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CLOAKING VIA MAPPING FOR THE HEAT EQUATION∗

R. V. CRASTER† , S. R. L. GUENNEAU‡ , H. R. HUTRIDURGA† , AND G. A. PAVLIOTIS†

Abstract. This paper explores the concept of near-cloaking in the context of time-dependent
heat propagation. We show that after the lapse of a certain threshold time, the boundary measure-
ments for the homogeneous heat equation are close to the cloaked heat problem in a certain Sobolev
space norm irrespective of the density-conductivity pair in the cloaked region. A regularized trans-
formation media theory is employed to arrive at our results. Our proof relies on the study of the long
time behavior of solutions to the parabolic problems with high contrast in density and conductivity
coefficients. It further relies on the study of boundary measurement estimates in the presence of small
defects in the context of steady conduction problems. We then present some numerical examples to
illustrate our theoretical results.
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1. Introduction.

1.1. Physical motivation. This work addresses the concept of near-cloaking
in the context of time-dependent heat propagation. Our study is motivated by exper-
iments in electrostatics [23] and thermodynamics [37], which have demonstrated the
markedly different behavior of structured cloaks in static and dynamic regimes. It
has been observed, in the physics literature, that the thermal field in [37] reaches an
equilibrium state after a certain time interval, when it looks nearly identical to elec-
trostatic field measured in [23]. There have already been some rigorous results for the
electrostatic case [16]. However, during the transient regime the thermal field looks
much different from the static result, and a natural question that arises is whether
one can give a mathematically rigorous definition of cloaking for diffusion processes in
the time domain. This has important practical applications, as cloaking for diffusion
processes has been applied to mass transport problems in life sciences [19] and chem-
istry [38], as well as to multiple light scattering whereby light is governed by ballistic
laws [36]. Interestingly, the control of wave trajectories first proposed in the context
of electromagnetism [32] can also be extended to matter waves that are solutions of a
Schrödinger equation [39] that is akin to the heat equation, and so the near-cloaking
we investigate has broad implications and application.
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1.2. Analytical motivation. Change-of-variables–based cloaking schemes have
been inspired by the work of Greenleaf, Lassas, and Uhlmann [16] in the context of
electric impedance tomography and by the work of Pendry, Schurig, and Smith [32] in
the context of time-harmonic Maxwell’s equations. The transformation employed in
both those works is singular, and any mathematical analysis involving them becomes
quite involved. The transformation in [16, 32] essentially blows up a point to a region
in space which needs to be cloaked. These works yield perfect cloaks; i.e., they
render the target region completely invisible to boundary measurements. Regularized
versions of this singular approach have been proposed in the literature. In [22], Kohn
et al. proposed a regularized approximation of this map by blowing up a small ball to
a cloaked region and studied the asymptotic behavior as the radius of the small ball
vanishes, thus recovering the singular transform of [16, 32]. An alternate approach
involving the truncation of singularities was employed by Greenleaf et al. [13] to
provide an approximation scheme for the singular transform in [16, 32]. It is to be
noted that the constructions in [22, 13] are shown to be equivalent in [20]. We refer
the interested reader to the review papers [15, 14] for further details on cloaking via a
change-of-variables approach with emphasis on the aforementioned singular transform.

Rather than employing the singular transformation, we follow the lead of Kohn et
al. [22], which is in contrast with some works in the literature on the time-dependent
thermal cloaking strategies where singular schemes are used; see, e.g., [18, 34, 33].
Note that the evolution equation which we consider is a good model for [37], which de-
signs and fabricates a microstructured thermal cloak that molds the heat flow around
an object in a metal plate. We refer the interested reader to the review paper [35]
for further details on transformation thermodynamics. The work of Kohn et al. [22]
estimates that the near-cloaking they propose for the steady conduction problem is
εd-close to the perfect cloak, where d is the space dimension. Our construction of
the cloaking structure is exactly similar to the construction in [22]. In the present
time-dependent setting, we allow the solution to evolve in time until it gets close to
the associated thermal equilibrium state which solves a steady conduction problem.
This closeness is studied in the Sobolev space H1(Ω). We then employ the εd-closeness
result of [22] to deduce our near-cloaking theorem in the time-dependent setting. To
the best of our knowledge, this is the first work to consider near-cloaking strategies
to address the time-dependent heat conduction problem.

In the literature, there have been numerous works on the approximate cloaking
strategies for the Helmholtz equation [21, 24, 26, 25] (see also [27] for the treatment
of the full wave equation). The strategy in [27] to treat the time-dependent wave
problem is to take the Fourier transform in the time variable. This yields a family
of Helmholtz problems (family indexed by the frequency). The essential idea there
is to obtain appropriate degree of invisibility estimates for the Helmholtz equation—
the estimates being frequency-dependent. More importantly, these estimates blow up
in the frequency regime. But, they do so in an integrable fashion. Equipped with
these approximate cloaking results for the Helmholtz equations, the authors in [27]
simply invert the Fourier transform to read off the near-cloaking result for the time-
dependent wave equation. Inspired by [27], one could apply the Laplace transform in
the time variable for the heat equation and try to mimic the analysis in [27] for the
family of elliptic problems thus obtained. Note that this approach does not require,
unlike ours, the solution to the heat conduction problem to reach equilibrium state
to obtain approximate cloaking. We have not explored this approach in detail and we
leave it for future investigations.

Gralak et al. [12] recently developed invisible layered structures in transforma-
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1148 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

tion optics in the temporal regime. Inspired by that work, we have also developed a
transformation media theory for thermal layered cloaks, which are of practical impor-
tance in thin-film solar cells for energy harvesting in the photovoltaic industry. These
layered cloaks might be of importance in thermal imaging. We direct the interested
reader to [3] and references therein.

In the applied mathematics community working on metamaterials, enhancement
of near-cloaking is another topic which has been addressed in the literature. Loosely
speaking, these enhancement techniques involve covering a small ball of radius ε by
multiple coatings and then applying the push-forward maps of [22]. These multiple
coatings which result in the vanishing of certain polarization tensors help us improve
the εd-closeness of [22] to εdN -closeness, where N denotes the number of coatings in
the above construction. For further details, we direct the reader to [7, 6] in the math-
ematics literature and [1, 2] in the physics literature (the works [1, 2] employ negative
index materials). One could employ the constructions of [7, 6] in the time-independent
setting to our temporal setting to obtain enhanced near-cloaking structures. This
again is left for future investigations.

In this present work, we are able to treat time-independent sources for the heat
equation. As our approach involves the study of thermal equilibration, we could
extend our result to time-dependent sources which result in equilibration. This, how-
ever, leaves open the question of near-cloaking for the heat equation with genuinely
time-dependent sources which do not result in thermal equilibration. For example,
sources which are time harmonic cannot be treated by the approach of this paper.
The approach involving the Laplace transform mentioned in a previous paragraph
might be of help here. There are plenty of numerical works published by physicists
on these aspects but with no mathematical foundation thus far. The authors plan to
return to these questions in the near future.

1.3. Paper structure. The paper is organized as follows. In section 2, we briefly
recall the change-of-variable-principle for the heat equation. This section also makes
precise the notion of near-cloaking and its connection to perfect cloaking followed by
the construction of cloaking density and conductivity coefficients. Our main result
(Theorem 2) is stated in that section. Section 3 deals with the long time behavior of
solutions to parabolic problems; the effect of high contrast in density and conduction
on the long time behavior of solutions is also treated in that section. The proof of
Theorem 2 is given in section 4. In this section, we also develop upon an idea of
layered cloak inspired by the construction in [12]. Finally, in section 5, we present
some numerical examples to illustrate our theoretical results.

2. Mathematical setting. Let Ω ⊂ Rd (d = 2, 3) be a smooth bounded domain
such that B2 ⊂ Ω. Throughout, we use the notation Br to denote a euclidean ball of
radius r centered at the origin.

2.1. Change-of-variables principle. The following result recalls the principle
behind the change-of-variables–based cloaking strategies. This is the typical, and
essential, ingredient of any cloaking strategy in transformation media theory.

