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A B S T R A C T

We consider the evolution of interfaces in binary mixtures permeating strongly heterogeneous systems such as
porous media. To this end, we first review available thermodynamic formulations for binary mixtures based on
general reversible-irreversible couplings and the associated mathematical attempts to formulate a non-equilibrium
variational principle in which these non-equilibrium couplings can be identified as minimizers.

Based on this, we investigate two microscopic binary mixture formulations fully resolving heterogeneous/
perforated domains: (a) a flux-driven immiscible fluid formulation without fluid flow; (b) a momentum-driven
formulation for quasi-static and incompressible velocity fields. In both cases we state two novel, reliably up-
scaled equations for binary mixtures/multiphase fluids in strongly heterogeneous systems by systematically
taking thermodynamic features such as free energies into account as well as the system’s heterogeneity defined
on the microscale such as geometry and materials (e.g. wetting properties). In the context of (a), we unravel a
universality with respect to the coarsening rate due to its independence of the system’s heterogeneity, i.e. the
well-known O t( )1/3 -behaviour for homogeneous systems holds also for perforated domains.

Finally, the versatility of phase field equations and their thermodynamic foundation relying on free energies,
make the collected recent developments here highly promising for scientific, engineering and industrial appli-
cations for which we provide an example for lithium batteries.

1. Introduction

A wide range of problems of scientific, engineering and practical
interest involve the dynamics of interfaces, which by itself is already a
delicate multiscale problem in homogeneous environments. In this ar-
ticle, we make a further step and increase the number of scales involved
by looking at interfaces evolving in complex heterogeneous systems
(CHeSs) such as porous media, composites and crystals, which are
ubiquitous in a wide spectrum of technological applications. The pre-
sence of additional scales brings in a number of complex phenomena
and new effects. For example, wetting of chemically and/or topo-
graphically heterogeneous surfaces, is often characterised by pinning-
depinning effects, steady-state multiplicity and hysteresis behavior
[34,46,49,33] absent in wetting of ideally smooth surfaces.

For simplicity, we restrict ourselves here to binary mixtures and look
at extended and systematic non-equilibrium thermodynamic formula-
tions such as general non-equilibrium reversible-irreversible couplings
(GENERIC; Section 2.1). These reversible-irreversible couplings [13,31]

are, to the best of our knowledge, currently the most systematic non-
equilibrium thermodynamic formulation available to reliably describe
the dynamics of CHeSs. The necessity of an extended theory of thermo-
dynamics [27] is motivated by the paradox of infinite speed of propa-
gation implied by the classical (parabolic) formulation not taking into
account a more refined concept of entropy. These new developments
became soon increasingly interesting for mathematicians also who aimed
to extend the classical least action principle for reversible systems to-
wards a generalised variational principle, e.g. [14,17,24]. In [17,24], the
authors first combine the least action principle with gradient flows and
subsequently add a so-called maximum dissipation principle. These de-
velopments together with the elegant theory of optimal transport and
gradient flows based on the Wasserstein distance initiated in [19], led to
an increased interest to refine the gradient theory to variationally deduce
irreversible/dissipative terms in governing equations with a continuously
increasing list of publications [4,14,26].

Under this non-equilibrium thermodynamic viewpoint, we present
recent, systematic upscaling results for binary mixtures in CHeSs by
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appropriately taking a representative microscopic sub-system into ac-
count [36–39]. This novel formulation (in Section 3.1 (A) without fluid
flow and in Section 3.1 (B) for quasi-static flow) serves as a promising
tool for multiphase flow in porous media since it relies on thermo-
dynamic free energies of the fluid’s mixture. Moreover, a first rigorous
error quantification has been derived in [36] which we hope to foster
interest in deriving sharp estimates not depending on the classical (and
sub-optimal) truncation argument near the boundary. Hence, this novel
upscaled formulation represents a promising alternative to earlier
multiphase flow descriptions accounting for the permeability of porous
media by a Darcy or Brinkman equation for the momentum but not in
the equation for the order parameter governing the interface. Moreover,
a computational investigation of the coarsening process (Section 3.2) of
binary mixtures for various CHeSs indicates that the classical rate of
O t( )1/3 turns out to be universal and independent of perforations [47].

Finally, in Section 4, these novel upscaled phase field equations
allow for a low-dimensional, effective macroscopic description of li-
thium intercalation in composite cathodes of batteries. The phase field
modelling in this context has been initiated by [15] and since then
intensely investigated in various articles looking at single particles [8]
and a consistent thermodynamic description of the Butler-Volmer re-
actions [6]. We present effective charge transport equations for com-
posite cathodes based on a binary symmetric electrolyte described by
the dilute solution theory and account for effective interfacial Butler-
Volmer reactions as well as lithium intercalation in solid crystals which
undergo a possible phase separation.

