and (12), respec-

tively.

Since the estimation step depends on the considered parameterizations for drift and
diffusion, we present a detailed pseudocode of the methodology in Algorithm 1 for the
example using Jf = {1, 3} and Jg = {0, 2}, i.e., p = 2 = q, with

f(x;ϑ) = ϑ1x+ ϑ3x
3 and g(x; θ) = θ0 + θ2x

2 .(14)

This setting corresponds to the Landau–Stuart equation that will play a vital role in
the numerical examples discussed in section 3. The input arguments of Algorithm 1
are the time-step size h and the data array X . The dimension of the array is a result
of m different initial conditions, each with N trajectories of (n + 1) observations.
When we denote by xit|ξ the value at time t of the ith trajectory started initially in

ξ, then X corresponds to the collection of these trajectories at discrete (equidistant)
times. For the example we consider here, we define approximations of the first three

Algorithm 1. Algorithm for the estimation of the parameters in the drift and
diffusion coefficients in (14).

Require: h > 0 and X ∈ R
m×N×(n+1)

1: for i = 1 to m do
2: for j = 1 to n do
3: αj ←

∑N
k=1

Xi,k,j+1

N

4: βj ←
∑N

k=1
(Xi,k,j+1)

3

N
5: end for
6: Ai,1 ← h

2 (Xi,1,1 + αn + 2
∑n−1

j=1 αj)

7: Ai,2 ← h
2

(
(Xi,1,1)

3 + βn + 2
∑n−1

j=1 βj
)

8: bi ← αn −Xi,1,1

9: end for
10: ϑ← A+b
11: for i = 1 to m do
12: for j = 1 to n do

13: γj ←
∑N

k=1
(Xi,k,j+1)

2

N
14: end for
15: Ai,1 ← nh

16: Ai,2 ← h
2

(
(Xi,1,1)

2 + γn + 2
∑n−1

j=1 γj
)

17: for j = 1 to N do
18: δj ← h

2 (f(Xi,1,1;ϑ) + f(Xi,j,n+1;ϑ) + 2
∑n

k=2 f(Xi,j,k;ϑ))
19: end for
20: bi ←

∑N
j=1

(Xi,j,n+1−Xi,1,1−δj)
2

N
21: end for
22: θ ← A+b
23: return (ϑT , θT )T
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moments at time t via

x̄t|ξ := N−1
N∑
i=1

xit|ξ , x̃t|ξ := N−1
N∑
i=1

(
xit|ξ
)2
, and x̌t|ξ := N−1

N∑
i=1

(
xit|ξ
)3
.

Thus, the quantities defining the matrices and right-hand sides involved in the esti-
mation step (cf. (9) and (11), respectively) are approximated via

a1(ξ)
T ≈ h

2

(
Qn(x̄·|ξ), Qn(x̌·|ξ)

)T
, b1(ξ) ≈ x̄t|ξ − ξ ,(15a)

a2(ξ)
T ≈ h

2

(
2n,Qn(x̃·|ξ)

)T
, b2(ξ) ≈ N−1

N∑
i=1

(
xit|ξ − ξ −Qn

(
fϑ̂ ◦ xi·|ξ

))2
,(15b)

with fϑ̂ ≡ f(·; ϑ̂) and Qn denoting the quadrature operator of the trapezoidal rule on
[0, t] with n equally spaced (h = t/n) subintervals (cf. (13)):

Qn(u) :=
h

2

⎛
⎝u0 + ut + 2

n−1∑
j=1

ujh

⎞
⎠ .(16)

It should be emphasized that equations such as x = A+b (e.g., as in lines 10 and 22
in Algorithm 1) are merely meant as a formal notation for x solving the least squares

problem x = argmins∈S ‖s‖22, S = {z : ‖Az − b‖22 → min} (cf. (10) and (12)) rather
than indicating that we first compute A+ and then multiply it by b to obtain x, a
step which clearly is computationally inefficient. In practice the method for computing
the solution typically depends on the rank of A. For the numerical examples that we
will present in section 3 we ensured a full rank situation by considering a sufficiently
large number of different initial conditions. The solution x can be computed with
one of the several methodologies for solving least squares problems, e.g., the Cholesky
factorization of the normal equations1 ATAx = AT b; for details on such methodologies
we refer the reader to standard textbooks on numerical linear algebra, e.g., [GvL96,
Chap. 5].

2.3. Properties of the estimator. The proposed estimation procedure relies
on two key ingredients. The first is that the methodology is based on the identities
in (6). The second is that by considering a finite sequence of initial conditions we can
cope with multiple parameters in the drift and diffusion coefficients, respectively. In
what follows we demonstrate the influence of both components on the proposed esti-
mation scheme with the help of some elementary, nonetheless illustrative, examples
when no multiscale effects are present. A detailed and rigorous analysis of the pro-
posed methodology for both multiscale and nonmultiscale situations will be presented
elsewhere.

To illustrate the influence on the identities in (6) and to address some asymptotic
properties we consider a simple Langevin equation with additive noise

dxt = ϑf(xt) dt+
√
θ dWt .

1This method for solving the least squares problem is simple to implement but might not be
optimal and is usually recommended only for problems with large residuals. However, it is noteworthy
that for the numerical examples presented in this study, the method performed well and no stability
issues occurred (as can be demonstrated by monitoring the condition number; not shown here), and
similar results were obtained with a QR factorization with column pivoting (not shown here).
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The drift estimator proposed in this study—this parameterization is already a straight-
forward generalization of the one introduced above—relies on the relation

E

(∫ t

0

f(xs) ds

)
ϑ = E(xt − x0) ,(17)

with ϑ being the true value. For a fixed final time t <∞, the estimator for continuous-
time observations—meaning that we approximate only the expectation by an average
but do not approximate the integrals—based on a single (fixed) initial condition x0 = ξ
is given by

ϑ̂ =

∑N
i=1(x

i
t − x0)∑N

i=1

∫ t

0
f
(
xis
)
ds

= ϑ+

√
θ
∑N

i=1

∫ t

0
dW i

s∑N
i=1

∫ t

0
f(xis) ds

= ϑ+
N (0, θt/N)

1
N

∑N
i=1

∫ t

0
f(xis) ds

.(18)

Notice that we dropped the dependency on the initial condition because only a single
initial condition is considered here. Since we approximate only the expectations by
finite averages, it is not surprising that the estimator for continuous-time observations
(18) converges to the true value in agreement with the law of large numbers. The
property that the variance of the error vanishes for N → ∞ reflects the fact that
the estimator relies on an identity, i.e., on a direct (deterministic) computation (17),
rather than on asymptotic time limits (i.e., on ergodicity).

