Data-driven coarse graining in action: Modelling and prediction of complex systems
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In many natural, technological, social and economic applications, one is commonly faced with
the task of estimating statistical properties from empirical data (experimental observations), such
as mean-first-passage times of a temporal continuous process. Typically, however, an accurate and
reliable estimation of such properties directly from the data alone is not possible as the time series
is often too short, or the particular phenomenon of interest is only observed rarely. We propose
here a theoretical-computational framework which enables the systematic and rational estimation of
statistical quantities of a given temporal process, such as waiting times between subsequent bursts
of activity. Our framework is illustrated with applications from real-world data sets, ranging from

marine biology to climate change.

Over the last few years, there has been an increas-
ing demand for capturing generic statistical properties of
complex systems based on available data only. The term
complex systems here refers to a class of problems for
which the number of variables is either sufficiently large
and/or each of the variables has a behavior which is indi-
vidually erratic or totally unknown, but in spite of this,
the system as a whole can posses orderly and analyzable
average properties.

Such systems are strongly influenced by random fluctu-
ations which play a crucial role in the various intriguing
phenomena emerging in temporal observations [20, 23],
e.g. dynamic state transitions. Understanding the under-
lying complex processes of such phenomena is a common
task in many disciplines, but often it is not even possible
to estimate statistical properties directly from empirical
data alone because e.g. the phenomenon of interest oc-
curs rarely. In a purely reductionist approach, one could
try to derive the governing equations of the process from
first principles. This bottom-up approach, however, is of-
ten impossible and in the few cases where it can be done,
the resulting mathematical models are fairly complicated
due to the high-level of detail involved in their derivation
which makes them computationally prohibitive.

An alternative approach is to identify a reduced (coarse
grained) model on the basis of the experimental data
which retains the fundamental aspects of the original sys-
tem. This is in fact at the core of data-driven coarse-
graining methodologies but despite their fundamental
significance, to date there does not exist a rational and
systematic framework for obtaining coarse-grained mod-
els from empirical observations. Relying exclusively on
the observations and treating the corresponding reduced
model as a “black box” (that is, in technical terms using
nonparametric estimators [36], see also [16] for a review
of such techniques) is, however, not reasonable since such
an approach is typically rather crude and introduces er-
rors in regions where only few observations exist, such
as in rare phenomena (see also discussion in [44]), thus
corrupting model-based predictions. A more general pro-

cedure is to follow a semiparametric approach where we
postulate a model, i.e. we introduce a parametric ansatz
(in a “grey-box” modelling approach) which is consis-
tent with the essential characteristics of the experimental
data, such as for example dynamic state transitions.

In this study we outline a unified generic theoretical-
computational framework for data-driven modelling
based on the above semiparametric approach with the
ultimate aim of analysing complex phenomena arising in
a wide spectrum of different systems. A schematic rep-
resentation of our methodology is shown in Fig. 1 which
consists of two main steps: A model selection (postulate
- assess/validate) procedure, which allows to select a sim-
ple coarse grained model, and a second prediction step
where the predictive capability of the selected model is
tested, i.e. we use it to find and predict both analytically
and numerically the behaviour of several underlying sta-
tistical quantities of interest which cannot be obtained
from the original data. The key point of the proposed
methodology is that it is a synergistic interdisciplinary
approach that combines elements from critical phenom-
ena physics, statistical physics and stochastic processes.
To exemplify the methodology we use two representa-
tive examples of current interest, namely experimental
observations of the foraging behaviour of marine preda-
tors [21], and the temperature record during the last
glacial period [4].

Generic data-driven modelling framework

We are mainly interested in systems where the under-
lying noisy process is continuous with respect to time and
so we focus on simple continuous-time models which are
solutions of the following prototypical stochastic differen-
tial equation (SDE) (see e.g. [24, 30] for an introduction)
that represents a diffusion process:

dX = f(X;0)dt + g(X;60)dW; , (1)
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FIG. 1: Flow chart of the data-driven modelling framework. Given observations (data) we postulate a
coarse-grained stochastic parametric model which is fitted (via statistical inference and time series analysis tools) to
the data and refined via a model selection process. In particular, via an assessment/validation and fine-tuning
procedure we determine the structure of the model and the minimum number of parameters needed. Once the
model has been validated, it is used to predict underlying statistical properties of interest by making use of critical
phenomena, statistical physics and stochastic processes tools. The far-left figure is a numerical example of Brownian
motion in a two-dimensional potential.

