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Abstract. We study the problem of parameter estimation for large exchangeable interacting particle systems5
when a sample of discrete observations from a single particle is known. We propose a novel method6
based on martingale estimating functions constructed by employing the eigenvalues and eigenfunc-7
tions of the generator of the mean field limit, linearized around the (unique) invariant measure of the8
mean field dynamics. We then prove that our estimator is asymptotically unbiased and asymptoti-9
cally normal when the number of observations and the number of particles tend to infinity, and we10
provide a rate of convergence towards the exact value of the parameters. Finally, we present several11
numerical experiments which show the accuracy of our estimator and corroborate our theoretical12
findings, even in the case the mean field dynamics exhibit more than one steady states.13
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1. Introduction. Interacting particle systems and, more generally interacting multiagent17

models, appear frequently in the natural and social sciences. In addition to the well known18

applications, e.g., plasma physics [22] and stellar dynamics [7], new applications include, e.g.,19

the modeling of chemotaxis [40], pedestrian dynamics [30, 24], crowd dynamics [32], urban20

modeling [14], models for opinion formation [18, 21], collective behavior [11], and models21

for systemic risk [20]. In many of these applications, the phenomenological models involve22

unknown parameters that need to be estimated from data. This is particularly the case for23

multiagent models used in the social sciences and in economics, where no physics-informed24

choices of parameters are available. Learning parameters or even models, in a nonparametric25

setting, from data is becoming an increasingly important aspect of the overall mathematical26

modeling strategy. This is particularly the case in view of the huge quantity of available27

data in different areas, which allows the development of accurate data-driven techniques for28

learning parameters from data.29

In this paper we study the problem of inference for systems of (weakly) interacting diffu-30

sions for which the mean field limit exists and is described by a nonlinear diffusion process of31

McKean type, obtained in the limit as the number of interacting processes N goes to infinity.32

When the number of interacting stochastic differential equations (SDEs) is large, the inference33

problem can become computationally intractable and it is often useful to study the problem of34

parameter estimation for the limiting mean field SDE. This is related, but distinct, from the35

problem of inference for multiscale diffusions [37, 35, 1, 2, 17] where the objective is to learn36

the parameters in the homogenized (limiting) SDE from observations of the full dynamics.37

Our goal is to show how the inference methodology using eigenfunction martingale estimating38
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2 G. A. PAVLIOTIS, A. ZANONI

functions that was applied in [2] to multiscale diffusions can be modified so that it can also39

be applied to interacting diffusions with a well defined mean field limit. It is useful to keep40

in mind the analogy between the homogenization and mean field limits, in the context of41

parameter estimation.42

Inference for large interacting systems has attracted considerable attention, starting from43

the work of Kasonga [26], in which the maximum likelihood estimator (MLE) was considered.44

In particular, it was proved that the MLE for estimating parameters in the drift, when the drift45

is linearly dependent on the parameters, given continuous time observations of all the particles46

of the N -particle system, is consistent and asymptotically normal in the limit as N →∞. In47

this setting, it is possible to test whether the particles are interacting or not, at least in the48

linear case, i.e., for a system of interacting Ornstein–Uhlenbeck processes. Consistency and49

asymptotic normality of the sieve estimator and an approximate MLE estimator, i.e., when50

discrete observations of all the particles are given, was studied in [8] in the same framework of51

linear dependence on the parameters for the drift and known diffusion coefficient. Moreover,52

MLE inference of the mean field Ornstein–Uhlenbeck SDE was also considered. Properties of53

the MLE for the McKean SDE, when a continuous path of the SDE is observed, were studied54

in [43]. Consistency of the MLE was proved and an application to a model for ionic diffusion55

was presented. The MLE estimator for the McKean SDE was also considered in [29] and56

numerical experiments for the mean field Ornstein–Uhlenbeck process were presented. The57

combined large particle and long time asymptotics, N → ∞ and T → ∞, of the MLE for58

the case of a quadratic interaction, i.e., for interacting Ornstein–Uhlenbeck processes, was59

studied in [10]. Unlike the previous works mentioned in this literature review, the case where60

only a single particle trajectory is observed was considered in this paper. It was shown that61

the parameters in the drift can be estimated with optimal rate of convergence simultaneously62

in mean-field limit and in long-time dynamics. Offline and online inference for the McKean63

SDE was studied in [39]. Consistency and asymptotic normality of the offline MLE for the64

interacting particle system in the limit as the number of particles N → ∞ was shown. In65

addition, an online parameter estimator for the mean field SDE was proposed, which evolves66

according to a continuous-time stochastic gradient descent algorithm on the asymptotic log-67

likelihood of the interacting particle system.68

In this paper we consider systems of exchangeable weakly interacting diffusions for which69

uniform propagation of chaos results are known [33, 4, 5, 31, 12] and for which the mean field70

SDE has a unique invariant measure. We assume that we are given a sample of discrete-time71

observations of a single particle. Due to exchangeability, this amount of information should72

be sufficient to infer parameters in the mean field SDE, in the joint asymptotic limit as the73

number of observations and the number of particles go to infinity. Our approach consists of74

constructing martingale estimating functions [6, 27] based on the eigenvalues and the eigen-75

functions of the generator of the mean field dynamics. Then, our eigenfunction estimator is76

the zero of the estimating function. The martingale estimator based on the eigenfunctions of77

the generator was used to study the inference problem for multiscale diffusions in [2]. Unlike78

the finite dimensional case, the mean field SDE is a measure-valued process and the generator79

is a nonlinear operator, dependent on the law of the process. A direct application of the mar-80

tingale eigenfunction estimator would require the solution of a nonlinear eigenvalue problem81

that can be computationally demanding and that would also lead to eigenfunctions depending82
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on time via their dependence on the law of the process. We circumvent this difficulty by83

linearizing the generator around the (unique) invariant measure of the mean field dynamics.84

In particular, we replace the density of the law with the density of the invariant measure of85

the process. This leads to a standard Sturm–Liouville type of eigenvalue problem that we can86

analyze and also solve numerically at a low computational cost. In this paper we consider the87

framework where the invariant measure of the mean field SDE is unique. We remark, how-88

ever, that our numerical experiments show that our methodology applies to McKean SDEs89

that exhibit phase transitions, i.e., that have multiple stationary measures, as long as we are90

below the transition point, or the form of the invariant measure is known up to a finite set of91

parameters, e.g., moments.92

When the mean field dynamics has a unique invariant measure, we first show the existence93

of the estimator with high probability when the number of available data and particles is94

large enough, and then analyze its consistency proving the asymptotic convergence towards95

the true value of the unknown parameter and providing a rate. Moreover, we prove that the96

estimator is asymptotically normal. We also note that the relationship between the number of97

observations and particles plays an important role in the study of the asymptotic properties98

of the estimator, in particular the latter must be sufficiently greater than the former in order99

for the previous results to hold. We then present a series of numerical experiments which100

confirm our theoretical results and we show the advantages of our method with respect to the101

MLE. In particular, in contrast with our estimator, the MLE is biased when we have sparse102

observations, i.e., when the sampling rate ∆ is far from the asymptotic limit ∆→ 0.103

Main contributions. The main contributions of our work are summarized below.104

• We propose a new methodology for estimating parameters in the drift of large interacting105

particle systems when a sequence of discrete observations of a single particle is given. Our106

proposed estimator is based on the eigenvalues and eigenfunctions of the generator of the107

mean field SDE, linearized around the steady state.108

• We show theoretically that our estimator is asymptotically unbiased and asymptotically109

normal in the limit as the number of observations and the number of particles go to infinity110

and we compute the rate of convergence.111

• We demonstrate numerically that our proposed estimator is reliable and robust with respect112

to the sampling rate.113

Outline. The rest of the paper is organized as follows. In Section 2 we introduce the114

framework of the problem under investigation and we present the main theoretical results,115

and in Section 3 we show several numerical experiments illustrating the potentiality of our116

approach. Finally, Section 4 is devoted to the proofs of the main theorems.117

2. Problem setting. In this work we consider a system of interacting particles in one118

dimension moving in a confining potential over the time interval [0, T ] whose interaction is119

governed by an interaction potential120

(2.1)

dX
(n)
t = −V ′(X(n)

t ;α) dt− 1

N

N∑
i=1

W ′(X
(n)
t −X(i)

t ;κ) dt+
√

2σ dB
(n)
t , n = 1, . . . , N,

X
(n)
0 ∼ ν, n = 1, . . . , N,

121
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where N is the number of particles, {B(n)
t }Nn=1 are standard independent one dimensional122

Brownian motions, V (·;α) and W (·;κ) are the confining and interaction potentials, respec-123

tively, which depend on some parameters α ∈ Rp1 , κ ∈ Rp2 , and σ > 0 is the diffusion coef-124

ficient. We assume chaotic initial conditions, i.e., that the particles are initially distributed125

according to the same measure ν.126

Remark 2.1. We consider the case when the particles move in one dimension for the clarity127

of exposition. In fact, the proposed method and our rigorous results can be easily generalized128

to the case ofN interacting particles moving in dimension d > 1. However in higher dimensions129

the problem becomes more complex and expensive from a computational point of view.130

We place ourselves in the same framework of [31], which is summarized in the following131

assumption.132

Assumption 2.2. The confining and interaction potentials V and W , respectively, satisfy:133

• V (·;α) ∈ C2(R) is uniformly convex and polynomially bounded along with its derivatives134

uniformly in α;135

• W (·;κ) ∈ C2(R) is even, convex and polynomially bounded along with its derivatives136

uniformly in κ.137

It is well-known (see, e.g., [36, Chapter 4]) that under Assumption 2.2 the dynamics138

described by the system (2.1) is geometrically ergodic with unique invariant measure given by139

the Gibbs measure µNθ ( dx) = ρN (x; θ) dx, where140

ρN (x; θ) =
1

ZN
exp

{
− 1

σ
EN (x; θ)

}
, ZN =

∫
RN

exp

{
− 1

σ
EN (x; θ)

