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Abstract
Using thermodynamic and variational principles we examine a basic phase
field model for a mixture of two incompressible fluids in strongly perforated
domains. With the help of the multiple scale method with drift and our
recently introduced splitting strategy for Ginzburg–Landau/Cahn–Hilliard-type
equations (Schmuck et al 2012 Proc. R. Soc. A 468 3705–24), we rigorously
derive an effective macroscopic phase field formulation under the assumption
of periodic flow and a sufficiently large Péclet number. As for classical
convection–diffusion problems, we obtain systematically diffusion–dispersion
relations (including Taylor–Aris-dispersion). Our results also provide a
convenient computational framework to macroscopically track interfaces in
porous media. In view of the well-known versatility of phase field models,
our study proposes a promising model for many engineering and scientific
applications such as multiphase flows in porous media, microfluidics, and fuel
cells.
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1. Introduction

Fluid mixtures are ubiquitous in many scientific and engineering applications. The dynamics
of phase interfaces between fluids plays a central role in rheology and hydrodynamics
[9, 12, 17, 22, 34]. A recent attempt of a systematic extension towards non-equilibrium
two-phase systems is [38], where the authors discuss the concept of local thermodynamic
equilibrium of a Gibbs interface in order to relax the global thermodynamic equilibrium
assumption. In [24], it is shown that the Cahn–Hilliard or diffuse interface formulation of
a quasi-compressible binary fluid mixture allows for topological changes of the interface.
Also of increasing interest is the mathematical and physical understanding of wetting using
diffuse interface formulations [45, 46] as well as wetting in the presence of complexities such
as electric fields [16, 25].

The study of flows in porous media is a delicate multiscale problem. This is evident, for
instance, by the fact, that the full problem without any approximations is not computationally
tractable with the present computational power [2, 20]. Also, from an empirical perspective the
consideration of the full multiscale problem is very challenging due to the difficulty of obtaining
detailed information about the pore geometry. These empirical and computational restrictions
strongly call for systematic and reliable approximations which capture the essential physics and
elementary dynamic characteristics of the full problem in an averaged sense. A very common
and intuitive strategy is volume averaging [36, 50]. The method of moments [4, 10] and
multiple scale expansions [7, 13, 33] have been used in this context. The latter method is more
systematic and reliable since it allows for a rigorous mathematical verification. The volume
averaging strategy still lacks a consistent and generally accepted treatment of nonlinear terms.
Therefore, the multiscale expansion strategy is used as a basis for the theoretical developments
in the present study.

The celebrated works in [4, 10, 48] initiated an increasing interest in the understanding
of hydrodynamic dispersion on the spreading of tracer particles transported by flow, with
numerous applications, from transport of contaminants in rivers to chromatogaphy. In [37],
it is shown that the multiscale expansion strategy allows to recover the dispersion relation
found in [10]. The study of multiphase flows in porous media is considerably more complex;
see e.g. the comprehensive review in [2] which still serves as a basis for several studies in
the field. The central idea for many approaches to multiphase flows is to extend Darcy’s law
to multiple phases. With the help of Marle’s averaging method [26] and a diffuse interface
model, effective two-phase flow equations are presented in [31, 32]. In [5], Atkin and Craine
even present constitutive theories for a binary mixture of fluids and a porous elastic solid. A
combination of the homogenization method and a multiphase extension of Darcy’s law as a
description of multiphase flows in porous media is applied in the articles [8, 43], for instance.

An application of increasing importance for a renewable energy infrastructure are fuel
cells [35]. This article combines the complex multiphase interactions with the help of the
Cahn–Hilliard phase field method and a total free energy characterizing the fuel cell. An
upscaling of the full thermodynamic model proposed in [35] is obviously very involved due to
complex interactions over different scales. In this context, an upscaled macroscopic description
of a simplified (i.e. no fluid flow and periodic catalyst layer) is derived in [40, 41].

Consider the total energy density for an interface between two phases,

e(x(X, t), t) := 1

2

∣∣∣∣∂x(X, t)

∂t

∣∣∣∣
2

− λ

2
|∇xφ(x(X, t), t))|2 − λ

2
F(φ(x(X, t), t)), (1)

whereφ is a conserved order-parameter that evolves between different liquid phases represented
as the minima of a homogeneous free energy F . The parameter λ represents the surface
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tension effect, i.e. λ ∝ (surface tension)× (capillary width) = ση. The variable X stands for
the Lagrangian (initial) material coordinate and x(X, t) represents the Eulerian (reference)
coordinate. Our derivation (section 4) is valid for general free energies F and uses the
method of an asymptotic multiscale expansion with drift [3]. Furthermore, we establish the
well-posedness (theorem 3.5) of the upscaled/homogenized equations for polynomial free
energies of the following form [49]:

Assumption (PF). The free energy densities F in (1) are polynomials of order 2r − 1, i.e.,

f (u) =
2r−1∑
i=1

aiu
i, r ∈ N, r � 2, (2)

with f(u)=F′(u) vanishing at u = 0,

F(u) =
2r∑

i=2

biu
i, ibi = ai−1 , 2 � i � 2r, (3)

where the leading coefficient of both F and f is positive, i.e. a2r−1 = 2rb2r > 0.

Remark 1.1 (Double-well potential). Free energies F satisfying the assumption (PF) form a
general class which also includes the double-well potential for r = 2 with f (u) = −αu+βu3,
α, β > 0, for which (7)4 is called the convective Cahn–Hilliard equation. We note that the
double-well is scaled by 1/4η2, i.e. F(u) = (1/4η2)(u2 − 1)2 such that one recovers the
Hele–Shaw problem in the limit η → 0 [19, 22].

The last two terms in (1) form the well-known density of the Cahn–Hilliard/Ginzburg–
Landau phase field formulation adapted to the flow map x(X, t) defined by

∂x

∂t
= u(x(X, t), t),

x(X, 0) = X.

(4)

The first term in (1) is the kinetic energy, which accounts for the fluid flow of incompressible
materials, i.e.