which is understood in It&’s convention (see e.g. [32]),
with initial condition X (0) = 2 € RY, where X describes
a fluctuating variable of interest, and f and g are the so-
called drift and diffusion coefficients, respectively, with
the latter controlling the influence of the stochastic driv-
ing through a Wiener process, W;. Given a series of ex-
perimental observations, we wish to fit the above model
to the observations. The unknown model parameter vec-
tor 6 is then estimated by using a maximum likelihood
methodology (details are given in the Methods section).
Using this data-driven modelling framework it is possible
to identify simple (i.e. small number of unknown param-
eters) yet adequate, models which retain the essential
statistical properties of the actual process. Once several
possible model candidates are identified, we proceed with
a model selection procedure which statistically compares
and assesses the different models (more details are given
in the Methods section). This allows us to narrow our
search down to two possible models which are similar to
each other and are good candidates to describe the ob-
served complex phenomena.

We then validate these two models by computing quan-
tities that can be directly compared with the experimen-
tal data, for example the probability distribution func-
tion (PDF). After this final step, we can study and pre-
dict different statistical properties and quantities of in-
terest, such as exit times, or the mean-first-passage time
(MFPT) of X solving (1) (details are given in the Meth-
ods section). In the following we apply our methodology
to two seemingly unrelated examples of complex systems
which are of fundamental significance in current topical
research areas, such as ecology and climate change.

Representative Example I: Movement patterns of
marine predators

The study of foraging behaviour in marine life is an
active research topic in ecology that has received con-
siderable attention over the last few years. For example,
analysis of the movement displacements of marine preda-
tors has suggested that, in certain cases, e.g. when the
prey is sparse, predators adopt an optimal search strat-
egy based on Lévy flights [21, 43] — a special case of a
random walk for which the movement displacements fol-
low a PDF with a power-law tail. Understanding how
such complex behaviour is linked to, e.g., the environ-
ment conditions and the available prey distribution [6] or
the predator’s physiological capabilities [46], and, more
importantly, how to predict it in terms of simple statis-
tical models, has become a major goal (see e.g. [38] and
references therein).

Observations.- We consider the experimental obser-
vations of the movement pattern of an ocean sunfish
(Mola mola) obtained by Humphries et al. [21] in a re-
cent study to identify Lévy flights and Brownian move-
ments in marine predators. Figure 2(a) shows the time
series of the predator’s diving depth (in positive value
with respect to the sea surface) over a period of 4.5 days.
The data set contains n = 37800 observations with tem-
poral sampling rate At = 10 s. It is evident that the
predator’s behaviour is characterized by a complex inter-
mittent dynamics which reveals at least two interesting
patterns. Firstly, the individual seems to have two pre-
ferred habitats, i.e. depths where it spends most of its
time, characterized by two main peaks in the histogram
of the data [see Fig. 2(b)] located at depths of approx-
imately 5.5 m and 26.5 m. The second interesting phe-
nomenon is that the individual, on rare occasions, un-
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FIG. 2: Analysis of marine predator movements. (a) Diving depth time series of an ocean sunfish (Mola mola)
(data is obtained from [21]). (b) PDF of the experimental observations (histogram in gray) and the numerical ones
obtained from models M1 and M2. The form of the PDF can be used to demarcate three habitats, I, IT and III. (c)

Time series of the fitted coarse-grained process X computed by using model M1. (d) PDF of the waiting times
between large bursts of activity computed numerically by using model M1 and M2 (both models give the same results
for the waiting times). The solid line corresponds to a fit with the function P(T") = az~7 exp (—bz) with exponent
v =1.54£0.06. (¢) PDF of the total diving length ¢. The solid line corresponds to a truncated power law
P(¢) ~ ¢ " exp (—{/Ly) with exponent p = 1.83 £ 0.09. The different points in (d,e) correspond to different values
of the threshold, namely X, = 25 (o), 30 (O), and 35 (¢),

dertakes dives into regions which are significantly deeper
than its favourite habitats. To perform a statistical anal-
ysis of this behaviour we approximate it by means of a
stochastic model.