}
dx,141

and EN (·; θ) is defined by142

EN (x; θ) :=

N∑
n=1

V (xn;α) +
1

2N

N∑
n=1

N∑
i=1

W (xn − xi;κ).143

for θ =
(
α> κ>

)> ∈ Θ ⊆ Rp with p = p1 + p2 and Θ the set of admissible parameters. The144

main goal of this paper is the estimation of the unknown parameter θ ∈ Θ, given discrete145

observations of the path of one single particle. We are interested in applications involving146

large interacting particle systems, i.e., when N � 1, hence studying the whole system is147

not practical and can be computationally unfeasible. Therefore, our approach consists of148

considering the mean field limit which has already been thoroughly studied (see, e.g., [11, 19]).149

Letting the number of particles N go to infinity we obtain the nonlinear, in the sense of150

McKean, SDE151

(2.2)
dXt = −V ′(Xt;α) dt− (W ′(·;κ) ∗ u(·, t))(Xt) dt+

√
2σ dBt,

X0 ∼ ν,
152

where u(·, t) is the density with respect to the Lebesgue measure of the law of Xt and the153

nonlinearity means that the drift of the SDE (2.2) depends on the law of the process. The154
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density u is the solution of the nonlinear Fokker–Planck (McKean–Vlasov) equation155

∂u

∂t
(x, t) =

∂

∂x

(
V ′(x;α)u(x, t) + (W ′(·;κ) ∗ u(·, t))(x, t)u(x, t) + σ

∂u

∂x
(x, t)

)
,156

with initial condition u(x, 0) dx = ν( dx). It is well known that, in contrast to the finite157

dimensional dynamics, the mean field limit (2.2) can have, in the non-convex case more than158

one invariant measures µθ( dx) = ρ(x; θ) dx [11, 9]. The density of the stationary state(s)159

satisfies the stationary Fokker–Planck equation160

d

dx

(
V ′(x;α)ρ(x; θ) + (W ′(·;κ) ∗ ρ(·; θ))(x)ρ(x; θ) + ρ′(x; θ)

)
= 0,161

where the second variable θ emphasizes the fact that ρ depends on the parameters α and κ162

of the potentials V and W , respectively. However, under Assumption 2.2 it has been proven163

in [31] that there exists a unique invariant measure which is the solution of164

(2.3) ρ(x; θ) =
1

Z
exp

{
− 1

σ
(V (x;α) + (W (·;κ) ∗ ρ(·; θ))(x))

}
,165

where Z is the normalization constant166

Z =

∫
R

exp

{
− 1

σ
(V (x;α) + (W (·;κ) ∗ ρ(·; θ))(x))

}
dx.167

Example 2.3. A particular choice for the interaction potential is the Curie–Weiss quadratic168

interaction [11]. We take κ > 0 and consider the confining potential169

W (x;κ) =
κ

2
x2.170

The interacting particles system (2.1) becomes, for all n = 1, . . . , N171

dX
(n)
t = −V ′(X(n)

t ;α) dt− κ
(
X

(n)
t − X̄N

t

)
dt+

√
2σ dB

(n)
t ,172

where X̄N
t denotes the empirical mean173

X̄N
t =

1

N

N∑
i=1

X
(i)
t .174

This interaction term creates a tendency for the particles to relax toward the center of gravity175

of the ensemble and the parameter κ measures the strength of the interaction between the176

agents, hence this model provides a simple example of cooperative interaction.177

The mean field limit (2.2) then becomes178

dXt = −V ′(Xt;α) dt− κ (Xt −mt) dt+
√

2σ dBt,179
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where mt denotes the expectation of Xt, mt = E[Xt], and its unique (when the confining180

potential V is convex) invariant measure µθ( dx) = ρ(x; θ) dx is given by181

(2.4) ρ(x; θ) =
1

Z
exp

{
− 1

σ

(
V (x;α) + κ

(
1

2
x2 −mx

))}
,182

with the constraint for the expectation with respect to the invariant measure183

(2.5) m =

∫
R
xρ(x; θ) dx,184

and where185

Z =

∫
R

exp

{
− 1

σ

(
V (x;α) + κ

(
1

2
x2 −mx

))}
dx.186

Equation (2.5) is the self-consistency equation [11, 15, 23] that enables us to calculate the187

invariant measure and, then, the stationary state(s). In the case where the confining potential188

is quadratic, we have a system linear SDEs and the mean field limit reduces to the mean field189

Ornstein-Uhlenbeck SDE. In this case the first moment vanishes, m = 0, and the invariant190

measure is unique (this is the case, of course, of arbitrary strictly convex confining potentials).191

The inference problem for the linear interacting particle system and for the corresponding192

mean field limit is easier than that of the general case. We emphasize that, unlike this present193

work, most earlier papers, e.g., [26, 8], focus on this linear case, i.e., on systems of weakly194

interacting linear stochastic differential equations. The estimator proposed and studied in this195

paper can be applied to arbitrary non-quadratic interaction and confining potentials.196

2.1. Parameter estimation problem. We now present our method for the estimation of197

the unknown parameter θ = (α, κ) ∈ Θ ⊆ Rp, given discrete observation of a single particle198

of the system (2.1). Consider M + 1 uniformly distributed observation times 0 = t0 < t1 <199

· · · < tM = T , let ∆ = tm − tm−1 be the sampling rate and let (X
(n)
t )t∈[0,T ] be a realization200

of the n-th particle of the solution of the system (2.1) for some n = 1, . . . , N . We then aim201

to estimate the unknown parameter θ given a sample {X̃(n)
m }Mm=0 of the realization where202

X̃
(n)
m = X

(n)
tm and tm = ∆m. We want to construct martingale estimating functions based on203

the eigenfunctions and the eigenvalues of the generator of the dynamics, a technique which204

was initially proposed in [27] for single-scale SDEs and then successfully applied to multiscale205

SDEs in [2]. In principle, the methodology developed in [27] can be applied to the N−particle206

system. However, this would require solving the eigenvalue problem for the generator of207

an N−dimensional diffusion process, which is computationally expensive. Moreover, our208

fundamental assumption is that are observing a single particle and thus we do not have209

a complete knowledge of the system. Therefore, we construct the martingale estimating210

functions employing the generator of the mean field dynamics, which is a good approximation211

of the path of a single particle when the number N of particles is large [41]. Let Lt be the212

generator of the mean field limit SDE (2.2)213

Lt = −
(
V ′(·;α) + (W ′(·;κ) ∗ u(·, t))

) d

dx
+ σ

d2

dx2
,214
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and let L be the generator obtained replacing the density u(·, t) with the density ρ(·; θ), i.e.,215

linearizing the generator around the invariant measure µθ216

L = −
(
V ′(·;α) + (W ′(·;κ) ∗ ρ(·; θ))

) d

dx
+ σ

d2

dx2
.217

We then consider the eigenvalue problem −Lφ(·; θ) = λ(θ)φ(·; θ), which reads218

(2.6) σφ′′(x; θ)−
(
V ′(x;α) + (W ′(·;κ) ∗ ρ(·; θ))(x)

)
φ′(x; θ) + λ(θ)φ(x; θ) = 0,219

and from the well-known spectral theory of diffusion processes (see, e.g., [25]) we deduce the220

existence of a countable set of eigenvalues 0 = λ0(θ) < λ1(θ) < · · · < λj(θ) ↑ ∞ whose221

corresponding eigenfunctions {φj(·; θ)}∞j=0 form an orthonormal basis of the weighted space222

L2(ρ(·; θ)). In fact, even if the SDE (2.2) is nonlinear, when X0 ∼ ρ(·; θ) then the solution223

Xt behaves like a classic diffusion process with drift function −V ′(·;α) − W ′(·;κ) ∗ ρ(·; θ),224

hence the spectral theory for diffusion processes still holds. We also state here the variational225

formulation of the eigenvalue problem, which will be employed to implement numerically the226

proposed methodology. Let ϕ be a test function and multiply equation (2.6) by ϕρ(·; θ), where227

the density ρ(·; θ) of the invariant measure µθ is defined in (2.3). Then, integrating over R228

and by parts we obtain229

σ

∫
R
φ′(x; θ)ϕ′(x)ρ(x; θ) dx = λ(θ)

∫
R
φ(x; θ)ϕ(x)ρ(x; θ) dx.230

We are now ready to present how to employ the eigenvalue problem in the construction of the231

martingale estimation function and afterwords in the definition of our estimator. Let J be a232

positive integer and let ψj(·; θ) : R→ Rp for j = 1, . . . , J be arbitrary functions dependent on233

the parameter θ which satisfy Assumption 2.5 below, and define the martingale estimating234

function GJM,N : Θ→ Rp as235

GJM,N (θ) :=
1

M

M−1∑
m=0

J∑
j=1

gj(X̃
(n)
m , X̃

(n)
m+1; θ),236

where237

(2.7) gj(x, y; θ) := ψj(x; θ)
(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
,238

and {X̃(n)
m }Mm=0 is the set of observations of the n-th particle from the system with N particles.239

The estimator we propose is then given by the solution θ̂JM,N of the p-dimensional nonlinear240

system241

(2.8) GJM,N (θ) = 0,242

where 0 ∈ Rp denotes the vector with all components equal to zero. The main steps needed243

to obtain the estimator θ̂JM,N are summarized in Algorithm 2.1. For further details about the244

implementation and for discussions about the choice of the arbitrary functions {ψj(·; θ)}Jj=1245

we refer to Appendix B and Remark 2.6 in [2].246
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Remark 2.4. The main limitation of our approach is that the knowledge of the invariant247

measure is required in order to construct the martingale estimating function (step 1 in Algo-248

rithm 2.1). However, it is often the case that the invariant measure is known up to a set of249

parameters, such as moments, i.e., only the functional form of the invariant measure is known.250

These parameters (moments) are obtained by solving appropriate self-consistency equations251