2. Thermodynamic concepts for modelling binary fluids

We consider binary fluids consisting of species i { , } with
number densities n tx( , )i , total momentum tM x( , ), and the mixture’s
internal energy u tx( , ). Hence, the state of the system can be described
by four independent variables n n uz M{ , , , }. In order to describe
a possible phase transition in binary systems, one generally introduces
an order parameter

+
t m n

m n m n
x( , ) ,

(2.1)

which describes the fraction of a particular species, e.g. =i here.
Accordingly, this suggests to introduce the total mass density

+t m n m nx( , ) , (2.2)

where mi denotes the mass of species i { , }. At the same time,
relations (2.1) and (2.2) can be inverted to =n m/ and

=n m(1 )/ . Herewith, the system’s state z is again represented by
four independent variables, i.e., uz M{ , , , }.

Frequently, such binary systems are described as a regular solution
[9], which consists of the following free energy density

+f f f( ) ( ) ( ),r s e (2.3)

where +f k T( ) [ log (1 )log (1 )]s B is the ideal entropy of
mixing and f z( ) (1 )e describes the interaction energy be-
tween and . Often, the regular solution free energy (2.3) is ap-
proximated by a so-called double-well potential w ( ) (1 )a

1
4

2 2

allowing for stable numerical schemes.
Finally, we note that the Cahn-Hilliard phase field equation can be

derived as a mass conserving gradient flow of the free energy associated
with the regular solution free energy density fr . It is a simple for-
mulation for first order phase transitions,1 e.g. obtained by quickly
quenching a stable single phase solution, i.e., by quickly lowering the

temperature, see [29] for instance.

2.1. General non-equilibrium reversible-irreversible couplings

Let us first recall the basic building blocks of GENERIC [13,30,31],
which connect the essential thermodynamic quantities such as the state
vector z, the total energy U z( ), and the total entropy S z( ) by the fol-
lowing equations

L M
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M

= +

=

=
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( ) 0,

( ) 0,
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U S

S
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z

z
z

( ) ( )

( )

( )
(2.4)

where the antisymmetric matrix L and the symmetric matrix M are the
so-called Poisson and friction matrices, respectively. Since the energy U
and the Poisson matrixL account for the reversible contributions and
similarly the entropy S and the friction matrix M account for the ir-
reversible elements, the degeneracy requirements (2.4)2–(2.4)3 are
imposed for cases where reversible and irreversible quantities are
mixed.

For a phase separating binary system described by the state vector
uz M{ , , , }, the following general total energy and entropy have

been proposed in [18], i.e.,

+ +

+

( )
( )

U u d

S s u d

z x

z x

( ) | | ,

( ) ( , , ) | | ,

D

D

M
2 2

2

2
2

U

S

2

(2.5)

where s and u are problem specific entropy and internal energy den-
sities, respectively. The square gradient penalty, going back to van der
Waals [45], is divided into an energetic contribution and an entropic
contribution with the associated coefficients U and S, respectively.
Hence, if one considers the usual Helmholtz free energy,2 that means,

=F U k TSz z z( ) ( ) ( )B , where U is the internal energy, then one can
identify the classical regularizing parameter by = k TU B S.

Using (2.5), the symmetric velocity gradient +S v v( )T , and
= pI, where I is the identity matrix and is the total pressure

tensor composed of energetic and entropic parts, i.e., = +U S, it
has been shown in [18] that the following generalised Cahn-Hilliard
based binary mixture formulation,

=

= +

= +
=

+
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(2.6)

is consistent with the GENERIC framework (2.4). Earlier mathematical
studies guaranteeing thermodynamic dissipation of entropic/irrever-
sible processes in binary mixtures are [25], for instance. The parameter
M is the mobility in (2.6). Around the same time as [18], reduced model
formulations, which do not specifically focus on the underlying re-
versible-irreversible couplings as (2.6), have been proposed in [1],
where a connection to an associated sharp interface description is es-
tablished, and in [24,17], where a generalised variational approach is
advocated to obtain the right reversible-irreversible contributions.

System (2.6) fulfils GENERIC: We can identify the variational
derivatives from (2.5) with the help of Gibbs’3 fundamental equation of
thermodynamics [30, e.g. p. 9], here stated in differential form,

1 Ehrenfest’s classification scheme [12]: For temperature T, entropy S, pressure
p, and volume v, consider the constant Gibbs free energy

= +C T p G U TS pv( , ) in the p T -plane. First order and second order
phase transitions are then defined as discontinuities (kinks) of first and second
order derivatives of C , respectively.

2 Helmholtz free energy describes maximum amount of work at constant
volume and temperature.
3 Gibbs free energy describes maximum amount of work at constant pressure

and temperature.
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U = + +d pdV µdN TdS, (2.7)

which is a consequence of the first and second law of thermodynamics
applied to the fundamental equilibrium concept of thermodynamics
stating U = +d dW dQ for work dW and heat dQ.