Model Selection.- We first note that to postulate a
simple model for the diving depth dynamics one needs to
take into account the sea surface as a natural boundary
in the problem so that the diving depth is always non-
negative. To this end, we consider the change of variable
Y =In(X) so that Y solves an SDE of form (1) with drift
function f and diffusion coefficient §g. These coefficients
are expanded in terms of the new variable Y so that
we have the two following models (see Supplementary
Material for the full study comparing different models):

ML f(Y50) =320 0,7 §(Y:0) = b.

M2 f(V30) =37 0;Y7; §(V30) = b5,

which differ from each other on the number of parame-
ters: 7 for M1 and 9 for M2. The dynamics of the diving
depth is then given by X = exp (Y), and its correspond-
ing SDE can be generically written as:

dX = f(X;0)dt + 20X dW;, (2)

which has a multiplicative noise and where 20 equals ei-
ther g or fg in models M1 or M2, respectively. Note that
function f(X;0) is obtained from f(Y; 0) after changing
back to the variable X. Figure 2(c) depicts an example
of a time series generated from model M1, and 2(b) the
theoretical PDFs associated with both estimated models
superimposed on the experimental histogram. We ob-
serve that the numerically generated time series exhibits
a similar behaviour as the one observed experimentally,
and that there is a good match between the model PDF's
and the time series. In fact, they nicely reproduce the
bimodal nature of the empirical data in terms of both
locations and values. The fact that the drift function
of model M1 is contained in the drift of model M2 to-
gether with the observation that the associated model
PDFs are almost identical, indicates the robustness of
the parametrization. Both models are also very similar in
view of the statistical model selection criteria (see Section
2 in Supplementary Material). It is important to empha-
size that although this formulation is based on stochastic
models, which can give rise to unreal local fluctuations at
small time scales, it fully captures the macroscopic dy-
namics of the predator and the underlying quantities of
interest.



Prediction.- We now use models M1 and M2 to ac-
curately and confidently compute several quantities de-
scribing the dynamics of the predator. First, based on the
bimodal PDF we define three regions of interest (habi-
tats) as follows. Region I, which is the low-depth pre-
ferred habitat, is defined as depths which are shorter
than the local minimum at X7 = 10.5 m between the
two peaks of the PDF and so Region I corresponds to
X < Xi. Region II, which is the deeper preferred habi-
tat, is defined as X7 < X < Xy, where X1 = 41.3 m
is defined as the inflection point of the PDF for depths
larger than the second maximum. Finally, Region III,
which consists of unlikely and rare events, is defined as
the depths X > X7; [see Fig. 2(b)].

We now look at how long it takes on average to make
the transition from Region I to II. Specifically, based on
model M1 (model M2), the individual spends on average
approximately 7 = 1.24 h (7 = 1.41 h) in lower depths
corresponding to Region I before diving to deeper depths
of Region II. Conversely, when situated in its deeper
favourable habitat II, it takes on average approximately
T =4.48 h (7 = 4.87 h) before ascending to Region I ac-
cording to model M1 (model M2). On the other hand, it is
interesting to investigate the statistics of the rare events
when the individual dives deeper into Region ITI. We first
compute the transition time it takes for the predator to
dive from Region II to deep water into Region III, specif-
ically we consider dives to 150 m. We obtain that on
average it takes approximately 7 = 44.32 h (7 = 48.18 h)
in view of model M1 (model M2). We look next at the dis-
tribution of the waiting times between two consecutive
deep depths. In particular, we define the waiting time
T as the time the individual is in depths smaller than
X1 (i.e. X < Xjp) before migrating from Region IT to
Region III. Figure 2(d) shows the results obtained with
models M1 and M2 (both models give the same results)
observing that the PDF of T (which is normalised to
its mean value) follows a truncated power-law distribu-
tion, P(T') = aT~ Y exp (—T'/Tp), with exponent v ~ 1.54
which does not depend on the chosen threshold value, de-
noted as Xyy,.