Proposition 1. Let the coefficients A ∈ L∞(Ω;Rd×d) and ρ ∈ L∞(Ω;R). Sup-
pose the source term f ∈ L2(Ω;R). Consider a smooth invertible map F : Ω 7→ Ω such
that F(x) = x for each x ∈ Ω\B2. Furthermore, assume that the associated Jacobians
satisfy det(DF)(x),det(DF−1)(x) ≥ C > 0 for a.e. x ∈ Ω. Then u(t, x) is a solution
to

ρ(x)
∂u

∂t
= ∇ ·

(
A(x)∇u

)
+ f(x) for (t, x) ∈ (0,∞)× Ω
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1149

if and only if v = u ◦ F−1 is a solution to

F∗ρ(y)
∂v

∂t
= ∇ ·

(
F∗A(y)∇v

)
+ F∗f(y) for (t, y) ∈ (0,∞)× Ω,

where the coefficients are given as

(2.1)

F∗ρ(y) =
ρ(x)

det(DF)(x)
; F∗f(t, y) =

f(t, x)

det(DF)(x)
;

F∗A(y) =
DF(x)A(x)DF>(x)

det(DF)(x)

with the understanding that the right-hand sides in (2.1) are computed at x = F−1(y).
Moreover, we have for all t > 0,

u(t, ·) = v(t, ·) in Ω \B2.(2.2)

The proof of the above proposition has appeared in the literature in most of the
papers on “cloaking via mapping” techniques. It essentially involves performing a
change of variables in the weak formulation associated with the differential equation.
We will skip the proof and refer the reader to [22, subsection 2.2], [21, subsection 2.2,
page 976], [18, section 2, page 8209] for essential details.

Following Kohn et al. [22], we fix a regularizing parameter ε > 0 and consider a
Lipschitz map Fε : Ω 7→ Ω defined below:

(2.3) Fε(x) :=


x for x ∈ Ω \B2,(

2−2ε
2−ε + |x|

2−ε

)
x
|x| for x ∈ B2 \Bε,

x
ε for x ∈ Bε.

Note that Fε maps Bε to B1 and the annulus B2 \ Bε to B2 \ B1. The cloaking
strategy with the above map corresponds to having B1 as the cloaked region and the
annulus B2 \B1 as the cloaking annulus. The Lipschitz map given above is borrowed
from [22, page 5]. Remark that taking ε = 0 in (2.3) yields the map

(2.4) F0(x) :=

{
x for x ∈ Ω \B2,(

1 + 1
2 |x|

)
x
|x| for x ∈ B2 \ {0},

which is the singular transform of [16, 32]. The map F0 is smooth except at the point
0. It maps 0 to B1 and B2 \ {0} to B2 \B1.

2.2. Essential idea of the paper. Let us make precise the notion of near-
cloaking we will use throughout this paper. Let f ∈ L2(Ω) denote a source term
such that supp f ⊂ Ω \ B2. Let g ∈ L2(∂Ω) denote a Neumann boundary datum.
Suppose the initial datum uin ∈ H1(Ω) is such that suppuin ⊂ Ω \ B2. Consider the
homogeneous (conductivity being unity) heat equation for the unknown uhom(t, x)
with the aforementioned data:

(2.5)

∂tuhom(t, x) = ∆uhom(t, x) + f(x) in (0,∞)× Ω,

∇uhom · n(x) = g(x) on (0,∞)× ∂Ω,

uhom(0, x) = uin(x) in Ω.
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1150 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

Here n(x) is the unit exterior normal to Ω at x ∈ ∂Ω.
Our objective is to construct coefficients ρcl(x) and Acl(x) such that

ρcl(x) = η(x); Acl(x) = β(x) in B1

for some arbitrary bounded positive density η and for some arbitrary bounded positive
definite conductivity β. This construction should further imply that the evolution for
the unknown ucl(t, x) given by

(2.6)

ρcl(x)∂tucl = ∇ ·
(
Acl(x)∇ucl

)
+ f(x) in (0,∞)× Ω,

∇ucl · n(x) = g(x) on (0,∞)× ∂Ω,

ucl(0, x) = uin(x) in Ω

is such that there exists a time instant T <∞ so that for all t ≥ T , we have

ucl(t, x) ≈ uhom(t, x) for x ∈ Ω \B2.

The above closeness will be measured in some appropriate function space norm. Most
importantly, this approximation should be independent of the density-conductivity
pair η, β in B1. Note, in particular, that the source terms f(x), g(x), uin(x) in (2.5)
and (2.6) are the same.

2.3. Cloaking coefficients and the defect problem. The following construct
using the push-forward maps is now classical in transformation optics, and we use it
here for thermodynamics:

(2.7) ρcl(x) =


1 for x ∈ Ω \B2,

F∗ε 1 for x ∈ B2 \B1,

η(x) for x ∈ B1

and

(2.8) Acl(x) =


Id for x ∈ Ω \B2,

F∗ε Id for x ∈ B2 \B1,

β(x) for x ∈ B1.

The density coefficient η(x) in (2.7) is any arbitrary real coefficient such that

0 < η(x) <∞ for x ∈ B1.

The conductivity coefficient β(x) in (2.8) is any arbitrary bounded positive definite
matrix; i.e., there exist positive constants κ1 and κ2 such that

κ1 |ξ|2 ≤ β(x)ξ · ξ ≤ κ2 |ξ|2 ∀(x, ξ) ∈ B1 × Rd.

The following observation is crucial for the analysis to follow. Consider the density-
conductivity pair

(2.9) ρε(x) =

{
1 for x ∈ Ω \Bε,
1
εd
η
(
x
ε

)
for x ∈ Bε
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1151

and

(2.10) Aε(x) =

{
Id for x ∈ Ω \Bε,

1
εd−2 β

(
x
ε

)
for x ∈ Bε.

Next, let us compute their push-forwards using the Lipschitz map Fε—as given by
the formulae (2.1)—yielding

ρcl(y) = F∗ε ρε(y); Acl(y) = F∗εAε(y).

Then the assertion of Proposition 1 (see, in particular, the equality (2.2)) implies that
the solution ucl(t, x) to (2.6) satisfies for all t > 0,

ucl(t, x) = uε(t, x) ∀x ∈ Ω \B2

with uε(t, x) being the solution to

ρε(x)∂tu
ε = ∇ ·

(
Aε(x)∇uε

)
+ f(x) in (0,∞)× Ω,

∇uε · n(x) = g(x) on (0,∞)× ∂Ω,

uε(0, x) = uin(x) in Ω

(2.11)

with the coefficients in the above evolution being given by (2.9)–(2.10). The coeffi-
cients ρε and Aε are uniform except for their values in Bε. Hence we treat Bε as a
defect where the coefficients show high contrast with respect to their values elsewhere
in the domain. Due to the nature of these coefficients, we call the evolution problem
(2.11) the defect problem with high contrast coefficients or defect problem for short.
The change-of-variables principle (see Proposition 1) essentially says that, to study
cloaking for the transient heat transfer problem, we need to compare the solution
uε(t, x) to the defect problem (2.11) with the solution uhom(t, x) to the homogeneous
problem (2.5) for x ∈ Ω \B2.

2.4. Main result. We are now ready to state the main result of this work.

Theorem 2. Let the dimension d ≥ 2. Let uε(t, x) be the solution to the defect
problem (2.11), and let uhom(t, x) be the solution to the homogeneous conductivity
problem (2.5). Suppose the data in (2.5) and (2.11) are such that

f ∈ L2(Ω), supp f ⊂ Ω \B2, g ∈ L2(∂Ω), uin ∈ H1(Ω), suppuin ⊂ Ω \B2.

Let us further suppose that the source terms satisfy∫
Ω

f(x) dx+

∫
∂Ω

g(x) dσ(x) = 0,(2.12) ∫
Ω

uin(x) dx = 0.(2.13)

Then there exists a time T <∞ such that for all t ≥ T , we have

‖uε(t, ·)− uhom(t, ·)‖
H

1
2 (∂Ω)

≤ C
(∥∥uin

∥∥
H1 + ‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
εd,(2.14)

where the positive constant C depends on the domain Ω and the L∞ bounds on the
density-conductivity pair (η, β) in B1.
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1152 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

Thanks to the change-of-variables principle (Proposition 1), we deduce the fol-
lowing corollary.

Corollary 3. Let ucl(t, x) be the solution to the thermal cloak problem (2.6)
with the cloaking coefficients ρcl(x), Acl(x) given by (2.7)–(2.8). Let uhom(t, x) be the
solution to the homogeneous conductivity problem (2.5). Suppose the data in (2.5)
and (2.6) are such that

f ∈ L2(Ω), supp f ⊂ Ω \B2, g ∈ L2(∂Ω), uin ∈ H1(Ω), suppuin ⊂ Ω \B2.

Let us further suppose that the source terms satisfy (2.12) and (2.13). Then there
exists a time T <∞ such that for all t ≥ T , we have

‖ucl(t, ·)− uhom(t, ·)‖
H

1
2 (∂Ω)

≤ C
(∥∥uin

∥∥
H1 + ‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
εd,(2.15)

where the positive constant C depends on the domain Ω and the L∞ bounds on the
density-conductivity pair (η, β) in B1.