∂u

∂t
+ (u · ∇)u − µ�u + ∇p = ηηη,

div u = 0,
(5)

where we additionally added the second order term multiplied by the viscosity µ. The variable
ηηη is a driving force acting on the fluid. We are interested in the mixture of two incompressible
and immiscible fluids of the same viscosity µ. Hence, we can employ generic free energies
(1) showing a double-well form as is the case often in applications, e.g. [51].

Suppose that 	 ⊂ R
d , with d > 0 the dimension of space, denotes the domain which is

initially occupied by the fluid. Then, we can define for an arbitrary length of time T > 0 the
total energy by

E(x) :=
∫ T

0

∫
	

e(x(X, t), t) dX dt. (6)

The energy (6) combines an action functional for the flow map x(X, t) and a free energy for the
order parameter φ. This combination of mechanical and thermodynamic energies seems to go
back to [14, 15, 21, 22, 24]. Subsequently, we will focus on quasi-stationary, i.e., ut = 0 and
ηηη �= 0, and low-Reynolds number flows such that we can neglect the nonlinear term (u · ∇)u.
Then, classical ideas from the calculus of variations [47] and the theory of gradient flows
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Figure 1. Left: porous medium 	ε := 	\Bε as a periodic covering of reference cells Y := [0, �]d .
Top: definition of the reference cell Y = Y 1 ∪ Y 2 with � = 1. Right: the ‘homogenization limit’
ε := (�/L) → 0 scales the perforated domain such that perforations become invisible in the
macroscale.

together with an imposed wetting boundary condition
∫
∂	

g(x) do(x) for g(x) ∈ H 3/2(∂	)

lead to the following set of equations:

(Homogeneous case)




−µ�u + ∇p = ηηη in 	T ,

div u = 0 in 	T ,

u = 0 on ∂	T ,

∂φ

∂t
+ Pe(u · ∇)φ = λdiv(∇(f (φ) − �φ)) in 	T ,

∇nφ := n · ∇φ = g(x) on ∂	T ,

∇n�φ = 0 on ∂	T ,

φ(x, 0) = h(x) on 	,

(7)

where 	T := 	×]0, T [, ∂	T := ∂	1×]0, T [, λ represents the elastic relaxation time of the
system, and the driving force ηηη accounts for the elastic energy [22]

ηηη = −γ div(∇φ ⊗ ∇φ), (8)

where γ corresponds to the surface tension [23]. As in [1], we will set γ = λ for simplicity.
The dimensionless parameter Pe := kτLU/D is the Péclet number for a reference fluid
velocity U := |u|, L is the characteristic length of the porous medium, and the diffusion
constant D = kτM obtained from the mobility via Einstein’s relation for the temperature τ

and the Bolzmann constant k. We note that the immiscible flow equations can immediately be
written for the full incompressible Navier–Stokes equations as in [22]. Our restriction to the
Stokes equation is motivated here by the fact that such flows turn into Darcy’s law in porous
media [11, 18].

The main objective of our study is the derivation of effective macroscopic equations
describing (7) in the case of perforated domains 	ε ⊂ R

d instead of a homogeneous 	 ⊂ R
d .

A useful and reasonable approach is to represent a porous medium 	 = 	ε ∪ Bε periodically
with pore space 	ε and solid phase Bε . The arising interface ∂	ε ∩ ∂Bε is denoted by
I ε . As usual, the dimensionless variable ε > 0 defines the heterogeneity ε = �/L where �

represents the characteristic pore size and L is the characteristic length of the porous medium,
see figure 1. The porous medium is defined by a periodic coverage of a reference cell
Y := [0, �1] × [0, �2] × . . . × [0, �d ], �i ∈ R, i = 1, . . . , d, which represents a single,
characteristic pore. The periodicity assumption allows, by passing to the limit ε → 0 (see
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figure 1) for the derivation effective macroscopic porous media equations. The pore and the
solid phase of the medium are defined as usual by,

	ε :=
⋃
z∈Zd

ε
(
Y 1 + z

) ∩ 	, Bε :=
⋃
z∈Zd

ε
(
Y 2 + z

) ∩ 	 = 	 \ 	ε, (9)

where the subsets Y 1, Y 2 ⊂ Y are defined such that 	ε is a connected set. More precisely, Y 1

denotes the pore phase (e.g. liquid or gas phase in wetting problems), see figure 1.
These definitions allow us to rewrite (7) by the following microscopic formulation:

(Porous case)




−ε2µ�uε + ∇pε = −γ div(∇φε ⊗ ∇φε) in 	ε
T ,

div uε = 0 in 	ε
T ,

uε = 0 on I ε
T ,

∂

∂t
φε + Pe(uε · ∇)φε = λdiv(∇(f (φε) − �φε)) in 	ε

T ,

∇nφε := n · ∇φε = gε(x) := g(x/ε) on I ε
T ,

∇n�φε = 0 on I ε
T ,

φε(·, 0) = ψ(·) on 	ε,

(10)

where I ε
T := I ε×]0, T [. gε(x) = g(x/ε) is now a periodic wetting boundary condition

accounting for the wetting properties of the pore walls. Even under the assumption of
periodicity, the microscopic system (10) leads to a high-dimensional problem, since the space
discretization parameter needs to be chosen to be much smaller than the characteristic size ε of
the heterogeneities of the porous structure, e.g. left-hand side of figure 1. The homogenization
method provides a systematic tool for reducing the intrinsic dimensional complexity by reliably
averaging over the microscale represented by a single periodic reference pore Y . We note that
the nonlinear nature of problem (10) exploits a scale separation with respect to the upscaled
chemical potential, see definition 3.1, for the derivation of the effective macroscopic interfacial
evolution in strongly heterogeneous environments. Such a scale separation turns out to be the
key for the upscaling/homogenization of nonlinear problems, see [39–41].

Obviously, the systematic and reliable derivation of practical, convenient, and low-
dimensional approximations is the key to feasible numerics of problems posed in porous
media and provides a basis for computationally efficient schemes. To this end, we relax the
full microscopic formulation (10) further by restricting (10) to periodic fluid flow. By taking the
stationary version of equation (10)4 on to a single periodic reference pore Y and by denoting the
according stationary solution by �(·), we can formulate the following periodic flow problem:

(Periodic flow)




−µ�yu + ∇yp = ηηη in Y 1,

divy u = 0 in Y 1,

u = 0 on ∂Y 2,

u is Y1-periodic,
Pe(u · ∇y)� = λdivy

(∇y(f (�) − �y�)
)

inY 1,

∇n� := (n · ∇y)� = g(y) on ∂Y 2,

∇n�y� = 0 on ∂Y 2,

ψ is Y1-periodic.

