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Abstract
Using independent runs of an optimization algo-
rithm is a standard scheme for finding the mini-
mizer of an objective function. In this paper we
seek to improve this practice by allowing the dif-
ferent optimizers to interact. The question that
arises is: how can one choose the interaction struc-
ture that will result in the fastest convergence
while maintaining minimal communication costs?
To investigate this issue we formulate it through
the optimization of the spectral gap of interacting
Langevin dynamics. In the case of a linear inter-
action, the spectral gap is directly related to the
spectrum of the Laplacian matrix that character-
izes the interaction. We present early numerical
results in both convex and non-convex settings
that illustrate the benefit of choosing the right
kind of interaction structure.

1. Introduction
The challenge of finding optimal schemes for both sampling
and optimization (Ma et al., 2019) is a relevant topic due
to the ever-increasing use of machine learning algorithms
on data. In recent years the challenge of finding such opti-
mal schemes has been addressed by changing the dynamics
through e.g. the addition of nonreversible perturbations
(Lelievre et al., 2013) (Duncan et al., 2016), Riemannian
manifold optimization (Patterson & Teh, 2013) or precon-
ditioning (AlRachid et al., 2018). Recent attempts have
been made to do this using interacting systems (Borovykh
et al., 2021). Rather than using independent runs of gradient
dynamics, hereby referred to as particles, we allow them to
interact. The goal in this setting is to choose the interaction
in such a way that i) one can speed up convergence to the
minimizer while having ii) consensus between all the parti-
cles, and iii) maintaining low communication costs. In this
paper we aim to shed more light on the challenge of finding
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the right kind of interaction potential by formulating the
problem through the spectral gap in the Langevin dynamics.
In previous work the spectral gap of the generator of the
dynamics has been shown to control the convergence speed
to the invariant measure (Bauerschmidt & Bodineau, 2019)
(Bakry et al., 2008) or the mixing speed of Markov chains
(Boyd et al., 2004). We first present the relationship between
sampling from an invariant measure and minimizing an ob-
jective function and show that including interactions does
not alter the optimum. Then we characterize convergence to
the invariant measure through the spectral gap and connect
the spectral gap to the spectrum of the interaction matrix.
Finally, our numerical examples show how the right kind of
interaction structure can maximize the convergence speed
and reduce asymptotic variance in convex and non-convex
settings while maintaining low communication costs.

2. The setting
Consider an objective function f : Rd → R. The goal is to
find a minimizer x∗,

x∗ = arg min
x∈Rd

f(x).

This goal can be reformulated through the problem of sam-
pling from the probability measure

π(dx) =
1

Z
e−

σ2

2 V (x)dx, Z =

∫
e−

σ2

2 V (x)dx, (1)

where x =
(
x1
T
, ..., xN

T )T is the concatenation vector
of all particles and σ2 acts as a user chosen annealing pa-
rameter. An obvious choice is to set V (x) =

∑N
i=1 f(xi),

which is equivalent to sampling independentlyN times from
a density proportional to e−

σ2

2 f and computing the mode.
This choice does not involve any interaction between the
particles. Instead one could choose,

V (x) =

N∑
i=1

f(xi) +
1

2

N∑
i=1

N∑
j=1

Aij(x
i − xj)2, (2)

where the interaction potential is chosen to be quadratic
with interaction matrix A, where Aij = 0 if two particles
are not connected and do not communicate or interact.

Our first goal is to design dynamics with invariant distribu-
tion being π, and in addition such that all particles achieve
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consensus at some point in time (even if asymptotically).
Consensus strictly means xi = xj for all i, j = 1, ..., N ,
but here we adopt the convention that xi, xj are very close
with high probability. The Langevin dynamics for (2) are
given by,

dxit = −∇f(xit)dt−
N∑
j=1

Aij(x
i
t − x

j
t ) + σdBit,

whereBit are d-dimensional independent Brownian motions.
The initial condition can be set to a value xi0 = xi or distri-
bution xi0 ∼ π0. The second goal of these dynamics is to
converge to stationarity quickly with minimal communica-
tion between particles.

We can rewrite these dynamics in vectorized form,

dxt = −∇f(xt)dt− Lxtdt+ σdBt, (3)

where f is the concatenation of gradients and the graph
Laplacian is given by L = (Diag)(A1N ) − A) ⊗ Id with
smallest eigenvalue zero. The self-adjoint generator of (3)
is,

Aφ = −
dN∑
j=1

∇jV (x)
∂

∂xj
φ+

1

2
σ2

dN∑
i,j=1

∂2

∂xi∂xj
φ.