Recall that we have (n+1) observations at times 0 = t0 < t1 < · · · < tn = t, with
t > 0 fixed, in the case of discrete-time observations. The integral approximation
introduces an additional error that can be identified via∫ t

0

us ds = Qn(u) + cn ,(19)

with an appropriate constant cn ∈ R that depends not only on n but also on u and t
and which vanishes in the limit as n→∞. Here Qn denotes the quadrature operator
of the trapezoidal rule as defined in (16). The actual error of the trapezoidal rule
depends on the regularity of the integrand. Here we rely only on the assumption
limn→∞ cn = 0 as a general scenario and do not discuss the rate of convergence.
Then, similarly to the continuous-time case, the estimator (when neglecting sampling
errors) can be written as

ϑ̂ =

∑N
i=1(x

i
t − x0)∑N

i=1Qn(f ◦ xi·)
=

∑N
i=1

(
ϑQn(f ◦ xi·) + ϑcin +

√
θ
∫ t

0 dW
i
s

)
∑N

i=1Qn(f ◦ xi·)
= ϑ

(
1− c̄N (n)

c̄N (n)− 1
N

∑N
i=1

∫ t

0
f(xis) ds

)
+

N (0, θt/N)
1
N

∑N
i=1

∫ t

0
f(xis) ds− c̄N (n)

,(20)

with c̄N (n) = N−1
∑N

i=1 c
i
n being the average error constant. Hence, the integral

approximation introduces an additional bias—second term in the bracket—that can
be controlled by n. Notice that |c̄N (n)| ≤ max1≤i≤N

∣∣cin∣∣ so that the additional bias
vanishes as n → ∞ for every N . Consequently, from (20) one infers that for a fixed
final time t > 0, one should choose both n,N � 1 to obtain an accurate estimate.

To estimate the diffusion coefficient the proposed scheme relies on the relation

θ =
1

t
E

((
xt − x0 − ϑ

∫ t

0

f(xs) ds

)2
)
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that is valid for all times t > 0 and where we replace ϑ by its estimator ϑ̂ for concrete-
ness. Consequently, the estimator for the continuous-time observation using a single
(fixed) initial condition and a fixed final time t > 0 reads as

θ̂ =
1

tN

N∑
i=1

(
xit − x0 − ϑ̂

∫ t

0

f(xis) ds

)2

=
1

tN

N∑
i=1

(
(ϑ− ϑ̂)

∫ t

0

f(xis) ds+
√
θ

∫ t

0

dW i
s

)2

= θ
1

N
χ2
N +

(ϑ− ϑ̂)2
tN

N∑
i=1

(∫ t

0

f(xis) ds

)2

+
2(ϑ− ϑ̂)
tN

N∑
i=1

W i
t

∫ t

0

f(xis) ds .

Since the estimator for the diffusion coefficient depends on the estimated drift param-
eter, an additional error is introduced (last two terms), as expected. To illustrate the

asymptotic properties of the estimator we, however, assume that the error (ϑ− ϑ̂) is
negligible. Consequently, we find that

θ̂ ≈ θ 1

N
χ2
N ,

where χ2
N denotes the Chi-squared distribution with N degrees of freedom. Recall

that 1
N χ

2
N ≈ N (1, 2/N) for N sufficiently large as a consequence of the central limit

theorem.
For the modification of discrete-time observations the integrals are again approx-

imated via the trapezoidal rule. Based on the same (n + 1) observations (neglecting
sampling errors) at 0 = t0 < t1 < · · · < tn = t, with t > 0 fixed, we find that

θ̂ =
1

tN

N∑
i=1

(
xit − x0 − ϑ̂Qn(f ◦ xi·)

)2

=
1

tN

N∑
i=1

(
(ϑ− ϑ̂)

∫ t

0

f(xis) ds+
√
θ

∫ t

0

dW i
s + ϑ̂cin

)2

,

with cin being the error representation of the trapezoidal rule; cf. (19). In contrast to

the continuous-time situation, the term ϑ̂cin reflects the additional error due to the
integral approximation that can be controlled by n. Since this additional term is the
only difference, expanding the square yields a result similar to that in the continuous-
time situation. If we assume again that the error from the drift parameter (ϑ− ϑ̂) is
negligible, then we find that

θ̂ ≈ θ 1

N
χ2
N +

ϑ̂2

t
c̃N (n) +

2ϑ̂
√
θ

tN

N∑
i=1

cinW
i
t ,(21)

with c̃N (n) = N−1
∑N

i=1 (c
i
n)

2
. Since 0 ≤ c̃N (n) for every N , the second term in (21)

can be controlled only by n. Consequently, for a fixed final time t, choosing n,N � 1 is
necessary to obtain an accurate estimate of the true parameter. It is noteworthy that
the same steps may be carried out for an arbitrary diffusion function, but obviously
we cannot directly infer the distributions of terms involving the stochastic integral.
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To deal with multiple parameters in drift and/or diffusion coefficients the proposed
estimation scheme relies on considering a finite sequence of initial conditions and
defining the estimator via the best approximation. To illustrate the effect of this
second component of the estimation procedure, consider the SDE

dxt = ϑf(xt) dt+
√
g(xt) dWt .

Provided all quantities are well defined, the estimator of ϑ, via a best approximation
using a sequence of initial conditions (ξi)1≤i≤m, is given by

ϑ̂ =

∑m
i=1 a1(ξi)b1(ξi)∑m

i=1 a1(ξi)
2

,

where a1(·) and b1(·) are as in (8) associated with the drift function f . On the other
hand, the quantity b1(ξi)/a1(ξi) yields a local estimator for each initial condition
because the considered problem has only one parameter to be determined. Thus
the best approximation corresponds here to the weighted arithmetic mean of these
local estimators with weights a(ξi)

2. Consequently, increasing m incorporates an
additional stabilization effect into the estimation scheme. From this point of view,
the best approximation resolves naturally the problem of combining local estimates
to a global estimator that arises in different estimation procedures as well, where
piecewise local strategies are utilized to improve the estimates; see, for example,
[Cal07]. In this study a heuristic estimation strategy for nonconstant diffusions in the
MLE framework is proposed by extracting local information from a large time series
to estimate coefficients locally and to combine these local estimators to form a global
estimator. Since this strategy is based on the MLE, the results in the above study
also highlight the subsampling issue when applied to multiscale diffusions.

It should be noted that although the proposed methodology computes moments of
the solution of an SDE, there is no direct link to the generalized method of moments
(GMM) [Han82]. The GMM for parametric estimation for SDEs is more closely
related to the MLE instead, as both estimation schemes rely on ergodicity of the
corresponding process by using long time series. In fact, both estimators even coincide
for many cases [Ham94, Chap. 14.4]. Since the MLE is biased for multiscale diffusions,
it can be expected that the subsampling issue also arises for the GMM when applied
to data obtained from a system with multiscale structure.