Intuitively and physically motivated as in [30], we introduce the
concept of local equilibrium, which amounts to dividing a large non-
equilbrium system with non-uniform state variables into small systems
for which we can identify local state densities. It is advantageous to
describe non-equilibrium systems of volume V with state densities such
as

U tt mN t
V

u t
V

s t S t
V

x x x x x x( , ) ( , ) , ( , ) ( , ) , and ( , ) ( , ) ,

(2.8)

instead of relying on the associated extensive variables U SN , , de-
fined with respect to a small (equilibrium) volume element. Note that
the volume V in (2.8) can be a reference volume such as a small volume
element in local thermodynamic equilibrium or even the total volume
of the system of interest.

For variables = n n uz M{ , , , } describing binary fluids consisting
of species i { , } with ni

N
V

i , we have
=s n n u s n n n n u( ( , ), ( , ), ) ( ( , ), ( , ), ) and (2.7) reads

= + + +du pdv µ dn µ dn Tds , (2.9)

which after integrating over a small volume v in local equilibrium and
the property of constant chemical potentials =µ const.i in v i, { , },
leads to the following expression for the pressure

= + +p µ n µ n Ts u. (2.10)

Similarly, (2.9) implies the following definitions of chemical potentials
µ i, { , }i , and temperature T, i.e.,

µ
T

s
n

i
T

s
u

, { , }, and 1 .i

i (2.11)

Finally, with the relations inverse to (2.2) and (2.1), we get with
= +µ µ m µ m/ (1 )/ and =µ µ m µ m( / / ) the following

partial derivatives

= = =s u µ
T

s u µ
T

s u
u

T( , , ) , ( , , ) , and ( , , ) 1/ .

(2.12)

Thanks to (2.12), the variational derivatives of the total energy U and
entropy S read as stated in [18],

=

=

t t t

µ t T t T t µ t T t t

v x v x x

x x 0 x x x x
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U

S
S

z

z

2

(2.13)

Also in [18], the following Poisson matrix accounting for the re-
versible/convective behaviour has been obtained,

L
+ +

+
u

u
z x M M[ ( )]( )

0 0 0
[ ] div

0 · 0 0
0 0 0

.
T

S

S

(2.14)

In the above, the decomposition = +U S of the pressure tensor in
energetic and entropic contributions has been applied such that

= +p
U

T
S

div ,
(2.15)

where

U d S dx x
2

| | , and
2

| | .U
D

S
D

2 2
(2.16)

What remains to be done is account for irreversible (and additive)
contributions such as viscosity, diffusion, and heat conduction which all
enter via the friction matrix M M M= +H D. With the thermal con-
ductivity q, the viscosity , the dilatational viscosity , i.e., 2

3 ,
the symmetric velocity gradient +S v v( )T , and the components

+

+

+
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2 4
2 2

(2.17)

as defined in [18,30], the general friction matrix from hydrodynamics
reads as follows

M
m m
m m

0 0 0 0
0 0
0 0
0 0 0 0

,H
H

u
H

u
H

uu
H

MM M

M
(2.18)

and the diffusive contribution [18] follows due to the symmetry and
degeneracy requirements, i.e.,

M m m
m m

0 0 0 0
0 0 0 0
0 0
0 0

,D
uu
D

u
D

u
D D

(2.19)

where

m MT
m MT
m MT
m MT

div( ( ·)),
div( ·),

div( ( ·))
div( ·).

uu
D

U U

u
D

U

u
D

U
D

(2.20)

2.2. Variational approaches for irreversible systems: gradient flows, least
action and maximum dissipation principles

Motivated by the generalisation of classical mechanics towards
dissipative effects by a so-called dissipation potential, e.g. as explained
in [21], it seems to become increasingly popular to combine such a
concept with a gradient flow of the free energy associated with the non-
equilibrium system of interest. For instance, in [14], a variational for-
mulation has been developed based on a maximum dissipation principle
which can be related to a minimum principle for a dissipation potential.
Here, we briefly motivate these ideas in relation to binary mixtures as
discussed in [17], extending the earlier work on a least action principle
combined with a gradient flow [24]. The authors in [17] propose var-
iational principles to derive the following evolution equations taking
thermodynamic principles such as reversible (least action) and irre-
versible processes (maximum dissipation) into account, i.e.,

+ + =
=

+ =

p f

w

v v v v
v

v

· ,
div 0,

· ( ( )),

t

t (2.21)

where is the viscosity, denotes an elastic relaxation time of the
system, and corresponds to the surface tension and
f f Idiv( ( , ) )mix is the associated force. Moreover,
the regular solution character of the immiscible fluid is approximated
by the classical double-well potential =w ( ) 1/4(1 )2 2. We note that
similar systems have been proposed in [1] by solely relying on local and
global dissipation inequalities and frame indifference. In order to sys-
tematically motivate (2.21), the authors in [17] combine the classical
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least action principle (LAP) for reversible processes with a maximum
dissipation principle (MDP) for irreversible contributions towards a so-
called energetic variational approach (EVA) for complex fluids.