The spectral gap λ for a stochastic process with generator
A is defined as the smallest non-zero eigenvalue of the
generator,

λ = sup
{

Re(z) : z ∈ σ(A), z 6= 0
}
,

where σ(A) is the spectrum of the generator A (Pavlio-
tis, 2014). The spectral gap determines the convergence
rate to stationarity. To appreciate how relevant this is for
optimisation consider the risk bound,

|E[V (xt)]− V (x∗)| ≤ |E[V (xt)]− Eπ[V (x)]|
+ |Eπ[V (x)]− V (x∗)|.

The first term is affected by λ through (4) and the second
term depends on σ2 and how π is centered around x∗. After
some number of iterations, xt can be thought as approximate
samples from π and the mode can be used as an estimate
of x∗. This requires that N concatenated copies of the
optimizer of f(x) are equal to the one from V (x) in (2).
This can be achieved for A being doubly stochastic.

Lemma 2.1 (Interaction does not alter the optimum). Let
x∗ := arg minx f(x), and let V (x) be as defined in (2). Let
A be doubly stochastic. Then x∗ is a minimizer of V (x).

Proof. See Lemma 21 in (Borovykh et al., 2021).

3. Convergence results through spectral gaps
We present two performance measures based on the spectral
gaps that control the convergence speed to the invariant
measure (1). The relevant quantities are: i) λmax − λmin,
the largest and smallest eigenvalues of A and ii) λ2, the
second-smallest eigenvalue of A.

3.1. A spectral gap result

Let πt be the probability law of the process xt at time t. A
standard convergence result is

||πt − π|| ≤ Ce−λt||π0 − π||, (4)

which is valid various choices of the norm || · ||, e.g.
L2(RdN , π−1dx) with C = 1 for reversible, self-adjoint
dynamics (Lelievre et al., 2013) or the Wasserstein distance
(Bakry et al., 2013); see (Pavliotis, 2014) for an overview.

Note that the spectral gap of the generator can be computed
explicitly for a quadratic potential function (Metafune et al.,
2002) (Lelievre et al., 2013) (Ottobre et al., 2012). Consider
a linear system with,

f(x) = ||Mx− b||22, (5)

where M is some matrix and let M̂ = M ⊗ IN . The
convergence rate can be expressed through the eigenvalues
of the interaction matrix.

Proposition 1. Consider the dynamics in (3) with f as in
(5). The spectrum of A is given by,

σ(A) =

{ r∑
j=1

−njλj , nj ⊂ N
}
,

where {λj}rj=1 are the r distinct eigenvalues of the matrix
B defined as B := M̂ + L.

Proof. The result is a straight-forward adaptation of The-
orem 3.1 in (Metafune et al., 2002) or Proposition 10 in
(Lelievre et al., 2013).

From the definition of the spectral gap, it follows that λ for
the stochastic process (3), λ = λB2 where λB2 is the second-
smallest eigenvalue of B. The work of (Boyd et al., 2004)
similarly optimizes the second-largest eigenvalue modulus
of the transition matrix to maximize the mixing rate of
Markov chains.

3.2. A Log-Sobolev convergence result

The problem that we study in this work is related to the study
of Gibbs measures for unbounded spin systems (Bauer-
schmidt & Bodineau, 2019). Our second convergence result
is a bound on the relative entropy for π and a test function ϕ :
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Rd → R defined as Entπ(ϕ) = π(ϕ logϕ)−π(ϕ) log π(ϕ)
with π(ϕ) :=

∫
ϕ(x)π(dx). The bound on the relative en-

tropy in turn can be used to bound the Wasserstein distance
in (4) and hence the total variation (Bakry et al., 2013). We
present the result for the mean-field case; it holds more
generally with 〈A〉 = λmax − λmin as long as 〈A〉 < N .
Proposition 2. The Gibbs measure π of the N -particle
system with mean-field interaction Aij = 1

N−1 for i 6= j as
in (3) satisfies a Log-Sobolev inequality (LSI) with 〈A〉 = 1,

Entπ(f2) ≤ 2

(
1 +

2N〈A〉
N − 〈A〉

)
π(|∇f |2).