Interestingly, this particular type of power-law dis-
tribution (with exponent close to 3/2) has been ob-
served ubiquitously in many different biological and phys-
ical systems exhibiting intermittent behavior (a signa-
ture usually of critical phenomena), from neuronal activ-
ity in the cortex [42], electroconvection of nematic lig-
uid crystals [22], fluid flow in porous media [29, 33| to
colloidal quantum dots [15] and additive noise-induced
transitions in dissipative systems [35]. Analytically, the
power-law behavior can be understood by considering
the first passage properties of the linearised SDE (2)
around a small value Xy below the threshold Xi;, which
to leading order corresponds to an underlying random
walk process that follows the SDE: dY = adt + 20dW4,
where a = 9x f(X;0)| x=x,- By looking then at the first-

passage properties of the random walk in a semi-infinite
domain one can show that the waiting times PDF fol-
lows a truncated power-law distribution with exponent
3/2 [34].

Finally, we can also analyse the statistics of the to-
tal diving length of the predator during a rare event,
which we denote as ¢(X), for a single trajectory X; for
i = 0,...,n, where n = T/At with T being the fi-
nal time. In particular, we define the total travelled
length as £ = £(X) = Y00 [Xiy1 — Xi| - w(X;), where
w(X;) is a function which is zero for X; < Xj; and
one otherwise. We compute the PDF of ¢ obtaining
that for long distances it follows a truncated power law,
P(¢) ~ ¢~ exp (—£/Lp) with an exponent p = 1.83+0.09
[see Fig. 2(e)]. It is noteworthy that the statistics of ¢
follows a similar behaviour with the statistics of the step
length defined in [21] where an exponent of p = 1.92 is
reported indicating the predator follows a Lévy searching
description within a certain range step length.

Representative Example II: Climate transitions
during the last glacial period

Ice core records from Greenland reveal many intrigu-
ing phenomena of Earth’s past climate and in particular
records covering the last glacial period, approximately
from 70 ky (1 ky = 1000 y) until 20 ky before present,
are dominated by repeated rapid climate shifts, the so-
called Dansgaard—Oeschger (DO) events [12], which are
characterised by abrupt warmings. While the origin of
these shifts is still actively debated [27], there seems to
be the general consensus that DO events are transitions
between two metastable climate states: a cold stadial and
a warm interstadial state. In addition to identifying the
underlying causes, it is also vital to understand how long
it takes between DO events, as this would potentially
yield indicators for the causes. Earlier research on this
problem, based on previously obtained ice core records,
reported a periodically occurrence of the DO events with
period of approximately mpo =~ 1.5 ky [18], which has
been subsequently refined to 1.47 ky [37, 41]. In a recent
work, based on the newer full North Greenland Ice Core
Project (NGRIP) record with its more accurate dating, it
has been reported that there is not significant statistical
evidence supporting the periodicity hypothesis of the DO
events. Moreover, it is argued that these climate shifts
are most likely due to stochastic events [13, 14]. Here
we use our data-driven framework to investigate the DO
events during the last glacial period without relying on
the periodicity hypothesis.

Observations.- We consider the 580 isotope record
(as a proxy for Northern Hemisphere temperature) dur-
ing the last glacial period which was obtained from the
NGRIP, Greenland’s newest ice core [4], consisting of
n = 1000 observations with temporal sampling rate of
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FIG. 3: Analysis of paleoclimatic data during the last glacial period. (a) Paleoclimatic record time
series [4]. (b) PDF of the experimental observations (histogram in gray) and the numerical ones obtained from
model M1 and M2. (c¢) Time series of the fitted coarse-grained process X computed by using model M2. (d) and (e)
PDF of the residence times 7,, for which the solution is in the cooler state and PDF of the durations 74 of the DO
events, normalised to their corresponding mean values and for different values of the threshold, namely X;, = —42
(o), —42.2 (0), and —42.5 (¢). The solid lines correspond to the exponential function P(z) = exp (—z).

At = 0.05 ky [see Fig. 3(a)]. We observe a noisy tempo-
ral signal which is characterised by transitions between
two states. The periods when the temperature increases
up to the warm state until it abruptly goes down to the
cold state corresponding to the DO events, and these two
states give rise to a bimodal histogram, see Fig. 3(b).