By identifying the kinetic energy ( )E dv v x( ) Dkin 2
2 and the

elastic mixing energy associated with the Cahn-Hilliard equation, i.e.,

E f dx( ) ( ( , )) ,
Dmix mix (2.22)

for +f w( , ) ( ) | |mix 2
2, one can define the following total

energy

+cE E Ev v( , ) ( ) ( ),tot kin mix (2.23)

which includes reversible and irreversible processes governing the
evolution of binary immiscible and incompressible fluids. The above
mentioned LAP is based on the following flow map [24],

=
=

t t tx X v x X
x X X

( , ) ( ( , ), ),
( , 0) ,
t

(2.24)

which maps the so-called Lagrangian material coordinate X into the
Eulerian coordinate tx X( , ). As proposed in [24], we can rewrite the
total energy (2.23) in Lagrangian coordinates as the following action
functional4

=A w t t t t d dtx x x X x X X( )
2

| | ( ( ( , ), ))
2

| ( ( , ), )| .
T

D t x0
2 2

(2.25)

Computing the variation with respect to the kinetic energy gives the
Euler equation

+ + =p fv v v I· div( ( , ) ),t mix (2.26)

where the right-hand side appears due to the elastic mixing energy. The
pressure p plays the role of a Lagrange multiplier in (2.26), if we ad-
ditionally impose the incompressibility constraint =vdiv 0.

In order to account for the dissipative part in (2.26), we introduce
the dissipation potential dv x| |D

1
2

2 following the MDP ad-
vocated in [17]. Hence, maximizing dissipation by imposing = 0v
leads to the incompressible Stokes equation with Lagrange multiplier p .
Herewith, the Euler equation turns into the following incompressible
momentum equation

+ + =p fv v v v I· div( ( , ) ),t mix (2.27)

where the pressure gradient follows from = +p p p . Finally,
minimizing the mixing energy

+E w t t t t d dtx X x X X( ) ( ( ( , ), ))
2

| ( ( , ), )| ,
T

D xmix 0
2

(2.28)

stated in Lagrangian coordinates in the form of a continuous limit of a
gradient descent leads to the phase field equation under the following
(mass-conserving/H 1) gradient flow

+ = =E wv· ( ( )).t
mix

(2.29)

The GENERIC framework (Section 2.1) and the concept of optimal
transport based on entropy to define gradient flows [19] has led to an
increased interest in a rigorous formulation of a general variational
principle for reversible-irreversible couplings, e.g. the so-called dual
dissipation potential concept [26] and the related work [4]. However, a
general variational principle allowing to arrive at GENERIC by mini-
mising functionals that can be systematically indentified for the un-
derlying physical problem seems still not to be available at this time, to
the best of our knowledge, and represents an interesting open problem.

3. Interfacial dynamics in heterogeneous systems

Phase field equations represent a convenient computational for-
mulation to numerically study the evolution of interfaces arising in
phase separated mixtures. In the context of multiphase flow in porous
media, there exist various effective macroscopic formulations such as
the generalized Darcy law [22,28],

=
µ

p f i w ov ( ), for { , },i i
r

i
i i (3.30)

where w stands for water, o for oil, i
r is the relative permeability tensor

of phase i, is the absolute permeability tensor, µi is the dynamic
viscosity of phase i p, i is the pressure of phase i, and fi is an external
force such as gravity. Following this strategy, the authors of [7] study a
system where they combine the Cahn-Hilliard equation with the
Brinkman equation.

Here, we would like to advocate a recently proposed alternative
description of interfacial transport of mixtures in highly heterogeneous
systems such as porous media. The main thrust of this work is the up-
scaling of the equation governing the evolution of the pertinent order
parameter, i.e. the interface, neglected in previous studies. The key
novelties are a rigorous and systematic derivation of effective macro-
scopic phase field equations [36–39] by reliably taking the pore geo-
metry into account as well as the thermodynamic nature of the mixture
by its specific free energy density such as fmix in EVA or the entropy
density s u( , , ) in GENERIC. We note that these upscaled phase field
equations do not represent a new model for the study of critical phe-
nomena, as opposed e.g. to the existing models A–J in [16] for instance,
but instead they provide an effective macroscopic description of het-
erogeneous/perforated domains. The subsequently stated upscaling
results for the conserved order parameter case (model B) relies on the
ability to identify a characteristic microscopic reference cell Y of lenght
, which is much smaller than the macroscopic length L of the het-
erogeneous material of interest. By averaging over the reference cell Y,
we can define the so-called mean-field operators (gradients) that take
microscopic material and geometric properties into account. This ap-
proach is generally called “Homogenization”. Moreover, we emphasize
that upscaling methods do not necessarily provide a refined physical
description, of the contact line for instance, but they do lead system-
atically and reliably to effective coupling parameters/dimensionless
numbers such as effective wetting characteristics of strongly hetero-
geneous walls as well as mean field gradients accounting for diffusion
through porous media. For simplicity, we consider the following two
scenarios: (A) interfacial transport without fluid flow/momentum
transport; and (B) interfacial transport under quasi-static flow.