Whenever the source terms f(x), g(x) and the initial datum uin(x) satisfy the
compatibility conditions (2.12)–(2.13), we shall call them admissible. Our proof of
the Theorem 2 relies upon two ideas:

(i) long time behavior of solutions to parabolic problems and
(ii) boundary measurement estimates in the presence of small inhomogeneities.

Remark 4. Our strategy of proof goes via the study of the steady-state prob-
lems associated with the evolutions (2.5) and (2.11). Those elliptic boundary value
problems demand that the source terms be compatible to guarantee existence and
uniqueness of solution. These compatibility conditions on the bulk and Neumann
boundary sources f, g translate to the zero mean assumption (2.12). Note that the
compatibility condition (2.12) is not necessary for the well-posedness of the transient
problems.

Remark 5. Ammari et al. [3] have proved a result that is closely related to our
near-cloaking result (Theorem 2). Our main result says that near-cloaking for the
heat equation is possible once the system is driven close to its equilibrium state,
and thus it can be interpreted as a large time asymptotic result. The result in [3],
however, can be interpreted as a short time near-cloaking result. They prove that the
solution uε(t, x) to the small defect problem (2.11) and the solution uhom(t, x) to the
homogeneous conductivity problem (2.5) are close to each other (see [3, Lemma 3.2,
page 1120]) as follows:

sup
0≤t≤T

‖uε(t, ·)− uhom(t, ·)‖L2(Ω) + ‖∇uε(t, ·)−∇uhom(t, ·)‖L2((0,T )×Ω) ≤ C
√
Tε

d
2 .

Note that in the above estimate, the larger the time instant T , the worse the estimate
gets. Also, the results in [3] are carried out for an isotropic background with isotropic
inclusions. But, their proof carries over to our setting of anisotropic inclusion as well.
The authors of [3] derive first-order small volume expansion with precise estimates on
the remainder (see [3, Theorem 2.1, page 1118]).

A remark about the assumption (2.13) on the initial datum uin in Theorem 2 will
be made after the proof of Theorem 2, as it will be clearer to the reader.
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1153

3. Study of the long time behavior. In this section, we deal with the long
time asymptotic analysis for the parabolic problems. Consider the initial-boundary
value problem for the unknown v(t, x):

(3.1)

∂tv = ∆v in (0,∞)× Ω,

∇v · n(x) = 0 on (0,∞)× ∂Ω,

v(0, x) = vin(x) in Ω.

We give an asymptotic result for the solution to (3.1) in the t→∞ limit.

Proposition 6. Let v(t, x) be the solution to the initial-boundary value problem
(3.1). Suppose we have the initial datum vin ∈ H1(Ω). Then there exists a constant
γ > 0 such that∥∥v(t, ·)− 〈vin〉

∥∥
H1(Ω)

≤ e−γt
∥∥vin

∥∥
H1(Ω)

for all t > 0,(3.2)

where 〈vin〉 denotes the initial average, i.e.,

〈vin〉 :=
1

|Ω|

∫
Ω

vin(x) dx.

Proof of the above proposition is standard and is based on the spectral study of
the corresponding elliptic problem; see, e.g., [31]. Alternatively, we could also use
energy methods based on a priori estimates on the solution of the parabolic partial
differential equations; see, e.g., [10, Chapter 13]. As the proof of Proposition 6 is
quite standard, we omit the proof.

Let us recall certain notions necessary for our proof. Let {ϕk}∞k=1 ⊂ H1(Ω) denote
the collection of Neumann Laplacian eigenfunctions on Ω, i.e., for each k ∈ N,

(3.3)
−∆ϕk = µkϕk in Ω,

∇ϕk · n(x) = 0 on ∂Ω,

with {µk} denoting the eigenvalues. Recall that the spectrum is discrete, nonnegative,
and with no finite accumulation point, i.e.,

0 = µ1 ≤ µ2 ≤ · · · → ∞.

The next proposition is a result similar in flavor to Proposition 6 but in a more
general parabolic setting with high contrast in density and conductivity coefficients.
More precisely, let us consider the heat equation with uniform conductivity in the
presence of a defect with high contrast coefficients. We particularly choose the con-
ductivity matrix to be (2.10) and the density coefficient to be (2.9). For an unknown
vε(t, x), consider the initial-boundary value problem

(3.4)

ρε(x)∂tv
ε = ∇ ·

(
Aε(x)∇vε

)
in (0,∞)× Ω,

∇vε · n(x) = 0 on (0,∞)× ∂Ω,

vε(0, x) = vin(x) in Ω.

We give an asymptotic result for the solution vε(t, x) to (3.4) in the t→∞ limit. As
before, we are interested in the ‖·‖H1-norm rather than the ‖·‖L2-norm.
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1154 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

Proposition 7. Let vε(t, x) be the solution to the initial-boundary value problem
(3.4). Suppose we have the initial datum vin ∈ H1(Ω) ∩ L∞(Ω). Then there exists a
constant γε > 0 such that for all t > 0, we have

‖vε(t, ·)−mε‖H1(Ω) ≤ e
−γεt

(
1

εd
∥∥vin

∥∥
L2(Ω)

+
1

ε
d−2
2

∥∥∇vin
∥∥

L2(Ω)

)
,(3.5)

where mε denotes the following weighted initial average:

mε :=
1

|Ω| 〈ρε〉

∫
Ω

ρε(x)vin(x) dx with 〈ρε〉 =
1

|Ω|

∫
Ω

ρε(x) dx.

Remark 8. From estimate (3.5) we conclude that the estimate on the right-hand
side is a product of an exponential decay term and a term of O(ε−d). So, if γε & 1,
uniformly in ε, then the solution converges to the weighted initial average in the long
time regime. We will demonstrate that the decay rate γε is bounded away from zero
uniformly (with respect to ε) in subsection 3.1.

If the density coefficient ρε(x) is given by (2.9), then

〈ρε〉 =
1

|Ω|

{∫
Ω\Bε

1 dx+
1

εd

∫
Bε

1 dx

}
=

1

|Ω|

(
|Ω \Bε|+

π
d
2

Γ
(
d
2 + 1

)) ,
where Γ(·) denotes the gamma function. Substituting for 〈ρε〉 in the expression for
the weighted initial average yields

mε =

(
|Ω \Bε|+

π
d
2

Γ
(
d
2 + 1

))−1{∫
Ω\Bε

vin(x) dx+
1

εd

∫
Bε

vin(x) dx

}
.

Using the assumption on the initial datum vin that it belongs to H1(Ω) ∩ L∞(Ω), we
get the following uniform bound (uniform with respect to ε) on the weighted initial
average:

|mε| ≤ 1 +
|Ω|Γ

(
d
2 + 1

)
π

d
2

∥∥vin
∥∥

L2(Ω)
<∞.

Proof of Proposition 7. Let µεk and ϕεk be the Neumann eigenvalues and eigen-
functions defined as

(3.6)
−∇ ·

(
Aε∇ϕεk

)
= µεkρ

εϕεk in Ω,

∇ϕεk · n(x) = 0 on ∂Ω,

where the conductivity-density pair Aε(x), ρε(x) is given by (2.10)–(2.9). Here again
the spectrum is discrete, nonnegative, and with no finite accumulation point, i.e.,

0 = µε1 ≤ µε2 ≤ · · · → ∞.

The solution vε(t, x) to (3.4) can be represented in terms of the basis functions
{ϕεk}∞k=1 as

vε(t, x) =

∞∑
k=1

bεk(t)ϕεk(x) with bεk(t) =

∫
Ω

vε(t, x)ρε(x)ϕεk(x) dx.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1155

The general representation formula for the solution to (3.4) becomes

vε(t, x) =

∞∑
k=1

bεk(0)e−µktϕk(x) = bε1(0)ϕε1 +

∞∑
k=2

bεk(0)e−µ
ε
ktϕεk(x).(3.7)

The first term in the above representation is nothing but the weighted initial average

ϕε1b
ε
1(0) = |ϕε1|

2
∫

Ω

vin(x)ρε(x) dx =
1

|Ω| 〈ρε〉

∫
Ω

vin(x)ρε(x) dx =: mε.

The representation (3.7) says that the weighted L2(Ω)-norm of vε(t, x) is

‖vε(t, ·)‖2L2(Ω;ρε) = |bε1(0)|2 +

∞∑
k=2

|bεk(0)|2 e−2µε
kt,

where we have used the following notation for the weighted Lebesgue space norm:

‖w‖L2(Ω;ρε) :=

∫
Ω

w(x)ρε(x) dx.