2.4. Estimators for multiscale diffusions. In the context of diffusion pro-
cesses with two widely separated time scales we consider the setup of a fast/slow
system of SDEs

dxt =

(
1

ε
f1(xt, yt) + f0(xt, yt)

)
dt+ α(xt, yt) dUt ,(22a)

dyt =

(
1

ε2
g2(xt, yt) +

1

ε
g1(xt, yt) + g0(xt, yt)

)
dt+

1

ε
β(xt, yt) dVt ,(22b)

equipped with appropriate initial conditions. In (22), U, V denote Brownian motions
of appropriate dimensions and 0 < ε� 1 denotes a small parameter. For the dimen-
sion of the fast/slow system we assume that y : T �→ R

d and (for simplicity) x : T �→ R,
where T = [0, t] denotes a finite time interval of interest. Furthermore, we assume
that the drift and diffusion functions in (22a) and (22b), respectively, are such that
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there exists a well-defined (i.e., the SDE provides a unique weak solution on any finite
time interval and for any initial condition) coarse-grained SDE

dXt = f(Xt) dt+
√
g(Xt) dWt(23)

in the limit of ε→ 0; see, e.g., [PS08, Chaps. 11 and 18] and the references therein for
technical details. That is, the slow process x is approximated by the solution of (23)
for ε � 1. Even in cases where both the effective drift f and the effective diffusion
function g are known, the actual computation of these expressions might be difficult or
even impossible, as appropriate Poisson equations have to be solved and integrals with
respect to the invariant measure of the fast process have to be computed. Hence, our
goal is to estimate both effective drift coefficient f and effective diffusion coefficient g
in (23) from available data (observations) of the fast/slow system (22) (more precisely,
only of its slow component). To this end we assume the same parameterizations of
the effective drift and diffusion functions as introduced in section 2.1:

f(x) ≡ f(x;ϑ) :=
∑
j∈Jf

ϑjx
j and g(x) ≡ g(x; θ) :=

∑
j∈Jg

θjx
j ,

where we recall that Jf , Jg ⊂ N0 denote index sets with p = |Jf | and q = |Jg|. Our
goal then is the following: Given observations only of the slow component (22a), is it
possible to estimate the parameters ϑ ≡ (ϑj)j∈Jf

∈ R
p and θ ≡ (θj)j∈Jg

∈ R
q charac-

terizing the associated coarse-grained equation (23)? Under the assumption that the
(ergodic) fast process (22b) is stationary, the algorithm described in section 2.1 also
applies straightforwardly to this problem, given the final time t of observation length
is chosen appropriately; cf. section 3.2. That is, we use multiple initial conditions for
the slow process (22a) to deal with multiple parameters in drift and diffusion, while
the fast process is sampled from its invariant measure that is assumed to be known,
either analytically or numerically.

The main motivation for also considering the same algorithm in the presence
of multiscale effects originates from the fact that both the slow component of the
full fast/slow system and the effective dynamics have probability laws that are ap-
proximately the same, provided ε � 1. Consequently, expectations with respect to
these laws are also approximately equal. Since the proposed methodology is based on
expectations (cf. (6)), we believe that this approach yields asymptotically unbiased
estimators. A rigorous analysis of the proposed methodology to verify this heuristic
argument is currently work in progress and will be reported elsewhere.

We conclude this section with a remark on a recently proposed estimator for
constant diffusion coefficients [FR11] that can also be derived using the approach we
introduce here. To this end, assume that the coarse-grained equation takes the form

dxt = f(xt) dt+
√
θ dWt ,

where we assume that the effective drift f is known and we wish to estimate the
diffusion coefficient θ from available data of a fast/slow system. When considering a
single (fixed) initial condition and following the approach introduced in section 2.1,
the resulting estimator reads as

θ̂ =
1

tN

N∑
i=1

⎛
⎜⎝
⎛
⎝xit − x0 − n−1∑

j=0

∫ (j+1)h

jh

f(xis) ds

⎞
⎠

2
⎞
⎟⎠ ,D
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where the integrals are being approximated by a quadrature rule and t is chosen
appropriately (in fact, we have approximated the Lebesgue integral via the trape-
zoidal rule). If one, however, uses a rectangular method with the left corner node
instead, this estimator coincides with the estimator proposed in [FR11] for estimating
the effective diffusion coefficient based on observations of the slow component of a
fast/slow system. We emphasize that a crucial assumption on the estimator in the
aforementioned work is that the effective drift is known a priori. This assumption is
very restrictive and makes the estimator unfeasible for most practical applications. A
further limitation of the estimator in [FR11] is that it applies only in situations where
the noise in the coarse-grained equation is additive (constant diffusion coefficient).
Conversely, the methodology proposed here aims to estimate multiple parameters in
both the drift and the diffusion coefficients.

3. Numerical experiments. We now present numerical experiments of pa-
rameter estimations for diffusion processes to illustrate the behavior of the estimation
scheme developed in section 2.

3.1. Parameter estimation for single-scale SDEs. Let us first present nu-
merical results for parameter estimation when no multiscale effects are present. We
investigate two different SDEs. In section 3.1.1 we consider the SDE corresponding
to the Ornstein–Uhlenbeck process, and in section 3.1.2 we examine the stochastic
Landau–Stuart equation. The purpose of these examples is twofold. On the one hand
they are used to illustrate that the proposed methodology can be employed success-
fully in practice to estimate unknown parameters, and on the other hand they help
us understand the influence of the parameters n, h, N , and m on the algorithmic
estimation procedure. The time series were obtained by solving the corresponding
SDEs via the Euler–Maruyama scheme. In all numerical examples reported in this
section, we used a time step of h = 10−3.

3.1.1. Ornstein–Uhlenbeck process. Consider the SDE

dxt = −Axt dt+
√
σ dWt , x0 = ξ ,(24)

with the unique solution being the Ornstein–Uhlenbeck process starting at ξ. The
estimation procedure is applied to data from the SDE with true parameters (A, σ) =
(0.5, 0.5) using a variety of different values for the parameters of the algorithm. Figure
1 depicts the relative errors of the estimated values as functions of the number of initial
conditions m for different combinations of n (recall that the final time is t = nh)
and N . For the estimated drift parameter Â (Figure 1(a)), there is a discrepancy
among different combinations of n and N for small values of m and the relative errors
vary from approximately 0.08 to 6. Increasing m decreases the relative errors, with
fluctuations due to the discretization, as expected; cf. section 2.3. Moreover, it is
apparent that the larger the n and N , the smaller the relative error. In contrast to
the drift parameter, the relative errors of the diffusion parameter σ̂ (Figure 1(b)) are
already small (relative error smaller than 0.05) even for small values of m. This is due
to the constant diffusion coefficient of the SDE. Increasing m generally decreases the
relative error further, again with fluctuations due to the discretization. We note that
although an error propagates from the drift estimation to the diffusion estimation
(cf. section 2), it appears to be negligible in this example. Based on theses results,
it seems plausible to tune the algorithm-defining parameters in such a way that the
estimators provide a given relative accuracy while at the same time the computational
cost is minimized. Obviously the question of optimized algorithm-defining parameters
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(a) Relative error of Â
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(b) Relative error of σ̂

Fig. 1. Relative error of the estimated parameters in (24) as functions of the number of initial
conditions m in a log-log scale. The final time of the considered time series is t = nh, with h = 0.001,
and the true parameters are (A,σ) = (0.5, 0.5). Furthermore, N denotes the number of independent
Brownian paths.

is of high importance in practical applications. However, this is not a straightforward
issue to address, as the discretization related parameters n and N influence not only
the accuracy of the algorithm in practice but also the number of initial conditions
m as well as their locations; we will investigate these and related issues in a future
study; see also the discussion in section 4.