(A) Interfacial transport without fluid flow/momentum trans-
port. In the following, we will describe the evolution of the interface of
an immiscible fluid forming a liquid/liquid or a liquid/gas interface.
Additionally, we would like to account for the so-called contact angle
formed between a fluid/fluid interface and a solid surface. A contact
angle of 90° is referred to as neutral wetting which amounts to a ma-
terial wetting property =a 0, whereas hydrophobic and hydrophilic
materials are characterised by <a 0 and >a 0, respectively. Herewith,

4We note that this generalisation from the total energy (2.23) to the action
functional (2.25) can be motivated from related concepts in classical mechanics
where the total energy represents the Hamiltonian = +H K V whereas the
Lagrangian is defined by L K V with K and V denoting the kinetic and
potential energy, respectively. In [21] for instance, a related generalisation of
classical mechanics to account for dissipation, e.g. by Rayleigh’s dissipation
function =R k xi i

1
2

2 is formulated with the associated generalised Lagrange
equation + =( ) 0d

dt
L
xi

L
xi

R
xi

. However, we note that this is not equivalent to
and clearly less general than GENERIC, as the Rayleigh dissipation function
does not provide a general framework for non-equilibrium thermodynamics.
Nevertheless, it serves as a useful and intuitive example of a possible extension
of the well-accepted Lagrangian framework for reversible processes towards
irreversible dynamics.
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we are able to account for contact angles in the phase field formulation
by the following inhomogeneous Neumann boundary condition [47,49]

= gn· , (3.31)

where g ax x( ) ( )Ch
and Ch is the Cahn number L/ for a char-

acteristic length scale L and = 2 2 /3e lg. The variable e denotes a
local equilibrium limiting value of the free energy Emix and lg is the
liquid-gas surface tension. It should be emphasised that the usual non-
integrable stress singularity of a sharp-interface (e.g. [40]) is “natu-
rally” resolved within the framework of the phase-field formulation
(e.g. [41,42]), precisely because the interface is diffuse. We also note
that in general, the wall free energy is a function of the phase-field
value of the wall enabling us to introduce wetting effects into the for-
mulation. This function is usually expanded as a power series in the
phase-field value of the walls. Here we keep only the first-order term
whose coefficient is a. The linear term in the expansion turns out to be
sufficient to describe partial wetting situations. But further refinement
of the physical description of the contact line is possible by keeping
higher-order terms. A cubic, for instance is the lowest-order polynomial
that would prevent the formation of boundary layers, i.e. precursor
films or any density gradients that might alleviate the contact line
discontinuity; the discontinuity is then fully resolved by the diffuse-
interface formulation only and without any additional physics [41,42].

Hence, neglecting the momentum transport in thermodynamically
motivated phase field formulations from (2.1) and (2.2), i.e., (2.6)2 and
(2.21)3, respectively, leads to the following interfacial evolution pro-
blem

=

=

=

=
=

=
=

( )( )
( )
( )

M w

M w J

M w J

g I

I

A

n n J

n n J

n x
n
n

x x

[ ]

div ( ) , in ,

( ) · · , on ,

( ) · · , on ,

· ( ), on ,
· 0, on ,
· 0, on ,
( , 0) ( ) in ,

t p

l l l

r r r

ps

t b

ps t b

p

1

1

1

0

(3.32)

where Jl and Jr are fluxes imposed such that they drive the interface
from the left to the right while neglecting momentum transport for
simplicity. For the definition of the variables describing the domain

= p s and its boundary = l r t b as well as its
interfaces Ips p s, we refer to Fig. 1. We would like to note

that the perforated domain p can be defined as the subset of a porous
medium = p s which is defined as the periodic covering of a
reference cell Y, see Fig. 2, but restricted to the pore spaceYp. Herewith,
a so-called heterogeneity parameter L characterising the porous
medium is systematically defined as the quotient of the length of the
representative porous cell Y divided by the macroscopic length L of the
porous medium of interest. If one looks for solutions of (3.32) in a
perforated domain p by such a periodic covering, then one can gen-
erally find -dependent microscopic formulations, i.e., (3.32) rewritten
by substituting with , p with p, and Ips with Ips. For notational
convenience, we do not explicitly state such an -dependence of the
microscopic problem here except where it is necessary for the sake of
clarity (see Fig. 3).

(B) Interfacial transport under quasi-static flow. We want to
generalize (A) towards fluid flow. To this end, we consider a horizontal,
quasi-static flow field defined in a periodic reference cell, see Fig. 2, and
driven by a constant, horizontal driving force e1, where e1 is the ca-
nonical Euclidean basis. Hence, we define the fluid velocity to be the
solution of the following periodic cell problem (see Fig. 5).
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=
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v e
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(3.33)

For large Péclet numbers scaling inversely proportional with hetero-
geneity, i.e., =Pe Pe /0 , a periodic wetting characterization

=g gy x( ) ( / ) of the porous medium, and the periodic fluid velocity
=v y v x( ) ( / ), we can write the microscopic interfacial evolution problem

as follows
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(3.34)

where we have set the mobility to =M 1 for simplicity.