The density coefficient ρε(x) defined in (2.9) appears as the weight function in the
above Lebesgue space. It follows that

‖w‖L2(Ω) . ‖w‖L2(Ω;ρε) .
1

εd
‖w‖L2(Ω)

thanks to the definition of ρε(x) in (2.9). Computing the weighted norm of the
difference vε(t, x)−mε, we get

‖vε(t, ·)−mε‖2L2(Ω;ρε) =

∞∑
k=2

|bεk(0)|2 e−2µε
kt ≤ e−2µε

2t
∥∥vin

∥∥2

L2(Ω;ρε)
.

Hence we deduce that

‖vε(t, ·)−mε‖2L2(Ω) ≤ e
−2µε

2t
1

ε2d

∥∥vin
∥∥2

L2(Ω)
.(3.8)

Next, it follows from the representation formula (3.7) that

√
Aε(x)∇vε(t, x) =

∞∑
k=2

bεk(0)e−µ
ε
kt
√
Aε(x)∇ϕεk(x),

which in turn implies that∥∥∥√Aε∇vε∥∥∥2

L2(Ω)
=

∞∑
k=2

|bεk(0)|2 µεk e−2µε
kt ≤ e−2µε

2t
∞∑
k=2

|bεk(0)|2 µεk

= e−2µε
2t
∥∥∥√Aε∇vin

∥∥∥2

L2(Ω)
≤ e−2µε

2t
1

εd−2

∥∥∇vin
∥∥2

L2(Ω)
.

Furthermore, as 1 . ‖Aε‖L∞ , it follows that

‖∇vε‖2L2(Ω) ≤ e
−2µε

2t
1

εd−2

∥∥∇vin
∥∥2

L2(Ω)
.
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1156 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

Repeating the above computations for the difference vε(t, x)−mε, we obtain

‖∇ (vε −mε)‖2L2(Ω) ≤ e
−2µε

2t
1

εd−2

∥∥∇vin
∥∥2

L2(Ω)
.(3.9)

Gathering the inequalities (3.8)–(3.9) together proves the proposition with the con-
stant γε = µε2, i.e., the first nonzero Neumann eigenvalue in the spectral problem (3.6)
on Ω with the high contrast density-conductivity pair (ρε(x), Aε(x)).

3.1. Reduction to a Schrödinger operator. The constants γ and γε in
Propositions 6 and 7, respectively, give the rate of convergence to equilibrium. As
the proofs in the previous subsection suggest, these rates are nothing but the first
nonzero eigenvalues of the associated Neumann eigenvalue problems.

The constant decay rate γε in Proposition 7 may depend on the regularization
parameter ε. In our setting, ε is nothing but the radius of the inclusion. Hence, to
understand the behavior of γε in terms of ε, we need to study the perturbations in
the eigenvalues caused by the presence of inhomogeneities with conductivities and
densities different from the background conductivity and density. More importantly,
we need to understand the spectrum of transmission problems with high contrast
conductivities and densities. The spectral analysis of elliptic operators with such
conductivity matrices is done extensively in the literature in the context of electric
impedance tomography; see [8, 5] and references therein for further details. In [8], for
example, the authors give an asymptotic expansion for the eigenvalues µεk in terms of
the regularizing parameter ε (even in the case of multiplicities). We refer the reader to
[8, equation (23), page 74] for the precise expansion. For high contrast conductivities
such as Aε, we refer the reader to the concluding remarks in [8, pages 74–75] and
references therein. Another important point to be noted is that the above mentioned
works of Ammari and co-authors do not treat high contrast densities while addressing
the spectral problems. For our setting—more specifically for the spectral problem
(3.6)—the reader is directed to consult the review paper of Chechkin [9], which goes
into detail about the spectral problem in a related setting. Furthermore, the review
paper [9] gives exhaustive reference to literature where similar spectral problems are
addressed.

Rather than deducing the behavior of the first nonzero eigenvalue of the spectral
problem (3.6) from [9], we propose an alternate approach. Studying (3.6) is the same
as the study of the spectral problem for the operator

Lh :=
1

ρε(x)
∇ ·
(
Aε(x)∇h(x)

)
.(3.10)

The idea is to show that the study of the spectral problem for L is analogous to
the study of the spectral problem for a Schrödinger-type operator. The essential
calculations to follow are inspired by the calculations in [30, section 4.9, page 125].
Note that the operator L defined by (3.10) with zero Neumann boundary condition
is a symmetric operator in L2(Ω; ρε), i.e.,∫

Rd

Lh1(x)h2(x)ρε(x) dx =

∫
Rd

Lh2(x)h1(x)ρε(x) dx

for all h1, h2 ∈ L2(Rd; ρε).
Let us now define the operator

H h :=
√
ρε(x)L

(
h√
ρε(x)

)
=

1√
ρε(x)

∇ ·

(
ρε(x)Σε(x)∇

(
h√
ρε(x)

))
(3.11)
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1157

with the coefficient

Σε(x) :=
Aε(x)

ρε(x)
.

An algebraic manipulation yields

H h = ∇ ·
(

Σε(x)∇h
)

+W ε(x)h

with

W ε(x) :=
1√
ρε(x)

∇ ·

(
Aε(x)∇

(
1√
ρε(x)

))
.

In our setting, with the high contrast coefficients Aε and ρε from (2.10)–(2.9), the
coefficients Σε and W ε become

Σε(x) =

{
Id for x ∈ Ω \Bε,

ε2 β
η

(
x
ε

)
for x ∈ Bε

and

W ε(x) =

 0 for x ∈ Ω \Bε,

ε2∇ ·
(
β
(
x
ε

)
∇
(

1√
η

(
x
ε

)))
for x ∈ Bε.

By definition (3.11), the operators L and H are unitarily equivalent. Hence they have
the same eigenvalues. Note that the operator H is a Schrödinger-type operator where
the coefficients are of high contrast.

By the Rayleigh–Ritz criterion, we have the characterization

µεk ≤
∫

Ω
Σε(x)∇ϕ(x) · ∇ϕ(x) dx+

∫
Ω
W ε(x) |ϕ(x)|2 dx∫

Ω
|ϕ(x)|2 dx

,

where ϕ 6≡ 0 and is orthogonal to first k−1 Neumann eigenfunctions
{
ϕε1, . . . , ϕ

ε
k−1

}
.

Note that, in particular, for k = 2 (i.e., the first nonzero eigenvalue), we have

‖ϕ‖2L2(Ω) µ
ε
2 ≤

∫
Ω

Σε(x)∇ϕ(x) · ∇ϕ(x) dx+

∫
Bε

W ε(x)ϕ(x) dx(3.12)

with ϕ ∈ H1(Ω) such that ∫
Ω

ϕ(x) dx = 0.

Note that we have used the fact that W ε(x) is supported on Bε. Note further that

W ε(x) = ε2

{
1

ε2
β
(x
ε

)
:

[
∇2

(
1
√
η

)](x
ε

)
+

1

ε2
[∇β]

(x
ε

)
·
[
∇
(

1
√
η

)](x
ε

)}
= O(1)

(3.13)

if we assume β ∈W1,∞(B1;Rd×d) and η ∈W2,∞(B1).
Note further that the spectral problem (3.3) comes with the following character-

ization of the first nonzero eigenvalue (again by the Rayleigh–Ritz criterion):

‖ϕ‖2L2(Ω) µ2 ≤
∫

Ω

∇ϕ(x) · ∇ϕ(x) dx(3.14)
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1158 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

with ϕ ∈ H1(Ω) such that ∫
Ω

ϕ(x) dx = 0.

Subtracting (3.12) from (3.14) yields

‖ϕ‖2L2(Ω) (µ2 − µε
2) ≤

∫
Bε

(
Id− ε2 1

η

(x
ε

)
β
(x
ε

))
∇ϕ(x) · ∇ϕ(x) dx+

∫
Bε

W ε(x)ϕ(x) dx.

Let us now take the test function ϕ to be the normalized eigenfunction ϕ2(x) associ-
ated with the first nonzero eigenvalue µ2 for the Neumann Laplacian:

|µ2 − µε
2| ≤

∣∣∣∣∫
Bε

(
Id− ε2 1

η

(x
ε

)
β
(x
ε

))
∇ϕ2(x) · ∇ϕ2(x) dx+

∫
Bε

W ε(x)ϕ2(x) dx

∣∣∣∣ .
Using the observation (3.13) that the potential W ε is of O(1) and that the Neumann
eigenfunctions are bounded in Wp,∞ for any p <∞ [17], we have proved that

|µ2 − µε2| . εd.

