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Abstract In this paper, we study the combined mean field and homogenization limits
for a system of weakly interacting diffusions moving in a two-scale, locally periodic
confining potential, of the form considered in Duncan et al. (Brownian motion in
an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although
the mean field and homogenization limits commute for finite times, they do not, in
general, commute in the long time limit. In particular, the bifurcation diagrams for the
stationary states can be different depending on the order with which we take the two
limits. Furthermore, we construct the bifurcation diagram for the stationary McKean–
Vlasov equation in a two-scale potential, before passing to the homogenization limit,
and we analyze the effect of the multiple local minima in the confining potential on
the number and the stability of stationary solutions.

Keywords McKean–Vlasov equation · Interacting particles · Multiscale diffusions ·
Bifurcation diagram · Phase transitions · Desai–Zwanzig model · Curie–Weiss model

Mathematics Subject Classification 35Q70 · 35Q83 · 35Q84 · 82B26 · 82B80

1 Introduction

Systems of interacting particles, possibly subject to thermal noise, arise in several
applications, ranging from standard ones such as plasma physics and galactic dynam-
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ics (Binney and Tremaine 2008) to dynamical density functional theory (Goddard
et al. 2012a, b), mathematical biology (Farkhooi and Stannat 2017; Lućon and Stannat
2016) and even in mathematical models in the social sciences (Garnier et al. 2017;
Motsch and Tadmor 2014). As examples of models of interacting “agents” in a noisy
environment that appear in the social sciences—which has been the main motivation
for this work—wemention the modeling of cooperative behavior (Dawson 1983), risk
management (Garnier et al. 2013) and opinion formation (Garnier et al. 2017). Another
recent application that has motivated this work is that of global optimization (Pinnau
et al. 2017).

In this work, we will consider a system of interacting particles in one dimension,
moving in a confining potential, that interact through their mean, i.e., a Curie–Weiss
type interaction (Dawson 1983):

dXi
t =

⎛
⎝−V ′(Xi

t ) − θ

⎛
⎝Xi

t − 1

N

N∑
j=1

X j
t

⎞
⎠

⎞
⎠ dt +

√
2β−1 dBi

t . (1.1)

Here xt := {Xi
t }Ni=1 denotes the position of the interacting agents, V (·) a confining

potential, θ the strength of the interaction between the agents, {Bi
t }Ni=1 standard inde-

pendent one-dimensional Brownian motions and β the inverse temperature. The total
energy (Hamiltonian) of the system of interacting diffusions (1.1) is

WN (x) =
N∑

�=1

V (X�) + θ

4N

N∑
n=1

N∑
�=1

(Xn − X�)2. (1.2)

Passing rigorously to the mean field limit as N → ∞ using, for example, martingale
techniques (Dawson 1983; Gärtner 1988; Oelschläger 1984), and under appropriate
assumptions on the confining potential and on the initial conditions (propagation of
chaos), is a well-studied problem. Formally, using the law of large numbers we deduce
that

lim
N→+∞

1

N

N∑
j=1

X j
t = Ext ,

where the expectation is taken with respect to the “1-particle” distribution function
p(x, t).1 Passing, formally, to the limit as N → ∞ in the stochastic differential
equation (1.1), we obtain the McKean SDE

dxt = −V ′(xt ) dt − θ(xt − Ext ) dt +
√
2β−1 dBt . (1.3)

1 This corresponds to the mean field ansatz for the N -particle distribution function, pN (x1, . . . xN , t) =∏N
n=1 p(xn , t) and passing to the limit as N → ∞. See Martzel and Aslangul (2001), Balescu (1997).
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The Fokker–Planck equation corresponding to this SDE is the McKean–Vlasov equa-
tion (Frank 2005; McKean 1966, 1967)

∂p

∂t
= ∂

∂x

(
V ′(x)p + θ

(
x −

∫
R

xp(x, t) dx

)
p + β−1 ∂p

∂x

)
. (1.4)

The McKean–Vlasov equation is a nonlinear, nonlocal Fokker–Planck type equation
that we will sometimes refer to as the McKean–Vlasov–Fokker–Planck equation. It is
a gradient flow, with respect to the Wasserstein metric, for the free energy functional

F[ρ] = β−1
∫

ρ ln ρ dx +
∫

Vρ dx + θ

2

∫ ∫
F(x − y)ρ(x)ρ(y) dx dy, (1.5)

where we write the interaction potential as F(x) = 1
2 x

2. Background material on the
McKean–Vlasov equation can be found in, e.g., Carrillo et al. (2006), Frank (2005)
and Villani (2003).

The finite-dimensional dynamics (1.1) has a unique invariant measure. Indeed, the
process xt defined in (1.1) with V being a confining potential is always ergodic, and
in fact reversible, with respect to the Gibbs measure (Pavliotis 2014, Ch. 4),

μN (dx) = 1

ZN
e−βWN (x1,...xN ) dx1 . . . dxN , ZN =

∫
RN

e−βWN (x1,...xN ) dx1 . . . dxN

(1.6)
where WN (·) is given by (1.2).

On the other hand, the McKean dynamics (1.3) and the corresponding McKean–
Vlasov–Fokker–Planck equation (1.4) can have more than one invariant measures, for
nonconvex confining potentials and at sufficiently low temperatures (Dawson 1983;
Tamura 1984). This is not surprising, since theMcKean–Vlasov equation is a nonlinear,
nonlocal PDE and the standard uniqueness of solutions for the linear (stationary)
Fokker–Planck equation does not apply (Bogachev et al. 2015).

The density of the invariant measure(s) for the McKean dynamics (1.3) satisfies the
stationary nonlinear Fokker–Planck equation

∂

∂x

(
V ′(x)p∞ + θ

(
x −

∫
R

xp∞(x) dx

)
p∞ + β−1 ∂p∞

∂x

)
= 0. (1.7)

Based on earlier work (Dawson 1983; Tamura 1984), it is by nowwell understood that
the number of invariant measures, i.e., the number of solutions to (1.7), is related to
the number of metastable states (local minima) of the confining potential—see Tugaut
(2014) and the references therein.

For the Curie–Weiss (i.e., quadratic) interaction potential a one-parameter family
of solutions to the stationary McKean–Vlasov equation (1.7) can be obtained:

p∞(x; θ, β,m) = 1

Z(θ, β;m)
e
−β

(
V (x)+θ

(
1
2 x

2−xm
))

, (1.8a)

Z(θ, β;m) =
∫
R

e
−β

(
V (x)+θ

(
1
2 x

2−xm
))

dx . (1.8b)
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Fig. 1 a Plot of R(m; θ, β) and of the straight line y = x for θ = 0.5, β = 10, and b bifurcation diagram

of m as a function of β for θ = 0.5 for the bistable potential V (x) = x4
4 − x2

2 and interaction potential

F(x) = x2
2

This one-parameter family of probability densities is subject, of course, to the con-
straint that it provides us with the correct formula for the first moment:

m =
∫
R

xp∞(x; θ, β,m) dx =: R(m; θ, β). (1.9)

We will refer to this as the self-consistency equation and it will be the main object
of study of this paper. Once a solution to (1.9) has been obtained, substitution back
into (1.8) yields a formula for the invariant density p∞(x; θ, β,m).

Clearly, the number of invariant measures of the McKean–Vlasov dynamics is
determined by the number of solutions to the self-consistency equation (1.9). It is well
known and not difficult to prove that for symmetric nonconvex confining potentials
a unique invariant measure exists at sufficiently high temperatures, whereas more
than one invariant measure exists below a critical temperature β−1

c (Dawson 1983,
Thm. 3.3.2; Tamura 1984,Thm. 4.1, Thm. 4.2); see alsoShiino (1987). In particular, for
symmetric potentials,m = 0 is always a solution to the self-consistency equation (1.9).
Above βc, i.e., at sufficiently low temperatures, the zero solution loses stability and
a new branch bifurcates from the m = 0 solution (Shiino 1987). This second-order
phase transition is similar to the one familiar from the theory of magnetization and
the study of the Ising model. In Fig. 1, we present the solution to the self-consistency
equation and the bifurcation diagram for stationary solutions of the McKean–Vlasov
equation for the standard bistable—Landau—potential V (x) = x4

4 − x2
2 .

To compute the critical temperature, we need to solve the equation obtained by
differentiating the self-consistency equation with respect to the order parameter m at
m = 0 (see Shiino 1987; Frank 2005, Sec 5.1.3 for more details):

Var p∞(x)
∣∣∣
m=0

:=
∫

x2 p∞(x;β, θ,m = 0) dx −
(∫

xp∞(x;β, θ,m = 0) dx)

)2

= 1

βθ
. (1.10)
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The number of times that m and R(m; θ, β) cross, i.e., the number of stationary
measures, depends on the slope of R(m; θ, β) at the origin. This is given precisely by
Eq. (1.10).

