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Abstract. We study the problem of Brownian motion in a multiscale potential. The potential is3
assumed to have N +1 scales (i.e. N small scales and one macroscale) and to depend periodically on4
all the small scales. We show that for nonseparable potentials, i.e. potentials in which the microscales5
and the macroscale are fully coupled, the homogenized equation is an overdamped Langevin equation6
with multiplicative noise driven by the free energy, for which the detailed balance condition still holds.7
This means, in particular, that homogenized dynamics is reversible and that the coarse-grained8
Fokker-Planck equation is still a Wasserstein gradient flow with respect to the coarse-grained free9
energy. The calculation of the effective diffusion tensor requires the solution of a system of N coupled10
Poisson equations.11
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1. Introduction. The evolution of complex systems arising in chemistry and15

biology often involve dynamic phenomena occurring at a wide range of time and16

length scales. Many such systems are characterised by the presence of a hierarchy17

of barriers in the underlying energy landscape, giving rise to a complex network of18

metastable regions in configuration space. Such energy landscapes occur naturally in19

macromolecular models of solvated systems, in particular protein dynamics. In such20

cases the rugged energy landscape is due to the many competing interactions in the21

energy function [10], giving rise to frustration, in a manner analogous to spin glass22

models [11, 40]. Although the large scale structure will determine the minimum en-23

ergy configurations of the system, the small scale fluctuations of the energy landscape24

will still have a significant influence on the dynamics of the protein, in particular the25

behaviour at equilibrium, the most likely pathways for binding and folding, as well as26

the stability of the conformational states. Rugged energy landscapes arise in various27

other contexts, for example nucleation at a phase transition and solid transport in28

condensed matter.29

30

To study the influence of small scale potential energy fluctuations on the system31

dynamics, a number of simple mathematical models have been proposed which cap-32

ture the essential features of such systems. In one such model, originally proposed by33

Zwanzig [56], the dynamics are modelled as an overdamped Langevin diffusion in a34

rugged two–scale potential V ϵ,35

(1) dXϵ
t = −∇V ϵ(Xt) dt+

√
2σ dWt, σ = β−1 = kBT,36

where T is the temperature and kB is Boltzmann’s constant. The function V ϵ(x) =37

V (x, x/ϵ) is a smooth potential which has been perturbed by a rapidly fluctuating38

function with wave number controlled by the small scale parameter ϵ > 0. See Figure39

1 for an illustration. Zwanzig’s analysis was based on an effective medium approxima-40

tion of the mean first passage time, from which the standard Lifson-Jackson formula41
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[33] for the effective diffusion coefficient was recovered. In the context of protein42

dynamics, phenomenological models based on (1) are widespread in the literature, in-43

cluding but not limited to [3, 28, 37, 53]. Theoretical aspects of such models have also44

been previously studied. In [13] the authors study diffusion in a strongly correlated45

quenched random potential constructed from a periodically-extended path of a frac-46

tional Brownian motion. Numerical study of the effective diffusivity of diffusion in a47

potential obtained from a realisation of a stationary isotropic Gaussian random field is48

performed in [6]. More recent works include [23, 22] where the authors study systems49

of weakly interacting diffusions moving in a multiwell potential energy landscape,50

coupled via a Curie-Weiss type (quadratic) interaction potential and [34] in which the51

authors consider enhanced diffusion for Brownian motion in a tilted periodic poten-52

tial expressing the effective diffusion in terms of the eigenvalue band structure. It is53

also worth mentioning a series of works [47, 4, 19, 54] studying multiscale behaviour54

of diffusion processes with multiple-well potentials in which the limiting process is a55

chemical reactions instead of a diffusion. We also mention [14], where the combined56

mean field/homogenization limit for diffusions interacting via a periodic potential is57

considered. The main result of this paper is that, in the presence of phase transitions,58

the mean field and homogenization limits do not commute.59
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Fig. 1: Example of a multiscale potential. The left panel shows the isolines of the
Mueller potential [49, 39]. The right panel shows the corresponding rugged energy
landscape where the Mueller potential is perturbed by high frequency periodic fluc-
tuations.

For the case where (1) possesses one characteristic lengthscale controlled by ϵ > 0,60
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