Model Selection.- To account for transitions between
two states, we consider two different parametrisations in
the SDE model (1):

ML f(X30) =0 0;X7; g(X;0) = 0.

3 . 04 if X <04
M2: f(X50) =375 0;X7;9(X;0) = {95 X >0
Note that model M2 generalises model M1 to a piecewise
constant diffusion coefficient (again see Supplementary
Material for the full study comparing different models).
Figure 3(b) depicts the model-based PDFs in comparison
with the histogram of the original time series, observing
very good agreement between them. Due to its piece-
wise constant diffusion coefficient, the PDF associated
with model M2 also captures the drop in the histogram
around X = —42 [see Fig. 3(c)]. It is noteworthy that
although from a purely model selection criteria point of
view model M1 appears to be marginally preferable (see
Supplementary Material), M2 is a rather novel model in
this field and shows strong statistical resemblance with
the NGRIP data (something that should advocate the
use of models with a non-constant diffusion function also

in other fields). M1 has been postulated before as a dy-
namical model for the NGRIP record [27, 28], however,
in these studies, the accuracy of the model was not as-
sessed and predictions were not made, as is done here.
Moreover, the estimation procedure was ad hoc in that
it made use of the same data set repeatedly several times.

Prediction.- Using the identified models, we compute
the average time mpo between DO events during the last
glacial period by using the techniques described in the
Methods section. In particular, we calculate the time
Tpo as the average time to exit from a warm state plus
the average time to exit from a cold state. For model M1
this approach results in 7po ~ 1.602, while for model M2
in Tpo ~ 1.511. Both values, especially the one obtained
with model M2 are in very good agreement with the val-
ues previously reported in the literature (as noted earlier,
the most accurate value was 1.47 ky reported in [37, 41]).
It is important to note, however, that this previously re-
ported value was obtained by considering a deterministic
periodic model, something that has been recently ques-
tioned [13, 14], whereas the value we obtain here is from
a purely stochastic model which is derived via a data-
driven framework.

We next look at the statistics of both the residence
times in the cooler state, i.e. the waiting times between
DO events which we denote as 7,,, and the durations of
the DO events, i.e. the residence times in the warmer
state, which are denoted as 74. To this end, we de-
fine a threshold X;, separating the two states to be at



around —42.13 which corresponds to the mean value of
the signal so that 7, correspond to consecutive times for
which X < X;, and 74 to consecutive times for which
X > Xy, Figures 3(d,e) show the PDFs for both mag-
nitudes (normalised to their corresponding mean value)
observing that they follow an exponential behaviour,
P(z) = exp(—z) for z = 7,/ (1) or 74/(74). Such ex-
ponential behaviour can be understood analytically as
follows. First, we note that the waiting times 7, are
characterised by periods of time for which the solution
is locally fluctuating around the stable cooler state be-
fore jumping to the warmer state. We can approxi-
mate such local dynamics as fluctuations of a particle
around an effective harmonic potential which we express
as Vo = Vo + (1/2)V/(X0)(X — Xo)?, where X cor-
responds to the cooler stable state and Vj is its min-
imum value (see Supplementary Material for more de-
tails). Hence, we have that the local dynamics around
Xy follows the SDE, dX = a(Xo — X)dt + 0,dW; with
a = V! (Xp). After changing to Y = X — X, we obtain
an underlying local process which is given by the well-
known Ornstein-Uhlenbeck equation, a model for Brow-
nian motion with friction: dY = —aYdt + 04,dW;, the
first-passage properties of which are known to exhibit
an exponential behaviour [3, 17]. It is noteworthy that
this type of process appears in many other areas such as
mathematical finance [45] and neuronal dynamics [10].
A similar argument for the local dynamics around the
warmer state can also be applied so that the durations
74 also follow an exponential behaviour.

Discussion

We have presented a framework that allows to extract
reliable statistical properties from a short set of available
data (experimental observations) in a rational, system-
atic and efficient manner. By combining tools from sta-
tistical inference and time series analysis we are able to
assess a selection of different models which are fitted to
the data. Once the best model is selected and validated
we use it to trace the underlying statistical properties of
the system under consideration which are not accessible
from the experimental observations. Our approach aims
to find a coarse-grained (reduced) description of the full
system which in turn necessitates the introduction of an
appropriate stochastic process (to account for the unre-
solved degrees of freedom [39, 40]).