The main purpose of this paper is to study the dynamics and, in particular, bifurca-
tions and phase transitions for a system of interacting diffusions moving in a rugged
energy landscape, coupled through the Curie–Weiss interaction. We are particularly
interested in understanding the combined effect of the presence of several local min-
ima (metastable states) in the confining potential and of the passage to the mean field
limit.Wewill study the problem for a system of interacting diffusions of the form (1.1)
moving in a two-scale, locally periodic confining potential

V ε(x) = V
(
x,

x
ε

)
, (1.11)

where V : (x, y) ∈ R × Y → R, Y denotes a periodic box in Rd , Y = [0, L]d :

V (x, y + kLei ) = V (x, y), k ∈ Z, (1.12)

and {e1, . . . , ed} is the canonical basis of Rd . Throughout this paper, L = 2π . The
particles {Xi

t , i = 1, . . . , N } are interacting through the Curie–Weiss interaction,

F(x) = x2
2 . This class of potentials provides uswith a natural testbed for testing several

techniques andmethodologies for the study of multiscale diffusions such as maximum
likelihood estimation (Papavasiliou et al. 2009; Pavliotis and Stuart 2007), particle
filters and filtering (Imkeller et al. 2013; Papavasiliou 2007), importance sampling
and large deviations (Spiliopoulos 2013) and optimal control (Hartmann et al. 2014).

Of particular relevance to us is the multiscale analysis presented in Duncan et al.
(2016a), Duncan et al. (2016b).2 In these works, the homogenized SDE for a Brownian
particle moving in a two-scale potential in Rd valid in the limit of infinite scale sepa-
ration ε → 0 was obtained and the effect of the multiscale structure on noise-induced
transitions was investigated. It was shown, in particular, that the homogenized SDE is
characterized bymultiplicative noise. For a single Brownian particle inRd moving in a
two-scale potential (1.11) (or, equivalently, for a system of d noninteracting Brownian
particles in a two-scale potential), the homogenized equation reads

dXt = −M(Xt )∇	(Xt ) dt + β−1(∇ · M)(Xt ) dt +
√
2β−1M(Xt ) dBt , (1.13)

where M(·) denotes the diffusion tensor and 	(·) the free energy—see Sect. 2. It is
important to note that, in addition to the presence of multiplicative noise, the poten-
tial energy driving the dynamics is not simply the average of the two-scale potential
over its period, but, rather, the free energy 	 = −β−1 ln

(∫
e−βV (x,y) dy

)
. Since

the dynamics (1.13) is finite-dimensional, no phase transitions can occur. In fact, the

2 In fact, in these papers a potential with N microscales and one macroscopic scale of the form V ε(x) =
V

(
x, x

ε , x
ε2

, . . . x
εN

)
, where V is periodic in all the microvariables is studied. For the purposes of this

work, it is sufficient to consider a potential with two characteristic, widely separated, length scales.

123



910 J Nonlinear Sci (2018) 28:905–941

-1

0

1

2

3

4

5

-2 -1 2 -2 -10 1 0 1 2
-1

0

1

2

3

4

5

(a) (b)

Fig. 2 Bistable potential with (left) separable and (right) nonseparable fluctuations

homogenized dynamics is reversible with respect to the thermodynamically consis-
tent Gibbs measure; see the discussion in Sect. 2. It is well known, however, that
multiplicative noise can lead to noise-induced transitions, i.e., to changes in the topo-
logical structure of the invariant measure (Horsthemke and Lefever 1984; Pavliotis
2014, Sec. 5.4). Such phenomena, including multiscale-induced hysteresis effects, for
a one-dimensional Brownian particle moving in a multiscale potential, were studied
in detail in Duncan et al. (2016a).

Our goal is to study mean field limits for multiscale interacting diffusions of the
form

dX ε,i
t = −∇V ε(X ε,i

t ) dt − θ

N

N∑
j=1

∇F(X ε,i
t − X ε, j

t ) dt +
√
2β−1dBi

t , (1.14)

where the two-scale potential is given by (1.11). The interaction potential F(·) is
assumed to be a smooth even function, with F(0) = 0 and F ′(0) = 0. All of the
numerical experiments that we will present will be for the Curie–Weiss quadratic
interaction potential F(x) = 1

2 x
2.

The main issues that we address in this work are:

1. What is the effect of the presence of (infinitely) many local minima in the locally
periodic confining potential on the bifurcation diagram? In other words, how do
the bifurcation diagrams for ε � 1 but finite and ε → 0 differ?

2. Do the homogenization and mean field limits commute, in particular when also
passing to the long time limit T → +∞? In other words: are the bifurcations
diagrams corresponding to the N → ∞, T → ∞, ε → 0 and ε → 0, N →
∞, T → ∞ limits the same?

Two typical examples of the type of locally periodic potentials that we will study
in this paper are shown in Fig. 2:
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V ε(x) = x4

4
− x2

2
+ δ cos

( x
ε

)
and V ε(x) = x4

4
−

(
1 − δ cos

( x
ε

)) x2

2
. (1.15)

It should be clear from these two figures that the homogenization and mean field lim-
its, when also combined with the long time limit, do not necessarily commute. First,
the homogenization process tends to smooth out local minima and to even “convex-
ify” the confining potential—think of a quadratic potential perturbed by fast periodic
fluctuations. This implies, in particular, that even though many additional stationary
solutions, i.e., branches in the bifurcation diagram may appear for all finite values
of ε, most, if not all, of them may not be present in the bifurcation diagram for the
homogenized dynamics. Furthermore, multiplicative/nonseparable fluctuations of the
type presented in Fig. 2b tend to flatten the potential around x = 0. As we will see
in Sect. 4, this phenomenon is very much related to the lack of commutativity of the
limits N → ∞, T → ∞, ε → 0 and ε → 0, N → ∞, T → ∞.

We will study these problems using a combination of formal multiscale calcula-
tions, (some) rigorous analysis and extensive numerical simulations. There are many
technical issues that we do not address, such as the rigorous homogenization study of
the McKean–Vlasov equation and the rigorous study of bifurcations in the presence
of infinitely many local minima. We will address these in future work.

The rest of the paper is organized as follows. In Sect. 2, we study the mean field
limit for a system of homogenized interacting diffusions, i.e., the first ε → 0, then
N → ∞ limit. In Sect. 3, we study the homogenization problem for the McKean–
Vlasov equation in a two-scale potential. In Sect. 4, we present extensive numerical
simulations. Section 5 is reserved for conclusions.

2 Mean Field Limit of the Homogenized Interacting Diffusions: First
ε → 0, then N → ∞

In this section, we consider the one-dimensional version of the system of SDEs (1.14).
We first take the homogenization limit (ε → 0) and then the mean field limit
(N → ∞). The homogenization theorem for a system of finite-dimensional inter-
acting diffusions moving in a two-scale confining potential is presented in Duncan
et al. (2016b). The mean field limit of the homogenized SDE system can be obtained
by using the results of Gärtner (1988), Oelschläger (1984).

2.1 Homogenization for Finite System of Interacting Diffusions in a Two-Scale
Potential

We consider the system of interacting diffusions

dXi
t = −∂x V

ε(Xi
t ) dt − θ

N

N∑
j=1

∂x F(Xi
t − X j

t ) dt +
√
2β−1dBi

t , (2.1)
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where F is a smooth even function with F(0) = 0 and F ′(0) = 0 and V ε is a
smooth locally periodic potential of the form (2.7). We introduce the notation xt =
(X1

t , . . . , X
N
t ), so that we have

dxε
t = −∇W ε(xε

t ) dt +
√
2β−1dBt , (2.2)

where

W ε(x) =
N∑

�=1

V ε

(
x�,

x�

ε

)
+ θ

2N

N∑
n=1

N∑
�=1

F(xn − x�).

and Bt is a standard Brownian motion in R
N . This equation is of the same form as

Duncan et al. 2016b, Eq. (1) andDuncan et al. (2016a), Eqn.(1), with V ε(Xt ) replaced
by W ε(xε

t ).
Since F does not depend on the fast scale, the results of Duncan et al. (2016b)

apply directly to (2.2) and we deduce that the sequence
{
xε
t

}
converges, as ε → 0, to

the solution of the homogenized equation

dxt = −
[
M(xt )∇	N (xt ) − β−1∇ · M(xt )

]
dt +

√
2β−1M(xt )dBt , (2.3)

where
	N (x) = −β−1 lnZN (x), (2.4)

for

ZN (x) =
∫
Y
e−βWN (x,y) dy, (2.5)

where WN (x, y) is defined as in Eq. (1.2),

WN (x, y) =
N∑

�=1

V (x�, y�) + θ

2N

N∑
n=1

N∑
�=1

F(xn − x�). (2.6)

The convergence is in the sense of weak convergence of probability measures, i.e.,
the law of the process xε

t converges weakly to the law of the limiting process xt . The
proof of this result, which is quite standard, is based on the application of Itô’s formula
to the solution of an appropriate Poisson equation, Eq. (2.12), the decomposition of
the rescaled process into a martingale part and a remainder part, and the use of the
martingale central limit theorem. The details can be found in Duncan et al. (2016b). It
will be useful to decompose the two-scale potential into its large-scale confining part
and the modulated, mean-zero, fluctuations:

V ε(x) = V0(x) + V1
(
x,

x

ε

)
, V0(x) =

∫
Y
V (x, y) dy. (2.7)

Notice that this decomposition is not unique, since we can define the average of the
two-scale potential over the unit cell with respect to a different, e.g., Gibbs, weight.
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However, the choice of the weight does not affect our results. See, e.g., the proof of
Proposition 3.1.