(11)

We remark that in certain occasions it might be suitable to further reduce problem (11).
For instance, in general the reference cell is only filled by one fluid phase, i.e. ∇y� = 0
almost everywhere in Y 1, and hence one only needs to solve for the periodic Stokes problem
(11)1–(11)4 by replacing the self-induced driving force (8) with the constant driving force
ηηη := e1 where e1 denotes the canonical basis vector in the x1-direction of the Euclidean
space. The periodic fluid velocity defined by (11) for such an ηηη can be considered as the
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spatially periodic velocity of a moving frame [3]. Motivated by [3, 28, 37], we study the case
of large Péclet number and consider the following distinguished case:

Assumption (LP). The Péclet number scales with respect to the characteristic pore size ε > 0
as follows: Pe ∼ 1

ε
.

Let us first discuss assumption (LP). If one introduces the microscopic Péclet number
Pemic := kτ�U/D, then it follows immediately that Pe = Pemic/ε. Since we introduced
a periodic flow problem on the characteristic length scale � > 0 of the pores by problem
(11), it is obvious that we have to apply the microscopic Péclet number in a corresponding
microscopic formulation, see (12). Hence, the periodic fluid velocity u(x/ε) := u(y) enters
the microscopic phase field problem as follows:

(Microscopic problem)




∂

∂t
φε +

Pemic

ε
(u(x/ε) · ∇)φε

= λdiv(∇(f (φε) − �φε)) in 	ε
T ,

∇nφε := n · ∇φε = g(x/ε) on I ε
T ,

∇n�φε = 0 on I ε
T ,

φε(·, 0) = ψ(·) on 	ε.

(12)

We note that with our subsequently applied upscaling strategy, we do not account for boundary
layers in the vicinity of rigid boundaries. Such boundary layers become increasingly important
in the case of large Péclet numbers. Moreover, we make use of the splitting strategy introduced
in [42] and here extended to fluid flow, i.e.

(Splitting)




∂

∂t
(−�ε)

−1wε +
Pemic

ε
(u(x/ε) · ∇)(−�ε)

−1wε

= λ
(

div
(

M̂∇wε

)
+ div

(
M̂∇f (φε)

))
in 	ε

T ,

−∇n�φε = ∇nwε = 0 on I ε
T ,

−�εφε = wε

∇nφε = g(x/ε) = gε(x) on I ε
T ,

φε(·, 0) = ψ(·) on 	ε,

(13)

where we will properly define �ε = Aε in section 4.
The main result of our study is the systematic derivation of upscaled immiscible flow

equations which effectively account for the pore geometry starting from the microscopic system
(11)–(12), i.e.

(Upscaled equation)




p
∂φ0

∂t
− div

(
Ĉ∇φ0

)
= λdiv

(
M̂φ∇f (φ0)

)
− λ

p
div

(
M̂w∇

(
div

(
D̂∇φ0

)
− g̃0

))
,

(14)

where Ĉ takes the fluid convection into account. This tensor account for the so-called diffusion–
dispersion relations (e.g. Taylor–Aris-dispersion [4, 10, 48]). The result (14) makes use of the
recently proposed splitting strategy for the homogenization of fourth-order problems in [42]
and an asymptotic multiscale expansion with drift (i.e. moving frame) introduced in [3, 27].

The manuscript is organized as follows. We present our main results in section 3 and
the corresponding proofs follow in the subsequent section 4. Concluding remarks and open
questions are offered in section 6.

2. Preliminaries and notation

We recall basic results required for our subsequent analysis which depends also on certain
notational conventions. We consider connected macroscopic domains 	 with Lipschitz
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continuous boundaries ∂	. Under the usual conventions for Sobolev spaces, we say that
u ∈ Wk,p(	) if and only if

‖u‖k,p
p :=

∑
|α|�k

‖Dαu‖Lp
p

< ∞ (15)

for a multi-index α such that Dα := ∂ |α|
∂α1 x1...∂

αd xd
and p < ∞. Herewith, we can identify

corresponding Hilbert spaces (p = 2) by Hk(	) := Wk,2(	). We introduce the following
(energy) space of functions:

H 2
E(	) := {

v ∈ H 2(	)
∣∣ ∇nv = 0 on ∂	

}
, (16)

which naturally appears in the context of weak solutions for the phase field equations (7)4.
In order to account for the periodic reference cells appearing due to asymptotic multiscale-

expansions/homogenization, we define H
1
per(Y ) as the closure of C∞

per(Y ) in the H 1-norm
where C∞

per(Y ) is the subset of Y -periodic functions of C∞(Rd). As we need uniqueness of
solutions, we will work with the following space of functions:

H 1
per(Y ) :=

{
u ∈ H

1
per(Y )

∣∣ MY (u) = 0
}
, (17)

where MY (u) := (1/|Y |) ∫
Y

u dy. In order to establish the existence and uniqueness of weak
solutions of the upscaled convective phase field equations, we need the following Aubin–Lions
compactness result (e.g. [44]), i.e.

Theorem 2.1 (Aubin–Lions). Let X0, X, X1 be Banach spaces with X0 ⊂ X ⊂ X1 and
assume that X0 ↪→ X is compact and X ↪→ X1 is continuous. Let 1 < p < ∞, 1 < q < ∞
and let X0 and X1 be reflexive. Then, for W := {u ∈ Lp(0, T ; X0)

∣∣ ∂tu ∈ Lq(0, T ; X1)} the
inclusion W ↪→ Lp(0, T ; X) is compact.

3. Results: effective immiscible flow equations in porous media

The presentation of our main result depends on the following:

Definition 3.1 (Scale separation). We say that the the macroscopic chemical potential is scale
separated if and only if the upscaled chemical potential

µ0 := f (φ) − �φ, (18)

satisfies (∂µ0/∂xl) = 0 for each 1 � l � d on the level of the reference cell Y but not in the
macroscopic domain 	.