[15, Section 2.3]. When such a situation arises, it is possible to first learn these parameters252

using the available data, e.g., estimate the moments that appear in the invariant measure by253

employing the law of large numbers. Then, we are in the setting where our technique applies254

and we can proceed in the same way, as shown in the numerical experiments in Sections 3.5255

and 3.6. In summary, it is sufficient to replace step 1 in Algorithm 2.1 with “estimate the256

moments in the invariant measure ρ(·; θ)”.257

We finally introduce a technical hypothesis which will be needed for the proofs of our main258

results.259

Assumption 2.5. Let Θ ⊆ Rp be a compact set. Then the following hold for all θ ∈ Θ and260

for all j = 1, . . . , J :261

1. ψj(x; θ) is continuously differentiable with respect to θ for all x ∈ R;262

2. all components of ψj(·; θ), ψ′j(·; θ), ψ̇j(·; θ), ψ̇′j(·; θ) are polynomially bounded uni-263

formly in θ;264

3. the potentials V and W are such that φj(·; θ), φ′j(·; θ) and all components of φ̇j(·; θ),265

φ̇′j(·; θ) are polynomially bounded uniformly in θ;266

where the dot denotes either the Jacobian matrix or the gradient with respect to θ.267

Remark 2.6. Assumption 2.5(i) together with [38, Sections 2 and 6] gives the continuous268

differentiability of the vector-valued function GJM,N (θ) with respect to the unknown parameter269

θ.270

Remark 2.7. In this paper we always assume that the diffusion coefficient σ in (2.1) is271

known. We remark that this is not an essential limitation of our methodology; in fact, if272

the diffusion coefficient is also unknown, we can consider the parameter set to be estimated273

to be θ̃ = (θ, σ) = (α, κ, σ) ∈ Rp+1 and repeat the same procedure. The estimator is then274

obtained as the solution of the nonlinear system of dimension p+ 1 corresponding to (2.8). A275

numerical experiment illustrating this procedure is given in Section 3.3. Moreover, our main276

theoretical results remain valid and the proofs do not need any major changes. Alternatively,277

it is possible to first estimate the diffusion coefficient using the quadratic variation and then278

proceed with the methodology proposed in this paper.279

Example 2.8. Let us consider the Curie–Weiss quadratic interaction introduced in Exam-280

ple 2.3 as well as a quadratic–Ornstein–Uhlenbeck–confining potential V (x;α) = 1
2x

2. In this281

case the only unknown parameter is κ and the eigenvalue problem (2.6) reads282

(2.9) σφ′′(x; θ)− (1 + κ)xφ′(x; θ) + λ(θ)φ(x; θ) = 0,283

so that the eigenvalue and eigenfunctions can be computed analytically [2, Section 3.1]. In284

particular, the first eigenvalue and eigenfunction are given by λ1(θ) = 1 + κ and φ1(x; θ) = x,285
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Algorithm 2.1 Estimation of θ ∈ Θ

Input: Observations {X̃(n)
m }Mm=0.

Distance between two consecutive observations ∆.
Number of eigenvalues and eigenfunctions J .

Functions {ψj(x; θ)}Jj=1.

Confining potential V and interaction potential W .
Diffusion coefficient σ.

Output: Estimation θ̂JM,N of θ.

1: Find the invariant measure ρ(·; θ).
2: Consider the equation
σφ′′(x; θ)− (V ′(x;α) + (W ′(·;κ) ∗ ρ(·; θ))(x))φ′(x; θ) + λ(θ)φ(x; θ) = 0.

3: Compute the first J eigenvalues {λj(θ)}Jj=1 and eigenfunctions {φj(·; θ)}Jj=1.

4: Construct the function gj(x, y; θ) = ψj(x; θ)
(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
.

5: Construct the score function GJM,N (θ) = 1
M

∑M−1
m=0

∑J
j=1 gj(X̃

(n)
m , X̃

(n)
m+1; θ).

6: Let θ̂JM,N be the solution of the nonlinear system GJM,N (θ) = 0.

respectively. Therefore, letting ψ1(x; θ) = x we have an explicit expression for our estimator286

(2.10) θ̂1
M,N = −1− 1

∆
log

(∑M−1
m=0 X̃

(n)
m X̃

(n)
m+1∑M−1

m=0 (X̃
(n)
m )2

)
.287

For additional details regarding the eigenvalue problem (2.9) we refer to [2, Section 3.1]. We288

also remark that when the drift coefficient of the Ornstein–Uhlenbeck process is unknown,289

i.e., if we consider the confining potential V (x;α) = α
2x

2, then the eigenvalue problem reads290

σφ′′(x; θ)− (α+ κ)xφ′(x; θ) + λ(θ)φ(x; θ) = 0,291

which only depends on the sum α + κ and not on the single parameters alone. Therefore,292

in this case it is not possible to estimate the unknown coefficients α and κ, but we can only293

estimate their sum. This is in contrast with the set up in [26], where all the particles are294

observed in continuous time. When this amount of information is available, it is possible to295

check whether or not the particles are interacting, i.e., to check whether κ = 0 or not (see [26,296

Section 4]).297

2.2. Main results. In this section we present the main theoretical results of this work.298

In particular, we prove that our estimator θ̂JM,N is asymptotically unbiased (consistent) and299

asymptotically normal as the number of observations M and particles N go to infinity and we300

compute the rate of convergence towards the true value of the parameter, which we denote301

by θ0. Part of the proof of the consistency of the estimator, which will be presented in302

detail in Section 4, is inspired by our previous work [2, Section 5]. In this paper we studied303
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the asymptotic properties of a similar estimator for multiscale SDEs letting the number of304

observations go to infinity and the multiscale parameter vanish. The proofs or our results in305

the present work also requires us to perform a rigorous asymptotic analysis with respect to306

two parameters, the number of observations and the number of particles.307

We first define the Jacobian matrix of the function gj introduced in (2.7) with respect to308

the parameter θ, with ⊗ denoting the outer product in Rp,309

hj(x, y; θ) := ġj(x, y; θ)

= ψ̇j(x; θ)
(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
+ ψj(x; θ)⊗

(
φ̇j(y; θ)− e−λj(θ)∆

(
φ̇j(x; θ)−∆λ̇j(θ)φj(x, θ)

))
,

310

as well as the following quantity311

`j,k(x, y; θ) := (ψj(x; θ)⊗ ψk(x; θ))
(
φj(y; θ)φk(y; θ)− e−(λj(θ)+λk(θ))∆φj(x; θ)φk(x; θ)

)
.312

We remark that whenever we write Eµθ we mean that X0 ∼ µθ and similarly for the other313

probability measures.314

We now present our main results. In Theorem 2.9 we prove that our estimator is consistent.315

Theorem 2.9. Let J be a positive integer and let {X̃(n)
m }Mm=1 be a set of observations ob-316

tained by system (2.1) with true parameter θ0. Under Assumptions 2.2 and 2.5 and if317

(2.11) det

 J∑
j=1

Eµθ0 [hj(X0, X∆; θ0)]

 6= 0,318

there exists N0 > 0 such that for all N > N0 an estimator θ̂JM,N , which solves the system319

GJM,N (θ) = 0, exists with probability tending to one as M goes to infinity. Moreover, the320

estimator θ̂JM,N is asymptotically unbiased, i.e.,321

lim
N→∞

lim
M→∞

θ̂JM,N = θ0, in probability,(2.12)322

lim
M→∞

lim
N→∞

θ̂JM,N = θ0, in probability,(2.13)323
324

and if M = o(N)325

(2.14) lim
M,N→∞

θ̂JM,N = θ0, in probability.326

Then, in Theorem 2.10 we provide a rate of convergence for our estimator.327

Theorem 2.10. Let the assumptions of Theorem 2.9 hold, and let us introduce the notation328

ΞJM,N :=

(
1√
M

+
1√
N

)−1 ∥∥∥θ̂JM,N − θ0

∥∥∥ .329
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Then, for all ε > 0 there exists Kε > 0 such that330

lim
N→∞

lim
M→∞

P
(
ΞJM,N > Kε

)
< ε,(2.15)331

lim
M→∞

lim
N→∞

P
(
ΞJM,N > Kε

)
< ε,(2.16)332

333

and if M = o(
√
N)334

(2.17) lim
M,N→∞

P
(
ΞJM,N > Kε

)
< ε.335

Finally, in Theorem 2.11 we show that our estimator is asymptotically normal.336

Theorem 2.11. Let the assumptions of Theorem 2.9 hold with M = o(
√
N). Then, the337

estimator θ̂JM,N is asymptotically normal, i.e.,338

lim
M,N→∞

√
M
(
θ̂JM,N − θ0

)
= ΛJ ∼ N (0,ΓJ0 ), in distribution,339

where340

(2.18)

ΓJ0 =

 J∑
j=1

Eµ [hj(X0, X∆; θ0)]

−1 J∑
j=1

J∑
k=1

Eµ [`j,k(X0, X∆; θ0)]


×

 J∑
j=1

Eµ [hj(X0, X∆; θ0)]

−> .
341

Remark 2.12. We note that the technical assumption (2.11) is not a serious limitation of342

the validity of the theorem; in fact, it is a nondegeneracy hypothesis which holds true in all343

nonpathological cases and is equivalent to [27, Condition 4.2(a)] and [2, Assumption 3.1].344

Remark 2.13. For the proof of the main results, we need to assume that, roughly speaking,345

the number of particles goes to infinity faster than the number of observations. It is not346

clear whether this assumption is strictly necessary. We expect that noncommutativity issues347

between the different distinguished limits may arise in the case where the mean field dynamics348

exhibits phase transitions, i.e., when the stationary state is not unique, see [13]. We will study349

the consequences of this noncommutativity due to phase transitions to the performance of our350

estimator and, more generally, to the inference problem in future work.351

3. Numerical experiments. In this section we present a series of numerical experiments to352

validate our theoretical results and demonstrate the effectiveness of our estimator in estimate353

unknown drift parameters of interacting particle systems. In order to generate synthetic data354

we employ the Euler–Maruyama method with a time step h = 0.01 to solve numerically355

system (2.1) and obtain (X
(n)
t )t∈[0,T ] for all n = 1, . . . , N . Notice that in order to preserve356

the exchangeability property of the system it is important to set the same initial condition357

for all the particles, hence we take X
(n)
0 = 0 for all n = 1, . . . , N . We then randomly choose a358

value n∗ ∈ {1, . . . , N} and we assume to know a sample {X(n∗)
m }Mm=0 of observations obtained359
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12 G. A. PAVLIOTIS, A. ZANONI

Figure 1. Sensitivity analysis for the Ornstein–Uhlenbeck potential with respect to the number M of obser-
vations and N of particles, for the estimator θ̂JM,N with J = 1.