We note that the free energy 	N is of the form

	N (x) =
(

N∑
�=1

V0(x
�) + θ

2N

N∑
n=1

N∑
�=1

F(xn − x�)

)
+ ψ(x), (2.8)

where

ψ(x) = −β−1 ln
(∏N

�=1

∫
Y e−βV1(x�,y�) dy�

)

= −β−1 ∑N
�=1 ln

(∫
Y e−βV1(x�,y) dy

)
. (2.9)

Finally, M : Rd → R
d×d
sym is defined by

M(x) = K(x)
ZN (x)

, (2.10)

where

K(x) =
∫
Y

(I + ∇y�(x, y))e−βWN (x,y) dy, x ∈ R
d , (2.11)

and, for fixed x ∈ R
d , � is the unique weak solution in H1(Y) to

∇y ·
(
e−βV1(x,y)(I + ∇y�(x, y))

)
= 0, y ∈ Y, (2.12)

or

N∑
i=1

∂

∂yi

(
e−βV1(x,y)

(
δi j + ∂� j (x, y)

∂yi

))
= 0, j = 1, . . . , N ,

such that the centering condition
∫
Y �(x, y)e−βV1(x,y) dy = 0, for all x ∈ R

d is
satisfied. The proof of uniqueness of centered solutions to this equation is based on
the Lax–Milgram lemma and can be found in Duncan and Pavliotis (2016b, Thm. 2.3).

To compute the diffusion tensor (see Duncan et al. 2016a, Appendix A for a similar
computation), we observe that

Mi j (x) = δi j + 1

ZN (x)

×
∫
Y

∂�i

∂y j
(x, y)e

−β
(∑N

�=1 V0(x
�)+∑N

�=1 V1(x
�,y�)+ θ

2N

∑N
n=1

∑N
�=1 F(x�−xn)

)
dy

= δi j + 1

Z̄(x)

∫ L

0
· · ·

∫ L

0

∂�i

∂y j
(x, y)

N∏
m=1

e−βV1(xm ,ym ) dym,
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where Z(x) is defined in Eq. (2.5) and

Z̄(x) =
N∏

m=1

∫ L

0
e−βV1(xm ,ym ) dym . (2.13)

Since there is no coupling between the different yi components od Eq. (2.12), it
follows that �(x, y) can be written in the form �(x, y) = (φ(x1, y1), φ(x2, y2), . . . ,
φ(xN , yN )), where φ(x, y) solves

− L0φ(x, y) = −∂V1
∂y

(x, y), L0 = −∂yV1∂y + β−1∂2y , (2.14)

and therefore �i (x, y) = φ(xi , yi ) and

∂�i

∂y j
(x, y) = ∂φ(xi , yi )

∂y j
= δi j

∂φ

∂y j
(xi , yi ).

Substituting in (2.13), we obtain

Mi j (x) = = δi j + 1

Z̄(x)

∫ L

0
· · ·

∫ L

0
δi j

∂φ

∂y j
(xi , yi )

N∏
m=1

e−βV1(xm ,ym ) dym, (2.15)

and the diffusion tensor is diagonal, with

Mi i (x) = 1 + 1∏N
m=1

∫ L
0 e−βV1(xm ,ym ) dym

(∫ L

0

∂φ

∂yi
(xi , yi )e−βV1(xi ,yi ) dyi

)

×
∫ L

0

N∏
m=1,m �=i

e−βV1(xm ,ym ) dym

= 1 + 1∫ L
0 e−βV1(xi ,yi ) dyi

∫ L

0

∂φ

∂yi
(xi , yi )e−βV1(xi ,yi ) dyi .

As it is well known (Pavliotis and Stuart 2008, Sec 13.6.1), the one-dimensional
Poisson equation (2.14) can be solved explicitly, up to quadratures. We can then
obtain formulas for the diagonal elements Mi i of the diffusion tensor M(x):

M(x) = 1(
1
L

∫ L
0 e−βV1(x,y) dy

) (
1
L

∫ L
0 eβV1(x,y) dy

) . (2.16)
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We can write the system of stochastic differential equations for the homogenized
system of interacting particles:

dXi
t = −

[
M(Xi

t )∂xi 	(X1
t , . . . X

N
t ) − β−1M′(Xi

t )
]
dt +

√
2β−1M(Xi

t )dB
i
t ,

(2.17)
for i = 1, . . . , N , where M is defined in Eq. (2.16), prime denotes differentiation
with respect to x and 	 is given by Equations (2.8)-(2.9).

We note that the homogenized system of SDEs (2.17) is characterized by multi-
plicative noise.3 Furthermore, the diffusion coefficient of the i th particle depends only
on the position of the particle itself, and not of the other particles. The dynamics (2.17)
is reversible with respect to the Gibbs measure

p∞(dx) = 1

Z̄
e−β	(x) dx, Z̄ =

∫
R

e−β	(x) dx . (2.18)

2.2 Mean Field Limit for the Homogenized SDE

We can now pass to the mean field limit N → ∞. The system of SDEs (2.17) is of
the form

dXi
t = b

⎛
⎝Xi

t ,
1

N

N∑
j=1

X j
t

⎞
⎠ dt + σ(Xi

t )dB
i
t ,

which is in the same form to the one considered inGärtner (1988), Oelschläger (1984),
with slightly different drift and diffusion coefficients.4 It is straightforward to check
that the homogenized equation satisfies the conditions in the aforementioned papers.5

Taking themean field limit of (2.17), we obtain the following nonlinear Fokker–Planck
equation:

3 In fact, the noise in this SDE can be interpreted in the Klimontovich sense:

dXi
t = −M(Xi

t )∂xi 	
′(X1

t , . . . X
N
t ) dt +

√
2β−1M(Xi

t ) ◦K dBi
t ,

where ◦K denotes the Klimontovich stochastic integral; see Duncan et al. (2016b). In particular, the correc-
tion to the Itô integral is β−1M(Xi

t ) instead of 1
2M(Xi

t ) that corresponds to the Stratonovich stochastic
integral. See Pavliotis (2014, Sec. 3.2) for details.
4 In fact, these papers consider the more general case, where the diffusion coefficient, σ , also depends on

the empirical measure, σ
(
Xi
t ,

1
N

∑N
j=1 X

j
t

)
.

5 These are variants of boundedness and Lipschitz continuity assumptions for the drift and diffusion coeffi-
cients. The estimates on the homogenized coefficients that are obtained inAbdulle et al. (2017), are sufficient
in order to invoke the results of Gärtner (1988), Oelschläger (1984). For the purposes of this paper it is
sufficient to pass formally to the mean field limit. The rigorous analysis will be presented elsewhere.
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∂p

∂t
= ∂

∂x

[
β−1 ∂ (M(x)p)

∂x
+ M(x)

(
V ′
0(x) + ψ ′(x) + θ

(
F ′ � p

)
(x)

)
p

+β−1 ∂M(x)

∂x
p

]
, (2.19)

where � denotes the convolution operator in x ,

ψ(x) = −β−1 ln

(∫ L

0
e−βV1(x,y) dy

)
, (2.20)

and M(x) is defined in (2.10). We note that the solution of Eq. (2.19) represents the
density of the empirical measure of the process in the limit N → ∞.

The McKean stochastic differential equation corresponding to (2.19) is

dXt = −M(Xt )(V
′
0(Xt ) + ψ ′(Xt ) + θ

N

N∑
�=1

F ′(Xt − X�
t )) dt

+β−1M′(Xt ) dt +
√
2β−1M(Xt ) dBt . (2.21)

We reiterate that the correction to the drift β−1M′(Xt ) dt is not the Stratonovich cor-
rection, but rather the Klimontovich (kinetic) one. This interpretation of the stochastic
integral ensures that the homogenized dynamics is reversible with respect to the (ther-
modynamically consistent) Gibbs measure(s) that we can calculate by solving the
stationary Fokker–Planck equation.

The (one or more) stationary distributions p∞(x; θ, β,m) are solutions to the sta-
tionary Fokker–Planck equation

L∗ p∞ := ∂

∂x

(
M(x)

(
V ′
0(x) + ψ ′(x) + θ(F ′ � p∞)p∞ + β−1 p∞

)

+β−1 ∂(M(x)p∞)

∂x

)
= 0. (2.22)

The detailed balance condition implies that

β−1M(x)
∂p∞
∂x

= −M(x)
(
V ′
0(x) + θ(F ′ � p∞)(x) + ψ ′(x)

)
p∞,

and since M(x) is strictly positive, a simple variant of Tamura (1984, Lemma 4.1)
enables us to obtain an integral equation for the invariant distribution:

p∞(x; θ, β,m) = 1

Z
e−β(V0(x)+θ(F�p∞)(x)+ψ(x)),

Z =
∫
R

e−β(V0(x)+θ(F�p∞)(x)+ψ(x)) dx, (2.23)
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where ψ(x) is given by Eq. (2.20). In particular, p∞ is independent of the diffusion
tensor M(x).