Remark 3.2. We note that the scale separation in definition 3.1 follows intuitively from the
key requirement in homogenization theory that one can identify a slow (macroscopic) variable
and at least one fast (microscopic) variable. Hence, the above scale separation means that
the macroscopic variable does not vary over the dimension of the microscale defined by a
characteristic reference cell.

The scale separation (3.1) emerges as a key requirement for the homogenization of
nonlinearly coupled partial differential equations in order to guarantee the mathematical
well-posedness of the corresponding cell problems which define effective transport coefficients
in homogenized, nonlinear (and coupled) problems [39–41].

We note that the upscaling requires to identify effective macroscopic boundary conditions
on the macroscopic domain 	. Such a condition will be denoted by h̃0 below. In fact, h̃0 can
be computed as g̃0. We summarize our main result in the following
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Theorem 3.3 (Effective convective Cahn–Hilliard equation). We assume that the assump-
tion (LP) holds and that the macroscopic chemical potential µ0 satisfies the scale separation
property in the sense of definition 3.1 and let ψ(x) ∈ H 2(	).

Then, the microscopic equations (11)–(12) for immiscible flow in porous media admit the
following effective macroscopic form after averaging over the microscale, i.e.




p
∂φ0

∂t
− div

(
Ĉ∇φ0

)
= λdiv

(
M̂φ∇f (φ0)

)
− λ

p
div

(
M̂w∇

(
div

(
D̂∇φ0

)
− g̃0

))
in 	T ,

∇nφ0 := n · ∇φ0 = h̃0(x) on ∂	×]0, T [,

∇n�φ0 = 0 on ∂	×]0, T [,

φ0(·, 0) = ψ(·) in 	,

(19)

where the tensors Ĉ := {cik}1�i,k�d , D̂ := {dik}1�i,k�d , M̂φ = {mφ

ik}1�i,k�d
, and M̂w =

{mw
ik}1�i,k�d

are defined by

cik := Pemic

|Y |
∫

Y 1
(ui − vi )δikξ

k
φ dy,

dik := 1

|Y |
d∑

j=1

∫
Y 1

(
δik − δij

∂ξ k
φ

∂yj

)
dy,

mφ

ik := 1

|Y |
d∑

j=1

∫
Y 1

(
mik − mij

∂ξ k
φ

∂yj

)
dy,

mw
ik := 1

|Y |
d∑

j=1

∫
Y 1

(
mik − mij

∂ξ k
w

∂yj

)
dy.

(20)

The effective fluid velocity v is defined by vj := (Pemic/|Y 1|) ∫
Y 1 uj (y) dy where u solves the

periodic reference cell problem (11). The effective wetting boundary condition on the pore
walls becomes g̃0 := −(γ /Ch)(1/|Y |) ∫

∂Y 1 (a1χ∂Y 1
w
(y) + a2χ∂Y 2

w
(y)) dy and on the boundary

∂	 of the macroscopic domain 	 we impose h̃0 := −(γ /Ch)(1/|Y |) ∫
�

(a�(y)) dy. The
corrector functions ξk

φ ∈ H 1
per(Y

1) and ξk
w ∈ L2(	; H 1

per(Y
1)) for 1 � k, l � d solve in the

distributional sense the following reference cell problems:

ξk
φ :




− ∑d
i,j=1

∂

∂yi

(
δik − δij

∂ξ k
φ

∂yj

)
= 0 in Y 1,

∑d
i,j=1 ni

(
δij

∂ξk
φ

∂yj
− δik

)
= 0 on ∂Y 1,

ξ k
φ(y) is Y -periodic and MY 1(ξ k

φ) = 0,

(21)



Upscaling phase field equations for periodic fluid flow 3267

ξk
w :




− ∑d
i,j=1

∂

∂yi

(
δik − δij

∂ξ k
w

∂yj

)

= λ

(∑d
i,j=1

∂

∂yi

(
mik − mij

∂ξ k
φ

∂yj

)
in Y 1,

∑d
i,j=1 ni

((
δij

∂ξk
w

∂yj
− δik

)

−λ
∑d

i,j=1

∂

∂yi

(
mik − mij

∂ξ k
φ

∂yj

)
= 0 on ∂Y 1,

ξ k
w(y) is Y -periodic and MY 1(ξ k

w) = 0.

(22)

Remark 3.4 (Isotropic mobility). The cell problem (22) is equal to problem (21) if we
consider the case of isotropic mobility tensors, i.e. M̂ := mÎ. In this special case, we
immediately have ξk

φ = ξk
w and hence the porous media correction tensors satisfy mD̂ =

M̂φ = M̂w.

The next theorem guarantees the well-posedness of (23) in the sense of week solutions.
For convenience, we achieve existence of weak solutions for polynomial free energies in the
sense of assumption (PF) [49].

Theorem 3.5 (Existence and Uniqueness). Let ψ ∈ L2(	), T ∗ > 0, and assume that
the admissible free energy densities F in (1) satisfy assumption (PF). Then, there exists
a unique solution φ0 ∈ L∞(]0, T ∗[; L2(	)) ∩ L2([0, T ∗[; H 2

E(	)) to the following
upscaled/homogenized problem:



p
∂φ0

∂t
+

λ

p
div

(
M̂w∇

{
div

(
D̂∇φ0

)
− g̃0

})
= div

([
λf ′(φ0)M̂φ + Ĉ

]
∇φ0

)
in 	T ,

∇nφ0 = 0 on ∂	×]0, T ∗[,
∇n�φ0 = 0 on ∂	×]0, T ∗[,
φ0(·, 0) = ψ(·) in 	.

(23)

We prove theorem 3.5 by adapting arguments from [49, section 2, p 151] to the
homogenized setting including the diffusion–dispersion tensor which accounts for periodic
flow.