Proof. Observe that we can rewrite V (x) as,

N∑
i=1

(
f(xi) +

1

2

(∑
k

Aki

)
x2i

)
− 1

2

N∑
j 6=i

Aijx
ixj .

The Gibbs measure (1) of the N -particle system becomes

π(dxN ) =
1

ZN
e−

σ2

2

∑
i6=j Aijxixj

N∏
j=1

µ(dxi),

where µ(dx) = 1
Z e
−σ2(f(x)+ (N−1)

2N x2)dx and we used the
double stochasticity of A. The result follows by application
of Theorem 1 from (Bauerschmidt & Bodineau, 2019).

This implies that (4) holds with λ =
(

1 + 2N〈A〉
N−〈A〉

)−1
.

4. Numerical examples
We demonstrate numerically i) the benefit of interactions
in speeding up convergence to optimality and consensus,
ii) the role of the spectrum of the interaction matrix in
controlling the convergence rate, and iii) the effect of the
interaction matrix on the communication costs. We simulate
the SDEs using Euler discretization with learning rate 0.01,
∆t = 0.01, noise σ = 0.01, and in the linear system M has
condition number 100.

4.1. The effect of interaction in a convex system

To show the importance of interactions in a linear system (5)
we compare an independent system to one with a mean-field
interaction given by Aij = 1

N−1 for i 6= j and Aii = 0.
Figure 1 shows the convergence speed and the histogram of
the 500 final losses V (xt).

4.2. The role of the convergence metrics

Consider again the linear system (5); we now analyze the
influence of the spectral gap through the convergence of two
different Barbell interaction graphs. In Figure 2 we observe
an initial faster convergence of the system with the higher
second-smallest eigenvalue.

Figure 1. A linear system: convergence speed (T) and histogram
of the last 500 losses (B) for 100 interacting (orange) and non-
interacting particles (pink).

4.3. Communication costs in a non-convex setting

Lastly, we show the benefits of optimizing the interaction
graph in terms of both achieving consensus faster as well
as using less communication. We consider the interaction
parametrized as follows,

Aij = φ(xi − xj) =


a, for ||xi − xj ||2 ≤ 1√

2
,

b, for 1√
2
< ||xi − xj ||2 ≤ 1,

0, for ||xi − xj ||2 > 1,

where xi and xj are the particles. Note that the matrix is thus
time-varying. The parameters a and b determine the strength
of the interaction: a high b/a will result in a stronger attrac-
tion between particles that are further away from each other.
Such heterophilious dynamics have been shown to lead to
faster convergence (Motsch & Tadmor, 2014). We consider
the Muller-Brown potential as the optimization objective,
where each xi = [x, y],

f(x, y) =

4∑
i=1

Aie
ai(x−x̄i)2+bi(x−x̄i)(y−ȳi)+ci(y−ȳi).

The problem of finding the optimal interaction structure
here amounts to optimizing b/a. In Figure 3 we plot the
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Figure 2. Convergence speed (T) and histogram of the last 500
losses (B) for 100 interacting agents with a Barbell graph with
two clusters of 48 (green) and 40 (purple) particles each with a
connection length of 2 (green) and 20 (purple).

x-coordinate evolution over time and Figure 4 shows the
communication cost (i.e. how many agents communicate
their values) for different values of b/a. A higher b/a results
in faster convergence to consensus with lower communica-
tion cost.

5. Conclusion
We showed how the spectral gap of the generator of the
optimization dynamics can be used to control convergence
speed and consensus (or spread of the particles). The expres-
sion for the spectral gap of the generator can be explicitly
derived in the setting of a linear interaction potential and ob-
jective function where it is defined through the spectrum of
the interaction matrix. By allowing for interactions between
the particles one can control the convergence of the dynam-
ics as well as the asymptotic variance. In future work we
will derive explicit convergence bounds for the distance to
the optimum and show how to optimize the interaction ma-
trix for fast convergence while not exceeding a pre-defined
communication budget.

Figure 3. Non-convex Muller-Brown potential: evolution of the
different particles (colored lines) to various minima and saddle
points (grey lines) (T) a = 10 and b = 1, (C) a = 1 and b = 1
and (B) a = 1 and b = 10. More consensus is achieved faster for
higher b/a.

Figure 4. Non-convex Muller-Brown potential: the cumulative
communication costs i.e. number of times Aij 6= 0 for differ-
ent values of b/a. The right kind of communication results in fast
convergence and low communication cost.
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