For the particular case of a quadratic interaction potential F(x) = x2
2 , which is the

case that we will study here, all stationary solutions are given by the one-parameter
family of Gibbs states of the form (1.8) and the integral equation (2.23) reduces to a
nonlinear equation, the self-consistency equation (Shiino 1987)

m = R(m; θ, β) := 1

Z

∫
R

xe
−β

(
V0(x)+θ

(
x2
2 −mx

)
+ψ(x)

)
dx . (2.24)

By solving this equation, we can construct the full bifurcation diagramof the stationary
Fokker–Planck equation. This will be done in Sect. 4.

We are also interested in the equation for the critical temperature (1.10), which in
this case is given by

1

Z

∫
R

x2e
−β

(
V0(x)+θ

(
x2
2

)
+ψ(x)

)
dx −

(
1

Z

∫
R

xe
−β

(
V0(x)+θ

(
x2
2

)
+ψ(x)

)
dx

)2

= 1

βθ
.

(2.25)
Assuming that the large-scale part of the potential is symmetric, we have that∫
xp∞(x;β, θ,m = 0) dx) = 0 and the equation above simplifies to

1

Z

∫
R

x2e
−β

(
V0(x)+θ

(
x2
2

)
+ψ(x)

)
dx = 1

βθ
. (2.26)

From the definition of ψ(x) in Eq. (2.20)), we can conclude that for separable
potentials, i.e., when V1(x, y) is independent of x , then ψ(x) becomes a constant.
This, in turn, means that the stationary solutions to the homogenized McKean–Vlasov
equation are the same to the ones for the systemwithout fluctuations (V1(x, y) = 0)—
see Corollary 3.2 in Sect. 3. For example, when the large-scale part of the potential
V0(x) is convex, there are no phase transitions for the homogenized dynamics. We
will show in Sections 3 and 4 that this is not the case if we take the limits in different
order.

3 Multiscale Analysis for the McKean–Vlasov Equation in a Two-scale
Potential

In this section, we consider the homogenization problem for the McKean–Vlasov
equation in a locally periodic potential for the case of a quadratic (Curie–Weiss)
interaction. In particular, we first pass to the mean field limit (i.e., send N → ∞)
in Eq. (1.14) with F(x) = x2

2 and study the effects of finite (but small) ε on the
bifurcation diagram, before sending ε → 0.
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3.1 Mean Field Limit for Interacting Diffusions in a Two-Scale Potential:
N → ∞, ε > 0 Finite

We start with the system of interacting diffusions

dXi
t = −∂x V

(
Xi
t ,

Xi
t

ε

)
dt − θ

⎛
⎝Xi

t − 1

N

N∑
j=1

X j
t

⎞
⎠ dt +

√
2β−1 dBi

t . (3.1)

The notation is the same as in Sect. 2, i.e., V ε(x) := V
(
x, x

ε

)
is a smooth confining

potential that is L-periodic in its second argument, θ > 0 is the interaction strength,
β the inverse temperature and {Bi

t , i = 1, . . . , N } are standard independent one-
dimensional Brownian motions.

Taking the limit as N → ∞, we obtain the McKean–Vlasov–Fokker–Planck equa-
tion:

∂p

∂t
= ∂

∂x

(
β−1 ∂p

∂x
+ ∂x V

ε(x)p + θ

(
x −

∫
xp(x, t) dx

)
p

)
. (3.2)

The equilibrium solutions, i.e., stationary states, of this equation are given by a one-
parameter family of two-scale Gibbs distributions—see Eq. (1.8):

pε∞(x; θ, β,mε) = 1

Z ε(θ, β;mε)
e
−β

(
V ε (x)+θ

(
1
2 x

2−xmε
))

, (3.3a)

Z ε(θ, β;mε) =
∫
R

e
−β

(
V ε (x)+θ

(
1
2 x

2−xmε
))

dx . (3.3b)

Our goal now is to study the ε → 0 limit of the self-consistency equation—see
Eq. (1.9)

mε =
∫
R

xpε∞(x; θ, β,mε) dx =: Rε(mε; θ, β), (3.4)

and also the equation for the critical temperature,

∫
R

x2 pε∞(x; θ, β,mε = 0) dx = 1

βθ
. (3.5)

Proposition 3.1 Consider equations (2.24), (2.26) and (3.9), (3.10). Assume the
potential V ε is smooth and has fluctuations which are truncated in an interval
[−a, a]. Then the limits ε → 0, N → ∞, T → ∞ (Eqs. (2.24) and (2.26)) and
N → ∞, T → ∞, ε → 0 ((3.9) and (3.10)) do not commute. In particular, the
ε → 0 limits of the self-consistency equation (3.4) and of the equation for the critical
temperature (3.5) are different from (2.24) and (2.26).

Proof The proof of this result follows from properties of periodic functions (Pavli-
otis and Stuart 2008, Thm. 2.28). Consider u ∈ L2(R;Cper (Y)), ε > 0 and define

123



J Nonlinear Sci (2018) 28:905–941 919

uε(x, y) = u
(
x, x

ε

)
. Then

uε ⇀

∫
Y
u(x, y) dy weakly in L2(R). (3.6)

We will use this fact to identify the limits as ε → 0 of pε∞(x; θ, β,mε) and
Z ε(mε; θ, β), in order to obtain the limits of the first and second moments. First,
we note that both the invariant density pε and the first moment mε depend on ε.
For a fixed ε > 0, it is straightforward to check that the two-scale potentials verify
the conditions presented in Arnold et al. (1996, Eqs. (3.1), (3.2)), as long as the
nonseparable fluctuations are truncated outside the interval [−a, a]—this is the case
for us; see Table 1 in Sect. 4. This, by estimates (Arnold et al. 1996, Eqs. (3.7),
(3.8)), implies uniform boundedness of the first moment, mε , as well as existence of
a unique global weak solution for the McKean–Vlasov equation. We can therefore
extract a converging subsequence that converges to some m ∈ R. We use the notation
Vef f (x;m, θ) = V0(x) + θ

( 1
2 x

2 − mx
)
with V (x, y) = V0(x) + V1(x, y)—see

Eq. (2.7). We note that Vef f depends smoothly on m. We use the convergence of mε

to m and (3.6) to deduce:

Z ε(mε; θ, β) =
∫
R

e−β(Vef f (x;mε ,θ)+V1(x, xε )) dx

→
∫ L

0

∫
R

e−β(Vef f (x;m,θ)+V1(x,y)) dx dy =: Z̄(m; θ, β). (3.7)

Similarly,

∫
R

x e−β(Vef f (x;mε ,θ)+V1(x, xε )) dx →
∫ L

0

∫
R

x e−β(Vef f (x;m,θ)+V1(x,y)) dx dy. (3.8)

Combining (3.7) and (3.8), we obtain

m = 1∫ L
0

∫
R
e−β(Vef f (x;m,θ)+V1(x,y)) dx dy

∫ L

0

∫
R

x e−β(Vef f (x;m,θ)+V1(x,y)) dx dy.

(3.9)
Arguing in a similar way for the variance, we conclude that

1 = βθ

Z̄(m; θ, β)

∫ L

0

∫
R

x2 e−β(Vef f (x;m,θ)+V1(x,y)) dx dy. (3.10)

We conclude that Eqs. (3.9) and (3.10) are different, from (2.24) and (2.26). ��
The two limits ε → 0, N → ∞, T → ∞ and N → ∞, T → ∞, ε → 0

commute in the case where the fluctuations in the potential are independent of the
macroscale x , V1 = V1(y) in (2.7). An immediate corollary of the above proposition
is the following.
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Fig. 3 Plot of R(mε ; θ, β) for θ = 5, β = 30, δ = 1 and various values of ε for separable potentials.
a Convex potential V0(x) and b bistable potential V0(x). For comparison, we also plot the line y = x in
solid blue and the solution of the homogenized self-consistency equation in a solid black line (Color figure
online)

Corollary 3.2 Separable fluctuations do not affect the bifurcation diagram in the
mean field limit.

Proof When the fluctuations are separable (i.e., V1(x, y) does not depend on x),
ψ(x, β) in (2.24), (2.26) becomes a constant that we can ignore since it also appears
in the partition function and they cancel out. Similarly, the terms of the form∫
R
e−βV1(x,y) dy in Eqs. (3.9) and (3.10) become constants independent of x and

cancel with the corresponding terms in the partition function (3.7). ��
To illustrate the fact that the two limits do commute when the fluctuations are

independent of the macroscale, we present in Figs. 3 and 4 the plots of R(mε; θ, β)

for various values of ε and fixed β and θ , which we compare with the solution of the
homogenized self-consistency equation R(m; θ, β) = m. We present results both for
a convex and nonconvex confining potential, with periodic fluctuations. More details
about the two-scale potentials that we use for the numerical simulations will be given
in Sect. 4.