3.1. Numerical computations

To exemplify the results presented above we perform a numerical study of the effective
macroscopic Cahn–Hilliard equation (19). We consider a two-dimensional (2D) porous
medium consisting of a series of periodic reference cells the geometrical shape of which is a
non-straight channel of constant cross-section (see figure 2) with periodic boundary conditions
at the inlet and outlet. The Cartesian coordinates in the microscopic problem are named as
x and y which correspond to the y1 and y2 variables used in the definition of the domain
Y 1, respectively. We define the geometry in such a way that the porosity of the medium is
p = 0.46. The macroscopic domain 	 is compound of 35 reference cells in the perpendicular
direction y of the flow and 50 in the x direction. We fix a constant driving force U = 1 at
the inlet of the system by fixing the gradient of the chemical potential [51]. For simplicity
we take the macroscopic mobility M = 1 which gives rise to a microscopic Péclet number
Pemic = 0.04.
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Figure 2. (a) Example of the 2D porous medium considered for the numerical computations. The
reference cell consists of a non-straight channel of constant cross-section which is periodic in the
x direction as depicted in (b). Grey area corresponds to the solid phase of the medium.

Figure 3. Corrector functions ξ1
φ(x, y) (a), (b) and ξ2

φ(x, y) (c), (d) for the particular reference
cell defined in figure 2(b). Panels (a) and (c) show the three-dimensional plots, and panels (b) and
(d) show the corresponding 2D projection onto the plane (x, y).

We first compute the components of the different tensors Ĉ, D̂, M̂φ , and M̂w for which
we need to solve the reference cell problems (21) and (22). We consider the case of isotropic
mobility with m = 1 and hence we have ξk

φ = ξk
w and D̂ = M̂φ = M̂w. In this case, the

reference cell problem is reduced to:

ξk
φ :




(
∂2

∂x2
+

∂2

∂y2

)
ξk
φ = 0 in Y 1,(

n1
∂

∂x
+ n2

∂

∂y

)
ξk
φ = nk on ∂Y 1,

(24)

which corresponds to the Laplace equation with special boundary conditions. The above
equation is solved by using a finite differences numerical scheme and the resulting corrector
functions ξ 1

φ(x, y) and ξ 2
φ(x, y) are plotted in figure 3.

Once we know the corrector functions of the reference cell problem, we can compute
the different elements of the tensor D̂ as defined in (20) obtaining the values d11 = 0.4, and
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Figure 4. Two components of the velocity field u1(x, y) (a), (b) and u2(x, y) (c), (d). Panels
(a) and (c) show the three-dimensional plots, and panels (b) and (d) show the corresponding 2D
projection onto the plane (x, y).

d12 = d21 = d22 = 0. Note that these are similar values to those reported in [6] for a similar
porous geometry. Next we solve the Stokes flow for this particular microscopic geometry by
numerically integrating the periodic reference cell problem (11) to obtain the velocity u and
hence the coefficients for the tensor Ĉ. The results for the two velocity components u1(x, y)

and u2(x, y) are presented in figure 4. By applying the formula given in (20) we obtain the
coefficients c11 = 0.015 and c22 = 0.023. Note that by definition c12 = c21 = 0.

Finally, with all the different tensor coefficients we can numerically integrate the problem
(19) in the macroscopic domain 	, the Cartesian coordinates of which are denoted as (X, Y ).
We use a finite difference scheme for the spatial discretization and a fourth-order Runge–Kutta
algorithm with adaptive time stepsize to march froward in time. The domain is discretized
with a grid spacing �X = 0.01 and we impose periodic boundary conditions along the
transversal direction of the flow. As an initial condition, we consider a small sinusoidal
shape for the interface separating the liquid from the gas phase. Also, to simulate the same
condition as in the porous medium, we impose the driving force U to be fixed alternately at
the inlet of the system in such a way it follows the periodicity of the microstructure. The
evolution of the interface position is then found by setting φ0(X, Y, t) = 0. The results
are presented in figure 5 where we observe that the profile of the interface evolves into a
well defined spatial periodic shape which corresponds to the periodic porous medium that
is defined at the microscopic level (had the macroscopic model ignored the microscopic
details, by e.g. taking the tensors to be identity matrices, the interface would be flat at
all times). For large times and after the influence of the initial disturbances dies out, the
interface approaches a steady travelling front with a microstructure that reflects the porous
medium structure (as expected). Our results hence show that the effective macroscopic
equation is able to retain the microscopic details even though we do not resolve them
numerically.
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Figure 5. Numerical integrations of the effective macroscopic Cahn–Hilliard equation at different
times. Blue colour represents the liquid phase and the interface position is depicted as a solid black
line.

4. Formal derivation of theorem 3.3

As in [42], we introduce the differential operators

A0 = − ∑d
i,j=1

∂

∂yi

(
δij

∂

∂yj

)
, B0 = − ∑d

i,j=1
∂

∂yi

(
mij

∂

∂yj

)
,

A1 = − ∑d
i,j=1

[
∂

∂xi

(
δij

∂

∂yj

)
B1 = − ∑d

i,j=1

[
∂

∂xi

(
mij

∂

∂yj

)

+
∂

∂yi

(
δij

∂

∂xj

)]
, +

∂

∂yi

(
mij

∂

∂xj

)]
,

A2 = − ∑d
i,j=1

∂

∂xj

(
δij

∂

∂xj

)
, B2 = − ∑d

i,j=1

∂

∂xj

(
mij

∂

∂xj

)
,

(25)

which make use of the microscale (x/ε) =: y ∈ Y such that Aε := ε−2A0 + ε−1A1 + A2, and
Bε := ε−2B0 +ε−1B1 +B2. Herewith, the Laplace operators � and div(M̂∇) become �uε(x) =
Aεu(x, y) and div(M̂∇)uε(x) = Bεu(x, y), respectively, where uε(x, t) := u(x − v

ε
t, y, t).