We have exemplified the methodology with two rep-
resentative examples relevant in different areas, namely
marine biology and climate prediction. We have first
analysed the movements of a particular marine preda-
tor [21] which exhibits a complex intermittent behaviour.
Our methodology has shown that the dynamics of the
predator can be fitted into a reduced stochastic model
with a multiplicative noise term from which we have

been able to extract information about the statistics of
the times spent in the different preferred habitats as
well as of the rare events for which the predator dives
into deep depths, observing that the waiting times PDF
follow a truncated power-law with exponent 3/2, a be-
haviour which is ubiquitously observed in many other sys-
tems. As a second example, we have analysed the ice-core
record during the last glacial period [4] which exhibits
repeated rapid climate shifts, the so-called Dansgaard—
Oeschger (DO) events. We have shown that such events
can be described by a stochastic model with (piecewise)
additive noise, obtaining that the average time between
two consecutive DO events is 1.51 ky, which is in agree-
ment with a previously reported value obtained using a
periodic model [37, 41]. We have also analysed the PDF
of both the waiting times between DO events and their
durations showing that they both follow an exponential
behaviour, a behavior which is observed in a wide spec-
trum of other systems.

The two examples analysed here thus belong to two
generic classes of systems described by truncated power-
law and exponential PDFs linked to the presence of mul-
tiplicative and additive noise, respectively. Moreover, in
all cases diffusion is the underlying ubiquitous process for
complex systems which can be described statistically, in-
cluding the usual Brownian motion but also intermittent
systems characterised by bursts of activity. The fact that
fundamentally different phenomena can be described by
the same model, Eq. (1), is a testimony of the wide ap-
plicability of the model. Of course as emphasised before
Eq. (1), the noisy process is taken to be continuous with
respect to time and hence it might not be able to repro-
duce all quantities of interest accurately from the outset
(e.g. PDF exponents) for processes which are not con-
tinuous, such as pure Lévy flights, but it will capture at
least part of the actual PDF behavior and as such it can
be used as a first step in the analysis of a time series,
a diagnostic tool to characterise the time series. For an
accurate description of the quantities of interest then the
noisy process in Eq. (1) would have to be viewed in a
more general context and the Wiener process would have
to be replaced with a discontinuous one, such as a Lévy
process, but the general framework in Fig. 1 remains un-
altered.

Our hope is that the outlined methodology can be ap-
plied to many other settings such as ranking processes [7]
or cellular networks [47], to name but a few. The systems
under consideration must be such that, either there isn’t
a macroscopic model, or it is difficult to obtain it, but due
to the underlying multiscale structure of the systems [31],
the global dynamics can be described by a coarse-grained
formulation. Another key point is that the semiparamet-
ric approach we follow here is sufficiently flexible in that
it allows other approaches, e.g. nonparametric which is a
more restrictive approach, or even analytic if the govern-
ing model is known, to be easily adapted into the formula-



tion. Understanding complex systems requires an arsenal
of tools from different disciplines such as critical phenom-
ena physics, statistical physics and stochastic processes
and all these are brought together in our methodology.
We expect that our results will improve the understand-
ing of complex systems and will open a new systematic
way for characterising their statistical properties.