As is evident from Fig. 2a, the oscillatory part of the potential introduces (infinitely
many) additional local minima. Consequently, Tugaut (2014), the self-consistency
equation R(mε; θ, β) = mε has multiple solutions. Furthermore, as shown in Fig. 3b,
in the limit ε → 0, the curves R(mε; θ, β) (various dashed lines) approach those
given by R(m; θ, β) computed from Eq. (2.24) (full black line), in accordance with
Corollary 3.2, showing the commutativity of the two limits.

Let us consider now the case of nonseparable fluctuations. As we have already
discussed, see Fig. 2b and also the inside panels of Figs. 7a and 9a, the resulting
two-scale potential does not only contain many additional local minima, but it is also
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Fig. 4 Plot of R(mε ; θ, β) for θ = 5, β = 30, δ = 1 and various values of ε for nonseparable potentials.
a Convex potential V0(x) and b bistable potential V0(x). For comparison, we also plot the line y = x in
solid blue and the solution of the homogenized self-consistency equation in a solid black line (Color figure
online)

flattened around x = 0. In Fig. 4, we present curves R(mε; θ, β) for nonseparable
fluctuations, compared with the line R(m; θ, β) = m (or y = x). We observe that
in the limit ε → 0 the curves R(mε; θ, β) (various dashed lines) do not converge to
R(m; θ, β) corresponding to the homogenized problem (full black line), in accordance
with Prop. 3.1. Notice also the flatness of R(mε; θ, β) aroundm = 0 for smaller values
of ε, which follows from the flatness of the corresponding potentials V ε around x = 0.

3.2 Multiscale Analysis for the McKean–Vlasov Equation in a Two-Scale
Confining Potential

In this section, we study the problem of periodic homogenization for the McKean–
Vlasov equation in a locally periodic confining potential, for theCurie–Weiss quadratic
interaction and in one dimension. We only present formal arguments. The rigorous
analysis of this problem will be presented elsewhere.

We consider the nonlinear Fokker–Planck equation (3.2) with F(x) = x2
2 :

∂pε

∂t
= β−1 ∂2 pε

∂x2
+ ∂

∂x

(
V ′
0(x)p

ε + V ′
1

(
x,

x

ε

)
pε + θ(x − mε)pε

)
, (3.11)

with initial conditions pε(x, 0) = pin(x), independent of ε and where the prime
denotes differentiation with respect to x . The PDE (3.11) is coupled to the self-
consistency equation

mε(t) =
∫
R

x pε(x, t) dx . (3.12)

123



922 J Nonlinear Sci (2018) 28:905–941

This homogenization problem is (slightly) different from the standard one for the
Fokker–Planck equation in a two-scale potential that was studied in Duncan et al.
(2016a), Duncan et al. (2016b) due to the self-consistency equation (3.12). In par-
ticular, in addition to the standard two-scale expansion for the solution of the
Fokker–Planck equation (3.11), we also need to expand the solution of (3.12) into
a power series in ε:

pε(x, t) = p0
(
x,

x

ε
, t

)
+ εp1

(
x,

x

ε
, t

)
+ ε2 p2

(
x,

x

ε
, t

)
+ . . . , (3.13a)

mε = m0 + εm1 + ε2m2 + . . . , (3.13b)

where, as usual (Pavliotis and Stuart 2008), we take {p j = p j (x, ·, t) , j = 0, 1, . . . }
to be L-periodic in their second argument. Substituting (3.13) into (3.11) and (3.12) and
using the standard tools from the theory of periodic homogenization, e.g., Fredholm’s
alternative, we obtain the homogenized equation (2.19), satisfied by themarginal of the
first term in the two-scale expansion p(x, t) = ∫ L

0 p(x, y, t) dy and with the partial
free energy ψ(x) given by (2.20) and with

m(t) := m0(t) =
∫
R

∫ L

0
xp0(x, y, t) dydx .

The convergence of mε(t) to m(t) can be justified using the a priori estimates on
moments of the solution to the McKean–Vlasov equation that were derived in Arnold
et al. (1996), in particular (Arnold et al. 1996, Eqs. (3.1), (3.2)).

Alternatively, we can work with the backward Kolmogorov equation:We recall that
Eq. (3.11) corresponds to the McKean SDE

dxt = − [
V ε ′

(xt ) + θ(xt − mε)
]
dt +

√
2β−1dBt , (3.14)

with V ε(x) = V
(
x, x

ε

)
. We introduce the auxiliary variable yt = xt

ε
, see, e.g., Pavli-

otis and Stuart (2007), and using the chain rule, we can write (3.14) as a system of
interacting diffusions across scales, driven by the same Brownian motion,

dxt = −
[
∂x V (xt , yt ) + 1

ε
∂yV (xt , yt ) + θ(xt − mε)

]
dt +

√
2β−1dBt , (3.15)

dyt = −
[
1

ε
∂x V (xt , yt ) + 1

ε2
∂yV (xt , yt ) + θ

ε
(xt − mε)

]
dt +

√
2β−1

ε2
dBt .

(3.16)

We start by expanding the first momentmε in powers of ε as in (3.13b). The backward
Kolmogorov equation for the observable uε(x, y, t) = E( f (xε

t , y
ε
t )|xε

0 = x, yε
0 = y)
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reads (neglecting terms of O(ε) that are due to the expansion of mε)

∂uε

∂t
=

(
1

ε2
L0 + 1

ε
L1 + L2

)
uε, (3.17a)

uε(x, y, 0) = f (x, y), (3.17b)

with

L0 = −∂yV ∂y − β−1∂2y ,

L1 = − (∂x V − θ(x − m0)) ∂y − ∂yV ∂x − 2β−1∂x∂y,

L2 = − (∂x V − θ(x − m0)) ∂x − θm1∂y − β−1∂2x ,

We can now proceed with the analysis of (3.17a), first for the choice f (x) = x , i.e.,
the evolution of the first moment, and then for arbitrary observables. We obtain, thus,
the homogenized backward Kolmogorov equation, from which we can read off the
homogenized McKean SDE and the corresponding Fokker–Planck equation:

∂p

∂t
= ∂

∂x

[
β−1 ∂ (M(x)p)

∂x
+ M(x)

(
V ′
0(x) + ψ ′(x) + θ (x − m(t))

)
p

+β−1 ∂M(x)

∂x
p

]
, (3.18)

where ψ(x) = −β−1 ln
(∫ L

0 e−βV1(x,y) dy
)
and M(x) is defined in (2.10). For the

sake of brevity, we will omit the details.

4 Numerical Simulations

In this section,we construct the bifurcation diagram for the stationaryMcKean–Vlasov
equation (both for finite values of ε and in the homogenization limit), present the results
of Monte Carlo (MC) simulations based on the numerical solution of the particle/SDE
approximation and also solve the time-dependent McKean–Vlasov PDE. Our goal
is to investigate numerically the issue of (lack of) commutativity of the mean field
and homogenization limits. We consider interacting diffusions (and the correspond-
ing McKean–Vlasov) in one dimension and we study two types of large-scale and
fluctuating parts of the potential. We consider both convex and nonconvex potentials,
and both additive (separable) andmultiplicative (nonseprarable) fluctuations. The four
potentials that we use for our simulations are tabulated in Table 1. We remark that the
nonseparable fluctuations V×

1 (x) are truncated outside the interval [−a, a] in order
to prevent the oscillations from growing as |x | → +∞.6 We note that this is neces-
sary for the proof of the homogenization theorem in Duncan et al. (2016b) and that,

6 In Table 1, we denote by χA the characteristic function of the set A.
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Table 1 Potentials used for the numerical simulations

Confining potential V0(x) Fluctuating potential V1(x) Case

V c
0 (x) = x2

2 V+
1 (x) = δ cos

( x
ε

)
1

V×
1 (x) = δχ[−a,a](x) x

2

2 cos
( x

ε

)
2

Vb
0 (x) = x4

4 − x2
2 V+

1 (x) = δ cos
( x

ε

)
3

V×
1 (x) = δχ[−a,a](x) x

2

2 cos
( x

ε

)
4

furthermore, it ensures that the a priori estimates on the moments from Arnold et al.
(1996) hold.7

Throughout this section, we consider fluctuations which have period L = 2π . In
all cases, we will consider the Curie–Weiss interaction potential F(x) = x2

2 , and
throughout Sections 4.1 and 4.2, we will fix the interaction strength to be θ = 5.
We choose this value because larger values of θ allow for bifurcations to occur at
higher temperatures, i.e., lower β, which is easier to handle numerically. In fact, the
relevant bifurcation parameter for our problem is given by the combination βθ ; see
Eq. (1.10). Fixing θ allows us to construct the bifurcation diagram by varying only
the temperature. It is also clear from Eq. (1.10) that this equation has no solutions for
negative values of θ , i.e., that no (pitchfork) bifurcations can occur for θ < 0.