Due to the drift [3, 27], we additionally have

∂

∂t
uε =

(
∂

∂t
− v · ∇x

ε

)
uε, (26)

where we find below by the Fredholm alternative (or a solvability constraint) that v :=
Peloc
|Y 1|

∫
Y 1 uj (y) dy. As in [42] we apply the method of formal asymptotic multiscale expansions,

that is,

wε := w0(x, y, t) + εw1(x, y, t) + ε2w2(x, y, t) + · · · ,
φε := φ0(x, y, t) + εφ1(x, y, t) + ε2φ2(x, y, t) + · · · , (27)

together with the splitting strategy introduced therein. In order to cope with the nonlinear form
of the homogeneous free energy f = F ′, see (2) and (3), we make use of a Taylor expansion
which naturally leads to an expansion in ε, i.e.

f (φε) = f (φ0) + f ′(φ0)(φ
ε − φ0) + 1

2f ′′(φ0)(φ
ε − φ0)

2 + O((φε − φ0)
3). (28)
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As a consequence, we obtain the following sequence of problems by comparing terms of the
same order in ε, with the first three problems being,

O(ε−2) :




λB0[w0 + f (φ0)] + Pemic(u · ∇))yA−1
2 w0 = 0 in Y 1,

no flux b.c.,
w0 is Y 1-periodic,
A0φ0 = 0 in Y 1,

∇nφ0 = 0 on ∂Y 1
w ∩ ∂Y 2

w,

φ0 is Y 1-periodic,

(29)

O(ε−1) :




λB0
[
w1 + f ′(φ0)φ1

]
+ Pemic

(
u · ∇y

)
A−1

2 w1

= −λB1[w0 + f (φ0)]
−Pemic((u − v) · ∇)A−1

2 w0 in Y 1,

no flux b.c.,
w1 is Y 1-periodic,
A0φ1 = −A1φ0 in Y 1,

∇nφ1 = 0 on ∂Y 1
w ∩ ∂Y 2

w,

φ1 is Y 1-periodic,

(30)

O(ε0) :




λB0

[
w2 +

1

2
f ′′(φ0)φ

2
1 + f ′(φ0)φ2

]
+ Pemic

(
u · ∇y

)
A−1

2 w2

= λ(B2[w0 + f (φ0)] + B1[w1 + f (φ0)φ1])
−Pemic((u − v) · ∇)A−1

2 w1

−∂tA−1
2 w0 inY 1,

no flux b.c.,
w2 is Y 1-periodic,
A0φ2 = −A2φ0 − A1φ1 + w0 inY 1,

∇nφ2 = g(y) on ∂Y 1
w ∩ ∂Y 2

w,

φ2 is Y 1-periodic,

(31)

As usual, the first problem (29) induces that the leading order terms φ0 and w0 are independent
of the microscale y. The second problem (30) reads in explicit form for φ1 as follows:

ξφ :




− ∑d
i,j=1

∂

∂yi

(
δik − δij

∂ξ k
φ

∂yj

)

= −div
(
ek − ∇yξ

k
φ

) = 0 in Y 1,

n · (∇ξk
φ + ek

) = 0 on ∂Y 1
w ∩ ∂Y 2

w,

ξk
φ(y) is Y -periodic and MY 1(ξ k

φ) = 0,

(32)

which represents the reference cell problem for φ0 after identifying φ1 =
− ∑d

k=1 ξk
φ(y)(∂φ0/∂xk).

The cell problem for w1 is substantially more involved since it depends on the fluid velocity
u and the the corrector ξk

φ from (32). Specifically,

−
d∑

k,i,j=1

∂

∂yi

(
mij

(
∂xk

∂xj

− ∂ξk
w

∂yj

)
∂w0

∂xk

)
=

d∑
k,i,j=1

∂

∂yi

(
mij

(
∂xk

∂xj

− ∂ξk
φ

∂yj

)
∂f (φ0)

∂xk

)

− Pemic

d∑
i=1

(
ui − vi

)∂φ0

∂xi

in Y 1, (33)
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which can be simplified under a scale seperated chemical potential in the sense of definition 3.1,
i.e. (∂/∂xk)f (φ) = f ′(φ)(∂φ/∂xk) = (∂w/∂xk) for 1 � k � d, to the following cell problem:



− ∑d
i,j,k=1

∂

∂yi

(
δik − δij

∂ξ k
w

∂yj

)
f ′(φ0)

= λ
∑d

k,i,j=1
∂

∂yi

(
mik − mij

∂ξk
φ

∂yj

)
f ′(φ0)

−Pemic
∑d

i=1

(
ui − vi

)
in Y 1,∑d

i,j,k=1 ni

((
δij

∂ξ k
w

∂yj

− δik

)

−λ
∑d

k,i,j=1

∂

∂yi

(
mik − mij

∂ξk
φ

∂yj

)
= 0 on ∂Y 1

w ∩ ∂Y 2
w,

ξk
w(y) is Y -periodic and MY 1(ξ k

w) = 0.

(34)

A solvability constraint (e.g. the Fredholm alternative) immediately turns (34) into the
following characterization of ξk

w and vi , i.e.

vj := Pemic∣∣Y 1
∣∣

∫
Y 1

uj (y) dy




− ∑d
i,j,k=1

∂

∂yi

(
δik − δij

∂ξ k
w

∂yj

)
= λ

∑d
k,i,j=1

∂

∂yi

(
mik − mij

∂ξ k
φ

∂yj

)
in Y 1

∑d
i,j,k=1 ni

((
δij

∂ξ k
w

∂yj

− δik

)
− λ

∑d
k,i,j=1

∂

∂yi

(
mik − mij

∂ξk
φ

∂yj

)
= 0 on ∂Y 1

w ∩ ∂Y 2
w,

ξk
w(y) is Y -periodic and MY 1(ξ k

w) = 0.

(35)

We are then left to study the last problem (31) arising by the asymptotic multiscale
expansions. Problem (31)2 for φ2 is classical and leads immediately to the upscaled equation

− �D̂φ0 := −div
(

D̂∇φ0

)
= pw0 + g̃0, (36)

see also [42], where the porous media correction tensor D̂ := {dik}1�i,k�d is defined by

|Y |dik :=
d∑

j=1

∫
Y 1

(
δik − δij

∂ξ k
φ

∂yj

)
dy. (37)

Next, we apply the Fredholm alternative on equation (31)1, i.e.,∫
Y 1

{
λ(B2w0 + B1w1) − λB1[f (φ0)φ1] − λB2f (φ0) − ∂tA−1

2 w0

−Pemic
(
u · ∇y

)
A−1

2 w2 − Pemic((u − v) · ∇)A−1
2 w1

}
dy = 0.