3.1. Effective macroscopic interfacial evolution and error quantification

The microscopic formulations (3.32) and (3.33) and (3.34) lead to
computationally high-dimensional problems since the mesh size needs
to be chosen much smaller than the heterogeneity . Also defining the
pore and solid space together with the associated interfaces, which are
generally obtained with the help of imaging tools, is rather challenging
for complex geometries such as porous media. Moreover, the sub-
sequent mesh generation is also more demanding due to the complex
geometries requiring a large number of degrees of freedom for a reliable
resolution.

As a consequence, one can accelerate the computation of practical
problems by identifying the characteristic pore geometry for a smaller
representative volume element, e.g., by a reference cell Y as depicted in
Fig. 2, which contains all the relevant information about geometry. For
such a reference cell, the mesh generation and associated domain de-
finitions can be done faster in an offline calculation to extract relevant

Fig. 1. Flux-driven interfacial evolution taking into account specific wetting
properties of an obstacle s by the inhomogeneous Neumann boundary con-
dition =g a x( )Ch

on Ips p s.
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geometric information. A systematic method, that allows for a split into
an offline pre-processing and an online computation of an effective in-
terfacial evolution problem, is asymptotic upscaling/homogenization.
Here, we state two recent upscaling results which represent homo-
genized formulations of the microscopic descriptions A[ ] and B1[ ]– B2[ ]

stated in (3.32) and (3.33) and (3.34), respectively.
(A) Upscaled formulation for the interfacial transport problem

(3.32). The systematic upscaling based on asymptotic two-scale ex-
pansions of the form = +tx x( , / , )0 1

+ + …t tx x x x( , / , ) ( , / , )2
2 , have been applied in [38,37] to

Fig. 2. The upscaling of CHeSs relies on the ability to identify a characteristic reference sub-system Y. Left: Periodic reference cell Y Y Yp s with representative
pore space Yp and characteristic solid phase Ys. Right: Periodic porous medium = p s obtained as a covering of cells Y.

Fig. 3. Time evolution [time steps 1 (top left), 5 (top right), 10 (bottom left), and 20 (bottom right)] under critical random initial conditions = +x x( ) 0.5 ( )h0 with
Nx( ) (0.5, 1/8)h , Txh h, where Th denotes the triangulation of the connected pore space p obtained by removing periodically placed disks from the unit

square. Hence, the computations are based on the double-well potential =w ( ) 100 (1 )2 2.
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derive the following effective macroscopic formulation of (3.32), i.e.,
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(3.35)

where p Y
Y

| |
| |

p is the porosity and the porous media correction tensor
= dD { }ij i j d1 , is defined by

=
d

Y y
dy1

| |
.ij

k

d

Y ij ik
j

k1 p (3.36)

Finally, the porous media corrector k d, 1k , solves the following
reference cell problem
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(3.37)

which is of the same form as the cell problems obtained in the homo-
genization of elliptic equations such as the Laplace and Poisson equa-
tions, e.g. [2,10].

This novel effective macroscopic phase field formulation has been
recently rigorously justified by a first error quantification in [36]. If we
adopt the notation generally applied in homogenization theory, then
one explicitly states the -dependence of solutions (i.e., ) of the mi-
croscopic formulation A[ ] and since the upscaling consists in passing to
the limit 0, one writes 0 for the solution of the effective macro-
scopic problem A[ ]eff . Hence, if the free energy density fr is polynomial,
then the error variable +E ( ),0 1 where

= ty x( ) ( , )k
d k

x1 1 k
0 , satisfies for t T0 and < <T0 the

following estimate

+( )E t E t E t d

C T m

x x x(·, ) (| ( , )| | ( , )| )

( , , , , ),

H ( )
2 2

1/2

1/4

1

(3.38)

whereC T m( , , , , ) is a constant independent of .5 We note that the
convergence rateO ( )1/4 arises due to the classical argument of relying
on a smooth truncation in a neighbourhood of the boundary. A nu-
merical validation of the error bound (3.38) and recent developments of
novel estimation techniques such as [32,43], indicate a linear con-
vergence, i.e., O ( ). Hence, we hope that this first rigorous result for
fourth order problems motivates a future refinement towards a sharp
error quantification.