Using Eq. (2.16), we note that the diffusion coefficient for separable fluctuations
in the potential is independent of x and is given by

M+(x) = 1(
1
2π

∫ 2π
0 e−βV+

1 (x,y) dy
) (

1
2π

∫ 2π
0 eβV+

1 (x,z) dz
) = 1

I0(β)I0(−β)
,

(4.1)
where I0(·) is the modified Bessel function of the first kind (Duncan et al. 2016a). On
the other hand, for nonseparable fluctuations (cases 2 and 4 in Table 1) we obtain

M×(x) = 1(
1
2π

∫ 2π
0 e−βV×

1 (x,y) dy
) (

1
2π

∫ 2π
0 eβV×

1 (x,z) dz
) = 1

I0
(
β x2

2

)
I0

(
−β x2

2

) .

(4.2)
Furthermore, we obtain the following formulas for the partition functions

Z+(x) = e
−β

(
V0(x)+θ

(
x2
2 −mx

))
I0(β), Z×(x) = e

−β
(
V0(x)+θ

(
x2
2 −mx

))
I0

(
β
x2

2

)
.

(4.3)
We can now solve the self-consistency equation (1.9) and the equation for the critical
temperature (1.10) for the various potentials given in Table 1. We will track each
branch of the bifurcation diagram using arclength continuation, which will enable us

7 The moment bounds in Arnold et al. (1996) were obtained for confining potentials with no oscillatory
terms. However, it can be checked that they are also valid for the class of fluctuating potentials that we
consider in this work, and that they provide us with bounds on the moments that uniform in ε.
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to plot the first moment m as a function of the inverse temperature β for a fixed value
of the interaction strength θ . We do this using the Moore–Penrose quasi-arclength
continuation algorithm.8 The stability of each branch was determined in two different
ways: First, we checked whether it corresponded to a local minimum or maximum
of the confining potential. Second, we solved the time-dependent McKean–Vlasov
equation—see details in Sect. 4.5—using a perturbation of the steady state belonging
to each branch (for a particular value of β and θ ) as initial condition. Finally, we
have confirmed the stability of each branch by computing the free energy (1.5) of a
steady state from that branch at a particular value of β, chosen so that all the branches
plotted were present. Stable branches, plotted in blue in all the figures presented in
this section, correspond to local minimizers of the free energy functional; unstable
branches, plotted in red, correspond to local maxima of the free energy.

4.1 Mean Field Limit of the Homogenized System of SDEs: The
ε → 0, N → ∞ Limit

As discussed before (see discussion ofCorollary 3.2), when the fluctuations are separa-
ble the partial free energy ψ(x) defined in Eq. (2.20) drops out from the homogenized
stationary Fokker–Planck equation. This implies, in particular, that the invariant mea-
sure(s) of the homogenized dynamics is(are) independent of the fluctuating part of
the potential. In particular, there are still no phase transitions when the large-scale
part of the potential is convex and still only one pitchfork bifurcation for the bistable
potential case—see Fig. 5—where two new, stable, branches emerge from the zero
mean solution. We note that in this case the homogenized confining potential in the
homogenized equation depends on the inverse temperature β; see the inside panels in
Fig. 5. In particular, the values of the local minima of the effective potential are shifted,
although their location remains the same, and there are no changes in the topology of
the bifurcation diagrams.

For nonseparable fluctuations, the mean field and homogenization limits do not
commute (see Prop. 3.1). In fact, the homogenization procedure can convexify the
effective potential, and we still see no bifurcations when the large-scale part of the
potential is convex, while for the bistable potential there is still only one phase tran-
sition. The effect of fluctuations on the bifurcation diagram is visible by a shift of the
critical temperature at which the phase transition occurs.

8 Rigorous mathematical construction of the arclength continuation methodology can be found, e.g.,
in Krauskopf (2007) and Allgower and Georg (1990). Some useful practical aspects of implementing
arclength continuation are also given in Dhooge et al. (2006). We use Matlab’s toolboxes to compute the
integrals in (2.24) and (2.25) and thus need to solve

F([p,m]) =
[
p − p∞(x; θ, β,m)

m − R(m; θ, β)

]
= 0, and G(β) = β − 1

θ
∫
x2 p∞(x; θ, β, 0) dx

= 0,

where p∞(x; θ, β,m) is a stationary solution of the McKean–Vlasov equation. We start the algorithm at a
sufficiently large β0, i.e., at a sufficiently low temperature for which we have a good initial guess for the
value of the order parameter.
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Fig. 5 Plot of R(m; θ, β) compared to the diagonal y = x ( R(m; θ, β) = m) for θ = 5, δ = 1, a = 5
and various values of β for the homogenized bistable potentials with a separable fluctuations (potentials
for various values of β shown on the inside panel), and b nonseparable fluctuations (potentials for various
values of β shown on the inside panel). c Bifurcation diagram of m as a function of β for the potentials in
(5a) (full line) and (5b) (dashed line)

Since there are no phase transitions for the convex potential (cases 1 and 2 in
Table 1), we do not present numerical results for this case. We present in Fig. 5
the plots of R(m; θ, β) and the bifurcation diagrams for the bistable potential with
separable and nonseparable fluctuations (cases 3 and 4, respectively). We observe
that, for nonseparable fluctuations, the function R(m; θ, β) is flat around m = 0; see
Fig. 5b. As we have already mentioned, the topology of the bifurcation diagram does
not change, in comparisonwith that of the bistable potential V b

0 (x)with no fluctuations
(see Fig. 1b for this case); thus, the effect of fluctuations is only observed by a shift in
the critical temperature.
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Fig. 6 Results for case 1: convex V c
0 with separable fluctuations, for θ = 5, δ = 1, ε = 0.1. a R(mε ; θ, β)

for various values of β, with the potential V ε(x) (full line) compared with V c
0 (x) (dashed line) in the inside

panel. b Bifurcation diagram ofm as a function of β. Full lines correspond to stable solutions, while dashed
lines represent unstable ones

4.2 Mean Field Limit of the Multiscale System of SDEs: Effects of Finite ε

In this section, we present numerical results on the bifurcation diagram when we
first pass to the mean field limit, while keeping ε small but finite. We are particularly
interested in the finite ε effects on the bifurcation diagrams for the two-scale potentials
presented in Table 1.

4.2.1 Convex Confining Potential with Separable and Nonseparable Fluctuations

We first consider Case 1 in Table 1: a convex large-scale potential with separa-
ble fluctuations. We present in Fig. 6 the solution to the self-consistency equation
R(m; θ, β) = m, the two-scale potential, and the bifurcation diagram for this case.
For all finite values of ε, the resulting potential is nonconvex. This results in the self-
consistency equation having multiple solutions (in fact, as ε → 0, there are infinitely
many solutions). In addition to the emerging pitchfork bifurcation (second-order, or
continuous, phase transition), we observe the emergence of discontinuous branches
that correspond to metastable states, since they are not (global) minimizers of the free
energy; see the results presented in Table 2.

Next, we consider the second case in Table 1: a convex large-scale potential V c
0 (x)

with nonseparable fluctuations. Similarly, we present in Fig. 7 the solution to the self-
consistency equation R(mε; θ, β) = mε , the two-scale potential and the bifurcation
diagram. We note that, as we mentioned before, we restrict the nonseparable fluctu-
ations to a finite interval. In our computations, we use a = 5, in the characteristic
function in Table 1.

We observe in Fig. 7b that no pitchfork bifurcations appear; all new branches that
appear do not emerge continuously from the mean-zero solution. This is due to the
flatness observed in the potential around m = 0 (see Fig. 7a). Furthermore, the mean-
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Table 2 Free energy of a steady
state in each branch of Figs. 6, 7,
8 and 9 for fixed values of β

Figure 6 7 8 9

β 45 29 20 8

Free Energy 0.3080 0.1441 − 0.5827 − 1.7409

0.3066 0.3684 − 0.5674 − 0.9933

− 0.4600 0.1433 − 1.0918 − 0.8241

− 0.3908 0.3184 − 0.7727 0.0856

− 0.8593 0.0976 − 0.8868

− 0.6514 0.2425 − 0.6903
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Fig. 7 Results for case 2: convex V0 with nonseparable fluctuations, for θ = 5, δ = 1, ε = 0.1. a
R(m; θ, β) for various values of β, with the potential V ε(x) (full line) compared with V c

0 (x) (dashed line)
in the inside panel. b Bifurcation diagram of m as a function of β. Full lines correspond to stable solutions,
while dashed lines represent unstable ones. c Values of the free energy of the steady state in each branch
of (b) for β = 45. d Free energy of each branch of the bifurcation diagram
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zero solution remains the global minimizer of the free energy for all values of β. This
is tabulated in Table 7c, where they are listed in the same way as in Table 2, i.e., in
decreasing order of nonnegative m. The free energies of the different branches are
presented in Fig. 7d. These new branches correspond to metastable states.

We have checked the stability of each branch by computing the free energy (1.5) of
a steady state from that branch at a particular value of β, chosen so that all the branches
plotted were present. We summarize the results in Table 2. Since we only consider
symmetric potentials, it is sufficient to calculate the free energy for the branches with,
say, nonnegative values of m. In each column of Table 2, the values of the free energy
are presented from the branch with largest value of m to the lowest; the last value
presented in each column corresponds to the branch with m = 0. We summarize the
results in Table 2.