(38)

The term multiplied by λ in (38) can immediately be rewritten by

λ

∫
Y 1

−(B2w0 + B1w1) dy = −λdiv
(

M̂w∇w0

)
, (39)

where the effective tensor M̂w = {mw
ik}1�i,k�d

is defined by

mw
ik := 1

|Y |
d∑

j=1

∫
Y 1

(
mik − mij

∂ξ k
w

∂yj

)
dy. (40)
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The first term on the second line in (38) transform as in [42] to

− B1
[
f ′(φ0)φ1

]
= −

d∑
i,j=1

[
∂

∂xi

(
mij f

′(φ0)

d∑
k=1

∂ξk
φ

∂yj

∂φ0

∂xk

)
+

∂

∂yi

(
mij f

′(φ0)

d∑
k=1

ξk
φ

∂2φ0

∂xk∂xj

)]
, (41)

where the last term in (41) disappears after integrating by parts. The first term on the right-hand
side of (41) can be rewritten with the help of the chain rule as follows:

− B1
[
f ′(φ0)φ1

] = −
d∑

i,j=1

mij

d∑
k=1

∂ξk
φ

∂yj

∂2f (φ0)

∂xk∂xi

. (42)

After adding to (42) the term −B2f (φ0), we can define a tensor M̂φ = {mφ

ij }1�i,k�d
, i.e.,

mφ

ik := 1

|Y |
d∑

j=1

∫
Y 1

(
mik − mij

∂ξ k
φ

∂yj

)
dy, (43)

such that

− B1
[
f ′(φ0)φ1

] − B2f (φ0) = div
(

M̂φ∇f (φ0)
)
. (44)

The terms in the last line of (38) become

− 1

|Y |
∫

Y 1
Pemic

(
u · ∇y

)
A−1

2 w2 + Pemic((u − v) · ∇)A−1
2 w1 dy

= − 1

|Y |
∫

Y 1
Pemic

(
u · ∇y

)
φ2 dy (45)

+
Pemic

|Y |
d∑

k,i=1

∫
Y 1

(ui − vi )
∂

∂xi

(
δikξ

k
φ(y)

∂

∂xk

φ0

)
dy.

Using the fact that u is divergence-free and after defining the tensor Ĉ := {cik}1�i,k�d by

cik := Pemic

|Y |
∫

Y 1
(ui − vi )δikξ

k
φ(y) dy, (46)

we finally obtain with the previous considerations the following upscaled phase field equation:

p
∂A−1

2 w0

∂t
= div

([
λM̂φf ′(φ0) + Ĉ

]
∇φ0

)
− λ

p
div

(
M̂w∇

(
div

(
D̂∇φ0

)
− g̃0

))
. (47)

Using (36) finally leads to the effective macroscopic phase field equation:

p
∂φ0

∂t
= div

([
λM̂φf ′(φ0) + Ĉ

]
∇φ0

)
− λ

p
div

(
M̂w∇

(
div

(
D̂∇φ0

)
− g̃0

))
. (48)

5. Proof of theorem 3.5

The proof follows in three basic steps: In step 1, we establish a priori estimates that provide
compactness required for step 2 where we construct a sequence of approximate solutions.
In step 3, we pass to the limit in the sequence of approximate solutions which provide then
existence and uniqueness of the original problem.
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Step 1: (A priori estimates). (i) Basic energy estimate: as we establish the existence and
uniqueness of weak solutions, we rewrite (23) in the sense of distributions, i.e. for all ϕ ∈ H 2

E

it holds that
p

2

∂

∂t
(φ0, ϕ) +

λ

p

(
div

(
D̂∇φ0

)
, div

(
M̂w∇ϕ

))
+

λ

p

(
M̂w∇g̃0, ∇ϕ

)
+
(
λf ′(φ0)M̂φ∇φ0, ∇ϕ

)
+

(
Ĉ∇φ0, ∇ϕ

)
= 0. (49)

Note that for an isotropic mobility of the form M̂ = mÎ, where Î is the identity tensor, the
following identity holds mD̂ = M̂w. For simplicity, we will base our proof on this identity.
The general case is then verified along the same lines using properties of symmetric positive
definite tensors. Using the notation �D̂ := div(D̂∇) and the test function ϕ = φ0 leads to the
following inequality:

p

2

d

dt
‖φ0‖2 +

λm

p

∥∥�D̂φ0

∥∥2
+ λb2rmφ

∫
	

φ2r−2
0 |∇φ0|2 dx

� C‖∇φ0‖2 +
2λmw

p
‖∇g̃0‖‖∇φ0‖ � C‖∇φ0‖2 +

λ

2p
mw‖∇g̃0‖2

, (50)

where we applied the existence of a constant C > 0 such that f (s)s � pb2r s
2r − C ,

for all s ∈ R due to assumption (PF). With the equivalence of norms in H 2(	), i.e.
‖φ0‖H 2(	) � C(‖�φ0‖ + ‖m(φ0)‖) , and interpolation estimates we obtain

‖∇φ0‖2 � C‖φ0‖‖φ0‖H 2(	) � C‖φ0‖(‖�φ0‖ + α) � C‖φ0‖
(∥∥�D̂φ0

∥∥ + α
)

� κ

2

∥∥�D̂φ0

∥∥2
+

1

Cκ
‖φ0‖2 +

κα2

2
, (51)

where m(φ0) := 1
|	|

∫
	

φ0 dx with m(φ0) � α. This leads to

p

2

d

dt
‖φ0‖2 +

(
λm

p
− κ

2

)
‖�φ0‖2 + λb2r

∫
	

φ2r−2|∇φ0|2 dx

� C(κ)‖φ0‖2 + C(α, κ) +
λ

2p
mw‖∇g̃0‖2

, (52)

which turns with Gronwall’s inequality into the expression

‖φ0(·, t)‖2 � ‖φ0(·, 0)‖2exp(Ct) +
∫ t

0

(
C(α) +

λ

2p
mw‖∇g̃0‖2

)
exp(−Cs) ds, (53)

for T ∗ � 0 such that we finally obtain φ ∈ L∞(0, T ∗; L2(	)) ∩ L2(0, T ∗; H 2
E(	)).

ii) Control over time derivative: Using the test function ϕ ∈ H 2
E(	) in (49) allows us to

estimate the time derivative term by
p

2
|(∂tφ0, ϕ)| � C

(∥∥�D̂φ0

∥∥ + ‖g̃0‖ + ‖f (φ0)‖ + ‖φ0‖
)‖�ϕ‖, (54)

such that ‖∂tφ0‖(H 2
E(	))∗ = supϕ∈H 2

E

|(∂t φ0,ϕ)|
‖ϕ‖

H2
E

� C and hence ‖∂tφ0‖(H 2
E(	))∗

2 � C(T ∗).