3.1.2. Landau–Stuart equation. Consider the stochastic Landau–Stuart equa-
tion [Kur03, Chap. 2.2], where both additive and multiplicative noise are present:

dxt =
(
Axt −Bx3t

)
dt+

√
σa + σbx2t dWt , x0 = ξ .(25)

This SDE can be obtained from a wide class of spatially extended systems, e.g., the
noisy Kuramoto–Sivashinsky equation [PTK+11, PPK+12], by assuming near-critical
conditions, i.e., being sufficiently close to the primary bifurcation, and employing the
homogenization theory developed in [BHP07]. In this case we need to estimate a
total number of four parameters, two in the drift coefficient and two in the diffusion
coefficient.

We performed various numerical experiments with different choices of parameters.
Figure 2 illustrates the relative error of the estimated parameters as functions of
the number of initial conditions for different combinations of n and N when the
true parameters are (A,B, σa, σb) = (3, 2, 1.5, 1.3). We find qualitatively the same
behavior as in the previous section for the Ornstein–Uhlenbeck process: all three
parameters n, N , andm affect the accuracy of the estimators. Although Figures 2(a)–
(d) show a decreasing trend of the relative errors when increasing m, fluctuations are
still present. These fluctuations are of different magnitudes for different parameters
and are reduced by increasing both n and N . One also observes that increasing
m improves the accuracy of the estimators but only up to a certain level; i.e., the
corresponding curves approach nearly constant values for large m, which are due
to the approximation of the original system matrix, for instance in (9), by a matrix
based on observations and the aforementioned discretizations. Although it is apparent
that estimating all parameters in the Landau–Stuart model is more delicate than
for the Ornstein–Uhlenbeck process in section 3.1.1, it nonetheless seems possible to
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(a) Relative error of Â
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(d) Relative error of σ̂b

Fig. 2. Relative error of the estimated parameters in (25) as functions of the number of initial
conditions m using a log-log scale. The final time of the considered time series is t = nh, with
h = 0.001, and the true parameters are (A,B, σa, σb) = (3, 2, 1.5, 1.3). N denotes the number of
independent Brownian paths.

determine optimal algorithm-defining parameters such that the computational cost is
minimized given a certain error tolerance for the estimators for this model also.

3.2. Parameter estimation for fast/slow systems. Of particular interest
is the behavior of the estimator when applied to systems with two different time
scales. We examine the properties of the estimation scheme for stochastic multiscale
diffusions (sections 3.2.1–3.2.3), the problem of estimating the eddy diffusivity in a
two-dimensional cellular flow (the Taylor–Green flow, section 3.2.4), truncated sys-
tems of time rescaled SPDEs (section 3.2.5), and deterministic systems that exhibit
temporal chaos that can be approximated by an appropriate SDE (section 3.2.6). To
measure the accuracy of the estimation procedure in these examples, we rigorously
derive the coarse-grained equations from the associated fast/slow systems using ho-
mogenization theory so that the theoretical coefficients are known. Based only on
observations of the slow component of the fast/slow system, the goal is to infer the
coefficients in the coarse-grained equation using the proposed estimation procedure.
The estimated values are then compared with the theoretical ones. It is noteworthy
that assumptions on neither the knowledge of the fast component nor on the structure
of the fast/slow system are made (also, ε is unknown). As the precise dependency of
the estimation procedure on the control parameters n,m,N, h is still an open ques-
tion, the main purpose of this section is to illustrate the general applicability of the
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proposed estimation procedure for multiscale diffusions. If not stated otherwise, the
generated time series were obtained by solving the corresponding multiscale SDEs via
the Euler–Maruyama scheme using a time step h = 10−3. Furthermore, the expec-
tation is approximated by an average using N = 5000 independent Brownian paths,
and m = 150 different (equally spaced) initial conditions are used. We emphasize
once again that this particular choice of algorithm-defining parameters might be far
from optimal in the sense of computational complexity. But since our main goal is to
demonstrate the applicability of the proposed scheme to multiscale diffusions, these
algorithm-defining parameters will yield reliable estimators.

3.2.1. Fast Ornstein–Uhlenbeck noise. When the fast process is an Ornstein–
Uhlenbeck process it is rather straightforward to determine the precise form of the
effective equation associated with the fast/slow system because this task reduces to
computing Gaussian integrals. Consider, for example,

dxt =

(
1

ε
σ(xt)yt + h(xt, yt)− σ′(xt)σ(xt)

)
dt ,(26a)

dyt = − 1

ε2
yt dt+

√
2

ε
dVt ,(26b)

with Vt being a standard Brownian motion; then the effective dynamics is given by

dXt = h̄(Xt) dt+
√
2σ(Xt)2 dWt ,(27)

where h̄(x) denotes the average of h(x, ·) with respect to the invariant measure of
the fast process (Ornstein–Uhlenbeck process). We note that we have subtracted
the Stratonovich correction from the drift in (26a) so that the noise in (27) can be
interpreted in the Itô sense.2 In what follows we consider two different choices of the
pair h(·), σ(·). As a first example let

h(x, y) = h(x) = Ax and σ(x) =
√
σ ;(28)

then the amplitude equation is precisely the Ornstein–Uhlenbeck process (cf. section
3.1.1) but here in the context of multiscale diffusions where classical estimators fail.
To illustrate this failure and motivate the necessity of an appropriate sampling rate,
the quadratic variation of the path (QVP) estimator for the effective diffusion constant
and the maximum likelihood estimator (MLE) for the effective drift parameter are
applied to a time series on [0, 5000] with initial condition x0 = 0.5 generated by the
associated fast/slow system (26) with true parameters (A, σ) = (−0.5, 0.5) and ε =
0.1. Figure 3(a) depicts the performance of both the QVP and the MLE as functions
of the subsampling rate δh. The parameter δ indicates here that only every δth
observation is used to estimate the parameters in the drift and diffusion coefficients,
and hence δh denotes the time period between two consecutive observations. Starting
from the case without subsampling (δ = 1, that is, δh = 10−3) and increasing δ, both
estimators approach the true value. However, after an optimal subsampling rate, for
which the estimator is as close to the true value as possible (here approximately δh =
0.25, that is, δ = 250), both estimators deviate monotonically from the target value.