We observe that the branch corresponding to a pitchfork bifurcation (i.e., second-
order phase transition), when present, has the lowest value of the free energy, i.e., it is
the globally stable one. Furthermore, when a pitchfork bifurcation does not occur—
see Fig. 7—the branch corresponding to m = 0 is the one with the lowest value of the
free energy. Finally, we observe that the stability of the branches in Fig. 9b does not
alternate in the same manner as in the previous figures. This is due to the flatteness of
the potential around x = 0 for nonseparable oscillations.

The results on the stability of the different branches that are reported in this section
are preliminary. A more thorough study of the local (linear) and global stability of
the stationary states of the McKean–Vlasov dynamics in multiwell potentials will
be presented elsewhere. We mention in passing the early rigorous work on the global
stability of the steady states for theMcKean–Vlasov equation in Tamura (1987) as well
as the careful study of the connection between the loss of linear stability of the uniform
state and phase transitions for the McKean–Vlasov equation on the torus (without a
confining potential) and with finite-range interactions in Chayes and Panferov (2010).

4.2.2 Bistable Confining Potential with Separable and Nonseparable Fluctuations

Here we consider cases 3 and 4 in Table 1, the bistable potential V b
0 (x). In this case,

the large-scale potential exhibits a second-order phase transition even in the absence of
small-scale fluctuations (see the pitchfork bifurcation in Fig. 1b) due to the existence
of two local minima for V b

0 (x). We are interested in analyzing the topological changes
that rapid oscillations in the potential induce to the bifurcation diagram.

We start with separable potentials—see Fig. 8.We observe that the self-consistency
equation R(mε; θ, β) = mε exhibits a larger number of solutions for finite ε, which,
as for the convex case, result in the emergence of metastable states that are not con-
tinuously connected with the mean-zero Gibbs state.

Similarly, for the last case inTable 1, case 4 (bistable potentialV b
0 (x) andnonsepara-

ble fluctuations), there are more solutions to the self-consistency equation. However,
the flatness of the potential (and therefore of the curves R(m; θ, β) near m = 0)
reduces the number of additional branches. Moreover, the topological structure of the
bifurcation diagram changes, and we now observe a nonparabolic curve for the main
branch, which bifurcates from the mean-zero solution via a pitchfork bifurcation.
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Fig. 8 Results for case 3: bistableVb
0 with separable fluctuations, for θ = 5, δ = 1, ε = 0.1. a R(mε ; θ, β)

for various values of β, with the potential V ε(x) (full line) compared with Vb
0 (x) (dashed line) in the inside

panel. b Bifurcation diagram ofm as a function of β. Full lines correspond to stable solutions, while dashed
lines represent unstable ones
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Fig. 9 Results for case 4: bistable Vb
0 with nonseparable fluctuations, for θ = 5, δ = 1, ε = 0.1. a

R(mε ; θ, β) for various values of β, with the potential V ε(x) (full line) compared with Vb
0 (x) (dashed line)

in the inside panel. b Bifurcation diagram of m as a function of β. Full lines correspond to stable solutions,
while dashed lines represent unstable ones

4.3 Numerical Study of the Critical Temperature as a Function of ε

Here we study the influence of finite ε on the critical temperature βC , the solution
of (3.10) for two-scale potentials, after which continuous phase transitions (pitchfork
bifurcations) occur. We do this by solving the equation (we only consider symmetric
potentials)

θ−1β−1 =
∫
R

x2 p∞(x; θ, β,mε = 0) dx, (4.4)

for the various potentials in Table 1.
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Fig. 10 Critical temperature βC as a function of ε for the multiscale Fokker–Planck equation with θ = 5

for cases a 1 − V ε(x) = x2
2 + δ cos

( x
ε

)
, b 3 − V ε(x) = x4

4 − x2
2 + δ cos

( x
ε

)
, and c 4 − V ε(x) =

x4
4 − x2

2
(
1 − δ cos

( x
ε

))
in Table 1

We present in Fig. 10 plots of the critical temperature, βC as a function of ε for
a fixed θ = 5. The results are presented for cases 1 (Fig. 10a), 3 (Fig. 10b) and 4
(Fig. 10c) from Table 1. We do not present the remaining case because, as shown in
Fig. 7b, there is no pitchfork bifurcation from the mean-zero solution for case 2. The
dependence of the critical temperature on ε is different for separable and nonseparable
potentials. It appears that the critical temperature can change considerable by varying
ε, which implies that a different number of branchesmight be present in the bifurcation
diagram at a fixed temperature, for different values of ε. This issue will be studied in
detail in future work.

4.4 Simulations of the Interacting Particles System

In this section,wepresent the results ofMonteCarlo (MC) simulations for the systemof
interacting diffusions, both for the full, i.e., ε-dependent, (2.1) and for the homogenized
dynamics (2.17). Our focus is on the study of the convergence of the interacting
particles system to their equilibrium state. It should be emphasized that no phase
transitions occur for the finite-dimensional particles system. However, the numerical
simulation of the two interacting particles systems, (2.1) and the homogenized particle
system (2.17) clearly exhibit the lack of commutativity between the mean field and
homogenization limits.

For the full dynamics (2.1), we used δ = 1 and ε = 0.1. We solved the SDEs using
the Euler–Maruyama scheme. For the homogenized dynamics (2.17), since the noise
is multiplicative (for nonseparable potentials), we used the Milstein scheme. In both
cases, the time step used was dt = 0.01, which is of O(ε2). Finally, in both cases we
initialized the N particles as being normally distributed, with mean zero and variance
4, which was large enough so that all the local minima were contained within two
standard deviations of the Gaussian distribution.

In Figs. 11, 12 and 13, we present the results of our simulations for case 1 in Table 1,
the convex potential with separable fluctuations V ε(x) = x2

2 + δ cos
( x

ε

)
. In Fig. 11,

we present snapshots of the position of each of the N = 1000 particles for t = 0 (top
panels), t = 100 (middle panels) and t = 5000 (bottom panels). The left panels show
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Fig. 11 Position of N = 1000 particles for V ε(x) = x2
2 + δ cos

( x
ε

)
, with θ = 2, β = 8, δ = 1. Left:

Eq. (2.1) with ε = 0.1. Right: homogenized SDEs (2.17)

the results for ε = 0.1, while the right panels show the results for the homogenized
system. In Fig. 12, we present snapshots of the histogram for the N = 1000 particles
for the same time and parameter values, which are δ = 1, ε = 0.1, θ = 2 and
β = 8. On the t = 5000 snapshot, we superpose the corresponding invariant measure,
rescaled for comparison, and we observe that the empirical density of the system of
interacting diffusions converges to the steady-state solution computed by solving the
stationary McKean–Vlasov equation.
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Fig. 12 Histogram of N = 1000 particles for V ε(x) = x2
2 + δ cos

( x
ε

)
, with θ = 2, β = 8, δ = 1. Left:

Eq. (2.1) with ε = 0.1. Right: homogenized SDEs (2.17)

We also calculate the empirical average of the interacting particle system

X̄ N
t := 1

N

N∑
i=1

Xi
t , (4.5)

as a function of time t . We observe that in both cases, the average converges to 0 as
expected, but that the convergence for the homogenized SDE (2.17) is slower. The
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Fig. 13 Time evolution of the mean X̄ N
t = 1

N
∑N

i=1 Xi
t of N = 1000 particles for V ε(x) = x2

2 +
δ cos

( x
ε

)
, with θ = 2, β = 8, δ = 1. Left: Eq. (2.1) with ε = 0.1. Right: homogenized SDEs (2.17)

position of the N particles follows approximately the same qualitative behavior (with
the particles clustering close to 0), but as we can see from the corresponding histogram
there exist additional wells (nonconvexity) for the finite ε case.

We performed similar experiments for case 4 in Table 1 (i.e., V ε(x) = x4
4 −

x2
2

(
1 − δχ[−a,a](x) cos

( x
ε

))
). Here we used N = 500 particles, and smaller values

of θ and β. The parameters used were θ = 0.5, β ≈ 5.6, δ = 1 and ε = 0.1, and the
results are plotted in Figs. 14, 15 and 16.

In Fig. 14, we present snapshots of the position of each of the N = 500 particles
for t = 0 (top panels), t = 100 (middle panels) and t = 5000 (bottom panels).
The left panels show the results for ε = 0.1, while the right panels show the results
for the homogenized SDE (2.17). Here we can observe the noncommutativity of the
limits: The particles evolve toward different steady states, which shows the effect of
the fluctuations on the critical temperature βC at which phase transitions occur. This
will be confirmed below when we present the mean value of the solution.

We present in Fig. 15 snapshots of the histogram of the N = 500 particles at
t = 0, t = 100 and t = 5000. Again, we observe that the particles converge to differ-
ent equilibria, the homogenized system converging to a mean-zero distribution with
peaks at 1 and − 1, while for positive values of the parameter ε the system converges
to a distribution with X̄t = − 1. Similarly to the previous case, we superpose the cor-
responding invariant measure, rescaled for comparison, for this parameter regime on
the t = 5000 snapshot, and again we observe that the empirical density of the system
of interacting diffusions converges to the steady-state solution computed by solving
the stationary McKean–Vlasov equation, which is also obtained by time evolution of
the Fokker–Planck equation (see Figs. 17, 18 in Sect. 4.5).