Figure 2. Sensitivity analysis for the Ornstein–Uhlenbeck potential with respect to the number J of eigen-
values and eigenfunctions, for the estimator θ̂JM,N .

from the n∗-th particle with sampling rate ∆. We remark that the parameters h and ∆360

are not related to each other, in fact the former is only used to generate the data, while361

the latter is the actual distance between two consecutive observations. We repeat the same362

procedure for L = 5 different realizations of the Brownian motions and then we compute363

the average of the values obtained employing our estimator θ̂JM,N . In the following, we first364

perform a sensitivity analysis with respect to the number of observations M , particles N and365

eigenvalues and eigenfunctions employed in the estimation J , then we confirm our theoretical366

results given in Theorems 2.9 to 2.11 and finally we test our technique with more challenging367

academic examples which do not exactly fit into the theory.368

3.1. Sensitivity analysis and rate of convergence. We consider the setting of Example 2.8369

choosing σ = 1, i.e., the interacting particles system reads370

(3.1) dX
(n)
t = −X(n)

t dt− κ
(
X

(n)
t − X̄N

t

)
dt+

√
2 dB

(n)
t , n = 1, . . . , N,371

and we aim to estimate the interaction parameter κ, so we write θ = κ. We set κ = 0.5372

and the number of eigenvalues and eigenfunctions J = 1 with ψ1(x; θ) = x, so that we can373

employ the analytical expression of our estimator given in (2.10). In Figure 1 we perform a374

sensitivity analysis for the estimator θ̂1
M,N fixing ∆ = 1, varying the number M of observations375
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Figure 3. Rates of convergence for the Ornstein–Uhlenbeck potential with respect to the number M of
observations and N of particles, for the estimator θ̂JM,N with J = 1.

Figure 4. Comparison between the estimator θ̂JM,N with J = 1 (left) and the maximum likelihood estimator

θ̃MLE
M,N (right) varying the distance ∆ between two consecutive observations for the Ornstein–Uhlenbeck potential.

and N of particles and choosing as other parameter respectively N = 250 and M = 1000,376

for which convergence has been reached. The blue line is the estimation given by one single377

particle while the red line is obtained by averaging the estimations computed employing all378

the different particles. We notice that convergence is reached when both N and M are379

large enough and, as expected, the estimation computed by averaging over all the particles380

stabilizes faster. Moreover, in Figure 2 we fix M = 1000 and N = 250 and we compare the381

results for different numbers J of eigenvalues and eigenfunctions employed in the construction382

of the estimating function. We observe that increasing the value of J does not significantly383

improves the results, hence it seems preferable to always choose J = 1 in order to reduce384

the computational cost. Finally, in Figure 3 we verify that the rates of convergence of the385

estimator θ̂1
M,N towards the exact value θ0 with respect to the number of observations M and386

particles N are consistent with the theoretical results given in Theorem 2.10. In particular,387

we observe that approximately it holds388 ∣∣∣θ̂1
M,N − θ0

∣∣∣ ' O( 1√
M

+
1√
N

)
.389

3.2. Comparison with the maximum likelihood estimator. We keep the same setting of390

Section 3.1 and we compare the results of our estimator with a maximum likelihood estimator.391
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Figure 5. Simultaneous inference of the interaction and diffusion coefficients for the Ornstein–Uhlenbeck
potential. Left: estimation θ̂JM,N obtained from each particle with J = 2. Right: average of the estimations
varying the number of observations.

In particular, in [26] the MLE for the interacting particles system with continuous observa-392

tions is rigorously derived. Since for large values of N all the particles are approximately393

independent and identically distributed and we are assuming to observe only one particle,394

we replace the sample mean with the expectation with respect to the invariant measure, i.e.,395

X̄N
t = 0, and we ignore the sum over all the particles. We then discretize the integrals in the396

formulation obtaining a modified MLE397

(3.2) θ̃MLE
M,N = −1−

∑M−1
m=0 X̃

(n)
m (X̃

(n)
m+1 − X̃

(n)
m )

∆
∑M−1

m=0 (X̃
(n)
m )2

.398

In Figure 4 we repeat the estimation for different values of ∆ = 0.01 · 2i, for i = 0, . . . , 5, and399

we observe that, differently from our estimator, the MLE is unbiased only for small values of400

the sampling rate ∆, hence when the discrete observations approximate well the continuous401

trajectory. Notice also that, as highlighted by the numerical experiments, our estimator θ̂1
M,N402

and the MLE θ̃MLE
M,N defined respectively in (2.10) and (3.2) coincide in the limit of vanishing403

∆. In fact, we can rewrite equation (2.10) as404

θ̂1
M,N = −1− 1

∆
log

(
1 +

∑M−1
m=0 X̃

(n)
m (X̃

(n)
m+1 − X̃

(n)
m )∑M−1

m=0 (X̃
(n)
m )2

)
,405

observe that the fraction in the argument of the logarithm is O(∆) and employ the asymptotic406

expansion log(1 + x) ∼ x for x = o(1).407

3.3. Diffusion coefficient. We still consider the setting of Example 2.8, but, differently408

from Section 3.1, we now assume the diffusion coefficient to be unknown and we aim to simul-409

taneously retrieve the correct values of the interaction parameter and the diffusion coefficient,410

which are given by κ = 0.5 and σ = 1, respectively. We write θ =
(
κ σ

)>
and we set the411

number of particles N = 250 and the number of observations M = 1000 with sampling rate412

∆ = 1. In order to construct the estimating functions we then employ J = 2 eigenvalues413

and eigenfunctions with functions ψ1(x; θ) = ψ2(x; θ) =
(
x2 x

)>
. We remark that in the414
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particular case of the Ornstein–Uhlenbeck process it is possible to express the eigenvalues and415

eigenfunctions analytically and the first two are given by416

λ1 = 1 + κ, φ1(x; θ) = x,

λ2 = 2(1 + κ), φ2(x; θ) = x2 − σ

1 + κ
.

417

Note that the first eigenvalue and eigenfunction do not depend on the diffusion coefficient σ418

and therefore they alone do not provide enough information, hence it is important to choose419

at least J = 2. In Figure 5 we show the numerical results. On the left and we plot the420

estimation computed employing one single particle for all the N particles and we observe that421

the estimators are concentrated around the exact values. On the other hand, on the right, we422

average all the estimations previously computed and we pot the results varying the number423

of observations M . We notice that the estimations stabilize fast near the correct coefficients.424

3.4. Central limit theorem. We keep the same setting of Section 3.1 and we validate425

numerically the central limit theorem which we proved theoretically in Theorem 2.11. In this426

particular case, the asymptotic variance ΓJ0 can be computed analytically. In fact, the mean427

field limit of (3.1) at stationarity is428

dXt = −(1 + κ)Xt dt+
√

2 dB
(n)
t ,429

and its solution (Xt)t∈[0,T ] is a Gaussian process, i.e., X ∼ GP(m(t), C(t, s)), where m(t) = 0430

and431

C(t, s) =
1

1 + κ
e−(1+κ)|t−s|.432

Moreover, we have433

h1(x, y; θ) = ∆e−(1+κ)∆x2 and `1,1(x, y; θ) = x2
(
y2 − e−2(1+κ)∆x2

)
,434

and therefore we obtain435

ΓJ0 =
e2(1+κ)∆ − 1

∆2
.436

We then fix the number of particles N = 1500, the number of observations M = 1000 and437

the sampling rate ∆ = 1. In Figure 6 we plot the quantity
√
M(θ̂JM,N − θ0) for any particle438

n = 1, . . . , N and for L = 500 realizations of the Brownian motion and we observe that it is439

approximately distributed as N (0,ΓJ0 ) accordingly to the theoretical result.440

3.5. Bistable potential. We consider the setting of Example 2.3 and we analyse the441

bistable potential, i.e., we let the confining potential V (·;α) be442

V (x;α) = α ·
(
x4

4 −x2

2

)>
,443

with α =
(
1 2

)>
, which is the parameter that we aim to estimate, so we write θ = α.444

Moreover, we set the interaction term κ = 0.5 and the number of observations M = 2000445
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Figure 6. Central limit theorems for the Ornstein–Uhlenbeck potential, for the estimator θ̂JM,N with J = 1.