2The noise entering (26a), i.e., the process (26b), is a smoothed approximation to white noise so
that the noise in the limiting equation has to be interpreted in the Stratonovich sense according to the
Wong–Zakai theorem. Correcting the drift is not essential for the applicability of our methodology;
it was done so that the limiting equation (27) is somewhat simpler.
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Â (MLE)
σ̂ (QVP)

(a) Classical estimators
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(b) Novel procedure

Fig. 3. Performance of classical estimators and our procedure for both the drift and the diffusion
coefficients in (28). In plot (a) the MLE and QVP as functions of the subsampling rate δh (δ = 1
corresponds to no subsampling) are shown. Plot (b) shows the result of our procedure as a function
of the final time t = nh. In both cases the sampling rate of the considered time series is h = 0.001
and the true parameters are (A,σ) = (−0.5, 0.5). Dashed lines denote the true values.

We note that at the optimal subsampling rate the relative error is approximately 10%.
Figure 3(a) seems to suggest that the optimal subsampling rate is given by the local
extremum of the estimator as a function of the subsampling. However, this behavior
is not true in general; see, for instance, the numerical examples in [PS07, FR11] that
reveal different behaviors. Recall that the optimal subsampling rate is in general
unknown.

The situation is different when the effective parameters are estimated via the
method introduced here. Observations are generated by the associated fast/slow
system (26) with true parameters (A, σ) = (−0.5, 0.5) and ε = 0.1. The performance
of the estimator as a function of the final time t = nh for both Â and σ̂ is plotted in
Figure 3(b) and is compared directly to the results obtained by the classical estimators
discussed before. For small values of t = nh one observes that the estimated value of
the drift parameter Â fluctuates around the true value and stabilizes for larger times
with minor fluctuations around the true value. We note that the estimator obtained
by the proposed scheme outperforms the MLE significantly in terms of accuracy.3 For
the estimated diffusion coefficient σ̂ one finds that the novel scheme proposed here
and the QVP estimator yield similar results for small values of t = nh, indicating
that increasing t = nh here has the same beneficial effect as subsampling does for
the QVP estimator. But unlike the QVP, the estimator proposed here approaches
the correct value further and closely fluctuates around it when increasing nh, without
any deviations as when using QVP and subsampling. This is a typical behavior for
the estimator when applied to multiscale diffusions, as we will see in the forthcoming
examples. Consequently, one finds that, unlike classical estimators, once the final
time t = nh is larger than a critical value, the estimator fluctuates closely around the
true value.

3At the optimal subsampling rate the relative error for the MLE is approximately 10%, whereas
the relative error for the drift parameter obtained by the novel scheme is less than 1% for t = nh ≥
0.25. Admittedly, this comparison is not completely fair because the novel estimation scheme in
its current form relies on more data than the MLE, but we believe that these numbers nonetheless
illustrate the potential of the methodology we propose.
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Table 1

QVP estimators when fitting the Landau–Stuart SDE (30) to observed data. For the results
outlined in (a) the observed data were obtained from (30), i.e., the classical setting, whereas for the
results in (b) observations of the slow component (29a) of the fast/slow system (29) were used, i.e.,
the multiscale setting. In both cases the true parameters are (σa, σb) = (0.81, 0.49), and ε = 0.1
was used in the multiscale setting. The parameter N indicates the number of independent Brownian
paths that were used to compute an average.

(a) Classical setting

N σ̂a σ̂b

1 0.948301 0.251906
10 0.871561 0.390639
100 0.817719 0.480469
1000 0.806024 0.500243

(b) Multiscale setting

N σ̂a σ̂b

1 0.056463 0.000000
10 0.039087 0.028682
100 0.040613 0.026214
1000 0.040363 0.026727

Consider as a second example h(x, y) = h(x) = Ax−Bx3 and σ(x) =
√
σa + σbx2

so that the fast/slow system (26) reads as

dxt =

(
1

ε
yt
√
σa + σbxt2 + (A− σb)xt −Bxt3

)
dt ,(29a)

dyt = − 1

ε2
yt dt+

√
2

ε
dVt ,(29b)

with the effective dynamics in (27) given by the Landau–Stuart equation (see section
3.1.2)

dXt = (AXt −BXt
3) dt+

√
2(σa + σbXt

2) dWt .(30)

A natural extension of the QVP estimator to diffusion coefficients that depend on
multiple parameters is obtained by considering the standard QVP relation for different
time increments. Provided one considers a sufficient number of increments, i.e., a
sufficient number of estimating equations, one can define the QVP estimator by solving
the arising system. To illustrate that this approach can deal with multiple parameters
in the diffusion coefficient when no multiscale effects are present in the data, we first
use the QVP to estimate σa and σb in (30) based on data that are also obtained
from (30). This (single-scale) situation corresponds to the classical case of parametric
estimation, and the QVP can indeed be used to obtain accurate estimators σ̂a and σ̂b,
as illustrated in Table 1(a). Therein the obtained estimators σ̂a and σ̂b are presented
for different values of N , where N indicates the number of independent Brownian
paths that were used to compute an average to improve the accuracy. The Landau–
Stuart equation (30) was solved numerically on T = [0, 1000] starting at X(0) = 0.5
with true parameters (A,B, σa, σb) = (1, 2, 0.81, 0.49). Apparently, the QVP yields
very accurate estimates in this setting. However, things change when the QVP is
adopted in the presence of multiple time scales. In this multiscale setting we wish to
estimate the parameters σa and σb in the effective dynamics (30) from observations of
the slow component (29a) of the fast/slow system (29). The same true parameters and
configuration (i.e., same number and length of time increments) of the QVP as in the
classical example without multiscale effects were used since the QVP performed well
therein. Table 1(b) displays the obtained estimators σ̂a and σ̂b for different values
of N when the observations are obtained from (29) with scale separation ε = 0.1.
Increasing N yields QVP estimators with minor fluctuations, but both estimators are
strongly biased, as expected. Hence, an appropriate subsampling of the data would
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Fig. 4. Performance of the novel estimators Â, B̂, σ̂a, and σ̂b for the Landau–Stuart equation
(30) as functions of the final time t = nh, with h = 0.001. The true effective parameters are
(A,B, σa, σb) = (1, 2, 0.81, 0.49).

be required to remove the bias, but, once again, the optimal subsampling rate is not
known a priori and might, as in the case of the MLE, even be different for different
parameters.

Conversely, we will use this example to illustrate that the parameters in multiscale
diffusions can be estimated accurately using the proposed scheme, even though the
amplitude equation provides a far more involved structure than that of the previous
example in addition to the multiscale structure of the problem. Figure 4 depicts
the performance of the estimation procedure based on observations generated by the
fast/slow system (29) with true parameters (A,B, σa, σb) = (1, 2, 0.81, 0.49) and ε =
0.1 as a function of the final time t = nh. The true values are indicated by dashed lines.
The behavior of the estimators is qualitatively similar to that in the previous example.
By increasing t = nh, the estimators approach the true values, respectively, and
fluctuate closely around them after a critical final time. Consequently, all parameters
can be estimated accurately.