(B) Upscaled transport formulation for the quasi-static flow
problem (3.33) and (3.34). In addition to systematically and reliably
describing interfacial dynamics in strongly heterogeneous systems, we
also want to account for so-called diffusion-dispersion effects of the
interface. This latter phenomenon is well-known for Brownian particles
where it has been motivated by the so-called Taylor-Aris dispersion in
[3,44]. Here, we state the recent upscaling result derived in [39] for the
microscopic problem (3.33) and (3.34), i.e., B1[ ]– B2[ ],
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(3.39)

where the porous media correction tensor D is defined by (3.36) and
(3.37) as in the case of =v 0. At the same time, we have a new tensor

cC { }ij i j d1 , contributing to the so-called diffusion-dispersion effects
by

c
Y

v u dyPe
| |

( ) ,ik Y
i i

ik
k0

1 (3.40)

with k being the solution of the cell problem (3.37),
u v dy y( )i Pe

Y Y
i

| | p
0 for vi given by (3.33), and the effective wetting

term is given by g a dx y y( , )C Y Y
1

| |h
1 , for wetting characteristics

a varying on the macro- and the microscale.
Finally, we emphasize that the advantage of the novel upscaled

formulation (3.39) is that it allows for a computational decoupling into
an offline computation resolving the microscopic features of CHeSs and an
online computation to solve the low-dimensional, effective macroscopic
phase field equation accounting for diffusion-dispersion relations. We
believe that this novel approach will be useful in many applications
since it allows to take systematic thermodynamic free energies into
account and hence provides a promising framework for investigating
complex reactive multiphase flows.

Fig. 4. Reference sub-subsytem Y Y Yp s defining the representative mi-
croscale.

5 A clarification of statements on mathscinet.ams.org about MR3689148:
remarks 1 and 2 refer to existing regularity results and are not used in that
article. Remark 3 refers to a standard cut-off function clearly defined different
from 1 on and which is standard by now as demonstrated by citations given
therein.
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3.2. Universal coarsening rates: O t( )1/3 -behaviour recovered in
heterogeneous media

The first systematic report on the radial dependence of the coar-
sening/ripening process in dispersed systems seems to go back to
Ostwald in 1900. Since this “Ostwald ripening” happens in almost all
phase transition processes and governs the morphology of micro-
structure, Ostwald’s discovery of this competitive growth phenomenon
plays a crucial role in materials science and related applications. An
important property of the process is its self-similarity which one can
observe after sufficiently long coarsening times. The physical explana-
tion for the Ostwald ripening is that the system tries to minimize its
energy by reducing its interfacial area. Moreover, coarsening relies on
the fact that a single large particle has much lower interfacial area than
many small particles. We note that this ripening/coarsening appears in
different characteristic length scales such as distance between particles,
particle radius, or the inverse of the interfacial area per volume, i.e.,

=L t D E( ) | |/ mix, where ED
1

| | mix is the volume-averaged interfacial area
which relies on the Cahn-Hilliard free energy density fmix, see (2.22).
Here, we will focus on this latter length L.

About 60 years later since Ostwald’s discovery of this growth phe-
nomenon, Lifshitz and Slyozov [23] and Wagner [48] proposed a mean
field equation whose solution gives the number of droplets of a parti-
cular radius r at time t. The following coarsening rate

L t Ct( ) ,1/3 (3.41)

has been validated experimentally and computationally in [50]. So far,
a rigorous proof for (3.41) has only been obtained for a time-averaged
version in [20], i.e.,

T
E dt C

T
t dt1 ( ) .

T T

0 mix
2

0
1/3 2

(3.42)

In [47], the authors have recently studied the influence of hetero-
geneities such as periodic porous media on the coarsening rate. Here,

we extend this validation towards non-periodic porous media with
porosity gradients, see Fig. 7. We observe that the well-known coar-
sening rate (3.41) for homogeneous media also holds in the context of
porous media under neutral wetting conditions, i.e., a contact angle of

°90 . This indicates that the exponent 1/3 in (3.41) represents a universal
coarsening rate.

4. Application of A[ ]eff : upscaled composite cathodes

Batteries represent delicate CHeSs due to mass and charge transport
through different phases such as an active anode and a composite
cathode which are separated by a polymer electrolyte. Moreover, the
performance of batteries crucially depends on interfacial reactions,
such as the widely accepted Butler-Volmer reactions. A schematic de-
sign of a lithium-ion battery is depicted in Fig. 8 (left). For simplicity,
we restrict ourselves to the composite cathode which consists of solid
intercalation particles s, a polymer electrolyte phase p, and an
electron conducting binder b allowing for electron conduction be-
tween the solid phase s. An example of a composite cathode is given in
Fig. 8 (right), which represents horizontal fibers separated by a polymer
electrolyte. We note that an effective model formulation for composite
cathodes has been proposed in [11] with the help of a so-called
shrinking core description relying on radial and classical diffusion. In
this section, we present a recently derived generalization towards an
effective macroscopic formulation accounting for interstitial diffusion
in heterogeneous domains.