M = 2000

Figure 7. Inference of the two-dimensional drift coefficient of the bistable potential below the phase transi-
tion. Top: average of the estimations θ̂JM,N with J = 1 varying the number of observations. Bottom: scatter
plot of the estimations obtained from each particle.

with sampling rate ∆ = 0.5. Finally, to construct the estimating functions we use J = 1446

eigenfunctions and eigenvalues and we employ the function ψ1(x; θ) =
(
x x3

)>
. We remark447

that this example does not fit in Assumption 2.2, but if the diffusion coefficient σ is chosen448

sufficiently large, then we are below the phase transition and the mean field limit admits a449

unique invariant measure [11], so the theory applies. However, when the diffusion coefficient450

σ is below the critical noise strength, then a continuous phase transition occurs and two451

stationary states exist [23]. In particular, the transition point occurs at σ ' 0.6 with these452
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M = 2000

Figure 8. Inference of the two-dimensional drift coefficient of the bistable potential above the phase transi-
tion. Top: average of the estimations θ̂JM,N with J = 1 varying the number of observations. Bottom: scatter
plot of the estimations obtained from each particle.

data. We therefore perform two numerical experiments, one below and one above the phase453

transition, setting σ = 0.75 and σ = 0.5. In the former we have a unique invariant measure,454

so we can follow the usual approach, while in the latter we do not know in which state the455

data are converging. Nevertheless, the invariant distribution is known up to the first moment456

by equation (2.4), so we first estimate the expectation using the law of large numbers with457

the available observations and then repeat the same procedure as in the previous case. In458

Figures 7 and 8 we plot the results of these two experiments. On the top of the figures we459

plot the evolution of our estimator varying the number of observations M for two different460

values of the number of particles, in particular N = 25 and N = 250. We observe that461

the estimator approaches the correct drift coefficient α as the number of observations M462

increases and, as expected, the final approximation is better when the number of particles463

is sufficiently big. Moreover, on the bottom of the same figures we show the scatter plot of464

the estimations obtained from each particle with M = 2000 observations and we can see that465

they are concentrated around the exact drift coefficient α. We finally remark that we do466

not notice significant differences between the two cases, yielding that the initial estimation of467

the first moment of the invariant measure does not affect the final results and thus that our468

methodology can be employed even when multiple stationary states exist.469
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α1 α2 α3

α3

α2

α1

Figure 9. Inference of the three-dimensional drift coefficient of a nonsymmteric potential for the estimator
θ̂JM,N with J = 1. Diagonal: histogram of the estimations of each component obtained from all particles. Off-
diagonal: scatter plot of the estimations obtained from all particles for two components at a time. Black and
red stars/lines represent the average of the estimations and the exact value, respectively.

3.6. Nonsymmetric confining potential. We still consider the same setting of Exam-470

ple 2.3 and we now study the case of a nonsymmetric potential. In particular, we let the471

confining potential V (·;α) be472

V (x;α) = α ·
(
x4

4
x2

2 x
)>

,473

with α =
(
1 −2 1

)>
, which is the unknown parameter that we want to infer, hence we474

set θ = α. Notice that the confining potential is given by the sum of the bistable potential475

and a linear term which breaks the symmetry. This type of potentials of the form V (x) =476 ∑N
ν=1 a2νs

2ν +a1s, where N ≥ 2, a1, a2 ∈ R, a4, . . . , a2(N −1) ≥ 0 and a2N > 0, which is used477

in the study of metastability and phase transitions and may have arbitrarily deep double wells,478

has been analyzed in [44, 42]. Similarly to the experiment in Section 3.5, this example does479

not satisfy Assumption 2.2 and more stationary states can exist. In particular, in [42] it has480

been proved the existence of an invariant measure around each critical point of the potential.481

We therefore adopt the same strategy as in the second part of Section 3.5 and, since the482

invariant measure is known up to the first moment by equation (2.4), we first approximate483

the expectation using the sample mean of the available observations, and then proceed with484

the following steps of the algorithm. We further set the interaction term κ = 0.5, the diffusion485

coefficient σ = 1.5, the number of particles N = 250 and the number of observations M = 2000486
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with sampling rate ∆ = 0.5. Moreover, to construct the estimating functions we use J = 1487

eigenfunctions and eigenvalues and we employ the function ψ1(x; θ) =
(
x x2 x3

)>
. In488

Figure 9 we plot the results of the inference procedure considering two components of the489

three-dimensional drift coefficient at a time and the single components alone. We observe490

that the majority of the estimations obtained from all particles are concentrated around the491

exact values and that their average provides a reliable approximation of the true unknown.492

A peculiarity of this numerical experiment is the relationship between the first and second493

components of the estimated drift coefficient, in fact one increases when the other decreases494

and vice-versa, meaning that the two approximations appear to be correlated.495

4. Proof of the main results. In this section we present the proof of Theorems 2.9 to 2.11,496

which are the main results of this work. We first recall that due to [16, Lemma 2.3.1] the497

solution of the interacting particle system X
(n)
t and of its mean field limit Xt have bounded498

moments of any order, in particular there exists a constant C > 0 independent of N such that499

for all t ∈ [0, T ], n = 1, . . . , N and q ≥ 1500

(4.1) E
[∣∣∣X(n)

t

∣∣∣q]1/q
≤ C and E [|Xt|q]1/q ≤ C.501

Moreover, in [31, Theorem 3.3] it is shown that each particle converges to the solution of the502

mean field limit with the same Brownian motion in L2, i.e, that503

(4.2) sup
t∈[0,T ]

E
[∣∣∣X(n)

t −Xt

∣∣∣2]1/2

≤ C√
N
,504

where the constant C is also independent of the final time T . We also state here a formula505

which has been proved in [27] and will be crucial in the last part of the proof506

(4.3) Eµθ0 [φj(X∆; θ0) | X0 = x] = e−λj(θ0)∆φj(x; θ0), for all j = 1, . . . , J,507

where θ0 is the true parameter which generates the path (Xt)t∈[0,T ] and Eµθ0 denotes the fact508

that X0 ∼ µθ0 . Before entering the main part of the proof, we introduce some notation and509

technical results which will be used later. We finally remark that all the constants will be510

denoted by C and their value can change from line to line.511

4.1. Limits of the estimating function and its derivative. Let us first define the fol-512

lowing vector-valued functions GJ
M (θ),GJN (θ),G J(θ) : Rp → Rp and matrix-valued functions513

HJ
M (θ),HJN (θ),H J(θ) : Rp → Rp×p514

(4.4)

GJ
M (θ) :=

1

M

M−1∑
m=0

J∑
j=1

gj(X̃m, X̃m+1; θ), HJ
M (θ) :=

1

M

M−1∑
m=0

J∑
j=1

hj(X̃m, X̃m+1; θ),

GJN (θ) :=
J∑
j=1

EµN
[
gj(X

(n)
0 , X

(n)
∆ ; θ)

]
, HJN (θ) :=

J∑
j=1

EµN
[
hj(X

(n)
0 , X

(n)
∆ ; θ)

]
,

G J(θ) :=
J∑
j=1

Eµ [gj(X0, X∆; θ)] , H J(θ) :=
J∑
j=1

Eµ [hj(X0, X∆; θ)] .

515
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The following lemma then shows that these quantities are bounded in a suitable norm and516

thus well defined.517

Lemma 4.1. Under Assumptions 2.2 and 2.5 there exists a constant C > 0 independent of518

M,N such that for all q ≥ 1519

(i) E
[∥∥GJM,N (θ)

∥∥q] ≤ C, (ii) E
[∥∥GJ

M (θ)
∥∥q] ≤ C,

(iii)
∥∥GJN (θ)

∥∥ ≤ C, (iv)
∥∥G J(θ)

∥∥ ≤ C.520

Proof. Since the argument is similar for the four cases, we only write the details of (i).521

Using the triangular inequality we have522

E
[∥∥GJM,N (θ)

∥∥q] ≤ 2q−1

M

M−1∑
m=0

J∑
j=1

E
[∥∥∥ψj(X̃(n)

m ; θ)
∥∥∥q (∣∣∣φj(X̃(n)

m+1; θ)
∣∣∣q +

∣∣∣φj(X̃(n)
m ; θ)

∣∣∣q)] ,523

and due to the Cauchy–Schwarz inequality we obtain524

E
[∥∥GJM,N (θ)

∥∥] ≤ 2q−1

M

M−1∑
m=0

J∑
j=1

E
[∥∥∥ψj(X̃(n)

m ; θ)
∥∥∥2q
]1/2

E
[∣∣∣φj(X̃(n)

m+1; θ)
∣∣∣2q]1/2

+
2q−1

M

M−1∑
m=0

J∑
j=1

E
[∥∥∥ψj(X̃(n)

m ; θ)
∥∥∥2q
]1/2

E
[∣∣∣φj(X̃(n)

m ; θ)
∣∣∣2q]1/2

.

525

Finally, bound (4.1) together with the fact that ψj and φj are polynomially bounded for all526

j = 1, . . . , J by Assumption 2.5 gives the desired result.527

In the next proposition we study the behaviour of the estimating function GJM,N as the528

number of observations M and particles N go to infinity.529

Proposition 4.2. Under Assumptions 2.2 and 2.5 it holds for all 1 ≤ q < 2530

(i) lim
N→∞

GJM,N (θ) = GJ
M (θ), in Lq, (ii) lim

M→∞
GJ
M (θ) = G J(θ), in L2,

(iii) lim
M→∞

GJM,N (θ) = GJN (θ), in L2, (iv) lim
N→∞

GJN (θ) = G J(θ).
531

Moreover, there exists a constant C > 0 independent of M,N and θ such that532

(i)′ E
[∥∥GJM,N (θ)−GJ

M (θ)
∥∥q]1/q

≤ C√
N
, (iv)′

∥∥GJN (θ)− G J(θ)
∥∥ ≤ C√

N
.533

Proof. Results (ii) and (iii) are direct consequences of [6, Lemma 3.1] and of the ergodicity534

of the processes (X
(n)
t )t∈[0,T ] and (Xt)t∈[0,T ] given by [23, Section 1] and [31, Theorem 3.16],535

respectively. Let us now consider cases (i) and (i)′. Using the triangle inequality we have536

E
[∥∥GJM,N (θ)−GJ

M (θ)
∥∥q] ≤ 4q−1

M

M−1∑
m=0

J∑
j=1

(
Q

(1)
m,j +Q

(2)
m,j +Q

(3)
m,j +Q

(4)
m,j

)
,537
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where538

Q
(1)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣φj(X̃(n)
m+1; θ)− φj(X̃m+1; θ)

∣∣∣q] ,
Q

(2)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣φj(X̃(n)
m ; θ)− φj(X̃m; θ)

∣∣∣q] ,
Q

(3)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)− ψj(X̃m; θ)

∥∥∥q ∣∣∣φj(X̃m+1; θ)
∣∣∣q] ,

Q
(4)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)− ψj(X̃m; θ)

∥∥∥q ∣∣∣φj(X̃m; θ)
∣∣∣q] ,

539

and applying the mean value theorem we obtain540

Q
(1)
m,j ≤ E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣∣∫ 1

0
φ′j(X̃m+1 + s(X̃

(n)
m+1 − X̃m+1); θ) ds

∣∣∣∣q ∣∣∣X̃(n)
m+1 − X̃m+1

∣∣∣q] ,
Q

(2)
m,j ≤ E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣∣∫ 1

0
φ′j(X̃m + s(X̃(n)

m − X̃m); θ) ds

∣∣∣∣q ∣∣∣X̃(n)
m − X̃m

∣∣∣q] ,
Q

(3)
m,j ≤ E

[∥∥∥∥∫ 1

0
ψ′j(X̃m + s(X̃(n)

m − X̃m); θ) ds

∥∥∥∥q ∣∣∣X̃(n)
m − X̃m

∣∣∣q ∣∣∣φj(X̃m+1; θ)
∣∣∣q] ,

Q
(4)
m,j ≤ E

[∥∥∥∥∫ 1

0
ψ′j(X̃m + s(X̃(n)

m − X̃m); θ) ds

∥∥∥∥q ∣∣∣X̃(n)
m − X̃m

∣∣∣q ∣∣∣φj(X̃m; θ)
∣∣∣q] .