Finally, we plot in Fig. 16 the average X̄ N
t of the N = 500 particles for the case of

a bistable large-scale potential with nonseparable fluctuations. We observe here that
the critical temperature for the homogenized dynamics is different than that for the
full dynamics. In particular, the phase transition occurs for β ≈ 10.4 > 5.6 for the
homogenized problem, while for finite values of ε there already exist several branches
at this value of β.

123



J Nonlinear Sci (2018) 28:905–941 935

0 250 500
-5

0

5

250 500
-5

0

5

0 250 500
-5

0

5

250 500
-5

0

5

0 250 500
-5

0

5

250 500
-5

0

5

Fig. 14 Position of N = 500 particles for V ε(x) = x4
4 − x2

2
(
1 − δ cos

( x
ε

))
, with θ = 0.5, β ≈ 5.6,

δ = 1. Left: Eq. (2.1) with ε = 0.1. Right: homogenized SDEs (2.17)

4.5 Time-Dependent McKean–Vlasov Evolution

We performed time-dependent simulations of the evolution of the nonlinear McKean–
Vlasov equation both for the full and for the homogenized dynamics.We present below
the results corresponding to the cases presented for the Monte Carlo simulations.
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Fig. 15 Histogram of N = 500 particles for V ε(x) = x4
4 − x2

2
(
1 − δ cos

( x
ε

))
, with θ = 0.5, β ≈ 5.6,

δ = 1. Left: Eq. (2.1) with ε = 0.1. Right: homogenized SDEs (2.17)

We recall that, for the case when we take N → ∞ first while keeping ε > 0 fixed,
the McKean–Vlasov–Fokker–Planck equation that we need to solve is

∂p

∂t
= ∂

∂x

(
β−1 ∂p

∂x
+ ∂x V

ε(x)p + θ

(
x −

∫
xp(x, t) dx

)
p

)
, (4.6)

123



J Nonlinear Sci (2018) 28:905–941 937

-2

-1

0

1

2

0 1500 3000 5000 1500 3000 5000
-2

-1

0

1

2

Fig. 16 Time evolution of the average X̄ N
t = 1

N
∑N

i=1 X
i
t of N = 500 particles for V ε(x) = x4

4 −
x2
2

(
1 − δ cos

( x
ε

))
, with θ = 0.5, β ≈ 5.6, δ = 1. Left: Eq. (2.1) with ε = 0.1. Right: homogenized

SDEs (2.17)

whereas for the case when we first homogenize the dynamics and then pass to the
mean field limit the McKean–Vlasov equation becomes

∂p

∂t
= ∂

∂x

[
β−1 ∂ (M(x)p)

∂x
+M(x)

(
V ′
0(x) + ψ ′(x) + θ

(
x −

∫
xp(x, t) dx

))
p

+β−1 ∂M(x)

∂x
p

]
, (4.7)

with ψ(x) and M(x) given by (2.20) and (2.16), respectively.
To solve the McKean–Vlasov evolution PDE, we used the positivity preserving,

entropy decreasing finite volume scheme from Carrillo et al. (2015). We point out
that this scheme solves the equations using no-flux boundary conditions. We use
these boundary conditions and a sufficiently large domain. We used the same initial
conditions for the time-dependent Fokker–Planck simulations as the ones used for
the Monte Carlo simulations, i.e., the initial condition was the PDF for a normal
distribution with mean zero and variance 4. However, for the bistable large-scale
potential with nonseparable fluctuations in the finite but positive ε case—see left
panel in Fig. 18—we needed to use a different initial condition: Here we used a
normal distribution with mean − 0.1 and variance 4. This is likely because the value
of β we chose here was close to the bifurcation point and the mean-zero solution was
still being picked up on the time evolution.

We present below the results for the case of a convex large-scale potential V c
0 with

separable fluctuations—the same case presented in Figs. 11, 12 and 13. The parameters
used were θ = 2, β = 8, δ = 1, ε = 0.1.

As expected, the results obtained by solving the time-dependent McKean–Vlasov
equation are in agreement with the results obtained from the Monte Carlo simulations
and from solving the stationary McKean–Vlasov equation—i.e., the self-consistency
equation. We note that, similarly to what we observed in the solution of the system
of interacting particles, the solution to the McKean–Vlasov equation converges to
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Fig. 17 Time evolution of the McKean–Vlasov equation for V ε(x) = x2
2 + δ cos

( x
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)
with θ = 2, β = 8,

δ = 1. Left: (4.6) with ε = 0.1. Right: homogenized equation (4.7)
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Fig. 18 Time evolution of theMcKean–Vlasov equation for V ε(x) = x4
4 − x2
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with θ = 0.5, β ≈ 5.6, δ = 1. Left: (4.6) with ε = 0.1. Right: homogenized equation (4.7)

its steady state faster for the full dynamics than for the homogenized equation. This
observation can be quantified by comparing the convergence rates in the weighted L2

or relative entropy exponential estimates, in particular by comparing the constants in
the Poincaré and logarithmic Sobolev inequalities for the full and for the homogenized
dynamics. A preliminary study of this—for the Fokker–Planck operator of the finite-
dimensional dynamics—was presented in Duncan et al. (2016b).

Finally, we present numerical results for the case of a bistable large-scale potential
V b
0 with nonseparable fluctuations—the same case presented in Figs. 14, 15 and 16.

The parameters used were θ = 0.5, β ≈ 5.6, δ = 1, ε = 0.1.
As expected, the solutions converge to those computed by solving the stationary

McKean–Vlasov equation and are qualitatively similar to those obtained from the
particle system simulations; see Fig. 15. In this case, the solution of the time-dependent
McKean–Vlasov PDE converges to a steady state slower for the full dynamics, in
comparison with the homogenized dynamics. We believe that this is related to the
phenomenon of critical slowing down (Shiino 1987) when the dynamics is close to a
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bifurcation, since the inverse temperature β−1 that we use for the simulations is close
to the critical temperature β−1

C for the full dynamics.

5 Conclusions and Further Work

The combined mean field and homogenization limit for a system of interacting dif-
fusions in a two-scale confining potential was studied in this paper. In particular, the
homogenized McKean–Vlasov equation was obtained and studied and the bifurcation
diagram for the stationary states was considered. It was shown, by means of analysis
and extensive numerical simulations, that the homogenization and mean field limits,
at the level of the bifurcation diagram (i.e., when combined with the long time limit),
do not commute for nonseparable two-scale potentials. Furthermore, it was shown that
the bifurcation diagrams can be completely different for small but finite ε and for the
homogenized McKean–Vlasov equation.

It should be emphasized, as is clearly explained in Chayes and Panferov (2010),
see in particular the remarks at the end of Sec. 2 of this paper, that the connection
between bifurcations and phase transitions for the McKean–Vlasov dynamics is not
entirely straightforward. In particular, in order for a bifurcation point to correspond to
a genuine phase transition, it is not sufficient to have the emergence of a new branch of
solutions, but these emergent solutions should have a lower free energy.More precisely,
it was shown in Chayes and Panferov (2010) for the McKean–Vlasov dynamics on the
torus and with a finite-range interaction potential that the loss of linear stability of the
uniform state—which corresponds to the mean-zero Gibbs state in our setting—does
not imply a second-order phase transition. Furthermore, the critical temperature (or,
equivalently, critical interaction strength) at which first-order phase transitions occur
is lower than the temperature at which the pitchfork bifurcation happens. For the
problem that we studied, supercritical pitchfork bifurcations occur which correspond
to second-order (continuous) phase transitions. On the other hand, when only saddle
node bifurcations are present, e.g., in Fig. 7b, then the mean-zero solution is still the
global minimizer of the free energy; see Fig. 7d. In particular, no first-order phase
transitions seem to appear in the McKean–Vlasov model that we studied in this work.

There are many open questions that are not addressed in this work. First, the rigor-
ous multiscale analysis for theMcKean–Vlasov equation in locally periodic potentials
needs to be carried out. Perhaps more importantly, the rigorous construction of the
bifurcation diagram in the presence of infinitely many local minima in the confin-
ing potential, thus extending the results presented in, e.g., Dawson (1983), Tamura
(1984), Tugaut (2014), appears to be completely open. Furthermore, the study of the
stability of stationary solutions to the McKean–Vlasov equation in the presence of a
multiscale structure, as well as the analysis of the problem of convergence to equi-
librium in this setting is an intriguing question. Finally, the extension of the work
presented in this paper to higher dimensions presents additional challenges. We men-
tion, for example, that the corresponding nonlinear diffusion process does not have
to be reversible (Lelievre et al. 2013; Duncan et al. 2016). We believe that the results
reported in this work open up a new exciting avenue of research in the study of mean
field limits for interacting diffusions in the presence of many local minima, with
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potentially interesting applications to the study of McKean–Vlasov-based mathemat-
ical models in the social sciences.
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