In this subsection, we have essentially proved the following result.

Proposition 9. Suppose that the high contrast conductivity-density pair Aε, ρε

is given by (2.10)–(2.9) with β ∈W1,∞(B1;Rd×d) and η ∈W2,∞(B1). Let µε2 and µ2

be the first nonzero eigenvalues associated with the Neumann spectral problems (3.6)
and (3.3), respectively. Then we have

|µ2 − µε2| . εd.(3.15)

Hence, as a corollary to the above result, we can deduce that the decay rate for
the homogeneous transient problem (3.1) and that for the high contrast transient
problem (3.4) are close to each other in the ε� 1 regime.

4. Near-cloaking result. In this section, we will prove the main result of this
paper, i.e., Theorem 2. To that end, we first consider the steady-state problem asso-
ciated with the homogeneous heat equation (2.5). More precisely, for the unknown
ueq

hom(x), consider

(4.1)

−∆ueq
hom(x) = f(x) in Ω,

∇ueq
hom · n(x) = g(x) on ∂Ω,∫

Ω

ueq
hom(x) dx = 0.

Note that the last line of (4.1) is to ensure that we solve for ueq
hom(x) uniquely. Here

we assume that the source terms are admissible in the sense of (2.12). This guarantees
the solvability of the above elliptic boundary value problem.

Next, we record a corollary to Proposition 6 which says how quickly the solution
uhom(t, x) to the homogeneous problem (2.5) tends to its equilibrium state.

Corollary 10. Let uhom(t, x) be the solution to (2.5), and let ueq
hom(x) be the

solution to the steady-state problem (4.1). Suppose the source terms f(x), g(x) and
the initial datum uin(x) are admissible in the sense of (2.12)–(2.13). Then

‖uhom(t, ·)− ueq
hom(·)‖

H1(Ω)
≤ e−γt

∥∥uin − ueq
hom

∥∥
H1(Ω)

(4.2)

for some positive constant γ.
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1159

Proof. Define a function w(t, x) := uhom(t, x)− ueq
hom(x). We have that the func-

tion w(t, x) satisfies the evolution equation

∂tw = ∆w in (0,∞)× Ω,

∇w · n(x) = 0 on (0,∞)× ∂Ω,

w(0, x) = uin(x)− ueq
hom(x) in Ω,

which is the same as (3.1). The estimate (4.2) is simply deduced from Proposition 6
(see, in particular, (3.2)).

Now we record a result, as a corollary to Proposition 7, demonstrating how quickly
the solution uε(t, x) to the defect problem with high contrast coefficients (2.11) tends
to its equilibrium state. Consider the steady-state problem associated with the defect
problem (2.11). More precisely, for the unknown uεeq(x), consider the elliptic boundary
value problem

(4.3)

−∇ ·
(
Aε(x)∇uεeq

)
= f(x) in Ω,

∇uεeq · n(x) = g(x) on ∂Ω,∫
Ω

ρε(x)uεeq(x) dx = 0.

Note that the normalization condition in (4.3) makes use of the density coefficient
ρε(x) defined by (2.9).

Corollary 11. Let uε(t, x) be the solution to (2.11), and let uεeq(x) be the solu-
tion to the steady-state problem (4.3). Suppose the source terms f(x), g(x) and the
initial datum uin(x) are admissible in the sense of (2.12)–(2.13). Suppose further that
suppuin ⊂ Ω \B2. Then
(4.4)∥∥uε(t, ·)− uεeq(·)

∥∥
H1(Ω)

≤ e−γεt
(

1

εd
∥∥uin − uεeq

∥∥
L2(Ω)

+
1

ε
d−2
2

∥∥∇ (uin − uεeq

)∥∥
L2(Ω)

)
.

Proof. Define a function wε(t, x) := uε(t, x)− uεeq(x). We have that the function
wε(t, x) satisfies the evolution equation

ρε(x)∂tw
ε = ∇ ·

(
Aε(x)∇wε

)
in (0,∞)× Ω,

∇wε · n(x) = 0 on (0,∞)× ∂Ω,

wε(0, x) = uin(x)− uεeq(x) in Ω,

which is the same as (3.4). By assumption, the initial datum uin is supported
away from B2. This along with the admissibility assumption (2.13) implies that
the weighted average mε defined in Proposition 7 vanishes. Then the estimate (4.4)
is simply deduced from Proposition 7 (see, in particular, (3.5)).
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1160 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

Proof of Theorem 2. From the triangle inequality, we have

‖uε(t, ·)− uhom(t, ·)‖
H

1
2 (∂Ω)

≤
∥∥uε(t, ·)− uεeq(·)

∥∥
H

1
2 (∂Ω)

+
∥∥uεeq − u

eq
hom

∥∥
H

1
2 (∂Ω)

+ ‖ueq
hom(·)− uhom(t, ·)‖

H
1
2 (∂Ω)

.

The boundary trace inequality gives the existence of a constant cΩ—depending only
on the domain Ω—such that

‖uε(t, ·)− uhom(t, ·)‖
H

1
2 (∂Ω)

≤ cΩ
∥∥uε(t, ·)− uεeq(·)

∥∥
H1(Ω)

+
∥∥uεeq − u

eq
hom

∥∥
H

1
2 (∂Ω)

+ cΩ ‖ueq
hom(·)− uhom(t, ·)‖

H1(Ω)
.

Using the result of Corollaries 10 and 11 and the DtN estimate from [11, Lemma 2.2,
page 305] (see also [22, Proposition 1]), we get that the right-hand side of the above
inequality is bounded from above by

cΩe
−γεt

(
1

εd
∥∥uin − uεeq

∥∥
L2(Ω)

+
1

ε
d−2
2

∥∥∇ (uin − uεeq

)∥∥
L2(Ω)

)
+ εd

(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ cΩe

−γt ∥∥uin − ueq
hom

∥∥
H1(Ω)

.

Hence the existence of a time instant T follows such that for all t ≥ T , we indeed
have the estimate (2.14).

Remark 12. We make some observations on why the admissibility assumption
(2.13) and the assumption on the support of the initial datum in Corollary 11 were
essential to our proof. In the absence of these assumptions, in the proof of Theorem
2, we will have to show that

lim
ε→0

∣∣mε − 〈uin〉
∣∣ = 0.(4.5)

Let us compute the difference:

mε − 〈uin〉 =

(
|Ω \Bε|+

π
d
2

Γ
(
d
2 + 1

))−1{∫
Ω\Bε

uin(x) dx+
1

εd

∫
Bε

uin(x) dx

}

− 1

|Ω|

∫
Ω

uin(x) dx.

We have not managed to characterize all initial data that guarantee the asymptote
(4.5). The difficulty of this task becomes apparent if you take initial data to be
supported away from B1 but not satisfying the zero mean assumption (2.13). Note
that our assumption on the initial data in Corollary 11 guarantees the above difference
is always zero, irrespective of the value of the parameter ε.

Remark 13. Our choice of the domain Ω containing B2 is arbitrary, and Corol-
lary 3 asserts that for any such arbitrary choice, the distance between the solutions
uhom and ucl (measured in the H

1
2 (∂Ω)-norm) can be made as small as we wish, pro-

vided we engineer appropriate cloaking coefficients (for instance via a homogenization
approach)—see (2.7) and (2.8)—in the annulus B2 \ B1. This is the notion of near-
cloak. Unlike the perfect cloaking strategies which demand equality between uhom
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1161

and ucl everywhere outside B2, near-cloak strategies only ask for them to be close in
certain norm topologies. Near-cloaking strategies are what matter in practice.

We can still pose the thermal cloaking question in full space Rd. In this scenario,
the norm of choice becomes the one in H1

loc(Rd \B2). More precisely, for any compact
set K ⊂ Rd \B2, we can prove

‖uε(t, ·)− uhom(t, ·)‖H1(K) . ε
d
2 for t� 1.

4.1. Layered cloaks. Advancing an idea from [12], we develop a transformation
media theory for thermal layered cloaks, which are of practical importance in thin-
film solar cells for energy harvesting in the photovoltaic industry. The basic principle
behind this construction is the following observation.