541

Then, employing the Hölder’s inequality with exponents 4/(2 − q), 4/(2 − q), 2/q and since542

φj , φ
′
j , ψj , ψ

′
j are polynomially bounded by Assumption 2.5 and X̃

(n)
m , X̃m have bounded mo-543

ments of any order by (4.1) we deduce544

E
[∥∥GJM,N (θ)−GJ

M (θ)
∥∥q] ≤ C

M

M−1∑
m=0

J∑
j=1

(
E
[
(X̃(n)

m − X̃m)2
] q

2
+ E

[
(X̃

(n)
m+1 − X̃m+1)2

] q
2

)
,545

which due to (4.2) proves (i)′, which directly implies (i). Finally, the proofs of results (iv)546

and (iv)′ are similar to cases (i) and (i)′, respectively, and are omitted here.547

Corollary 4.3. Under Assumptions 2.2 and 2.5 it holds for all 1 ≤ q < 2548

lim
M,N→∞

GJM,N (θ) = G J(θ), in Lq.549

Proof. Employing the triangular inequality we have550

E
[∥∥GJM,N (θ)− G J(θ)

∥∥q] ≤ 2q−1
(
E
[∥∥GJM,N (θ)−GJ

M (θ)
∥∥q]+ E

[∥∥GJ
M (θ)− G J(θ)

∥∥q]) ,551

where the right-hand side vanishes by (i)′ and (ii) in Proposition 4.2, yielding the desires552

result.553

The limits considered in Proposition 4.2 are summarized schematically in the following554

graph555
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GJM,N (θ)

GJ
M (θ)

GJN (θ)

G J(θ)

in Lq

N →∞
in L2

M →∞

in L2

M →∞ N →∞

556

where q ∈ [1, 2).557

Remark 4.4. Notice that all the results in this section holds true also for the derivatives558

HJ
M (θ), HJN (θ), H J(θ) with respect to the parameter θ defined in (4.4). Since the arguments559

are analogous we omit the details here.560

4.2. Zeros of the limits of the estimating function. The goal of this section is to show561

that the limits of the estimating functions previously defined admit zeros and to study their562

asymptotic limit. We already know by (4.3) that G J(θ0) = 0, where θ0 is the true parameter.563

Then, in the following lemma we consider the zero of the function GJN (θ) and its limit as564

N →∞.565

Lemma 4.5. Under Assumptions 2.2 and 2.5 and if det(H J(θ0)) 6= 0 there exists N0 > 0566

such that for all N > N0 there exists ϑJN ∈ Θ which solves the system GJN (θ) = 0 and satisfies567

det(HJN (ϑJN )) 6= 0. Moreover, there exists a constant C > 0 independent of N such that568

(4.5)
∥∥ϑJN − θ0

∥∥ ≤ C√
N
.569

Proof. We first remark that by (4.3) we have G J(θ0) = 0 and, without loss of general-570

ity, we can assume that det(H J(θ0)) > 0. Let δ > 0 sufficiently small, by point (iv)′ in571

Proposition 4.2 and Remark 4.4 we know that HJN (θ) converges to H J(θ) uniformly in θ and572

therefore there exist N1 > 0 and ε > 0 such that for all N > N1 and for all θ ∈ Bε(θ0)573

0 < det(H J(θ0))− δ ≤ det(HJN (θ)) ≤ det(H J(θ0)) + δ,(4.6)574

0 <
∥∥H J(θ0)−1

∥∥− δ ≤ ∥∥HJN (θ)−1
∥∥ ≤ ∥∥H J(θ0)−1

∥∥+ δ.(4.7)575576

Hence, due to equation (4.6) and applying the inverse function theorem we deduce the exis-577

tence of η > 0 such that578

Bη(GJN (θ0)) ⊆ GJN (Bε(θ0)).579

Notice that the radius η > 0 can be chosen independently of N > N1. In fact, by the proof of580

[34, Theorem 2.3] and [28, Lemma 1.3] we observe that η is dependent on the radius ε of the581

ball Bε(θ0) and the quantity
∥∥HJN (θ0)−1

∥∥, which can be bounded independently of N > N1582

due to estimate (4.7). Moreover, since583

lim
N→∞

GJN (θ0) = G J(θ0) = 0,584

then there exists N2 > 0 such that for all N > N2 we have 0 ∈ Bη(GJN (θ0)). Therefore,585

setting N0 = max{N1, N2} for all N > N0 there exists ϑJN ∈ Bε(θ0) such that GJN (ϑJN ) = 0,586
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which proves the existence. Furthermore, equation (4.6) gives det(HJN (ϑJN )) 6= 0. It now587

remains to show estimate (4.5). Since the set Bε(θ0) is compact, there exist ϑ̃J ∈ Bε(θ0) and588

a subsequence ϑJNk such that589

lim
k→∞

ϑJNk = ϑ̃J .590

By point (iv)′ in Proposition 4.2 the function GJN (θ) converges to G J(θ) uniformly in θ, thus591

we have592

0 = lim
k→∞

GJNk(ϑJNk) = lim
k→∞

[
GJNk(ϑJNk)− G J(ϑJNk) + G J(ϑJNk)

]
= G J(ϑ̃J),593

which yields ϑ̃J = θ0. This is guaranteed by the fact that ε can be previously chosen sufficiently594

small such that θ0 is the only zero of the function G J(θ) in Bε(θ0). Since θ0 is the unique limit595

point for the subsequence ϑJNk , it follows that the whole sequence converges. Then, applying596

the mean value theorem we obtain597

G J(ϑJN )− GJN (ϑJN ) = G J(ϑJN )− G J(θ0) =

(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)
(ϑJN − θ0),598

which implies599

∥∥ϑJN − θ0

∥∥ ≤ ∥∥∥∥∥
(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)−1
∥∥∥∥∥∥∥G J(ϑJN )− GJN (ϑJN )

∥∥ .600

Since ϑJN converges to θ0 as N goes to infinity, then601

lim
N→∞

∥∥∥∥∥
(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)−1
∥∥∥∥∥ =

∥∥H J(θ0)−1
∥∥ ,602

where the right-hand side is well defined because det(H J(θ0)) 6= 0. Therefore, if N is suffi-603

ciently big there exists a constant C > 0 independent of N such that604 ∥∥∥∥∥
(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)−1
∥∥∥∥∥ ≤ C,605

which together with point (iv)′ in Proposition 4.2 yields estimate (4.5) and concludes the606

proof.607

In the next lemma we study the zero of the random function GJ
M (θ) and its limit as608

M →∞. This result is almost the same as [27, Theorem 4.3].609

Lemma 4.6. Let the assumptions of Lemma 4.5 hold. Then, an estimator ϑ̂JM , which solves610

the equation GJ
M (θ) = 0 and is such that det(HJ

M (ϑ̂JM )) 6= 0, exists with a probability tending611

to one as M →∞. Moreover,612

lim
M→∞

ϑ̂JM = θ0, in probability,613
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and614

lim
M→∞

√
M
(
ϑ̂JM − θ0

)
= ΛJ ∼ N (0,ΓJ0 ), in distribution,615

where ΓJ0 is defined in (2.18).616

Proof. The existence of the estimator ϑ̂JM which solves the equation GJ
M (θ) = 0 with617

a probability tending to one as M → ∞ and its asymptotic unbiasedness and normality is618

given by [27, Theorem 4.3], whose prove can be found in [6, Theorem 3.2] and is based on [3,619

Theorem A.1]. Moreover, by the last line of the proof of [6, Theorem 3.2] or by (A.5) in [27,620

Theorem 4.3] we have621

(4.8) lim
M→∞

HJ
M (ϑ̂JM ) = H J(θ0), in probability,622

where det(H J(θ0)) 6= 0 by assumption. Hence, there exists δ > 0 such that if623 ∥∥∥HJ
M (ϑ̂JM )−H J(θ0)

∥∥∥ ≤ δ,624

then det(HJ
M (ϑ̂JM ))) 6= 0. Moreover, for M large enough it holds625

P
(∥∥∥HJ

M (ϑ̂JM )−H J(θ0)
∥∥∥ ≤ δ) ≥ 1− εM ,626

where εM → 0 as M →∞. Let us now define the events627

AM :=
{
∃ ϑ̂JM : GJ

M (ϑ̂JM )
}

and BM :=
{∥∥∥HJ

M (ϑ̂JM )−H J(θ0)
∥∥∥ ≤ δ} ,628

and notice that by the first part of the proof we have P(AM ) = pM where pM → 1 as M →∞.629