METHODS

Parametric Inference for SDEs

To fit the parametrised model SDE (1) to available
discrete-time observations, we estimate the parameter
vector # € ©® C R™ using a maximum likelihood frame-
work due to its favourable theoretical properties; see
e.g. [5, 11] (refer to [26, 36] for an overview of alter-
native methods). Specifically, let &, := (X(ti))ogz'gn
be the sample of discrete-time observations of (1) with
true parameter 0*, at times 0 = tg < t; < - < t,, =
T. The maximum likelihood estimator (MLE) for 6*
based on X, is then given as any (if not unique) el-
ement that maximises the so-called likelihood function
over ©. That is, 0, € arg maxgcg Ln(0; X,,), where
L, (0; X,,) denotes the likelihood function based on the
observed data X, given by L, (0; X,,) = [17=y pe(tis1 —
ti, X (ti41)|X (t:))po (X (0)). Therein pg(z) denotes the
probability density function of the initial condition and
po(At, z|y) denotes the conditional density function, i.e.
transition density associated withe the SDE, of value z
being reached in At time units when currently being at
state y. As the transition density py(-,-|-) is only rarely
known in closed-form, one has to approximate it to make
this approach feasible in practice. In this work we adopt
the closed-form expansion due to Alt-Sahalia [1, 2]. The
main idea is to transform the problem into one with tran-
sition densities that can be approximated accurately by
means of an expansion in terms of Hermite polynomi-
als. After inverting the transformation, the expansion
of po(-,-|-) is given in closed form. The coefficients de-
termining this expansion depend on the considered func-
tional form of both drift and diffusion in (1) and can
become rather involved. Using a careful combination
of symbolic and numerical computations, it is possible
nonetheless to evaluate these coefficients.

It is noteworthy that, while the MLE worked well for
the data sets used in this work, it becomes biased for ex-
amples with multiple time scales. In these circumstances
specialist methods, such as those in [25], are more appro-
priate and should be used.

Model Selection

There is a wide range of model selection criteria
available in the literature, which are used to statisti-
cally compare different model parameterisations against
each other [8]. Here we use two techniques, both re-
lying on the maximised likelihood function of the con-
sidered model and the available observations X, i.e.
they depend on L, (én;Xn). Let én be the estimated
m-~dimensional parameter vector in the SDE model (1).
Then we use the finite sample size corrected Akaike In-
formation Criterion (AICc), given by AICc = 2m(n +
1)/(n —m) — 2In (Ln(én;Xn)). Furthermore, we use
the Bayesian Information Criterion (BIC), defined as
BIC = mln(n+1) — 2In (Ln(én; X,)). Both criteria
provide a measure of the relative quality of the SDE
parametrisation (1) (i.e. of the statistical model), based
on the given set of data. In particular, they are designed
to penalise over-fitted models, i.e. a parametrisation with
many parameters is not as valuable as a parametrisation
with fewer parameters, unless it significantly improves
the goodness of the fit. The only difference between these
techniques is how this trade-off between complexity and
goodness of the fit is realised: the AICc penalises the
number of parameters not as strongly as does the BIC.
In both cases the preferred criterion is the one with a
minimum value. Although the AICc has sometimes the-
oretical advantages and can be practically advantageous
[8], we also monitor the BIC.

Exit from a domain

For a given SDE model such as (1), we wish to compute
the mean first passage time (MFPT), which is defined as
follows. For a domain D C R? we wish to know how long
it takes on average for the process X to leave the domain
D for the first time when the process is initially started
at x € D:

m(z) :=E(inf{t >0: X(t) ¢ D, X(0)==a}). (3)

Note that if ¢ D, then 7(x) = 0 by definition. To
approximate 7 one typically resorts to Monte Carlo tech-
niques based on numerically solving the SDE (1). For
example, recently a multilevel Monte Carlo method has
been introduced, which significantly reduces the compu-
tational cost over the costs for standard Monte Carlo
approaches [19]. For small dimensions (i.e. d < 3), an
alternative way of approximating 7 is to exploit the rela-
tion between statistical properties of the solution to SDE
(1) and PDE theory. In fact, 7 solves the deterministic
PDE

1
f~V7+§ggT:VVT:—1 inD,



equipped with appropriate boundary conditions on 0D.
The boundary conditions (e.g. reflection or absorption on
0D) depend on the problem at hand, i.e. on the statistical
property one is interested in.

The fact that 7 solves a PDE is particularly useful in
one-dimension (d = 1). In that case, the PDE reduces
to an ODE and can be solved analytically. In fact, let
D :=(I,r), then the MFPT 7(x), x € D, can be written

_ o [T [T () —Yk)
T(z) = 2/1/1 B dz dy

+ Cl/l exp (—(y)) dy + co ,

where ¢(z) =2 [)* 9(2) 2 f(2) dz and the constants cq, c;
are determined from the boundary conditions. This ex-
plicit representation of 7 is not only of practical interest,
but also amenable to a simplified mathematical analysis
of the MFPT, such as a sensitivity analysis with respect
to the parametrisation [9)].
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