Proposition 14. Let the spatial domain Ω := (−3, 3)2. Let the density conduc-
tivity pair ρ ∈ L∞(Ω;R), A ∈ L∞(Ω;R2×2) be such that they are (−3, 3)-periodic in
the x1 variable. Consider a smooth invertible map f(x2) : R 7→ R such that f(x2) = x2

for |x2| > 2. Assume further that f′(x2) ≥ C > 0 for a.e. x2 ∈ (−3, 3). Take the
mapping F : Ω 7→ Ω defined by F(x1, x2) = (x1, f(x2)). Then u(t, x1, x2) is a (−3, 3)-
periodic solution (in the x1 variable) to

ρ(x)∂tu = ∇x ·
(
A(x)∇xu

)
+ h(x) for (t, x) ∈ (0,∞)× Ω

if and only if v = u ◦ F−1 is a (−3, 3)-periodic solution (in the y1 = x1 variable) to

F∗ρ(y) ∂tv = ∇ ·
(
F∗A(y)∇v

)
+ F∗f(y) for (t, y) ∈ (0,∞)× Ω,

where the coefficients are given by

(4.6)

F∗ρ(y1, y2) =
1

f′(x2)
ρ(x1, x2);

F∗h(t, y1, y2) =
1

f′(x2)
h(t, x1, x2);

F∗A(y1, y2) =

 1
f′(x2)A11(x1, x2) A12(x1, x2)

1
f′(x2)A21(x1, x2) f′(x2)A22(x1, x2)


with the understanding that the right-hand sides in (4.6) are computed at (x1, x2) =
(y1, f

−1(y2)). Furthermore, we have

u(t, x1, x2) = v(t, x1, x2) for |x2| ≥ 2.

Next, we prove a near-cloaking result in this present setting of layered cloaks. It
concerns the following evolution problems: the homogeneous problem
(4.7)

∂tuhom(t, x) = ∆uhom(t, x) + f(x) in (0,∞)× Ω,

∇uhom(x1,±3) · n(x1,±3) = g(x1) on (0,∞)× (−3, 3),

uhom(−3, x2) = uhom(3, x2) for x2 ∈ (−3, 3),

uhom(0, x) = uin(x) in Ω
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1162 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

and the layered cloak problem

(4.8)

ρcl(x)∂tucl = ∇ ·
(
Acl(x)∇ucl

)
+ f(x) in (0,∞)× Ω,

∇ucl(x1,±3) · n(x1,±3) = g(x1) on (0,∞)× (−3, 3),

ucl(−3, x2) = ucl(3, x2) for x2 ∈ (−3, 3),

ucl(0, x) = uin(x) in Ω,

where the coefficients ρcl and Acl in (4.8) are defined using the Lipschitz mapping
(x1, x2) 7→ (x1, fε(x2)) with

(4.9) fε(x2) :=


x2 for |x2| > 2,(

2−2ε
2−ε + |x2|

2−ε

)
x2

|x2| for 1 ≤ |x2| ≤ 2,

x2

ε for |x2| < 1.

The precise construction of the layered cloaks is as follows:

(4.10) ρcl(x1, x2) =


1 for |x2| > 2,

F∗ε 1 for 1 < |x2| < 2,

η(x1, x2) for |x2| < 1

and

(4.11) Acl(x1, x2) =


Id for |x2| > 2,

F∗ε Id for 1 < |x2| < 2,

β(x1, x2) for |x2| < 1,

where the push-forward maps are defined in (4.6). The density coefficient η(x) in
(4.10) is any arbitrary real positive function. The conductivity coefficient β(x) in
(4.11) is any arbitrary bounded positive definite matrix.

Let us make the observation that the cloaking coefficients ρcl and Acl given by
(4.10) and (4.11), respectively, can be treated as push-forward outcomes (via the
push-forward maps (4.6)) of the following defect coefficients:

(4.12) ρε(x) =

{
1 for ε < |x2| < 2,

1
εη
(
x1,

x2

ε

)
for |x2| < ε

and

(4.13) Aε(x) =


Id for ε < |x2| < 2,(

1
εβ11

(
x1,

x2

ε

)
β12

(
x1,

x2

ε

)
β21

(
x1,

x2

ε

)
εβ22

(
x1,

x2

ε

)) for |x2| < ε.

It then follows from Proposition 14 that comparing uhom and ucl is equivalent to
comparing uhom and uε, where uε(t, x) solves the following defect problem with the

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/1

8/
18

 to
 1

76
.2

50
.2

09
.2

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1163

aforementioned ρε and Aε as coefficients:

(4.14)

ρε(x)∂tu
ε = ∇ ·

(
Aε(x)∇uε

)
+ f(x) in (0,∞)× Ω,

∇uε(x1,±3) · n(x1,±3) = g(x1) on (0,∞)× (−3, 3),

uε(−3, x2) = ucl(3, x2) for x2 ∈ (−3, 3),

uε(0, x) = uin(x) in Ω.

Theorem 15. Let uε(t, x) be the solution to the defect problem (4.14) with high
contrast coefficients (4.12)–(4.13), and let uhom(t, x) be the solution to the homoge-
neous conductivity problem (4.7). Then there exists a time instant T <∞ such that
for all t ≥ T , we have

‖uε(t, ·)− uhom(t, ·)‖
H

1
2 (Γ)

. ε2.(4.15)

The proof is similar to the proof of Theorem 2. More specifically, we show first
that the solutions to the transient problems (4.14) and (4.7) converge exponentially
fast to their corresponding equilibrium states. We can then adapt the energy approach
in the proof of [11] to show that the equilibrium states are ε2 close in the H

1
2 (Γ)-norm.

We note that our analysis of near-cloaking for thermal layered cloaks can be easily
adapted to electrostatic and electromagnetic cases. It might also find interesting
applications in Earth science for seismic tomography, in which case one could utilize
results in [4] to prove near-cloaking results related to imaging the subsurface of the
Earth with seismic waves produced by earthquakes.

5. Numerical results. This section deals with the numerical tests done in sup-
port of the theoretical results in the paper. The tests designed in the subsections
to follow make some observations with regards to the near-cloaking scheme designed
in the previous sections of this paper. The numerical simulations are done in one,
two, and three spatial dimensions. It seems natural to start with the one-dimensional
case, but as it turns out (see subsection 4.1), the physical problem of interest for a
one-dimensional (so-called layered) cloak requires a two-dimensional computational
domain, and thus we start with the two-dimensional case. We refer the reader to [12]
for the precise physical setup and importance of the layered cloak described in the
context of Maxwell’s equations (this is easily translated into the language of conduc-
tivity equations). These numerical simulations were performed with the finite element
software COMSOL MULTIPHYSICS.

We choose the spatial domain to be a square Ω := (−3, 3)2. We take the bulk
source f(x), the Neumann datum g(x), and the initial datum uin(x) to be smooth
and such that supp f ⊂ Ω \B2, suppuin ⊂ Ω \B2. We further assume that∫

Ω

f(x) dx = 0,

∫
∂Ω

g(x) dσ(x) = 0,

∫
Ω

uin(x) dx = 0.

This guarantees that the data is admissible in the sense of (2.12)–(2.13).

5.1. Near-cloaking. The numerical experiments in this subsection analyze the
sharpness of the near-cloaking result (Theorem 2) in this paper. We solve the initial-
boundary value problem for the unknown uε(t, x):

(5.1) ρε(x)
∂uε

∂t
= ∇ ·

(
Aε(x)∇uε

)
+ f(x) in (0,∞)× Ω
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1164 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

with the density-conductivity coefficients

ρε(x), Aε(x) =

{
1, Id for x ∈ Ω \Bε,
1
ε2 η

(
x
ε

)
, β

(
x
ε

)
for x ∈ Bε.

Note that in two dimensions, there is no high contrast in the conductivity coefficient
Aε(x). There is, however, contrast in the density coefficient ρε(x). The evolution
(5.1) is supplemented by the Neumann datum

g(x1, x2) =

{
−3 for x1 = ±3,

0 for x2 = ±3

and the initial datum

uin(x1, x2) =

{
x1x2 for x ∈ Ω \B2,

0 for x ∈ Bε.

The bulk force in (5.1) is taken to be

f(x1, x2) =

{ √
x2

1 + x2
2 sin(x1) sin(x2)− 2 for x ∈ Ω \B2,

0 for x ∈ Bε.

We next solve the initial-boundary value problem (Neumann) for uhom(t, x) with the
above data:

∂tuhom(t, x) = ∆uhom(t, x) + f(x) in (0,∞)× Ω.