3.2.2. Brownian motion in a two-scale potential: A quadratic potential
in one dimension. Here we study the example that was originally used in [PS07] to
illustrate the failure of classical estimation schemes in the context of multiscale diffu-
sions for the first time. More precisely we consider the first-order Langevin equation

dxt = −∇Vα
(
xt,

xt
ε

)
dt+

√
2σ dUt ,(31)

which is a simple model for describing the movement of a Brownian particle in a
two-scale potential Vα subject to thermal noise, Ut being a standard Brownian mo-
tion. Here we consider the one-dimensional problem (a two-dimensional example is
treated in section 3.2.2) and further assume that the two-scale potential is given by
a large scale as well as a fluctuating part: Vα(x, y) = αV (x) + p(y). Based on these
assumptions we can rewrite the Langevin equation as

dxt = −
(
αV ′(xt) +

1

ε
p′
(
xt
ε

))
dt+

√
2σ dUt .

When the fluctuating part p is sufficiently smooth and periodic with period L, the
effective dynamics is given by

dXt = −AV ′(Xt) dt+
√
2Σ dWt ,(32)
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Fig. 5. Performance of the estimators Â, Σ̂ in (32) as functions of the final time t = nh, with
h = 0.001.

where the effective coefficients are given by A = αL2/(Z+Z−) and Σ = σL2(Z+Z−),
where Z± =

∫ L

0
e±p(y)/σ dy; see [PS07] for details. Here we consider V (x) = x2/2 and

p(y) = cos(y) so that (32) is the SDE of an Ornstein–Uhlenbeck process with

A =
α

I0(σ−1)2
and Σ =

σ

I0(σ−1)2
,

where I0(z) denotes the modified Bessel function of the first kind; cf. [AS64, Chap. 9.6].
We note that both the effective drift and the effective diffusion depend on the diffusion
σ of the original fast/slow system.4 Figure 5 shows the performance of the estimation
scheme when applied to observations of the fast/slow system with (α, σ) = (1, 0.5)
and ε = 0.1. As for the examples in the previous section both estimators Â and
Σ̂ are biased for small final times t = nh. Using longer time series, i.e., increasing
nh, reduces this bias, and both estimators approach the true values (dashed lines),
respectively.

3.2.3. Brownian motion in a two-scale potential: A quadratic potential
in two dimensions. As a first example to illustrate that the proposed methodology
can readily be extended to multivariate processes, we consider here a generalization
of (31) in two dimensions

dxt = −∇V
(
xt,

xt
ε
;M
)
dt+

√
2σ dUt ,

where V (·, ·;M) denotes again a two-scale potential, withM being a set of parameters
controlling the drift, and Ut denotes a standard two-dimensional Brownian motion.
As with the one-dimensional case, we assume that the two-scale potential V (·, ·;M)
is given by a large scale as well as a fluctuating part, with the fluctuating part being
separable: V (x, y;M) = V (x;M) + p1(u) + p2(v), with x, y ∈ R

2 and y = (u, v)T .
Hence, the original system reads as

dxt = −
(
∇V (xt;M) +

1

ε

(
p′1
(
x1t /ε

)
p′2
(
x2t /ε

)
))

dt+
√
2σ dUt ,

4We remark that in the numerical examples presented in [FR11, sect. 4.3] the drift coefficient
in the homogenized equation is assumed to be known when estimating the diffusion coefficient, even
though it depends explicitly on the unknown σ.
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Â12
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(b) Estimator Σ̂ = diag(Σ̂11, Σ̂22)

Fig. 6. Performance of the estimators Â, Σ̂ in (33) as functions of the final time t = nh, with
h = 0.001.

with xt = (x1t , x
2
t )

T ∈ R
2. We take the large scale part to be a quadratic potential

V (x;M) =
1

2
xTMx ,

with M being symmetric and positive definite, so that the effective dynamics is given
by

dXt = −KMXt dt+
√
2σK dWt(33)

for Xt ∈ R
2 with analytic expressions for K = diag(k1, k2); see [PS07]. With p1(u) =

cos(u) and p2(v) = cos(v)/2 we find that

k1 =
1

I0(1/σ)2
and k2 =

1

I0(1/(2σ))2
,

where I0(z) denotes again the modified Bessel function of the first kind.
Since both identities in (6) have pendants for multivariate processes, the method-

ology introduced here can be readily applied to estimate both the effective drift matrix
A := KM and the effective diffusion matrix Σ := 2σK in (33). The only difference is
that the system of equations corresponding to (9) and (11), respectively, is a matrix
equation in this case, and similar techniques to obtain the best approximation (both
formally and numerically) can be employed [Pen56]. Figure 6 depicts the performance
of the estimation scheme when applied to observations of the fast/slow system with
M =

(
2 2
2 3

)
, σ = 3/2, and ε = 0.1. Figure 6(a) shows the estimated values of the four

effective drift coefficients: As for the one-dimensional examples, the estimators also
show here an approaching behavior towards the target values when increasing t = nh,
yielding an accurate estimate of A = KM for t = nh sufficiently large. The same
behavior when increasing t = nh is also observed for the estimated (diagonal) effective
diffusion coefficient Σ = 2σK, as shown in Figure 6(b). We note that although the
curves in Figure 6(b) show a minor gap for larger t = nh, the relative error is less
than 2% in both cases for t ≥ 0.75.

3.2.4. Eddy diffusivity for the Taylor–Green flow. Here we use our estima-
tor to estimate the eddy diffusivity (effective diffusion coefficient) of a tracer particle
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(a) Time step h = 10−3
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(b) Time step h = 10−4

Fig. 7. Performance of the estimated diagonal elements D̂11 and D̂22 of D̂ as functions of the
final time t = nh.

moving in a two-dimensional cellular flow and subject to molecular diffusion. This
is a very well studied problem, and it is known that the position of the tracer par-
ticle converges, under the diffusive rescaling, to a Brownian motion with a diffusion
coefficient (covariance matrix) that can be calculated in terms of the solution of an
appropriate Poisson equation; see, e.g., [MK99] or [PS08, Chap. 13]. The equation
for the position of the tracer particle is

dxt = v(xt) dt+
√
2κdUt ,

where v is a periodic divergence-free velocity field and κ denotes the small-scale diffu-
sivity. In the numerical simulations below we will take v to be the Taylor–Green flow,
v = J∇ψTG, where J =

(
0 −1
1 0

)
and ψTG(u, v) = sin(u) sin(v). We set xε := εx(t/ε2)

to obtain the equation

dxεt =
1

ε
v(xεt/ε) dt+

√
2κdUt .(34)