Motivated by the experimental fact that crystalline intercalation
hosts of composite cathodes can phase separate, and by the increased
interest in describing lithium intercalation by a phase field equation as
initiated in [15] and further developed in [5,6,8], an effective com-
posite cathode formulation based on phase field driven intercalation
and dilute electrolytes has been systematically derived recently in [35].
Hence, the incompressible momentum V , the densities +C and C of
positively and negatively charged ions, respectively, the electrostatic

Fig. 5. Computations from [39]. Top line: Heterogeneous system correctors 1 and 2 solving the cell problem (reference sub-system) (3.37) and the perturbed
straight channel Fig. 4. Bottom line: Components v1 and v2 solving (3.33) in the reference cell Fig. 4.
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potentials s and p for the solid and electrolyte phase, respectively, as
well as the density of intercalated lithium Cs are described by the fol-
lowing novel upscaled composite cathode system,

=

=
+ = +

+ =
= +
=
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+
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+
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where =p Y
Y

| |
| |

p is the porosity (see Fig. 2), =q p1 ,
= +C Cf ( ) p

0 an effective Coulomb force, and the material’s
correction tensors = ={ }ij i j

d
, 1, = =m{ }ij i j

d
, 1, = =d{ }ij i j

d
, 1, = ={ }ij i j

d
, 1,
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d
, 1, and = =m{ }s ij

s
i j
d
, 1 are defined by standard cell problems

arising in the homogenization theory (see (3.37) and (3.36) for in-
stance) and therefore we refer the interested reader to [35]. Finally, the
interfacial Butler-Volmer reactions
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appear in the upscaled system (4.43) as bulk equations and show the
important coupling parameters =+

i L
eD

| |0 , = F
RT

i L | |ps

ref
, =s

i L
eM

| |
s

0 ,

for =ref
Dp

D
2 . Moreover, = s p

0 denotes the overpotential and U 0

represents the open circuit potential. Finally, the variable
= ( ) ( )i Fk c c cps fb pm

p p c p a is the so-called exchange current density
and =c exp( )sm sm

p .
The novel system (4.43) and the crucial modelling initiated in [11]

share the fact that in the effective macroscopic formulation, the dif-
ferent phases are superimposed or homogenized (referring to the un-
derlying upscaling strategy). The main novelty and contribution of
(4.43) is the appearance of the effective phase field Eq. (4.43)7 gen-
eralizing the radial diffusion (shrinking core) formulation proposed in
[11] towards a thermodynamic formulation taking into account phase
separation during the lithium intercalation.

5. Conclusions

We have presented recent developments to describe interfacial

evolution of binary mixtures founded, on the non-equilibrium ther-
modynamic structure provided by the reversible-irreversible couplings,
called GENERIC. And we highlighted the increasing interest in estab-
lishing a non-equilibrium variational principle by generalising the least
action principle for reversible systems to acccount for the right irre-
versible contributions via a maximum dissipation principle in Section 2.

A major part of this article has then been devoted to demonstrate
that reliable upscaling of phase field equations provides a new and
thermodynamic consistent approach to describe multiphase flow in
porous media. In fact, the novel formulations (3.35) (without flow) and
(3.39) (with flow) take the underlying, thermodynamic free energy of
fluid mixtures into account in contrast to the classical multiphase ex-
tension (3.30) of Darcy’s law. It is noteworthy that from a thermo-
dynamic point of view Darcy’s law represents a reduced momentum
balance equation. Moreover, under quasi-static fluid flow defined on a
reference cell in local thermodynamic equilibrium, our upscaled/effective
multiphase flow formulation includes the so-called diffusion-dispersion
relations which have been intensively studied in the context of Brow-
nian motion/Fick’s diffusion, e.g. [3,44]. In fact, the effective macro-
scopic phase field formulation (3.35) has been analytically and com-
putationally validated by error estimates, i.e., inequality (3.38) and
Fig. 6 (right), respectively. Additionally, we investigated the effect of
heterogeneities, e.g. perforated domains with porosity gradients as
depicted in Fig. 7, on the coarsening rate and, interestingly, we ob-
served that the coarsening rate ofO t( )1/3 , well-known for homogeneous
domains, also holds in porous media and hence seems to represent a
universal property.

Of course the Cahn-Hilliard phase field equation [9] has a long
history going back to 1958. Since then, there is a continuously in-
creasing interest in applying the mean field formulation in a wide
spectrum of fields including physics, material science, biology, and
fluid dynamics to mention but a few. We believe that the novel multi-
phase flow/interfacial evolution equations we outlined, show promise
for a wide range of scientific, engineering, and industrial applications.
And we hope that they can motivate further studies on the use of the
non-equilibrium thermodynamic framework we described for problems
where heterogeneities play a crucial role. A rather novel direction is
battery science as initiated in [15], where the phase field model has
been motivated as a provably reliable description for interstitial diffu-
sion. This has found increasing interest in computational material sci-
ence and electrochemistry which in turn motivated us to present here
the extension of this description to systematically account for highly
heterogeneous electrodes such as composite cathodes, see Fig. 8 for
instance.
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