Let us define

Gε(t) :=
‖uε(t, ·)− uhom(t, ·)‖L2(∂Ω)

εd
(
‖uin‖H1 + ‖f‖L2(Ω) + ‖g‖L2(∂Ω)

) .(5.2)

We compute the function Gε(t) defined by (5.2) as a function of time for various
values of ε (see Figure 1) and numerically observe that after 110s, Gε(t) reaches an
asymptote that tends towards a numerical value close to 8.6 when ε gets smaller, in
agreement with theoretical predictions of Theorem 2 for space dimension d = 2. The
simulations were performed using an adaptive mesh of the domain Ω consisting of
2×105 nodal elements (with at least 102 elements in the small defect when ε = 10−4)
and a numerical solver based on the backward differential formula (BDF) solver with
initial time step 10−5s, maximum time step 10−1s, and minimum and maximum
BDF orders of 1 and 5, respectively. Many test cases were run for various values of β
(including anisotropic conductivity) and η in the small inclusion, and we report some
representative curves in Figure 1.

5.2. Contour plots. Let us start with the contour plots for the layered cloak
developed in subsection 4.1; see Figure 2. More precisely, we compare solutions uhom

and ucl to the evolution problems (4.7) and (4.8), respectively, where periodic bound-
ary conditions are imposed at the boundary x1 = ±3 and homogeneous Neumann
data at the boundary x2 = ±3. Here we illustrate the layered cloak by numerically
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1165

Fig. 1. Numerical results for Gε(t) vs. time t (with a source outside B2): Same parameters as in
Figure 3 for a small defect of radius ε = 10−1 (orange), ε = 10−2 (grey), ε = 10−3 (blue), and ε =
10−4 (yellow) and diffusivity β(x/ε) = 2 Id and density ε−2η(x/ε) = 2ε−2 in the inclusion Bε. Hor-
izontal linear scale of time t ∈ [0, 110] s. Vertical scale of ε−2|‖uε(t, .)‖L2(∂Ω)−‖uhom(t, .)‖L2(∂Ω)|
is a representation of Gε(t). Insert shows a zoom-in. Color is available online only.

solving an equation for the unknown u(t, x1, x2), but the conductivity and density
only depend upon the x2 variable. We take the source to be

f(x1, x2) =

{
x2 sin(x2) for x2 ∈ (−3,−2) ∪ (2, 3),

0 for x2 ∈ (−2, 2),

and the initial datum is taken to be

uin(x1, x2) =

{
x2 for x2 ∈ (−3,−2) ∪ (2, 3),

0 for x2 ∈ (−2, 2).

Following the layered cloak construction in (4.11), we take the cloaking conductivity
to be the push-forward of identity in the cloaking strip:

Acl(x1, x2) = diag

(
2− ε, 1

2− ε

)
for 1 < |x2| < 2.

We report in Figure 2 some numerical results that exemplify the high level of control
of the heat flux with a layered cloak: in the upper panels (a), (b), (c), one can see
snapshots at representative time steps (t = 0, 1, and 4s) of a typical one-dimensional
diffusion process in a homogeneous medium for a given source with a support outside
x2 ∈ (−2, 2). When we compare the temperature field at the initial time step in (a)
with that when we replace the homogeneous medium by a layered cloak in 1 < |x2| < 2
in (d), we note no difference. However, some noticeable differences are noted for the
temperature field between the homogeneous medium and the cloak when comparing
(b) with (e) and (c) with (f). The gradient of the temperature field is dramatically
decreased in the invisibility region x2 ∈ (−1, 1), leading to an almost uniform (but
nonzero) temperature field therein, and this is compensated by an enhanced gradient
of temperature within the cloak in 1 < |x2| < 2. One notes that the increased flux in
1 < |x2| < 2 might be useful to improve efficiency of solar cells in photovoltaics.

Our next experiment is to compare the homogeneous solution and the cloaked
solution where the cloaking coefficients are constructed using the push-forward maps
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1166 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

as in (2.7)–(2.8). The data (f , g, uin) are chosen as in subsection 5.1. We report
in Figure 3 some numerical computations performed in COMSOL MULTIPHYSICS
that illustrate the strong similarity between the temperature fields in homogeneous
(a)–(d), small defect (e)–(h), and cloaked (i)–(l) problems. Obviously, the fields are
identical outside B2 at the initial time step; then they differ most outside B2 at
small time step t = 1s (see (b), (f), (j)) and become more and more similar with
increasing time steps; see (c), (g), (k) and (d), (h), (l). These qualitative observations
are consistent with the near-cloaking result, Theorem 2, of this paper.

We have also performed a similar experiment in three dimensions; see Figure 4.
We refer the reader to the caption in Figure 4 for the parameters considered in the
three-dimensional problem. Note that for these three-dimensional computations, we
mesh the cubical domain with 40, 000 nodal elements, we take time steps of 0.1s,
and we use the BDF solver with initial time step 0.01s, maximum time step 0.1s,
and minimum and maximum BDF orders of 1 and 3, respectively. We use a desktop
with 32 GB of RAM memory, and a computation run takes around 1 hour for a time
interval between 0.1 and 10s. We can neither study long time behaviors, nor solve the
high contrast small defect problem in three dimensions, as this would require more
computational resources. Nevertheless, our three-dimensional computations suggest
that there is a strong similarity between the temperature fields in homogeneous and
cloaked problems outside B2. Note also that we consider a source not vanishing
inside B2, which motivates further theoretical analysis for sources with a support in
the overall domain Ω.

Fig. 2. Contour plots of a layered cloak (with a source outside x2 ∈ (−2, 2)): f(x) = x2 sin(x2)
for x ∈ {(x1, x2) : x2 ∈ (−3,−2) ∪ (2, 3)} and f(x) = 0 for x2 ∈ (−2, 2). Upper panel: Plots of
u for data uin(x) = x2 and g(x) = 0 for x2 = ±3 and such that u(−3, x2) = u(3, x2) (periodicity
condition) for a homogeneous medium with diffusivity A = 1 at time steps t = 0s (a), 1s (b),
and 4s (c). Lower panel: Same for the medium with diffusivity A = 1 outside x2 ∈ (−2, 2) and
a layered cloak inside x2 ∈ (−2, 2) with diffusivity A(x2) = diag

(
A11(x2), 1

A11(x2)

)
and density

ρ(x2) = A11(x2) with A11 = ε in x2 ∈ (−1, 1) and A11 = 2− ε in 1 < |x2| < 2 at time steps t = 0s
(d), 1s (e), and 4s (f).

5.3. Cloaking coefficients. The cloaking coefficients ρcl and Acl in the annulus
B2 \B1 play all the essential roles in thermal cloaking phenomena. So, it is important
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1167

Fig. 3. Contour plots of a two-dimensional cloak (with a source outside B2): f(x) =√
x2

1 + x2
2 sin(x1) sin(x2) − 2 for x ∈ Ω \ B2 and f(x) = 0 for x ∈ B2. Upper panel: Plots of u

for data uin(x1, x2) = x1x2 and g(x1, x2) = −3 for x1 = ±3 and 0 for x2 = ±3 and diffusivity
A = 1 at time steps t = 0s, 1s, 4s, 10s, and 20s. Middle panel: Same for a small defect of radius
ε = 10−1, density ρε = 2ε−2, and diffusivity Aε = 2 Id. Lower panel: Same for a cloak.

Fig. 4. Numerical results for isosurface plots (source outside and inside B2): fcl(x) =√
x2

1 + x2
2 + x2

3 sin(x1) sin(x2) sin(x3) for x ∈ Ω. Upper panel: Plots of u for data uin(x) = x3

and g(x) = −3 for x1 = ±3 and x2 = ±3 and 0 for x3 = ±3 and diffusivity A = 1 outside a cloak
defined as in (2.8) at time steps t = 0.7s (a) and 7s (b), (c). Lower panel: Same for a homogeneous
medium with diffusivity A = 1 at time steps t = 0.7s (d) and 7s (e), (f). Note that (c) and (f) are
slices taken in the x1x2-plane at x3 = 0.

in practice—to gain some physical intuition and start engineering and manufacturing
processes of a metamaterial cloak—to analyze the coefficients defined by (2.7)–(2.8).
For the reader’s convenience we recall them below (only for the part Ω \ B1, as
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1168 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

coefficients inside B1 can be arbitrary):

ρcl(y) =


1 for y ∈ Ω \B2,

1
det(DFε)(x)

∣∣∣
x=F−1

ε (y)
for y ∈ B2 \B1,

Acl(y) =


Id for y ∈ Ω \B2,

DFε(x)DF>ε (x)
det(DFε)(x)

∣∣∣
x=F−1

ε (y)
for y ∈ B2 \B1.