In the limit as ε tends to 0, xε converges weakly to a Brownian motion with diffusion
tensor D, the eddy diffusivity. The goal here is to obtain an estimator D̂ of D using
the proposed methodology. It is known that the off-diagonal elements of the eddy
diffusivity for the Taylor–Green flow vanish and that the two diagonal elements are
equal, and our numerical experiments are consistent with these results. Figure 7 shows
the performance of diagonal elements of D̂ using (34) with ε = 0.1 and κ = 0.1. Even
though D is not known explicitly as a function of κ, it can be approximated accurately
either by solving the Poisson equation using a spectral method or by performing a
long time Monte Carlo simulation [CP09]. In the aforementioned work the value
d̄ = 0.342 has been reported as an approximation of the diagonal elements. When a
time step h = 10−3 is used, Figure 7(a) shows that the estimators behave qualitatively
in the same way as in the previous examples: increasing t = nh drives the estimators
towards limiting values. Noteworthy is that although there are differences between
these limiting values of the estimators and the target value d̄ (dashed horizontal
line), the relative error is less than 7% in both cases for t = nh ≥ 0.5. Moreover,
the differences in 7(a) are due mainly to temporal discretizations and not due to
multiscale effects, as can be verified with Figure 7(b), where the performance of the
estimators for the same experiment but with a smaller time step is shown.
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σ̂b

Fig. 8. Performance of the estimators Â, B̂, σ̂a, and σ̂b in (35) as functions of the final time
t = nh, with h = 0.001.

3.2.5. Truncated Burgers equation. We consider here an appropriately re-
scaled variant of the stochastic Burgers equation

dut =

(
1

ε2
(∂2x + 1)ut +

1

2ε
∂xu

2
t + νut

)
dt+

1

ε
Q dWt

on [0, π] equipped with homogeneous Dirichlet boundary conditions. Under technical
assumptions on the covariance operator Q of the space-time white noise W , one
can show (see [AP12] and the references therein for details) that the coefficients of
the three-term truncated representation of the solution have to solve the following
multiscale SDE:

dxt =

(
νxt − 1

2ε
(xty

1
t + y1t y

2
t )

)
dt ,

dy1t =

(
νy1t −

3

ε2
y1t −

1

2ε
(2xty

2
t − xt2)

)
dt+

q1
ε
dV 1

t ,

dy2t =

(
νy2t −

8

ε2
y2t +

3

2ε
xty

1
t

)
dt+

q2
ε
dV 2

t ,

with V 1
t and V 2

t being independent standard Brownian motions. Therein the covari-
ance operator Q is such that noise acts only on the fast modes directly. For the
truncated system standard homogenization theory applies and yields

dXt =
(
AXt −BXt

3
)
dt+

√
σa + σbXt

2 dWt(35)

as the effective dynamics with true parameters

A = ν +
q1

2

396
+
q2

2

352
, B =

1

12
, σa =

q1
2q2

2

2112
, and σb =

q1
2

36
.

See [BHP07] for details. Figure 8 shows the performance of the estimation scheme
when applied to observations of the three-dimensional fast/slow system with ν = 1,
(q1, q2) = (1, 1), and ε = 0.1. Since the true values of the effective coefficients (dashed
lines) are of different orders for these particular choices, a semilogarithmic scale is
adopted for the sake of clarity. The plots show qualitatively the same behavior as
in the previous examples when increasing the final time t = nh and suggest that the
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estimation procedure yields accurate estimators. Only the estimated value σ̂a fluctu-
ates around the true value. We note that the true value σa is very small (≈ 5 · 10−4)
so that this coefficient has only marginal influence in the complete diffusion function.
Furthermore, recall that even the time step in the Euler–Maruyama discretization is
larger (h = 10−3) so that the fluctuations are expected to be due to discretization
errors. As a matter of fact, considering a finer discretization (i.e., increasing m,n,
and N) reduces the fluctuations (not shown here).

3.2.6. Fast chaotic noise. Our methodology is also applicable to a system
of ordinary differential equations (ODEs) where the stochastic noise is replaced by
deterministic chaos. In particular, we will consider an ODE driven by one of the
components of an appropriately rescaled Lorentz system. More precisely, consider as
an example the following system:

dx

dt
= x− x3 + λ

ε
(1 + νx2)y2 ,(36a)

dy1
dt

=
10

ε2
(y2 − y1) ,(36b)

dy2
dt

=
1

ε2
(28y1 − y2 − y1y3) ,(36c)

dy3
dt

=
1

ε2

(
y1y2 − 8

3
y3

)
,(36d)

where the fast component y = (y1, y2, y3)
T solves the Lorenz equation. In what

follows we investigate two different couplings between the fast and the slow process
by choosing ν ∈ {0, 1}.

According to [PS08, Chap. 11.7.2] (see also [GKS04, ex. 6.2]), when eliminating
the fast chaotic variable y, the approximate dynamics for ν = 0 is given by

dXt = A
(
Xt −Xt

3
)
dt+

√
σ dWt ,(37)

with A = 1 and the diffusion coefficient that is given by the Green–Kubo formula

σ = 2λ2
∫ ∞

0

lim
T→∞

1

T

∫ T

0

ψs(y)ψs+t(y) ds dt .(38)

Therein ψt(y) = e2 · ϕt(y), with ϕt(y) denoting the solution of the fast process y at
time t when ε = 1 and e2 = (0, 1, 0)T . The convergence of the solution of (36a) to
the solution of (37) can be justified rigorously using the recent results from [MA11].
However, the above expression for σ is not useful practically: Not only does it not give
an analytical value for σ, but also using it to obtain σ numerically is computationally
expensive. Hence, it would be advantageous to use the methodology proposed here
and estimate the effective coefficients via observations of the complete (deterministic)
fast/slow system. To illustrate numerically that our estimation procedure can indeed
deal with this problem, we apply it to observations of the deterministic fast/slow sys-
tem using λ = 2/45 and ν = 0 to estimate both the drift and the diffusion coefficients.
Since the system is deterministic, classical solvers for ODEs may be employed. For
example, depending on the stiffness (i.e., on ε) of the system, either a fourth-order
Runge–Kutta scheme or a solver based on numerical differentiation formulas is used.
Figure 9 depicts the estimated values as functions of the final time t = nh for two
different choices of the scale separation ε ∈ {10−3/2, 10−1}. The value ε = 10−3/2 is
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(a) Estimator Â
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Fig. 9. Performance of the estimation scheme applied to the deterministic system (36) using
λ = 2/45, ν = 0, and ε ∈ {10−3/2, 10−1}. The final time of the considered time series is t = nh,
with h = 0.001, and the true effective drift parameter is A = 1.

the same with that used in [GKS04], thus allowing for direct comparisons to be made;
we will return to this point shortly. The estimated drift parameter Â (Figure 9(a))
shows (for both values of ε) the typical behavior we expect in the context of multiscale
diffusions. While the estimator is biased for small values of nh, increasing nh signifi-
cantly reduces the bias so that the estimator approaches the true value (dashed line).
The estimators of the effective diffusion coefficient σ̂ (Figure 9(b)) also approach a
limiting value when increasing nh, with minor fluctuations for both values of ε. In
both plots, one observes a performance difference of the estimators for different values
of ε. In fact, the more distinctive the scale separation (i.e., the smaller the ε) between
fast and slow components, the faster the estimators approach a limiting value.