Then, using basic properties of probability measures we obtain630

P
(
AM ∩ {det(HJ

M (ϑ̂JM )) 6= 0}
)
≥ P (AM ∩BM ) ≥ P(AM ) + P(BM )− 1 ≥ pM − εM ,631

where the last term tends to one as M →∞, and which gives the desired result.632

We now consider the zero of the actual estimating function GJM,N (θ) and we first analyze633

its limit as M →∞.634

Lemma 4.7. Let the assumptions of Theorem 2.9 hold. Then, there exists N0 > 0 such635

that for all N > N0 an estimator θ̂JM,N , which solves the system GJM,N (θ) = 0, exists with a636

probability tending to one as M goes to infinity. Moreover, there exist ϑJN solving GJN (θ) = 0637

such that638

lim
M→∞

θ̂JM,N = ϑJN , in probability,639

and640

lim
M→∞

√
M
(
θ̂JM,N − ϑJN

)
= ΛJN ∼ N (0,ΓJN ), in distribution,641
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where ΓJN is a positive definite covariance matrix such that limN→∞ ΓJN = ΓJ0 where ΓJ0 is642

defined in (2.18).643

Proof. First, by Lemma 4.5 there exists N0 > 0 such that for all N > N0 there exists ϑJN644

such that645

GJN (ϑJN ) = 0 and det(HJN (ϑJN )) 6= 0.646

Then, the results are equivalent to Lemma 4.6 and therefore the argument follows the same647

steps of its proof, which is given in detail in [6, Theorem 3.2] and is based on [3, Theorem648

A.1]. Finally, the convergence of the covariance matrix ΓJN is implied by (4.2).649

We then study the limit of the zero of GJM,N (θ) as N →∞.650

Lemma 4.8. Let the assumptions of Lemma 4.7 hold and let M � N . Then, the estimator651

θ̂JM,N satisfies for some ϑ̂JM solving GJ
M (θ) = 0 and for a constant C > 0 independent of M652

and N653

E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥] ≤ C√M

N
.654

Proof. The existence of the estimators ϑ̂JM , such that GJ
M (ϑ̂JM ) = 0 and det(HJ

M (ϑ̂JM )) 6= 0,655

and θ̂JM,N , such thatGJM,N (θ̂JM,N ) = 0, with a probability tending to one asM goes to infinity is656

guaranteed by Lemmas 4.6 and 4.7, respectively. Then, all the following events are considered657

as conditioned on the existence of ϑ̂JM and θ̂JM,N and the fact that det(HJ
M (ϑ̂JM )) 6= 0. Let us658

now define the function f : Rp × RM+1 → Rp as659

f(θ, x) =
1

M

M−1∑
m=0

J∑
j=1

gj(xm, xm+1; θ),660

where xm denotes the m-th component of the vector x ∈ Rm+1, and the vectors X(n) and X661

whose m-th components for m = 0, . . . ,M are given by662

X(n)
m = X̃(n)

m and Xm = X̃m,663

where {X̃(n)
m }Mm=0 is the set of observations and {X̃m}Mm=0 are the corresponding realizations664

of the mean field limit. Notice that f ∈ C1(Θ×RM+1) due to Assumption 2.5 and Remark 2.6665

and by definition we have666

f(ϑ̂JM ,X) = 0 and det

(
∂f

∂θ
(ϑ̂JM ,X)

)
6= 0.667

Therefore, applying the implicit function theorem there exist ε, δ > 0 and a continuously668

differentiable function F : Bε(X)→ Bδ(ϑ̂
J
M ) such that f(F (x), x) = 0 for all x ∈ Bε(X). Hence,669

if X(n) is close enough to X then there must be one θ̂JM,N ∈ Bδ(ϑ̂JM ) such that F (X(n)) = θ̂JM,N .670
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Then, employing Jensen’s inequality and by estimate (4.2) we have671

E
[∥∥∥X(n) − X

∥∥∥] = E

( M∑
m=0

∣∣∣X̃(n)
m − X̃m

∣∣∣2)1/2
 ≤ ( M∑

m=0

E
[∣∣∣X̃(n)

m − X̃m

∣∣∣2])1/2

≤ C
√
M

N
,672

where the constant C is independent of M and N . Therefore, letting ε > 0 and applying673

Markov’s inequality we obtain674

(4.9) P
(∥∥∥X(n) − X

∥∥∥ ≥ ε) ≤ 1

ε
E
[∥∥∥X(n) − X

∥∥∥] ≤ C

ε

√
M

N
.675

Defining the event A = {
∥∥X(n) − X

∥∥ < ε} and using the law of total expectation conditioning676

on A we deduce677

E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥] = E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |A]P(A) + E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |AC
]
P(AC),678

which since θ̂JM,N , ϑ̂
J
M ∈ Θ, a compact set, and due to estimate (4.9) implies679

(4.10) E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥] ≤ E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |A]+ C

√
M

N
.680

It now remains to study the first term in the right-hand side. Applying the mean value681

theorem we obtain682

GJ
M (θ̂JM,N )−GJM,N (θ̂JM,N ) = GJ

M (θ̂JM,N )−GJ
M (ϑ̂JM )

=

(∫ 1

0
HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)
(θ̂JM,N − ϑ̂JM ),

683

which implies684

∥∥∥θ̂JM,N − ϑ̂JM
∥∥∥ ≤ ∥∥∥∥∥

(∫ 1

0
HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)−1
∥∥∥∥∥∥∥∥GJ

M (θ̂JM,N )−GJM,N (θ̂JM,N )
∥∥∥ .685

Using Hölder’s inequality with exponents q ∈ (1, 2) and its conjugate q′ such that 1/q+1/q′ = 1686

we have687

(4.11) E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |A] ≤ QE
[∥∥∥GJ

M (θ̂JM,N )−GJM,N (θ̂JM,N )
∥∥∥q |A]1/q

,688

where689

Q = E

∥∥∥∥∥
(∫ 1

0
HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)−1
∥∥∥∥∥
q′

|A

1/q′

.690
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Employing the inequality E[Y |A] ≤ E[Y ]/P(A), which holds for any positive random variable691

Y , point (i)′ in Proposition 4.2 and estimate (4.9), the second term in the right-hand side can692

be bounded by693

(4.12) E
[∥∥∥GJ

M (θ̂JM,N )−GJM,N (θ̂JM,N )
∥∥∥q |A]1/q

≤ C√
N

 1

1− C
√

M
N

1/q

≤ C√
N
,694

where the last inequality is justified by the fact that M � N and by changing the value of695

the constant C. We now have to bound the first term Q in the right-hand side of equation696

(4.11). Employing the inequality
∥∥M−1

∥∥ ≤ ‖M‖p−1 / |det(M)|, which holds for any square697

nonsingular matrix M ∈ Rp×p, we have698

Q ≤ E


∥∥∥∫ 1

0 HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

∥∥∥q′(p−1)

∣∣∣det
(∫ 1

0 HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)∣∣∣q′ |A
 .699

Since we are conditioning on the event A, by the first part of the proof, we know that700 ∥∥∥θ̂JM,N − ϑ̂JM
∥∥∥ ≤ δ and, by taking ε sufficiently small, we can always find δ small enough,701

but still finite, such that the absolute value of the determinant in the denominator is lower702

bounded by a constant independent of M and N because det(HJ
M (ϑ̂JM )) 6= 0 and by (4.8)703

it converges in probability to det(H J(θ0)), which is invertible. Hence, applying Jensen’s704

inequality we obtain705

Q ≤ C E

[∥∥∥∥∫ 1

0
HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

∥∥∥∥q′(p−1)

|A

]

≤ C E
[∫ 1

0

∥∥∥HJ
M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM ))

∥∥∥q′(p−1)
dt|A

]
,

706

which due to Lemma 4.1, Remark 4.4, the property E[Y |A] ≤ E[Y ]/P(A), which holds for any707

positive random variable Y , and estimate (4.9) yields708

Q ≤ C

P(A)

∫ 1

0
E
[∥∥∥HJ

M (ϑ̂JM + t(θ̂JM,N − ϑ̂JM ))
∥∥∥q′(p−1)

]
dt ≤ C,709

which together with equations (4.10), (4.11) and (4.12) gives the desired result.710

The results of this section are summarized in the following graph711

θ̂JM,N

ϑ̂JM

ϑJN

θ0

in L1

N →∞
in P

M →∞

in P
M →∞ N →∞

712

where P stands for convergence in probability.713
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Remark 4.9. All the previous results only prove the existence of such estimators with high714

probability and do not guarantee their uniqueness. However, as we will see in the next section,715

any of these estimators converge to the exact value of the unknown.716

4.3. Proof of the main theorems. In this section we finally present the proofs of the717

main results of this work, i.e., Theorems 2.9 to 2.11.718

Proof of Theorem 2.9. First, by Lemma 4.7 we deduce the existence of N0 > 0 such that719

for all N > N0 the estimator θ̂JM,N exists with a probability tending to one as M goes to720

infinity. Then, we prove separately equations (2.12), (2.13) and (2.14).721

Proof of (2.12). By Lemmas 4.5 and 4.7 we have722

lim
N→∞

lim
M→∞

θ̂JM,N = lim
N→∞

ϑJN = θ0, in probability,723

which proves (2.12).724

Proof of (2.13). By Lemma 4.8 the estimator θ̂JM,N converges to ϑ̂JM in L1 as N goes to725

infinity and hence in probability. Therefore, applying Lemma 4.6 we obtain726

lim
M→∞

lim
N→∞

θ̂JM,N = lim
M→∞

ϑ̂JM = θ0, in probability,727

which shows (2.13).728

Proof of (2.14). We introduce the following decomposition729

θ̂JM,N − θ0 = (θ̂JM,N − ϑ̂JM ) + (ϑ̂JM − θ0) =: Q1 +Q2,730

where ϑ̂JM is defined in Lemma 4.6 and due to Lemma 4.8 the first quantity satisfies731

(4.13) E [|Q1|] ≤ C
√
M

N
,732

with the constant C independent of M and N . Therefore, since M = o(N), estimate (4.13) to-733

gether with Lemma 4.6 and the fact that convergence in L1 implies convergence in probability734

gives the desired result (2.14) and ends the proof.735

Proof of Theorem 2.10. The existence of the estimator θ̂JM,N is given by Theorem 2.9.736