Step 2: (Galerkin approximation). As H 2
E(	) is a separable Hilbert space, we can identify a

linearly independent basis ϕj ∈ H 2
E(	), j ∈ N, which is complete in H 2

E(	). This allows us
to define for each N ∈ N approximate solutions φN

0 = ∑N
j=1 ηN

j (t)ϕj which solve

p

2

∂

∂t

(
φN

0 , ϕj

)
+

λm

p

(
div

(
D̂∇φN

0

)
, div

(
D̂∇ϕj

))
+

λ

p

(
M̂w∇g̃0, ∇ϕj

)
+
(
λf ′(φN

0 )M̂φ∇φN
0 , ∇ϕj

)
+

(
Ĉ∇φN

0 , ∇ϕj

)
= 0 j = 1, . . . , N, (55)
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for the initial condition φN
0 (·, 0) = ψN(·). The initial value problem (55) represents a system

of N ordinary differential equations (ODEs) for the coefficients ηN
j (t). Hence, classical

ODE theory immediately provides existence and uniqueness of φN
0 . Moreover, we have

φN
0 ∈ C(0, T ∗; H 2

E(	)) and ∂tφ
N
0 ∈ L2(0, T ∗; H−2

E (	)).

Step 3: (Passing to the limit). In the same way as in Step 1, we can derive a priori estimates for
the approximate solutions φN

0 by using the test function φN
0 instead of the basis functions ϕj

in (55). Hence, by weak compactness, see theorem 2.1 in section 2, there exist subsequences
(for simplicity still denoted by φN

0 ) such that

φN
0 ⇀ φ0 inL2(0, T ∗; H 2

E(	)) weakly,

φN
0

∗
⇀ φ0 inL∞(0, T ∗; L2(	)) weak-star, (56)

φN
0 → φ0 in L2(0, T ∗; L2(	)) strongly,

for N → ∞. This allows us to pass to the limit in the initial value problem (55) such that we
obtain

p

2

∂

∂t
(φ0, ϕ) +

λ

p

(
div

(
D̂∇φ0

)
, div

(
mD̂∇ϕ

))
+

λ

p

(
M̂w∇g̃0, ∇ϕ

)
+

(
λf ′(φ0)M̂φ∇φ0, ∇ϕ

)
+

(
Ĉ∇φ0, ∇ϕ

)
= 0, (57)

for all ϕ ∈ H 2
E(	). In the same way we can pass to the limit with respect to the initial

condition ψN . �

6. Conclusions

The main new result here is the extension of the study by Schmuck et al in the absence
of flow [42] to include a periodic fluid flow in the case of sufficiently large Péclet number.
The resulting new effective porous media approximation (19) of the microscopic Stokes–
Cahn–Hilliard problem (11)–(12) reveals interesting physical characteristics such as diffusion–
dispersion relations by (20)2–(20)3 for instance. The homogenization methodology developed
here allows for the systematic and rigorous derivation of effective macroscopic porous media
equations starting with the fundamental works on Darcy’s law [11, 18]. As a by-product of
the methodology, one recovers rigorously and systematically the dispersion relations proposed
in [10].

We note that the Cahn–Hilliard and related equations generally model more complex
material transport [29, 35] than classical Fickian diffusion. In this context, our result of an
upscaled convective Cahn–Hilliard equation hence provides diffusion–dispersion relations for
generalized non-Fickian material transport, that is, not just the product of a gradient of particle
concentration and a constant diffusion matrix.

Of course, it would be of interest to remove the periodicity assumption on the fluid flow
imposed by (11). This assumption implies a quasi-steady state on the fluid velocity and seems
currently to be inevitable for the homogenization theory to work such as the assumption of a
scale separated chemical potential on the level of the reference cells.

So far, we are restricted to mixtures of two fluids by our model. An extension towards
mixtures of N > 2 components is studied in [30] where the authors compare a local and
non-local model for incompressible fluids. In specific applications, it might be of interest to
extend the here developed framework towards such multi-component mixtures.

Finally, the rigorous and systematic derivation of effective macroscopic immiscible flow
equations provides a promising and convenient alternative in view of the broad applicability
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of the Cahn–Hilliard equations. The strength of our approach is based on its foundation
on a thermodynamically motivated homogeneous free energy which is generally derived on
systematic physical grounds. Moreover, even if a systematic derivation is impossible, one can
mathematically design such a free energy based on physical principles and phenomenological
observations. As an example of the applicability of the presented upscaled equations, we have
numerically solved the homogenized Cahn–Hilliard equation in a simple porous medium the
unit reference cell of which consists of a periodic non-straight channel. We observed that the
macroscopic solution retained the periodic properties induced at the microscopic scale. This
numerical study represents a first step towards the use of the presented methodology in more
complex geometries with e.g. non-periodic properties, something that we leave as a future
work. In addition, a more detailed numerical study shall allow to rationally analyse current
applications in science and engineering and hopefully reveal potential new ones.
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[3] Allaire G, Brizzi R, Mikelić A and Piatnitski A 2010 Two-scale expansion with drift approach to the Taylor

dispersion for reactive transport through porous media Chem. Eng. Sci. 65 2292–300
[4] Aris R 1956 On the dispersion of a solute in a fluid flowing through a tube Proc. R. Soc. A 235 67–77
[5] Atkin R J and Craine R E 1976 Continuum theories of mixtures: applications J. Inst. Math. Appl. 17 153–207
[6] Auriault J-L and Lewandowska J 1997 Effective diffusion coefficient: from homogenization to experiment

Transport Porous Media 27 205–23
[7] Bensoussan A, Lions J-L and Papanicolaou G 1978 Analysis for Periodic Structures (Amsterdam: North-

Holland)
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