Remark that both the coefficients ρcl and Acl depend on the regularizing parameter
ε via the Lipschitz map Fε. In this numerical test, we plot the cloaking coefficients
given in terms of the polar coordinates. Consider the Lipschitz map Fε : Ω 7→ Ω:

x := (x1, x2) 7→
(
F (1)
ε (x),F (2)

ε (x)
)

=: (y1, y2) = y.

If the Cartesian coordinates (x1, x2) were to be expressed in terms of the polar coor-

dinates as (r cos θ, r sin θ), then the new coordinates (F (1)
ε (x),F (2)

ε (x)) would become
(r′ cos θ, r′ sin θ) with

(5.3) r′ :=


r for r ≥ 2,

2−2ε
2−ε + r

2−ε for ε < r < 2,

r
ε for r ≤ ε.

Bear in mind that only the radial coordinate r gets transformed by Fε and the angular
coordinate θ remains unchanged. Reformulating the push-forward maps in terms of
the polar coordinates yields the following expressions for the cloaking coefficients in
the annulus:

(5.4)

A2D
cl = F∗ Id = R(θ)diag

(
A11(r′),

1

A11(r′)

)
[R(θ)]

>

ρ2D
cl = F∗1 =

r′ − 1

r′
(2− ε)2 +

ε

r′
(2− ε)

 for r′ ∈ (1, 2),

where A11(r′) is given by

A11(r′) =
r′ − 1

r′
+

ε

r′(2− ε)
for r′ ∈ [1, 2](5.5)

and the rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

We plot in Figure 5 the matrix entry A11(r′) given above and the push-forward density
ρ2D

cl given in (5.4). We observe that when ε gets smaller, the radial conductivity and
density take values very close to zero near the inner boundary of the cloak, which is un-
achievable in practice (bear in mind that the azimuthal conductivity being the inverse
of the radial conductivity, the conductivity matrix becomes extremely anisotropic).
Therefore, manufacturing a metamaterial cloak would require a small enough value
of epsilon so that homogenization techniques could be applied to approximate the
anisotropic conductivity with concentric layers of isotropic phases, as was done, e.g.,
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CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1169

Fig. 5. Plots of ρ2D
cl (r′) and A11(r′) for r′ ∈ [1, 2] and ε = 10−1, 10−2.

for the two-dimensional metamaterial cloak manufactured at the Karlsruher Institut
für Technologie [37].

In three spatial dimensions, we can recast the cloaking coefficients in the spherical
coordinates (r, θ, ϕ). As in the cylindrical coordinate setting, only the radial variable
gets modified by Kohn’s transformation Fε and the variables θ, ϕ remain unchanged.
The transformed radial coordinate r′ is given by (5.3). The push-forward maps of
interest for cloaking are
(5.6)

A3D
cl = F∗ Id = R(θ)M(ϕ)diag

(
B(r′), 2− ε, 2− ε

)
M(ϕ) [R(θ)]

>

ρ3D
cl = F∗1 = B(r′) := (2− ε)

(
2− ε− (2− 2ε)

r′

)2

 for r′ ∈ (1, 2)

with the rotation matrix R(θ) in three dimensions and the matrix M(ϕ) given by

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , M(ϕ) =

sinϕ 0 cosϕ
0 1 0

cosϕ 0 − sinϕ

 .

Note that the matrix entry B(r′) in the push-forward conductivity coincides with the
push-forward density ρ3D

cl . We plot in Figure 6 the radial conductivity and density
in the cloaking annulus given in (5.6). One should recall that the three-dimensional
spherical cloak only has a varying radial conductivity, the other two polar and az-
imuthal diagonal entries of the conductivity matrix being constant (i.e., independent
of the radial position). Besides, the radial conductivity has the same value as the
density within the cloak. All this makes the three-dimensional spherical cloak eas-
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1170 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

ier to approximate with homogenization techniques. However, no thermal cloak has
been manufactured and experimentally characterized thus far, perhaps due to current
limitations in three-dimensional manufacturing techniques; a possible route towards
construction of a spherical cloak is three-dimensional printing. Similar computations
in spherical coordinates, but for Pendry’s singular transformation, are found in [29],
where the matrix M was introduced to facilitate implementation of perfectly matched
layers, cloaks, and other transformation-based electromagnetic media with spherical
symmetry in finite element packages; see also [28], which predates the field of trans-
formational optics.

Fig. 6. Plots of ρ3D
cl (r′) = B(r′) for r′ ∈ [1, 2] and ε = 10−1, 10−2.

5.4. Spectral problems. Here we perform some numerical tests in support of
the spectral result (Proposition 9) proved in this paper. The two Neumann spectral
problems that we study are

−∆φ = µφ in Ω := (−3, 3)d, ∇φ · n = 0 on ∂Ω,

−div
(
Aε(x)∇φε

)
= µρε(x)φε in Ω := (−3, 3)d, ∇φε · n = 0 on ∂Ω.

The coefficients are of high contrast and take the form

ρε(x), Aε(x) =

{
1, Id for x ∈ Ω \Bε,
1
εd
, 1

εd−2 Id for x ∈ Bε.

The first nonzero eigenvalue for the Neumann Laplacian is µ2 = (π/6)
d
. We illustrate

the result of Proposition 9 by showing that the first nonzero eigenvalue µε2 for the

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/1

8/
18

 to
 1

76
.2

50
.2

09
.2

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



CRASTER, GUENNEAU, HUTRIDURGA, AND PAVLIOTIS 1171

Table 1
Numerical estimate of the difference | µ2−µε2 | versus the parameter ε = 10−m with m = 1, . . . , 7

for dimension d = 1, with m = 1, . . . , 3 for d = 2, and with m = 1 for d = 3. Same source, Neumann
data, diffusivity, and density parameters as in Figure 7.

Numerical illustration of Proposition 9

dim. d µ2 = (π/6)d µε2 | µ2 − µε2 | Parameter ε

1 0.52359877559 0.5342584732 0.0106596976 ε = 10−1

Numerical 1 0.52359877559 0.5327534635 0.0091546879 ε = 10−2

validation of 1 0.52359877559 0.5245077454 0.0009896980 ε = 10−3

1 0.52359877559 0.5236795221 0.0000807465 ε = 10−4

| µ2 − µε2 |≤ εd 1 0.52359877559 0.5236081655 0.0000093899 ε = 10−5

1 0.52359877559 0.52359897453 0.0000001989 ε = 10−6

1 0.52359877559 0.52359888455 0.0000001089 ε = 10−7

2 0.27415567781 0.2741626732 0.0000069954 ε = 10−1

2 0.27415567781 0.2741546789 0.0000009989 ε = 10−2

2 0.27415567781 0.2741556795 0.0000000017 ε = 10−3

3 0.14354757722 0.1437347845 0.0001872072 ε = 10−1

defect spectral problem is εd-close to µ2 for various value of ε and in one, two, and
three dimensions. The results are tabulated in Table 1. The associated eigenfields
are also plotted in Figure 7. Note that the spectral problems in one, two, and three
dimensions are solved with direct UMFPACK and PARDISO solvers using adaptive
meshes with 250, 150, and 50 thousand elements, respectively. We made sure that
there are at least 102 elements in the small defect for every spectral problem solved.

Fig. 7. Numerical results for contour plots of eigenfields φ and φε associated with µ2 (a) and
µε2 (b)–(d) in one dimension (a), (b), two dimensions (c), and three dimensions (d).

6. Concluding remarks. This work addressed the question of near-cloaking
in the time-dependent heat conduction problem. The main inspiration is derived
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1172 CLOAKING VIA MAPPING FOR THE HEAT EQUATION

from the work of Kohn et al. [22], which quantified near-cloaking in terms of certain
boundary measurements. Hence the main result of this paper (see Theorem 2) asserts
that the difference between the solution to the cloak problem (2.6) and that to the

homogeneous problem (2.5) when measured in the H
1
2 -norm on the boundary can be

made as small as one wishes by fine tuning certain regularization parameters. To the
best of our knowledge, this is the first work to consider near-cloaking strategies to
address the time-dependent heat conduction problem. This work supports the idea
of thermal cloaking, albeit with the price of having to wait for a certain time to see
the effect of cloaking. We also illustrate our theoretical results by some numerical
simulations. We leave the study of fine properties of the thermal cloak problem for
future investigations:

• studying the behavior of the temperature field inside the cloaked region,
• designing certain multiscale structures (à la reiterated homogenization) to

achieve effective properties close to the characteristics of ρcl and Acl, and
• studying thermal cloaking for time-harmonic sources.

Acknowledgments. The authors would like to thank Yves Capdeboscq for help-
ful discussions regarding the Calderón inverse problem and for bringing to our atten-
tion the work of Kohn et al. [22].
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