Then, we prove separately equations (2.15), (2.16) and (2.17).737

Proof of (2.15). Let ϑN be defined in Lemma 4.5. Using basic properties of probability738

measures we have739

(4.14)

P
(
ΞJM,N > Kε

)
= P

(∥∥∥θ̂JM,N − θ0

∥∥∥ > ( 1√
M

+
1√
N

)
Kε

)
≤ P

(∥∥∥θ̂JM,N − ϑN
∥∥∥+ ‖ϑN − θ0‖ >

(
1√
M

+
1√
N

)
Kε

)
,

740
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which implies741

P
(
ΞJM,N > Kε

)
≤ P

(∥∥∥θ̂JM,N − ϑN
∥∥∥ > ( 1√

M
+

1√
N

)
Kε

2

)
+ P

(
‖ϑN − θ0‖ >

(
1√
M

+
1√
N

)
Kε

2

)
≤ P

(√
M
∥∥∥θ̂JM,N − ϑN

∥∥∥ > Kε

2

)
+ P

(
‖ϑN − θ0‖ >

Kε

2
√
N

)
,

742

and we now study the two terms in the right-hand side separately. First, letting M and N go743

to infinity by Lemma 4.7 we obtain744

lim
N→∞

lim
M→∞

P
(√

M
∥∥∥θ̂JM,N − ϑN

∥∥∥ > Kε

2

)
= P

(∥∥ΛJ
∥∥ > Kε

2

)
,745

where the right-hand side can be made arbitrarily small by taking Kε > 0 sufficiently big.746

Moreover, we have747

P
(
‖ϑN − θ0‖ >

Kε

2
√
N

)
= 1{‖ϑN−θ0‖> Kε

2
√
N

},748

where the right-hand side is identically equal to zero if we set Kε > 2C, where the constant749

C is given by Lemma 4.5. Hence, for all ε > 0 we can take Kε > 0 sufficiently big such that750

lim
N→∞

lim
M→∞

P
(
ΞJM,N > Kε

)
< ε,751

which proves (2.15).752

Proof of (2.16). Let ϑ̂M be defined in Lemma 4.6. Repeating a procedure similar to (4.14)753

and applying Markov’s inequality we get754

P
(
ΞJM,N > Kε

)
≤ P

(∥∥∥θ̂JM,N − ϑ̂M
∥∥∥ > ( 1√

M
+

1√
N

)
Kε

2

)
+ P

(√
M
∥∥∥ϑ̂M − θ0

∥∥∥ > Kε

2

)
≤ 2

√
MN

Kε(
√
M +

√
N)

E
[∥∥∥θ̂JM,N − ϑ̂M

∥∥∥]+ P
(√

M
∥∥∥ϑ̂M − θ0

∥∥∥ > Kε

2

)
,

755

and we now study the two terms in the right-hand side separately. First, by Lemma 4.6 we756

have757

lim
M→∞

P
(√

M
∥∥∥ϑ̂M − θ0

∥∥∥ > Kε

2

)
= P

(∥∥ΛJ
∥∥ > Kε

2

)
,758

where the right-hand side can be made arbitrarily small by taking Kε > 0 sufficiently big.759

Moreover, by Lemma 4.8 we have760

(4.15)
2
√
MN

Kε(
√
M +

√
N)

E
[∥∥∥θ̂JM,N − ϑ̂M

∥∥∥] ≤ 2CM

Kε(
√
M +

√
N)

,761
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where the constant C is independent of M and N . Hence, for all ε > 0 we can take Kε > 0762

sufficiently big such that763

lim
M→∞

lim
N→∞

P
(
ΞJM,N > Kε

)
< ε,764

which shows (2.16).765

Proof of (2.17). Equation (2.17) is obtained following verbatim the proof of (2.16) in the766

previous step and using the fact that M = o(
√
N) to show that the right-hand side in equation767

(4.15) vanishes.768

Proof of Theorem 2.11. The existence of the estimator θ̂JM,N is given by Theorem 2.9.769

Then, let us introduce the following decomposition770

√
M
(
θ̂JM,N − θ0

)
=
√
M
(
θ̂JM,N − ϑ̂JM

)
+
√
M
(
ϑ̂JM − θ0

)
,771

where ϑ̂JM is defined in Lemma 4.6. We now study the two terms in the right-hand side772

separately. By Lemma 4.8 we have773

√
M E

[∥∥∥θ̂JM,N − ϑ̂JM
∥∥∥] ≤ C M√

N
,774

where the constant C is independent of M and N , hence since M = o(
√
N) by hypothesis we775

obtain776

(4.16) lim
M,N→∞

√
M
(
θ̂JM,N − ϑ̂JM

)
= 0, in probability.777

Moreover, by Lemma 4.6 we know that778

(4.17) lim
M→∞

√
M
(
ϑ̂JM − θ0

)
= ΛJ ∼ N (0,ΓJ0 ), in distribution,779

where the covariance matrix ΓJ0 is defined in (2.18). Finally, limits (4.16) and (4.17) together780

with Slutsky’s theorem imply the desired result.781

5. Conclusion. In this work we considered inference problems for large systems of ex-782

changeable interacting particles. When the number of particles is large, then the path of a783

single particle is well approximated by its mean field limit. The limiting mean field SDE is on784

the one hand more complex because it is a nonlinear SDE (in the sense of McKean), but on785

the other hand more tractable from a computational viewpoint as it reduces an N -dimensional786

SDE to a one dimensional one. Our aim was to infer unknown parameters of the dynamics,787

in particular of the confining and interaction potentials, from a set of discrete observations of788

a single particle. We propose a novel estimator which is obtained by computing the zero of789

a martingale estimating function based on the eigenvalues and the eigenfunctions of the gen-790

erator of the mean field limit, linearized around the (unique) invariant measure of the mean791

field dynamics. We showed both theoretically and numerically the asymptotic unbiasedness792

and normality of our estimator in the limit of infinite data and particles, providing also a rate793
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of convergence towards the true value of the unknown parameter. In particular, we observed794

that these properties hold true if the number of particles is much larger than the number795

of observations. Even though our theoretical results require uniqueness of the steady state796

for the mean field dynamics, our numerical experiments suggest that our method works well797

even when phase transitions are present, i.e., when there are more than one stationary states.798

Moreover, we compared our estimator with the maximum likelihood estimator, demonstrat-799

ing that our approach is more robust with respect to small values of the sampling rate. We800

believe, therefore, that the inference methodology proposed and analyzed in this paper can801

be very efficient when learning parameters in mean field SDE models from data.802

The work presented in this paper can be extended in several interesting directions. First,803

the main limitation of our methodology is the fact that in order to construct the martingale804

estimating function we have to know the functional form of the invariant measure of the805

mean field SDE, possibly parameterized in terms of a finite number of moments. There are806

many interesting examples of mean field PDEs where the self-consistency equation cannot be807

solved analytically or, at least, its solution depends on the unknown parameters in the model.808

Therefore, it would be interesting to lift this assumption by first learning the invariant measure809

from data and then applying our martingale eigenfunction estimator approach. This leads810

naturally to our second objective, namely the extension of our methodology to a nonparametric811

setting, i.e., when the functional form of the confining and interaction potentials are unknown.812

Thirdly, we want to obtain more detailed information on the computational complexity of the813

proposed algorithm, in particular when more eigenfunctions are needed for our martingale814

estimator and when we are in higher dimensions in space. We will return to these problems815

in future work.816
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1989, vol. 1464 of Lecture Notes in Math., Springer, Berlin, 1991, pp. 165–251, https://doi.org/10.919
1007/BFb0085169.920

[42] J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86921
(2014), pp. 257–284, https://doi.org/10.1080/17442508.2013.775287.922

[43] J. Wen, X. Wang, S. Mao, and X. Xiao, Maximum likelihood estimation of McKean-Vlasov stochastic923
differential equation and its application, Appl. Math. Comput., 274 (2016), pp. 237–246, https://doi.924
org/10.1016/j.amc.2015.11.019.925

[44] N. Yoshida, Phase transition from the viewpoint of relaxation phenomena, Rev. Math. Phys., 15 (2003),926
pp. 765–788, https://doi.org/10.1142/S0129055X03001746.927

This manuscript is for review purposes only.

https://doi.org/10.1016/j.apm.2017.08.024
https://doi.org/10.1016/S0304-4149(01)00095-3
https://doi.org/10.1016/j.spa.2009.05.003
https://doi.org/10.1016/j.spa.2009.05.003
https://doi.org/10.1016/j.spa.2009.05.003
https://doi.org/10.1007/978-1-4939-1323-7
https://doi.org/10.1098/rspa.1974.0030
https://doi.org/10.1098/rspa.1974.0030
https://doi.org/10.1098/rspa.1974.0030
https://arxiv.org/abs/2106.13751
https://doi.org/10.1007/0-8176-4436-9
https://doi.org/10.1007/0-8176-4436-9
https://doi.org/10.1007/0-8176-4436-9
https://doi.org/10.1007/BFb0085169
https://doi.org/10.1007/BFb0085169
https://doi.org/10.1007/BFb0085169
https://doi.org/10.1080/17442508.2013.775287
https://doi.org/10.1016/j.amc.2015.11.019
https://doi.org/10.1016/j.amc.2015.11.019
https://doi.org/10.1016/j.amc.2015.11.019
https://doi.org/10.1142/S0129055X03001746

	Introduction
	Problem setting
	Parameter estimation problem
	Main results

	Numerical experiments
	Sensitivity analysis and rate of convergence
	Comparison with the maximum likelihood estimator
	Diffusion coefficient
	Central limit theorem
	Bistable potential
	Nonsymmetric confining potential

	Proof of the main results
	Limits of the estimating function and its derivative
	Zeros of the limits of the estimating function
	Proof of the main theorems

	Conclusion