For both the drift and the diffusion estimators the curves for different values of ε
give slightly different values

Âε ≈
{
0.984 if ε = 10−1,

0.998 if ε = 10−3/2
and σ̂ε ≈

{
0.121 if ε = 10−1,

0.124 if ε = 10−3/2

at time nh = 2. Hence for ε > 0 there exists an additional bias, which is the reason
for the observed difference in the estimators for different ε. On the other hand, one
expects that as ε decreases, the estimators of the effective coefficients become more
accurate, as one observes here for the estimated drift Â. Thus, σ̂ is also expected to
be more accurate as ε decreases. Since no analytic formula for the diffusion coeffi-
cient exists, the estimator σ̂ is compared with alternative numerical approximations
available in [GKS04, ex. 6.2 and ill. 10.5]. In the numerical experiments performed
in this study the value ε = 10−3/2 was adopted, giving a value of 0.126 ± 0.003 us-
ing Gaussian (second) moment approximations based on a modified Euler–Maruyama
discretization of the effective dynamics and a value of 0.13±0.01 based on the hetero-
geneous multiscale method (HMM) with a discretization of the Green–Kubo formula
for the effective diffusion coefficient; see also [FVE04] for more elaborate HMM-based
numerical schemes applied to the Lorenz 96 model. Thus, we have a very good agree-
ment of the result obtained by the estimation proposed here with these previously
reported values. It is worth mentioning that, unlike in the procedure introduced here,
the methods employed to determine the effective diffusion coefficient in [GKS04] as-
sume that the effective drift parameter A is known. While the HMM can easily be
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Fig. 10. Performance of the estimation scheme applied to the deterministic system (36) using
λ = 2/45, ν = 1, and ε = 10−3/2. The final time of the considered time series is t = nh, with
h = 0.001.

adapted to the case of an unknown drift parameter, it is not straightforward to incor-
porate the unknown drift parameter into the estimation based on Gaussian moment
approximations. In any event, incorporating the drift estimation would yield an even
larger statistical error for these methods, while the results based on the presented
scheme show only minor fluctuations; see Figure 9.

Choosing ν = 1 in (36a) and following the methodology outlined in [PS08,
Chap. 11] yields the following effective dynamics:

dXt =
(
AXt +BXt

3 + CXt
5
)
dt+

√
σa + σbXt

2 + σcXt
4 dWt .(39)

The effective coefficients are now given by

A = 1+ σ , B = σ − 1 , C = 0 , 5 σa = σ , σb = 2σ , σc = σ ,

with σ being as in (38). We apply our methodology again to observations of the
deterministic fast/slow system using λ = 2/45, ν = 1, and ε = 10−3/2 to estimate all
six effective coefficients. Figure 10 illustrates the estimated values of both the drift
and the diffusion parameters as functions of the final time t = nh. We observe the
procedure’s typical behavior in the context of multiscale observations. In fact, for both
the drift (Figure 10(a)) and the diffusion parameters (Figure 10(b)) the estimators
approach limiting values with only minor fluctuations when increasing nh.

4. Conclusion. We have developed a numerical methodology for estimating
multiple parameters in a coarse-grained equation (in one or multiple dimensions)
based on observations from an associated fast/slow system that possesses a multiscale
structure. This problem is far from straightforward, due not only to the multiscale
effects present in the available data but also due to difficulties associated with estimat-
ing parameters when both the drift and the diffusion coefficients are state dependent.

The approach developed in this study combines a number of different techniques.
On the one hand, the derivation of the estimators relies on simple identities based

5Although we know theoretically that C = 0, we estimate C nonetheless with the proposed scheme
to illustrate that the novel scheme can correctly identify the relevant parameters in a model that
contains more parameters than necessary, for instance given by a Taylor or Fourier series expansion.
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on the martingale property for stochastic integrals and Itô isometry. On the other
hand, we exploit our freedom in varying the initial condition in combination with
standard techniques from inverse problems to define the parameter estimators via
best approximation.

We demonstrated via a detailed numerical study that the proposed inference
scheme provides us with accurate estimates for parameters in both the drift and the
diffusion coefficients in systems with multiscale structure and state-dependent noise.
In fact, the proposed methodology appears to be accurate and effective even when
the stochastic noise in the system is replaced by deterministic chaos.

While the feasibility study of the parameter estimation for multiscale diffusions
and the initial presentation of the estimation scheme is the main development here,
clearly many open problems and questions remain to be addressed. One such open
question is the rigorous analysis of the algorithm to investigate its asymptotic prop-
erties and to scrutinize its limitations. Furthermore, the rigorous analysis of the al-
gorithm is expected to reveal insights into the dependency on the algorithm-defining
parameters that in turn can be used to reduce the computational complexity of the
methodology.

Clearly, from a practical point of view there are different strategies for improving
the efficiency of the estimators. A first starting point could be the usage of techniques
with an accelerated convergence instead of the brute-force Monte Carlo sampling to
approximate the involved expectations, e.g., quasi–Monte Carlo [Nie92] or variance
reduction techniques [KP92, Chap. 16]. Also, recent work on multilevel Monte Carlo
methods [Gil08] appears very appealing in this context, although care might have to
be taken due to the nonlinear nature of the underlying model SDE; cf. [HJK].

Several questions also arise naturally within the presented framework of varying
the initial condition to set up a system of equations: How many initial conditions need
to be considered? Where to locate the initial conditions: equispaced or distributed
differently? How does the choice of the initial condition influence the accuracy of the
estimator? In fact, preliminary numerical experiments suggest that an alternative
distribution of the initial conditions improves the accuracy. Hence, an “optimal”
distribution of the initial condition is expected to reduce the computational cost
considerably.

Another interesting point concerns the best approximation. Here we defined the
estimator as the element that minimizes the residual of a linear system of equations
with respect to the Euclidean norm. Thus, natural questions are, e.g., whether an
alternative norm might be more appropriate and how regularizing the minimization
problem (e.g., by a truncated singular value decomposition or a Tikhonov regulariza-
tion) affects the estimator. Also, methodologies that “optimize” the linear system of
equations to obtain more accurate best approximations, as they are used, for instance,
in the reconstruction of tomographic problems [LHRS11], are appealing.

From a computational point of view, employing parallel computing strategies also
seem promising. In fact, the presented algorithm consists of multiple parts (mainly
when generating the observations) without mutual dependency. Thus, these parts
lead to problems that are straightforward to parallelize.

There are applications, however, where only one long time series is available,
rather than several short ones, as required for the methodology developed here to
estimate the drift and diffusion coefficients. It is an interesting question whether this
methodology can be extended to cases where only a long time series is available. This
and related issues will be treated in future studies.
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